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Written in simple language with relevant examples, Statistical Methods in 
Biology: Design and Analysis of Experiments and Regression is a practi-
cal and illustrative guide to the design of experiments and data analysis in the 
biological and agricultural sciences. The book presents statistical ideas in the 
context to which they are being applied, drawing on relevant examples from the 
authors’ experience.

Taking a practical and intuitive approach, the book includes mathematical for-
mulae only where this helps to formalise and explain the methods being applied, 
providing extended discussions of examples based on real data sets arising from 
scientific research. The authors analyse data in detail to illustrate the use of basic 
formulae for simple examples while using statistical packages for more complex 
examples. The associated website (www.stats4biol.info) shows how to obtain 
the example analyses in the GenStat®, R and SAS® statistical packages. This on-
line material provides a basic introduction to the facilities in each package, with 
code for all of the examples and half of the exercises in each chapter.

By the time you reach the end of the book and online material you will have 
gained:
• A clear appreciation of the importance of a statistical approach to the 

design of your experiments, 
• A sound understanding of the statistical methods used to analyse data 

obtained from designed experiments, and of the regression approaches 
used to construct simple models to describe the observed response as a 
function of explanatory variables,

• Knowledge of how to use statistical packages to analyse data with the 
approaches described, and most importantly,

• An appreciation of how to interpret the results of these statistical analyses 
in the context of the biological or agricultural science within which you are 
working.

The book concludes with a practical guide to design and data analysis. Overall, 
it gives you the statistical understanding required to successfully identify and ap-
ply these statistical methods to add value to your scientific research. 
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Preface

This book provides an introductory, practical and illustrative guide to the design of exper-
iments and data analysis in the biological and agricultural plant sciences. It is aimed both 
at research scientists and at students (from final year undergraduate level through taught 
masters to PhD students) who either need to design their own experiments and perform 
their own analyses or can consult with a professional applied statistician and want to have 
a clear understanding of the methods that they are using. The material is based on courses 
developed at two British research institutes (Rothamsted Research and Horticulture 
Research International [HRI – then Warwick HRI, and now the School of Life Sciences, 
University of Warwick]) to train research scientists and post-graduate students in these 
key areas of statistics. Our overall approach is intended to be practical and intuitive rather 
than overly theoretical, with mathematical formulae presented only to formalize the meth-
ods where appropriate and necessary. Our intention is to present statistical ideas in the 
context of the biological and agricultural sciences to which they are being applied, draw-
ing on relevant examples from our own experiences as consultant applied statisticians at 
research institutes, to encourage best practice in design and data analysis.

The first two chapters of this book provide introductory, review and background mate-
rial. In Chapter 1, we introduce types of data and statistical models, together with an 
overview of the basic statistical concepts and the terminology used throughout. The train-
ing courses on which this book is based are intended to follow preliminary courses that 
introduce the basic ideas of summary statistics, simple statistical distributions (Normal, 
Poisson, Binomial), confidence intervals, and simple statistical tests (including the t-test 
and F-test). Whilst a brief review of such material is covered in Chapter 2, the reader will 
need to be comfortable with these ideas to reap the greatest benefit from reading the rest of 
the book. Some readers may feel that their knowledge of basic statistics is sufficiently com-
prehensive that they can skip this review chapter. However, we recommend you browse 
through it to familiarize yourself with the statistical terminology that we use.

The main body of the book follows. Chapters 3 to 11 introduce statistical approaches to 
the design of experiments and the analysis of data from such designed experiments. We 
start from basic design principles, introduce some simple designs, and then extend to more 
complex ones including factorial treatment structures, treatment contrasts and blocking 
structures. We describe the use of analysis of variance (ANOVA) to summarize the data, 
including the use of the multi-stratum ANOVA to account for the physical structure of 
the experimental material or blocking imposed by the experimenter, introduce simple 
diagnostic methods, and discuss potential transformations of the response. We explain 
the analysis of standard designs, including the randomized complete block, Latin square, 
split-plot and balanced incomplete block designs in some detail. We also explore the issues 
of sample size estimation and the power of a design. Finally, we look at the analysis of 
unbalanced or non-orthogonal designs. Chapters 12 to 18 first introduce the idea of simple 
linear regression to relate a response variable to a single explanatory variable, and then 
consider extensions and modifications of this approach to cope with more complex data 
sets and relationships. These include multiple linear regression, simple linear regression 
with groups, linear mixed models and models for curved relationships. We also extend 
related themes from the earlier chapters, including diagnostic methods specific to regres-
sion. We emphasize throughout that the same type of models and principles are used for 
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both designed experiments and regression modelling. We complete the main body of the 
book with a discussion of generalized linear models, which are appropriate for certain 
types of non-Normal data.

We conclude with a guide to practical design and data analysis (Chapter 19), which 
focuses on the selection of the most appropriate design or analysis approach for individual 
scientific problems and on the interpretation and presentation of the results of the analysis.

Most chapters include exercises which we hope will help to consolidate the ideas intro-
duced in the chapter. In running the training courses from which this book has been devel-
oped, we often find that it is only when students perform the analyses themselves that 
they fully appreciate the statistical concepts and, most importantly, understand how to 
interpret the results of the analyses. We therefore encourage you to work through at least 
some of the exercises for each chapter before moving to the next one. There are fewer exer-
cises in the earlier chapters and the required analyses build in complexity, so we expect 
you to apply knowledge gained throughout the book when doing exercises from the later 
chapters. All of the data sets and solutions to selected exercises are available online. Some 
of the solutions include further discussion of the relevant statistical issues.

We have set up a website to accompany this book (www.stats4biol.info) where we show 
how to do the analyses described in the book using GenStat®, R and SAS®, three commonly 
used statistical packages. Whilst users familiar with any of these packages might not refer 
to this material, others are encouraged to review it and work through the examples and 
exercises for at least one of the packages. Any errors found after publication will also be 
recorded on this website.

By the time you reach the end of the book (and online material) we intend that you will 
have gained

• A clear appreciation of the importance of a statistical approach to the design of 
your experiments,

• A sound understanding of the statistical methods used to analyse data obtained 
from designed experiments and of the regression approaches used to construct 
simple models to describe the observed response as a function of explanatory 
variables,

• Sufficient knowledge of how to use one or more statistical packages to analyse 
data using the approaches that we describe, and most importantly,

• An appreciation of how to interpret the results of these statistical analyses in the 
context of the biological or agricultural science within which you are working.

By doing so, you will be better able both to interact with a consultant statistician, should 
you have access to one, and to identify suitable statistical approaches to add value to your 
scientific research.

This book relies heavily on the use of real data sets and material from the original courses 
and we are hence indebted to many people for their input. Particular thanks go to Stephen 
Powers and Rodger White (Rothamsted Research) and John Fenlon, Gail Kingswell 
and Julie Jones (HRI) for their contributions to the original courses; also to Alan Todd 
(Rothamsted Research) for providing many valuable suggestions for suitable data sets. 
The majority of real data sets used arose from projects (including PhDs) at Rothamsted 
Research, many in collaboration with other institutes and funded from many sources; 
we thank Rothamsted Research for giving us general permission to use these data. We 
also thank, in alphabetical order, R. Alarcon-Reverte, S. Amoah, J. Baverstock, P. Brookes, 
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J. Chapman, R. Curtis, I. Denholm, N. Evans, A. Ferguson, S. Foster, M. Glendining, K. 
Hammond-Kosack, R. Harrington, Y. Huang, R. Hull, J. Jenkyn, H.-C. Jing, A.E. Johnston, 
A. Karp, J. Logan, J. Lucas, P. Lutman, A. Macdonald, S. McGrath, T. Miller, S. Moss, J. Pell, 
R. Plumb, P. Poulton, A. Salisbury, T. Scott, I. Shield, C. Shortall, L. Smart, M. Torrance, P. 
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1
Introduction

This book is about the design of experiments and the analysis of data arising in biological 
and agricultural sciences, using the statistical techniques of analysis of variance (ANOVA) 
and regression modelling. These techniques are appropriate for analysis of many (although 
not all) scientific studies and form an important basic component of the statistician’s tool-
box. Although we provide some of the mathematical formulae associated with these tech-
niques, we have also tried to interpret the equations in words and to give insight into the 
underlying principles. We hope that this will make these useful statistical methods more 
accessible.

This chapter presents an introduction to the different types of data and statistical mod-
els that are considered in this book, together with an overview of the basic statistical con-
cepts and terminology which will be used throughout. In particular, we discuss

• Types of scientific study
• Populations and samples
• Mathematical and statistical models used to describe biological processes
• The linear model – which underlies all the models and methods introduced in this 

book
• Parameter estimation and statistical inference
• ANOVA – the major statistical tool used to evaluate and summarize linear models

At the end of this chapter, we preview the contents of the remaining chapters.

1.1 Different Types of Scientific Study

We shall be concerned with data arising from both experimental and observational stud-
ies. Although they have many common features, there are some subtle differences that 
influence the conclusions that can be drawn from the analyses of data from these two 
types of study.

An experimental study is a scientific test (or a series of tests) conducted with the objec-
tive of studying the relationship between one or more outcome variables and one or more 
condition variables that are intentionally manipulated to observe how changing these 
conditions affects the results. The outcome of a study will also depend on the wider 
environment, and the scientist will endeavour to control other variables that may affect 
the outcomes, although there is always the possibility that uncontrolled, perhaps unex-
pected, variables also influence the outcome. Adequate planning is therefore crucial to 
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 experimental  success. There are a few key elements that need to be clearly specified and 
considered for an experimental study (Kuehl, 2000). These are the

• aims of the experiment – usually expressed as questions or hypotheses
• physical structure of the study materials
• subjects or entities to be used
• set of conditions to be investigated
• other variables that might affect the outcome
• outcome variables to be measured
• protocols that define how the measurements are taken
• available resources (e.g. money, time, personnel, equipment, materials)

The aims of an experimental study need to be clearly specified, often in the form of  
hypotheses to be tested or a set of questions to be answered; this is a vital part of the 
planning process. The physical structure and subjects to be used should be chosen so 
that the results of the experiment can be related to a wider context (see Section 1.2). In 
addition, the set of conditions to be investigated must be chosen to answer directly the 
scientific questions. Other variables likely to affect the outcome should be identified and 
evaluated so that they can be controlled, as far as possible, and therefore do not interfere 
with the measured outcome. If they cannot be controlled then they should be measured. 
Consideration of the variables to be measured is often overlooked at the planning stage, 
but is important because it may affect both the statistical analysis and the efficiency of 
the design. As discussed later (Chapter 18), the analysis required for binary data (e.g. 
absence or presence of disease) or count data (e.g. numbers of insects or weeds present) 
may be different from that for a continuous variable (e.g. shoot length). A full defini-
tion of measurement protocols is good practice and should reduce differences in proce-
dure between scientists working on the same experiment, and improve repeatability of 
the results. Finally, the resources available will usually limit the size and scope of the 
experiment.

Design of experiments is a process that brings together all the elements above to pro-
duce an experiment that efficiently answers the questions of interest and aims to obtain 
the maximum amount of information for the resources available, or to minimize the 
resources needed to obtain the information desired. The main statistical principles used 
in constructing a good design are replication, randomization and blocking. These concepts 
are discussed in detail in Chapter 3.

An observational study differs from an experimental study in that the application of 
conditions that affect the outcome is not directly controlled by the scientist. However, 
all the elements listed above for experimental studies should still be considered when 
you plan an observational study, although opportunities for the random allocation of 
conditions to subjects will be limited and sometimes non-existent. In observational stud-
ies, the set of conditions to be investigated is first defined, and then subjects with these 
characteristics are sought and measurements made. Observational studies are often used 
in ecology where it is difficult to set up an experiment whilst retaining natural habitats. 
For example, a study might aim to determine the difference in beetle populations using 
selected field margins as the subjects under two conditions: with and without hedges. In 
this context, it is harder than in experimental studies to control other variables that may 
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affect the outcome. For example, the set of hedges available may be composed of several 
plant types, which might in turn affect the species and abundance of beetles present. In 
addition, hedges are already in place, and fields with hedges may differ systematically 
in other characteristics from fields without hedges – in an extreme case they might be 
on different farms, with different farming methods used. The scientist should therefore 
consider that differences between conditions in an observational study might be caused 
by other unrecorded, or possibly unobserved, variables. In experimental studies, where 
we have greater control over conditions, this can still be true, but we can use randomiza-
tion to guard against such unknown differences between subjects. But where there are 
potential uncontrolled sources of variability, the scientist should be wary of inferring 
direct causal relationships. Hill (1965) gave criteria that should be satisfied by a causative 
relationship in the context of epidemiology, and many of these criteria can be applied 
more widely and may be helpful in deciding whether a causal relationship is plausible for 
any observational study.

The separation between experimental and observational studies is not complete, as 
some studies may have both experimental and observational components. However, both 
types of study incorporate structure, and we should take account of this structure in the 
planning, design, statistical analysis and interpretation of such studies.

1.2 Relating Sample Results to More General Populations

For most scientific studies there is an implicit assumption that the results obtained can 
be applied to a population of subjects wider than those included in the study, i.e. that the 
conclusions will apply more generally (although usually with caveats) to the real world. 
For example, in a field trial to investigate disease control it will generally not be possible to 
have very large plots, nor to assess visually every plant in a plot, and so a random sample 
of plants is selected from each plot. It is assumed that the sampled plants are representa-
tive of all the plants in the plot and so the results from the sample are inferred to apply to 
the whole plot. In turn, we should usually have several plots within the trial with the same 
treatment applied and hope to infer the results from this sample of plots to the whole field. 
However, it is well-known that field experiment results vary markedly over years and 
locations, so the trial would ideally be performed at several locations across several years 
to provide a representative sample of environments. The combined results from the whole 
set of trials can then be claimed to apply to the region where they were carried out, rather 
than to a single field in a single year.

In planning any scientific study, it is therefore important to consider the frame of refer-
ence when experimental subjects are selected. The scientist should identify the population 
(wider group of subjects) to which they hope the experimental results will apply. Ideally, 
the subjects should then consist of a sample, or subset, drawn from this population. If the 
process of selecting a sample, known as sampling, is made at random, then it is reasonable 
to assume that the sample will have similar properties to the whole population, and we 
can use it to make statistical inferences about the population. Generally, as the number of 
observations in the sample increases, the inferences made about the population become 
more secure. If a sample is not taken at random, then this sense of the sample being repre-
sentative of the population may be lost.



4 Statistical Methods in Biology

1.3 Constructing Models to Represent Reality

A model is an abstract representation of a hypothesized process that underpins a biologi-
cal or physical phenomenon, that is, a way of describing a real system in words, diagrams, 
mathematical functions, or as a physical representation. In biology, models usually cor-
respond to a simplification of the real process, as no existing model can represent reality 
in all details. However, this does not mean that models cannot be useful. A good model 
summarizes the major factors affecting a process to give a representation that provides the 
level of detail required for the objective of a particular study.

Mathematical models use mathematical notation and expressions to describe a process. 
A statistical model is a mathematical model that allows for variability in the process that 
may arise from sampling variation, biological variation between individuals, inaccuracies 
in measurement or influential variables being omitted (knowingly or not) from the model. 
Therefore, any statistical model has a measure of uncertainty associated with it.

Models are additionally often classified as either process (or mechanistic) models or 
empirical models. A process model purports to give a description of the real underlying 
process. This type of model can be useful in testing our knowledge: if a model can be built 
to reproduce the behaviour of the system accurately, then our knowledge of the process 
(theory) is at least consistent with reality. Conversely, and arguably more usefully, failure 
of a process model may indicate gaps in knowledge that can be pursued by further experi-
mentation. Process models are often complex, with many parameters, but can sometimes 
be fitted using statistical principles (see e.g. Brown and Rothery, 1993, Chapter 10).

Statistical models usually fall under the category of empirical models, which use the 
principle of correlation to construct a simple model to describe an observed response in 
terms of one or more explanatory variables. Empirical models use the correlation between 
the explanatory (input) variable(s) and the measured response (output) variable to build 
a model without explicit reference to the true underlying process (although knowledge of 
this process may be used both to select suitable input variables and to identify the appro-
priate form of the relationship). This can be useful to identify variables that are influential 
where no detailed knowledge of the process exists, although some care should be taken 
with interpretation as there may be no direct causative relationship between the input 
and output variables; instead they may both be driven by some other hidden (latent) or 
unmeasured variable.

We shall consider statistical models of the general form

 response = systematic component + random component.

This model can exist in abstract form, but we usually relate it to a set of measurements 
that have been made. The response, or response variable, relates to one type of numerical 
outcome from the study, sometimes also called the set of observations. The systematic 
component is a mathematical function of one or more explanatory variables that provide 
a representation of the experimental conditions. The systematic component describes the 
relationship between the response and these explanatory variables and hence between the 
response and the experimental conditions. Where the conditions have a direct numerical 
evaluation, such as count, weight or height, the explanatory variable is termed quantita-
tive. We refer to quantitative variables as variates. Where the conditions are classified 
into groups or categories the explanatory variable is termed qualitative. In this case, the 
explanatory variable indicates the group to which each subject belongs. We shall refer to 
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qualitative variables as factors and identify the distinct groups in the factor as the  factor 
levels. For example, sex would be a factor with two levels: male and female. Note that it 
is sometimes convenient to group a quantitative variable into categories so as to treat it 
as a qualitative variable, for example, heights can be classified as short, medium or tall. 
However, this change cannot always be made in reverse; some explanatory variables, such 
as sex, are inherently qualitative. Similarly, if a scientist had compared three types of fertil-
izer, or one fertilizer across three different plant varieties, then the levels of the explanatory 
variable (fertilizer type or plant variety) cannot be translated into meaningful numbers. In 
the context of experimental studies, the conditions imposed by the experimenter are usu-
ally represented as factors and referred to as treatments. We also use this term more gen-
erally to describe the set of conditions present in observational studies when represented 
by factors. In some contexts, where it is more natural, we use the alternative term groups 
instead of treatments.

In general, the systematic component of the statistical models that we consider can be 
partitioned further into explanatory and structural components as

 systematic component = explanatory component + structural component.

The explanatory component corresponds to the conditions of interest, or treatments, in 
the study. The structural component is used to account for the structure of the study, such 
as sub-sampling within an observational study or blocking within a designed experiment. 
The structural component is not always present: it may be omitted in the (rare) case that 
the experimental material consists of an unstructured sample. This partition facilitates the 
accurate specification of the whole model, as it encourages us to consider the two compo-
nents separately: the explanatory component relates to our hypothesis (or hypotheses) of 
interest, and the structural component relates to the structure of the experimental material.

The random component, also known as error or noise, corresponds to variation in the 
response that is not explained by the systematic component. This component may have 
several sources, such as inherent between-subject variability, measurement errors and 
background variation within the environment of the study. Mathematically, we usually 
describe the random component in terms of some appropriate probability distribution (see 
Chapters 2 and 4).

The systematic component is used to predict the response for any set of experimental 
conditions, and the random component is used to estimate the uncertainty in those predic-
tions. Here are two simple examples of statistical models.

EXAMPLE 1.1: QUALITATIVE EXPLANATORY VARIABLE

Consider an experiment to investigate nutrient feeding strategies for plants grown in 
pots. A scientist has obtained a new liquid feed and wishes to evaluate its effect on 
plant growth. The instructions provided by the manufacturer suggest three feeding 
regimes labelled A, B and C. The scientist decides to grow 12 plants of a single plant 
variety, each one in a separate pot, and to allocate four plants at random to each of the 
three suggested regimes. After six weeks, the height of each plant is measured. Here, 
the response variable is plant height and the only explanatory variable is the feeding 
regime, which is a qualitative variable with three levels.

We might hypothesize that the plant height for a given feeding regime can be 
expressed symbolically as

 height = overall mean + effect of feeding regime + deviation.
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This is a simple (empirical) statistical model with height as the response. For an unstruc-
tured sample of 12 pots, there is no need for a structural component. So here the sys-
tematic part of the model (i.e. overall mean + effect of feeding regime) relates only to 
the explanatory component, with plant height modelled as an overall mean modified 
by some specific amount for each feeding regime. The random part (labelled deviation) 
allows for the deviation of individual observations from the feeding regime value given 
by the systematic component. Using mathematical notation (see also Section 2.1) we can 
write this model as

 y ejk j jk= + +µ τ  .  
(1.1)

Here, we have identified each plant by labelling it by the treatment applied (j = 1, 2, 3 
for regimes A, B, C, respectively) and then we number the plants within each treatment 
group (using k = 1, 2, 3, 4). Hence, yjk represents the height of the kth plant with the jth 
feeding regime. We use μ to represent the population mean height (the ‘overall mean’), 
and τj represents the difference in response for the jth feeding regime relative to the 
overall mean (the ‘effect of the feeding regime’). Finally, ejk is the deviation associated 
with the kth replicate plant under the jth feeding regime.

The symbols μ and τ1, τ2, τ3 (usually written as τj, j = 1 … 3) are unknown population 
parameters that have to be estimated from the observed sample from the experiment. 
This model represents the height of a plant under the jth regime using the systematic 
component μ + τj, so a different value pertains to each regime, as shown in Figure 1.1a.

In Example 1.1, the explanatory variable (feeding regime) is a qualitative variable, or fac-
tor, with three levels (A, B and C). Without further information we cannot infer relation-
ships between these factor levels and so we model the response by fitting a separate effect 
for each level. However, if the different feeding regimes correspond to different applica-
tion rates for the liquid feed, then the scientist could evaluate the quantities corresponding 
to each feed rate and turn them into quantitative values (numbers). We can then consider 
other models for these data as shown in Example 1.2.

EXAMPLE 1.2: QUANTITATIVE EXPLANATORY VARIABLE

Suppose now that the scientist in Example 1.1 has evaluated the volumes (or doses) for 
feeding regimes A, B and C as 20, 40 and 60 mL per plant, respectively. The explana-
tory variable now corresponds to a quantitative variable (i.e. dose) with numeric values, 
and we can reasonably consider the response as a function of this continuous variable, 
expressed symbolically as

 height = f(dose) + deviation,

where f(dose) indicates some mathematical function of dose. Here, we assume the sim-
plest case, namely that the function is a straight line relationship (see Figure 1.1b). We 
can formally write this simple model as

 y x ejk j jk= + +α β  .  (1.2)

We again label each plant by the treatment applied (here j = 1, 2, 3 for doses 20, 40 and 
60 mL, respectively) and then number plants within each treatment group (using k = 1, 
2, 3, 4) so yjk is the height of the kth replicate plant with the jth dose. Now, xj is the numer-
ical quantity of the jth dose (x1 = 20, x2 = 40, x3 = 60), α is the plant height at zero dose 
(the intercept of the line in Figure 1.1b with the y-axis at x = 0), β is the linear response to 
increasing the dose by 1 mL (the slope of the line in Figure 1.1b), and ejk is the deviation 
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from the linear trend for the kth replicate plant with the jth dose. The symbols α and 
β are unknown population parameters that have to be estimated from the observed 
sample.

The model represented by Equation 1.2 differs from the model represented by Equation 
1.1 in several important respects, even though it could arise from the same experiment. 
In Example 1.1, feeding regime was considered to be a qualitative variable (and so here 
we call Equation 1.1 the qualitative model), and a separate effect was allowed for each 
level. In Example 1.2, we used additional information, that is the numeric values of dose, 
to fit height as a linear function of dose (and so here we call Equation 1.2 the quantita-
tive model). The qualitative model might be considered more flexible, as it does not make 
any assumption about the shape of the relationship. However, the quantitative model has 
the advantage that it is more parsimonious, i.e. that it uses fewer parameters to describe 
the pattern. It has the further advantage that we can also make predictions at intermedi-
ate doses (e.g. 50 mL) using the fitted model (under the assumption that the straight line 
model is appropriate).

1.4 Using Linear Models

Equations 1.1 and 1.2 are simple examples of linear models, an important sub-class of the sta-
tistical models introduced in Section 1.3. In this context, the response variable is sometimes 
called the dependent variable and the explanatory variables are sometimes called indepen-
dent or predictor variables. The explanatory and structural components of a linear model 
each consist of a set of terms added together (an additive structure) and each term consists 
of either a single unknown parameter (such as τj in Equation 1.1), or an unknown parameter 
multiplied by a known variable (such as βxj in Equation 1.2) – this is the linear structure. 
The random component, or deviation, is added to the systematic component to give the full 
model. In general, linear models might contain terms for several qualitative or quantitative 
explanatory variables or both. It is important, but slightly confusing, to note that the output 
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FIGURE 1.1
Two linear models with observed (•) and population (—) responses (heights) for the plant growth experiment 
for (a) a qualitative explanatory variable representing three feeding regimes (A, B and C, Example 1.1), and (b) a 
quantitative explanatory variable representing three doses (20, 40 and 60 mL, Example 1.2).
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from a complex linear model will generally not be a straight line (e.g. Equation 1.1), although 
the straight line relationship between a response variable and a single explanatory variable 
(e.g. Equation 1.2) is the simplest example of a linear model. The class of linear models is a 
large and flexible one and, although the models themselves are usually approximations, 
they can adequately represent many real-life situations. The most common uses for linear 
models are model specification, parameter estimation and prediction.

The main objective in model specification is to determine what form of statistical model 
best describes the relationship between the response and explanatory variable(s). There will 
often be a biological hypothesis behind a study that suggests a suitable form of model and 
the explanatory variables that should be included in the model. For example, in Example 
1.1 the scientist wanted to investigate whether the different feeding regimes had detectable 
effects on plant growth. The process of statistical hypothesis testing can be used to refine the 
model by determining whether there is any evidence in the data that the proposed explana-
tory variables explain patterns in the response. Often several competing models might be 
compared. If many potential explanatory variables have been measured, variable screen-
ing may be used to select the variables that best explain the variation in the response. For 
example, in field studies on insect abundance, many climatic and environmental variables 
can be measured, and those that are most highly related to insect counts then identified.

Once an appropriate model has been determined, parameter estimation (see Section 
1.5) is required to interpret the model and, potentially, the underlying biological process. 
Associated with each parameter estimate is a measure of uncertainty, known as the stan-
dard error.

The fitted model can be derived by substitution of estimates in place of the unknown 
parameter values in the model, and uncertainty in the fitted model is derived from the 
parameter standard errors. Prediction involves the use of the fitted model to estimate 
functions of the explanatory variable(s) – for example, the prediction of a treatment mean 
together with some measure of its precision. Again, uncertainty in predictions is derived 
from uncertainty in the parameter estimates.

1.5 Estimating the Parameters of Linear Models

Any linear model has an associated set of unknown parameters for which we want to 
obtain estimates. For example, in fitting the models represented by Equations 1.1 and 1.2 to 
the observed data, our aim is to find the ‘best’ estimates of the parameters μ, τ1, τ2 and τ3, 
or α and β, respectively. In Chapters 4 (qualitative model) and 12 (quantitative model) we 
present detailed descriptions of how to obtain estimates of these parameters; here, we out-
line the basic principles. Before we consider the estimation process, some basic notation is 
required. In general, we represent estimated parameter values by placing a ‘hat’ (∧) over the 
parameter symbol, for example, µ̂ indicates an estimate of μ, the population mean. Then, 
the fitted value for an observation yjk, denoted ˆ ,yjk  consists of the systematic component 
of the model with all parameters replaced by their estimates. So, in the qualitative model 
represented by Equation 1.1, the fitted value for the kth plant with the jth feeding regime is

 
ˆ ˆ ˆ ,yjk j= +µ τ   (1.3)
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which is an estimate of the population mean for plants with the jth feeding regime. For the 
quantitative model in Equation 1.2, the corresponding fitted value is

 
ˆ ˆ ˆ .y xjk j= +α β   

(1.4)

For all linear models, parameters are estimated with the principle of least squares. This 
method finds the ‘best-fit’ model in the sense that it finds estimates for the parameters that 
minimize the sum, across all observations, of the squares of the differences between the 
observed data and fitted values. For example, for the qualitative model (Equation 1.1) we 
minimize
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where ŷ jk  was defined in Equation 1.3. For the quantitative model (Equation 1.2), the quan-
tity minimized has the same generic form, but now Equation 1.4 is used to define the fitted 
values. The symbol Σ is used to indicate the sum across the specified index (see Section 
2.1 for more details). Note that these summations are over all combinations of the three 
factor levels (j = 1, 2, 3) and the four replications (k = 1, 2, 3, 4), and hence over the full set of 
12 observations. Having found the best-fit model for our observed data, we can calculate 
fitted values based on the parameter estimates. We can then obtain estimates of the devia-
tions, called residuals, from the discrepancy between the observed and fitted values, as

 
ˆ ˆ .e y yjk jk jk= −  

If the residuals are relatively small, then our model gives a good description of the data. 
These residuals can be examined to assess the validity of our model (to diagnose any lack 
of fit of the model to the data) and the assumptions made in fitting the model to the data 
(Chapters 4 and 12). One such assumption concerns an underlying probability distribution 
for the deviations (see Chapter 4), and the estimated variance of this distribution is used to 
calculate the parameter standard errors. This variance, often called the residual variance, 
provides a measure of uncertainty which can also be used in hypothesis testing and to 
form confidence intervals for predictions.

1.6 Summarizing the Importance of Model Terms

The main tool we use for the statistical analysis of any linear model, with either qualita-
tive (factor) or quantitative (variate) explanatory variables, or both, is the analysis of vari-
ance, usually abbreviated as ANOVA. As the name suggests, the principle behind ANOVA 
is the separation and comparison of different sources of variation. In its simplest form, 
ANOVA quantifies variation in the response associated with the systematic component 
of the model (systematic variation) and compares it with the variation associated with the 
random component of the model (often called noise or background variation). Informally, 
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if the ratio of systematic variation to background variation is large then we can conclude 
that the proposed model accounts for much of the variation in the response, and that the 
explanatory variables provide a good explanation of the observed response. However, if 
the ratio of systematic variation to background variation is small, then it does not neces-
sarily indicate that the response is not related to the explanatory variables – it may just be 
that the background variation is too large to clearly detect any relationship. We can use 
ANOVA to assess whether the variation associated with different levels, or groups of lev-
els, of a qualitative explanatory variable (factor) is larger than the background variation, 
which would give evidence that the explanatory variable is associated with substantive 
changes in the response. Similarly, we can assess whether there is substantive variation in 
the response associated with some trend in a quantitative explanatory variable (variate). 
We can often also partition variation associated with different explanatory variables to 
assess their relative importance, and a well-designed experiment can make this easier. We 
use ANOVA to summarize model fitting in two related contexts.

We first consider the use of ANOVA in structured scientific studies where we include the 
experimental conditions as factors, and wish to relate variation in the response to variation 
in the conditions. For example, consider a traditional field trial to assess the yield response 
of a set of plant varieties to different levels of fertilizer application. Here, the experimen-
tal conditions are combinations of plant variety and fertilizer application, with both con-
sidered to be qualitative variables. In a basic analysis, we are interested in identifying 
whether differences between plant varieties or fertilizer application levels, or particular 
combinations of these factors, provide an explanation for the observed differences in yield 
response. Within this context we can then generalize this basic analysis in several different 
ways: to take account of the physical structure of the experimental units (e.g. to allow for 
the blocking of experimental units); to take account of any quantitative scale underlying 
the factor levels (e.g. the nitrogen content of the fertilizer applications); and, in a limited 
way, to account for other explanatory variables that may have been measured (e.g. per-
haps soil pH varies across the field and affects yield). This is the traditional framework 
for ANOVA and most statistical packages have algorithms tailored to the analysis of data 
within this framework (e.g. the ANOVA command in GenStat, the aov() function in R and 
the proc glm procedure in SAS).

We then consider the use of ANOVA in scientific studies where the main aim is to model 
the response as a mathematical function of one or more quantitative explanatory vari-
ables. This context is usually called regression modelling or regression analysis, and 
we emphasize the particular case of linear regression, where only linear functions of one 
or more continuous explanatory variables are permitted. For example, suppose a forester 
wishes to build a model to predict timber volume from easily measured field variables 
such as tree diameter and height. In a basic analysis, having measured both the field vari-
ables and the actual timber volume for a number of trees, we are interested in determining 
which field variables (or combinations of field variables) explain the observed differences 
in timber volume. Again, within this context we can generalize the basic analysis to take 
account of any grouping of observations, such as tree variety or location. Within regres-
sion modelling, ANOVA is the main statistical tool used for assessment of the importance 
of different explanatory variables. Statistical software packages usually contain more gen-
eral algorithms for regression analyses (e.g. FIT in GenStat, the lm() function in R and the 
proc reg procedure in SAS).

It should be clear that there is much overlap between these two contexts. For example, 
both the qualitative model of Example 1.1 and the quantitative model of Example 1.2 could 
be analysed by either type of algorithm. However, using different algorithms to analyse 
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the same data set can be confusing, because even when the methods are equivalent, the 
results may appear to differ if different conventions are used for their presentation. One of 
the main aims of this book is to explain the rationale behind these different conventions, 
and so to eliminate this confusion.

1.7 The Scope of This Book

We follow this chapter with a review chapter. Although we minimize the use of math-
ematical formulae, some are essential, and so we provide a review of mathematical nota-
tion in Chapter 2, along with the basic statistical concepts and methods used elsewhere in 
the book. Many readers will be familiar with these concepts and might treat this chapter 
as optional.

The early chapters of the book (Chapters 3 to 11) focus on the design of experiments and 
the analysis of data from designed experiments. In Chapter 3, we concentrate on the essen-
tial statistical principles of design: replication, randomization and blocking. We consider 
the structure of an experiment and describe some common designs. In Chapters 4 to 7, we 
consider analysis of simple designs. In Chapter 4, we consider in detail the analysis of data 
from the simplest design – the completely randomized design – to explain the concepts of 
ANOVA. We explain how the ANOVA table is formed, how it relates to a model for the data 
and how to interpret it. In Chapter 5, we explore the assumptions underlying the model 
and analysis and describe the diagnostic tools we can use to check them. We consider how 
these assumptions might be violated and the possible consequences, and ways to remedy 
these problems. In Chapter 6, we discuss transformations of the response variable as one 
remedy for failure to satisfy the model assumptions. In Chapter 7, we extend the analy-
sis to the simplest design that includes blocking, the randomized complete block design, 
and introduce the concept of strata, or different structural levels, within a design and its 
analysis. In Chapters 8 to 11, we consider more advanced issues in the analysis of designed 
experiments. In Chapter 8, we consider how best to extract answers about our experimen-
tal hypotheses from our analysis. The advantages of factorial treatment structures, used to 
test the effects of several treatment factors simultaneously, will be explained. We describe 
the use of crossed and nested models for factorial structures, and how to make pairwise 
comparisons of treatments. In Chapter 9, we describe the analysis of some designs with 
somewhat more complex blocking structures, namely the Latin square, split-plot and bal-
anced incomplete block designs. Then in Chapter 10, we consider how to calculate the 
replication required to obtain a specified precision for treatment comparisons in simple 
designs, and we introduce the concept of statistical power. We also discuss the case of 
equivalence testing, where the interest is in detecting equivalence rather than differences 
between treatments. Finally, Chapter 11 examines the issues that arise for non-orthogonal 
designs, where an unambiguous analysis can no longer be obtained.

In the later chapters of the book (Chapters 12 to 18) we turn our attention to regression 
modelling. In Chapter 12, after a brief general introduction, we concentrate first on simple 
linear regression, relating the response to a linear function of a single explanatory variate. 
The diagnostic tools introduced in Chapter 5 can be used for regression modelling, but 
additional diagnostic tools are available to check the validity of a regression analysis, and 
these are introduced in Chapter 13. In Chapters 14 and 15, we then extend regression mod-
els. In Chapter 14, we introduce multiple linear regression, extending the simple linear 



12 Statistical Methods in Biology

regression model to include several explanatory variates and considering problems of col-
linearity and variable selection. In Chapter 15, we show how to investigate the best form 
of a regression model when observations arise from different groups, how to incorporate 
simple designs into regression models and discuss analysis of covariance. We then move 
beyond linear regression. In Chapter 16, we introduce linear mixed models for the analysis 
of unbalanced studies where structure is present. In Chapter 17, we first use functions of 
explanatory variables to model curved relationships with linear models and then give a 
brief introduction to non-linear models. This concept is extended in Chapter 18 to the case 
of the generalized linear model, which can be used to model responses with certain types 
of non-Normal errors. We introduce two special, but commonly used, cases – the logit 
model for Binomial (proportion) data, and the log-linear model for Poisson (count) data.

Finally, the concluding chapter (Chapter 19) provides an overview of the full process of 
design and statistical analysis by way of real examples.

Our website (www.stats4biol.info) provides an overview and basic introduction to three 
commonly used statistical packages: GenStat, R and SAS. All of the examples are analysed 
with each of these packages, together with answers to selected exercises. Our personal 
preference is for the GenStat statistical software, because of its excellent implementation of 
algorithms for the analysis of designed experiments, and the provision of menus to make 
analyses easily accessible to all. The R package provides functions for all the standard 
analysis approaches introduced in this book, and has the benefits and drawbacks associ-
ated with being free, open-source software. We include SAS because of its wide user base 
and general availability. Most results presented in the book can be obtained with any of 
these packages; we comment where results may differ between packages and output has 
been obtained from a specific package.



13

2
A Review of Basic Statistics

This chapter briefly reviews some basic mathematical and statistical concepts that are fun-
damental to the material that comes later. Readers familiar with the mathematical notation 
commonly used to define summary statistics and with simple statistical tests, such as the 
t-test, can treat this chapter as optional revision or as reference material. We first intro-
duce two commonly used statistics, the sample mean and sample variance, and in doing 
so define the mathematical notation we use throughout the rest of the book (Section 2.1). 
We then review random variables and probability distributions with particular reference 
to the Binomial distribution for discrete variables and the Normal distribution for con-
tinuous variables (Section 2.2). Later, we discuss statistical inference (Section 2.3), review 
one- and two-sample t-tests (Section 2.4), and discuss the concept of correlation (and cova-
riance) between two variables (Section 2.5). To complete this chapter, we describe our con-
ventions for presentation of calculations and numerical results (Section 2.6).

2.1 Summary Statistics and Notation for Sample Data

As discussed in Section 1.2, when we obtain data from a study we regard them as a sample 
from the broader set of results that we might obtain if we repeated the experiment many 
times, and use statistical techniques to make inferences from our sample to this wider 
population. The first step in any analysis is to summarize the data. In defining the tools 
we use to do this, and later to analyse data, we often express the mathematical or statisti-
cal concepts algebraically using some standard mathematical notation. Symbols with pre-
defined meanings, often Greek letters (e.g. μ and σ), and various shorthand expressions 
are commonly used. For example, in a laboratory experiment where several treatments 
are to be compared, we can use the letter N to represent the total number of observations 
made (e.g. N = 20), the letter t to represent the number of treatments or groups (e.g. t = 2), 
and, if they are equally replicated, the letter n to represent the number of replicates of each 
experimental treatment (e.g. n = 10). If the treatments are unequally replicated then the 
notation is extended by the use of subscripts to denote the replication for any given treat-
ment, for example, n1 = 12 and n2 = 8 indicates that treatment 1 has 12 replicates and treat-
ment 2 has eight. An individual response (datum or measurement) is often represented 
by a lower case italic letter (usually y) with an index (usually a subscript) to identify it 
uniquely. For example, yi might be used to denote the response from the ith observation. 
To specify a set of N responses we write yi, i = 1 … N (where 1 … N denotes all integers 
from 1 to N). Such notation is useful as it allows us to write down general expressions or 
formulae applicable to any statistical analysis. For a particular data set, we then substitute 
the actual numerical values recorded in place of the symbols. Note that whilst there are 
some generally accepted conventions, notation often differs between books and subject 
areas. In this section we define notation to be used throughout this book. Occasionally, 
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we have used the same symbol to represent different quantities in different contexts. We 
have tried to minimize this practice, as it is potentially confusing, and try to explain all of 
our notation as it is introduced.

Many statistical formulae are written as sums of several components. The Greek let-
ter Σ (capital sigma) is commonly used to denote the sum of a set of values defined by 
their index numbers, over a range with the lower limit specified by a subscript and the 
upper limit specified by a superscript, so 
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bers from 1 up to N. For example, the sum (or total) of a set of N responses, labelled as yi, 
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For brevity, we sometimes write Σi to indicate summation over all available values of 
index i.

An important summary statistic, the sample mean (or sample grand mean), defined as 
the arithmetic mean of the N data values and denoted y , would then be written
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(2.1)

The use of the summation symbol Σ has simplified and generalized the expression for 
the sample mean, which is the sum of all responses from label 1 to label N, divided by the 
number of observations, N.

Sometimes it is useful to label observations within treatment groups using two (or more) 
subscripts. So in an experiment with t = 2 treatments and n = 10 replicates of each treat-
ment, the resulting set of responses might be concisely represented as yjk, j = 1, 2, k = 1 … 
10, where the index j indicates the treatment applied and the index k labels the replicates 
within treatments. Formulae may then be simplified by using ‘double sums’, for example, 
the expression
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represents summation over 20 responses. The two indices are summed over in turn, the 
‘inner’ (or rightmost) sum being executed first (here for values of index k from 1 to 10), to give
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Then the ‘outer’ (or leftmost) sum is executed (here across values of index j from 1 to 2) 
to give a sum across all combinations of the two indices and hence the full set of obser-
vations. We adapt and extend these basic forms of notation as necessary throughout 
this book.
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When data are identified by more than one index, it is common to express totals and 
means using the ‘dot notation’. Suppose that for t treatment groups, yjk identifies the kth 
replicate response belonging to the jth treatment group. Then yj• and yj• represent the 
group total and group mean response, respectively, for observations on the jth treatment. 
If nj is used to represent the number of observations in that jth group, then these expres-
sions can be written algebraically as

 
y y y
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Here, the dot symbol ‘•’ in the position of index k indicates summation across the observa-
tions for all possible values of that index, i.e. for k = 1 … nj, with the other index (or, in gen-
eral, indices) kept constant. The bar symbol ‘–’ over the y indicates that the mean is taken 
by dividing the total by the number of observations included in the summation. Note that 
within this system of notation the overall sample mean should strictly be denoted y•• but, for 
simplicity, the dots are generally omitted here; therefore we use y to represent the sample 
grand mean. The overall and group means are conventionally used as summaries of the loca-
tion (average response) for the whole sample and particular treatment groups, respectively, 
and as estimates for the corresponding values in the population from which the sample has 
been taken.

The sample variance quantifies the amount of variation, or spread, in the sample about 
its mean. For responses yi, i = 1 … N, the sample variance can be expressed algebraically as
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In Equation 2.2, the N deviations of the individual responses about the overall sample 
mean are squared and then added together, and the result is divided by the number of 
observations, N. The process of subtracting the sample mean from all of the responses is 
known as centering, so the variance is proportional to the sum of the squared centered 
responses. We might think of using this quantity to estimate the variance of the popu-
lation from which the sample has been taken, but that estimator is biased and tends to 
underestimate the population variance. We therefore use a scaled version of the sample 
variance to estimate the population variance, known as the unbiased sample variance 
and here denoted s2, written as
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(2.3)

These sample variance statistics are not on the same measurement scale as the original 
responses. However, their square roots do have the same units as the response, and we 
usually choose to work with the unbiased sample standard deviation, s. The coefficient 
of variation (%CV) expresses the unbiased sample standard deviation as a percentage of 
the sample mean, calculated as

 
% .CV  = ×100

s
y
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This quantity is sometimes used as a measure of the relative precision of an experiment, 
particularly in the context of field experiments. However, %CV provides a sensible sum-
mary statistic only for variables measured relative to an absolute (as opposed to arbitrary) 
zero that forms a lower limit for observed values.

EXAMPLE 2.1A: WHEAT YIELDS

A total of N = 7 measurements of the yield of a commercial variety of wheat were 
obtained from a field trial. The samples were converted into equivalent yields per hect-
are as: 7, 9, 6, 12, 4, 6 and 9 t/ha. The sample mean is calculated (as in Equation 2.1) as
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or 7.57 when rounded to two decimal places. Using Equation 2.3, we calculate the unbi-
ased sample variance as
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Note that although we have shown values rounded to two decimal places within this 
calculation, we actually perform this (and all following) calculations using full accu-
racy, as explained in Section 2.6. The unbiased sample standard deviation is then calcu-
lated directly as s = √ =6 95 2 64. .  t/ha, with %CV = 100 × 2.64/7.57 = 34.82. This is larger 
than is usual for a well-managed agricultural trial, but is based on a small number of 
values and so may be poorly estimated.

To make statistical inferences on samples, we usually make some assumptions about the 
probability distribution underlying the data, and we introduce this concept in the next section.

2.2 Statistical Distributions for Populations

Before discussing probability distributions, we want you to understand the concept of 
a random variable. A random variable represents the possible outcomes of a stochastic 
process, i.e. a process that is not deterministic, but includes some unpredictable variation. 
Conventionally, random variables are represented by upper case symbols, with realiza-
tions of the variable represented by lower case symbols. For example, we might denote 
yield from a field plot as a random variable Y, with the realized yield denoted y. When 
defining models in later chapters, we will often not make this distinction, and simply use 
the lower case symbols.

We use probability distributions to help us make inferences from data. If we can realisti-
cally assume that the population of possible outcomes from an experiment behave like a 
sample of a random variable from a certain probability distribution, then we can use known 
properties of that distribution to derive inferences for the population from our observations.

The mathematical theory underlying probability distributions requires a distinction to 
be made between discrete and continuous random variables. A discrete random vari-
able is one that can take only a certain pre-specified set of possible values, such as integer 
counts. A continuous random variable may take any real value within its defined range. 
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In this book, we are primarily concerned with continuous random variables that follow a 
Normal distribution, except in Chapter 18 where we consider discrete random variables 
following either Binomial or Poisson distributions. However, as it is easier to understand 
the concepts associated with probability distribution functions by working with discrete 
distributions, we start with definitions for this type of random variable, using the Binomial 
distribution as an illustration.

2.2.1 Discrete Data

As stated above, a discrete random variable Y can take only a certain pre-specified set of 
possible values, which we denote by S. The probability distribution associated with Y is a 
function that gives the probability of observing a particular value, y, called a point prob-
ability, denoted as PY(y) = Prob(Y = y) (‘the probability that variable Y takes value y’). It is 
also often useful to consider the cumulative distribution function, denoted FY, defined as 
the probability that the random variable is less than or equal to a certain value y, written as
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i.e. the sum of point probabilities over all values v in the set S that are less than or equal 
to the target value y. This function takes values between zero (for values of y less than 
the minimum value of Y) and one (for values of y equal to or greater than the maximum 
value of Y).

The Binomial distribution is an example of a discrete probability distribution. It is usu-
ally derived as the distribution of the number of successes out of a series of m independent 
binary trials (i.e. trials with only two possible outcomes: success or failure), where each 
trial has an equal probability of success, denoted p. For example, the number of heads (suc-
cesses) obtained after the tossing of two separate coins (m = 2) can take the values y = 0, 1 
or 2, and follows a Binomial distribution with success probability p = 0.5 (for fair coins). 
The Binomial probability distribution takes the form
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(2.4)

The calculated probability of y successes is then a function of the number of successes, y, 
the number of tests, m, which is known, and the probability of success p, which is often 
unknown. Note that p0 = (1 − p)0 = 1, and the factorial function x! is defined for any positive 
integer x as the product of all integer values less than or equal to x, i.e.

 x! = x × (x − 1) × (x − 2) × … × 1 ,

so that 1! = 1, 2! = 2, 3! = 6 and so on. A value is also needed for x = 0, and by convention 0! 
is defined to be equal to 1.

EXAMPLE 2.2A: PLANT INFECTION

Consider an experiment in which three plants in a pot are inoculated with a virus, where 
each plant has a 40% chance of becoming infected. The number of plants (0–3) that show 
symptoms several days after inoculation can be considered to follow a Binomial distri-
bution. The possible values that can be observed (the set S) are the integers 0, 1, 2, 3. The 
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number of tests here is the number of plants, so m = 3, and the probability of success is 
the probability of infection, so p = 0.4. We can calculate the probability of each outcome 
using Equation 2.4 as follows:

 Prob(Y = 0; m = 3, p = 0.4) = 1 × 0.63 = 0.216

 Prob(Y = 1; m = 3, p = 0.4) = 3 × 0.4 × 0.62 = 0.432

 Prob(Y = 2; m = 3, p = 0.4) = 3 × 0.42 × 0.6 = 0.288

 Prob(Y = 3; m = 3, p = 0.4) = 1 × 0.43 = 0.064 .

The cumulative distribution can be derived directly as

 Prob(Y ≤ 0; m = 3, p = 0.4) = Prob(Y = 0) = 0.216

 Prob(Y ≤ 1; m = 3, p = 0.4) = Prob(Y ≤ 0) + Prob(Y = 1) = 0.216 + 0.432 = 0.648

 Prob(Y ≤ 2; m = 3, p = 0.4) = Prob(Y ≤ 1) + Prob(Y = 2) = 0.648 + 0.288 = 0.936

 Prob(Y ≤ 3; m = 3, p = 0.4) = Prob(Y ≤ 2) + Prob(Y = 3) = 0.936 + 0.064 = 1.000 .

This cumulative distribution function is shown in Figure 2.1a. It is a discontinuous 
function, defined on the range 0–3, with jumps at the values in S. The function values 
are shown using solid lines and filled circles; the open circles and dashed lines are used 
to join the discontinuous segments.

The inverse of the cumulative distribution function is known as the quantile func-
tion. The quantiles of a distribution divide its range into intervals such that each inter-
val contains an equal proportion of the distribution. Special cases include the median 
(which divides the distribution into two parts) and the quartiles (four parts). The inter- 
quartile range (first to third quartile, or central part of the distribution) gives a measure 
of the spread of a distribution. Percentiles are often used and divide the distribution into 
100 parts. Hence, the median and the first and third quartiles can alternatively be termed 
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FIGURE 2.1
(a) Cumulative distribution function for plant infection data (Example 2.2A) and (b) with 0.5 quantile marked 
(Example 2.2B).
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the 50th, 25th and 75th percentiles, respectively. Quantiles for common distributions are 
widely available in statistical software and in books of statistical tables. Formally, the q 
quantile (for 0 ≤ q ≤ 1) can be defined as the value v satisfying

 min{  v S v qY∈ ≥: F ( ) } .

The symbol ∈ means ‘is an element of’, so the q quantile is the smallest value in the set S 
that has cumulative distribution function value greater than or equal to q.

EXAMPLE 2.2B: PLANT INFECTION

We can find any quantile for the distribution underlying the plant infection experiment 
from the cumulative distribution function shown in Figure 2.1a. For example, suppose 
we wish to find the median, i.e. quantile q = 0.5. In Figure 2.1b, we draw a horizontal line 
at height 0.5, and find that the smallest valid value (i.e. in the set 0, 1, 2, 3) with cumulative 
probability greater than this value is 1; hence, 1 is the median value for this distribution.

The mean, or expected value, of a discrete random variable Y is calculated as
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(2.5)

This equation is interpreted as ‘the sum, over all possible values of Y (i.e. for y ∈ S), of the 
values multiplied by their point probabilities’. This is a measure of the location (average or 
mean value) of the distribution. Similarly, the spread of the distribution is measured by its 
variance, which can be expressed as
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(2.6)

This expression (Equation 2.6), writes the variance as the sum, over all the possible values 
of Y, of the squared deviation of each value from the mean, multiplied by its point prob-
ability. We can interpret these quantities as the mean and variance of a population that 
follows the given probability distribution. Unsurprisingly, the expression for the variance 
of the random variable in Equation 2.6 has a similar structure to that for the variance of a 
sample (Equation 2.2) and we explore this connection further below.

The expected value (mean) of the Binomial distribution takes the form
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Obtaining the simplified forms requires mathematical manipulations outside the scope of 
this book (see for example Wackerly et al., 2007). Note that both the mean and the variance 
are functions of the population parameters m and p.
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EXAMPLE 2.2C: PLANT INFECTION

We can now use the probability distribution obtained in Example 2.2A to calculate the 
mean and variance of the distribution of the number of infected plants. The distribution 
mean is calculated as

 E(Y) = (0 × 0.216) + (1 × 0.432) + (2 × 0.288) + (3 × 0.064) = 1.2,

and we can verify directly that E(Y) = 1.2 = 3 × 0.4 = mp. Similarly, we can calculate the 
distribution variance as

 Var(Y) = [(0 − 1.2)2 × 0.216] + [(1 − 1.2)2 × 0.432] + [(2 − 1.2)2 × 0.288]

  + [(3 − 1.2)2 × 0.064]

  = 0.3110 + 0.0173 + 0.1843 + 0.2074

  = 0.72,

and again we can verify directly that Var(Y) = 0.72 = 3 × 0.4 × 0.6 = mp(1 − p).

In practice, the true probability distribution of any sample is usually unknown. If a data 
set can be considered as a set of samples from the same underlying distribution, then the 
empirical probability distribution of the sample, i.e. the relative frequency of each value 
within the sample, gives information on the form of that underlying probability distribu-
tion. The relative frequency is defined as the frequency of each value as a proportion of 
the total number of values and gives an estimate of each point probability, and can be 
graphically represented by using a bar chart. The sample mean (Equation 2.1) can then be 
calculated from the empirical probability distribution using the formula for the expected 
value (Equation 2.5) after substitution of the relative frequencies for the unknown point 
probabilities. The sample variance (Equation 2.2) can similarly be calculated using the 
formula for the variance (Equation 2.6). In this sense, the sample mean and variance can 
be seen as estimates of the true mean and variance of the underlying random variable, 
although in practice we usually use the unbiased sample variance (Equation 2.3) to get an 
unbiased estimate of the variance of the random variable.

There are various different definitions of the sample quantiles, and we use one of the 
simpler (but common) definitions. For a sample y1 … yN, the kth sample percentile is found 
in several steps. First, the sample is put into order of increasing size of its values. Then the 
index number, j, within the ordered set is calculated as

 j = (N + 1) × k/100 .

If j is an integer value then the kth sample percentile is the jth value in the ordered set. 
If j is not an integer value, then let l denote the largest integer smaller than j (i.e. the next 
smallest integer). The kth sample percentile is then defined as the average of the lth and 
(l + 1)th values in the ordered set.

EXAMPLE 2.2D: PLANT INFECTION

Suppose that our plant infection experiment is now carried out with 20 pots, each con-
taining three plants, with the following numbers of plants per pot becoming infected: 
0, 2, 1, 1, 0, 1, 1, 1, 2, 1, 3, 1, 3, 1, 0, 0, 0, 2, 1 and 1, i.e. no plants infected in five pots, one 
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plant infected in 10 pots, two plants infected in three pots, and three plants infected in 
two pots. The empirical probability distribution is thus

 Prob(Y = 0) = 5/20 = 0.25

 Prob(Y = 1) = 10/20 = 0.50

 Prob(Y = 2) = 3/20 = 0.15

 Prob(Y = 3) = 2/20 = 0.10 .

This empirical distribution is shown as a bar chart in Figure 2.2. The sample mean can 
be calculated either directly from the data values (i.e. as 22/20 = 1.1), or via the empirical 
probability distribution as

 E(Y) = (0 × 0.25) + (1 × 0.50) + (2 × 0.15) + (3 × 0.10) = 1.1 ,

which is a slight underestimate of the true population mean (obtained as 1.2 in 
Example 2.2C). Similarly, the sample variance can be either calculated directly, or via 
the empirical distribution as

 Var(Y) = {[(0 − 1.1)2 × 0.25] + [(1 − 1.1)2 × 0.50] + [(2 − 1.1)2 × 0.15]

  + [(3 − 1.1)2 × 0.10]}

  = 0.3025 + 0.0050 + 0.1215 + 0.3610

  = 0.79 .

We can convert this into the unbiased sample variance by multiplying by N/(N − 1), giv-
ing 0.79 × 20/19 = 0.83 as an estimate of the variance of the underlying random variable. 
For this sample, this estimate is larger than the true value of the population variance 
(obtained as 0.72 in Example 2.2C).

To calculate sample quantiles, we list the observations in order as 0, 0, 0, 0, 0, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3. The sample median (k = 50, so k/100 = 1/2) requires 
j = 21 × 1/2 = 10.5. The 10th and 11th values in the ordered set are both 1 and hence 
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FIGURE 2.2
Bar chart showing the empirical probability distribution of the number of infected plants in the plant infection 
trial. Three plants were tested in each of 20 pots (Example 2.2D).
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the sample median is 1. The sample lower quartile (k = 25, k/100 = 1/4) requires 
j = 21 × 1/4 = 5.25, with estimate 0.5 (the average of the 5th value, 0, and the 6th value, 
1, from the ordered set) and the sample upper quartile (k = 75, k/100 = 3/4) requires 
j = 21 × 3/4 = 15.75, with estimate 1.5 (the average of the 15th value, 1, and the 16th 
value, 2, from the ordered set).

These sample statistics deviate from those associated with the theoretical distribu-
tion calculated in Examples 2.2B and C because of variations inherent in the sampling 
process – if the experiment was repeated, then somewhat different results would be 
obtained each time.

2.2.2 Continuous Data

A continuous random variable can take any real value within a defined range. For exam-
ple, plant heights can take any value greater than zero. Theoretically, therefore, there are 
infinitely many possible values, each with negligible probability (because there are so 
many possibilities), and the formulae for discrete random variables have to be adapted to 
take this into account. In this context, we refer to density functions rather than distribution 
functions and we work with integrals rather than sums.

It is helpful in this case to start with the cumulative density function (CDF), defined 
as in the discrete case as FY(y) = Prob(Y ≤ y), which again takes values between zero (for 
values at or below the minimum value of Y) and one (for values at or above the maximum 
value of Y). The probability density function (PDF), fY(y), can be interpreted as the prob-
ability of Y falling in the range y ≤ Y ≤ y + δ, divided by δ, as δ decreases to zero, which is 
the derivative of the CDF. In mathematical terms, the CDF is written in terms of the PDF as
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Informally, this can be interpreted as meaning that the integral (∫) sums the probabilities 
fY(v) across all the possible values of v between the lower limit (here, minus infinity) and 
the upper limit, the target value y. As such, this is directly analogous to the formula in 
the discrete case. The quantile function is now defined straightforwardly in terms of the 
inverse CDF with quantile q (0 ≤ q ≤ 1) defined as the value v such that

 v qY= −F ( ) .1  

The formulae for the expected value and variance of the random variable are also analo-
gous to those in the discrete case, but using integrals in place of summations. Hence, the 
expected value of the random variable is written as
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A histogram, the continuous analogue of the bar chart, can be used to give information on 
the shape of the empirical PDF. For continuous variables, data values have to be grouped 
into contiguous intervals. In the simple case where all intervals have equal width, then the 
relative frequency of observations in each interval is plotted. If intervals are of unequal 
widths then, for each interval, the relative frequency is divided by the interval width, so 
that the area under the histogram in each interval is equal to its relative frequency. As in the 
discrete case, the sample mean and variance can be considered as estimates of the expected 
value and variance of the random variable, although again we usually use the unbiased 
sample variance to get an unbiased estimate of the variance of the random variable.

EXAMPLE 2.3A: WILLOW BEETLE MEASUREMENTS

A sample of 50 willow beetles (Phratora vulgatissima) was taken from a willow crop 
located close to Bristol, UK, and various characteristics were measured, including the 
total length and width of each beetle (Peacock et al., 2003). The data are presented in 
Table 2.1 and can be found in file willow.dat.

The length measurements ranged from 4.10 to 4.95 mm. The sample mean for length 
was 4.552 mm with unbiased sample variance 0.0260 mm2 and standard deviation 
0.1611 mm. The empirical probability distribution is illustrated using a histogram in 
Figure 2.3. The histogram uses 10 intervals of length 0.1 mm, starting at 4 mm length. 
The relative frequencies plotted are calculated as the number of observations in each 
interval divided by N = 50. In this case, the sample median is the average of the 25th 
and 26th values in the ordered set of observations (smallest first), which is 4.55 mm. The 
index number for the lower quartile is j = 12.75, so the lower quartile is the average of 
the 12th and 13th values in the ordered set, here 4.45 mm, slightly smaller than the mean. 
Similarly, the index number for the upper quartile is j = 38.25, so the upper quartile is the 
average of the 38th and 39th values in the ordered set, here 4.65 mm. The inter-quartile 
range is thus 0.20 mm, which is slightly larger than the standard deviation.

TABLE 2.1

Length and Width (mm) of 50 Willow Beetles (Phratora vulgatissima) Sampled from a Willow Crop 
Located Close to Bristol, UK (Example 2.3A and File willow.dat)

Beetle Length Width Beetle Length Width Beetle Length Width

1 4.60 1.50 18 4.55 1.50 35 4.60 1.60
2 4.70 1.65 19 4.60 1.70 36 4.55 1.65
3 4.50 1.55 20 4.55 1.60 37 4.775 1.55
4 4.55 1.65 21 4.35 1.60 38 4.60 1.60
5 4.75 1.65 22 4.45 1.60 39 4.45 1.475
6 4.40 1.50 23 4.55 1.55 40 4.60 1.60
7 4.20 1.70 24 4.35 1.55 41 4.65 1.625
8 4.70 1.55 25 4.65 1.65 42 4.725 1.65
9 4.55 1.60 26 4.50 1.55 43 4.95 1.725
10 4.70 1.65 27 4.45 1.50 44 4.65 1.65
11 4.65 1.55 28 4.45 1.60 45 4.60 1.625
12 4.50 1.55 29 4.10 1.40 46 4.45 1.55
13 4.30 1.50 30 4.50 1.50 47 4.30 1.525
14 4.65 1.65 31 4.60 1.60 48 4.75 1.60
15 4.75 1.65 32 4.75 1.575 49 4.525 1.55
16 4.65 1.60 33 4.70 1.65 50 4.35 1.50
17 4.45 1.60 34 4.35 1.55  

Source: Data from Rothamsted Research (A. Karp).
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2.2.3 The Normal Distribution

In this book we assume in most instances that random variables follow a Normal distribu-
tion (sometimes called the Gaussian distribution), which approximately describes many 
types of continuous measurements, such as lengths, weights and so forth. The PDF for the 
Normal distribution is a bell-shaped symmetric curve, taking its maximum value at the 
mean (Figure 2.4a). As for all symmetric distributions, the median of this distribution is 
equal to its mean. The Normal distribution is defined by two parameters, the mean, μ, and 
the variance, σ2, and its PDF takes the form
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Histogram of relative frequencies for lengths (mm) of willow beetles from a sample of size 50 (Example 2.3A).
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where exp() denotes the exponential function. Where a random variable, Y say, is 
assumed to follow a Normal distribution, it is conventional to write Y ~ Normal(μ,σ2) (or 
‘Y follows a Normal distribution with mean μ and variance σ2’). It is useful to remember 
that approximately 68% of the distribution lies within one standard deviation (σ) of the 
mean, i.e. in the range from (μ − σ) to (μ + σ). The inter-quartile range (middle 50% of 
the distribution) is therefore smaller than twice the standard deviation. In addition, 
approximately 95% of the distribution lies within two standard deviations of the mean, 
i.e. in the range from (μ − 2σ) to (μ + 2σ), and almost all of the distribution (more than 
99.7%) lies within three standard deviations of the mean. Figure 2.4 shows these prop-
erties in terms of both the PDF (Figure 2.4a) and its integral, the CDF (Figure 2.4b). So, 
for example, the 2.3% of the distribution lying above y = μ + 2σ corresponds to a CDF 
value of

 Prob(Y ≤ μ + 2σ) = 1 − 0.023 = 0.977 .

The Normal distribution has the useful property that any linear function of a Normal 
random variable also has a Normal distribution. So if Y ~ Normal(μ,σ2), then for known 
constants a and b, the random variable Z = aY + b has a Normal distribution with mean 
aμ + b and variance a2σ2, i.e. Z ~ Normal(aμ + b, a2σ2). Z is conventionally used to represent 
the standard Normal distribution with mean 0 and variance 1, obtained by setting a = 1/σ 
and b = −μ/σ to centre and standardize any Normal distribution, i.e.

 
Z

Y= − µ
σ

~ ( )Normal 0, 1  .

Quantiles of the standard Normal distribution are widely available in both books of statis-
tical tables and statistical packages.

The sum of a set of Normal random variables is also a Normal random variable. In par-
ticular, for a set of N independent (uncorrelated) Normal random variables Y1 … YN, with 
common mean μ and variance σ2 then
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i.e. the sum of the variables has a Normal distribution with mean Nμ and variance Nσ2. 
The mean of these variables ( )Y  is also Normally distributed with
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i.e. the mean of the variables has a Normal distribution with the same expected value, μ, as 
the original variables, and with a smaller variance than the original variables, equal to σ2/N. 
The square root of this latter quantity is known as the standard error of the mean, which 
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is used often in statistical tests. As we might expect, as the number of random variables (or 
sample size), N, increases then the uncertainty associated with their mean, Y, decreases.

In fact, the Central Limit Theorem (see Casella and Berger, 2002) states that the distribu-
tion of the mean of any set of independent and identically distributed random variables 
will tend towards a Normal distribution, and this approximation becomes more accurate 
as the number of random variables contributing to the mean increases. This theorem holds 
even if the distributions of the individual random variables are not Normal. For example, 
suppose we have samples of 100 bean seeds, and we assess each seed for weevil infesta-
tion. The mean rate of infestation in each sample may well have an approximate Normal 
distribution, although this would certainly not hold for the observations on the individual 
seeds, or for the means of small samples. This property means that in practice we fre-
quently encounter observations with a distribution that is either Normal or approximately 
so, and hence we will usually make (and verify) this assumption.

2.2.4 Distributions Derived from Functions of Normal Random Variables

Once we have made the assumption of a Normal distribution for our random variables, 
then several other distributions, derived from functions of these variables, become useful. 
We merely state some results here, in their simplest form, in order to give context to their 
use later. Full details and derivations of the distributions introduced below can be found 
in standard statistical texts such as Hoel (1984) or Wackerly et al. (2007).

The chi-squared distribution is associated with sums of squared Normal random vari-
ables. For a set of N independent random variables Z1 … ZN with a standard Normal dis-
tribution, the sum of the squares of these variables has a chi-squared distribution with N 
degrees of freedom, written as
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The symbol χk
2 indicates a chi-squared distribution on k degrees of freedom (df) for k > 0. 

The df determines the mean (equal to k) and variance (equal to 2k) of the distribution, 
which is defined for positive values only and is right-skewed (has a long tail on the right-
hand side of the distribution). In this context, the df are related to the number of inde-
pendent variables contributing to the sum. Now suppose we have a set of N independent 
Normal random variables Y1 … YN with common mean μ and variance σ2. The unbiased 
sample variance of this set, denoted as random variable S2, has a scaled chi-squared distri-
bution with N − 1 df, i.e.
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The variables in this sum are no longer independent, due to centering by the sample mean, 
and so the df of the distribution are reduced by one. We can rescale S2 by factor (N − 1)/σ2 
to obtain a variable (Q2) with an unscaled chi-squared distribution, as
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Student’s t-distribution is associated with test statistics calculated as the ratio of an esti-
mate of location to its standard error. In an abstract context, if a random variable Z has a 
standard Normal distribution, i.e. Z ~ Normal(0,1), and V is an independent random vari-
able with a chi-squared distribution on v df, i.e. V v~ ,χ2  then
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where tv denotes a Student’s t-distribution on v df. The t-distribution is a bell-shaped 
symmetric distribution, with mean zero, but with fatter tails and a flatter peak than the 
Normal distribution (Figure 2.5). As the number of df becomes large, the t-distribution 
converges towards the standard Normal distribution.

We usually meet this distribution in the context of a set of independent Normal random 
variables Y1 … YN, with common mean μ and variance σ2. Consider the following statistic:
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In the first step above, we have rewritten the divisor of the denominator (N) as a multiplier 
of the numerator, and rewritten S2 in terms of Q2. In the second step, we associated the 
square root of σ2 with the numerator. From Equation 2.7 and results given above, we can 
deduce that N Y( )− µ σ/  has a standard Normal distribution, and we know Q N

2
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so, as these quantities are independent, it follows that
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Here, the df are associated with the denominator, i.e. the estimated standard error of the 
mean, √(S2/N). We use this result frequently, for example Section 2.4.1. For calculation of 
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PDF for standard Normal distribution (μ = 0, σ = 1, black line) and t-distribution with 2 df (grey line).
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power (Chapter 10), we also use the result that for any constant c, ( ) / ~ ( ),Z c V v t cv+ /  
where tv(c) denotes a non-central t-distribution with non-centrality parameter c.

The F-distribution is associated with test statistics calculated as the ratio of two sums of 
squares. In abstract, if U1 and U2 are independent chi-squared random variables with d1 
and d2 df, respectively, then
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where Fd d1 2,  denotes an F-distribution with d1 and d2 df. This distribution is right-skewed 
and is defined only for positive values.

2.3 From Sample Data to Conclusions about the Population

An important role of statistics is to provide information on a population based on data 
obtained from a sample. This is what is commonly known as statistical inference. Two 
types of inference are described below: point and interval estimation and hypothesis 
testing.

2.3.1 Estimating Population Parameters Using Summary Statistics

We have already seen that we can interpret the sample mean and unbiased sample vari-
ance as estimates of the mean and variance of the underlying distribution of the popula-
tion. Point estimation corresponds to this process of calculating (or estimating) a single 
summary value (or statistic) from the sample data that constitutes our ‘best guess’ of a 
population parameter. By convention, Greek letters are used to denote population param-
eters and sample statistics are denoted with ‘equivalent’ lower case Roman letters. The 
parameters for the population mean and variance, and their unbiased sample estimates 
(defined in Section 2.1), are usually labelled as shown in Table 2.2.

There is always uncertainty in the parameter estimates because of variability in the 
sampling process, and frequently because measurements themselves are imprecise. This 
uncertainty should also be estimated and reported by a standard error (SE). For example, 
we estimate the population mean using the sample mean, and we write this as ˆ .µ = y  
Equation 2.7 states that the distribution of the mean of a sample from a Normal popula-
tion is itself Normal, with mean equal to the population mean and variance equal to σ2/N. 
This distribution can be interpreted as the set of outcomes that can be achieved by taking 
independent samples from the underlying population. The standard error of the estimate 

TABLE 2.2

Notation for Population Parameters and Their Sample Statistics

Sample Statistics Population Sample

Mean μ y

Variance σ2 s2

Standard deviation σ s
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is then the standard deviation of this distribution, written as SE /( ) .µ σ = N  When σ is 
unknown, as is usually the case, we substitute its estimate, s, to get an estimated SE which 
we write as

 SE( ) = /   ˆ .µ s N

The hat over SE emphasizes the fact that the SE is itself estimated. This quantity is known 
as the estimated standard error of the mean, which we denote SEM.

Whereas point estimation provides a single estimate of a population parameter, interval 
estimation provides a range of estimates within which the parameter is likely to occur. 
Confidence intervals (CIs) are the most common example of interval estimates. For exam-
ple, consider a 95% CI for the mean of a Normal random variable Y, with known variance 
σ2. Using a sample of size N, y1 … yN, with mean y , a 95% CI takes the form
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where 1.960 corresponds to the 97.5th percentile of the Normal distribution. The left-hand 
value is the lower limit and the right-hand value is the upper limit of the CI. This interval 
is derived from the property of the random variable that
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where Y is the mean of a hypothetical sample from Y of size N. Note that we obtain the 95% 
coverage property by excluding 2.5% of the distribution in each tail. Unfortunately, since 
an actual sample mean is a fixed quantity, we cannot make this same probability statement 
about the CI in Equation 2.9 – the calculated CI either does or does not contain the popula-
tion mean. The probabilistic interpretation of this CI is that, if we repeat the study many 
times, then 95% of our calculated CIs will contain the population mean. More information 
about the derivation of CIs can be found in standard statistical texts, for example Wackerly 
et al. (2007).

2.3.2 Asking Questions about the Data: Hypothesis Testing

Hypothesis testing is a form of inference where pairs of hypotheses for a population 
parameter are compared using the information from a random sample of observations. 
The two hypotheses are defined as the null (denoted H0) and the alternative (denoted H1 
or, sometimes, Ha). The null hypothesis H0 represents the status quo, and we accept (cannot 
reject) this unless we obtain strong evidence from our sample that it is false. The hypoth-
esis H1 represents an alternative state that contradicts the null hypothesis and may be 
one-sided or two-sided. With a two-sided H1 we do not specify a direction for the alterna-
tive hypothesis – we are just interested in detecting whether the status quo is implausible. 
With a one-sided H1 we are interested in detecting deviations in a particular direction. For 
example, consider the situation where a scientist has obtained samples of aphids from two 
adjacent fields, one sprayed and one unsprayed, and wants to know if there are differences 
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in resistance to the applied pesticide. The null hypothesis assumes no difference in resis-
tance between the two fields, and the alternative hypothesis might be that the population 
from the sprayed field shows greater resistance than the other (one-sided) or simply that 
resistances in the two fields are not the same (two-sided).

To test the null hypothesis against the alternative, we first need to identify an appropriate 
test statistic which has a known statistical distribution when the null hypothesis is true. The 
actual statistic used depends on the characteristics of the problem, but you may already be 
familiar with some common statistical tests, such as the t-test and the F-test, and the test sta-
tistics associated with them. Having constructed a test statistic, the final step in the hypoth-
esis testing process involves assessing the consistency of the observed test statistic with the 
null hypothesis. Under the null hypothesis (i.e. on the assumption that the null hypothesis 
is true), if the probability (P) of obtaining a test statistic as extreme as the observed value is 
small then we have statistical evidence against the null hypothesis. The test statistic thus 
assesses how well the data support the null hypothesis. The strength of this evidence is 
quantified by the observed significance level of the test, denoted above as P and sometimes 
called the P-value. It is good practice to predetermine the level of significance required to 
reject the null hypothesis (denoted αs); this is often chosen as 5% (αs = 0.05). This is known 
as the Type I error, and represents the probability of rejecting the null hypothesis when in 
fact it is true. More details of hypothesis testing, including the concepts of Type II error and 
statistical power, are discussed in Chapter 10. The calculations associated with the test sta-
tistics used in hypothesis tests can also be used to derive CIs (Section 2.3.1) for population 
parameters, i.e. an indication of the likely range of values for the quantity of interest, taking 
account of the uncertainty associated with the estimate of the population parameter. These 
concepts are illustrated in more detail in the examples below.

2.4 Simple Tests for Population Means

In the following sections we describe the one- and two-sample t-tests, which are used 
extensively later in the contexts of regression modelling and treatment comparisons.

2.4.1 Assessing the Mean Response: The One-Sample t-Test

When we collect a single sample of observations we often want to make inferences about 
the value of the unknown mean of the population from which we have drawn the sample. 
We assume that we have a sample of N independent observations from a single popula-
tion, y1 … yN. Suppose we wish to test the null hypothesis that the population mean is 
equal to a given value, i.e. H0: μ = c, against a general two-sided alternative hypothesis, i.e. 
H1: μ ≠ c, where c is some pre-determined constant value (referred to as a two-sided test, 
see Section 2.3.2).

We can estimate the population mean, μ, by the sample mean, y (Equation 2.1). Usually, 
the population variance is also unknown and is estimated by the unbiased sample vari-
ance, s2 (Equation 2.3). The null hypothesis is then evaluated using a one-sample t-test, 
with test statistic, t, computed as
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i.e. as the ratio of the difference between the estimated mean and the constant c and the 
estimated standard error of that difference. As c is fixed and known, it has no uncertainty 
and so, in this case, the standard error of the difference between y and c is simply equal 
to the standard error of y and estimated by SEM = s/√N, as in Section 2.3.1. If the null 
hypothesis is true then the population mean is equal to c and the t-statistic should be close 
to zero. If it is not then this gives evidence against the null hypothesis. For a given signifi-
cance level, αs, we can determine whether the data provide sufficient evidence against the 
null hypothesis by comparing our test statistic with a critical value from the appropriate 
distribution.

If H0 is true and the observations are Normally distributed (or at least approximately 
so) then the observed test statistic t follows a Student’s t-distribution with N − 1 df, as in 
Equation 2.8. The critical value defines a threshold such that test statistics more extreme 
than this value occur with probability αs when the null hypothesis is true. Because we are 
considering a two-sided test, both large positive and large negative values of the test statis-
tic are unlikely under H0, so we consider the probabilities associated with extreme values 
in both tails of the t-distribution. We denote t s/

N−1
2[ ]α  to be the 1 1 /2s00( )th− α  percentile of 

the t-distribution with N − 1 df, and use this as our critical value. For example, if we choose 
αs = 0.05, then tN−1

0 025[ . ] , the 97.5th percentile of this distribution, is the critical value. From the 
definition of percentiles (Section 2.2.1) and the symmetry of the t-distribution about zero it 
follows that, for a random variable tN−1 with a t-distribution on N − 1 df,

 Prob t Prob t /  s s
s( ) ( ) .[ / ] [ / ]t tN N N N− − − −≤ − = ≥ =1 1

2
1 1

2 2α α α

So Prob t s
s( ) ,[ / ]tN N− −≥ =1 1

2α α  i.e. the probability of equalling or exceeding the critical value 
is αs, as required. We reject the null hypothesis if the absolute value of our test statistic, 
denoted |t|, meets or exceeds this value. This situation is illustrated in Figure 2.6.

The observed significance level of this test is calculated as P = Prob(|tN−1| ≥ t), i.e. the 
probability under H0 of obtaining a result more extreme (larger positive or negative) than 
that observed. If the observed significance level is less than the pre-determined signifi-
cance level αs then the null hypothesis is rejected.
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FIGURE 2.6
Critical regions for a two-sided one-sample t-test with probability level αs. Shaded area covers 100αs% of distri-
bution containing the most extreme values. |t| is the absolute value of an observed t-statistic greater than the 
critical value at significance level αs.
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The test can also be used to calculate a 100(1 − αs)% CI (Section 2.3.1) for the population 
mean μ as the range
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Note that if the t-test is not significant at level αs, i.e. if the data are consistent with the null 
hypothesis, then this 100(1 − αs)% CI will contain the hypothesized value, c, as a plausible 
value for the population mean. Conversely, if the null hypothesis is rejected, then this CI 
will not contain c, as it is then an unlikely value for the population mean.

EXAMPLE 2.1B: WHEAT YIELDS

Consider the set of seven yield measurements presented in Example 2.1A. Historical 
records indicate that for these field plots, the expected yield should be close to 9 tonnes 
per hectare (t/ha). Because the mean yield from this harvest was 7.6 there is concern that 
this year is atypical. To evaluate this, we perform a one-sample t-test with null hypoth-
esis H0: μ = 9, and alternative hypothesis H1: μ ≠ 9. Recall that the unbiased sample 
variance was 6.95. The t-statistic is calculated by substituting the (unrounded) sample 
statistics into the t-test formula as

 
t

/
 = − = − = −7 57 9

6 95 7
1 43

0 997
1 433

.
.

.
.

. .

This statistic has N − 1 = 6 df. The critical value is the 97.5th percentile value of the 
t-distribution with 6 df, equal to 2.447. Because the absolute value of the test statistic 
(|t| = 1.433) is smaller than the critical value, we fail to reject the null hypothesis at the 
5% significance level and conclude that there is not enough evidence to indicate that this 
year is atypical.

A 95% CI for the population mean can be calculated as

 
7 57 2 447 6 95 7 7 57 2 447 6 95 7 5 1 10 0. ( . . ) . ( . . ) ( . . ) .− × + ×  =/ , / ,  

As expected from the results of the significance test, this CI contains the expected yield 
of 9 t/ha.

2.4.2 Comparing Mean Responses: The Two-Sample t-Test

We now consider the case in which we have two treatment groups and wish to test for 
differences between the population means for the two treatments. In this case the null 
hypothesis (H0) is that the population means for the two treatment groups are equal, and 
the two-sided alternative hypothesis (H1) is that the two population means are different. 
If we label the population means for the two treatments as μ1 and μ2, respectively, these 
hypotheses can be written as

 H0: μ1 = μ2 and H1: μ1 ≠ μ2 .

We have again specified a two-sided test, but we could specify a one-sided alternative 
hypothesis if that were appropriate. The population means for the two treatment groups 
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are estimated by their sample means. The test compares the difference between these two 
sample means with an estimate of the uncertainty in this difference due to background 
variation. If the difference in sample means is large compared to the background variation 
then there is evidence for a difference between the two population means.

Suppose we have a sample of n1 observations for treatment group 1 (denoted y1k, 
k = 1 … n1), and a sample of n2 observations for group 2 (denoted y2k, k = 1 … n2). The esti-
mates for the group means are calculated as
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with the dot notation as defined in Section 2.1. If we can reasonably assume that the back-
ground variation is the same for the two groups, then the background variability is esti-
mated by a weighted sum of the unbiased within-group sample variances, also known as 
a pooled estimate of variance
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where the unbiased within-group sample variances are calculated as usual (see Equation 
2.3) as
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If the treatment variances cannot be assumed equal, then a modified statistic must be used 
(see for example Wackerly et al., 2007). The df associated with the pooled estimate of vari-
ance are equal to the total number of elements in the two summations, N = n1 + n2, minus 
the number of treatment means estimated, here two; hence, the df are n1 + n2 − 2 = N − 2. 
The estimated standard error of the difference between the two sample means, denoted 
SED, can then be calculated as
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The null hypothesis is then evaluated using a two-sample t-test with the test statistic, t, 
computed as
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(2.10)

i.e. as the difference between the estimated population means, divided by the estimated 
uncertainty in that difference due to the background variability. If the data follow a 
Normal distribution and the observations are independent then under the null hypothesis 
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this test statistic has a t-distribution with N − 2 df. This distribution can be used to obtain 
critical values, as for the one-sample t-test, and to obtain the observed significance level. 
Alternatively (and equivalently), the squared value of the test statistic has an F-distribution 
on 1 and N − 2 df. This distribution is useful later when we have more than two groups to 
compare (Section 4.3).

As for the one-sample case, the t-distribution can be used to construct a CI, but now for 
the difference in population means, μ1 − μ2. A 100(1 − αs)% CI for this difference can be 
calculated as
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2
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If the t-test is not significant at level αs, i.e. if the data are consistent with the null hypothe-
sis, then this 100(1 − αs)% CI will contain zero as a plausible value for the difference in pop-
ulation means. Conversely, if the null hypothesis is rejected, then this CI will not contain 
zero, as it is then an unlikely value for the difference between the two population means.

EXAMPLE 2.1C: WHEAT YIELDS

A standard commercial and a new ‘improved’ wheat variety are to be compared using 
yield measurements obtained from 14 plots in a field trial. The objective of the study 
is to determine whether the varieties produce different average yields. For each vari-
ety, yields were obtained from n = 7 small plots, and converted into tonnes per hectare 
(t/ha). The data for the commercial variety were analysed in Examples 2.1A and B, and 
the complete data set can be found in Table 2.3 and in file wheat.dat.

The hypotheses can be stated as

H0: both varieties give the same mean yield
H1: the varieties give different mean yields.

In mathematical terms this can be written as

H0: μ1 = μ2 (the population means are equal)
H1: μ1 ≠ μ2 (the population means are not equal)

TABLE 2.3

Yield Measurements (in t/ha) from a Standard Commercial and an 
Improved Wheat Variety Obtained from Plots in a Field Trial 
(Example 2.1C and file wheat.dat)

Plot Variety Yield Plot Variety Yield

1 Commercial 7 8 Improved 12
2 Commercial 9 9 Improved 8
3 Commercial 6 10 Improved 12
4 Commercial 12 11 Improved 9
5 Commercial 4 12 Improved 8
6 Commercial 6 13 Improved 16
7 Commercial 9 14 Improved 7
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Here, μ1 corresponds to the population mean of the commercial variety, and μ2 to that 
of the improved variety. To test the null hypothesis we substitute the summary statistics 
for these data into the t-test formula (Equation 2.10). The sample means for each variety 
are y1• = 7 57.  (from Example 2.1A) and
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Finally, the observed test statistic is

 
t

SED
 = − = − = − = −• •y y1 2 7 57 10 29

1 567
2 71

1 567
1 732

. .
.

.
.

. .

The absolute value of the test statistic (|t| = 1.732) is compared with a critical value 
of the t-distribution with 7 + 7 − 2 = 12 df. If we set αs = 0.05 (i.e. use a 5% significance 
level) then the critical value for this two-sided test is t12

0 025 2 179[ . ] .=  (the 97.5th percen-
tile of the t-distribution with 12 df). As 1.732 is less than 2.179, we cannot reject H0. We 
might report that there is insufficient statistical evidence to conclude that the mean 
yields of the commercial and improved varieties are different. Alternatively, we might 
report the observed significance level for this test statistic as P = 0.109, obtained from 
t12

0 0545 1 732[ . ] . .=  Again, because this value is larger than our chosen significance level of 
αs = 0.05, we cannot reject H0. A 95% CI for the difference in population means (μ1 − μ2) is

 (−2.714 − (2.179 × 1.567), −2.714 + (2.179 × 1.567)) = (−6.1, 0.7) .

It follows that zero is a plausible value for the difference in population means as it is 
contained in the CI, agreeing with the result of the hypothesis test.

Note that to have achieved significance at the 5% level the test statistic, t, would have 
needed to satisfy |t| > 2.179. If the unbiased sample variance is assumed equal to the 
pooled estimate, spooled

2 , then this requires
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so that the difference between the two variety means would have needed to be at least 
as large as 3.42 t/ha (3.42 = 1.567 × 2.179). This large difference is required because the 
pooled variance is relatively large, and the total number of observations is small, and 
hence there is considerable uncertainty in the estimates of the population means for the 
two varieties.
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2.5 Assessing the Association between Variables

When two variables have been measured on the same material, it is often of interest to 
know whether the variables are independent or whether they show some association. For 
example, the diameter and weight of seeds would be expected to show a strong positive 
association such that seeds with larger diameters also have larger weights. Covariance and 
correlation are both measures of the strength and direction of a relationship between two 
variables. Correlation is a more useful measure, because it uses a standardized scale and 
is independent of the scale of measurement. However, correlation is often defined in terms 
of covariance, so we discuss the latter first.

Suppose we have observations of two variables, here labelled x and y, measured on the 
same units so the data consist of N pairs (xi, yi). The unbiased sample covariance between 
the two variables, sxy, is defined as
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(2.11)

i.e. we centre both variables, calculate the product of the centered variables for each unit, 
and then sum the resulting values over all units and divide by N − 1. This is an unbiased 
estimate of the population covariance between these two variables, denoted σxy. If both 
variables tend to be large on the same units, then the covariance will be large and positive. 
If one variable tends to be large when the other is small then the covariance will be large 
and negative. If the variables are completely unrelated then the covariance will be close to 
zero. The formula for the sample covariance in Equation 2.11 has a similar form to that for 
the sample variance in Equation 2.3, and it is easy to verify that the covariance of a variable 
with itself is simply its unbiased sample variance. Analogous to Equation 2.2, the sample 
covariance would use the divisor N in Equation 2.11 in place of N − 1, but gives a biased 
estimate of the population covariance.

Where we have several random variables measured on the same units, we can assem-
ble their variances and covariances into a single structure, called the variance–covariance 
matrix. This is a symmetric matrix with rows and columns indexed by the variables. The 
variances are held on the diagonal, and the covariances are held in the off-diagonal positions. 
For example, for three variables, x, y and z, the variance–covariance matrix takes the form
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(2.12)

The matrix is symmetric because covariances are invariant to the order in which the vari-
ables are specified, so that σxy = σyx, and so on. For this reason, it is sufficient to present only 
the values on or below the diagonal (the lower triangle). The unbiased sample  variance–
covariance matrix replaces the population values by the unbiased sample variances and 
covariances.

Unfortunately, covariance is strongly dependent on scale – if you convert a set of mea-
surements from centimetres to inches then the covariance will also change, although 
relationships between the variables clearly do not change. Correlation is a standardized 
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measure of the strength and direction of a relationship between two variables that is inde-
pendent of the scale of measurement. In general statistical usage, correlation quantifies 
the departure of two variables from independence, and many correlation coefficients 
have been defined.

We use Pearson’s product–moment correlation coefficient, which is derived directly 
from the covariance, and is appropriate for estimating correlation between two variables 
with an underlying bivariate Normal distribution defined by the population means and 
standard deviations of each variable and the population correlation coefficient, ρ. This 
coefficient measures the strength of a linear relationship between the variables and can 
be estimated by the sample correlation coefficient, r, calculated as the unbiased sample 
covariance divided by the product of the unbiased sample standard deviations. If we write 
sy and sx to be the unbiased sample standard deviations of variables y and x, respectively, 
the sample correlation coefficient is defined as
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The value of r has no units and lies between −1 and +1. A few examples are illustrated in 
Figure 2.7. In Figure 2.7a, a strong positive correlation is shown (r = 0.96). If the observa-
tions lie exactly on a straight line with a positive slope, then x and y are perfectly correlated 
(r = 1), a concept that is known as collinearity where one variable can be completely deter-
mined from the other. In Figure 2.7b, a weaker negative correlation is pictured (r = −0.57). 
When r = −1 the paired observations also lie exactly on a straight line but with a negative 
slope. Both Figures 2.7c and d show a weak sample correlation between the variables (r 
close to 0). For Figure 2.7c the points show a random scatter, whilst for Figure 2.7d there 
is a clear relationship between x and y, but one that is not linear. When two variables are 
independent, so that a value of y does not depend in any way on the value of x, then their 
sample correlation coefficient will be close to zero; however, the converse is not necessar-
ily true (as shown in Figure 2.7d) because the correlation coefficient detects only linear 
dependencies between two variables. Hence, a scatter plot of the variables should always 
be considered alongside the summary value of r.

For more than two variables, it is conventional to present the set of pairwise correlations in 
matrix form, similar to the variance–covariance matrix in Equation 2.12 but with value 1 on 
the diagonal and correlation coefficients for pairs of variables in the off-diagonal positions.

It is important to understand that strong correlation does not necessarily imply causa-
tion. If x and y are correlated, then there are four possibilities to consider: (1) x causes y; (2) 
y causes x; (3) a third variable, z, influences both x and y; or (4) there is no relationship but 
by chance an atypical joint sample has been produced. For this reason, causal conclusions 
should not be drawn from correlations without further information or experimentation, 
or both.

It is sometimes of interest to investigate whether there is any statistical evidence of cor-
relation between two variables. Here, the null hypothesis states that the population corre-
lation coefficient is equal to zero, i.e. H0: ρ = 0, and is tested against a two-sided alternative 
hypothesis that the correlation is non-zero, i.e. H1: ρ ≠ 0. The null hypothesis is evaluated 
using a t-statistic based on the sample correlation, calculated as
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If the two variables have a Normal distribution, then under the null hypothesis this sta-
tistic has a t-distribution with N − 2 df. The significance level of the test depends on both 
the sample correlation and the sample size: a given value of r becomes more significant as 
N increases. This test can also be used for variables with a non-Normal distribution, but 
the distribution of the test statistic is then approximate and may be inaccurate unless the 
sample size is large.

EXAMPLE 2.3B: WILLOW BEETLE MEASUREMENTS

The lengths and widths (mm) of the sample of willow beetles described in 
Example  2.3A are plotted in Figure 2.8. Some points represent multiple observa-
tions, with the area of each plotted symbol proportional to the number of observa-
tions represented. It seems clear that there is a positive relationship between the two 
variables, although there is one beetle much wider than would be expected from 
its length (point in bottom right of plot). The unbiased sample variance–covariance 
matrix takes the form

 

s

s s
L

LW W

 
2

2

0 0260
0 0059 0 0043







=







.

. .
,

x

(a)

y

r = 0.96

(b)

x

y

r = –0.57

(d)

x

y
r = –0.02

(c)

x

y

r = 0.01

FIGURE 2.7
Scatter plots illustrating correlation patterns between two variables: (a) strong positive correlation; (b) moderate 
negative correlation; (c) uncorrelated and unrelated variables; (d) uncorrelated but related variables.
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where we use the subscript L to indicate length and W to indicate width measurements. 
The sample correlation between length and width is therefore calculated as
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Hence, we observe a positive correlation between these traits of 0.55. The distribution 
of these variables is consistent with a Normal distribution (e.g. see Figure 2.3), and so 
we formally test whether this result is consistent with an uncorrelated population. We 
calculate the t-statistic as
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The value 4.596 is then evaluated against a t-distribution with 48 df, giving observed 
significance level P < 0.001. Hence, we have strong evidence that the population correla-
tion coefficient between length and width is not zero.

2.6 Presenting Numerical Results

The presentation of numerical results is fraught with difficulties because various, some-
what arbitrary, choices have to be made on rounding and the number of significant figures 
shown. In this section we describe the conventions that we try to follow in this book. This 
should make our written calculations easier to follow, as well as suggesting general guide-
lines for use in other contexts, such as scientific publications.

Where we show calculations in the text we have necessarily rounded the numbers pre-
sented, and this includes any intermediate results. However, to get answers that match 
statistical software, we have not actually implemented this rounding in our calculations; 
we have always retained full accuracy. This means that there will be small differences 
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FIGURE 2.8
Length (mm) plotted against width (mm) for 50 willow beetles (Example 2.3B). Area of points is proportional to 
the number of observations at that position.



40 Statistical Methods in Biology

(usually in the last decimal place) between the answers we present and those achieved by 
the calculations shown. Similarly, we round quantities presented in ANOVA tables (see 
Chapter 4) but do all of our calculations based on unrounded quantities.

In presenting the results of hypothesis tests, we show test statistics, critical values and 
observed significance levels to three decimal places. This gives sufficient accuracy for most 
situations.

The definition of a suitable scale for data-dependent quantities is more difficult. For any 
variate, we first identify the scale at which we see variation within it, and we call this 
its natural granularity. This may be related to the size of the numbers, but this is not 
always the case, and so we consider several examples, starting with the yields recorded 
in Example 2.1 (Table 2.3). These are all integer values in the range 4–16. All of the infor-
mation is captured by these numbers with zero decimal places and so we say that this is 
the natural granularity for these observations. Exactly the same argument holds for the 
integer count data of Example 2.2. However, the situation is slightly different for Example 
2.3 (Table 2.1). Here both the beetle lengths (4.10–4.95 mm) and widths (1.40–1.725 mm) are 
measured to the nearest 0.025 mm. Accurate representation of the measurements requires 
three decimal places, but this implies much more accuracy than is actually present, and so 
we denote the natural granularity as two decimal places (0.01) even though this still gives 
slightly greater accuracy than is present in the measurements.

A different situation holds for many machine-calculated measurements, for example 
where small-plot yields have been converted into acre or hectare yields, or observations 
have been transformed to or from the logarithmic scale. In these cases, the conversion 
between scales can introduce many superfluous decimal places. All of the decimal places 
(up to rounding error) should be retained prior to analysis, so that no accuracy is lost if any 
further transformation is required (e.g. as described in Chapter 6). At the point of analysis, 
we suggest that the natural granularity is decided from the range of the data, calculated 
as the minimum value subtracted from the maximum value, and by use of the first three 
significant figures of this range to define the natural granularity for the presentation of 
results. For example, data on 0–100 (range 100) has natural granularity of 0 (zero decimal 
places); data on 1000–1010 (range 10) has its natural granularity defined as 0.1 (one decimal 
place). If the natural granularity is greater than 1, we do not generally advocate round-
ing values, but it may be worth rescaling the data (dividing by the natural granularity) to 
avoid the appearance of spurious accuracy. Similarly, if there is no variation in the leading 
significant figures, it may make sense to remove those digits. Occasionally these guide-
lines may fail and, in that case, common sense should be applied.

Once the natural granularity of a data set has been defined, it can be used to define a sen-
sible scale for reporting statistics. We should report sample means and estimates of other 
location parameters to one decimal place more than the natural granularity. We should 
report sums of squares, mean squares, and estimates of variances and standard deviations 
or errors to two decimal places more than the natural granularity. We use greater accuracy 
for standard deviations and errors because multiples of these quantities are often used to 
compare differences between location estimates (e.g. group means). A suitable scale for a 
regression coefficient is harder to define as it depends on the scale of its explanatory vari-
ate. Here, we suggest using sufficient decimal places for such coefficients to ensure that we 
can report the fitted values to one decimal place more than the natural granularity, with 
additional precision on coefficient standard errors. We have often found ourselves breaking 
these rules for convenience of presentation in this book, but nevertheless recommend that 
you think carefully about the appropriate level of precision for your own circumstances.



41A Review of Basic Statistics

EXERCISES

 2.1 A plant ecologist is interested in the distribution of one species of grass 
within a field. She investigates this by throwing a 0.1 m2 quadrat to 20 ran-
dom positions in the field and counting the number of plants of the species in 
the quadrat at each position. The counts for the 20 quadrats were: 15, 12, 6, 7, 
4, 2, 10, 14, 3, 6, 9, 9, 2, 11, 10, 3, 2, 11, 9 and 10. File grass.dat contains the unit 
number (variate Quadrat) and plant count (variate Count) for each quadrat. 
Consider whether these data should be considered as continuous or discrete, 
and draw a bar chart or histogram (as appropriate). Obtain the sample mean, 
median and inter-quartile range. What can you say about the distribution of 
these data?

 2.2 Obtain a histogram of the beetle widths (mm) given in Table 2.1 (and variate 
Width in file willow.dat). Do these data seem consistent with a Normal distri-
bution, as asserted in Example 2.3B?

 2.3 The one-sample t-test is rarely used in analysis of experimental data, except 
in the context of regression, but it can be useful for analysis of paired sam-
ples from a set of subjects. In this scenario, the two sample t-test is not valid 
because two samples from a single subject are not independent. However, if 
we analyse the differences between the samples from each subject, we can 
use a one-sample t-test to test the null hypothesis of no difference between 
samples.

   An experiment made measurements of Rubisco protein (on a relative scale) 
in 12 grass plants before and after a drought stress period of five days. File pro-
tein.dat contains the unit number (DPlant) and Rubisco measurements (vari-
ates Before and After) for each plant. Calculate the change in amount of Rubisco 
protein in each plant and analyse this change using a two-sided one-sample 
t-test. Write down the null and alternative hypotheses for this test and interpret 
them in the context of this experiment. Is there any evidence that the amount of 
Rubisco has changed after five days of drought stress?

 2.4 A soil scientist sampled two fields to get background measurements of carbon 
biomass (measured as mg C per kg of soil) prior to a field experiment. Six sam-
ples were taken from each field: the samples from the first field gave 910, 1058, 
929, 1103, 1056, 1022 mg C kg−1; the samples from the second field gave 1255, 
1121, 1111, 1192, 1074, 1415 mg C kg−1. File carbon.dat contains the unit number 
(Sample), field number (factor Field) and carbon biomass measurement (vari-
ate Carbon) for each sample. Use a two-sided two-sample t-test to test whether 
there is any difference in average biomass between the two fields, and calculate 
a 95% CI for the difference.

 2.5 In Example 12.1 (Tables 12.1 and A.1), we describe an experiment in which sev-
eral morphological traits were measured on 190 seeds from a line of diploid 
wheat. Two of the traits measured on each seed were length (mm) and weight 
(mg). The unit numbers (DSeed) and length and weight measurements (vari-
ates Length and Weight) can be found in file triticum.dat. Produce a scatter 
plot of these two traits and calculate the unbiased sample variances and covari-
ances between them. Derive their sample correlation coefficient, r. Is there evi-
dence of association between these two variables?
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3
Principles for Designing Experiments

This chapter presents the basic concepts that are required to construct designs to address 
directly and efficiently the aims of a biological experiment. We first discuss the choice of 
treatments and materials; treatments should be determined by the aims and the materi-
als should be chosen according to the frame of reference for the experiment (Section 3.1). 
These two components must then be combined to produce an appropriate design. A good 
design takes proper consideration of three statistical principles: replication (Section 3.1.1), 
randomization (Section 3.1.2) and blocking (Section 3.1.3), to reduce bias and maximize the 
precision of treatment comparisons. We describe the structure of a design with respect to 
underlying factors using a symbolic form (Section 3.2). Many experiments will use one 
of the wide and flexible family of standard designs, such as the completely randomized 
design (CRD) (Section 3.3.1), the randomized complete block design (RCBD) (Section 3.3.2), 
the Latin square (LS) design (Section 3.3.3), the split-plot (SP) design (Section 3.3.4) or the 
balanced incomplete block design (BIBD) (Section 3.3.5). Once the structure of the design 
has been determined, a properly randomized layout can be generated with statistical soft-
ware (Section 3.3.6).

3.1 Key Principles

As described in Chapter 1, an experimental study investigates the relationship between 
an outcome and one or more conditions that are manipulated by the researcher. Before 
considering the appropriate design for any experiment, it is important to be clear about its 
aims, which are usually associated with one or more scientific questions or hypotheses to 
be tested. Examples of such questions might be

• Is any reduction in disease infection achieved with a new ‘resistant’ variety com-
pared with a standard ‘control’ variety?

• How do plant metabolites respond to increasing drought stress at different stages 
of development?

• Which chemicals, of several under study, show insecticidal activity?
• How is yield related to plant spacing, and does this relationship vary between 

varieties?

The aims of the experiment should be well defined to make it easy to assess whether 
the chosen treatments are sufficient to achieve them. In this context, the term treat-
ments is used to describe the set of different experimental conditions to be tested, 
for  example, varieties, nitrogen rates, or chemical compounds, or, more usually, com-
binations of  several such classifying variables. Control treatments – either positive or 
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negative controls – may be used to provide a baseline, or to verify that the experiment 
has worked as expected. A negative control usually corresponds to a ‘null’ treatment, 
and a positive control usually corresponds to a standard treatment with a known effect. 
This is discussed further in Section 8.5. In addition to defining the experimental treat-
ments, the experimental units must be chosen. The experimental unit for a treatment 
is defined as ‘the smallest division of the experimental material such that any two units 
may receive different treatments in the actual experiment’ (Cox, 1992). For some treat-
ments, this may be larger than the size of unit on which individual observations are 
recorded (sometimes called the observational or measurement unit), and may occur at 
a range of scales, as in the following examples.

• An area of land on a farm. A field trial typically has numerous small plots, and 
experimental treatments are applied to the individual plots. The experimental 
unit is the plot, and the measurement unit may be either the plot (e.g. yield) or 
sub-samples from the plot area (e.g. individual plant measurements).

• Individual soil samples taken from a field. In the context of a field trial with treatments 
applied to plots, if a single soil sample is taken from each field plot for process-
ing in the lab, then the soil sample becomes the experimental unit. If multiple 
soil samples are taken from each plot, then the experimental units are the sets of 
samples from each plot.

• Pots, each containing three plants. If experimental treatments, such as soil nutrient 
content, are applied to whole pots, then the pot is the experimental unit. The mea-
surement unit may be either the whole pot (e.g. combined biomass) or individual 
plants.

• Different leaves from an individual plant. In the investigation of the response of plants 
to aphid attack, clip cages with or without aphids might be attached to individual 
leaves within a plant. The experimental unit is then the individual leaf.

• Samples of RNA extracted from different plants. Investigation of gene expression often 
involves the application of different treatments to individual plants, followed by 
extraction of RNA from each plant. The experimental unit for further study is then 
the RNA taken from an individual plant.

• A batch of 10 insects in a Petri dish. Experiments on small insects are often done on 
groups of insects kept together in dishes (or cages), with treatments applied to 
the dishes. The experimental unit is then the dish. The measurement unit may 
be the dish, via a summary of insect behaviour such as percent survival, or the 
individual insects.

Recall from Section 1.2 that the experimental units are considered to consist of a sam-
ple from a wider population for which inferences can be made, and that this population 
should be identified according to the frame of reference for the experiment. For example, 
if RNA samples for microarray work are taken from only a single plant, then conclusions 
regarding gene expression in the plant population cannot safely be made without further 
experimentation, because variation between different plants would be expected. If sam-
ples are taken from several randomly selected plants, then variation between plants can be 
accounted for, and inferences can be applied to the wider population. A similar situation 
occurs when an experiment is established in a single site, or in a single year, or on a single 
variety, as there can be no certainty that results can be safely extrapolated to wider circum-
stances. This issue is especially relevant to field trials, where the chance peculiarities of a 
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single environment can produce anomalous results; for this reason, many journals will not 
publish the results of field trials that have not been repeated over several sites or seasons or 
both. It is therefore important to recognize the frame of reference implied by the choice of 
experimental units, so that appropriate conclusions can be drawn from the results.

Although we wish to have a representative sample of experimental units, we can get 
more precise estimates of differences between treatments by making comparisons across 
similar units. We can deal with this apparent contradiction by using sets of reasonably 
homogeneous experimental units, and then repeating the comparison across a wider range 
of circumstances. In some cases, the experimental units may have some intrinsic structure, 
introducing some heterogeneity between groups of more homogeneous units. This struc-
ture should be incorporated in both the choice of experimental units for treatment applica-
tion and in the statistical analysis. For example, experimental materials may be arranged 
as plants within pots within trays, giving three structural levels, and we expect different 
levels of variation within each of these levels. Depending on practical considerations and 
the aims of the experiment, it may be appropriate to apply treatments at any of these levels 
and a statistical analysis should account for this structure.

The choice of experimental units and treatments should be made separately: units are 
chosen according to the appropriate frame of reference for the experiment, and treatments 
are chosen to enable the hypotheses to be tested. A good design then matches the treat-
ments with the units so that the treatment differences can be estimated without bias (i.e. 
without systematic over- or under-estimation) and as precisely as possible (i.e. to minimize 
uncertainty in the results). Our main tool to avoid experimental bias is randomization, i.e. 
the random allocation of treatments to experimental units, and experimental precision 
can be improved by the use of proper replication and blocking (terms we discuss in more 
detail below).

First, it is helpful to recall the role of the underlying unit-to-unit variation in biological 
experimentation. It is well known that biological individuals vary in any given character-
istic or response. The amount of variation may depend on several factors, such as differing 
genetic backgrounds and environmental effects, but some variation is always present. This 
natural variation may be inflated by uncertainty introduced by the measurement process 
in cases where exact measurement is not possible (also known as measurement error). 
This combined background variation is a potential cause of both bias and uncertainty in 
experimental results. For example, if two treatments are each applied to one plant only, it 
is not possible to assess whether any difference in the measured response is due to treat-
ment differences or natural plant-to-plant variation. Statistical design and analysis aim to 
distinguish, quantify and, subsequently, compare variation between treatments (signal) 
with background variation (noise). A large signal:noise ratio indicates that substantive 
treatment differences are present. A small signal:noise ratio indicates that any apparent 
treatment differences could be explained by the background variation in the system, and 
therefore cannot confidently be attributed to treatment effects. Proper identification and 
control of background variation is thus an essential aim of any statistical design.

A good design considers each of the three basic principles: replication, randomization 
and blocking. Replication is the process of applying each treatment to more than one 
experimental unit, so the number of replicates of a treatment is the number of independent 
experimental units to which each treatment is applied. Randomization means the random 
allocation of treatments to experimental units and is used to ensure the fair assessment of 
treatments without bias. For this reason, it can be regarded as an insurance against poten-
tial unknown differences between units, and it should be used whenever possible. In some 
circumstances, it may be possible to identify or construct groups of experimental units 
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expected to have similar responses in the absence of any treatment effects. This process is 
known as blocking. A block is a subset of the experimental material within which experi-
mental units are expected to be homogeneous, with more heterogeneity expected between 
experimental units in different blocks. In the analysis of experimental data, variation due 
to blocks can be separated from background variation and, if there are differences among 
blocks, this separation will increase the precision of treatment comparisons by reducing 
the estimate of the unit-to-unit background variability. An appropriate use of these three 
design principles will give confidence that any treatment differences observed are real and 
not due to some chance combination of circumstances, and will also enable the maximum 
amount of information to be obtained from the available resources. We now discuss each 
of these principles in more detail.

3.1.1 Replication

The natural background variation among experimental units means that it is necessary to 
replicate the application of each treatment to several experimental units. This replication 
serves two important purposes. First, by repeating each treatment on several experimental 
units, we get a more reliable estimate of the effect of each treatment. Second, and possibly 
more importantly, the replicated observations provide an estimate of the background vari-
ation between units, which we can use to assess whether treatments differ and to indicate 
the precision associated with the estimated treatment effect. Usually each treatment will 
be replicated an equal number of times, but in circumstances where particular treatments 
are of greater interest, it may be advantageous to have increased replication for those treat-
ments. Conversely, reduced replication may be used where resources for particular treat-
ments are either scarce or expensive, for example, seed for a new breeding line.

To illustrate some issues regarding replication, consider an experiment to compare two 
pesticide treatments (a standard and a new formulation) applied to six insect-net cages, 
each cage containing 10 aphids. The new formulation is applied to three cages selected 
at random, with the standard formulation applied to the remaining three cages. The rep-
lication of each treatment in this experiment is only three, even though 30 aphids have 
been treated with each pesticide and even if the measurement unit is the individual aphid, 
because each treatment is applied to a cage of aphids and so this is the experimental unit. 
The individual aphids here are an example of pseudo-replicates. Pseudo-replication 
describes the situation in which multiple measurements are taken from each experimental 
unit. This can be a very useful experimental technique, but must be properly incorpo-
rated into any statistical analysis, which may otherwise produce an incorrect estimate 
of the between-unit variability (usually too small), possibly leading to incorrect conclu-
sions about the importance of treatment effects. Pseudo-replication usually causes prob-
lems when the smallest level of experimental material (i.e. the measurement unit, here, 
the aphid) is wrongly identified as the experimental unit in a statistical analysis, in place 
of the level at which treatments were actually applied (here, the cage). As a rule of thumb, 
replication needs to occur at the level at which the treatments have been applied to be con-
sidered ‘real’. Consider the following examples of designs for experiments.

• Twelve pots, each containing four plants at the three-leaf stage, with six treat-
ments (A–F) each applied to two of the pots with the allocation made at random 
(Figure 3.1). Treatments were applied to pots, and so the pot is the experimental 
unit and the replication of each treatment is two. Measurements from individual 
plants are pseudo-replicates.
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• A field experiment consisting of 12 plots, with two treatments (A and B) each applied 
to six of the plots selected at random (Figure 3.2). One soil sample was taken per plot, 
and labelled by the treatment and replicate number, giving samples A1 … A6 and B1 
… B6. The soil samples from the six replicate plots for each treatment (e.g. A1 … A6) 
were bulked (combined) together and mixed thoroughly and six sub-samples taken 
and measured. These sub-samples were labelled as a1 … a6 and b1 … b6. In this case, 
although treatments were originally applied to plots, at the analysis stage there is 
only a single replicate for each treatment because samples from independent plots 
have been bulked and the sub-samples are not independent. The sub-samples are 
pseudo-replicates and give information on the homogeneity of the bulked sample 
rather than on the variation between plots. Ideally, samples from each plot should 
have been kept separate, giving six true replicates for each treatment.

• Two controlled environment (CE) cabinets, one at 10°C and one at 20°C, each 
containing eight seed trays, with two different watering regimes (A and B) each 
applied to four trays chosen at random within each cabinet (Figure 3.3). Both 
temperature and watering regime are considered as treatments here. The experi-
mental units for watering regime are the seed trays and each watering regime is 
applied to eight independent seed trays, giving replication of eight. The experi-
mental units for temperature are the cabinets, and the temperature treatments are 
unreplicated. To achieve replication of temperature, it would be necessary to use 
another two cabinets, or to repeat the study under the same controlled conditions 
with a new randomization of both factors.

E A
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F E

B A

C F

B D

FIGURE 3.1
Design for an experiment with four plants (•) in each of 12 pots with treatments (A–F) applied to pots.
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FIGURE 3.2
A two-stage design. The first stage (left) is a field trial with 12 plots and two treatments (A and B). A soil sample 
is taken from each plot and labelled by its treatment and replicate (A1–A6 and B1–B6). At the second stage, sam-
ples from each treatment are mixed together (bulked) then sub-sampled. Sub-samples from each bulked sample 
are labelled by lower-case letters and sample number and then measured.
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The last of these examples shows that experimental units can occur at several different 
levels within a structure, and may differ between treatment factors. Therefore, one level 
of structure may represent pseudo-replicates for one type of treatment and real replicates 
for another.

It is also important to draw the distinction between technical and biological replication. 
Technical replication occurs when several measurements are taken from the same biolog-
ical material, while biological replication occurs when measurements are taken from sev-
eral independent biological subjects. The use of adequate biological replication is required 
to make inferences valid for the population from which the samples were obtained, rather 
than for a single individual. Technical replication is always pseudo-replication, but biolog-
ical replication may correspond to either pseudo-replication or true replication, depending 
on the context. It is clearly important to recognize when measurements are pseudo-repli-
cates that do not increase treatment replication. Note however, that technical replication 
can be useful in increasing precision where measurement is seriously subject to error, 
provided that it is properly accounted for in the statistical analysis. We give an example of 
an analysis accounting for pseudo-replication in Section 7.5.

3.1.2 Randomization

Randomization is required to ensure the fair allocation of treatments to units to guard 
against bias, and to cope with the natural variation between experimental units. In the 
simplest case, randomization requires that each permutation of the set of treatments has 
an equal probability of occurring, so that (for equal replication) every experimental unit 
has an equal chance of receiving any treatment. Hence, each treatment is equally likely to 
be applied to ‘good’ units as to ‘bad’ units. Where randomization has not taken place, there 
will always be a question about possible bias in the experiment.

To obtain a proper randomization for a given design, a method is required for assigning 
treatments to experimental units at random. We use the convention that treatments get 
assigned to experimental units, though the opposite approach can also be used. So, for 
example, for an experiment comprising two treatments each replicated six times, we might 
write A and B on six pieces of paper each, to represent the six replicates of each treatment, 
and put these in a bag and draw (without replacement and without looking) to obtain a 
sequence which allocates treatments to units 1 … 12. Alternative approaches could use 
six tokens of each of two different colours, or six playing cards from each of two different 
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B B
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A B
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B B

A B

10°C 20°C

FIGURE 3.3
Design for an experiment with eight trays, with two watering regimes (A and B) applied within each of two CE 
rooms, with each room operating at a different temperature (10°C or 20°C).
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suits, in the same way. Random number tables can also be used for allocating treatments 
to units, though care is needed to define the protocol where too many repeats of a treat-
ment occur in the random sequence. However, most randomizations are now done via 
statistical software. The mechanics of the process are unimportant as long as the property 
of equal probability for each permutation of treatments is preserved – this is discussed 
further in Example 3.1. Randomization ensures that any (possibly unconscious) bias of the 
experimenter (e.g. a tendency to assign the biggest plants to their favoured treatment) is 
avoided and that any unknown differences between the units are unlikely to consistently 
favour particular treatments.

To reinforce objectivity in some areas of research, particularly medical research, trials 
are carried out as either single- or double-blind trials. In a single-blind trial, the subject 
does not know which treatment has been allocated, while in a double-blind trial, neither 
the subject nor the investigator knows which treatment has been applied. In plant science, 
the perception of the subject is not considered relevant. However, the perception of the 
investigator measuring or assessing the experimental material could be influenced (pos-
sibly unconsciously) by their expectation of the applied treatment. It is therefore good 
practice to make experimental measurements (especially subjective assessments) without 
knowledge of the treatment allocation as far as possible. For example, in field trials, this 
can sometimes be achieved by the use of a field plan with plot numbers marked but not 
treatments.

Randomization leads to estimates of treatment differences that are unbiased when 
considered across the whole set of possible randomizations. However, this does not 
guarantee that any individual randomization will produce unbiased results. For exam-
ple, all instances of one treatment may be assigned to larger plants by chance. For this 
reason, experimental units should be chosen to be as homogeneous as possible while 
still being representative of the population of interest. Selecting homogeneous units has 
the added advantage of reducing the background variation or noise. Where it is not pos-
sible to select a completely homogenous set of experimental units, the units need to be 
grouped into sets (blocks) of more homogeneous experimental units to avoid potential 
bias (see Section 3.1.3). Sometimes, even where the units are thought to be homogeneous, 
a randomization can give cause for concern. For example, for 12 pots arranged in a line 
with two treatments (labelled A and B) each replicated six times, consider the following 
randomization

 A A A A A A B B B B B B.

This particular randomization does not look random, but can occur (with probability 1 in 
924). If we are not happy to accept this randomization, it is probably an indication that we 
do not consider the experimental units to be completely homogeneous, so that some sort 
of blocking is needed.

EXAMPLE 3.1: RANDOMIZATION

The efficacy of a new pesticide is to be tested in the field with 15 plots of size 5 m × 10 m 
arranged in a 3 × 5 array. Five plots will be sprayed with the pesticide and 10 will be 
untreated (controls) for comparison. In this case, extra replication of the control treat-
ment is used to obtain a good estimate of background variability and because the new 
pesticide is available in only small amounts. We evaluate two methods of determining 
a randomization for this experiment and consider whether each of the methods gives a 
valid randomization, i.e. with equal probability for each permutation of treatment effects.
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First, we use a pack of cards. We might take 15 cards: five red cards to represent the 
pesticide treatment and 10 black cards to represent the control. We shuffle the cards 
 (randomization), then deal them out in shuffled order to allocate treatments to plots (in 
order 1–15) to get, for example, the randomization shown in Table 3.1.

Is this a valid randomization? Let us consider the process. Assuming a fair shuffle, 
when we pick the first card we have a probability of 5/15 of picking the pesticide treat-
ment for the first plot (and 10/15 of picking the control). These probabilities change as 
the allocation proceeds. For example, if the first plot is allocated the pesticide treatment, 
when we pick the second card we have a probability of 4/14 of the second plot also being 
allocated the pesticide treatment (as we have four red cards out of 14 left), and so on. With 
this method, the probability of plots 1–5 all being allocated the pesticide treatment is 
1/3003 (= 5/15 × 4/14 × 3/13 × 2/12 × 1/11). This is the same, for example, as the probabil-
ity of plots 11–15 all being allocated the pesticide treatment (equivalent to the probability 
of plots 1–10 being allocated the control, i.e. 10/15 × 9/14 × … × 2/7 × 1/6 = 1/3003). There 
are, in fact, 3003 possible permutations of five pesticide-treated plots and 10 control plots, 
calculated as the factorial function of 15 (the number of plots) divided by the product of 
the factorial function of five (the number of pesticide-treated plots) and the factorial func-
tion of 10 (the number of control plots):
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With this randomization approach, each of these permutations is equally likely.
An alternative, and perhaps at first sight simpler, approach is to toss a coin to construct 

the randomization, with heads corresponding to the pesticide treatment, and tails cor-
responding to the control. Working through the plots one by one, we toss the coin once 
for each plot, allocating the pesticide treatment to the plot if it comes up heads (subject 
to a maximum of five pesticide plots), and allocating the control treatment to the plot if it 
comes up tails (subject to a maximum of 10 control plots). Is this a valid randomization? 
Let us again consider the process. We have a probability of 1/2 (assuming a fair coin) of 
allocating pesticide to the first plot. The second coin toss takes no account of the alloca-
tion for the first plot, so again we have probability 1/2 of pesticide being allocated to the 
second plot, and so on. With this method, the probability of plots 1–5 being allocated 
the pesticide treatment is 1/32 (= 1/2 × 1/2 × 1/2 × 1/2 × 1/2). In contrast, the probability 
of plots 11–15 being allocated the pesticide treatment (i.e. plots 1–10 being allocated the 

TABLE 3.1

Experimental Layout Achieved Using Randomization by 
Playing Cards for a Field Trial with 15 Plots (Numbered 
1–15) and Two Treatments: A Pesticide Treatment (Labelled 
P) with Five Replicates and a Control Treatment (Labelled 
C) with 10 Replicates (Example 3.1)

1 2 3 4 5
P P C P C

6 7 8 9 10
C C P C P

11 12 13 14 15
C C C C C
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control) is (1/2)10 (= 1/1024). The probabilities of these different permutations are obvi-
ously not the same, and the probability of any particular permutation depends on how 
we number the plots!

It is clear that the two processes are not equivalent. The ‘coin tossing’ approach gives 
an invalid randomization, with different permutations having different probabilities. 
By contrast, the ‘card shuffling’ approach associates the same probability with each per-
mutation, and therefore provides a valid randomization. This example illustrates some 
of the issues that must be considered when you derive a randomization scheme, and 
that are automatically accounted for by statistical software.

Some other examples of randomization are presented in Figures 3.1 to 3.3 and in Section 
3.3. Note that if an experiment is repeated, then a new randomization should be generated 
each time the design is used; it is not statistically valid (or sensible) to generate a single 
randomization and then to use it repeatedly.

3.1.3 Blocking

It is desirable for the set of experimental units that are used to compare treatments to 
be reasonably uniform (homogeneous) in their natural response, as this decreases our 
estimate of the background variation, thus increasing precision and the potential for the 
experiment to detect small treatment differences. So, if the experimental units are intrinsi-
cally diverse (heterogeneous), then the experiment is likely to be insensitive. Further, as 
noted in Section 3.1.2, using a set of homogeneous units increases the chances of a fair 
comparison between treatments. However, it is not always possible to obtain a sufficient 
number of homogeneous experimental units for a whole experiment and, even if it is pos-
sible, it might not be desirable if it means restricting the frame of reference for the experi-
ment. In such cases, it might be possible to identify groups of experimental units such that 
the units within each group are reasonably homogeneous, but with different underlying 
responses between groups. These groups of units can then be considered as blocks within 
the design. Blocking the units in this way potentially increases the precision of an experi-
ment, as comparisons between treatments within blocks are made against a more uniform 
background. In this sense, blocking is said to be used for the control of variation, and for 
this reason is also known as local control.

The term block originated in agricultural experiments, where a block corresponded to a 
set of contiguous field plots; however, the specification of blocking can take more general 
forms, including the recognition of any physical structure present in the experiment. We 
often use the term ‘block’ as synonymous with ‘structure’. Blocks may therefore be defined 
according to proximity of units in space (e.g. neighbouring plots), proximity of units in 
time (e.g. units measured in the same day or hour), units with similar physical character-
istics (e.g. size of plant, age of insect), or logistical factors (e.g. machine, technician). Note 
that the number of units per block should ideally be determined by consideration of the 
uniformity or structure of experimental units and not by what is convenient in relation to 
the number of experimental treatments.

Consider the following examples of types and causes of heterogeneity among experi-
mental units, which can be addressed by the use of blocking.

• Field characteristics. A slope, or fertility or pH trend across a field, or local pest prob-
lems (e.g. pigeons next to woodland) may be present. Blocks are usually formed 
from sets of contiguous plots that are expected to be similar in as many respects 
as possible. Occasionally, blocks may be formed from non-contiguous plots with 
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similar properties, for example, soil pH, but, in such cases, the other spatial char-
acteristics need to be reasonably homogeneous.

• Glasshouse characteristics. Differential shade or temperature due to positioning 
with respect to walls and doors are common in glasshouses. Blocks are usually 
formed from sets of trays or pots placed close together and hence in similar envi-
ronmental conditions.

• Time of measurement. Some experiments may be processed over a lengthy period, 
and time of measurement may have a systematic effect on results. In the laboratory, 
there may be a limit to the number of samples that can be measured in one batch, 
and equipment may give slightly different readings on different days. In either case, 
a set of units processed within the same time period can be considered as a block.

• Investigator. For subjective measures, such as visual scores, individuals often per-
ceive pre-determined scores differently. However, even in more objective situa-
tions, for example, an investigator following a standard protocol, the use of subtly 
different procedures can lead to systematic differences in results. If several differ-
ent investigators are scoring material or carrying out a laboratory process, then it 
makes sense to regard each person as a block.

• Batches of chemical, of plants, or of other organisms such as insects. Again, if there is 
any possibility of (even small) differences between batches, then batches should 
be considered as blocks.

• General structure. There will often be a natural structure in experimental mate-
rial. For example, trays of plants may be held on shelves within a CE cabinet. 
Conditions are more similar for plants within the same tray, for trays on the same 
shelf, and for shelves within the same cabinet (in the case of several cabinets), so 
all of these levels of structure should be considered as possible blocking factors.

In each of the examples above, information on the causes of heterogeneity is used to define 
blocks of reasonably homogeneous units and treatments can then be assigned at random 
to units within blocks. Note that each block might not be able to contain the full set of 
treatments (see Section 3.3.5), and that all blocks might not even contain the same numbers 
of experimental units. The randomization process needs to take account of the structure 
of the blocks, so that each treatment has the same probability of being applied to any unit 
within each block. If there are large differences between blocks, this also ensures a fairer 
allocation of treatments to units, as each treatment will occur within several (often all) 
blocks. For this reason, blocking can be seen as a set of restrictions on the randomiza-
tion of treatments to the experimental units. We consider this in more detail for specific 
designs later (Section 3.3). Note that although blocking is generally intended to increase 
the precision of treatment comparisons where groups of heterogeneous units are present, 
the precision may decrease if too much blocking is used where there is no heterogeneity.

3.2 Forms of Experimental Structure

To successfully design, and later analyse, an experiment, it is necessary to identify all com-
ponents of the experiment, i.e. both the treatments imposed and the structure of the units. 
In Section 1.3, we partitioned the systematic part of our mathematical model into two 
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components: the explanatory component describes the treatments present and the struc-
tural component describes the blocking, or other structure, of the experimental units. We 
describe both components using factors which label the different groups present. Often, 
several factors are required to describe each component fully. For example, in a CE experi-
ment where trays were placed on shelves within cabinets, we need factors to label each of 
the cabinets, shelves and trays to fully describe the structure. Similarly, a set of experimen-
tal treatments may be constructed from an underlying set of treatment factors. A factorial 
treatment structure consists of all possible experimental treatments constructed by taking 
one level from each of a set of treatment factors; this gives a particularly efficient form of 
design and is discussed further in Sections 8.2 and 8.3.

We write our model components using a symbolic notation similar to that commonly 
used in statistical software. To use this notation effectively, we first need to understand 
two different types of relationships between factors, namely nested and crossed structures.

Nested structures are used to describe hierarchical relationships. These most often 
occur within the structural component, but also occasionally within the explanatory 
component (e.g. see Section 8.4). A nested structure describes the situation where multi-
ple units at one structural level are entirely contained within units at a higher level, and 
there is no direct relationship between units with the same label at the lower level. For 
example, consider an experiment with different treatments to be applied to four leaves 
(factor Leaf, with four levels) within each of 10 plants (factor Plant, with 10 levels). Leaves 
within plants are the experimental units, and we consider the Leaf factor to be nested 
within the Plant factor, written symbolically as Plant/Leaf. In this hierarchical structure, 
there is no association between leaves with the same label across plants, for example 
there is no association between leaf 1 on plant 1 and leaf 1 on plant 2. The / (forward 
slash) operator is used to indicate a nested relationship. In fact, this operator generates 
two separate model terms, as

 Plant/Leaf = Plant + Plant.Leaf

The first term consists of the Plant factor alone, and labels each of the 10 individual plants. 
In the second term, the . (dot) operator generates all combinations of levels of the two fac-
tors, in this case labelling the 40 individual leaves. These two terms label the units within 
the two levels of the design.

Crossed structures occur when two factors are used to classify experimental units 
both independently and simultaneously. This type of structure occurs frequently within 
both the explanatory and structural components of the model. For example, consider 
a laboratory experiment to examine an extraction procedure in which three different 
filtering methods (factor Filter, with three levels) are tested with four different reagents 
(factor Reagent, with four levels), giving 12 experimental treatments in total. Both fac-
tors act simultaneously, and the crossed structure can be written as Filter*Reagent. In 
a crossed structure, there is an association between units with the same level of either 
factor. The * (star) operator indicates a crossed relationship and again generates several 
model terms, as

 Filter*Reagent = Filter + Reagent + Filter.Reagent

The first two terms are the individual factors, and the third term labels all combinations 
of the two factors, here the 12 individual treatments. The interpretation of these terms is 
discussed further in Section 8.2.
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In the structural component of the model, the terms generated describe different levels 
of the design at which variation may occur; these different levels are known as strata. For 
example, the crossed structure of a rectangular layout, Row*Column, generates three strata 
(Row, Column and Row.Column) and the nested structure Plant/Leaf generates two strata 
(Plant and Plant.Leaf).

In general, either of the model components may contain nested or crossed relationships or 
both. Examples 3.2 and 3.3 describe some specific situations in the context of the structural 
component; in Chapter 8, we consider examples in the context of the explanatory component.

EXAMPLE 3.2: NESTED STRUCTURAL FACTORS

An experiment is set up with two identical CE rooms with three trays, each containing 
six pots, within each room (see Figure 3.4), with the potential to allocate different treat-
ments at both the tray and pot levels.

The CE rooms can be considered as the highest level of structure, with trays within 
rooms as the middle level, and pots within trays as the lowest level. This nested struc-
ture thus has multiple units at any one level (e.g. trays) completely contained within 
each unit at the level above (e.g. rooms). We can verify that this is a nested structure by 
noting that there is no association between tray 1 in room 1 and tray 1 in room 2, and 
similarly no association between pots with the same label in different trays. The struc-
tural factors can be denoted as Room (two levels), Tray (trays labelled within rooms, 
three levels) and Pot (pots labelled within trays, six levels) and we can write this as

Structural component: Room/Tray/Pot

which can be expanded as

Structural component: Room + Room.Tray + Room.Tray.Pot

The three terms label the three strata, or levels of the hierarchy: the individual rooms 
(term Room), the individual trays (term Room.Tray) and the individual pots (term 
Room.Tray.Pot). The appropriate experimental unit for the application of any treatment 
must then be decided as a separate exercise.

CE rooms

Trays

Pots

A

FIGURE 3.4
A nested structure with six pots per tray and three trays per CE room (Example 3.2).
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EXAMPLE 3.3: CROSSED AND NESTED STRUCTURAL FACTORS

Consider an experiment where a large set of plant samples are to be processed by a 
machine. There are two machines that could be used (factor Machine, with two levels) 
and two scientists available to do the work (factor Scientist, also with two levels). We 
might want to allow for potential differences in results both between scientists and 
between machines. If we want to separate the effects of the different scientists from 
the effects of the two machines, then both scientists must use both machines. So an 
appropriate design might allocate four sets of samples to be processed by the four 
machine-by-scientist combinations. Each of the machine-by-scientist combinations can 
be considered as a block (see Figure 3.5).

Because there may be an association between samples processed either by the same 
machine or by the same scientist, this is a crossed relationship. The structure of the four 
blocks can then be written with our symbolic notation as

 Machine*Scientist

which can be expanded as

 Machine + Scientist + Machine.Scientist

These three terms, or strata, describe an overall effect for each machine, an overall effect 
for each scientist, and a combined effect for each machine-by-scientist combination. 
There is no association across samples processed by different machine-by-scientist 
combinations, and so samples can be considered to be nested within these blocks. The 
full structure can thus be written as

Structural component: (Machine*Scientist)/Sample

and expanded as

Structural component: Machine + Scientist + Machine.Scientist
 + Machine.Scientist.Sample

Machine 1 Machine 2

SamplesScientist 1

Scientist 2

FIGURE 3.5
A crossed and nested structure with three samples within each of four machine-by-scientist combinations 
(Example 3.3).
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So the full structure has four strata: the three described above, plus a fourth that labels 
the full set of individual samples. One advantage of using the crossed structure at the 
higher level is that it allows us to establish whether differences between scientists and 
machines are present, and to estimate their relative size and potential impact on the 
results. This information can be useful in designing future experiments although, in 
practice, we would require several repeats of this structure to get reliable estimates of 
the different sources of variation. An alternative structure for this experiment might 
combine (or, in statistical terminology, confound) the scientist and machine effects, so 
that each scientist uses just one of the two machines. In this case, the effects of the two 
scientists and the effects of the two machines would not be separable. Whether this is 
important depends on the information required from the experiment: this confounded 
blocking still achieves the main aim of separating block variation from the background 
variation, but does not allow us to compare the relative influence of the scientists and 
machines used in the process.

The symbolic notation for model formulae that we have used here was introduced by 
Wilkinson and Rogers (1973) and is used within GenStat. Unfortunately, conventions for 
model specification differ somewhat between statistical packages. For example, the R 
package uses the : (colon) operator where we have used the . (dot) operator. Details can be 
found by consulting software documentation.

To define a model fully, we need to specify in full both the explanatory and structural 
components. For analysis, we also need to define the response variable to be analysed. 
In the examples above, and throughout this book, we have included the individual units 
within the structural model. This is not strictly necessary, as the individual units obviously 
correspond to individual observations. However, we believe that retention of information 
on the full design structure as well as the treatment factors from an experiment is good 
practice. For example, unless we retain full information on the design, we cannot use all of 
the diagnostic procedures described in Chapter 5; we cannot plot residuals on the experi-
mental layout if we do not know where each unit was placed. If a few pots in a corner of 
a glasshouse behave differently to the rest, the cause may be obvious when observations 
are plotted on the experimental layout but not when examined by treatment classification. 
Unfortunately, it is not common practice to record this information, for example, we have 
been unable to determine the full experimental layout for many of the examples in this 
book. Where this is the case, we use dummy structural factors, for example, we use factor 
DPot, to arbitrarily label pots, with the D prefix indicating a dummy factor. Treatment fac-
tors can sometimes be used as dummy structural factors, but we believe that this practice 
is confusing and prefer to avoid it. We discuss this further at the end of Section 7.3.

Finally, we mention two concepts often used to describe the structure of designs: orthog-
onality and balance. Two factors are said to be orthogonal if the estimated effects for each 
factor are the same regardless of whether the other term is included or not in the model. A 
more rigorous mathematical definition of orthogonality is beyond the scope of this book 
(but details can be found in Bailey, 2008). Most of the designs that we consider in this book 
are orthogonal, and the concept and consequences of non-orthogonality are discussed in 
Chapter 11. The concept of balance refers to information on treatment differences. In the 
simplest case of an unstructured set of experiment units, a design is balanced if the preci-
sion of all treatment comparisons is equal. For a structured set of units, a design is bal-
anced if the precision of all treatment comparisons is equal within each stratum. Most of 
the designs that we consider in this book are balanced, and the complications introduced 
by unbalanced designs are discussed within Chapters 11 and 16.
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3.3 Common Forms of Design for Experiments

There are many types of statistical design for experiments, which differ from one another 
in their complexity and in their statistical properties. In the following sections, we describe 
briefly some common designs illustrated using a simple treatment structure (more com-
plex treatment structures are considered in Chapter 8).

3.3.1 The Completely Randomized Design

The completely randomized design (CRD) is the simplest form of design and is appropri-
ate if the experimental units are unstructured and homogeneous, so that there is no need 
for any form of blocking. The random allocation of treatments to experimental units is not 
constrained in any way, so that each treatment is equally likely to be allocated to each unit. 
This is the only case in which we omit the structural component from our model, as this 
comprises only a single factor which indexes each observation.

EXAMPLE 3.4: CALCIUM POT TRIAL

An experiment was devised to investigate the effect of differences in soil calcium on 
the root growth of plants. The experimental material consisted of 20 pots, each con-
taining one plant, arranged in a grid with four rows and five columns, under uniform 
controlled conditions. The treatments comprised four relative concentrations of calcium 
(A = 1, B = 5, C = 10, D = 20). Each treatment was applied to five pots selected at random 
to give a CRD. The layout for this design is shown in Table 3.2.

The main advantages of this design are that it is easy to set up and has a simple form of 
analysis. It is also flexible, as the statistical analysis is still simple if the replication varies 
between treatments or if data are missing for some units. The CRD also provides maximal 
information on the background unit-to-unit variation, as none of the between-unit infor-
mation is used to assess blocking. However, this is also a weakness of the design if hetero-
geneity among units is present, as this heterogeneity will inflate the background variation 
and decrease the precision of estimates of treatment differences. The statistical analysis for 
this design is presented in Chapter 4. 

TABLE 3.2

Randomization for the Calcium Pot Trial, with Pot 
Numbers (1–20), as a CRD with Four Treatments Labelled 
A–D, Each with Five Replicates (Example 3.4)

1 2 3 4 5
D A B C D

6 7 8 9 10
A D A C B

11 12 13 14 15
A C A D C
16 17 18 19 20
B D C B B
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3.3.2 The Randomized Complete Block Design

The randomized complete block design (RCBD) is the simplest design that includes 
blocking and is probably the most frequently used design. In this design, the number of 
experimental units in each block must be the same as the number of treatments. Within 
each block, treatments are then randomly assigned to experimental units with a different 
randomization for each block. The design is called complete because all treatments occur 
within each block. If we use factors Block to label the blocks, and Unit to label the units 
within each block, then this is a nested structure with two strata, represented using our 
symbolic notation as

Structural component: Block/Unit

or written in expanded form as

Structural component: Block + Block.Unit

EXAMPLE 3.5: POTATO YIELDS

An experiment was devised to investigate the effects of four different types of fungi-
cides (labelled F1, F2, F3, F4) on the yield of potatoes in field plots. An untreated control 
treatment (labelled Control) was also included to give a baseline comparison. In the 
field designated for the trial, heterogeneity was thought to be present at large scales, 
but suitable blocks of five field plots could be identified and so a RCBD with four blocks 
each of five plots could be used. The randomized layout is shown in Table 3.3. The struc-
tural component is written as

Structural component: Block/Plot

The RCBD is popular (and useful) because it includes some blocking to deal with hetero-
geneity between experimental units, while still being straightforward to manage and with 
a simple statistical analysis. Because each treatment occurs once in each block, this design 
is both orthogonal (treatments are orthogonal to blocks) and balanced (all treatment com-
parisons are made with equal precision). Details of statistical analysis for this design are 
presented in Chapter 7. A weakness of the design is that the block size must be equal to 
the number of treatments, and so the RCBD may be inefficient if the natural block size, as 
determined by the experimental material, is smaller than the number of treatments. The 
RCBD will also be inefficient if two independent sources of background heterogeneity are 
present. We introduce appropriate designs for these situations (the balanced incomplete 
block design and the Latin square design, respectively) below.

TABLE 3.3

Randomization for the Potato Yields Trial as a RCBD with Five Treatments 
in Four Blocks of Five Plots (Example 3.5)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Block 1 F3 Control F2 F1 F4
Block 2 F2 Control F3 F4 F1
Block 3 Control F2 F3 F4 F1
Block 4 F3 F2 F1 Control F4
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3.3.3 The Latin Square Design

The Latin square (LS) design is useful where patterns of heterogeneity are associated with 
two crossed structural factors with the same numbers of levels. Because this design was 
originally used for square layouts in field trials, the structural factors are often called Row 
and Column, corresponding to the spatial arrangement of the rows and columns of the 
layout, respectively. However, these factors often correspond to non-spatial factors, such as 
time of day and observer. Using our symbolic notation, we write the crossed structure as

 Structural component: Row*Column

or written in expanded form as

 Structural component: Row + Column + Row.Column

This structure has three strata. The number of treatments must be equal to the numbers 
of rows and columns, and the treatment allocation is such that each treatment appears 
exactly once in each row and once in each column (see Figure 3.6a).

Construction of a Latin square is more complex than for the RCBD, as the three-way 
inter-relationship between rows, columns and treatments must be preserved. Tables of 
standard Latin squares have been published for small numbers of treatments (e.g. see 
Cochran and Cox, 1957, or Fisher and Yates, 1963), but statistical software can be used to 
obtain Latin squares for any number of treatments. To generate a randomization, one stan-
dard square of the right size is first selected at random. The order of the columns is then 
randomized, followed by the order of the rows (as illustrated in Figure 3.6). This random-
ization preserves the structure of the design while giving a very large number of possible 
squares, and thus avoiding bias.

EXAMPLE 3.6: LUPIN TRIAL

An experiment was devised to investigate the effects of soil type and water availabil-
ity on the growth of lupins. The experiment was to be done with pots on a bench in a 
glasshouse, with a systematic trend running along the bench (left–right) as a result of a 
temperature gradient, and across the bench (up–down) because of differing light levels. 
The rows and columns within the array of pots were therefore considered as block-
ing factors with a crossed structure, and a LS design is appropriate. Four treatments, 
labelled CL, CH, SL and SH, representing different combinations of soil type (clay or 

C4 C2 C1 C3

R2 D

R3 B D C A

R4

A C B

C A D B

R1 D B A C

(c)

B A C

D

D C A

D

A C B

B

C A D B

C4 C2 C1 C3

R1

R2

R3

R4

(b)

A B C D

B C D A

C D A B

D A B C

C1 C2 C3 C4

R1

R2

R3

R4

(a)

FIGURE 3.6
Randomization of a LS design. Rows, columns and treatments are labelled R1–R4, C1–C4 and A–D, respectively. 
(a) Start with a standard LS design, then (b) randomize the order of the columns and (c) finally randomize the 
order of the rows.
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sand) and the amount of water supplied (low or high) were used. A randomized layout 
for a LS design for this experiment is shown in Table 3.4. It is straightforward to verify 
that each treatment can be found once in each row and once in each column and that 
each row or column contains all four treatments.

The main disadvantage of the LS design is the restriction that the number of rows, col-
umns and treatments must all be equal. This is discussed further in Section 9.1, where 
some extensions of the LS design are also described.

3.3.4 The Split-Plot Design

The split-plot (SP) design has a nested structure, and is used in the case where (at least) 
two treatment factors are present, with the levels of one treatment factor having to be 
applied to large experimental units while the levels of another treatment factor can be 
applied to smaller units. Here we consider a standard form of the SP design with two treat-
ment factors, A and B, with a crossed structure, and a nested structural component with 
three strata. The highest level of structure corresponds to complete replicates of the set of 
treatments, and we denote this level using the factor Block. Each block is then divided into 
a number of whole plots (factor WPlot), with levels of treatment factor A randomized to the 
whole plots separately within each block. Finally, each whole plot is divided into a number 
of subplots (factor Subplot), and the levels of factor B are randomized onto subplots within 
each whole plot. This design can be represented in symbolic form as

Explanatory component: A*B
Structural component: Block/WPlot/Subplot

EXAMPLE 3.7: WEED COMPETITION EXPERIMENT

A field trial was set up to study the competitive effects of three different weed species 
in winter wheat under different levels of water stress. Variation in water stress was 
provided by the presence or absence of irrigation, which could be applied only to large 
areas of land whereas the weed species could be applied to small plots. A SP design was 
therefore deemed suitable, with the two irrigation treatments (factor Irrigation, with two 
levels) applied to whole plots (factor WholePlot, with two levels). Each whole plot was 
split into four subplots (factor Subplot, with four levels), and a pre-determined popula-
tion of each weed species (Alopecurus myosuroides (black-grass), Galium aparine (cleavers) 
and Stellaria media (chickweed), abbreviated as Am, Ga and Sm, respectively) was sown 
in one of these four subplots. The remaining subplot within each whole plot had no 
weed seeds added, and it was used as a control. Factor Species was used to label the 

TABLE 3.4

Randomization for the Lupin Trial as a Latin Square Design with Four 
Treatments Labelled CH, CL, SH and SL (Example 3.6)

Column 1 Column 2 Column 3 Column 4

Row 1 CH SL CL SH
Row 2 CL SH CH SL
Row 3 SH CH SL CL
Row 4 SL CL SH CH
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four weed treatments, i.e. the three added populations and control. This structure was 
repeated another three times, giving four blocks (factor Block, with four levels), with a 
different randomization in each block, as shown in Table 3.5. The model for this design 
can be written in symbolic form as

Explanatory component: Irrigation*Species
Structural component: Block/WholePlot/SubPlot

The statistical analysis for, drawbacks of and variations on this design are discussed in 
Section 9.2.

3.3.5 The Balanced Incomplete Block Design

The balanced incomplete block design (BIBD) can be useful when there is only one block-
ing factor but the number of units per block is smaller than the number of treatments. In 
this case, each block can contain only a subset of the treatments, and designs with this 
property are known as incomplete block designs. A BIBD has the additional character-
istic of balance, which requires that all treatment comparisons have equal precision. This 
is achieved if the treatments have equal replication and each pair of treatments occurs 
together within a block exactly the same number of times over the whole experiment. If we 
again use factor Block to label the blocks, and factor Unit to label the units within blocks, 
then this design has the same nested blocking structure as the RCBD, represented as

Structural component: Block/Unit

Construction of a BIBD is more complex than for the RCBD, as the balanced inter-rela-
tionship between blocks and treatments must be preserved. Tables of standard BIBDs 
have been published (e.g. see Cochran and Cox, 1957, or Fisher and Yates, 1963) and can 
be used to generate a BIBD. These designs are also available in many statistical packages. 
The first step in construction is to choose a standard design with the right block size and 
number of treatments. The standard layout is then randomized first by randomization 
of the order of the blocks, and then randomization of the order of the treatments present 
within each block.

TABLE 3.5

Randomization for the Weed Competition Experiment as a Split-Plot Design with 
Two Whole-Plot Treatments (Irrigated, Highlighted in Grey, and Non-Irrigated) and 
Four Subplot Treatments (Weed Species Am, Sm, Ga or Control, –) (Example 3.7)

Block 1 Block 2 Block 3 Block 4

Whole plot 1

1 2 1 2 1 2 1 2
– Am – Ga Sm Ga Am –

3 4 3 4 3 4 3 4
Sm Ga Sm Am – Am Ga Sm

Whole plot 2

1 2 1 2 1 2 1 2
– Sm Am Ga Am Sm Ga Sm

3 4 3 4 3 4 3 4
Ga Am  – Sm  Ga –  Am –
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EXAMPLE 3.8: GRAIN PROTEIN CONTENT 

An experiment was devised to evaluate the grain protein content for six different variet-
ies of pea (labelled A, B, C, D, E and F). Five independent samples of grain were available 
for each variety. Only five samples (factor Sample, five levels) could be assessed within 
a session (factor Session, six levels), with possible heterogeneity between sessions, so 
a BIBD with six blocks (corresponding to sessions), each containing five units (corre-
sponding to samples) was used. The structural component was specified as

Structural component: Session/Sample

A randomized plan for this design is shown in Table 3.6. For this design each variety is 
replicated five times, as each appears in five of the six sessions, and any pair of varieties 
is present together in four sessions, for example, varieties E and F are both present in 
sessions 1, 2, 3 and 6.

One drawback of BIBDs is that the range of available designs is fairly limited: it is not 
always possible to construct a BIBD for a given number of treatments, number of blocks 
and block size (number of units per block). More details are given in Section 9.3.

3.3.6 Generating a Randomized Design

Once a design has been chosen, and the numbers of treatments and replicates have been 
defined, then a randomized layout or plan for the experiment can be generated. Most gen-
eral statistical software (including GenStat, R and SAS) have some facilities for generat-
ing standard designs, including most of those considered in this book. For non-standard 
designs (including some BIBDs), more specialist software, such as CycDesigN (see http:/
www.vsni.co.uk/software/cycdesign) must be used.

EXERCISES

 3.1 Suppose that you are planning an experiment to investigate the impact of nutrient 
deprivation on plant metabolites. You have four different nutrient levels to test, 
obtained by applying appropriate nutrients to four sub-samples from a single bag 
of base compost. The resulting volume of each nutrient level is sufficient for four 
seed trays (i.e. 16 seed trays in total), and six plants will be grown in each seed tray. 
To achieve the required growing conditions, a small CE cabinet will be used. The 
cabinet has four shelves, and you can fit four seed trays on each shelf in a 2 × 2 

TABLE 3.6

Randomization for Grain Protein Content Experiment as a BIBD with Six Treatments 
Labelled A–F in Six Sessions (Blocks), Each Containing Five Samples (Units) (Example 3.8)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Session 1 C F E B A
Session 2 C E F D A
Session 3 E D F C B
Session 4 A C B E D
Session 5 D B A C F
Session 6 E F A D B
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arrangement (Figure 3.7). Although the cabinet is supposed to provide a uniform 
environment, a technician suggests that light levels may vary between the shelves, 
and that this might affect plant growth. When they reach the required growth 
stage, the six plants from each seed tray will be bulked and processed together 
to form a single sample to be read by a machine. Your colleague tells you that the 
machine shows some drift over time, but that readings should stay stable across a 
set of up to six samples.

   How might you design this experiment to obtain an unbiased assessment of 
differences between the four nutrient levels? Consider and discuss the different 
factors which might affect your choice of design and produce a candidate design. 
You should consider both stages of the experiment and the following issues: 

• What is the experimental unit for the nutrient treatments?
• What are the sources of heterogeneity in the experimental process?
• How might you deal with this heterogeneity?
• How would you allocate the treatments to the experimental units?
• What replication do you have for each treatment?
• What are the advantages/disadvantages of your design?

  How would you modify your design if

 a. A temperature gradient was discovered between the front and back of the 
shelves

 b. You want to include a CO2 treatment that can only be applied to a whole CE 
cabinet and you obtain sufficient resources for 32 trays (eight for each nutrient 
level)

CE cabinet

Shelves

Tray of 
6 plants

FIGURE 3.7
Structure of a CE cabinet to be used for an experiment to investigate the impact of nutrient deprivation on plant 
metabolites (Exercise 3.1).
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 3.2 Identify the experimental unit, the replication for each treatment and whether 
pseudo-replication is present in the following experiments.
 a. A pot experiment with 12 circular pots in a 2 × 6 array, in a uniform environ-

ment. Each pot contains four plants at the three-leaf stage, and each of four 
treatments (labelled A–D) were applied at random to one plant per pot as 
shown in Figure 3.8.

 b. A field experiment with 12 homogeneous rectangular plots in a 3 × 4 grid. 
Two treatments (labelled A and B) were applied at random to six plots each 
(Figure 3.9). At harvest, 25 plants are to be sampled per plot, and the plants 
from each plot will be processed as a single batch for measurement.

 c. The field experiment described in part (b) (Figure 3.9) with the height of 25 
individual plants per plot measured and recorded in situ at 4-weekly intervals 
from tillering until harvest.

 3.3 Four replicates of each of four treatments, labelled A–D, are to be applied at ran-
dom to batches of aphids in 16 Petri dishes laid out in a 2 × 8 array (Figure 3.10). 
The environment is thought to be homogeneous. Use a pack of playing cards to 
determine an appropriate randomization for this experiment.

1 2 3 4 5 6

7 8 9 10 11 12

D B
A C

D C
B A

C B
D A

D C
B A

C A
B D

A D
B C

D B
A C

C D
B A

A D
B C

B C
A D

B A
C D

A C
D B

FIGURE 3.8
Experimental layout for a pot experiment with 12 pots and four treatments, labelled A–D, applied to plants 
within pots. Letters denote the positions of the plants and the treatment applied (Exercise 3.2a).

B A B A

A B A A

B A B B

FIGURE 3.9
Experimental layout for a field experiment with plots in a 3 × 4 grid, showing the allocation of treatments (A or 
B) to plots (Exercises 3.2b and c).
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 3.4 Four novel herbicides (labelled A–D) are to be compared with a commercial 
product (labelled P) and a hand-weeded control (labelled H) in a field trial, giv-
ing six treatments in total. The field available can accommodate 24 plots in an 
array of four columns running north to south, by six rows running west to east 
(Figure 3.11). The field has a known pH gradient running west to east, i.e. along 
rows, which may affect crop growth. Produce a RCBD which accounts for this 
gradient with a randomized allocation of treatments to plots using (a) a pack of 
playing cards, and (b) a standard six-sided die.

 3.5 The efficacy of six synthetic insect pheromones is to be tested in the field. Traps 
are baited with a single pheromone, deployed at dusk, left out overnight, then 
retrieved the next morning and the insect catches recorded. There is sufficient 
material to bait six traps with each pheromone.

4 5 6 7 8 1 2 3

9 10 11 12 13 14 15 16

FIGURE 3.10
Layout of 16 numbered Petri dishes for an aphid experiment using four replicates of four treatments 
(Exercise 3.3).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

East

FIGURE 3.11
Layout (with numbered plots) for an experiment testing six treatments in a field with a pH gradient running 
from west to east (Exercise 3.4).
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 a. Consider how you might use a RCBD for this experiment if only six traps are 
available at any one time and all six traps will be placed in the same field, 
but a different field will be used each night. Are any structural factors con-
founded? What are the assumptions of this design? Write down the structural 
component for this design.

 b. How would you change your design if the same trap locations were to be used 
each night and the positions could not be considered homogeneous? Write 
down the structural component for this design.

 c. How might you modify your design if 18 traps are available at any one time? 
Under which conditions would designs based on CRD, RCBD or LS arrange-
ments be preferable?

 d. What design might you use if only four pheromones are to be tested, with six 
traps available at any one time, and enough material for nine replicates of each 
pheromone?

  3.6 The effect of temperature on the transmission of a virus by five aphid species is 
to be investigated. Three small growth chambers are available and three tem-
peratures will be tested. The temperature for each chamber can be set and then 
applies to the whole chamber, and each chamber can hold five plants in indi-
vidual pots. One aphid will be placed onto each plant using a clip cage. Forty-five 
plants and 15 aphids of each species are available. Assuming that chambers (and 
positions within chambers) can be considered homogeneous, suggest a design 
to test the effects of temperature and aphid species. What are the experimen-
tal units for each factor? Produce a randomized design for this experiment and 
write down the explanatory and structural components for the design. If you 
suspected that there were systematic differences between chambers, how would 
you modify your design? Write down the structural component for this new 
design.

  3.7 A field experiment was set up to investigate how invertebrate abundance is 
affected by the spatial structure and species composition of weed patches 
(Smith, 2007). Small weed patches were formed from three pots of plants in a 
tray. Species composition was varied by using different numbers of mayweed 
(M) or thistle (T) plants in the patch, i.e. 3M, 2M + 1T, 1M + 2T or 3T. Spatial 
structure was varied by changing the distance between patches (12 or 6 m). Five 
blocks of two whole plots were set up, with the two spacings allocated at random 
to whole plots within blocks. Each whole plot contained 16 patches laid out in a 
4 × 4 array with the designated spacing, with patches allocated to four replicates 
of each of the four species compositions according to a LS design. A different 
randomization was used within each whole plot. Write down the explanatory 
and structural components for this design.

 3.8 A glasshouse experiment to compare the effect of two nutrition regimes on the 
growth of three wheat varieties was set up as a RCBD with 12 blocks of six pots 
each, as shown in Figure 3.12. The treatments comprise the six combinations 
of nutrition regime (labelled N1, N2) and variety (labelled V1–V3). The blocks 
accommodate an expected temperature gradient running from the door to the 
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far end of the glasshouse. Several characteristics of each plant, including height 
and number of leaves, are to be recorded every week. Suggest acceptable proto-
cols for recording data if
 a. You are the only person available to take the measurements
 b. There are two people available to take the measurements

  Which protocols would be unacceptable and why?

1 2 3 4 5 6
N2
V2

7 8 9 10 11 12

13 14 15 16 17 18
N1
V2

19 20 21 22 23 24

25 26 27 28 29 30
N2
V3

31 32 33 34 35 36

37 38 39 40 41 42
N1
V1

43 44 45 46 47 48

49 50 51 52 53 54
N1
V3

55 56 57 58 59 60

61 62 63 64 65 66
N2
V1

67 68 69 70 71 72

Door
(cooler)

Far end
(warmer)

FIGURE 3.12
Layout of pots (labelled 1–72) as a RCBD in a greenhouse experiment to compare the effects of two nutrition 
regimes (N1 and N2) on the growth of three wheat varieties (V1, V2 and V3). Blocks (columns) contain six pots. 
One block shows treatment labels in addition to pot numbers (Exercise 3.8).
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4
Models for a Single Factor

In this chapter, we present the analysis for data classified by a single explanatory fac-
tor. In the context of designed experiments, this would correspond to the case of a com-
pletely randomized design (Section 3.3.1) with a single treatment factor. Equivalently, this 
type of data might arise from an observational study in which the observations have been 
selected to conform to a single pre-defined classification, or grouping variable. In both 
cases, the only structure in the data is the treatment or grouping factor; there must be 
no other explanatory variables and no other structure, such as blocking or pseudo-rep-
lication, associated with the experimental material. If any such structure is present, then 
you should use a more complex analysis (see Chapters 7, 9 and 16 for details). In the case 
where only a single factor – representing treatments or groups – is present, the aim of the 
analysis is to discover if there are any differences in response between the factor levels. For 
brevity, here we use the term ‘treatments’ to cover either a set of imposed treatments or a 
set of observed groups. The first step in the analysis is to write down a model for the data 
in terms of the unknown population mean for each treatment (Section 4.1). The principle 
of least squares is used to estimate these treatment means (Section 4.2). The technique of 
ANOVA is then used to partition the variation in the data (Section 4.3). This analysis serves 
several purposes: we can obtain an estimate of the background variation, which in turn 
is used to indicate uncertainty on estimates of treatment means; we can also obtain an 
estimate of the amount of variation in the data accounted for by treatment differences, and 
compare this with the background variation. If the variation between treatments is large 
compared with the background variation, then we conclude that substantive differences 
between treatments are present in the data. This comparison is formalized in an F-test, 
and differences between pairs of treatment means can be compared with the standard 
error of the difference (SED) to identify significant differences between responses for dif-
ferent treatments (Section 4.4). There are several forms (parameterizations) of the ANOVA 
model for a single treatment factor, and we explain some of the different forms used in 
statistical software (Section 4.5).

4.1 Defining the Model

Here, we consider a set of observations classified by a single treatment factor. It is natural 
to label observations by their factor level, i.e. the treatment group to which they belong, 
and then to number observations within each treatment. We use a general notation that 
can be adapted to apply to any data set. The treatments are labelled by index j, and the 
number of treatments is denoted as t. We label observations within treatments using index 
k, allow the replication to differ between treatments, and denote the number of observa-
tions for the jth treatment as nj. Then, yjk represents the response from the kth observation 
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on the jth treatment and the full set of responses can be denoted as yjk, j = 1 … t, k = 1 … nj 
(see Section 2.1 for more explanation of this notation). The total number of observations is 
the sum of the number of replicates across all the treatments, denoted N = n1 + n2 + … + nt 
or N nj

t
j= ∑ =1 .

The only structure associated with the observations is due to the treatment groups, but 
there will also be variation among the responses within each treatment. We can describe 
this structure using a simple model, as

 jk j jky e= +µ  ,
 (4.1)

where μj is the true (but unknown) population mean for the jth treatment, and ejk is the 
deviation of the kth response on the jth treatment from its population mean. The set of t 
unknown population means, μj, j = 1 … t, are the parameters of this model. Equation 4.1 
essentially says that each observation consists of two parts, a contribution due to the treat-
ment and a deviation due to the individual. These two parts correspond to the systematic 
and random components, respectively, of the general model described in Section 1.3. An 
example of this situation is shown in Figure 1.1a. The individual deviation is sometimes 
called random noise, residual error or measurement error. The term ‘error’ here just reflects 
the presence of variation, and hence uncertainty in ascertaining true population values: it 
is not intended to imply that a mistake has occurred. Hence, we prefer the alternative 
term deviation. In general, the deviation reflects natural between-unit biological variation, 
variation within the study environment and inaccuracies in measurement. The deviations 
are regarded as random, without any structure related to the experimental units and not 
under control of the experimenter.

Note that the labelling used here for the observations, subscripts j and k, is chosen to 
identify the observations associated with each treatment. Other labelling schemes, such 
as use of subscript i to number the units in the order of the experimental layout, are 
equally valid, and are sometimes preferable. For example, ordering by layout is required 
to check for spatial trends. We strongly recommend recording information on the full 
experimental layout within any data set so that the link between the treatments and units 
is retained.

Using the symbolic notation introduced in Chapter 3, we can represent the model in 
Equation 4.1 as

Response variable: Y

Explanatory component: Treatment

Here, we have a variate named Y containing the observed response and a factor called 
Treatment that identifies the treatment group from which each observation arises. Note 
that we use italic font to distinguish variate names from factor names. In this case, 
the explanatory component is represented by a single factor and there is no structural 
component.

To make inferences on the unknown parameters in Equation 4.1 (and in any linear model), 
we make some assumptions about the deviations. These assumptions are given here for the 
general case, so, for simplicity, we replace the subscript jk by the subscript i so that ei is the 
deviation corresponding to the ith unit (for i = 1 … N). In estimating the unknown param-
eters, we assume that ei is a realization of a random variable with the properties
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Assumption 1

 E(ei) = 0 for i = 1 … N .

The expected value (function E) of each deviation is assumed to be zero. This means that 
the population mean of the deviations is zero, which implies no systematic bias in the 
observations.

Assumption 2

 Var(ei) = σ2 for i = 1 … N .

The variances (Var) of the deviations are the same for all units. This is also known as 
homoscedasticity, or homogeneity of variances.

Assumption 3

 Cov(ei, ej) = 0 for all i ≠ j, and i, j = 1 … N .

The covariance (Cov) between deviations for two separate observations is zero and the 
deviations are independent.

Assumption 4

 ei ~ Normal(0, σ2) for i = 1 . . . N .

The deviations follow a Normal distribution with mean 0 and variance σ2.

In addition, we make an assumption on the explanatory variables:

Assumption 5

The values of the explanatory variables (factors or variates) are known without error.

The first three assumptions require that the deviations are independent and identi-
cally distributed, i.e. arise from the same underlying probability distribution. The fourth 
assumption adds the requirement that this is the Normal distribution, and this is necessary 
to make valid statistical inferences that rely on the properties of the Normal distribution. 
This includes significance testing (F-test or t-test, see Sections 4.3 and 4.4) and the calcula-
tion of confidence intervals (CIs) (Section 4.4). In Chapters 5, 6 and 18, common violations 
of Assumptions 1–4 are discussed in detail. For the case of data with a single explanatory 
factor, Assumption 5 requires that each observation can be allocated to a treatment group 
without error, which is usually a realistic requirement. In general, when explanatory vari-
ates have been measured, possibly with error, then the assumption may become unrealis-
tic. Consequences of violating this assumption are discussed in Chapter 13.
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In some areas of biological science, it is common practice to summarize treatment 
responses from an experiment graphically, with bar charts showing the sample means 
and standard deviations (SDs) for each treatment, as in Example 4.1A. This can be a useful 
precursor to a formal statistical analysis as it provides an informal check as to whether the 
observations comply with Assumption 2, i.e. that all random deviations share a common 
variance. If this is the case, then the sample SDs should be roughly equal across treat-
ments. In practice, for little or moderate replication, there may appear to be differences in 
sample SDs across treatments even when the assumption is true.

EXAMPLE 4.1A: CALCIUM POT TRIAL

An experiment devised to evaluate the effect of four relative concentrations (levels) of 
calcium (A = 1, B = 5, C = 10, D = 20) on root growth was introduced in Example 3.4. Each 
treatment was applied to five individual plants growing in pots. The experiment used a 
CRD, as shown in Table 3.2, and measurements of total root length (cm) were made on 
pots 1–20 (in order) at the end of the experiment. The data set is presented in summary 
form in Table 4.1, and can be found in file calcium.dat in the flat file format required by 
statistical software. This format puts the explanatory variables and responses into par-
allel columns. Here, the file contains three columns: a variate (Pot) to uniquely identify 
each pot; a factor (Calcium, with four levels) to identify the treatment group for each pot; 
and the response variate (Length) obtained from each pot.

The model for these data can be written in symbolic notation as

Response variable: Length
Explanatory component: Calcium

We also use an informal version of the mathematical model given in Equation 4.1, and 
write this model in a more interpretable form that is relevant to the data, as

 Lengthjk = Calciumj + ejk ,

where Lengthjk represents the root length for the kth plant in the jth treatment group 
(with j = 1 … 4 corresponding to A–D respectively), Calciumj represents the mean of the 
jth treatment group and ejk is the deviation for the kth plant in the jth treatment group.

Before a formal analysis, it can be helpful to use sample statistics, such as treatment 
means and SDs, to summarize the data. These values are given in Table 4.1 and also 

TABLE 4.1

Calcium Pot Trial Data: Total Root Length (cm) and Summary Statistics for Plants Treated with 
Four Relative Concentrations of Calcium (A–D) according to a CRD (Example 4.1A and File 
calcium.dat)

Replicate A B C D

1 58 80 49 47
2 52 68 70 49
3 74 72 72 45
4 58 74 74 48
5 79 85 71 38
Treatment mean 64.2 75.8 67.2 45.4
Treatment variance 135.20 45.20 105.70 19.30
Treatment SD 11.63 6.72 10.28 4.39
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shown graphically in a bar chart in Figure 4.1. The sample grand mean, y , is equal to 
63.15 cm. Root growth appears to be greater for calcium levels B and C and the SDs are 
broadly similar across treatments A–C, but appear smaller for calcium level D. This plot 
is exploratory and we discuss better ways to present experimental results in Section 4.4.

4.2 Estimating the Model Parameters

The parameters associated with the model in Equation 4.1, namely the population means 
for each treatment, μj, j = 1 … t, are unknown quantities to be estimated from the data. 
Recall (from Section 1.5) that we denoted parameter estimates by placing a hat symbol 
(^) above the parameter symbol. The estimated population mean for the jth treatment is 
thus denoted µ̂ j. Recall also that the fitted value for an observation yjk, denoted ŷ jk, consists 
of the systematic component of the model with parameters replaced by their estimates. 
Hence, here

 
ˆ ˆ .yjk j= µ  

The parameters are estimated by the principle of least squares, which finds the values 
of the parameters that minimize the sum of the squares of the differences between the 
observed data and their fitted values, called the residual sum of squares (ResSS), which 
can be written mathematically as
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FIGURE 4.1
Summary statistics: treatment means and unbiased sample standard deviations (SD) for a CRD measuring root 
lengths (cm) under four calcium concentrations (A, B, C, D), each with five replicates (Example 4.1A). Vertical 
bars represent ± 1 × SD for each treatment.
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The details of the minimization are not required to understand the principles, but are 
shown in Section C.1 for interested readers. The resulting estimate of the population mean 
for the jth treatment is the sample mean of the observed responses for that treatment, i.e.
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jk j

k

n

n
y y

j

= =
=
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i  

This sample mean is written with the dot notation introduced in Section 2.1. Recall that 
the dot symbol, ‘i’, in the position of index k indicates summation across all values of that 
index, i.e. for k = 1 … nj, with the other index (or, in general, indices) held fixed. The bar 
symbol, ‘–’, over the y indicates that the mean is calculated by division of the sum by the 
number of components in the summation, here nj.

EXAMPLE 4.1B: CALCIUM POT TRIAL

From Table 4.1, we can now estimate the population means for the four calcium treat-
ments as

 Calcium Calcium Calcium Calcium   
1 2 3 464 2 75 8 67 2 45= = = =. ; . ; . ; .44 .

Having obtained the treatment sample means as estimates of the treatment population 
means, we require some measure of the uncertainty in these estimates to form standard 
errors and CIs. It is also helpful to be able to formally test whether the data show evidence 
of substantive differences among the treatment population means. The ANOVA provides 
a framework for estimation of the within- and between-treatment variances, and formal 
tests of differences among treatment means. Given that the assumption of a common vari-
ance for the set of deviations (denoted σ2) is realistic, a pooled estimate of this variance 
(denoted s2) is obtained from ANOVA of the data, and can be used to derive standard 
errors and CIs for single treatments or treatment comparisons.

4.3 Summarizing the Importance of Model Terms

For a set of observations classified by a single treatment factor, the primary question of 
interest is whether there are any differences in the responses among treatments. Analysis 
of variance (ANOVA) is a statistical technique that enables us to address this question 
directly. Intuitively, it is easy to see that if treatment differences exist, then variation in 
responses among observations for different treatments (‘between treatments’) will be 
larger than the variation in responses among observations for the same treatment (‘within 
treatments’), with the additional variation being directly attributable to the treatment dif-
ferences. ANOVA uses this principle to partition the total variation for a given response 
into the variation attributable to treatment differences and the variation due to random 
deviations (which we refer to as background variation).

In the general case, given any model for a set of observations in the form described in 
Section 1.3, i.e.

 response = systematic component + random component,
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ANOVA considers the variation in the response associated with all the parts of the sys-
tematic component of the model (systematic variation) and compares it to the background 
variation associated with the random component of the model. Informally, if the ratio of 
systematic variation to background variation is large, then we can conclude that the pro-
posed model accounts for much of the variation in the response, and that the explanatory 
variable(s) provide a good explanation of the observed response. Formally, ANOVA can 
be used to test various hypotheses about the form of the systematic component, from the 
simplest case of a single treatment factor, presented in this chapter, to the more complex 
explanatory and structural components described in Chapters 7 to 9.

The simplest application of ANOVA, to data classified by a single factor, is usually 
referred to as one-way analysis of variance. This analysis can be regarded as an extension 
of the two-sample t-test to allow comparison of several treatments simultaneously (with 
exact equivalence of these methods in the case of only two treatments). Recall that the 
two-sample t-test (Section 2.4.2) is used to compare the observed difference between two 
sample means with the expected variation in that difference, based on a pooled estimate 
of the background variation. The t-test was used to evaluate a null hypothesis of equal-
ity of the population means for two treatments against an alternative hypothesis that the 
population means were not equal. In the case where there are several (t) treatments, it is 
also of interest to establish whether there is any evidence of differences among population 
means for the treatments. The null hypothesis is that the treatment population means are 
all equal. Mathematically, this is written as

 H0: μ1 = μ2 = … = μt .

Given the assumptions underlying the analysis (presented in Section 4.1), if this hypothesis 
is true, then it implies that the observations for all treatments arise from a single Normal 
distribution with common mean, μ (e.g. Figure 4.2a). The general alternative hypothesis, 
H1, is that the treatment population means are not all equal. Taken in combination with 
the model assumptions, this hypothesis implies that the observations arise from a set of 
Normal distributions with a common variance, but with some variation within the set of 
population means (e.g. Figure 4.2b).

The test of this null hypothesis compares the variation among treatments with the back-
ground variation. In common with the two-sample t-test of Section 2.4.2, this test uses an 
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FIGURE 4.2
(a) The assumed distribution of responses for a single factor model under the null hypothesis (treatment means 
equal), and (b) the assumed distributions for a single factor model with four groups (A, B, C, D) in a case where 
the null hypothesis is not true (treatment means not equal).
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estimate of the background, or unit-to-unit, variability that is pooled across all treatment 
groups, in accordance with the assumption of common variance underlying the analysis.

In the following sections, we give details of the ANOVA calculations for a model with 
a single treatment factor to demonstrate the basic principles of the approach. Nowadays, 
statistical packages are usually used for these calculations and so it is not necessary to give 
detailed formulae for all cases. We present full details for the RCBD (Chapter 7), but ANOVA 
for more complex structures is discussed in less mathematical detail in Chapters 8 and 9.

The calculations in this section are presented for the general case of unequal replication 
across treatments, but we also give the simpler formulae used for the case of equal replica-
tion (i.e. nj = n for j = 1 … t).

4.3.1 Calculating Sums of Squares

As stated above, the aim of ANOVA is to partition the variation in the response between 
two or more sources. The statistics used to quantify variation are initially calculated as 
sums of squared deviations about means, and hence referred to as sums of squares. The 
total sum of squares (TotSS) is related to the sample variance, and we calculate it by taking 
the difference between each observed value and the sample grand mean, squaring these 
differences and then adding them together. Algebraically, this is written as

 

TotSS  .= −( )
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∑∑ y yjk
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t j
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(4.3)

Note that this is equal to (N − 1) × the unbiased sample variance (Equation 2.3). With equal 
replication, the expression becomes
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This calculation is illustrated in Figure 4.3, for the case of two treatments (t = 2) each with 
four replicates (n = 4). The lengths of the vertical lines represent the differences to be 
squared and then added together.

For a one-way ANOVA, this total variation is then partitioned into the variation between 
treatments (or the treatment sum of squares, denoted TrtSS), and the background varia-
tion, which is quantified by the ResSS. Variation between treatments is calculated as the 
sum, over all observations, of the squared differences between the appropriate treatment 
sample mean and the sample grand mean, written algebraically as
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As the contributions from observations within the same treatment group are repeated, 
the expression can be simplified (as shown) to be a sum across index j (the different 
treatment groups) multiplied by the replication (nj) for each treatment. This calculation 
is illustrated in Figure 4.4, where again the lengths of the vertical lines represent the 
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differences to be squared and then added together. With equal replication of all treat-
ments, this becomes

 

TrtSS = −( )
=
∑n y yj

j

t

i
2

1

.

The final step is the calculation of the ResSS. Within each treatment, background varia-
tion is represented by the variation of each response about its treatment population mean. 
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FIGURE 4.3
Calculation of the total sum of squares (TotSS) for a single factor model with two treatment groups (j = 1, 2) and 
four replicates per group (k = 1 … 4). Each vertical line represents a difference between a response and the sample 
grand mean, or yjk − y.
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FIGURE 4.4
Calculation of the treatment sum of squares (TrtSS) for a single factor model with two treatment groups (j = 1, 2) 
and four replicates per group (k = 1 … 4). Each vertical line represents a difference between a group sample mean 
and the sample grand mean, or y yji − .
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The treatment population means are unknown, so we assess variation around their esti-
mates, the treatment sample means. The ResSS is therefore calculated as the sum of the 
squared differences between each response and its treatment sample mean, written alge-
braically as
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This can also be obtained by the substitution of yj ji = µ̂  into Equation 4.2. With equal rep-
lication of all treatments, this becomes
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This calculation is illustrated in Figure 4.5, where again the lengths of the vertical lines 
represent the differences to be squared and then added together.

The name ‘residual sum of squares’ arises from a connection with the model residuals, 
ˆ ,ejk  defined as the discrepancy between the data and the fitted systematic component as

 
ˆ ˆ ˆ .e y y y y yjk jk jk jk j jk j= − = − = −µ i   (4.4)

It is immediately clear that the ResSS is simply equal to the sum of the squared residuals, i.e.
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FIGURE 4.5
Calculation of the residual sum of squares (ResSS) for a single factor model with two treatment groups (j = 1, 2) 
and four replicates per group (k = 1 … 4). Each vertical line represents a difference between a response and its 
group mean, or yjk − y ji .
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ANOVA produces an additive partition of the total variation such that the total sum of 
squares is equal to the sum of the treatment and residual sums of squares, i.e.

 TotSS = TrtSS + ResSS . (4.5)

The relationship in Equation 4.5 means that given any two out of the total, treatment or 
residual sums of squares, one can calculate the third quantity directly. For example, the 
residual sum of squares is equal to the total sum of squares minus the treatment sum of 
squares, i.e. ResSS = TotSS − TrtSS. It is straightforward (but fiddly) to verify this relation-
ship algebraically, i.e. by a rearrangement of the formula, and this is shown for the inter-
ested reader in Section C.2.

EXAMPLE 4.1C: CALCIUM POT TRIAL

Calculation of sums of squares by hand is often helped by the use of structured tables. For 
example, to aid in the calculation of the TotSS, it is useful to draw up a table like Table 4.2. 
Note that the treatments here correspond to different levels of the factor Calcium.

The first three columns list the treatment groups and label the units by treatment (j) 
and replicate within treatment (k). The fourth column lists the responses (root lengths) 
and the fifth column takes the difference between the responses and the sample grand 
mean (y = 63 15. ). The sixth column holds the squares of the differences from the fifth 
column and the total sum of squares can be obtained as the sum of the values in this 
final column, and here is equal to 3684.55.

TABLE 4.2

Calculation of Total Sum of Squares for Root Lengths from the Calcium Pot Trial (Example 4.1C)

Calcium j k yjk yjk − y (yjk − y)2

A 1 1 58 −5.15 26.5225
A 1 2 52 −11.15 124.3225
A 1 3 74 10.85 117.7225
A 1 4 58 −5.15 26.5225
A 1 5 79 15.85 251.2225
B 2 1 80 16.85 283.9225
B 2 2 68 4.85 23.5225
B 2 3 72 8.85 78.3225
B 2 4 74 10.85 117.7225
B 2 5 85 21.85 477.4225
C 3 1 49 −14.15 200.2225
C 3 2 70 6.85 46.9225
C 3 3 72 8.85 78.3225
C 3 4 74 10.85 117.7225
C 3 5 71 7.85 61.6225
D 4 1 47 −16.15 260.8225
D 4 2 49 −14.15 200.2225
D 4 3 45 −18.15 329.4225
D 4 4 48 −15.15 229.5225
D 4 5 38 −25.15 632.5225
Total – – – 0.00 3684.5500
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A similar table can be useful in constructing the calculations for the TrtSS (see 
Table 4.3). This table has a similar format, but in this case, the differences are between 
the treatment means and the sample grand mean. Again, the treatment sum of squares, 
TrtSS, is equal to the sum of the values in the final column. In this case, with equal 
replication of n = 5, we could equivalently have taken the sum of the values in the pen-
ultimate column (492.59) and multiplied it by the replication to get the same answer, i.e. 
TrtSS = 5 × 492.59 = 2462.95.

Finally, calculation of the residual sum of squares is most easily done by subtraction as

 ResSS = TotSS − TrtSS = 3684.55 − 2462.95 = 1221.60 .

4.3.2 Calculating Degrees of Freedom and Mean Squares

To make statistical inferences about the sums of squares, we must also consider the amount 
of information used to form them. Each contribution to a sum of squares is a positive value 
(after being squared), so the sum must increase as the number of contributions increases. To 
compare sums of squares, it is therefore necessary to standardize them onto a common scale. 
We do this by considering the amount of information, or degrees of freedom (df), used in 
their construction. A rigorous mathematical definition of degrees of freedom is beyond the 
scope of this book but available elsewhere (e.g. Bailey, 2008) for the interested reader.

All the sums of squares we consider take the form

 SS = Σ (value − adjustment)2 ,

where the summation is across all the observations, and may use several indices. Both the 
‘value’ and the ‘adjustment’ arise from an estimated model. The degrees of freedom can be 
calculated as the (minimum) number of parameters required to calculate the model used for 
‘values’ minus the (minimum) number of parameters required to calculate the model used 
for ‘adjustment’. So, for example, TotSS was obtained from the deviations of the individual 
observations about the sample grand mean. In this case, the ‘values’ in the SS are the N 
individual observations (nj from each of the treatments), which can only be formed from a 
model using N parameters. The adjustment is the sample grand mean, an estimate of a single 
parameter (the overall population mean). Therefore, the degrees of freedom for TotSS are

 

TotDF = n Nj

j

t

=
∑












− = −

1

1 1 .

TABLE 4.3

Calculation of Treatment Sum of Squares for Root Lengths from the Calcium Pot Trial 
(Example 4.1C)

Calcium j nj yji y yji − ( )2y yji − n y yj j( )2
i −

A 1 5 64.2 1.05 1.1025 5.5125
B 2 5 75.8 12.65 160.0225 800.1125
C 3 5 67.2 4.05 16.4025 82.0125
D 4 5 45.4 −17.75 315.0625 1575.3125
Total – – – 0.00 492.5900 2462.9500
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This expression can be written as (n × t) − 1 (or nt − 1) for the case of equal replication. 
Similarly, the treatment sum of squares (TrtSS) uses t values, i.e. the treatment sample 
means yji, again adjusted by the sample grand mean, so the treatment degrees of freedom 
becomes

 TrtDF = t − 1 .

Finally, the ResSS uses all the individual observations, i.e. N values. The adjustment arises 
from a model in which each treatment has a separate mean, which requires t parameters, 
one for each treatment. The residual degrees of freedom are therefore

 ResDF = N − t.

For equal replication, this can be written as nt − t or (n − 1)t.
Note that the TotDF is partitioned between the treatment and residual degrees of free-

dom in a similar way to the TotSS, namely

 TotDF = TrtDF + ResDF ,

and that the residual degrees of freedom can be calculated by subtraction as ResDF = 
TotDF − TrtDF.

Having calculated the degrees of freedom for each term, we put the treatment and resid-
ual sums of squares onto a common scale by dividing each by their degrees of freedom, 
producing ratios known as mean squares. For one-way ANOVA, these calculations are

 TrtMS = TrtSS/TrtDF ,

  ResMS = ResSS/ResDF .

4.3.3 Calculating Variance Ratios as Test Statistics

The residual mean square (ResMS), sometimes also called the mean square error (MSE), 
provides an unbiased estimate of background variation (σ2), with this estimate usually 
called  s2. Intuitively, the ResMS quantifies the variation within each treatment group, 
which should arise from background variation alone, then combines this information 
across treatments, giving an estimate of background variation pooled across treatments.

If there are no differences between treatments, then contributions to the treatment mean 
square, i.e. differences between the treatment means and the sample grand mean, arise 
from background variation alone. In this case, the treatment and residual mean squares 
should be of similar sizes, allowing for sampling variation. We can formalize this compari-
son by considering the expected value of each of the respective mean squares, which are

 

E TrtMS  

E(ResMS)  

( ) = +
−( ) −( )

=
=
∑σ µ µ

σ

2 2
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nj j

j
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,

,

where μ is the overall population mean. The expected value of the TrtMS is equal to the 
background variation plus a scaled sum of the squared differences between the treatment 
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population means and the overall population mean. The expected value of the ResMS is 
simply equal to the background variation. If there are no differences between treatments, 
then the treatment means, μj, are equal to the overall mean, μ, and the second term in the 
expectation of the TrtMS becomes zero; both mean squares then have the same expected 
value. This is the basis of the ANOVA F-test, which tests the null hypothesis of equal treat-
ment population means, i.e.

 H0: μ1 = μ2 = … = μt , 

against the general alternative of some variation within the set of treatment population 
means. The test statistic is obtained by dividing the treatment mean square by the residual 
mean square, and is known as the variance ratio or observed F-statistic, which we denote 
as F, i.e.

 F = TrtMS/ResMS .

If the null hypothesis is true, we expect the value of the variance ratio to be close to one. A 
larger ratio implies that the variation between treatment means is greater than the back-
ground variation, and is evidence of differences among the treatment population means. 
More formally, if the assumptions on the deviations hold and the null hypothesis is true, 
such a ratio of two independent mean squares has an F-distribution, and the amount of 
evidence can be quantified. The F-distribution depends on two sets of degrees of freedom, 
one associated with the numerator in the ratio (here, TrtMS with t − 1 df) and one associ-
ated with the denominator (here, ResMS with N − t df). For clarity, we sometimes specify 
the observed variance ratio with its df as subscripts, for example, Ft−1,N−t. As for the two-
sample t-test (Section 2.4.2), we usually have a pre-determined level of significance for 
testing, denoted αs (usually αs = 0.05). This is a one-sided test, as only large variance ratios 
indicate differences among the population means. The critical value required is therefore 
the 100(1 − αs)th percentile of the F-distribution, denoted F[ ]s

t N t− −1, ,α  which satisfies

 Prob( F )[ ]
s

sFt N t t N t− − − −≥ =1 1, , ,α α

where Ft−1,N−t denotes a random variable with an F-distribution on (t − 1) and (N − t) df. 
Variance ratios larger than the critical value give evidence (at significance level αs) against 
the null hypothesis. Tables of 95th percentiles for F-distributions with a range of numera-
tor and denominator df are provided in Appendix B, but these are also available in sta-
tistical software. Alternatively, the observed significance level can be calculated as the 
proportion of the F-distribution greater than the observed variance ratio, or

 P = Prob(Ft−1,N−t ≥ Ft−1,N−t) .

This calculation requires the quantile function of the F-distribution, which is also avail-
able in statistical software.

4.3.4 The Summary ANOVA Table

All of these calculations can be neatly summarized in the ANOVA table (see Table 4.4). A 
summary ANOVA table can be constructed for any linear model. The treatment sum of 
squares (TrtSS) is sometimes known as the ‘between’ sum of squares, because it quantifies 
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variation between (among) treatment means. Similarly, the residual sum of squares (ResSS) 
is sometimes called the ‘within’ sum of squares, as it quantifies a pooled measure of varia-
tion within treatment groups. Table 4.4 shows the full form of the one-way ANOVA table. 
Where space is limited, we will occasionally omit one or more of the columns, and you 
should note that the columns holding the sums of squares and degrees of freedom are 
sometimes interchanged.

Prior to interpreting the output from any ANOVA, it is essential to check that the data 
do not violate any of the underlying assumptions made about the deviations (Section 
4.1), as the validity of the F-test depends upon them. In this context, you should note 
that use of randomization in setting up an experiment increases the robustness of the 
F-test – this is discussed further in Section 5.2.4. The true values of the deviations are 
not known, but we have the residuals (defined in Equation 4.4) as estimates of these 
values. Validation methods that use residuals are known as diagnostic tools and are 
described in Chapter 5. Once the assumptions have been checked and found to be rea-
sonable, within certain limits, we can then examine the results from the ANOVA and 
begin to draw conclusions.

EXAMPLE 4.1D: CALCIUM POT TRIAL

The calculations in Example 4.1C can be combined to construct the ANOVA table in 
Table 4.5. Residual plots for these data can be seen in Section 5.2, where they are dis-
cussed in some detail. For the moment, we merely state that the residual plots are rea-
sonably consistent with the assumptions underlying the analysis. The 5% critical value 
of the relevant F-distribution (F[ ]

3 16
0 05
,
. ) is 3.239 (Table B.1) and the 1% critical value (F[ ]

3 16
0 01
,
. ) 

is 5.292. Both of these values are considerably smaller than the observed variance ratio, 
F3,16 = 10.753. The observed significance level can be obtained as the proportion of the 
F-distribution with 3 and 16 df greater than the observed variance ratio. In this example, 
this is P = 0.00041 (often reported as P < 0.001 in statistical software). Hence, we reject 
the null hypothesis and conclude that there is very strong evidence that the population 
means are not all equal, indicating that there is some effect of calcium concentration on 
root growth. The next step in the analysis is to interpret this effect.

TABLE 4.4

Structure of the ANOVA Table for a CRD with t Treatments (Factor Treatment) and N Observations 
in Total

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Treatment t − 1 TrtSS TrtMS = TrtSS/(t − 1) F = TrtMS/ResMS Prob(Ft−1,N−t ≥ F)
Residual N − t ResSS ResMS = ResSS/(N − t)   
Total N − 1 TotSS    

TABLE 4.5

ANOVA Table for Root Lengths from the Calcium Pot Trial with Four Treatments (Factor Calcium) 
(Example 4.1D)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Calcium  3 2462.95 820.98 10.753 < 0.001
Residual 16 1221.60  76.35   
Total 19 3684.55    
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Having constructed the ANOVA table, calculated the variance ratio, and compared 
this value to the appropriate F-distribution, we know whether there is evidence to sup-
port rejection of the null hypothesis that all treatments have the same population mean. 
If we have a significant result for the F-test, then we should examine the patterns in 
the treatment sample means. If the F-test result is not significant, then the analysis is 
complete and we do not have evidence to reject the null hypothesis. It is often worth 
considering whether a more complex treatment structure is present, requiring a more 
complicated form of explanatory model (see Chapter 8). If differences between treat-
ment sample means appear large from a biological point of view but the F-test is not 
significant, this may indicate that the experiment was not sufficiently large or precise to 
be able to detect these differences as statistically significant. This relates to the power of 
the experiment, which can generally be increased by adding more replicates across the 
whole experiment. Approaches for determining the replication level required to detect 
a given size of treatment difference for a given amount of background variation are 
described in Chapter 10.

4.4 Evaluating the Response to Treatments

4.4.1 Prediction of Treatment Means

If the fitted model gives a good representation of the observations, then the best prediction of 
the population mean for the jth treatment comes from the parameter estimates (Section 4.2) as

 µ̂ j jy= i  ,

i.e. the best prediction of the treatment population mean is the treatment sample mean. 
If we reject the null hypothesis, having obtained a significant F-test result, and we have 
checked the validity of our model assumptions (Chapter 5), then we can examine the table 
of sample means to identify the source(s) and size(s) of any treatment differences associ-
ated with this significant test result. It is important to realize that statistical significance 
is not the same as biological significance – with sufficient replication, it is possible to find 
statistically significant differences that are too small to have any real biological  meaning – 
and so it is important to also consider the biological significance of any statistically signifi-
cant comparison.

To make statistical inferences about the treatment population means, we need a measure 
of the uncertainty associated with our estimates of these values, the treatment sample 
means. This uncertainty is measured by the variance of these estimates, usually expressed 
on the SD scale (i.e. as the square root of the variance) and commonly referred to as the 
standard error of the mean. We use the general notation SE( )µ̂ j  to denote the SE of such esti-
mates. For the jth treatment with nj replicate observations, the variance of the estimated 
mean is σ2/nj (as introduced in Section 2.2.3) and the SE is the square root of this variance, 
i.e.

 
SE( )  ˆ  .µ σ

j
jn

=
2
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In fact, the true value of the background variation, σ2, is unknown, and so we replace it 
with our best estimate, s2 (equal to the ResMS), to get an estimate of this SE, written as

 
SEM SE( )  j j

j

s
n

= = ˆ  .µ
2

In general, for simplicity, we use the notation SE to denote the estimate, SE , and use SEM j 
to denote this SE for the estimate of the population mean for the jth treatment. The sub-
script can be dropped when all treatments are equally replicated and the SEMs are all 
equal.

A 100(1 − αs)% CI for the population mean of the jth treatment can be constructed as

 
ˆ ˆ ,/ /µ µα α

j N t j j N t j−( × + × )− −[t SEM ] , [t SEM ]  [ ] [ ]s s2 2

where t[ /2]s
N t−
α  is the 100(1 − αs/2)th percentile of the Student’s t-distribution with df equal to 

the residual degrees of freedom from the ANOVA (here N − t). The confidence limits can 
alternatively be expressed as

 
ˆ /µ α

j N t j± ×−[t SEM ] .[ ]s 2

EXAMPLE 4.1E: CALCIUM POT TRIAL

From the ANOVA table obtained above (Example 4.1D), we have ResMS = s2 = 76.35. The 
sample means for this study were shown in Table 4.1. Each treatment has five observa-
tions, n = 5, so the standard errors of the predicted means are all equal to

 
SEM  = = = = 

.
. . .

s
n

2 76 35
5

15 27 3 91

The 97.5th percentile of the t-distribution with 16 df is t16
0 025 2 120[ . ] . .=  Using the estimate 

for treatment A obtained in Example 4.1B, Calcium
1 64 2= . , we calculate a 95% CI for this 

treatment as

 Calcium
1 16

0 025 64 2 2 120 3 91 64 2 8 29± × = ± × = ±(t SEM) ( )  [ . ] . . . . . ,

giving the 95% CI as (55.9, 72.5).

4.4.2 Comparison of Treatment Means

Usually, one of the aims of a study is the comparison of the population means for differ-
ent treatments. The best estimate of a difference in population means is the difference in 
sample means, for example, for the jth and kth treatments

 
ˆ ˆ .µ µj k j ky y− = −i i  
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The standard error of this difference between the predicted population mean of the jth 
treatment, with replication nj, and the kth treatment, with replication nk (also presented in 
Section 2.4.2) takes the form

 
SE( )  ˆ ˆ .µ µj k

j kn n
− +







= σ2 1 1

Again, we estimate this SE using s2 in place of the unknown background variance, 
 written as

 
SED SE( )  .j k j k

j k
s

n n
, = − = +







 µ µ  2 1 1

We thus use SEDj,k to denote the SE for the estimated difference between the population 
means for the jth and kth treatments. The subscripts can be dropped when all treatments 
are equally replicated and the SEDs are all equal with

 
SED .= 2 2s

n  

Note that the SED, the standard error of a difference between predictions, is always larger 
than the SEM for a single prediction because the SED contains uncertainty associated with 
the estimation of two population means.

Under the null hypothesis that the population means for the two treatments are equal, 
i.e. H0: μj = μk, the statistic

 
t

SED SED
 N t

j k

j k

j k

j k

y y
− =

−
=

−ˆ ˆ
,

, ,

µ µ i i

has a t-distribution with degrees of freedom equal to the residual df, here N − t. The statistic 
can be used to test this null hypothesis against the two-sided alternative H1: μj ≠ μk by com-
paring it with critical values of that t-distribution (Section 2.4.2). The differences between 
several pairs of treatment means can be evaluated in this way; however, in general, the test-
ing of many pairwise comparisons without taking precautions with regard to overall levels 
of significance can give misleading results – we return to this topic in Section 8.8.

From the form of this two-sample t-test, it follows that the smallest absolute difference 
between two treatment sample means that would result in a statistically significant two-
sided t-test for the difference between the corresponding population means can be calcu-
lated as

 LSD t SED  [ /2]s
j k N t j k, , ,= ×−

α

where LSDj,k denotes this least significant difference (LSD) between the jth and kth treat-
ment means. A 100(1 − αs)% CI for the difference in population means between the jth and 
kth treatments can be computed in terms of this LSD as
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( ) LSD , ( ) LSDˆ ˆ ˆ ˆ ., ,µ µ µ µj k j k j k j k− −( − + )

Because of the connection with the t-test, if the CI for a difference between the population 
means for two treatments does not include zero, then there is statistical evidence for a sig-
nificant difference (at level αs) between the means for these two treatments.

EXAMPLE 4.1F: CALCIUM POT TRIAL

For this study, we want to know whether a small increase in calcium (treatment B) has 
any impact on root growth compared with the standard (treatment A). To calculate the 
SED between these two treatment means requires the ResMS (s2 = 76.35) and residual 
df (ResDF = 16) from the ANOVA table (Table 4.5). Each treatment has five observations, 
n = 5, so there is also a common SED for comparing any pair of treatments, i.e.

 
SED . . . .= = × = =2 2 76 35

5 30 54 5 53
2s

n  

The tabulated 97.5th percentile of the t-distribution with 16 df is t16
[0.025] = 2 120. , so at a 5% 

significance level, the LSD is calculated as

 LSD t SED 2 12 5 53 11 72 [ ]= × = × =16
0 025 0. . . . .

Hence, any difference between treatment means greater than 11.72 is significant at the 
5% level. The predicted difference between treatments B and A can be obtained from 
Example 4.1B as Calcium Calcium 

2 1− = − =75 8 64 2 11 6. . . , slightly smaller than the LSD, 
and the 95% CI for the difference between these treatments is

 ( ) . . . .Calcium Calcium 
2 1 64 2 11 72 11 6 11 72− ± = − ± = ±LSD (75.8 )  ,

giving the 95% CI as (−0.1, 23.3). As expected from the comparison between the treat-
ment means with the LSD, zero is contained in this CI, confirming the conclusion that 
these treatments are not statistically different at a significance level of 5%.

It is often more informative to consider the overall pattern in the treatment means, as 
shown in Figure 4.6, rather than to make numerous pairwise treatment comparisons. 
Figure 4.6 indicates an initial increase in root growth as calcium increases, then a clear 
decrease at the highest level. The LSD bar indicates the likely size of differences caused by 
background variation. These results could be used to suggest rough limits on calcium con-
centrations likely to be beneficial to root growth that could be verified using field studies. 
Given the numerical relationship between the calcium factor levels, we might also try to 
model the pattern by considering the calcium content as a quantitative explanatory vari-
able (recall Examples 1.1 and 1.2), and we describe this type of model in Section 8.7.

Note that although there is a superficial similarity between Figures 4.6 and 4.1, there 
are important differences between the two plots. Both presentations show the treatment 
sample means, but they differ in their presentations of uncertainty. Figure 4.1 shows 
only the unbiased sample SD for each treatment, giving some indication of the within-
group variability for each treatment. This is useful as a precursor to ANOVA in assess-
ing the assumption of homogeneity of variance (although formal tests can also be used, 
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see Section 5.3). On  the other hand, Figure 4.6 shows the LSD, based on an estimate of 
background variation pooled across the treatment groups, which gives a direct and more 
appropriate measure for statistical comparison of treatment population means as a result 
of the ANOVA.

4.5 Alternative Forms of the Model

In the preceding sections, we have used the simplest form of the model for a single factor, 
i.e.

 jk j jky e= +µ ,

using a single parameter to represent the population mean for each treatment. Statistical 
packages generally use other forms, or parameterizations, of the model, and we give an 
introduction to these forms here. As long as the forms are equivalent, the same ANOVA 
table and the same conclusions will be obtained. One widely used form writes the single 
factor model as

 jk j jky e= + +µ τ ,
 (4.6)

where μ is the overall population mean across all treatments, and τj is the unknown popu-
lation treatment effect for the jth group, i.e. the difference between the population mean 
for the jth treatment and the overall mean, which can be positive or negative.

The explanatory component can then be written in symbolic form as

Explanatory component: [1] + Treatment
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FIGURE 4.6
Estimated LSD and treatment means for the calcium pot trial (see Examples 4.1B and F).



89Models for a Single Factor

Here, the term [1] denotes a factor that takes value 1 everywhere, and is associated with 
the overall mean, μ.

This model has t + 1 parameters – one for each treatment group plus the overall mean. 
However, as the structure can be described with only t parameters, i.e. one for each group, 
the version in Equation 4.6 is called over-parameterized. The consequence of over-param-
eterization is that estimation of the parameters by the least squares principle does not 
result in a unique solution, and so we impose constraints to obtain a unique solution. To 
keep the interpretation of μ as the overall mean, the average treatment effect must be zero; 
hence we impose the constraint Σj τj = 0, i.e. the sum (and hence mean) of the treatment 
effects is zero (sometimes called the sum-to-zero constraint). The parameter estimates 
then take the form

 

ˆ

ˆ
µ
τ

=
= −

y

y yj j

 ,

 ,i

so the overall population mean μ is estimated by the sample grand mean, and the popu-
lation treatment effects τj are estimated by the differences between the treatment sample 
means and the sample grand mean. The fitted values then take the form

 
ˆ ˆ ˆ ,y yjk j= + =µ τ j  i

and hence are equal to the treatment sample means, exactly as before. In this parameter-
ization, we note that the treatment sum of squares is simply a sum of squares of the esti-
mated treatment effects, i.e.

 

TrtSS  = −( ) =
= =
∑ ∑n y y nj j

j

t

j j

j

t

i
2

1

2

1

ˆ .τ

This parameterization is used in the GenStat ANOVA algorithm.
Other parameterizations can be used, but here we just consider variations on one 

of the most common, often called the corner-point constraint or first-level-zero con-
straint, written as

 jk j jky   e= + +µ ν1  .

In this parameterization, the constraint ν1 = 0 is used. The term μ1 then represents the 
population mean for the first treatment, and the effect νj represents the difference between 
the population mean for the jth treatment and that of the first treatment. Here, the least 
squares estimates take the form

 

ˆ ,
ˆ .

µ
ν

1 1

1

=
= −
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y yj j

i

i i
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So the parameter μ1 is estimated by the sample mean for the first treatment, and the effects 
νj are estimated by differences between the sample means for the jth treatment and the 
first treatment. However, the fitted values, calculated as

 
ˆ ˆ ˆ ,y yjk j j= + =µ ν1 i  

are again equal to the treatment sample means, matching previous forms of the model. 
This parameterization is used in the GenStat regression algorithm (commands MODEL and 
FIT) and the lm and aov algorithms implemented in R.

Another version of this parameterization uses last-level-zero constraints, taking the 
form

 jk t j jky    e= + +µ ω  ,

with constraint ωt = 0, then the ωj, j = 1 … t − 1, represent differences with the last treat-
ment. Again, although individual parameter estimates differ from previous forms, the fit-
ted values are the same. This algorithm is used by the PROC GLM algorithm in SAS and can 
be used in the GenStat regression algorithm (commands MODEL and FIT) if the last factor 
level is chosen as the reference level.

All of the above forms are specific to the linear model with a single factor, and must 
be extended for more complex models; the principles are the same however. Details for 
more complex models are given in Chapters 7, 8 and 11. In general, although the value and 
interpretation of individual parameter estimates depend on the parameterization used, 
the fitted values and predictions for population treatment means are unchanged. For this 
reason, we usually make inferences for the population means, which we still denote as μj, 
j = 1 … t, rather than for the individual model parameters.

EXERCISES

 4.1 A glasshouse experiment to evaluate control of a weed species by three differ-
ent chemical treatments used a CRD with seven replicates of each treatment.

 a. What are the null and alternative hypotheses for this experiment?
 b. Construct the ANOVA table given that TrtSS = 121.5 and ResSS = 87.4.
 c.  What is the appropriate F-distribution for the variance ratio under the null 

hypothesis? What is the 5% critical value from this distribution?
 d. Would we accept or reject the null hypothesis?
 4.2 A laboratory experiment investigated the effect of different treatments on 

grain production in wheat ears infected with Fusarium graminearum (Baldwin 
et  al., 2010). Single wheat ears on 30 separate plants were inoculated with 
F.  graminearum. Four treatments (labelled A–D) and a negative (untreated) 
control were then allocated to the inoculated ears as a CRD. The number of 
grains in the region above the inoculation position of each ear was counted. 
File grains.dat contains the unit number (DEar), the treatment applied (factor 
Treatment) and the number of grains (variate Grains) for each ear.*

 a. Write down a mathematical model for the numbers of grains.

* Data from K. Hammond-Kosack, Rothamsted Research.
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 b.  Write down the null and alternative hypotheses associated with this 
experiment.

 c.  Construct an ANOVA table by calculating the total, treatment and residual 
sums of squares and df and then deriving the other columns. Is there any 
evidence that grain production is affected by the treatments?

 d.  Calculate the predicted mean for each treatment group and the SED and 
LSD for treatment comparisons.

 e. State your conclusions from this analysis.
  (We re-visit these data in Exercises 5.1 and 5.2.)
 4.3 An experiment was done to assess whether fungal infection affected aphid 

reproduction. Sixty adult aphids were equally divided among three treatment 
groups, which were either inoculated with a fungus (either Beauveria bassiana 
or Pandora neoaphidis) or not inoculated. One first-generation (FG) nymph was 
taken from each adult; these nymphs were placed individually into Petri dishes 
which were then arranged randomly within a controlled environment cham-
ber. The development time for each FG aphid was observed and the number of 
nymphs produced by each FG aphid during a time equal to its own develop-
ment time was counted. Some FG aphids died before producing nymphs and 
were removed from the experiment. File fungus.dat contains the unit numbers 
(DAphid), the treatments (factor Fungus) applied, and the numbers of nymphs 
(variate Nymphs) produced by the 33 remaining FG aphids.*

 a. Write down a mathematical model for the aphid counts.
 b.  Write down the null and alternative hypotheses associated with this 

experiment.
 c.  Construct an ANOVA table by calculating the total, treatment and residual 

sums of squares and df and then deriving the other columns. Is there any 
evidence that reproduction of FG progeny is affected by fungal infection of 
the original adult aphids?

 d.  Calculate the estimated mean, with a 95% confidence interval, for each 
treatment group.

 e. State your conclusions from this analysis.
 f.  Comment on whether omitting the FG aphids that died might bias the 

results – what assumptions has your analysis made?
  (We re-visit these data in Exercises 5.1, 5.2 and 5.4.)
 4.4 An experiment investigated the effect of conidia density on transmission of a 

fungus that attacks aphids. Cadavers of aphids killed by the fungus, and from 
which the fungus was releasing spores, were placed on bean plants at three 
densities (A = 1, B = 5 or C = 10 cadavers per plant) to give different doses of 
fungal conidia. The densities were allocated to individual bean plants as a CRD 
with six replicates. Twenty uninfected live aphids were placed on each plant 
with one ladybird which was allowed to forage to facilitate transfer of conidia 
between the cadavers and the live aphids. For each plant, the proportion of 
aphids that became infected after 7 days was recorded and transformed to the 
logit scale for analysis (see Chapter 6). The unit numbers (DPlant), treatment 

* Data from J. Baverstock, Rothamsted Research.
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allocations (factor Density) and transformed responses (variate LogitP) are in 
file transmission.dat.*

 a.  Write down the null and alternative hypotheses associated with this 
experiment.

 b.  Obtain the ANOVA table. Is there any evidence that the density of fungal 
conidia affects the rate of transmission of the fungus to the aphids?

 c.  Plot the predicted means for each density with the LSD. What does this plot 
suggest?

 d. State your conclusions from this analysis.
  (We re-visit these data in Exercise 5.2.)
 4.5 A variety of maize was genetically modified, and plants were classified as homo-

zygous, heterozygous or null according to the number of glutamine mutants 
present (2, 1 or 0, respectively; Haines, 2000). The dry weights (g) of single ker-
nels from each of 10 plants of each type, sampled at random, were recorded. 
The unit number (DKernel), classification (factor Type) and dry weight (variate 
Weight) for each kernel are in file maize.dat.

 a.  Write down the null and alternative hypotheses associated with this 
experiment.

 b.  Obtain the ANOVA table. Is there any evidence that mean kernel weights 
differ among the different genetic types?

 c.  Plot the predicted means for each genetic type with the LSD. What genetic 
hypothesis does this plot suggest?

 d. State your conclusions from this analysis.
  (We re-visit these data in Exercise 5.2.)

* Data from J. Pell, Rothamsted Research.
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5
Checking Model Assumptions

In Chapter 4, we introduced a simple additive linear model to describe the effects of a 
single explanatory factor. The ensuing statistical analysis is based on the assumption that 
this additive form of model is true, and also on the assumptions about the properties of the 
model deviations given in Section 4.1. Conclusions from the statistical analysis are valid 
only if these assumptions are consistent with the properties of the data. In this chapter, we 
describe some simple diagnostic tools that can be used to check the assumptions underly-
ing analysis of variance.

The term diagnostic tools refers to a collection of techniques used to detect inconsis-
tencies between the statistical model and the data. Diagnostic tools are used primarily 
to check that the assumptions underlying the analysis are not violated and that unusual 
individual data values do not unduly affect the fit of the model and hence any infer-
ences drawn from it. If you find problems, then you can take corrective measures, such 
as transforming the data (see Chapter 6). Diagnostics for linear models take two main 
forms: analysis of the properties of the residuals and computation of influence statistics. 
In this chapter, we concentrate on the former; influence statistics, and related diagnostic 
tools more relevant to regression models, are presented in Chapter 13. However, all of the 
diagnostic tools discussed in this chapter are applicable to assess the assumptions for any 
linear model.

First, we describe two of the most commonly used forms of residual (Section 5.1). We 
then discuss graphical diagnostic tools (residual plots) for inspecting the residuals and 
checking the model assumptions (Section 5.2). We also briefly describe permutation tests, 
which can be used when the assumption of a Normal distribution for the deviations is 
not plausible (Section 5.2.4). We then describe one formal test, Bartlett’s test, for checking 
homogeneity of variances between treatment groups (Section 5.3). We end this chapter 
with a short discussion of how to identify and deal with outliers (Section 5.4).

5.1 Estimating Deviations

To examine whether the assumptions made about the deviations are plausible, we 
would ideally like to examine them directly. As this is not possible (because they are not 
known), we examine estimates of the deviations, called the residuals. Unfortunately, 
even if the assumptions underlying the model are true, the statistical properties of the 
residuals are not exactly the same as those of the deviations. For this reason, different 
types of residuals have been developed to examine different aspects of the distributions 
of deviations. Here, we describe simple and standardized residuals; later, in Chapter 13, 
we introduce prediction and deletion residuals, which are particularly useful in regres-
sion analysis.
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5.1.1 Simple Residuals

In Equation 4.4, a residual from the model fitted for a CRD was defined as the discrep-
ancy between the response and the fitted systematic component. This is the definition of 
a simple (or ordinary) residual, and can be easily extended for any linear model. Using 
a general notation that labels observations by index i for i = 1 … N, we define the simple 
residual for the ith observation as

 
ˆ ˆ ,e y yi i i= −

where yi is the response and ŷi is the fitted value for that observation. As in previous chap-
ters, the ‘hat’ notation denotes an estimate; the residuals êi are estimates of the unknown 
deviations ei. In this general notation, the subscript i refers to the ith observation, but recall 
that it is often convenient to relabel the units to reflect the structure of a specific data set, 
for example, to use ê jk for a CRD to represent the simple residual for the kth replicate of the 
jth treatment, as in Equation 4.4.

EXAMPLE 5.1A: CALCIUM POT TRIAL

Recall the calcium pot trial analysed in Example 4.1 (data in file calcium.dat). Figure 
5.1a shows the fitted values, here the treatment means, and the observed responses plot-
ted against treatment group. The value of the simple residual for each observation is 
equal to the vertical distance between the observation and its group mean, indicated 
for the second smallest response in treatment A by a dotted line. Observations larger 
than the group mean have positive residuals; those smaller than the group mean have 
negative residuals. Figure 5.1b shows the simple residuals plotted by treatment group. 
The residuals show the same pattern as the observations within each treatment, but the 
groups are now centered about zero rather than about the treatment means. There is a 
suggestion in Figure 5.1b that the variance differs between treatments; this is investi-
gated further in Section 5.3.
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(a) Observed (○) and fitted (●) values (root lengths, cm) from the calcium pot trial (Example 5.1A). (b) Simple 
residuals for all pots in the calcium pot trial. Vertical dotted line indicates the simple residual for the second 
smallest response in treatment A.
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For a model with a single explanatory factor, such as the CRD, the residuals within each 
group must sum to zero. Recall that in the CRD we label observations yjk by their treatment 
group (index j) and replicate (index k). From Equation 4.4, we know that the residuals take 
the form

 
ˆ ,e y yjk jk j= − i  

where yji is the sample mean for the jth treatment group. The sum of the residuals in this 
group is therefore calculated as
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In other words, the residuals sum to zero because the sum of the observations is equal 
to the sum of the fitted values. Summing to zero is a constraint that means that residuals 
within treatment groups are not independent, even when the model deviations are truly 
independent. Similar constraints across treatment groups and other structures also hold, 
even for more complex models. The sum of the complete set of residuals across the experi-
ment must also be equal to zero.

A general expression for the variances of residuals is given in Section 13.4.2. For the 
CRD, the variance of the residuals is directly related to the replication within each treat-
ment group, as
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j
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σ
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The variances of the residuals are therefore all equal for the CRD when the treatment 
groups have equal replication, but differ between treatment groups otherwise. As usual, 
we can estimate this quantity by replacing the unknown variance, σ2, by its estimate 
s2 = ResMS (Section 4.3).

5.1.2 Standardized Residuals

Standardized residuals are used to deal with the problem of unequal variances within a 
set of simple residuals. A standardized residual is defined as the simple residual divided 
by an estimate of its standard error. We denote the standardized residual here as ri , with

 
r

e
e

i
i

i

= ( )
ˆ

ˆ
,

SE
 

where SE êi( ) is the estimated standard error of the simple residual for the ith observation 
(see Section 13.4.2 for details). The standardized residuals have a common variance equal 
to one (unit variance), but are not independent as they are subject to the same constraints 
as the simple residuals. For reasonably large data sets, most of the standardized residuals 
should fall within the range ±2, and individual points outside this band may be investi-
gated as potential outliers (see Section 5.4).
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For the CRD, the standardized residuals (labelled by treatment group j and replicate 
number k) are thus
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where s is the square root of the residual mean square. When all groups have equal replica-
tion, so all nj are equal to a common value n, the set of standardized residuals are simply a 
scaled version of the set of simple residuals.

Note that there is no common nomenclature for residuals: the standardized residuals 
defined here are called ‘internally Studentized residuals’ or ‘Studentized residuals’ in 
some statistical texts and software. You should therefore make sure you understand the 
definition of the residuals being used in any context.

5.2 Using Graphical Tools to Diagnose Problems

Examination of the distribution of residual values is an essential step in the fitting of 
any linear model. The two types of residuals described above (simple and standardized) 
are both useful for detection of general inadequacies in the model and violations of the 
assumptions. In the case of designed experiments with equal replication, the simple resid-
uals are proportional to the standardized residuals, and either set can be used. However, 
it is usually more appropriate to use the standardized residuals, as these have the advan-
tages of a standard scale and common unit variance. In this section, we concentrate on a 
few of the most commonly used graphical procedures (usually called residual plots) for 
checking the validity of the most important assumptions (homogeneity of variance, inde-
pendence and Normality) underlying a fitted linear model. We describe several forms of 
residual plot, often used in combination to provide an overall picture of the validity, or 
otherwise, of the model.

5.2.1 Assessing Homogeneity of Variances

The assumption that all deviations have equal variance (Assumption 2 of Section 4.1) is 
often called the assumption of homogeneity of variances (or homoscedasticity). If the data 
conform to this assumption, a plot of the standardized residuals, ri, against the fitted val-
ues, ŷi (usually called a fitted values plot), should show approximately equal variance 
(indicated by the vertical spread about zero) across the range of fitted values (e.g. Figure 
5.2a). A variant of the fitted values plot (called an absolute residuals plot) replaces the 
residuals with their absolute values, |ri|. This plot should also show approximately equal 
variance across the range of fitted values (e.g. Figure 5.2b). A smooth trend line can be 
added to both plots to emphasize any pattern.

One common departure from constant variance occurs where the spread of the residuals 
increases as the fitted values get larger (e.g. Figure 5.3). This pattern is often seen for dis-
crete data, such as counts, or continuous data, such as weights, where the data span a large 
range. For data in the form of counts as a percentage of a fixed total, the variance is usually 
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small where the fitted value is close to either 0 or 100%, increasing towards a maximum 
at the centre of the range (50%). Occasionally, variances may differ systematically among 
treatment groups in a manner unrelated to their fitted values; these differences are more 
difficult to detect from a fitted values plot but may be tested formally by Bartlett’s test, as 
described in Section 5.3.

The pattern in Figure 5.3 might be removed by the application of a variance-stabilizing 
transformation of the response, and Chapter 6 deals with this topic in detail. Alternatively, 
we might re-evaluate the assumption of Normality and decide that a different probability 
distribution would be more appropriate and use the methods presented in Chapter 18. In 
general, any strong pattern in the spread of the residuals, whether symmetric or asym-
metric, suggests a failure to meet the assumption of homogeneous variances. In regression 
modelling, the fitted values plot can also be used to detect systematic deviations of the 
model from the pattern in the response (see Section 13.1).
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(a) Fitted values plot (residuals against fitted values) and (b) absolute residuals plot (absolute value of residuals 
against fitted values) with trend line, both showing acceptable homogeneity of variance.

6
(a)

5
4
3

2
1

0

Fitted value

St
an

da
rd

iz
ed

 re
sid

ua
l

–1
–2

(b)
6

5

4

3

2

Fitted value

|S
ta

nd
ar

di
ze

d 
re

sid
ua

l|

1

0

FIGURE 5.3
(a) Fitted values plot and (b) absolute residuals plot with trend line, both showing a strong pattern of larger 
variance for larger fitted values.



98 Statistical Methods in Biology

EXAMPLE 5.1B: CALCIUM POT TRIAL

Figure 5.4 shows the fitted value and absolute residuals plots (based on the standardized 
residuals) for total root length. The fitted values for this model correspond to the sample 
means of the four treatments, and so there are four columns of points on the graph. 
There is no strong pattern in the spread of the residuals across the fitted values.

5.2.2 Assessing Independence

Usually, the assumption of independent deviations (Assumption 3 of Section 4.1) can 
safely be made given knowledge of the experimental procedure. For example, when we 
select a random sample of individual plants from locations in a large field and measure 
the height of each plant, we can reasonably assume that the deviation from the mean for 
any particular plant has no association with that for any other plant. However, there are 
situations when dependence (or correlation) among deviations arises. For example, sup-
pose plants were sampled in pairs from locations in a field; owing to local environmental 
conditions, we might expect the deviations within a pair to be correlated. Similarly, if the 
plants are processed by a machine that shows drift in measurements over time, this drift 
might be observed as a positive correlation in deviations from consecutive measurements. 
In general, proximity in location or time of measurement can provide a mechanism for 
correlation among deviations.

Again, the distribution of the residuals can be used to investigate departures from this 
assumption of independent deviations. However, we stated above that the set of residuals 
are not independent, even if the deviations are independent. Since the induced correla-
tion among residuals occurs within treatment groups, or within blocks, it should not be 
associated with trends in time or space (the usual sources of correlation) in a randomized 
experiment, and so the exploratory graphs described here should still reveal any strong 
serial (spatial or temporal) correlation.

The first step in detecting correlation is to order the residuals by the suspected source 
of correlations, usually location or time. This order will often correspond to the physical 
layout or processing of the experiment, and so requires full details of the design to be 
recorded and stored as part of the data set. We denote a variable that gives this order as 
the index variable. Note that in some contexts there may be several index variables. For 
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(a) Fitted values plot and (b) absolute residuals plot with trend line, for the calcium pot trial (Example 5.1B).
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example, in a two-phase study that consists of a field experiment followed by laboratory 
processing, both the layout of the field plots and the order of processing in the labora-
tory might be used as index variables. Dependence, or correlation, of deviations may be 
detected graphically with an index plot, where the residuals ordered by the index variable 
are plotted against the values 1 … N. Positive correlation is demonstrated by a tendency 
for adjacent residuals to have similar magnitude and sign (e.g. Figure 5.5a), and negative 
correlation is indicated by alternating signs (e.g. Figure 5.5b).

Alternatively, each residual can be plotted against the residual immediately preceding it 
when ordered by the index variable. Correlation in the residuals would then be revealed 
by evidence of a trend in the graph, with a positive slope indicating a positive correlation 
(e.g. Figure 5.6a) and a negative slope indicating a negative correlation (e.g. Figure 5.6b), 
rather than a random scatter over all four quadrants of the graph.

Sometimes correlation between observations will purposely be incorporated into a 
study. For example, to examine the effect of a growth regulator on the height of plants 
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Index plots showing (a) positively and (b) negatively correlated standardized residuals when plotted against the 
time order in which the responses were obtained.
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over time, we might measure the same set of plants on consecutive days. The data then 
contain several observations for each experimental unit which will show positive correla-
tion; a plant that is taller than average at the first measurement is very likely to still be 
taller than average at the second measurement. This type of data is often called repeated 
measurements or longitudinal data, and is closely related to time series data (see e.g. 
Diggle et al., 2002). A similar situation occurs if data are related in space, for example, if 
measurements are made at different distances along a transect (e.g. along a river or into a 
field). While the index plot is useful for detecting such correlation, formal analysis of such 
data usually requires a more complex approach that takes account of the spatial or tem-
poral correlation. There are several formal statistical tests for detecting serial (auto)cor-
relation in the deviations (i.e. correlation between adjacent deviations in space or time), 
of which the most well known is the Durbin–Watson test. The discipline of geostatistics 
provides some more modern diagnostics; see Webster and Oliver (2007) or Chilès and 
Delfiner (2012).

If temporal or spatial correlation is expected prior to experimentation, then it should be 
incorporated at the design stage. For example, if the correlation is associated with machine 
drift, then all samples within a block should be processed together to confound differ-
ences between blocks with differences in larger-scale time effects. However, if there is still 
evidence of strong correlation within the set of residuals then the best solution is to model 
this correlation formally. This requires the use of more sophisticated techniques (e.g. lin-
ear mixed models) which we briefly introduce in Chapter 16, and which are described 
further in the references suggested above.

EXAMPLE 5.1C: CALCIUM POT TRIAL

Figure 5.7a shows the index plot of standardized residuals for total root length, where 
the index variable is the pot number (variate Pot), which defines the order in which 
the experimental units were arranged and measured. There is no indication of strong 
positive or negative correlation. This is supported by Figure 5.7b where each residual is 
plotted against the residual for the preceding pot; there is a slight suggestion of negative 
correlation, but the points lie in all four quadrants with no strong trend.
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(a) Index plot of standardized residuals, and (b) plot of standardized residuals versus previous residual (with 
order defined by pot number), for the calcium pot trial (Example 5.1C).
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5.2.3 Assessing Normality

The assumption that the deviations arise from a Normal distribution (Assumption 4 of 
Section 4.1) underlies the validity of the F-test for detecting differences between treatment 
means or evaluating the effect of a specific explanatory variable in a linear model. Note 
that this assumption is required only for tests of significance or computation of confidence 
intervals and not for parameter estimation, and, in fact, that the tests associated with the 
ANOVA are reasonably robust to departures from Normality, especially for randomized 
designs (see Section 5.2.4).

If the deviations arise from a Normal distribution, then the residuals inherit this distri-
bution, so it is natural to examine the residuals in this context. To ensure that the resid-
uals have common variance, we use standardized residuals. We consider two types of 
residual plot for assessing the validity of this assumption: histograms (see Section 2.2) of 
the residuals and Q–Q (quantile–quantile) plots. If the Normality assumption holds, then 
a histogram of the residuals should exhibit an approximately symmetrical, bell-shaped 
distribution centered around zero (e.g. Figure 5.8a). The standard Q–Q plot displays the 
ordered residuals plotted against the quantiles of the proposed probability distribution. 
Several standard variations are used, for example, plotting the ith smallest residual against 
the 100(i − 0.375)/(n + 0.25)th percentile of the proposed distribution. As we wish to assess 
whether our residuals arise from a Normal distribution, we use quantiles from a standard 
Normal distribution (with zero mean and unit variance), and the resulting plot is also 
called a Normal plot. If the residuals are consistent with a sample from a Normal distribu-
tion, then the plot should yield an approximately straight line passing through the origin. 
The slope of this line is determined by the standard deviation of the residuals, and so a 
Normal plot of standardized residuals should lie on the 1:1 line (e.g. Figure 5.8b).

A skewed distribution of the residuals (e.g. a few very large positive residuals with a 
corresponding increase in the number of small negative residuals, or vice versa) results in 
a curved pattern, probably not passing through the origin. Distributions of residuals with 
fatter or thinner tails than a Normal distribution (i.e. with more or fewer large residuals, 
respectively), result in the relationship deviating from a straight line towards the extremes 
(both positive and negative).
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The half-Normal plot is a variation in which the ordered set of the absolute values of 
the residuals are plotted against quantiles of the standard Normal distribution. In this 
case, the ith smallest absolute residual is plotted against the [50 + 50 (i − 0.375)/(n + 0.25)]th 
percentile. If the residuals are consistent with a Normal distribution, the plot should again 
show an approximately straight line starting at the origin.

Note that formal statistical distribution tests, such as the Kolmogorov–Smirnov or 
Anderson–Darling tests, are not strictly appropriate here as they make an assumption of 
independent observations which is not obeyed by the set of residuals. We cannot therefore 
recommend the use of these tests in this context.

There are several approaches for dealing with non-Normality of the residuals. One is to 
use a non-parametric permutation test as an alternative to the F-test (see Section 5.2.4 for 
more details). Skewness can sometimes be corrected by an appropriate transformation of 
the data (see Chapter 6). In this situation, the shape of the histogram of the residuals (e.g. in 
terms of the amount of skewness displayed) may give clues as to possible transformations 
of the response. Alternatively, where the form of the data suggest that it is unlikely that a 
Normal distribution can be assumed (e.g. for discrete data including counts or counts as 
a percentage of a fixed total), more advanced techniques based on other probability dis-
tributions (e.g. Poisson or Binomial) for the response variable can be used instead. These 
analytical approaches are discussed briefly in Chapter 18.

EXAMPLE 5.1D: CALCIUM POT TRIAL

It is often useful to consider a set of residual plots together, and Figure 5.9 shows a com-
posite display for the standardized residuals, consisting of the fitted values and abso-
lute residuals plots from Figure 5.3 with a histogram of residuals and a Normal plot.

In this case, the fitted values plot (Figure 5.9a), the absolute residuals plot (Figure 5.9b) 
and the histogram (Figure 5.9c), while not perfect, do not indicate serious departures 
from homogeneity of variances or from Normality. In the Normal plot (Figure 5.9d), the 
residuals follow an approximately straight line and it appears that the data are consis-
tent with the assumptions underlying the linear model.

5.2.4 Using Permutation Tests Where Assumptions Fail

Where residual plots indicate departures from Normality (but variances are acceptably 
homogeneous) an alternative to the F-distribution for assessing the significance of the size 
of an observed variance ratio is provided by a permutation test. In the simplest case of an 
unstructured sample, for example, the CRD, the observed data are randomly re-allocated 
to the units (or equivalently, the unit labels are randomly rearranged with the data values 
remaining fixed) and the analysis is repeated on the permuted data to obtain a new value 
of the test statistic, here the variance ratio. If there are no treatment differences, then the 
test statistic should take a similar value (subject to variations due to sampling) for any 
permutation. This permutation procedure is repeated many times to provide an empirical 
reference distribution for the test statistic formed under the null hypothesis of no treat-
ment differences, against which the actual observed test statistic can be compared. The 
probability for the test is computed as the proportion of permutations in which the test 
statistic is more extreme (defined appropriately for one- or two-sided tests) than the origi-
nal observed test statistic. An exact (exhaustive) test can be made if the number of possible 
permutations is small, but in general the test is evaluated for a large subset of random per-
mutations (often 999 to provide a three-digit significance level). Note that where structure 
is present, the permutation procedure must take it into account.
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Permutation tests are a form of non-parametric test, i.e. a test for which no probability 
distribution is assumed, and can be derived for most hypothesis tests. Permutation tests 
also have a connection with the validity of the F-tests derived from an ANOVA table. If 
variances are similar across groups and the residual df are large, then the F-distribution 
used in ANOVA gives a good approximation to the distribution of the permutation test 
statistic under the null hypothesis (for more details see e.g. Box, Hunter and Hunter, 1978). 
It follows that if treatments have been allocated to experimental units at random, then 
under the null hypothesis, the observed F-statistic can be considered as a random sample 
from the permutation distribution. The F-distribution thus approximates the correct refer-
ence distribution without the need for distributional assumptions. Note that this reason-
ing follows only for properly randomized designs (i.e. experimental studies), and does not 
apply to many observational studies.

5.2.5 The Impact of Sample Size

Interpretation of the residual plots can be somewhat subjective, and properties of the resid-
uals are much easier to assess visually when sample sizes are large. Take care therefore 
when dealing with small data sets and, in these situations, a more lenient approach to 
interpreting residual plots is generally allowed (although remember that the assumptions 
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A composite set of residual plots based on standardized (std) residuals for the calcium pot trial (Example 5.1D). 
(a) Fitted values plot, (b) absolute residuals plot, (c) histogram of residuals, and (d) Normal plot. 
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must still be met for the analysis to be valid). Conversely, a stricter approach should usu-
ally be taken for larger data sets.

To illustrate the effects of sample size, we have simulated data from a CRD with four 
equally replicated treatment groups, with replication n = 25, 12, 6 and 3, i.e. with a total of 
N = 100, 48, 24 and 12 observations, respectively. The deviations were generated to obey all 
the assumptions underlying the model, and the true population means for the treatment 
groups took values 10, 13, 15 and 22. The estimated treatment means show some variation 
about these true values, as expected. Figures 5.10, 5.11 and 5.12 show the fitted values plots, 
histograms of residuals and Normal plots, respectively, based on standardized residu-
als from ANOVA for each of the four simulated data sets. Although each of these data 
sets obeys the assumptions of homogeneity of variance, independence and Normality, the 
resemblance between the residual plots and the ideal patterns clearly gets worse as the 
sample size decreases.

5.3 Using Formal Tests to Diagnose Problems

It is often difficult to judge by eye whether variances are similar across treatment groups, 
either in residual plots (e.g. Figure 5.1), or in bar charts of treatment means including 
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FIGURE 5.10
Fitted values plots for four data sets, each simulated as a CRD with four equally replicated treatments with 
Normal deviations and total number of observations equal to (a) 100, (b) 48, (c) 24 and (d) 12.
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within-group standard deviations (e.g. Figure 4.1). From both of these graphs, it appears 
that the variation within treatment D is smaller than that within the other treatments. 
However, the sampling variation in estimates of variances can be large, especially for small 
data sets, and so it is often sensible to test formally whether such a set of sample variances 
could plausibly have arisen from a population with a common variance (but allowing for 
different group means). Here, we give details of Bartlett’s test (Bartlett, 1937; Snedecor and 
Cochran, 1989), but other tests (e.g. the Fmax-test of Hartley, Sheffé–Box test, Levene test) can 
also be used (Sokal and Rohlf, 1995).

Bartlett’s test is based on the assumption that data have arisen as a number of samples 
from Normally distributed populations. The number of samples corresponds to the t dif-
ferent treatment groups in the CRD. The null hypothesis of the test is that the population 
variances for the different treatment groups are all equal, and the alternative hypothesis is 
that these population variances are not all equal. The test statistic is based on a comparison, 
on the logarithmic scale, of the average of the treatment sample variances with a pooled 
variance estimate. To construct these sample variances algebraically, it is convenient to label 
observations as yjk, where index j labels the treatment groups (j = 1 … t) and k labels the rep-
licate values within treatments (k = 1 … nj), i.e. the same labelling as for the CRD (Chapter 4). 
The unbiased sample variance for the jth treatment is then calculated (as in Section 2.1) as
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where yji is the sample mean for the jth treatment. The pooled variance estimate, denoted 
spooled

2 , is calculated as
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i.e. as a weighted sum of the unbiased treatment sample variances, and is equal to the esti-
mate of s2 (the ResMS) from the CRD analysis (Section 4.3). The test statistic, X 2, is
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Normal plots based on standardized (std) residuals for four data sets, each simulated as a CRD with four 
equally replicated treatments with Normal deviations and total number of observations equal to (a) 100, (b) 48, 
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For groups with equal replication, i.e. nj = n for j = 1 … t, these expressions simplify to
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Under the null hypothesis, X t
2

1
2~ χ − , i.e. X2 has an approximate Chi-squared distribution 

with t − 1 df (Section 2.2.4). Inequality of sample variances is indicated by larger values of 
the test statistic, so a one-sided test is appropriate. So, if X2 is larger than the 100(1 − αs)th 
percentile of this chi-squared distribution, there is evidence (at significance level αs) that 
the variances differ between treatment groups.

If data show evidence of unequal variances across treatment groups, and the variances 
also change systematically with the treatment means (as seen in the fitted values plot), 
then a transformation might resolve the issue (see Chapter 6). Alternatively, the test may 
reflect non-Normality of the deviations, and a different probability distribution might be 
considered (see Chapter 18). If the deviations appear to follow a Normal distribution but 
the pattern in the variances is not related in a simple manner to trends in the treatment 
means, then a weighted analysis can be used to account for the different variances associ-
ated with different treatment groups. More details about fitting weighted linear models 
can be found in Rawlings et al. (1998).

EXAMPLE 5.1E: CALCIUM POT TRIAL

The unbiased sample variances for each treatment in the calcium pot trial were given 
in Table 4.1 as sA

2 135 20= . , sB
2 45 20= . , sC

2 105 70= . , sD
2 19 30= . , with equal replication of 

n = 5 for all treatments. The range of variances seems large, but each estimate is based 
on only five observations. The pooled variance estimate is calculated with Equation 5.1 
as
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As expected, this is equal to the ResMS from the ANOVA table in Example 4.1C. The 
scaling factor c is equal to
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The 95th percentile of the chi-squared distribution with 3 df is 7.815 and so the test 
statistic is consistent with the null hypothesis of equal population variances across 
treatments.
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5.4 Identifying Inconsistent Observations

An outlier is an observation that is in some way inconsistent with the rest of the data set. 
In the context of designed experiments with replication, an outlier is usually an observa-
tion that is inconsistent with the other observations in a treatment group. Here, we use 
the term outlier to describe points with large residuals from the fitted model; therefore, 
the identification of a point as an outlier may change with the proposed model. Residual 
plots can be used to identify potential outliers, and many statistical packages automati-
cally identify observations with large residuals as potential outliers.

EXAMPLE 5.2: DISEASE PROGRESS

An experiment, designed as a CRD, investigated disease progression within leaves of 
oilseed rape plants. The amount of pathogen DNA extracted from leaves of inoculated 
plants in 11 lines of oilseed rape was measured for 12 replicate plants of each line. The 
log10-transformed DNA values were analysed. Figure 5.13 shows a composite set of 
residual plots based on the standardized residuals. One observation clearly stands out 
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FIGURE 5.13
Composite set of residual plots based on standardized (std) residuals from an experiment to measure disease 
progress within leaves (Example 5.2). (Data from Y. Huang, Rothamsted Research.)
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as having a much larger (negative) residual and should be investigated as a possible out-
lier. Apart from this one observation, the residual plots are otherwise satisfactory: the 
histogram is symmetric, the variances are similar across the treatments (range of fitted 
values) and the Normal plot shows a straight line.

Outliers may be ascribed to several different sources: (1) problems with the experimental 
procedure; (2) errors in the recording, transcription or data input procedures; (3) an incor-
rect or incomplete model specification; and (4) a genuine observation that is incompatible 
with the rest of the observations.

The first step in dealing with an outlier is to try to determine its origin. Laboratory 
notebooks may reveal where problems with the experimental procedure were experienced 
or suspected. For example, the effectiveness of the inoculation on the outlying plant in 
Example 5.2 might be in question. Maintenance records can be consulted to check the 
calibration of equipment. Original data records should always be cross-checked to detect 
errors: common errors include the transposition of digits (e.g. 54.2 becomes 45.2) and 
movement of the decimal point (e.g. 54.2 becomes 542 or 5.42). Any proven errors should 
be corrected or, if they cannot be corrected, the observations should be set as missing or 
removed, and any dubious observations should be flagged. Finally, you should consider 
whether an observation might correspond to a different population (e.g. a different species 
or subspecies) from the one of interest, in which case a different result might be expected 
for that observation.

The next step is to decide what to do with the observations identified as anomalous but 
where no error can be proved: you must decide whether to retain or remove these observa-
tions. It is helpful to consider at this point whether the model is compatible with the data. 
Are there any important explanatory variables that have not been included in the model? 
Inclusion of these variables might improve the fit of the model and reduce the number of 
potential outliers. For example, if species are showing different reactions to a treatment, 
then explicitly allowing for this differential response in the model might accommodate 
all of the observations. If the deviations do not follow a Normal distribution with equal 
variance, then data transformation might be advantageous (see Chapter 6) or another 
probability distribution can be used (see Chapter 18). In Figure 5.13, the residual plots are 
entirely acceptable apart from the single outlying point, so neither of these options would 
be justified.

Outliers should not be discarded indiscriminately or without careful consideration, not 
least because observations are often expensive to obtain, but also because this will affect 
the analysis. Sometimes, particularly with large data sets (such as Example 5.2), the effect 
of removing an outlier is negligible, but usually estimates of the model parameters will 
change and the estimated residual variance will decrease, sometimes substantially, thus 
increasing the chance of rejecting H0. This is not necessarily desirable, as the residual vari-
ance will be underestimated when we eliminate outliers that are genuine observations, 
resulting in a larger Type I error (more false-positive results) than expected. The decision 
on which outliers to retain and which to eliminate must always be reported. If the results 
change markedly when outliers are excluded, then it is good practice to report these dif-
ferences. Remember that it may be considered fraudulent to remove ‘inconvenient’ data 
points from an analysis without good justification. In addition, always bear in mind that 
if the outlier is a genuine observation, then it might be the most important point in the 
study, because it indicates unexpected behaviour in the system. A story about the hole in 
the ozone layer is often quoted in this context. The traditional version of the tale relates 
that NASA scientists should have been the first to discover the ozone hole over Antarctica, 
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but their satellite instruments used automatic outlier detection and deletion methods 
that removed anomalous readings, and so the seasonal ozone depletion went unnoticed 
until reported by Farman et al. (1985). In fact, Pukelsheim (1990) reports that the satellite 
observations were flagged, checked against data from a ground station, and only then dis-
missed because they contradicted the ground station readings. It later transpired that the 
ground station data were misleading due to faulty instrument settings! We believe that the 
full version of this story carries even more warnings than the traditional version: certainly 
you should not use automatic methods to delete outliers without examining them first, 
but when you cross-check against another method, you also need to be sure that the other 
method is reliable.

EXAMPLE 5.1F: CALCIUM POT TRIAL

In the calcium pot trial, treatment group C has four observations in the range 70–74 
(Table 4.1) and one much smaller observation with value 49 (pot 4). This large discrep-
ancy suggests that this observation should be investigated as a potential outlier. This 
observation has a standardized residual of −2.33. However, although it is the largest 
residual (in absolute value), it does not appear to be inconsistent with the overall dis-
tribution of the residuals shown in Figure 5.9. It is therefore sensible to examine this 
observation for potential sources of error, as suggested above, but if none is found, there 
is no justification for removing it from the analysis.

An alternative analytical approach that allows the retention of potential outliers is the 
use of ‘robust’ statistical methods. These are designed to be less sensitive to the presence 
of outliers, and further details can be found in Barnett and Lewis (1994).

EXERCISES

 5.1 Obtain the simple and standardized residuals from the ANOVA for the data 
from (a) Exercise 4.2 and (b) Exercise 4.3. Use a scatter plot to compare the sim-
ple and standardized residuals in each case. Can you explain the patterns that 
you see? Are there any potential outliers?

 5.2 For the data sets in each of Exercises (a) 4.2, (b) 4.3, (c) 4.4 and (d) 4.5, produce 
a set of residual plots based on standardized residuals, including a histogram 
of residuals, a fitted values plot, an absolute residuals plot and a Normal plot. 
Give a critical assessment of whether the ANOVA assumptions are reasonable 
in each case. Is there any evidence of outliers?

 5.3 An experiment compared the growth of tomato seedlings in eight commercial 
composts. Space was available in a glasshouse to place 32 small pots in a single 
line along the edge of one bench. The area was assumed to be homogeneous 
and so a CRD was used, with four pots of each type of compost. One seed-
ling was transplanted into each pot and the heights of the young plants (cm) 
were measured after 2 weeks. Pots were numbered 1–32 along the bench and 
plants were measured in order of pot number. The pot numbers (Pot), composts 
used (factor Compost) and resulting plant heights (variate Height) are in file 
compost.dat. Analyse these data and inspect standardized residual and index 
plots. Are the assumptions of your model satisfied?

 5.4 Compare the unbiased sample variances for each treatment group from 
Exercise 4.3 using Bartlett’s test. Is there any evidence of variance heterogeneity?
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 5.5 An experiment was devised to evaluate the effect of four watering regimes 
on root growth using a CRD. Each regime was applied to 12 individual plants 
growing in pots. Measurements of total root length (cm) were made at the end 
of the experiment. The unit numbers (Pot), watering regimes (factor Regime) 
and total root lengths (variate Length) are in file watering.dat. Analyse these 
data and inspect plots of standardized residuals. Are there any potential outli-
ers? On inspection of the original data sheets, it was discovered that one obser-
vation had been mistyped as 47 rather than 74. Correct this data value and 
rerun the analysis. Comment on whether the model assumptions are reason-
able for these data.
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6
Transformations of the Response

In Chapter 5, we discussed graphical diagnostic tools for inspecting residuals and check-
ing the assumptions underlying the linear model (see Section 4.1). In particular, we con-
sidered how to evaluate the assumptions that the deviations have a common variance 
(homogeneity of variances, Section 5.2.1) and come from a Normal distribution (Section 
5.2.3). We indicated that transformations of the response variable might be used to remove 
skewness in the distribution of the residuals (i.e. evidence of a non-Normal distribution) 
or to correct systematic changes in the variances of the residuals (i.e. evidence of variance 
heterogeneity, as illustrated in Figure 5.3).

In this chapter, we show how different transformations can be used to deal with par-
ticular violations of the model assumptions. We start by discussing the general rationale 
for data transformations (Section 6.1) and then concentrate on three particularly useful 
transformations: the log and square root transformations for positive response variables 
(i.e. with values ≥ 0), and the logit transformation for proportions (between 0 and 1) or 
percentages (between 0 and 100, Section 6.2). It is usually desirable to relate results to the 
original scale of measurement, and so we also discuss the procedure of back transforma-
tion (Section 6.3). We then take a closer look at the interpretation of the log transformation 
in terms of a multiplicative model (Section 6.4). Finally, we review some other methods for 
analysing non-Normal responses, which are useful when transformation is either unsuc-
cessful or inappropriate (Section 6.5).

6.1 Why Do We Need to Transform the Response?

The validity of the conclusions from a statistical analysis depends on the validity of the 
assumptions underlying that analysis. Applying a transformation to the response vari-
able is an option that may allow the assumptions to be satisfied sufficiently so that we can 
continue to use the simple linear model and reach valid conclusions. A transformation, or 
data transformation, is the process of using a mathematical function to map the response 
variable from the original scale of measurement onto another (the transformed) scale.

In the context of simple models involving factors, the most common reason for transform-
ing responses is to stabilize the variance of the residuals so that a pooled estimate (across all 
treatments) can sensibly be used, i.e. to make the assumption of homogeneity of variance, 
or homoscedasticity, valid. A second important use of transformation is to make the distri-
bution of the deviations closer to a Normal distribution (recall that conclusions of ANOVA 
based on the t- and F-statistics rely on the deviations having an approximate Normal distri-
bution). Finally, the use of a transformation may provide a scale on which the additive form 
of the linear model is more realistic. If we are fortunate, then a transformation may achieve 
several aims simultaneously. However, on some occasions, whilst one aim is achieved by 
the use of transformation, other aspects of the analysis may be made worse.
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The assumption that the deviations follow a Normal distribution implies that the 
response should be measured on a continuous, or close-to-continuous, scale without any 
abrupt truncation. There are several common types of response that do not apparently 
comply with this description. For example, counts must be positive (i.e. y ≥ 0) and can take 
only integer values; they are clearly not continuous. If the counts are small then the distri-
bution may also be abruptly truncated at zero. These factors are especially important for 
small counts. Proportions (0 ≤ p ≤ 1) that are calculated with respect to small samples (e.g. 
the proportion of dead aphids in a sample of 10) can take only certain values (e.g. 0, 0.1, 0.2 
… 1) and so again are not continuous, and may also be abruptly truncated if many pro-
portions are close to zero or one. These are obvious cases where the Normal assumption 
is invalid. In addition, for these types of response the variance is almost always related to 
the expected response for an observation (usually termed a variance–mean relationship). 
For counts and proportions there are other analytical approaches based on more appropri-
ate probability distributions (i.e. Poisson and Binomial, respectively). We briefly outline 
these approaches, and when they are likely to be required, in Section 6.5 but we leave a 
more detailed discussion until Chapter 18. Other types of response may be continuous but 
also show a variance–mean relationship (and possibly truncation). For example, quantities 
such as height or weight are usually (effectively) continuous but must be positive, and 
larger expected values are often associated with greater variation. Some proportions may 
be effectively continuous, for example, percentage area as assessed by eye or a computer, 
but may show greater variance around 0.5 than at the limits of the scale (0 or 1). In all of 
these cases, transformation often provides a good-enough approximation to the assump-
tions of the linear model to make the analysis valid and reliable.

After transformation (based on consideration of the residual plots introduced in Chapter 
5), the analysis should be repeated for the transformed response, and residuals from the 
new analysis should be inspected as usual. Sometimes, it is necessary to try several dif-
ferent transformations until satisfactory residual plots are obtained, and sometimes it will 
not be possible to find a suitable transformation.

6.2 Some Useful Transformations

In this section we describe the most common transformations, concentrating on the loga-
rithmic, square root and logit transformations.

6.2.1 Logarithms

Possibly, the most common transformation is the logarithmic (log) transformation, which 
can take several related forms. The concept of the log transformation can be most easily 
understood for the common logarithm (log to base 10), which maps the original response 
variable, y, to a new variable, z, such that y is equal to 10 raised to the power z, i.e. y = 10z, 
and usually written as z = log10(y). Values of z = 0, 1 or 2 on the log10 scale thus correspond 
to values of y = 100 = 1, 101 = 10 or 102 = 100 on the original scale. The natural logarithms 
(log to base e) work in a similar way but use Euler’s number, e = 2.71828…. The natural 
logarithm maps y to z such that y is equal to e raised to the power z, i.e. y = ez, or equiv-
alently y = exp(z), and can be written as z = loge(y). Logarithms to other bases are simi-
larly defined, and any logarithm can be used for a log transformation. There are several 
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different conventions of notation for specifying logarithms. Elsewhere you may see log(y) 
used for either log10(y) or loge(y), and ln(y) for loge(y). In this book we use the unsubscripted 
term ‘log’ to represent a logarithm in general discussion, but always specify the base as a 
subscript for specific examples.

All log transformations are defined only for y > 0, i.e. for strictly positive values, but the 
transformed variable, z, can take any value. Values greater than one on the original scale 
(y > 1) are mapped onto positive values (z > 0), and values less than one on the original 
scale (0 < y < 1) are mapped onto negative values (z < 0), with y = 1 always mapped onto 
z = 0. Log transformations bring larger values closer together and spread smaller values 
relatively further apart. They therefore provide a useful way of dealing with responses 
that exhibit a right-skewed distribution, i.e. with only a short tail to the left of the distribu-
tion peak and a long tail stretched out to the right (such as that illustrated in Figure 6.1a), 
making the distribution more symmetrical (as shown in Figure 6.1b) after log transforma-
tion. Common examples include counts of insects on plants (where a few plants are very 
heavily infested), measures of size such as weights or lengths (where a few individuals 
are particularly heavy or large), counts of colony-forming units in pathogen cultures, and 
concentrations of plant nutrients and trace metals in soil samples. Clearly, if the responses 
are already reasonably symmetric or left-skewed then a log transformation is unlikely to 
be helpful.

Log transformations are also useful for stabilizing the variance of responses for which 
the variance increases in proportion to the expected response, a feature often associated 
with integer counts in ecology, and usually detected via fitted value plots as in Figure 5.3. 
On applying a log transformation, the variation associated with larger values is decreased, 
hopefully achieving homogeneity of variances across the range of the variable.

Finally, a log transformation can be applied to transform a multiplicative model onto an 
additive scale, as required for the form of the linear model. This valuable consequence of 
applying a log transformation is discussed in detail in Section 6.4.

The choice of which base to use is arbitrary, though the type of response may sug-
gest the choice of a particular base. For example, for numbers of colony-forming units, 
where values are often in the range from 104 to 109 across a set of observations, and 
for which changes of an order of magnitude are important, the obvious choice is the 
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logarithm to base 10 because, for example, a unit change on the log10 scale reflects a 
10-fold increase in numbers. The default used by many statisticians in the life sciences 
is the natural logarithm; possibly because Euler’s number, e, seems to be related to many 
natural phenomena.

An important consequence of applying a log transformation is that the influence of larger 
observations on treatment or group means is less than on the original scale, whilst the 
influence of small observations is increased. This may be inappropriate in some contexts.

A major constraint of applying a log transformation is that it is defined only for positive 
values, y > 0. However, for many types of positive response, such as integer counts, zero 
is a valid observation and applying a log transformation then results in an undefined 
value. When there are only a few zero values, it is common practice to add a small offset, 
c, to every response prior to applying the transformation function, so the transformation 
becomes

 z = log(y + c) .

The inclusion of an offset provides a degree of flexibility in the transformation process, but 
the choice made can affect the outcome, so the offset should be chosen with some care. For 
integer insect counts, it is usual to add an offset of c = 1, i.e. z = log(y + 1). In other cases, a 
simple rule of thumb is to use an offset equal to half the smallest positive value recorded. 
For example, if the smallest positive value for a response variable is 0.1 g, we might add an 
offset of c = 0.05. In practice, it might be necessary to try several different offsets to find a 
value that gives adequate residual plots.

EXAMPLE 6.1A: BEETLE MATING

An experiment was conducted to investigate the viability of interspecies mating in leaf 
beetles by examination of the results when females from two species of willow beetle 
(the brassy willow beetle, Phratora vitellinae, and the blue willow beetle, Phratora vulga-
tissima) were mated with males from either their own species (intraspecies mating) or 
the other species (interspecies mating), i.e. there were four treatments (t = 4) in total (for 
further details, see Peacock et al., 2004). The experiment was carried out as a CRD (com-
pletely randomized design) with 10 replicates of each treatment (n = 10). We analyse the 
number of eggs laid by each female; the data are presented in Table 6.1 and can be found 
in file beetles.dat, where factor Treatment has four levels (labelled as 1 = P. vit. × interspe-
cies, 2 = P. vit. × intraspecies, 3 = P. vulg. × interspecies, 4 = P. vulg. × intraspecies) and 
the response is held in variate Eggs.

The untransformed counts were analysed by one-way ANOVA (see Section 4.3) using 
model

Response variable: Eggs
Explanatory component: Treatment

A composite set of residual plots based on standardized residuals from this analysis 
is shown in Figure 6.2. In the fitted values and absolute residual plots, the variance 
appears greater for larger fitted values, with a suggestion of skewness in the histogram 
and a slight curve in the Normal plot, both showing some possible outliers.

In an attempt to remove the observed variance–mean relationship, the counts were 
transformed to the log10 scale as logEggs = log10(Eggs), and the transformed response 
was analysed, using model
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Response variable: logEggs
Explanatory component: Treatment

This model can be written in mathematical form as

 logEggsjk = Treatmentj + ejk ,

where logEggsjk is the log10-transformed number of eggs for the kth replicate (k = 1 … 10) 
of the jth treatment (numbered 1 … 4 as for the factor levels given above) with deviation 
ejk, and Treatmentj is the population mean for the jth treatment on the log10 scale. Plots 
of standardized residuals from this new model are shown in Figure 6.3. The spread of 
residuals is now more consistent across the range of fitted values, although still not per-
fect. The histogram seems slightly skewed in the other direction, and the Normal plot 
still shows some curvature, although the extreme points are now more consistent with 
the overall pattern. The ANOVA table for this model is Table 6.2.

The null hypothesis is that the treatment population means on the log10 scale are 
all equal. On the basis of the ANOVA of the transformed response (F3,36 = 19.254, 
P < 0.001) we should reject this hypothesis and conclude that differences exist 
between the treatment means on the log10 scale. The sample means calculated from 
the logged counts for the four treatments, used to predict the corresponding popula-
tion means, are listed in Table 6.3. The ResMS gives s2 = 0.0238, from which we derive 
the common SEM of √(s2/10) = 0.0488, and the SED of √(2s2/10) = 0.0690 for comparing 
pairs of treatments, both with 36 df. Most eggs are laid by the intraspecies-mated 
P. vulgatissima females (treatment 4) and fewest by the interspecies-mated P. vitellinae 
females (treatment 1). In Section 6.3, we discuss how to relate these predictions back 
to the original scale.

TABLE 6.1

Number of Eggs Laid by Females of Two Willow Beetle Species 
(P. vitellinae and P. vulgatissima) Following Inter- or Intraspecies 
Mating (Example 6.1A and File beetles.dat)

Replicate

P. vitellinae P. vulgatissima

Interspecies
j = 1

Intraspecies
j = 2

Interspecies
j = 3

Intraspecies
j = 4

1 57 90 82 136
2 15 80 91 117
3 40 101 66 181
4 34 59 98 41
5 42 73 82 89
6 19 51 134 106
7 43 43 51 133
8 39 57 96 98
9 36 42 52 106
10 24 66 91 79
yji 34.9 66.2 84.3 108.6

y
j


i

32.6 63.6 81.1 102.0

Source: Data from Rothamsted Research (A. Karp).
Note: yji is the arithmetic sample mean and y

j


i
 is the geometric sample mean 

for the jth treatment.
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TABLE 6.2

ANOVA Table for the Log10-Transformed Number of Eggs from the Beetle 
Mating Experiment with Four Treatments (Factor Treatment) (Example 6.1A)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Treatment 3 1.3751 0.4584 19.254 < 0.001
Residual 36 0.8571 0.0238
Total 39 2.2322

TABLE 6.3

Predicted Treatment Means for Log10-Transformed Numbers of 
Eggs from the Beetle Mating Experiment, with SEM = 0.0488, 
SED = 0.0690 on 36 df (Example 6.1A)

Treatment 1
(P. vit. × Inter)

Treatment 2
(P. vit. × Intra)

Treatment 3
(P. vulg. × Inter)

Treatment 4
(P. vulg. × Intra)

1.513 1.804 1.909 2.008
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We return to the log transformation in Sections 6.3 and 6.4 and discuss alternatives to 
the log transformation for counts in Section 6.5.

6.2.2 Square Roots

The square root transformation, z y= ,  is defined for all non-negative numbers, i.e. posi-
tive numbers and zero (y ≥ 0), and maps onto that same range (z ≥ 0). Hence, it is a poten-
tially useful transformation for any response that can take only non-negative values, but it 
can be particularly appropriate for responses measured as areas, as their square roots can 
be interpreted as being proportional to an average radius or diameter. It can also be used 
as an alternative to a log transformation for positive responses. Like the log transforma-
tion, the square root transformation tends to bring larger values closer together and spread 
smaller ones relatively further apart. However, for the square root transformation this res-
caling is not as strong and so it may be more successful in cases where the log transforma-
tion has over-corrected skewness or variance heterogeneity. The effect of the square root 
transformation in correcting skewness is shown in Figure 6.4. Because this transformation 
is defined for zeros (y = 0), it can be used without an offset when zero responses are pres-
ent. However, some authors have suggested that an offset of c = 0.5 might still be useful in 
this case (see Sokal and Rohlf, 1995).
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6.2.3 Logits

Data in the form of proportions usually (but not always) occur where each experimental 
unit contains a sample of m entities (usually the same number for each experimental unit) 
and the number that fall into a specific category, y, has been counted. For example, we might 
sample 25 weed plants from a field plot and count the number showing herbicide resis-
tance. Such data are usually reported as proportions, p = y/m (for 0 ≤ p ≤ 1), or as percent-
ages, P = 100 × y/m (for 0 ≤ P ≤ 100) and can often be described by a Binomial distribution 
(see Section 2.2.1), for which the variance is directly related to the expected response. For 
this type of response, the logit transformation, defined as z = loge(y/(m − y)) or equivalently 
z = loge(p/(1 − p)) or z = loge(P/(100 − P)), is often applied to remove or reduce the variance–
mean relationship and provide the homogeneity of variance assumed for a linear model.

Occasionally, proportions (or percentages) do not have a direct interpretation as p = y/m. 
For example, computer measurement of the proportion of lesion area on plant leaves works 
on an effectively continuous scale. However, these measurements may display similar pat-
terns of variance heterogeneity so that application of the logit transformation in the form 
z = loge(p/(1 − p)) or z = loge(P/(100 − P)) is still appropriate.

Theoretically, the logit transformation maps from the range (0, 1) onto an unrestricted 
range, but in practice we need consider only the range (−4, 4) for most applications. The 
proportion 0.5 maps onto a logit of zero, with proportions less than 0.5 resulting in negative 
values and proportions greater than 0.5 resulting in positive values. The logit transforma-
tion tends to bring values at the centre of the range (~0.5) closer together and to spread val-
ues at the ends of the range (approaching 0 or 1) relatively further apart. Figure 6.5a shows 
the distribution of proportions obtained as the number of diseased plants out of samples 
of size 25 for a survey of a single variety with mean prevalence of 0.8. Figure 6.5b shows 
the logit-transformed proportions, which are all positive as the original proportions were 
greater than 0.5. The logit transformation has corrected the left-skewness of the untrans-
formed responses by spreading out the larger proportions relative to those closer to 0.5. 
Proportions often show an increased variance for values with an expected response around 
0.5, relative to those nearer to the ends of the scale (in many cases, a property inherited from 
the Binomial distribution), and the logit transformation tends to counteract this property 
and, if we are fortunate, result in homogeneity of variances across the range of the variable.
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The logit transformation has the constraint that it is undefined at the limits of the range, 
i.e. for p = 0 or p = 1 (or P = 0 or P = 100). To avoid the problem that this creates, we might 
compute the proportion from a sample of size m using an offset c as p = (y + c)/(m + 2c). 
This moves the ends of the range symmetrically away from zero and one, as the minimum 
proportion is then c/(m + 2c) (> 0) and the maximum is (m + c)/(m + 2c) (< 1), with the centre 
of the range unmoved, as (m/2 + c)/(m + 2c) = 0.5. The logit transformation can then be cal-
culated directly in terms of the adjusted proportions or percentages or as z = loge[(y + c)/
(m + c − y)]. Here, the offset c is usually chosen to be equal to 0.5 or 1, but other offsets can 
be used. If the responses are recorded as proportions or percentages directly (so p or P is 
known but y and m are not), then the adjusted transformation takes the form z = loge[(p + c)/
(1 + c − p)], or z = loge[(P + c)/(100 + c − P)], where c is chosen to be the minimum of two val-
ues: the difference between 0 and the smallest observation, and the difference between 1 
(or 100 when using percentages) and the largest observation.

The quantity p/(1 − p) is sometimes called the odds, so that the logit transformation cor-
responds to the logarithm of the odds, or log-odds. Results of an analysis with the logit 
transformation are therefore sometimes interpreted in terms of a change in the odds, or 
odds ratios. Whilst this is an interpretation that is commonly used in medical statistics 
and in the betting industry, it is an interpretation that is often difficult to relate to the bio-
logical background of an analysis, and so we generally avoid this form of interpretation.

We discuss alternatives to the logit transformation in Sections 6.2.4 and 6.5.

6.2.4 Other Transformations

Many other transformations have been suggested for data analysis, and these are often 
related to a physical interpretation of the measurement scale. For example, a cube root 
transformation might be considered for volumes, as the transformed response could be 
related to average size in one dimension. Or a reciprocal transformation might be consid-
ered for growth rates measured as mm/day, as the transformed response could be inter-
preted as the number of days required to grow 1 mm. In an ideal case, a transformation 
will give an interpretable physical representation of the response as well as enabling it to 
satisfy the assumptions of the analysis so that the conclusions are valid.
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The family of power transformations, defined as

 z
y= −( )λ

λ
1  for λ ≠ 0 and z = logey for λ = 0 ,

encompasses many of the transformations commonly used for positive responses. The 
parameter λ is known as the power parameter. When λ = 0, 0.5, 1 and −1, the resulting 
transformations are equivalent to a natural logarithm, square root, simple linear trans-
formation and reciprocal transformation, respectively. The Box–Cox transformation 
provides a method for deciding the best power transformation to use to obtain an approxi-
mate Normal distribution, but a full description of this approach is outside the scope of 
this book. For more details, see Sokal and Rohlf (1995).

For proportions or percentages, the most common alternative to the logit is the arcsine, or 
angular transformation, defined as z p= arcsin  or z P= arcsin ./100  Other possibilities 
include the probit and complementary log–log transformations. Further details on these 
alternative transformations can be found in Sokal and Rohlf (1995).

6.3 Interpreting the Results after Transformation

Following the analysis of a transformed response (e.g. Example 6.1A), interpretation of the 
results is often aided if they can be represented on the scale of the original measurements. 
Unfortunately, standard errors and other measures of variability (i.e. SEMs, SEDs and LSDs) 
cannot be back-transformed directly because most transformations impose a non-linear 
re-scaling so that the size of the back-transformed error should differ according to the pre-
dicted value(s) with which it is associated. This means that the comparison of the difference 
between two predictions based on an appropriate SED must be made on the transformed 
scale. However, the limits of confidence intervals for predictions of treatment population 
means or differences (see Section 4.4) derived on the transformed scale can be back-trans-
formed, along with the predicted value, for presentation and interpretation on the original 
scale. Note that whilst confidence intervals on the transformed scale are symmetric about 
the estimated value, they are usually asymmetric on the back-transformed scale.

Formulae for the transformations and back-transformations corresponding to the log, 
logit and square root functions are presented in Table 6.4. Because of the importance of the 
log transformation, we discuss the interpretation of back-transformed predictions from 
the log scale in detail in Section 6.4.

Note that, even when a transformation appears to have been successful, when an offset 
has been included then the back-transformation may lead to estimates outside the valid 
range of the original variable (e.g. negative values for counts, values exceeding one for 
proportions, etc.), which is clearly undesirable. In this case, other methods should be used 
(see Section 6.5).

EXAMPLE 6.1B: BEETLE MATING

Table 6.5 shows back-transformed values of the treatment sample means and 95% 
confidence limits calculated from the formulae in Section 4.4. For example, the 95% 
confidence interval for P. vitellinae × interspecies mating (treatment 1) calculated on 
the log10 scale requires the predicted population mean, its SEM, and the 97.5th per-
centile of the t-distribution with 36 df, given by
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 Treatment
1 36

0 0251 513 0 0488 2 028= = =. ; . ; . .[ . ]SEM   t

The CI is then computed as 1.513 ± (2.028 × 0.0488) = (1.414, 1.612). These limits are then 
back-transformed to give (101.414, 101.612) = (25.9, 40.9). The predicted mean is back-trans-
formed similarly, i.e. 101.513 = 32.6. Note that the back-transformed mean is smaller than 
the midpoint of the confidence interval (which is 33.4), and is slightly smaller than the 
treatment mean calculated from the original data (y1 34 9i = . ,  Table 6.1); this is discussed 
further in Section 6.4.

It is possible to obtain an approximation of the standard errors (SEMs or SEDs) for the 
means on the back-transformed scale. These can be obtained by the delta method, which 
is outside the scope of this book, but is commonly used for non-linear models (for more 
details, see Casella and Berger, 2002). However, there is no warranty that this method will 
provide adequate estimates, and we do not recommend its use in the current context.

6.4 Interpretation for Log-Transformed Responses

In the case where a log transformation is appropriate, so that all assumptions of the 
analysis are met by the log-transformed response, we can interpret the back-transformed 

TABLE 6.4

Common Transformations and Their Inverses (Back-Transformations)

Transformation Description Back-Transformation

z = log10(y) Common logarithm y = 10z

z = loge(y) Natural logarithm y = ez

z = log10(y + c) Common logarithm with offset c y = 10z − c
z = loge(y + c) Natural logarithm with offset c y = ez − c
z = loge(y/(m − y)) Logit y = m ez/(1 + ez)
z = loge[(y + c)/(m − y + c)] Logit with offset c y = [(m + c) ez − c]/(1 + ez)
z = loge[(P + c)/(100 − P + c)] Logit of percentages with offset c P = [(100 + c) ez − c]/(1 + ez)
z = √y Square root y = z2

z = √(y + c) Square root with offset c y = z2 – c

TABLE 6.5

Predicted Means (Middle Value) and Lower and Upper 95% 
Confidence Limits (First and Third Values, Respectively) on 
the Back-Transformed Scale for the Beetle Mating 
Experiment (Example 6.1B)

Mating Type

Interspecies Intraspecies

Species of female P. vit. 25.9, 32.6, 40.9 50.7, 63.6, 79.9
P. vulg. 64.6, 81.1, 101.8 81.2, 102.0, 128.1
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predictions in terms of a multiplicative model. This connection exists because the sum of 
logarithms of two (or more) values is equal to the logarithm of their product, expressed as

 log(a) + log(b) = log(a × b) .

Now consider the CRD model (Equation 4.1) as applied to a loge-transformed response, 
zjk = loge(yjk), which takes the form

 zjk = μj + ejk .

We back-transform this model by applying the exponential function to both sides of the 
equation (see Table 6.4), to get

 exp(zjk) = exp(μj + ejk) . (6.1)

From the original transformation, we know that exp(zjk) = yjk. We can simplify the expres-
sion on the right-hand side further by using the mathematical property that

 exp(a + b) = exp(a) × exp(b) ,

i.e. the exponential of a sum is equal to the product of the exponentials of the components 
of the sum. We can therefore rewrite Equation 6.1 as

 yjk = exp(μj) × exp(ejk) .

This is now a multiplicative model on the natural scale: the components of the model are 
multiplied together rather than added together, with the log transformation providing this 
change in the form of relationship.

The predicted values from this model are the treatment means formed on the loge scale. 
The predicted population mean for the jth treatment is calculated as

 
 z

n
y yj j jk j

k

n

ˆ ,µ = = =
=
∑i i1

1

log ( ) log ( ) e e

which is the natural logarithm of the geometric mean for the jth treatment (here denoted 
 iyj , see Mathematical Aside 6.1). The back-transform of this prediction is therefore simply 
the geometric mean with respect to the original responses for the jth treatment group. One 
characteristic of the geometric mean is that it is always smaller than or equal to the corre-
sponding arithmetic mean. The difference depends on the skewness of the sample: the more 
right-skewed the sample, the larger the discrepancy in these two measures of location. It 
follows that the back-transformed prediction for any treatment will always be smaller than 
the arithmetic sample mean for that treatment in the original data (as in Example 6.1B).

Differences between treatment predictions on the loge scale can be interpreted in terms 
of ratios on the back-transformed scale, as a difference on the loge scale between the jth 
and kth treatments, written as ˆ ˆ ,µ µj k−  is back-transformed as

 exp( ) exp( )/exp( ) /  ˆ ˆ ˆ ˆ ,µ µ µ µj k j k j ky y− = =  i i
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using the general rule that exp(a − b) = exp(a)/exp(b). The back-transformation of a pre-
dicted difference between two treatments on the loge scale is therefore equivalent to the 
ratio of the corresponding geometric means on the untransformed scale. We can also 
interpret the confidence interval (CI) for a difference in population means on the back-
transformed scale. The limits of a 100(1 − αs)% CI take the form

 
( ) , ( ,, ,µ µ µ µ   j k j k j k j k− − −( )LSD ) + LSD  

with back-transform

 
exp( ) exp( ), exp( ) exp( ) ., ,µ µ µ µ   j k j k j k j k− − ×( )/ LSD LSD  

The quantity exp(LSDj,k) can therefore be interpreted as a multiplicative factor giving a 
range of plausible values on the original scale in terms of a percentage decrease or increase. 
This is illustrated in Example 6.1C.

If the underlying physical process is multiplicative, then the log transformation maps 
this onto an additive form, congruent with the form of the linear model. It is fairly 
common to find that an interaction that is statistically significant on the original scale 
becomes non-significant on the log scale. The logit transformation may play a similar 
role in transforming proportions or percentages onto a scale where an additive model 
is more appropriate.

Similar properties hold for log transformation to any base by substituting in the appro-
priate back-transformation function, for example, for the log10 transformation, substitute 
the function 10z in place of exp(z).

EXAMPLE 6.1C: BEETLE MATING

The results from the transformed analysis in Example 6.1A indicate that there are differ-
ences between treatments – we now wish to interpret these differences with respect to 
a multiplicative model. On the log10 scale, the difference between the predicted popula-
tion means (Table 6.3) for P. vulg. × intraspecies mating (treatment 4) and P. vit. × inter-
species mating (treatment 1) is

 Treatment Treatment 
4 1 2 008 1 513 0 496− = − =. . . . 

As expected, the back-transform of this difference (100.496 = 3.13), is equivalent to the 
ratio of the geometric means on the original scale for each treatment (Table 6.1), with

 




i

i

y
y

4

1

102 0
32 6

3 13= =.
.

. . 

We therefore estimate that, on average, when both were mated with P. vulgatissima 
males, P. vulgatissima females laid 3.13 times as many eggs as P. vitellinae females.

The SED on the log10 scale is 0.0690 with 36 df, and t36
0 025 2 028[ . ] .=  (Example 6.1B), so the 

5% LSD is equal to SED × = × =t36
0 025 0 0690 2 028 0 1399[ . ] . . . . We can calculate a 95% CI for 

this difference on the transformed scale as

 Treatment Treatment 
4 1 0 496 0 1399 0 356 0 636−( ) ± = ± =LSD  . . ( . , . ) ,
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with back-transform (100.356, 100.636) = (2.27, 4.32). The back-transform of the LSD is 
100.1399 = 1.38, and it is straightforward to verify that the CI limits are equal to the back-
transformed difference (3.13) divided or multiplied by 1.38 (an increase to 138% or 
decrease to 100/1.38 = 72% of the predicted value). Our 95% confidence interval there-
fore states that P. vulgatissima females lay between 2.27 and 4.32 times as many eggs as 
P. vitellinae females when both are mated with P. vulgatissima males.

We shall return to this example in Chapter 8 where we look at the structure of the four 
treatments in more detail.

Mathematical Aside 6.1

The geometric mean for the jth treatment group with replication n is defined as

  …iy y y y yj j j jn
n

jk

k

n

n= × × × =
=
∏( ) ,/

1 2
1

1

where the symbol ‘Π’ denotes the product of the values over the specified indices. It fol-
lows that the arithmetic mean of log-transformed values is equal to the logarithm of the 
geometric mean of the untransformed values, or

 
1 1 1

1

1 2

1
n

y
n

y y y
n

yjk

k

n

j j jn jk

k

n

log( ) log( ) log l= × × × =








 =

= =
∑ ∏… oog log( ) y yjk

k

n

n j

=
∏












=

1

 i . 

6.5 Other Approaches

If a transformation is successful, so that all the assumptions of the analysis are satisfied, 
with good residual plots produced, then the results are likely to be reliable. However, in 
many circumstances this is not achievable. Some common situations where transforma-
tion is unlikely to be unsuccessful include

• Counts with many small or zero values
• Proportions calculated with respect to small samples (< 10)
• Proportions (or percentages) with many values at or close to the limits 0 or 1 (0 or 100)
• Proportions calculated with respect to samples of different sizes

In these cases, there is a better alternative to the use of transformations, which is the use 
of generalized linear models (GLMs) based on the assumption of a distribution other than 
Normal for the response. For example, insect counts might be assumed to follow a Poisson 
distribution which is defined for zero and positive integers, and is characterized by a vari-
ance equal to the expected response (so that as the mean increases so does the variance). 
When proportion responses have been calculated with respect to a sample of entities, the 
original counts might be assumed to follow a Binomial distribution. GLMs provide a flex-
ible framework of models that use one of several statistical distributions for the response 
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(including the Normal) and can take all features of the data into account. They also have 
the advantage that transformation of the model to an additive scale can be made indepen-
dently of distributional assumptions (McCullagh and Nelder, 1989).

In other cases, there might be no simple alternative approach. In these cases, particularly 
when the sample size is small, so that it is difficult to deduce what distribution the response 
might follow, or when the responses are ranks or scores, it might be preferable not to make 
any distributional assumptions at all, in which case non-parametric methods are appropri-
ate. The permutation tests described in Section 5.2.4 can also be useful in this context.

We postpone a discussion of GLMs until Chapter 18. For now, we simply state that all is 
not lost if your responses do not satisfy, and cannot be transformed to satisfy, the assump-
tions underlying the linear model and ANOVA.

EXERCISES

 6.1 A study was conducted to estimate the abundance of rye-grass on three dif-
ferent sites. At each site, quadrats of size 0.1 m2 were randomly placed (12 at 
sites 1 and 2, and 24 at site 3) and the number of rye-grass plants in each quad-
rat was recorded. The unit number (DQuadrat), site (factor Site) and rye-grass 
count (variate Count) for each quadrat are in file ryegrass.dat. The objective 
of the study was to determine whether the abundance of rye-grass differed 
among the three sites. Plot the observed data and analyse them using a one-
way ANOVA. Are there any indications that the data require transformation? 
Analyse the data on an appropriate alternative scale. Is there any evidence of 
site differences?*

 6.2 A pilot study investigated the pattern of an insect pest (beetle) entering a suscep-
tible field crop. It was suspected that the beetles entered the crop from the edge 
of the field and then progressed towards the centre. One field was surveyed 
periodically and, once the beetles were present in reasonable numbers, a tran-
sect was taken from the edge towards the centre of the field with samples taken 
at 2 m intervals. At each distance, beetle counts were made from four randomly 
selected plants, giving replicate measurements at each distance. The file tran-
sect.dat contains the unit numbers (DPlant), distances (factor fDist) and beetle 
counts (variate Count). Analyse these data, using a transformation if necessary, 
to investigate whether there is any evidence that beetle numbers vary between 
sampling distances. What other hypotheses might you like to test?

 6.3 A field experiment was carried out to investigate the effects of amount and tim-
ing of sulphur application on the level of scab disease in potatoes (Cochran and 
Cox, 1957, Table 4.1). Three doses of sulphur were used (300, 600 and 1200 lb/
acre) and these were applied in either spring or autumn. Plots with no sul-
phur application were included as controls, giving seven treatments in total. 
The control treatment was replicated eight times and the six sulphur treatments 
each four times in a CRD with 32 plots in a four-row × eight-column layout. 
The average percentage surface area with scab for 100 potatoes per plot is the 
response to be analysed. The unit numbers (Plot), treatments applied (factor 
Treatment) and responses (variate Scab) can be found in file scab.dat. Analyse 
these data on an appropriate scale using one-way ANOVA to compare the seven 

* Data from S. Moss, Rothamsted Research.
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treatments. Is there any evidence that the application of sulphur affects the inci-
dence of scab? (We re-visit these data in Exercises 8.5 and 11.4.)

 6.4 Re-analyse the data of Example 6.1 (Table 6.1 and file beetles.dat) using one-way 
ANOVA with a square root rather than logarithmic transformation. Compare 
the two analyses. Which transformation is most appropriate?

 6.5 An experiment investigated detection of IgG antibodies ingested by parasitoids 
with enzyme-linked immunosorbent assay (ELISA). At the start of the experi-
ment, parasitoids were fed either honey spiked with antibodies or normal honey 
(negative control, labelled Control). Those fed spiked honey were either tested 
immediately afterwards (positive control to check that the antibodies had been 
ingested, labelled Day0) or after one, two or three days (labelled Day1, Day2, 
Day3, respectively), having been fed on normal honey in the interim. The five 
treatments were each allocated at random to 10 parasitoids as a CRD and the 
insect samples were placed into 50 wells of a standard 96-well microplate for 
testing. The resulting optical density readings (variate OpticalDensity) are in 
file parasitoids.dat with the unit number of each parasitoid (DParasitoid) and 
the treatment to which it was allocated (factor Treatment).

   The main aim of the experiment was to assess for how long after ingestion 
the antibodies could be detected, i.e. comparisons between the negative control 
treatment and samples after one, two or three days. Analyse these data appro-
priately using one-way ANOVA and discuss whether this aim can be fully real-
ized. What conclusions can you draw?*

 6.6  The concentrations of several trace metals in a region of the Swiss Jura were 
quantified by a survey of soil samples at 366 sites (Atteia et al., 1994). The metals 
measured (in mg/kg) included cadmium (Cd), chromium (Cr), copper (Cu) and 
zinc (Zn). The full data set was published in Goovaerts (1997). Here, we consider 
a subset of 207 sample points on a square grid with approximately 250 m spac-
ing. The land use at each sample point was classified into one of three catego-
ries (1 = forest, 2 = pasture, 3 = meadow). The unit number (DSample), spatial 
location (x- and y-coordinates in variates X and Y, respectively) and land-use 
category (factor LandUse) for each sample can be found in file metals.dat 
along with the concentrations of each metal at each location (variates Cd, Cr, 
Cu and Zn). Analyse the concentration of each metal on an appropriate scale to 
determine if there are differences among the land types. Are there any metals 
for which you cannot come to a reasonable conclusion? Plot the co-ordinates of 
the spatial locations, and consider how you might look for spatial dependence 
in the residuals. Can you implement your idea? Is there any evidence of spatial 
dependence?†

* Data from M. Torrance, Rothamsted Research.
† Data from R. Webster, Rothamsted Research & previously Ecole Polytechnique Fédérale de Lausanne.
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7
Models with a Simple Blocking Structure

The design principle of blocking, used to control for known or expected heterogene-
ity  (variability) among experimental units, was introduced in Section 3.1.3. The basic 
approach is to group, or block, together sets of experimental units expected to have similar 
responses in the absence of different treatments, and to separate those units expected to 
have different responses. Blocking is frequently used in designed experiments to account 
for heterogeneity due to the location or timing of measurements. For example, in a glass-
house experiment (in the northern hemisphere), we might expect plots closer to the south 
wall of a compartment to be warmer than plots closer to the north wall, and so, we group 
our experimental units based on their distance from the south wall. Similarly, if samples 
have to be processed, but only half can be done in the morning and the remainder done 
in the afternoon, then the morning and afternoon sessions might be used as two blocks to 
guard against systematic differences caused by any change in the background conditions, 
or a change of the experimenter. Blocking is also widely used in observational studies. 
For example, if an ecological study makes observations of the species present on pairs of 
fields (e.g. one growing wheat, another growing oilseed rape) on several farms, then the 
farms can be included as a blocking structure to account for the many expected differ-
ences (caused by a combination of location and management practices) between farms. 
Full specification of an experiment therefore requires knowledge of both the blocking and 
treatments present. In developing ideas for designs with blocking, we consider a single set 
of treatments, which may mean either imposed treatments in a designed experiment or 
groups in an observational study, as in the previous chapters.

The simplest layout that includes some form of blocking is the RCBD which was intro-
duced in Section 3.3.2. In this design, the size of each block is equal to the number of 
treatments, with each treatment occurring exactly once in each block, and with treatments 
allocated at random to the units within each block (i.e. an independent randomization 
for each block). This chapter begins by describing the analysis of data from a RCBD. The 
first step in the analysis is to write down a model for the data (Section 7.1) and to obtain 
estimates of the model parameters (Section 7.2). A simple ANOVA is then used to obtain 
an estimate of the background variation and to test whether there are real differences 
between the treatments or groups (Section 7.3). These results can be combined to examine 
the treatment means together with appropriate estimates of error (Section 7.4). While in the 
analysis of the CRD (Chapter 4), there was only one factor to consider, in the analysis of the 
RCBD, there is a block factor in addition to the treatment factor. It is important to realize 
that within the model, the status of these two factors is different: the block factor is con-
cerned with the structure (heterogeneity) of the units, and corresponds to the structural 
component of the model, while the treatment structure defines the different treatments 
(or treatment combinations) applied to the units, and corresponds to the explanatory com-
ponent of the model (Section 1.3). Hence, the structural component allows us to assess 
different sources of natural variation among the experimental units and the explanatory 
component provides information about the differences in response caused by the different 
treatments, in particular allowing us to estimate the sizes of these differences. Recognition 
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of the different roles played by these two components leads to the idea of a multi-stratum 
ANOVA which makes explicit the separation between them (Section 7.5). The translation 
of the simple ANOVA into a multi-stratum ANOVA can be easily demonstrated for the 
RCBD, with the idea then extended for more complex designs. The benefit of the multi-
stratum ANOVA is that, given the correct specification of the structural and explanatory 
components for an experiment, the correct analysis follows. For example, this enables the 
automatic recognition of sub-sampling or pseudo-replication.

7.1 Defining the Model

In the model for a RCBD, there are now two factors to consider: one defining the block to 
which each experimental unit is allocated, and the other defining the treatment applied to 
each unit. We use a general notation that can be applied to any data set. Suppose there are 
t treatments, with each treatment equally replicated n times, such that there are n blocks, 
each consisting of t units with each treatment occurring once in each block. The simplest 
notation for the RCBD labels each observation by its block (index i) and treatment alloca-
tions (index j). Then yij represents the observation on the jth treatment in the ith block and 
the full set of observations can be denoted as yij, i = 1 … n, j = 1 … t (see Section 2.1 for an 
overview of notation). The total number of observations is N = n × t. Extending the nota-
tion presented for the CRD in Section 4.5, we can write the linear model for the data from 
a RCBD as

 y b eij i j ij= + + +µ τ ,  (7.1)

where μ represents the overall population mean, bi is the effect of the ith block (as a dif-
ference from the overall mean) and τj is the effect of the jth treatment (again as a dif-
ference from the overall mean), with deviations eij reflecting individual variation about 
the population values. In this model, the population mean for the jth treatment can be 
derived as μ + τj. The assumptions about properties of the deviations given in Section 4.1, 
including independence, homogeneity of variances and a Normal probability distribution, 
again apply to this model. As the treatment and block effects are expressed as differences 
from the overall population mean, it follows that they require the constraints Σjτj = 0 and 
Σibi = 0. This is the sum-to-zero parameterization introduced in Section 4.5. Note that we 
use an italic Roman symbol (b) to denote block effects to emphasize that they are part of 
the structural component; we reserve Greek symbols (τ) to denote treatment effects in the 
explanatory component.

Labelling the units by their block and treatment allocation retains the simplicity of the 
notation as introduced for the CRD (Section 4.1), but again, information is lost with regard 
to the experimental layout, i.e. the randomized allocation of treatments to plots within 
blocks. We might alternatively write the model in terms of the block, plot and treatment 
relevant to each unit, but this extended notation is both more cumbersome and introduces 
an element of redundancy (given the design, we do not need to know both the plot number 
and the treatment applied to that plot). Therefore, we continue to use the simpler notation, 
but restate the importance of retaining all information in a data set, i.e. factors  defining the 
blocks and units within blocks, as well as the treatment allocation, so that the full layout 
can be reconstructed when required.
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Using our symbolic notation, we can write the model from Equation 7.1 as

Response variable: Y
Explanatory component: [1] + Treatment
Structural component: Block/Unit

where the variate Y holds the observed response, factor Treatment gives the allocation 
of observations to treatment groups, factor Block gives the allocation of observations to 
blocks and factor Unit labels the units within blocks. The term Block.Unit is associated 
with the deviations, eij. The term [1] was introduced in Section 4.5, and denotes a factor that 
takes value 1 everywhere, and is associated with the overall population mean, μ.

The model in Equation 7.1 is based on the assumption that the expected difference 
between any two treatments is the same in each block. In statistical parlance, we say that 
there is no interaction between blocks and treatments (the term ‘interaction’ is discussed in 
detail in Section 8.2), meaning that the treatment differences are independent of the block 
effects. In some cases, this assumption is not reasonable. For example, if blocks in a field 
experiment are assigned according to the soil’s pH, and the treatments are expected to 
react differently according to the soil’s pH, then strictly, this model – and hence this design 
– is inappropriate for the experiment (although see the remarks at the end of Section 7.3). 
An alternative design for this situation might have two replicates of each treatment within 
each block, allowing for estimation of treatment effects, effects of soil pH and the interac-
tion between these factors, but a full consideration of this design approach is beyond the 
scope of this book (see, e.g. Mead et al., 2012, Chapter 7).

EXAMPLE 7.1A: POTATO YIELDS

A field experiment designed as a RCBD to investigate the effects of four different types 
of fungicides (F1, F2, F3 and F4) on the yield of potatoes compared with untreated plots 
(negative control) was described in Example 3.5. The experiment was laid out as four 
blocks (n = 4) of five plots each (t = 5) with 20 units in total (N = 20). The plot yields are 
shown in field layout in Table 7.1 and can also be found in the file potato.dat, which 
contains blocking factors Block (four levels) and Plot (five levels), treatment factor 
Fungicide (five levels, with labels 1 … 5 corresponding to the control, F1, F2, F3 and F4 
treatments, respectively) and response variate Yield.

The model for these data can be written in the mathematical form of Equation 7.1 as

 Yieldij = μ + Blocki + Fungicidej + eij ,

TABLE 7.1

Field Layout for the Potato Yields Trial with Potato Yield for Each 
Plot (Example 7.1A and File potato.dat)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Block 1 F3
642

Control
377

F2
633

F1
527

F4
623

Block 2 F2
600

Control
408

F3
708

F4
550

F1
604

Block 3 Control
500

F2
650

F3
662

F4
562

F1
606

Block 4 F3
504

F2
567

F1
533

Control
333

F4
667
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with Yieldij representing the yield from the jth treatment in the ith block, Fungicidej 
(j = 1 … 5) representing the effects of control and fungicides F1, F2, F3, F4, respectively, 
and Blocki (i = 1 … 4), representing the effects of the four blocks. As above, μ represents 
the overall population mean and eij is the deviation for the jth treatment in the ith block. 
In symbolic form, this is written as

Response variable: Yield
Explanatory component: [1] + Fungicide
Structural component: Block/Plot

7.2 Estimating the Model Parameters

The parameters associated with the RCBD model in Equation 7.1 are the overall population 
mean, μ, the treatment effects τj, j = 1 … t and the block effects bi, i = 1 … n. The fitted value 
for the ijth observation, i.e. for the jth treatment in the ith block, denoted by ˆ ,yij  consists 
of all components of the model except the deviations, with parameters replaced by their 
estimates, so that

 
ˆ ˆ ˆ ˆ .y bij i j= + +µ τ  

We again estimate the parameters using the principle of least squares (see Section 4.2), 
by minimizing the residual sum of squares (ResSS)

 

ResSS  2 2= − = − − −
== ==
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subject to the constraints on the parameters, Σ i ib = 0 and Σ j jˆ .τ = 0  As a result of this pro-
cedure, the overall population mean, μ, for data from a RCBD is estimated by the sample 
grand mean,

 
ˆ ,µ = y  

and the effect of the jth treatment is estimated by the difference between the sample mean 
for that treatment and the sample grand mean,

 
ˆ ,τ j jy y= −i  

with the dot notation as introduced in Section 2.1. Similarly, the effect of the ith block is 
estimated by the difference between the sample mean for that block and the sample grand 
mean,

 
ˆ .b y yi i= −i  
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The population mean for the jth treatment, denoted as μj, is then estimated as the sum of 
the estimates of the overall mean and the treatment effect, as

 
ˆ ˆ ˆ ,µ µ τj j j jy y y y= + = + − =( )  i i

i.e. the sample mean for the jth treatment. Similarly, the fitted value for each observation 
can be calculated as the sum of the estimates for all components of the model except the 
deviations,

 
ˆ ˆ ˆ ˆ ( ) ( ) .y b y y y y y y y yij i j i j i j= + + = + − + − = + −µ τ i i i i  

Finally, the simple residuals are calculated as the discrepancy between the observations 
and the fitted values, namely

 
ˆ ˆ .e y y y y y yij ij ij ij i j= − = − − +i i  

EXAMPLE 7.1B: POTATO YIELDS

Table 7.2 lists the plot yields classified by blocks and treatments, with the block and 
treatment sample means and the sample grand mean. From these values and the for-
mulae above, we can calculate the parameter estimates. In particular, the estimated 
population means for the treatments are equal to the treatment sample means given 
in Table 7.2. For example, the population mean for the control (treatment 1) is esti-
mated as

 
ˆ ˆ . ( . . ) . .µ µ1 1 562 8 404 5 562 8 404 5= + = + − =Fungicide  

It appears that the mean yields for the four fungicide treatments are similar (between 
567.5 and 629.0) and all are much greater than that for the untreated control (404.5). 
However, to draw sound conclusions about these differences, information on 
the background variation is required to calculate SEDs and hence LSDs for these 
comparisons.

TABLE 7.2

Plot Yields of Potatoes from a RCBD with Block and Treatment Means (Example 7.1B)

Block Control F1 F2 F3 F4 Block Mean ( )yii

1 377 527 633 642 623 560.4
2 408 604 600 708 550 574.0
3 500 606 650 662 562 596.0
4 333 533 567 504 667 520.8
Treatment 
mean ( )yi j

404.5 567.5 612.5 629.0 600.5 y = 562 8.



134 Statistical Methods in Biology

7.3 Summarizing the Importance of Model Terms

As for the analysis of data from a CRD, the aim of ANOVA is to partition the total varia-
tion of the observations, quantified as sums of squares, into several components. For 
the RCBD, there are now two factors classifying the observations, corresponding to the 
blocks and treatments, and the analysis needs to account for the variation due to each 
of these sources. The total variation (TotSS) is therefore partitioned into the variation 
among blocks (BlkSS), the variation among treatments (TrtSS) and the residual variation 
(ResSS), with

 TotSS = BlkSS + TrtSS + ResSS . (7.2)

Because of the difference in status between the block and treatment factors, we describe 
this analysis as one-way ANOVA with blocks (rather than two-way ANOVA, which we 
use to indicate the inclusion of two treatment factors; see Chapter 8). This clearly empha-
sizes the difference in the status of these two components in the model (see Section 7.5).

As for the CRD (see Equation 4.3), the total sum of squares (TotSS) is calculated as the 
sum, over all observations, of the squared differences between each observation and the 
sample grand mean,
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The block sum of squares (BlkSS) measures the variation among blocks, and is calculated 
as the sum, over all observations, of the squared differences between the appropriate block 
mean and the sample grand mean,
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Similarly, the treatment sum of squares (TrtSS) is calculated as the sum, over all observa-
tions, of the squared differences between the appropriate treatment mean and the sample 
grand mean,
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The residual sum of squares (ResSS) is calculated as the sum, over all observations, of the 
squared differences between the observed and fitted values,
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or, by rearranging Equation 7.2, as a simple subtraction of the block and treatment sums of 
squares from the total sum of squares,

 ResSS = TotSS − BlkSS − TrtSS .

Alternatively, the sums of squares can be rewritten in terms of the sums of squared 
estimates

 

BlkSS , TrtSS , ResSS  = = =
= = ==
∑ ∑ ∑∑t b n ei
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Again, as for the CRD, there is a corresponding partition of the total degrees of freedom 
(TotDF) into those associated with variation among blocks (BlkDF), those associated with 
variation among treatments (TrtDF) and the remainder or residual (ResDF), as

 TotDF = BlkDF + TrtDF + ResDF . (7.3)

Using the recipe developed in Section 4.3, we can calculate the df associated with each 
sum of squares. The calculation of the TotSS uses the N = n × t observations (which can be 
described using a model with N parameters) with just the sample grand mean, an estimate 
of a single parameter, used for adjustment; hence

 TotDF = N − 1 .

The calculation of the BlkSS uses block means (n values) adjusted by the sample grand 
mean; so

 BlkDF = n − 1 .

By a similar argument, we have

 TrtDF = t − 1 .

Rearranging Equation 7.3, the ResDF can be most easily obtained by subtraction as

 ResDF = (N − 1) − (n − 1) − (t − 1) = N − n − t + 1 .

Using N = nt, we can also write this as

 ResDF = nt − n − t + 1 = (n − 1)(t − 1) ,

i.e. one less than the number of blocks (n − 1) multiplied by one less than the number of 
treatments (t − 1).

As for the ANOVA for data from a CRD, we can put the sums of squares onto a common 
scale by dividing them by their degrees of freedom to produce mean squares. The residual 
mean square (ResMS) again provides an estimate of the background variation or noise, 
usually denoted as s2. If there are no differences between treatments, then contributions to 
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the treatment mean square arise from background variation alone and the treatment and 
residual mean squares should be of similar sizes, allowing for sampling variation. A simi-
lar argument follows for the comparison of the block mean square with the residual mean 
square if there are no differences between blocks. We can formalize these comparisons by 
considering the expected value of each of the respective mean squares, which are
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SS) = σ2 .

If the true population values of the treatment effects are zero, then the second term in 
the expression for E(TrtMS) is zero and the treatment mean square (TrtMS) has the same 
expected value as the ResMS. Similarly, if the true population values of the block effects 
are zero, then the block mean square (BlkMS) also has the same expected value as the 
ResMS. As for the CRD, this property of the TrtMS is the basis for a test of the null hypoth-
esis of equal treatment population means, written for this parameterization as

 H0: τ1 = τ2 = … = τt = 0 ,

i.e. that all the treatment effects (the differences from the overall population mean) are 
zero. This is compared with the general alternative hypothesis of some non-zero treatment 
effects. The observed F-statistic is calculated as the variance ratio

 Ft−1,(n−1)(t−1) = TrtMS/ResMS .

If the null hypothesis is true, then we expect the value of the variance ratio to be close 
to 1 (because the TrtMS and ResMS have the same expected value) and the test statistic 
follows an F-distribution with t − 1 (TrtDF) and (n − 1)(t − 1) (ResDF) df. If the observed 
statistic Ft−1,(n−1)(t−1) is larger than the 100(1 − αs)th percentile of this F-distribution, then the 
null hypothesis is rejected at significance level αs, and we have evidence of some variation 
among the treatment effects. Alternatively, the observed significance level can be calcu-
lated as

 P = Prob(Ft−1,(n−1)(t−1) ≥ Ft−1,(n−1)(t−1)) ,

where Ft−1,(n−1)(t−1) is a random variable with an F-distribution on t − 1 and (n − 1)(t − 1) df. 
Using analogous reasoning, we can derive a test statistic for a null hypothesis of the 
block effects being equal to zero, using the ratio BlkMS/ResMS. This ratio also has an 
F-distribution under the null hypothesis, now with n − 1 (BlkDF) and (n − 1)(t − 1) (ResDF) 
df. However, we consider that blocks and treatments have a different status within the 
model, with blocks reflecting the experimental structure rather than treatments of interest; 
so, it follows that we might regard tests of hypotheses about block effects differently from 
tests of hypotheses about treatment effects. Treatments are imposed on the experiment 
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specifically to examine the differences between them; so, we always want to test the null 
hypothesis of no treatment differences. Blocks have been used to control inherent varia-
tion among the experimental units; so, we can use the F-statistic for blocks to evaluate the 
extent of this variation, and to help us design future similar experiments.

The information about degrees of freedom, sums of squares, mean squares and variance 
ratios is combined to form a simple ANOVA table for a RCBD as shown in Table 7.3.

EXAMPLE 7.1C: POTATO YIELDS

Using the formulae presented earlier for sums of squares and for degrees of freedom, 
the ANOVA table for this trial takes the form shown in Table 7.4.

At this stage, we should validate the analysis using the residual plots described in 
Section 5.2. A composite set of residual plots using standardized residuals is shown in 
Figure 7.1. The Normal plot shows a reasonably straight line, and the histogram is not 
inconsistent with a Normal distribution (although note that with relatively few observa-
tions, the histogram provides a fairly poor diagnostic tool here). The fitted values plot 
has a slight suggestion of smaller variances for smaller fitted values, but this is difficult 
to judge because there are few observations in that region of the plot. Note that in the 
RCBD, the fitted values do not directly correspond to the treatment groups (as they do 
in the CRD) because both block and treatment effects contribute to the fitted values. 
We judge these plots to be acceptable and move on to interpret the analysis and draw 
conclusions.

The observed significance level (P) for the Fungicide variance ratio is obtained by 
comparison of the treatment variance ratio (F4,12 = 9.576) with the quantiles of the 
F-distribution with 4 (TrtDF) and 12 (ResDF) degrees of freedom. Here, P = 0.001, indi-
cating that the observed treatment differences are very unlikely to have happened by 
chance if the null hypothesis is true; hence, we reject the null hypothesis at the 0.1% 
significance level and conclude that there are real differences among the set of treat-
ment means.

TABLE 7.3

Structure of the ANOVA Table for a RCBD with n Blocks (Factor Block) and t Treatments (Factor 
Treatment), and N = n × t Observations in Total (Observed Significance Levels Omitted)

Source of Variation df Sum of Squares Mean Square Variance Ratio

Block n − 1 BlkSS BlkMS = BlkSS/(n − 1) BlkMS/ResMS
Treatment t − 1 TrtSS TrtMS = TrtSS/(t − 1) TrtMS/ResMS
Residual (n − 1)(t − 1) ResSS ResMS = ResSS/(n − 1)(t −1)
Total N − 1 TotSS

TABLE 7.4

ANOVA Table for Potato Yields Trial Set Up as a RCBD with Four Blocks (Factor Block) and 
Five Treatments (Factor Fungicide) (Example 7.1C)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Block 3 14,987.20 4995.73 1.434 0.283
Fungicide 4 133,419.20 33,354.80 9.576 0.001
Residual 12 41,796.80 3483.07
Total 19 190,203.20
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The observed significance level associated with the Block variance ratio (F3,12 = 1.434) 
is P = 0.283; so, the test statistic is consistent with the null hypothesis of no block dif-
ferences. Even so, the BlkMS is larger than the ResMS; so, taking account of the block 
heterogeneity has reduced the ResMS, which in turn increases the precision of treatment 
comparisons. For this particular experiment, the advantage of using a RCBD instead of 
a CRD was small (based on a comparison of the relative sizes of the BlkMS and ResMS). 
However, field trials are notoriously heterogeneous; so, it would be unwise to use this 
result to abandon blocking for future similar experiments – sensible use of blocking still 
provides insurance against unit-to-unit heterogeneity. In other contexts, if prior knowl-
edge or further experimentation indicated that there was generally little advantage in 
blocking for the type of experiment, then it would be sensible to weigh up the possible 
benefit of blocking against the cost in degrees of freedom – the reduction in ResDF could 
have a detrimental impact on the power of the experiment to detect treatment differ-
ences of interest. These issues are discussed further in Chapter 10.

One feature of the RCBD is that the two classifying factors – Treatment and Block – are 
orthogonal or independent. The mathematical definition of orthogonality is beyond the 
scope of this book (see, e.g. Bailey, 2008), but we can give some general intuitive insight 
into this property. If two factors are orthogonal, then the same ANOVA table is obtained 
regardless of the order in which the terms are fitted, and comparisons between the levels 
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Composite set of residual plots using standardized residuals from the potato yields trial (Example 7.1C).
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of one factor are unaffected by the levels of the other factor. This has the advantage that 
interpretation of the ANOVA table is unambiguous. Examples and consequences of non-
orthogonality are discussed in Chapter 11.

Mathematical Aside 7.1

We can use the form of the model to gain further insight into this idea of orthogonality. 
For the RCBD, the treatment population means are estimated by the treatment sample 
means. We can derive an expression for the treatment sample means from the model for 
individual observations (Equation 7.1) by simply substituting the right-hand side of that 
equation for yij in the expression y yj n i

n
iji = =

1
1Σ , giving

 y
n

b ej i j ij

i

n

i = + + +
=
∑1

1

( ) .µ τ  

Expanding the summation for each term separately simplifies the expression to give

 y
n

b
n

ej i

i

n

j ij

i

n

i = + + +
= =
∑ ∑µ τ1 1

1 1

 ,

and applying the constraint Σ i
n

ib= =1 0,  which we built into the model, causes the block 
effects to be removed from the expression, leaving

 y ej j ji i= + +µ τ  .

So, because each treatment occurs once within each block, the treatment means do not 
depend on the block effects, and hence, the treatment means (and estimated treatment 
effects) are independent of (i.e. orthogonal to) the block effects. A similar derivation can 
be obtained for block sample means, and because each block contains one instance of each 
treatment, block means are independent of treatment effects.

One assumption underlying the RCBD model (Section 7.1) is that there are no interac-
tions between blocks and treatments, i.e. that the expected treatment differences are the 
same in all blocks. This assumption is required for an unambiguous analysis, as it is not 
possible to separate the block × treatment interaction from the model deviations in this 
design. However, it is technically possible to use the Treatment factor as a substitute for 
the Unit factor in the model specification, because the Block.Treatment combinations also 
uniquely label the full set of observations, and then the residual line in the ANOVA table 
may be labelled as Block.Treatment. We believe that the potential confusion caused by this 
approach makes it imperative to retain and use the full set of structural factors in each data 
set, and this is the reason why we use dummy structural factors where the true allocation 
is not available. In some situations, the presence of a block × treatment interaction cannot 
be discounted and may be expected to be much larger than the deviations from other 
sources (individual variation, measurement error, etc.). In this case, the residual error line 
in the ANOVA table might be legitimately labelled as Block.Treatment, and the Treatment 
variance ratio can then be considered as evaluating the consistency of the treatment effects 
across the set of conditions represented by the blocks.
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7.4 Evaluating the Response to Treatments

The best estimate of the population mean for the jth treatment (denoted as μj) was identi-
fied in Section 7.2 as the treatment sample mean, i.e. ˆ .µ j jy= i  Uncertainty associated with 
this estimate is measured by its estimated SE, the SEM,

 
SEM SE( )

 
 = = ˆ  ,µ j

s
n

2

with the estimate of background variation, s2 = ResMS, in place of the unknown true value, 
σ2. In this case, as all the treatments have equal replication, their SEs are also equal. As for 
the CRD, a 100(1 − αs)% confidence interval for the population mean of the jth treatment 
can be calculated as

 ( , )( )( ) ( )( )µ µα α 
j n t j n t− × + ×− − − −[t SEM] [t SEM]  [ /2] [ /2]s s

1 1 1 1 ,,

where t[ /2]s
( )( )n t− −1 1
α  is the 100(1 − αs/2)th percentile of the t-distribution with (n − 1)(t − 1) df.

The best estimate of a difference between two treatment population means is the 
difference between the two treatment sample means, for example, for the jth and kth 
treatments,

 µ µ 
j k j ky y− = −i i  .

The estimated standard error of this difference (denoted SED) takes the form

 
SED SE  = ( )  , µ µ 

j k
s
n− = 2 2

and again is the same for any pair of treatments. Under the null hypothesis that the popu-
lation means of the jth and kth treatments are equal, i.e. H0: μj = μk, the statistic

 
t

SED SED
 ( )( ) ,n t

j k j ky y
− − =

−
=

−
1 1

µ µ 
i i

has a t-distribution with degrees of freedom equal to the ResDF, as denoted by its sub-
script. This statistic can be compared with the quantiles of this t-distribution to test 
the null hypothesis against a one- or two-sided alternative. A 100(1 − αs)% confidence 
interval for the difference between the population means for these treatments can be 
computed as

 (( ) LSD ( ) LSD) ,ˆ ˆ , ˆ ˆµ µ µ µj k j k− − − +

where LSD t SED[ ]s= ×− −( )( )
/

n t1 1
2α  is the least significant difference at significance level αs.
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EXAMPLE 7.1D: POTATO YIELDS*

From the ANOVA table obtained earlier (Table 7.4), the background variation is esti-
mated as s2 = ResMS = 3483.07. The treatment sample means were shown in Table 7.2. 
There are four blocks, n = 4; so, the standard errors of the means are equal to

 
SEM  = = = = 

.
. . ,

s
n

2 3483 07
4

870 77 29 51

with the SED for any pair of treatments equal to

 
SED . . . .= = × = =2 2 3483 07

4 1741 53 41 73
2s

n  

The residual df is 12; so, for αs = 0.05, t12
0 025 2 179[ . ] .=  with LSD = 90.93. Confidence inter-

vals can be derived from these values as shown in Examples 4.1D and E. It is clear 
that each of the fungicide treatments gives a statistically significant improvement in 
yield compared with the untreated control, but there appears to be little real difference 
among the four fungicide treatments.

7.5 Incorporating Strata: The Multi-Stratum Analysis of Variance

We use the term structural component to encompass all the structure within the set of 
observations. The structural component therefore includes both blocks imposed by the 
experimenter (e.g. units with similar time of processing, spatially grouped units within 
a field), and any other structure within the experiment (e.g. the nesting of fields within 
farms, or aphids within cages), including the sub-sampling of individual units (e.g. plants 
within a field plot) sometimes referred to as pseudo-replication.

The simple ANOVA table derived in Section 7.3 does not make any distinction between 
the explanatory and structural components of the model. The multi-stratum ANOVA table 
is an alternative, and more general, form that preserves the distinction between terms 
describing the underlying structure of the data (structural component) and those indicating 
the treatments applied (explanatory component). Again, the formal mathematical definition 
of strata is beyond the scope of this book (see, e.g. Bailey, 2008), but strata can be informally 
regarded as the different structural sources of variability among the experimental units (see 
also Section 3.2). Each term in the structural component generates a stratum; so, the RCBD 
has two strata: one corresponding to variation between blocks (generically the Block term), 
and one corresponding to variation between units within blocks (the Block.Unit term). If 
we sub-sample within units, then this adds another stratum, as in the following example.

EXAMPLE 7.2A: POTATO YIELDS USING ROW DATA

Each plot of the RCBD potato fungicide trial (described in Example 7.1A) consisted of 
four rows, and the means of the measurements from these four rows were used as the 
yield observations in the previous analysis. The individual row yields are also available, 
giving a new data set with 80 observations. The field layout is shown in Table 7.5.

Guard rows were planted so that edge effects were absent, and row effects were 
expected to be local so that rows can be reasonably regarded as nested within plots. 
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To fully describe the structure of this data set, a new factor Row is required to specify 
the allocation of observations to rows within plots, in addition to the factors Block and 
Plot. A model for these data can be written as

 RowYieldijk = μ + Blocki + Fungicidej + Block.Plotij + eijk ,

where RowYieldijk is the yield obtained from the kth row (k = 1 … 4) in the plot with the 
jth treatment (j = 1 … 5) in the ith block (i = 1 … 4). The overall mean, μ, is now the popu-
lation mean with respect to row yields, Blocki is the effect of the ith block and Block.Plotij 
is the effect of the plot with the jth treatment in the ith block. The deviations, eijk, now 
correspond to observations on rows nested within plots, which are in turn nested within 
blocks. This three-level nested structure is denoted in symbolic form as

Structural component: Block/Plot/Row

which can be expanded to individual model terms as

Structural component: Block + Block.Plot + Block.Plot.Row

In this case, there are three strata, which correspond to blocks (Block), plots within 
blocks (Block.Plot) and rows within plots (Block.Plot.Row), with the latter term corre-
sponding to the model deviations. This illustrates a case where the blocking structure 
reflects both blocks imposed by the experimenter and other structure, in this case, the 
presence of rows within plots.

TABLE 7.5

Field Layout for the Potato Yields Trial Showing Individual Row Yields (Example 
7.2A and File potatorow.dat)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Block 1 Treatment F3 Control F2 F1 F4
Row 1 720 348 652 635 642
Row 2 528 405 658 512 639
Row 3 678 364 569 536 642
Row 4 642 391 653 425 569

Block 2 Treatment F2 Control F3 F4 F1
Row 1 554 411 682 639 583
Row 2 618 374 741 544 530
Row 3 621 396 712 521 629
Row 4 607 451 697 496 674

Block 3 Treatment Control F2 F3 F4 F1
Row 1 561 555 638 505 598
Row 2 491 633 712 597 620
Row 3 429 715 633 607 596
Row 4 519 697 665 539 610

Block 4 Treatment F3 F2 F1 Control F4
Row 1 451 513 441 367 631
Row 2 493 626 467 319 618
Row 3 535 574 701 361 689
Row 4 537 555 523 285 730
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The multi-stratum ANOVA approach results in an ANOVA table with separate compo-
nents for each of the strata defined by the blocking structure. The variation within each 
stratum (i.e. at each level of the design) is then partitioned into sums of squares associ-
ated with the treatments that vary between units at that level of the design (if any) and a 
residual term. For example, the simple ANOVA table for the RCBD can be rewritten in the 
form shown in Table 7.6.

This ANOVA table has two strata, corresponding to the Block and Block.Unit terms in 
the structural component. The data in the Block stratum correspond to block totals calcu-
lated after subtraction of (i.e. adjustment for) the sample grand mean. This is sometimes 
referred to as inter-block information. Since every treatment has been applied once in each 
block, block differences cannot be attributed to treatment differences (see below for a more 
mathematical argument). So, variation in the Block stratum consists of only a residual 
term representing the background variation between blocks – which is exactly the same 
interpretation of the block sum of squares (BlkSS) as seen earlier. The data in the Block.
Unit stratum correspond to the original observations adjusted for the relevant block means, 
sometimes referred to as intra-block information. In this stratum, every unit within a block 
has a treatment different from others, and so, variation between units includes variation 
due to treatments; hence, some variation within this stratum can be attributed to treatment 
differences. The Block.Unit stratum variation is thus partitioned as variation due to treat-
ments (TrtSS) plus residual variation (ResSS).

Mathematical Aside 7.2

To establish in which strata different treatment effects are estimated, you should consider 
the form of data within each stratum of the design. In general, data at the top level of a 
structure correspond to unit totals within that stratum, calculated after subtraction of the 
sample grand mean; for example, for the RCBD, data in the Block stratum are the mean-
adjusted block totals, calculated as

 ( ) , .y y y ty y
n

y i nij

j

t

i i− = − = − =
=
∑

1

1
1i i ii …for  

At the next level down, data again correspond to unit totals within the stratum, calcu-
lated after subtraction of the means corresponding to units in higher strata; for example, 

TABLE 7.6

Structure of the Multi-stratum ANOVA Table for a RCBD with n Blocks (Factor Block), t Units per 
Block (Factor Unit), t Treatments (Factor Treatment) and N = n × t Observations in Total

Source of Variation df Sum of Squares Mean Square Variance Ratio

Block stratum
Residual n − 1 BlkSS BlkMS = BlkSS/(n − 1) BlkMS/ResMS

Block.Unit stratum
Treatment t − 1 TrtSS TrtMS = TrtSS/(t − 1) TrtMS/ResMS
Residual (n − 1)(t − 1) ResSS ResMS = ResSS/(n − 1)(t − 1)

Total N − 1 TotSS



144 Statistical Methods in Biology

for the RCBD, data in the Block.Unit stratum are the observations adjusted for the block 
means

 y y y
t

y i n j tij i ij i− = − = =i i … …
1

1 1, , .for     

The data in each stratum can then be written algebraically in terms of model parameters 
by substitution of the model formula in place of the response values. When treatment 
effects are present in the algebraic expression for data within a particular stratum, it fol-
lows that there is information on these treatments within that stratum.

For the RCBD, the underlying model is given in Equation 7.1, and the expression for the 
mean-adjusted block totals can therefore be rewritten, after substitutions based on this 
model, as
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with the inbuilt model constraints ∑ibi = 0 and ∑jτj = 0 used to simplify the expression. This 
expression does not involve the treatment effects, and so, this stratum does not contain 
information about treatment differences. Variation at this level is related to block effects 
and the deviations. Similarly, the adjusted observations in the lower stratum (units within 
blocks) can be written as
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again with the constraints used to simplify the expression. Units within a block clearly 
have different treatments applied, and this expression confirms that unit differences do 
hold information on treatment differences.

The multi-stratum ANOVA table for the RCBD rearranges the simpler form to reflect the 
structure of the experiment. However, the great advantage of the multi-stratum ANOVA 
is the recognition of the interplay between the blocking and treatment structures so that 
treatment effects are always allocated to the correct strata, and an appropriate measure 
of precision can be calculated for the comparison of treatment means, with the correct 
degrees of freedom. One example where this can be particularly important is where 
pseudo-replication is present in the structure (see Section 3.1.1), for example, where sub-
sampling or technical replication (several measurements per experimental unit) have been 
used to reduce measurement error. An example of this situation is presented below.

EXAMPLE 7.2B: POTATO YIELDS USING ROW DATA

Here, we analyse the individual row data (see Example 7.2A) as presented in Table 7.5. 
The full data set, including classifying factors Block, Plot and Row, can also be found 
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in file potatorow.dat. The multi-stratum ANOVA table for these data, corresponds to 
the model

Response variable: RowYield
Explanatory component: [1] + Fungicide
Structural component: Block/Plot/Row

This ANOVA table is in Table 7.7 and has three strata corresponding to blocks (Block), 
plots within blocks (Block.Plot) and rows within plots (Block.Plot.Row). Treatments 
 (factor Fungicide) are applied to plots; so, treatment differences are estimated from 
the differences between plots, and the TrtSS is a component of the variability within the 
Block.Plot stratum. The Block, Fungicide and Block.Plot residual sums of squares are 
equal to four times the BlkSS, TrtSS and ResSS from the analysis of plot means given 
in Example 7.1C. This multiplication by four for each term is due to the presence of four 
observations from each plot (i.e. from the four separate rows). As the degrees of freedom 
in the Block and Block.Plot strata are the same as in Table 7.4, the variance ratios for 
the Block residual and Fungicide terms are preserved. The conclusions with respect to 
the treatments are thus unchanged. Since treatments are applied to plots, the Block.Plot 
residual mean square (and not the Block.Plot.Row residual mean square) is the appropri-
ate measure of background variation for estimates of Fungicide SEMs, SEDs and LSDs, 
with degrees of freedom equal to the residual df from the Block.Plot stratum.

As an illustration of the importance of specifying the correct blocking structure, sup-
pose that the presence of sub-sampling was ignored, and that only the block and treat-
ment factors (Block and Fungicide) were specified in the analysis. This would lead to 
the simple ANOVA presented in Table 7.8.

TABLE 7.7

Multi-stratum ANOVA Table for Potato Yields Trial Using Yields from Four Rows (Factor Row) 
per Plot (Factor Plot) (Example 7.2B)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Block stratum
Residual 3 59,948.80 19,982.93 1.434 0.283

Block.Plot stratum
Fungicide 4 533,676.80 133,419.20 9.576 0.001
Residual 12 167,187.20 13,932.27 4.474  < 0.001

Block.Plot.Row 
stratum
Residual 60 186,848.00 3114.13

Total 79 947,660.80

TABLE 7.8

Incorrect ANOVA Table (Ignoring Strata) for Potato Yields Trial Using Individual Row 
Yields (Example 7.2B)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Block 3 59,948.80 19,982.93 4.064 0.010
Fungicide 4 533,676.80 133,419.20 27.133 < 0.001
Residual 72 354,035.20 4917.16
Total 79 947,660.80
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Omission of information on the full structure (rows within plots within blocks) means 
that the two lower levels of background variation (due to plots within blocks, and rows 
within plots) cannot be separated and are combined in the analysis. This leads to an 
estimate of the background variation to be used for treatment comparisons that is much 
smaller than it should be (a residual mean square of 4917 rather than 13,932), with many 
more residual degrees of freedom (72 instead of 12). This is typical of a situation where 
pseudo-replication is ignored. Hence, compared with the correct analysis, the Block 
and Fungicide variance ratios are inflated, and treatment SEMs, SEDs and LSDs are 
greatly underestimated, leading to incorrect inferences.

In multi-stratum ANOVA tables, it is possible to test the null hypotheses associated with 
the structural terms using comparisons between nested strata. For example, in Example 
7.2B, we can test whether there is any evidence of non-zero plot effects by comparing the 
residual mean square from the Block.Plot stratum with that from the Block.Plot.Row stra-
tum. As stated previously, this is usually a side issue in the analysis, although the informa-
tion may be useful when designing further experiments.

We take the opportunity to restate here that to preserve the distinction between the 
explanatory and structural components, it is necessary to store factors associated with both 
of these components within a data set. Although it is often possible to obtain the correct 
analysis without doing this, we believe that this loses information on the exact experimen-
tal layout and can lead to unnecessary confusion (see comments at the end of Section 7.3).

Unfortunately, the multi-stratum ANOVA table can be formed only when the explanatory 
and structural components obey certain conditions of balance, and the details are further 
discussed in Chapters 9, 11 and 16. The simplest case occurs when block and treatment 
factors are orthogonal as in the RCBD (see Section 7.3), so that each term can be estimated 
independently of the other.

EXERCISES

 7.1 A controlled environment experiment to compare the effect of a diet on weight 
of three aphid species was conducted using a RCBD with three blocks.

 a. What are the null and alternative hypotheses for this experiment?
 b. Construct the ANOVA table given that BlkSS = 0.00317, TrtSS = 0.35106 and 

TotSS = 0.36195.
 c. What is the appropriate F-distribution for the treatment variance ratio under 

the null hypothesis? What is the 5% critical value from this distribution?
 d. Would we accept or reject the null hypothesis?
 7.2 A field trial to test the response of a crop to five fertilizer treatments (0, 50, 100, 

150 and 200 kg/ha of N) was designed as a RCBD with four blocks of five plots 
(factors Block and Plot, respectively). The yield at harvest was recorded for each 
plot. The file fertilizer.dat contains the unit numbers (ID), structural factors 
(Block, Plot), applied rates of N (factor N) and the yields (variate Yield).

 a. Write down a mathematical model for the yields.
 b. Construct a multi-stratum ANOVA table by calculating the total, block, 

treatment and residual sums of squares and df and then deriving the other 
columns. Is there any evidence of differences in yield among the fertilizer 
treatments?
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 c. Calculate the estimated mean for each treatment.
 d. Calculate the LSD at the 5% level for the difference between any two treat-

ment means and use it to compare the yields obtained for 150 and 200 kg of 
N applied.

 e. Use residual plots to check whether the model assumptions are reasonable.
 f. Write a short summary of the results of the analysis.
 7.3 A 2-year field experiment investigated the effects of soil cultivation on the activ-

ity of beneficial arthropods. Plots of winter oilseed rape were laid out as a RCBD 
with five blocks of three plots. Three soil cultivation treatments were to be com-
pared: ploughing in both years, minimum tillage in both years and minimum 
tillage in year 1 followed by ploughing in year 2. We consider data from the 
first season, when the latter two treatments were equivalent resulting in two 
first-year treatments ‘plough’ (n1 = 5, one plot per block) and ‘minimum tillage’ 
(n2 = 10, two plots per block). The accumulated catch of three pitfall traps per 
plot during a 3-month period was recorded for various arthropod species; here, 
we analyse counts of spiders of the taxa Oedothorax. The plot-level unit numbers 
(ID), structural factors (Block, Plot), treatments applied (factor Treatment) and 
the total count data (variate PlotCount) can be found in the file oedoplot.dat.*

 a. Use multi-stratum ANOVA to determine whether these soil cultivation 
methods affect spider numbers. Obtain the standard errors for each treat-
ment mean and the standard error of the difference between the two means 
(you will need to take into account the differing replication, as in Section 
4.4). Produce and interpret a composite set of residual plots.

 b. The trap-level unit numbers (ID), structural factors (Block, Plot and Trap), 
treatments applied (factor Treatment) and individual counts from the 
three pitfall traps in each plot (variate TrapCount) can be found in file 
oedotrap.dat. Obtain the multi-stratum ANOVA table and residual plots 
for these data. Compare and contrast your results here with those obtained 
in part (a) and discuss any differences.

 7.4 A controlled environment experiment investigated the impact of inoculation 
rate on leaf symptoms in oilseed rape. Four rates of inoculation were chosen 
(0.4, 4, 40 and 400) and each rate was tested on six oilseed rape cultivars. The 
experiment was carried out in three runs. In each run (or occasion), the 24 
treatments were randomly allocated to 24 single plants in pots, and the aver-
age percentage area of leaf infected from two leaves per plant was recorded. 
The unit numbers (ID), structural factors (Occasion, Pot), explanatory factor 
(Treatment) and responses (variate PInfected) can be found in file inocula-
tion.dat. Analyse these data on an appropriate scale using ANOVA accounting 
for blocks and the set of 24 treatments. Is there any evidence that the area of leaf 
infected differs among 24 treatments? (We re-visit these data in Exercise 8.1.)†

* Data from A. Ferguson, Rothamsted Research.
† Data from N. Evans, Rothamsted Research.
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8
Extracting Information about Treatments

In previous chapters, where the principles of designing experiments and several different 
designs were introduced, the focus was on understanding and specifying the structure of 
the experimental units, i.e. the structural component of the model. In all of these situations, 
the explanatory component of the model, consisting of two or more treatment groups, has 
been represented using a single factor. Testing the null hypothesis of ANOVA allows us to 
answer the broad question of whether the treatments differ from one another, but usually 
we are interested in more structured comparisons between treatments, and investigating 
these is the subject of this chapter.

The process of treatment selection begins with specification of the biological questions 
to be answered or hypotheses to be tested by the experiment, which in turn suggests a set 
of experimental treatments. Comparisons between these treatments can be turned into sta-
tistical hypotheses, so that it is clear which questions can be answered by statistical analy-
ses. Often several different sets of treatments might be considered, each of which enables 
slightly different questions to be answered, and statistical considerations such as efficiency 
and precision can help to choose between the different sets. The role of statistical evalua-
tion is therefore important even during the preliminary planning stages of an experiment. 
It is also helpful to realize that it is possible, and usually desirable, to address more than 
one hypothesis within a single experiment, and to appreciate that different aspects of a 
statistical analysis will be appropriate to address different types of question. For example, 
consider an experiment set up as a RCBD to compare the effects of three increasing doses of 
growth regulator with a control treatment (no regulator applied). The question of whether 
growth regulator affects yield can be directly answered by an F-test from an ANOVA table, 
but the more important question of how growth regulator affects yield is best addressed 
by examination of the pattern of response to dose.

In this chapter, we examine ways of translating questions about a set of treatments into a 
statistical analysis. Here, we do not emphasize the structure of the experiment, but remem-
ber throughout that specification of the correct structural model is required to obtain the 
correct analysis. The structure of this chapter is summarized in Table 8.1.

This chapter begins with an overview of several common types of question and the cor-
responding structure used for their statistical analysis (Section 8.1). We are often interested 
in comparisons relating to distinct factors underlying the set of treatments. The complete 
definition, analysis and interpretation of a crossed structure for two factors are described 
(Section 8.2) and then extended to three or more factors with the emphasis on interpretation 
(Section 8.3). In some circumstances, a nested structure is more appropriate (Section 8.4), and 
this structure can also be used to allow for the presence of control or standard treatments 
(Section 8.5). Often, specific treatment comparisons are required to answer scientific ques-
tions. These comparisons may be incorporated in the analysis via treatment contrasts (Section 
8.6), which can also be used to model patterns of response for factors with quantitative values 
(Section 8.7). Following analysis, it can be useful to make comparisons between treatments 
based on tables of predicted means. We describe some methods for making specific types of 
comparisons and then discuss some issues associated with this approach (Section 8.8).
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8.1 From Scientific Questions to the Treatment Structure

The structure of the treatments in an experiment should relate to the scientific questions 
addressed. Many experiments are concerned with assessing how several different types of 
treatment affect the response of a biological system. For example, in an experiment to investi-
gate storage conditions for potatoes, the interest might be in establishing the effect of different 
temperatures (3°C, 5°C or 7°C) and humidities (low, 92.5%, and normal, 95%) on subsequent 
frying quality. The temperatures and humidities can be considered as two different types 
of treatments that have been combined together. At this point, it is helpful to clarify some 
terminology. A treatment factor is a group of treatments of a common type, for example, in 
the above experiment, the temperatures correspond to one treatment factor, and the humid-
ity to a second treatment factor. The factor levels correspond to the groups labelled by each 
treatment factor (e.g. the three individual temperatures), and an experimental treatment is a 
combination made by taking one level from each of the treatment factors used in the experi-
ment (e.g. temperature 5°C with 95% humidity). A factorial treatment structure consists of 
all possible experimental treatments constructed by taking one level from each of the treat-
ment factors. So in the example above, a factorial structure consists of six treatments: all three 
temperatures tested at both humidity levels. This structure is often called a 3 × 2 factorial, i.e. 
a factorial structure with two factors, one with three levels and the other with two levels. This 
is also sometimes referred to as a two-way structure, i.e. a structure with two factors, leading 
to a two-way ANOVA. The concept of a factorial structure can be extended to any number 
of factors (an r-way structure for r factors). For example, a 3 × 3 × 2 factorial contains three 
factors, two with three levels and one with two levels, giving a three-way structure with 18 
experimental treatments. For the moment, we consider two treatment factors only.

If an experiment has a factorial treatment structure then usually the scientific questions 
relate to both the overall effects of each treatment factor, and whether the different treat-
ment factors act independently or interact. This requires the use of a crossed structure 
(see Section 3.2), which is expressed with the explanatory component of the model. The 
potato storage experiment described above has this structure: both the temperature and 
humidity treatments are of individual interest, as is the question of whether changing the 
temperature also changes, or interacts with, the effect of the humidity treatment. Using the 
obvious symbolic names, we can write this structure as

Explanatory component: [1] + Temperature*Humidity
  = [1] + Temperature + Humidity + Temperature.Humidity

TABLE 8.1

Location of Topics Discussed in Chapter 8

Section Topic

8.1 Overview
8.2 Crossed explanatory structure for two factors
8.3 Crossed explanatory structure with three or more factors
8.4 Nested explanatory structure
8.5 Nested structure to account for control or standard treatments
8.6 Use of contrasts to make specific comparisons
8.7 Use of polynomial contrasts to model response to quantitative factors
8.8 Making treatment comparisons from predicted values
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Recall that [1] represents a factor with only one group and that this term is associated with 
the overall mean, μ. In this context, the terms Temperature and Humidity are called main 
effects and the term Temperature.Humidity represents their interaction. This crossed treat-
ment structure is explained in detail in Sections 8.2 and 8.3.

Occasionally, a nested treatment structure will be more appropriate (see Section 3.2). 
This happens when the levels of one treatment factor have no real meaning when con-
sidered alone, but have meaning when considered in conjunction with another treatment 
factor. In this case, the two factors are not independent, and we denote this hierarchical 
relationship in terms of a parent factor and a nested factor. For example, consider a small 
variety trial designed to test four families each with six lines. This can be considered as 
a 4 × 6 factorial structure for factors Family and Line, with lines numbered 1–6 within 
families. But there is no connection between the nested lines with label 1 (or 2 or … 6) 
across families and so there is no interest in the overall effect of each line number. There is 
interest in the overall effect of each family, as these constitute separate groups, and also in 
whether there are differences between lines within families. Hence, the appropriate treat-
ment structure takes the form

Explanatory component: [1] + Family/Line
  = [1] + Family + Family.Line

Here, there is only one main effect, for the parent factor Family, and the term Family.Line 
represents the nested effects of lines within families. This nested treatment structure is 
explained further in Section 8.4. The nested structure can also be useful when control or 
standard treatments are included within the set of experimental treatments, but direct 
comparison with other treatments is not of major interest, or when a control or standard 
is added onto a factorial set. In this case, a nested structure can be used to partition the 
experimental treatments into sets, and comparisons of interest are then made across and 
within the sets. This structure is explained further in Section 8.5.

If the scientific questions do not relate directly to an underlying crossed or nested struc-
ture, then testing specific hypotheses about differences between treatment effects, known 
as contrasts, can often be an efficient approach. For example, consider a repellence screen-
ing experiment in which four compounds were tested: standard, A alone, A with B, A with 
C. The questions of interest are ‘is the compound A as good as or better than the standard?’ 
and ‘are either of the combinations A + B or A + C better than A alone?’ We can construct 
contrasts to incorporate these hypotheses into our analysis, and this matter is examined 
in more detail in Section 8.6. Contrasts can also be used to make specific comparisons 
within a crossed or nested structure. As an alternative to embedding contrasts within the 
analysis, we can apply contrasts to tables of predicted means after the analysis, and this is 
discussed in Section 8.8.

Finally, if one or more of the treatment factors have levels related to an underlying quan-
titative scale, for example, amount of fertilizer applied, sowing date, dose of chemical or 
temperature, then it may be desirable to model the response on that quantitative scale. 
Polynomial contrasts can be used to build simple empirical models for the response, and 
this can also be done within a crossed or nested treatment structure. For example, consider 
a field trial to investigate factors affecting wheat establishment that tests five sowing dates 
(each two weeks apart) for six different varieties. This is a 5 × 6 factorial experiment, with the 
appropriate explanatory model being a crossed treatment structure. Polynomial contrasts 
can be used to model the response as a linear or quadratic function of sowing date, and to test 
whether this function is consistent across varieties. This approach is illustrated in Section 8.7.
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8.2 A Crossed Treatment Structure with Two Factors

A crossed treatment structure for two factors allows variation within the full set of treat-
ments to be partitioned into the overall (or main) effects of the individual factors and the 
interaction between those factors. The main effects for a factor represent the common 
effect for each of its levels, when averaged over all levels of the other factor. For example, 
consider a controlled environment (CE) experiment to investigate the infectivity of four 
different strains of a pathogen species (labelled A–D), for artificially damaged (wounded) 
or unwounded leaves. This is a 4 × 2 factorial structure and both treatment factors are to 
be evaluated individually, as well as in combination, so a crossed treatment structure is 
appropriate here. The main effect for each pathogen strain represents an average effect 
across wounded and unwounded leaves. Conversely, the main effect of wounding repre-
sents an average effect across all strains.

Two factors are considered to act independently if the effect of applying them together is 
equivalent to adding together their main effects; any deviation from this pattern is known 
as an interaction. The concept of interaction is most easily represented in a graphical con-
text, and we illustrate it using the CE experiment with different pathogen strains and 
wounding, where the response is a measure of pathogen growth within the leaf. Here, 
we consider the true, but unknown, response (rather than observed responses) in terms 
of population parameters, in the context of two different scenarios. The first scenario 
assumes independent action of the two factors and is represented in Figure 8.1a.

The main effect of each pathogen strain is based on the average of its growth across the 
wounded and unwounded treatments and it is clear that there is some difference in aver-
age virulence among the strains. The individual main effects are considered as deviations 
from the overall mean, so that the main effect for strain A is a small negative value, for B 
is a large negative value, and both C and D are positive, with C larger than D. Similarly, 
the main effect for unwounded plants is based on the average growth across strains for 
this condition, expressed as a difference with the overall mean (represented at the right-
hand side of Figure 8.1a). The main effect for unwounded plants is negative and that for 
wounded plants is positive, i.e. pathogen growth is greater in wounded leaves, and the 
absolute values of these two effects are equal. If there is no interaction, then the growth for 
each treatment combination should arise solely from the main effects. This would imply 
that the difference in growth between wounded and unwounded plants should be the 
same for all strains and so the pattern of growth across strains should be similar for both 
wounded and unwounded plants. This is seen most clearly if we draw lines for growth 
across strains in the wounded and unwounded plants separately: if there is no interaction, 

A B C D Average

Overall
mean

Overall
mean

(a) (b)

A B C D Average

FIGURE 8.1
Pattern of response for four pathogen strains (A–D) with (⚬) or without (•) wounding in the case of (a) no interac-
tion and (b) strong interaction present. • indicates mean for each pathogen strain.
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then these lines should be parallel, as in Figure 8.1a. This model is variously known as the 
independence, main effects or additive model.

In the second scenario, we assume the presence of some interaction between the fac-
tors, which is represented in Figure 8.1b. The main effects are calculated and represented 
as in the previous scenario. Again, there are differences in average virulence between 
the strains (C largest, B smallest with A and D intermediate) and more pathogen growth 
in wounded than in unwounded leaves. However, here it is clear that the difference in 
growth between the wounded and unwounded leaves changes according to the strain. For 
example, the difference is small for strains A and C but much larger for strains B and D. 
In consequence, the pattern of growth across strains for wounded leaves is substantially 
different from the pattern for unwounded leaves, and the two lines are no longer paral-
lel (Figure 8.1b). The interaction effect for each treatment combination is the difference 
between the growth expected under the independence model and the actual value.

In practice, of course, we do not know the true population response and have only a 
sample of observations for each experimental treatment, which introduces variation. We 
can plot the observed treatment means to get some insight into the presence of an inter-
action, but these means are subject to uncertainty. As in previous chapters, we can use 
ANOVA to obtain an estimate of background variation and use this to judge whether the 
observed interaction effects are real, or if they can be attributed to background variation.

EXAMPLE 8.1A: BEETLE MATING

Consider the beetle mating experiment described in Example 6.1 (data in file beetles.dat). 
Females from two species of willow beetle (P. vitellinae and P. vulgatissima) were mated 
with males from either their own species (intraspecies mating) or the other species (inter-
species mating). There were 10 replicates of each of the four treatment combinations, and 
the number of eggs laid by each female was recorded. Example 6.1 established that a log 
transformation is required to homogenize the variance (we used a log10 transformation), 
and considered the structure as a single set of four treatments. Here, we use a crossed 
treatment structure to address the question of interest, namely the viability of interspe-
cies mating. We represent the four treatments as a factorial combination of two factors, the 
species of the female and the type of mating.

By using this structure, we partition the variation between treatments into that due to 
each of the two main effects and their interaction. The main effect of species represents the 
logged number of eggs produced by females of each species, averaged across mating types. 
Conversely, the main effect of mating type represents the logged number of eggs produced 
for each type of mating, averaged across species. The interaction examines whether there 
is any difference in logged numbers of eggs between types of mating across females of 
the two species. The observations are plotted with the four treatment means in Figure 8.2.

It is clear that females of species P. vulgatissima appear more fecund and that interspe-
cies mating is generally less productive than intraspecies mating. The lines that join 
means for the same mating type across species are not parallel, suggesting that an inter-
action may be present, and the loss of productivity due to interspecies mating appears 
smaller for species P. vulgatissima than for species P. vitellinae. However, it is also clear 
that there is much variation in the observed logged numbers, and the apparent interac-
tion must be evaluated in the context of this background variation.

8.2.1 Models for a Crossed Treatment Structure with Two Factors

In the previous section, a set of experimental treatments was decomposed into components 
associated with the underlying treatment factors. In this section, we write this decomposi-
tion in the form of a statistical model. For simplicity, here we assume that the experimental 
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units are unstructured, i.e. with no structural component, and that the treatments form a 
factorial set with equal replication. A model for the observations in terms of a single set of 
treatments can be written as in Equation 4.6 as

 yjk = μ + τj + ejk , (8.1)

where yjk is the observed response for the kth replicate of the jth treatment group, for 
j = 1 … t and k = 1 … n, with deviation ejk, μ is the overall mean and τj is the effect of the 
jth treatment group, expressed as a deviation from the overall mean. The assumptions of 
Section 4.1 all still apply. Recall from Section 4.5 that this form of the model uses the sum-
to-zero constraint Σjτj = 0 to avoid over-parameterization. If we denote the responses as 
variate Y and the factor labelling the treatment groups as Treatment, then we can write this 
model in symbolic form as

Response variable: Y
Explanatory component: [1] + Treatment

The term [1] is associated with the overall mean, and the term Treatment is associated with 
the set of treatment effects, τj, j = 1 … t.

To write the model in terms of the individual factors, we must relabel the observations 
in terms of those individual factors. In the case of a generic crossed structure constructed 
from two factors, we denote these factors as A and B. Factor A has tA levels and factor B 
has tB levels and their product gives the total number of treatments, i.e. t = tA × tB. The sub-
scripts r and s are used to indicate the level of factors A and B, respectively, present on each 
unit. The statistical model above can then be rewritten, with this new labelling, as

 yrsk = μ + τrs + ersk .

The jth treatment group is now acknowledged as arising from the combination of the 
rth level of treatment factor A with the sth level of treatment factor B but, apart from this 
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FIGURE 8.2
Observed productivity, measured as log10(number of eggs), for inter- (⚬) and intraspecies (•) mating for two spe-
cies of willow beetle, with means for inter- (larger ⚬) and intraspecies (larger •) mating joined across species 
(Example 8.1A).
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cosmetic change, this is exactly the same linear model. This model gives exactly the same 
ANOVA table and estimates as in the previous form but now labelled by the underlying 
factors. Here, the estimate of each treatment effect is the deviation of the observed treat-
ment mean from the sample grand mean, as obtained previously, and can be written as

 
ˆ .τrs rsy y= −i  

The crossed structure described above is written in symbolic form as

Explanatory component:    [1] + A*B
 = [1] + A + B + A.B

To implement this form, we decompose the unstructured treatment effects into main and 
interaction effects as

 τrs = αr + βs + (αβ)rs , (8.2)

where αr is the main effect for the rth group in factor A, βs is the main effect for the sth 
group in factor B and (αβ)rs is the interaction effect for the rth group in factor A with the 
sth group in factor B in term A.B. The composite symbol (αβ) is used to show clearly which 
terms the interaction has arisen from. This expression can be rearranged as

 (αβ)rs = τrs − (αr + βs) ,

so the interaction can be considered as the difference between the original treatment 
effects and the additive model based on the assumption that factors act independently. 
Alternatively, the interaction can be considered as the treatment effects adjusted for all 
terms in the model that are marginal to it. A term is considered marginal to all terms of 
which it is a sub-term; for example, terms A and B are both marginal to A.B. By conven-
tion the overall mean, represented symbolically here as [1], is considered as marginal to all 
other terms. We use this important concept both for calculating parameter estimates and 
in identifying terms to be used for prediction.

The full model can then be written with a crossed treatment structure as

 yrsk = μ + αr + βs + (αβ)rs + ersk .

In the sum-to-zero parameterization (introduced in Section 4.5), the main effects are writ-
ten as deviations about the sample grand mean, with the resulting constraints Σrαr = 0 and 
Σsβs = 0. The interaction effects are in turn written as deviations from the main effects, 
with the resulting constraints Σr(αβ)rs = 0 for s = 1 … tA and Σs(αβ)rs = 0 for r = 1 … tB. 
Application of these constraints prevents the model from becoming over-parameterized. 
This and other parameterizations are discussed further in Section 8.2.6.

8.2.2 Estimating the Model Parameters

As usual, the model parameters are estimated by the method of least squares. Here, we 
consider the simplest case of a full factorial structure with equal replication, which gives 
an orthogonal structure; other cases are dealt with in Chapter 11. In this case, main effects 



156 Statistical Methods in Biology

and interactions can be expressed as functions of the unstructured treatment effects, τrs, 
and their estimates can be similarly derived from estimates of the unstructured treatment 
effects, ˆ .τrs rsy y= −i

From Equation 8.2 and the parameter constraints Σsβs = 0 and Σs(αβ)rs = 0, it follows that
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We can calculate this quantity by taking the marginal means of the unstructured treat-
ment effects across levels of factor B. Similarly, we can estimate the main effects for factor 
B by taking the marginal means of the unstructured treatment effects across levels of fac-
tor A, giving

 

ˆ ˆ .β τs rs

r

t

s
t

y y= = −
=
∑1

1A

A

 i i

The estimated interaction effect is equal to the unstructured treatment effect adjusted 
for both main effects, as

 ( ) ( ) ( ) ( )]αβ τ α β
i ii i i irs rs r s rs r s rsy y y y y y y y= − + = − − − + − = −ˆ ( ˆ ˆ ) [ rr sy yii i i− +  .

We can easily derive these estimates from a two-way table of treatment means, after 
adjusting for marginal terms. This is demonstrated in Example 8.1B.

EXAMPLE 8.1B: BEETLE MATING

The crossed model for the beetle mating experiment can be written in symbolic form 
with factors Species (two levels) and MateType (two levels) as

Response variable: logEggs
Explanatory component: [1] + Species*MateType

 = [1] + Species + MateType + Species.MateType

In mathematical form, this model becomes

 logEggsrsk = μ + Speciesr + MateTypes + (Species.MateType)rs + ersk ,

where logEggsrsk is the log10-transformed number of eggs for the kth replicate measure-
ment (for k = 1 … 10) of a female of species r (r = 1 for P. vitellinae, 2 for P. vulgatissima) 
with mating of type s (s = 1 for interspecies, 2 for intraspecies). The main effect for species 
r is denoted Speciesr, with MateTypes as the main effect for mating of type s, and (Species.
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MateType)rs being the interaction between species r and mating type s. The overall mean, 
μ, and deviation, ersk, are as described above, and the sum-to-zero constraints take the 
form ΣrSpeciesr = 0, ΣsMateTypes = 0, Σs(Species.MateType)rs = 0 for r = 1, 2, and Σr(Species.
MateType)rs = 0 for s = 1, 2.

The treatment means on the log10 scale for the four combinations of species and mat-
ing type were presented in Table 6.3. This table is reformatted as a two-way table with 
marginal means in Table 8.2a. As we have equal replication, the estimates take a simple 
form. The estimate of the overall mean is the overall mean of the table, i.e. ˆ . .µ = 1 8085  
We can obtain estimates of the unstructured treatment effects by subtracting the overall 
mean from each of the other cells, as in Table 8.2b. The main effect estimates, which con-
sist of marginal means adjusted for the overall mean, are now present in the margins. 
We then subtract the two marginal means from each of the internal cells, as in Table 
8.2c, to obtain the interaction effects. The full set of estimates is shown in Table 8.2c. 
Notice that the values within each set of effects (main effects or interactions) have the 
same absolute value but differ in sign. This is a direct consequence of the sum-to-zero 
constraints, and always occurs for factors with two levels.

TABLE 8.2a

Treatment and Marginal Means for log10(Number of Eggs) in the Beetle Mating Experiment 
(Example 8.1B)

Mating Type

Interspecies Intraspecies Average

Species 
of female

P. vit. 1.5129 1.8036 1.6582
P. vulg. 1.9089 2.0085 1.9587
Average 1.7109 1.9060 1.8085

TABLE 8.2b

Subtract Overall Mean from All Other Cells in Table 8.2a to Get Estimates of Main Effects in 
Margins

Mating Type

Interspecies Intraspecies Average

Species 
of female 

P. vit. −0.2956 −0.0049 Species
1 0 0= − .15 3

P. vulg. 0.1005 0.2000 Species
2 0 0= .15 3

Average MateType
1 0 0= − . 976 MateType

2 0 0= . 976 ˆ .µ = 1 8 850

TABLE 8.2c

Subtract Row and Column Marginal Means from Internal Cells in Table 8.2a to Get Estimated 
Interaction Effects. (Sp.MT)rs is an Abbreviation of (Species.MateType)rs

Mating Type

Interspecies Intraspecies Average

Species 
of female

P. vit. ( ) 478Sp MT. .
11 0 0= − ( ) 478Sp MT. .

12 0 0= Species
1 0 0= − .15 3

P. vulg. ( ) 478Sp MT. .
21 0 0= ( ) 478Sp MT. .

22 0 0= − Species
2 0 0= .15 3

Average MateType
1 0 0= − . 976 MateType

2 0 0= . 976 ˆ .µ = 1 8 850
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8.2.3 Assessing the Importance of Individual Model Terms

In Section 4.3, the one-way ANOVA table was obtained for an unstructured set of treat-
ments that partitioned the total sum of squares into the treatment and residual sums of 
squares. The partitioning of the treatment effects into main effects and their interaction 
leads to a similar partitioning of the treatment sum of squares into components relating to 
the three model terms, as

 TrtSS = SS(A) + SS(B) + SS(A.B) ,

where SS(A) and SS(B) are the sums of squares for the main effects of factors A and B, respec-
tively, and SS(A.B) is the sum of squares for the interaction. In general, we use the form 
SS(+A.B|A + B) for the interaction sum of squares, to denote that the interaction has been 
added into the model after both main effects. This emphasises the fact that the value of the 
interaction sum of squares depends on which other terms have been previously fitted in the 
model, and this is discussed further in Section 11.2.2. These sums of squares are calculated as
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or, equivalently, as the sums of squares of the parameter estimates
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The total treatment degrees of freedom (equal to t − 1) are partitioned in a similar manner. 
There are df(A) = tA − 1 df associated with factor A, df(B) = tB − 1 df associated with factor 
B and the interaction df is calculated by subtraction as

 df(A.B) = (t − 1) − (tA − 1) − (tB − 1) = (tA × tB) − tA − tB + 1 = (tA − 1) × (tB − 1) .

This leads to the generic form of ANOVA table shown in Table 8.3.

TABLE 8.3

Generic Form of ANOVA Table for a Crossed Treatment Structure with Two Factors 
A and B, with tA and tB Levels, Respectively

Source of 
Variation df

Sum of 
Squares

Mean 
Square Variance Ratio

A tA − 1 SS(A) MS(A) FA = MS(A)/ResMS
B tB − 1 SS(B) MS(B) FB = MS(B)/ResMS
A.B (tA − 1)(tB − 1) SS(A.B) MS(A.B) FA.B = MS(A.B)/ResMS
Residual N − t ResSS ResMS
Total N − 1 TotSS

Note: No structural component present, all t (= tA × tB) treatment combinations have n replicates 
giving N = n × t observations.
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As previously, mean squares are calculated by division of the sums of squares by their 
degrees of freedom. There are now three variance ratios, formed by division of the mean 
squares for each of the two main effects and the interaction by the residual mean square 
(ResMS). Note that the ResMS and ResDF take the same values as when the treatments 
were considered as an unstructured set.

We have approached the factorial structure by building a crossed model for the treat-
ment effects using the underlying factors. In terms of understanding the biological system, 
it is helpful to identify as simple a model as possible for prediction, subject to its being 
consistent with the observed data. We start with the most complex model, containing all 
of the terms, and try to identify terms that can be ignored for prediction. We consider the 
interaction term first, which holds information on dependencies in the response across the 
factors. If this term is not statistically significant then we can predict from the main effect 
terms only, asserting independent action of the two factors, and we might even be able 
to simplify the model further. If the interaction is statistically significant then prediction 
from a simpler model is not sensible.

The variance ratio for the interaction, denoted FA.B in Table 8.3, can be used to test the 
null hypothesis that all of the interaction effects equal zero, or H0: (αβ)rs = 0 for all r = 1 … 
tA, s = 1 … tB, against the general alternative hypothesis that the interaction effects are 
not all zero. Under the null hypothesis, the variance ratio FA.B has an F-distribution with 
(tA − 1) × (tB − 1) numerator and N − t denominator df. Recall that we often specify these 
two df as a subscript, and we shall sometimes also abbreviate the factor names in the 
superscript for brevity. If FA.B exceeds the chosen critical value of this F-distribution, then 
we have statistical evidence for an interaction, which should not be ignored. If the interac-
tion is not statistically significant then patterns in the response can be adequately repre-
sented by the main effects alone. Further simplification may be possible, however, and so 
we next examine each of the main effects in turn.

Because the structure is orthogonal when all treatment combinations are equally repli-
cated, the order in which these terms are examined is not important, but we choose to work 
our way up the ANOVA table. The variance ratio for factor B, denoted FB, can be used to 
test the null hypothesis that the main effects for this factor are all equal to zero, or H0: βs = 0 
for all s = 1 … tB, against the general alternative that they are not all zero. Under the null 
hypothesis, the variance ratio FB has an F-distribution with tB − 1 numerator and N − t 
denominator df. If FB exceeds the chosen critical value of this distribution, this gives statisti-
cal evidence for the presence of main effects for factor B. A similar process is followed to 
test the main effects for factor A, using the mean square and df associated with that factor.

EXAMPLE 8.1C: BEETLE MATING

Table 8.4 is the ANOVA table for the crossed treatment structure in the beetle mating 
experiment. As expected, TotSS and ResSS and their degrees of freedom are the same 
as for the unstructured analysis shown in Table 6.2, and the sums of squares for the 
main effects and the interaction in Table 8.4 together add up to the TrtSS in Table 6.2, 
i.e. 1.37515 = 0.90307 + 0.38073 + 0.09135. Similarly, the main effect and interaction df in 
Table 8.4 add up to the TrtDF in Table 6.2, i.e. 3 = 1 + 1 + 1. This verifies numerically that 
our decomposition into main effects and the interaction is a partitioning of the total 
treatment information.

The variance ratio for the Species.MateType interaction is F1 36 3 837, . ,S.M =  with observed 
significance level P = 0.058. Taking a strict approach to hypothesis testing with a 5% sig-
nificance level, then the null hypothesis would not be rejected, and we should conclude 
that there is no statistical evidence of an interaction. However, taking a more pragmatic 
approach, there is some suggestion that an interaction might be present and we might 
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consider the situation further. In this case, the value of the variance ratio for the interac-
tion is much smaller than those for the main effects, suggesting that even if an interac-
tion is present, its effect is relatively small. These issues are discussed further at the 
end of Section 8.3. For now, we decide that we shall not greatly misrepresent the data 
by omitting the interaction, and so the model of independent action is appropriate. As 
both main effects are highly statistically significant, we conclude that both the species 
and type of mating affect the expected log10-number of eggs, but the expected decrease 
due to interspecies mating is similar for both species.

8.2.4 Evaluating the Response to Treatments: Predictions from the Fitted Model

The ANOVA table is used to identify the subset of model terms that best describe the 
pattern of response across treatment groups. This subset can then be used to predict the 
expected response for any treatment combination or the expected difference in response 
between treatment combinations. If there is evidence of an interaction between the fac-
tors, then predictions must be based on the full model. If the interaction is not statisti-
cally significant, then it can be ignored for the purposes of prediction, together with any 
non-significant main effect(s). The remaining terms are used as the model for prediction, 
and there are several ways to approach this. One way is to refit the model containing the 
selected terms only, then obtain predictions from the revised model. This approach is 
always necessary for non-orthogonal structures, as discussed in Chapter 11, as the value of 
the predictions will depend on the model terms fitted. However, one unsatisfactory aspect 
of this procedure is that it involves re-estimation of the background variation by the pool-
ing of true background variation (based on differences between replicates) with that from 
terms dropped from the model (based on differences between treatment combinations). 
In orthogonal structures, such as a factorial with equal replication (or certain forms of 
unequal replication, see Section 11.1) there is an alternative and more appropriate method 
which gives direct estimates of prediction standard errors based on the original estimate 
of background variation. This method uses the result that the multi-way table of observed 
treatment means, and its margins, give direct estimates of certain population treatment 
means, and that standard errors of these means, and their differences, are easy to derive. 
This is the approach that we outline below.

We extend our previous notation for population treatment means (Section 4.1) so that 
μrs denotes the population mean for the rth level of factor A and the sth level of factor B, 
which implies

 μrs = μ + αr + βs + (αβ)rs .

TABLE 8.4

ANOVA Table for log10(Number of Eggs) from the Beetle Mating Experiment Using a 
Crossed Treatment Structure (Factors Species and MateType) (Example 8.1C)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Species 1 0.9031 0.9031 FS = 37.932 < 0.001
MateType 1 0.3807 0.3807 FM = 15.992 < 0.001
Species.MateType 1 0.0913 0.0913 FS.M = 3.837 0.058
Residual 36 0.8571 0.0238
Total 39 2.2322



161Extracting Information about Treatments

Then μr• is defined as the expected mean for the rth level of factor A, averaged over the 
levels of factor B present, and μ•s is defined similarly as the expected mean for the sth level 
of factor B, averaged over the levels of factor A present in the experiment.

If the interaction is significant, then the full model is used for prediction, with

 
ˆ ˆ ˆ ˆ .µ µ α β αβrs r s rs rsy= + + + =( )

i

In this case, the prediction for each treatment combination is equal to the observed treat-
ment mean. The variance of this mean is equal to the background variation divided by 
its replication, and the set of such means are mutually independent. As in Section 4.3, we 
estimate the background variation using s2 = ResMS, and so we can estimate the SE of a 
prediction (previously denoted SEM), or a difference between predictions for two treat-
ment combinations (previously denoted SED), as

 
SE( ) ; SE( )   ˆ ˆ ˆ .µ µ µrs rs ij

s
n

s
n

= − =
2 22

The second expression only holds for treatment combinations ij such that ij ≠ rs. If the 
interaction is not statistically significant, but both main effects are significant, then predic-
tions for each treatment combination are made as

 
ˆ ˆ ˆ ˆµ µ α βrs r s r sy y y= + + = + −ii i i  .

We then note that prediction for the rth level of factor A (averaged across all levels of  factor 
B, and using Σs sβ̂ = 0) is the mean of these predictions across levels of factor B, giving

 
ˆ ˆ ˆµ µ αr r ryi ii= + =  .

These quantities are the observed marginal means for factor A, taken across levels of factor 
B. Again, we have simple expressions for the estimated SEMs and SEDs as
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Conversely, prediction for the sth level of factor B (averaged across all levels of factor A) 
is

 
ˆ ˆ ˆµ µ βi i is s sy= + =  ,

with
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In fact, these results for main effects hold whether or not the interaction is retained in 
the predictive model. The SEDs can be used to construct LSDs and confidence intervals as 
previously shown in Section 4.4. Again, the df of the t-statistic used to calculate the LSDs 
and confidence intervals is equal to the ResDF from the ANOVA table.

EXAMPLE 8.1D: BEETLE MATING

In Example 8.1C, we found that the interaction between species and mating type was 
not statistically significant and so we do not use this term for prediction. The model 
predictions take the form

 
ˆ ˆ ,µ µrs r sSpecies MateType= + +   

and we can summarize our results by presenting the predicted means for each fac-
tor separately, i.e. averaging over the other factor. We are interested in the difference 
between the two levels in each case and so use SEDs as a measure of uncertainty. We 
form 95% CIs for the differences and back-transform these onto the original scale for 
interpretation. These results are presented in Table 8.5.

The expected logged number of eggs for females of species P. vitellinae (Species 
level 1) is 0.301 units smaller than for females of species P. vulgatissima (level 2), and 
the expected logged number of eggs is 0.195 units smaller for interspecies mat-
ing (MateType level 1) than for intraspecies mating (level 2). The estimated SEDs use 
s2 = ResMS = 0.0238 and n × tA = n × tB = 20. The LSD calculated at a 5% significance level 
requires the 97.5th percentile of a t-distribution on ResDF = 36 df, i.e. t36

0 025 2 028[ . ] . ,=  hence 
LSD SED t= × =36

0 025 0 0990[ . ] . . The 95% CI for each difference is equal to its estimate plus 
or minus the LSD, and the back-transformation for prediction µ̂rs on the log10 scale is 10µ̂rs 
(see Table 6.4).

As discussed in Section 6.4, a difference on any logarithmic scale back-transforms to a 
ratio on the original scale. From the back-transformed CIs, we can conclude that females 
of species P. vulgatissima lay on average 1.59–2.52 times as many eggs as females of spe-
cies P. vitellinae. Similarly, intraspecies mating produces 1.25–1.97 times as many eggs as 
interspecies mating. These results are consistent with the back-transformed individual 
treatment means presented in Table 6.5, but are more readily interpreted in terms of the 
underlying factors.

8.2.5 The Advantages of Factorial Structure

The use of factorial treatment structures leads to experiments with clear conclusions, and 
they are to be recommended for this fact alone. However, they also enable us to design 

TABLE 8.5

Marginal Means, log10(Number of Eggs), for Species and Mating Type with Estimated 
Differences, SEDs and Back-Transformed 95% Confidence Intervals (CI) (Example 8.1D)

Species MateType

Prediction level 1 ˆ .µ1i = 1 658 ˆ .µi1 = 1 711

Prediction level 2 ˆ .µ2i = 1 959 ˆ .µi2 0= 1 9 6

Difference (level 2 − level 1) ˆ ˆ .µ µ2 1 0 0i i− = 3 1 ˆ ˆ .µ µi i2 1 0− = 195
SED SE( 488

i iˆ ˆ ) .µ µ2 1 0 0− = SE( 488
i iˆ ˆ ) .µ µ2 1 0 0− =

95% CI for difference (0.202, 0.399) (0.096, 0.294)
Back-transformed CI (1.59, 2.52) (1.25, 1.97)
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efficient experiments whether interactions are present or not. For example, suppose that 
the beetle mating experiment had been done as two separate experiments: one to com-
pare inter- versus intraspecies mating for P. vitellinae and the other to make the same 
comparison for P. vulgatissima, each using 10 replicates per treatment as in the original 
experiment. These two separate experiments use the same total number of experimental 
units as the factorial experiment. However, because these new experiments were run at 
different times, there is no way to assess the interaction, i.e. whether the decrease in the 
logged number of eggs laid after interspecies mating differs between the two species, as 
any difference may be due to some change in the background environment rather than 
the change in species. In contrast, the interaction can be tested directly in the factorial 
experiment. In addition, the replication for testing differences between main effects is 
20 for both factors Species and MateType (as in Example 8.1D), rather than 10 for the 
individual experiments, which gives an increase in both precision and power. Finally, the 
main effects in a factorial experiment are tested over a range of conditions (corresponding 
to the other factor levels) and any main effects that emerge must be consistent over these 
conditions. Hence, a factorial experiment arguably provides a more broadly applicable 
estimate of main effects than an experiment that tests a single factor with other condi-
tions held fixed.

8.2.6 Understanding Different Parameterizations

In Section 4.5, we described several different forms of parameterization for a model with 
an unstructured set of treatments. Similar forms of parameterization can be applied to 
structured models, such as the crossed models discussed in this section.

The sum-to-zero parameterization described in Section 8.2.1 has 1 + tA + tB + (tA × tB)
parameters, from the overall mean, two sets of main effects and the interaction, respec-
tively. As we have only tA × tB treatment groups, not all of these parameters can be esti-
mated uniquely and so constraints are imposed. The sum-to-zero parameterization 
imposes 1 + tA + tB constraints: Σrαr = 0 (1 constraint), Σsβs = 0 (1 constraint), Σr(αβ)rs = 0 (tB 
constraints) and Σs(αβ)rs = 0 (tA constraints). This looks like 2 + tA + tB constraints, but in fact 
the latter two sets contain one dependency, so there are only 1 + tA + tB separate constraints 
in total. We therefore obtain a total of tA × tB unconstrained parameters, equal to the num-
ber of separate groups, as required.

As in the one-way unstructured model, we can also use the first-level-zero parameter-
ization introduced in Section 4.5 for the crossed model with two factors. In this case, we 
write the model in the form

 y ersk r s rs rsk= + + + +µ η ζ ηζ11 ( )  ,

with constraints η1 = 0, ζ1 = 0, (ηζ)r1 = 0 and (ηζ)1s = 0 for r = 1 … tA, s = 1 … tB. Again there 
is one duplicate constraint within the latter two sets, so the total number of constraints is 
equal to 1 + tA + tB as required. We use different symbols here to emphasize the fact that 
interpretation of the effects differs from that in the sum-to-zero parameterization. Here, 
the parameter μ11 represents the population mean for a group with the first level of both 
factors. In terms of the sum-to-zero parameterization, we can write this as

 μ11 = μ + α1 + β1 + (αβ)11 .
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Then ηr, r = 1 … tA, represents the difference between the rth and first levels of factor A at 
the first level of factor B, i.e.

 ηr = αr − α1 + (αβ)r1 − (αβ)11 .

Similarly ζs, s = 1 … tB represents the difference between the sth and first levels of factor B 
at the first level of factor A, i.e.

 ζs = βs − β1 + (αβ)1s − (αβ)11 .

The effects associated with the interaction term A.B,

 (ηζ)rs = (αβ)rs − (αβ)r1 − (αβ)1s + (αβ)11 ,

can be thought of as deviations relative to the first row and column in the two-way table of 
unstructured treatment effects. If we omit the interaction term, so that the model becomes

 y ersk r s rsk= + + +µ η ζ11  ,

then interpretation of some parameters changes: now ηr = αr − α1 is the expected difference 
between observations with the rth and first levels of factor A for any given level of factor B; 
similarly ζs = βs − β1 is the expected difference between observations with the sth and first 
levels of factor B for any given level of factor A. This change in interpretation, dependent 
on whether an interaction is present in the model or not, is a major disadvantage of this 
parameterization. Despite this, first-level-zero parameterization is commonly used to fit 
linear models to non-orthogonal or unbalanced experiments. This is described in more 
detail in Section 11.2.

To some extent, the parameterization used is unimportant, as the sum-to-zero and first-
level-zero parameterizations both result in the same predictions, fitted values and ANOVA 
table (although the sums of squares are no longer equal to sums of squared parameter esti-
mates when using first-level-zero constraints). However, we might be somewhat confused 
when looking at individual parameter estimates if we do not understand the nature of 
the parameterization, and the default parameterization can vary between statistical pack-
ages, or even between different commands within the same package. This is a good rea-
son for making inferences on population means rather than on individual parameters, as 
described in Section 8.2.4.

Other parameterizations are also used, the most common being last-level-zero con-
straints (see Section 4.5), which are closely related to the first-level-zero constraints but 
constrain parameters associated with the last level of each factor rather than the first level.

8.3 Crossed Treatment Structures with Three or More Factors

Multi-way crossed structures are formed from all combinations of levels of three or more 
factors. The same logic and modelling process followed for the two-way ANOVA also apply 
here, but interpretation of higher-order interactions, i.e. interactions among three or more 
factors, becomes more difficult. In this section, the analysis for a three-way crossed struc-
ture is demonstrated, followed by a discussion of some issues with multi-way factorial 
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designs. Again, it is assumed that we have a full factorial structure with all experimental 
treatment combinations present with equal replication so that the structure is orthogonal 
(see Chapter 11 for details for non-orthogonal structures). As before, it is necessary to rela-
bel the observations, here in terms of three individual factors: factor A with tA levels, factor 
B with tB levels and factor C with tC levels so the total number of treatments is t = tA × tB × tC. 
The subscripts r, s and u are used to indicate the level of factors A, B and C present on each 
unit, respectively, and the subscript k is used to distinguish units with the same treatment 
combination. The model in terms of an unstructured treatment set can then be written as

 y ersuk rsu rsuk= + +µ τ  .

As for the crossed model for two factors, we can now proceed to decompose the treatment 
effects in terms of a main effect for each factor and their interactions. We can do this by 
writing

 τ α β γ αβ αγ βγ αβγrsu r s u rs ru su rsu= + + + + + +( ) ( ) ( ) ( )  ,

where αr, βs and γu are main effects for the rth group in factor A, sth group in factor B, and 
uth group in factor C, respectively. There are three two-factor interactions, the A.B interaction 
(αβ)rs, the A.C interaction (αγ)ru, and the B.C interaction (βγ)su, and a three-factor A.B.C interac-
tion (αβγ)rsu. The three-factor interaction can be considered as the pattern remaining once the 
main effects and all two-factor interactions have been removed. The presence of a three-factor 
interaction implies a complex inter-dependency between levels of all three factors that can be 
hard to interpret. The full three-way crossed model can be written in symbolic form as

Explanatory component:     [1] + A*B*C
  = [1] + A + B + C + A.B + A.C + B.C + A.B.C

We again use sum-to-zero constraints, and parameter estimates can again be derived 
from the estimates of the unstructured treatment means. The TrtSS and TrtDF are now 
each partitioned into seven components as in Table 8.6.

TABLE 8.6

Generic Form of ANOVA Table for a Three-Way Crossed Treatment Structure with Factors A, B 
and C, with tA, tB and tC Levels, Respectively

Source of 
Variation df

Sum of 
Squares

Mean 
Square Variance Ratio

A tA − 1 SS(A) MS(A) FA = MS(A)/ResMS
B tB − 1 SS(B) MS(B) FB = MS(B)/ResMS
C tC − 1 SS(C) MS(C) FC = MS(C)/ResMS
A.B (tA − 1)(tB − 1) SS(A.B) MS(A.B) FA.B = MS(A.B)/ResMS
A.C (tA − 1)(tC − 1) SS(A.C) MS(A.C) FA.C = MS(A.C)/ResMS
B.C (tB − 1)(tC − 1) SS(B.C) MS(B.C) FB.C = MS(B.C)/ResMS
A.B.C (tA − 1)(tB − 1)(tC − 1) SS(A.B.C) MS(A.B.C) FA.B.C = MS(A.B.C)/ResMS
Residual N − t ResSS ResMS
Total N − 1 TotSS

Note: No structural component present, all t (= tA × tB × tC) treatment combinations have n replicates giving 
N = n × t observations.
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8.3.1 Assessing the Importance of Individual Model Terms

As in the two-factor case, we might hope that we can find a simple model for prediction 
by ignoring one or more interaction terms. We still examine the most complex terms in the 
ANOVA table first, working upwards through the table. The procedure runs as follows. 
We first examine the three-way interaction. If it is significant then we cannot ignore any 
terms, and predictions are made from the multi-way table of means for all three treat-
ment factors (A × B × C). If the three-way interaction is not significant then we proceed 
to examine the two-way interactions. If these are all significant then the model cannot be 
simplified further, and predictions can be made from the three two-way tables of marginal 
means (A × B, A × C and B × C). If one of the two-way interactions is not significant, say 
A × B, then predictions can be made from the other two-way tables of means (A × C and 
B × C). If only one of the two-way interactions is significant, say A × C, then predictions are 
made from that table of means and, if the B main effect is significant, the one-way table of 
means for factor B. If none of the two-way interactions is significant, then the main effects 
are examined, and predictions made from the marginal means for the treatment factors 
with significant main effects are reported.

This procedure may seem complicated, but it can be formalized with a diagram and the 
principle of marginality introduced in Section 8.2.1. Recall that all sub-terms of a model 
term are considered to be marginal to it; for example, terms A and B are marginal to term 
A.B. The principle of marginality requires that for each term in a model, all sub-terms 
should also be included. This is illustrated for a three-way factorial structure with factors 
A, B and C in Figure 8.3.

The testing procedure starts at the bottom of the structure, with the three-way interac-
tion. We go through an iterative process: at each step, we examine only terms that have 
no arrows leading away from them, i.e. that are not marginal to other terms. We test these 
terms, and we erase any non-significant terms and the arrows that lead to them. This 
process is repeated until no further progress can be made, and predictions are made 
using the remaining terms. Figure 8.4 illustrates the case where only the two-way interac-
tion A.C and the main effect B are significant. At step 1, only the three-way interaction is 
tested. At step 2, the three-way interaction has been found non-significant, so all two-way 

[1]

A CB

A.B A.C B.C

A.B.C

FIGURE 8.3
Marginality relationships for a three-way crossed structure with factors A, B and C. Arrows lead away from 
each term towards any other terms to which it is marginal.
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interactions can be tested, and only A.C is found significant. At step 3, the main effect of B 
can now also be tested and is found significant and the process is finished. Predictions are 
made from all tables of means corresponding to terms without arrows leading away from 
them, here the A.C and B tables.

This approach can be extended to multi-way factorial tables and treatment structures of 
any kind. We reiterate here that in this orthogonal scenario we do not refit the model, we 
merely select terms to use for prediction.

EXAMPLE 8.2: LADYBIRD TRANSMISSION OF FUNGUS

An experiment was done to investigate the transmission of fungus by ladybirds onto 
aphids on two types of host plant (beans or birdsfoot trefoil; Ekesi et al., 2005). The exper-
imental units were containers, each holding one plant with 20 aphids, and the space 
available was sufficient for 36 containers. A number of sporulating aphid cadavers (5, 
10 or 20) were distributed on plants to provide different loads of infective material, with 
six plants of each host type at each load (36 containers). In three of the containers for 
each host × load combination, a ladybird was allowed to forage for four hours. The treat-
ment allocations were made completely at random and the numbers of live and infected 
aphids per plant were counted after seven days. Because much variation was expected, 
this procedure was repeated, giving two runs each with a CRD structure, with six rep-
licates of the 12 experimental treatments and 72 observations in total. The explanatory 
component for this experiment corresponds to a three-way crossed structure with treat-
ment factors host type (factor Host with two levels), number of infective cadavers (factor 
Cadaver with three levels) and absence or presence of ladybirds (factor Ladybird with 
two levels). The two replicates introduce structure into the set of experimental units, 
and are labelled with factor Run (with two levels). As the actual randomization of plants 
within runs is not available we have arbitrarily labelled plants within each run using fac-
tor DPlant (with 36 levels). The data are shown in Table 8.7 and held in file ladybird.dat.

There was some predation by the ladybirds, so there were fewer than 20 live aphids 
(variate Live) in these containers (minimum 12), and the number of infected aphids 
(variate Infected) could not be directly compared across treatments. The percentage of 

Step 1 Step 2 Step 3

[1]

A CB

A.B A.C B.C A.B A.C A.CB.C

A.B.C

[1]

A CB

[1]

A CB

FIGURE 8.4
Eligibility of terms for testing in a three-way crossed structure as interactions are eliminated. Eligible terms at 
each step are highlighted in bold. At each step arrows lead away from each term towards any other remaining 
terms to which it is marginal.
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infected aphids was therefore used as a measure of transmission. Preliminary analysis 
showed some variance heterogeneity, and so a logit transformation was applied to per-
centages of infection after adjustment for zero counts, i.e. Logitp = logit(Percent) where 
Percent = 100 × (Infected + 1)/(Live + 2). In symbolic form, the full model for this experi-
ment can be written as

Response variable: Logitp
Explanatory component: [1] + Host*Cadaver*Ladybird
Structural component: Run/DPlant

This model can be written in mathematical form as

 

Logitp Run Host Cadaver Ladybird Host Cadaverrsukl k r s u= + + + + +µ ( ). rrs

ru suHost Ladybird Cadaver Ladybird Host Cadaver L+ + +( ) ( ) (. . . . aadybird ersu rsukl)  + ,

where Logitprsukl is the logit-transformed percentage of infection for the lth replicate 
measurement (l = 1 … 3) in the kth experimental run (k = 1, 2) for the rth host (r = 1 for 
beans, 2 for birdsfoot trefoil) with the sth cadaver dose (s = 1, 2, 3 for 5, 10 or 20 cadav-
ers) with ladybirds absent (u = 1) or present (u = 2). The structural component generates 
effects for each run (from term Run), denoted Runk for k = 1, 2, and for each plant within 
each run (from term Run.DPlant), which are the model deviations (here equivalently 

TABLE 8.7

Number of Infected and Live Aphids Used to Investigate the Transmission of Fungus (Cadaver 
Dose) by Ladybirds (Presence/Absence) on Different Host Plants (Birdsfoot Trefoil or Beans) 
(Example 8.2 and file ladybird.dat)

Host: Birdsfoot Trefoil Host: Bean

Ladybird 
Presence

Cadaver 
Dose

Run 1 Run 2 Run 1 Run 2

Infected Live Infected Live Infected Live Infected Live

+ 5 1 15 2 18 5 18 5 15

+ 5 1 13 1 13 3 20 3 17

+ 5 2 16 1 15 7 17 2 18

+ 10 2 12 2 17 10 17 8 19

+ 10 2 16 1 18 3 15 7 15

+ 10 3 15 3 16 2 14 6 16

+ 20 7 14 9 18 9 19 11 16

+ 20 8 17 6 19 6 18 9 17

+ 20 7 16 7 15 12 19 11 14

− 5 1 20 0 20 1 20 1 20

− 5 1 20 0 20 6 20 2 20

− 5 2 20 1 20 7 20 2 20

− 10 2 20 0 20 3 20 7 20

− 10 1 20 2 20 4 20 5 20

− 10 2 20 2 20 5 20 5 20

− 20 2 20 3 20 4 20 9 20

− 20 3 20 2 20 8 20 8 20

− 20 3 20 2 20 5 20 5 20

Source: Data from Rothamsted Research (J. Pell).
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labelled by treatments, runs and replicates). The main effect for the rth host is denoted 
Hostr, with Cadavers as the main effect for the sth cadaver dose and Ladybirdu as the main 
effect for ladybird absence or presence. The definition of the interaction terms and con-
straints follow as described above.

The multi-stratum ANOVA table generated by this model is in Table 8.8. There are 
two strata, representing variation between runs (Run stratum) and variation within 
runs (Run.DPlant stratum). Treatments are estimated from comparisons within runs 
and thus appear in the lower (Run.DPlant) stratum. The ResDF differ from those in 
Table 8.6 as they have been adjusted, i.e. reduced by one, to account for the presence of 
runs. A composite set of residual plots (Figure 8.5) gives no evidence of departures from 
the model assumptions.

Working upwards from the bottom of the ANOVA table, we see that the three-way inter-
action is not statistically significant (F 649)4 59 0 435 0, . , .H.C.L = =P  and so can be excluded 
for prediction. Of the three two-way interactions, only the Cadaver.Ladybird interaction 
is significant (F 292 59 3 774 0 0, . , . )C.L = =P  so we can also test the Host main effect, which 
is highly significant (F 11 59 59 172 0 00, . , . ).H = <P  The model predictions therefore use all 
main effects and the two-way Cadaver.Ladybird interaction, in addition to the Run term 
from the structural component, giving the mathematical form

 
ˆ ˆ ( .µ µrsuk k r s uRun Host Cadaver Ladybird Cadaver Ladyb= + + + + +    iird su) .  

This gives a prediction for a specific run, but it is usually sensible to average over terms 
in the structural component which, using the sum-to-zero constraints, gives

 
ˆ ˆ ( . )µ µrsu r s u sHost Cadaver Ladybird Cadaver Ladybirdi

   = + + + + uu  .

We can therefore predict patterns of transmission by looking at the two-way 
Cadaver × Ladybird table of means (averaged across hosts) and the marginal table of 
means for Host (averaged across cadaver concentrations and presence or absence of 
ladybirds) shown in Table 8.9.

TABLE 8.8

Multi-Stratum ANOVA Table for the Logit-Transformed Percentage of Infected Aphids from the 
Ladybird Transmission Experiment Performed in Two Blocks (Factor Run) Each Using 36 Plants 
(Factor DPlant) with a Three-Way Crossed Treatment Structure (Factors Host, Cadaver and 
Ladybird) (Example 8.2)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Run stratum
 Residual 1 0.0677 0.0677 0.294 0.589
Run.DPlant stratum
 Host 1 13.5992 13.5992 FH = 59.172 < 0.001
 Cadaver 2 17.0274 8.5137 FC = 37.044 < 0.001
 Ladybird 1 11.0907 11.0907 FL = 48.257 < 0.001
 Host.Cadaver 2 0.3078 0.1539 FH.C = 0.670 0.516
 Host.Ladybird 1 0.2279 0.2279 FH.L = 0.992 0.323
 Cadaver.Ladybird 2 1.7349 0.8675 FC.L = 3.774 0.029
 Host.Cadaver.Ladybird 2 0.1999 0.1000 FH.C.L = 0.435 0.649
 Residual 59 13.5596 0.2298
Total 71 57.8151
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The mean logit percentage of infected aphids was greater when the host plants were 
beans rather than birdsfoot trefoil, when ladybirds were present and as the concen-
tration of cadavers increased. The Cadaver.Ladybird interaction is caused by a larger 
increase in transmission (on the logit scale) due to ladybird presence at a concentration 
of 20 cadavers per plant than at smaller concentrations. These patterns are easier to see 
if we plot the predictions, as shown in Figure 8.6. This figure also shows predictions 
calculated from the full set of model terms, i.e. including the terms found to be not 
statistically significant, and it is clear that discrepancies between the two sets are small. 
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FIGURE 8.5
Composite set of residual plots for the ladybird transmission of fungus experiment (Example 8.2).

TABLE 8.9

Tables of Predicted logit(%Infection) (with Back-Transform as Percentage) for Cadaver × Ladybird 
Interaction and Main Effect of Factor Host (Example 8.2)

Ladybird 
Foraging

Cadaver Concentration
Host 
Plant5 10 20

Present −1.454 (18.9) −1.033 (26.3) 0.044 (51.1) Trefoil −1.641 (16.2)
Absent −2.038 (11.5) −1.580 (17.1) −1.179 (23.5) Bean −0.772 (31.6)

SED = 0.1957 SED = 0.1130

Note: SEDs apply to logit scale.
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This confirms that the terms used for prediction give a simple but accurate summary 
of patterns of response. Finally, these predictions can be back-transformed to predict % 
infection for each treatment combination, as in Table 8.9.

8.3.2 Evaluating the Response to Treatments: Predictions from the Fitted Model

We have provided a recipe for the identification of model terms for use in prediction, but 
common sense is also required. In many practical situations, the size of the main effects 
are large compared with the size of the interactions, which are sometimes regarded as 
modifications to (or departures from) the main effects model. Using this argument, we can 
expect that the sizes of the effects decrease as the order of interactions increases. We might 
therefore find ourselves in a situation where a high-order interaction is statistically sig-
nificant but its effects are so small compared with the main effects that ignoring them has 
little impact on the biological conclusions. It can therefore be helpful to discuss the rela-
tive impact of terms when you report results. In an extreme situation, particularly where 
the number of ResDF are very large, one might detect high-order interactions where the 
effects are so small as to have no biological relevance. (In such cases, equivalence testing, 
described in Section 10.5, can be useful to establish whether any biologically meaningful 
differences are present.) These considerations might suggest that it is more appropriate to 
work down the ANOVA table, starting with the main effects and respecting marginality, 
i.e. only testing terms for which all sub-terms are significant. However, in practice we have 
seen cases in which a two- (or higher) way interaction is significant but the corresponding 
main effects are negligible, and working down the table would then result in our drawing 
the wrong conclusions.

It is also possible that the presence of interactions depends on the scale of analysis: this 
usually becomes apparent when different transformations are applied to tackle problems 
with the assumptions seen in the residual plots (Chapter 6). This behaviour is expected: 
there may be some scales on which the assumption of additivity (no interaction) is valid, 
and a simpler model can be found. This is useful in practice only if the model assumptions 
are also met on the same scale. Validating the assumptions should always take precedence 
over simplifying the model.

0.5(a)

0.0
–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

5 10
Number of cadavers

20

lo
gi

t (
%I

nf
ec

tio
n)

0.5(b)

0.0
–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

5 10
Number of cadavers

20

lo
gi

t (
%I

nf
ec

tio
n)

FIGURE 8.6
Logit(%Infection) predicted, for (a) birdsfoot trefoil and (b) beans, from the model with all main effects and the 
Cadaver × Ladybird interaction for presence (•) or absence (•) of ladybird foraging, or from the full three-way 
crossed model (⚬⚬) (Example 8.2).
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In Section 8.2.5, the efficiency of a factorial structure for two treatment factors was 
 discussed in comparison to two separate experiments testing each factor in isolation. Part 
of this efficiency arises from our being able to test for interactions between the factors and 
part arises from the additional (sometimes called hidden) replication available when no 
interaction is present. These advantages also apply to higher-order factorial structures, 
with three or more factors. However, the number of treatment combinations increases 
multiplicatively as the number of treatment factors increases, which can result in very 
many experimental treatments. This is often seen as a disadvantage of factorial structures, 
particularly if interactions between treatments are expected to be either small or non-
existent. Several strategies can be used to tackle this problem. If the approach of a factorial 
structure is desirable, but the full replicated experiment would be too large to manage 
due to constraints of either space or time, then it may be possible to complete the experi-
ment in several runs, each of which contains the full set of experimental treatments. This 
strategy was used in Example 8.2, in which six replicates of each treatment combination 
were required due to high variation but there was only enough growing space to manage 
three replicates at a time. The different time periods introduce structure into the experi-
mental units that must be taken into account in the analysis, as was done in Example 
8.2. This approach is feasible only if the experimental system is stable over time, so that 
treatment × time interactions are unlikely and the background variation will not change. 
If the experimental material cannot provide sets of homogeneous units large enough to 
contain the full set of experimental treatments, then designs are required in which each 
block contains only a subset of treatments. Designs with efficient blocking for factorial 
treatment structures are discussed in Section 11.3.2. Finally, if many of the possible inter-
actions, especially higher-order interactions, are expected to be absent then it would be 
wasteful to replicate all treatment combinations. The class of fractional factorial designs 
was developed to deal with these cases and is discussed in Section 11.3.1.

In this and the previous section, we have assumed that the full factorial set of treatments 
is present and equally replicated. If this is the case then the structure is orthogonal, so 
that the estimates for each main effect are the same whether or not the other factor (and 
the interaction) is included in the model (see Section 11.1 for more details). This is the 
reason we can use a subset of terms for prediction. If treatment combinations are missing 
or unequally replicated, then the structure may become non-orthogonal and the statisti-
cal analysis becomes more complex, as described in Chapter 11. If one or more treatment 
combinations have been omitted, perhaps for sound practical reasons but without regard 
to the overall structure, then the individual factors are likely to become non-orthogonal. 
There are then several options. The treatments can always be analysed as an unstructured 
set, with contrasts used to explore specific comparisons (see Section 8.6), but this loses the 
advantages of the factorial structure. If the structure is still close to orthogonal, then a 
factorial analysis will often still be useful and the analysis for this situation is discussed 
further in Section 11.2. However, there are some special cases that deserve further atten-
tion here. Some schemes of unequal replication retain many of the properties of the full 
factorial structure. For example, if one level of a treatment factor has additional replica-
tion such that all treatment combinations involving that level have the same replication, 
then the structure remains orthogonal (see Section 11.1) and the analysis can proceed as 
described above. The only change is that estimated SEs for treatment means or differ-
ences involving that factor level will become smaller because of the additional replication. 
Similarly, sometimes subsets of experimental treatments can be omitted whilst preserving 
some of the factorial structure. This often applies when controls are present. For example, 
consider an experiment to compare the efficacy of different pesticides at several doses. The 
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control, consisting of no dose, is the same across all pesticides so does not need to be repli-
cated for each pesticide. If we regard this as a crossed structure of pesticide × dose plus an 
added control, then we retain the factorial structure in which we are interested, although 
a slightly more complex analysis is required, as described in Section 8.5.

8.4 Models for Nested Treatment Structures

In previous sections, we constructed models for treatment effects in terms of main effects 
and interactions for the treatment factors using a crossed structure. This structure is not 
always appropriate, and sometimes a nested structure is preferred. In these cases, the 
treatment factors usually fall into a natural hierarchy. For example, a forestry trial might 
assess a set of clones taken from a small set of mothers, and it is natural to think of clones 
as nested within mothers. Similarly, a laboratory trial to test the pathogenicity of a set of 
fungal isolates might use several isolates from several different races, with isolates con-
sidered to be nested within races. Or a study to examine aphid colonization of different 
hosts might use varieties from wheat, barley and oats as three different crop species, with 
varieties nested within species.

These types of trials require a somewhat different approach to partitioning the treat-
ment information. Usually, there is interest in whether there is any significant variation 
between the higher-level grouping factor, for example, mothers, races or species in the 
examples above, in addition to variation at the lower level within groups. There are several 
ways to exploit this structure. We again start with a set of unstructured treatments cor-
responding to the model presented in Equation 8.1. To partition the treatment information, 
we relabel the treatments in terms of the groups, and then number the group members. 
Suppose there are tG groups, labelled by index r = 1 … tG, and that the rth group contains 
tr members, labelled by index s = 1 … tr. It is not necessary for all groups to have the same 
number of members. The relabelled treatment effects, τrs, are then partitioned into two 
terms, and written in mathematical form as

 τ γ δ γrs r rs= + ( )  .  (8.3)

In this equation, we call γr the parental effect, which is associated with the factor at the top 
level of the hierarchy. This is the average effect of all treatments in the rth group, expressed 
as a deviation about the overall mean. Note that the term parental here does not imply any 
genetic relationship, but just denotes the top level of a hierarchical nested structure. We 
call δ(γ)rs the nested effect of the sth member of the rth group, and this is expressed as a 
deviation about the group mean. This interpretation uses sum-to-zero constraints, which 
implies Σrγr = 0 and Σsδ(γ)rs = 0. The first model term allows for differences among group 
means and the second allows for differences among group members about their group 
mean. We use the notation δ(γ)rs to make a distinction between this nested term and the 
interaction term in the crossed models of Section 8.2 to emphasize the difference in inter-
pretation due to the marginal terms present in each model. The term interaction implies 
that both marginal terms are present in the model, and interaction effects are deviations 
from the additive model that includes both main effects; the term nested effect implies that 
only one marginal term is present, and nested effects are deviations from that term only.
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We can again illustrate this decomposition in terms of the original unstructured treat-
ment estimates ˆ .τrs rsy y= −i  Assuming equal replication for each of the members, we can 
again estimate the group parental effects as marginal means of the original treatment 
effects, as

 

ˆ ˆ ,γ τr
r

rs
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t

r
t

y y
r

= = −
=
∑1

1

ii  

with the nested effects calculated as the remainder after removing the parental effects, as

 δ γ τ γ( )  
i iirs rs r rs ry y= − = −ˆ ˆ .

Two factors are required to express this model in symbolic form. The first factor, denoted 
Group, labels the groups and the second, denoted Member, labels members nested within 
groups; hence, the explanatory component of the model can then be written as

Explanatory component:  [1] + Group/Member
  = [1] + Group + Group.Member

Unfortunately, for the case of unequal numbers of members within groups, this expression 
will not generate a direct translation of Equation 8.3 in most statistical software, because 
the number of effects generated by the nested term Group.Member is equal to tG × max(tr), 
i.e. the number of groups multiplied by the maximum number of members in a group. 
As there are no data on the absent factor combinations, it is not possible to estimate their 
effects and they are effectively ignored, so that estimates for present combinations are 
calculated as above. In statistical software, nested effects for absent combinations may be 
represented as zero or as a missing value.

The TrtSS and TrtDF in the ANOVA table are partitioned according to these two terms. 
The ANOVA sums of squares can again be calculated as the sum of squares of the effects 
for each term (for present combinations only). We do not give further details here, as the 
ANOVA table, estimates and SEs can be obtained from statistical software once the model 
has been correctly specified. This is illustrated in the example below.

EXAMPLE 8.3A: SCREENING FOR PATHOGENICITY

An experiment was done to screen a set of fungal isolates for pathogenicity on seed-
lings of oilseed rape. The isolates were collected from two different species of Brassica, 
labelled as A and B in factor Species, with several different isolates from each spe-
cies being tested (nine in group A and four in group B), labelled by factor Isolate 
(with nine levels). The experiment was run in three replicates across time (factor Rep), 
with a tray of 22 (replicate 2) or 23 seedlings (replicates 1 and 3) being tested against 
each isolate in each run (factor Tray, with 13 levels). The number of seedlings tested 
was stored in variate Seedlings. The number of resistant seedlings, i.e. those show-
ing no signs of infection (variate Resistant), was recorded five days after the isolates 
were applied. The percentage of resistant seedlings is the response to be analysed. 
The number responding in each tray is shown in Table 8.10 and the full data set is 
given in file brassica.dat. A preliminary analysis of these percentages showed het-
erogeneity of variance and so the percentage response, adjusted for zero counts as 
P = 100 × (Resistant + 1)/(Seedlings + 2), was logit-transformed to Logitp = loge(P/
(100 − P)), which improved the residual plots (not shown).
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A model in symbolic form for these responses could be written as

 Response variable:     Logitp
 Explanatory component: [1] + Species/Isolate
 Structural component:  Rep/Tray

The Species.Isolate term generates 2 × 9 = 18 effects, but those corresponding to spe-
cies B with isolate numbers 5–9 are absent and so ignored. This model can be written in 
mathematical form as

 Logitp Rep Species Isolate Species ersk k r rs rsk= + + + +µ ( )  ,

where Logitprsk is the logit-transformed percentage of resistant seedlings in the kth rep-
licate (k = 1 … 3) for the rth species (r = 1, 2 for species A and B) with the sth isolate 
(for s = 1 … tr where t1 = 9 and t2 = 4). The structural component generates the replicate 
effects, denoted Repk for k = 1 … 3 and the deviations ersk (equivalent to the Rep.Tray 
effects). The parental effect of the rth species is denoted Speciesr, with Isolate(Species)rs 
being the nested effect of the sth isolate within the rth species. As usual, the overall mean 
is denoted by μ. The sum-to-zero constraints take the form ΣkRepk = 0, ΣrSpeciesr = 0 and 
ΣsIsolate(Species)rs = 0.

Table 8.11 shows the estimated parental (Species) and nested (Species.Isolate) effects 
derived from the unstructured set of treatment effects as described above. The multi-
stratum ANOVA for the logit-transformed percentages is shown in Table 8.12. The 
Species sum of squares is equal to the sum of the squared parental effects (across all 
units), and the Species.Isolate sum of squares is equal to the sum of the squares of the 
estimated nested effects (across all units). The nested sum of squares here represents the 
accumulated within-species variation.

There is strong evidence of an overall difference in resistance to isolates from spe-
cies A and B (F 11 24 29 841 0 00, . , . )S = <P  and also of variation in resistance to the isolates 

TABLE 8.10

Number of Plants Showing Resistance to Isolates in the Pathogenicity 
Screening Experiment (Example 8.3A and File brassica.dat)

Replicate 1 Replicate 2 Replicate 3

Tray Isolate Resistant Isolate Resistant Isolate Resistant

1 B3 3 A3 2 A3 3
2 A6 14 A5 2 A7 5
3 A4 5 A8 8 A2 3
4 B1 2 A9 1 A5 2
5 A7 6 A4 1 B1 1
6 B2 2 A1 3 A8 16
7 A1 3 B2 2 A6 15
8 A9 1 B4 0 A1 4
9 A5 2 A7 4 B3 4
10 A2 3 B1 1 A9 0
11 A8 15 A2 1 B4 4
12 A3 4 B3 2 A4 4
13 B4 2 A6 9 B2 1

Note: Isolates are here labelled using combinations of the levels of factors Species (A or 
B) and Isolate (1–9 for species A, 1–4 for species B).
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within species (F 111 24 15 219 0 00, . , . ).S.I = <P  The treatment mean for isolates from species 
A was −1.341 on the logit scale (back-transformed to 20.7%), and the mean for isolates 
from species B was −2.060 (back-transformed to 11.3%), with SED = 0.1315, indicating 
that fewer plants were resistant to isolates arising from species B.

One way to avoid the generation of effects for treatment groups that are absent is to use 
a factor (called AllMembers, say) to label the full set of members across all groups (e.g. like 
the combined levels of factors Isolate and Species given in Table 8.10). The explanatory 
component can then be specified as

 Explanatory component: [1] + Group + AllMembers

The first term identifies the parental effects, as before, and the second term identifies all 
of the nested combinations present. This specification gives the same predictions and 

TABLE 8.11

Calculation of Species Parental Effects as the Mean of the Unstructured Treatment 
Effects for Each Group, and of Species.Isolate Nested Effects as the Difference 
between Unstructured Treatment Effects and Parental Effects (Example 8.3A)

Species Isolate
Unstructured 

Treatment Effect
Species 

Parental Effect
Species.Isolate 

Nested Effect

A 1 0.011 0.221 −0.210
A 2 −0.342 0.221 −0.563
A 3 −0.101 0.221 −0.322
A 4 −0.083 0.221 −0.304
A 5 −0.415 0.221 −0.636
A 6 1.777 0.221 1.555
A 7 0.418 0.221 0.197
A 8 1.835 0.221 1.613
A 9 −1.110 0.221 −1.331
B 1 −0.715 −0.498 −0.218
B 2 −0.565 −0.498 −0.068
B 3 −0.101 −0.498 0.397
B 4 −0.609 −0.498 −0.112

TABLE 8.12

Multi-Stratum ANOVA Table for the Logit-Transformed Percentage of Resistant 
Seedlings from the Pathogenicity Screening Experiment with Three Blocks (Factor 
Rep) of 13 Trays (Factor Tray), Two Species (Factor Species) and Several Isolates 
(Factor Isolate) per Species (Example 8.3A)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Rep stratum
 Residual 2 1.8664 0.9332 6.492 0.006
Rep.Tray stratum
 Species 1 4.2896 4.2896 FS = 29.841 < 0.001
 Species.Isolate 11 24.0655 2.1878 FS.I = 15.219 < 0.001
 Residual 24 3.4500 0.1437
Total 38 33.6715
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ANOVA table, and it avoids the generation of absent combinations, but is not completely 
satisfactory because the nested structure is no longer apparent in the form of the model. 
For this reason, we prefer the nested specification.

Using either specification, we encounter a slight complication if any group has only one 
member, as then the parental and nested effects for that individual refer to exactly the same 
subset of observations and are aliased, i.e. it is not possible to separate the two effects. In 
this case, the estimates can still be calculated as above and the first of the two terms fitted, 
i.e. the parental or Group effect, estimates the combined group and member effect. There 
is then no additional information left to contribute to the nested Group.Member effect, 
which is estimated as zero.

The presence of a statistically significant variance ratio for a nested term (as in Example 
8.3A) is evidence that the nested effects are not all equal to zero (the null hypothesis). In this 
context, it is possible that the variation between members is present within some groups but 
not others, and it may be relevant to identify these groups. We can achieve this by splitting 
the Group.Member sum of squares into separate terms corresponding to the different groups. 
We can do this by defining a new set of factors, one for each group, here called Set1, Set2 and 
so on. The new factor for the rth group has levels 1 to tr corresponding to the members of that 
group, and adds an extra level, for example, tr + 1, for members of other groups. For example, 
with only two groups, the explanatory component of the model can then be written as

Explanatory component: [1] + Group/(Set1 + Set2)
 = [1] + Group + Group.Set1 + Group.Set2

This specification introduces absent combinations into the model, for example, the factors 
are constructed so that there are no members of the second group with level 1 in factor Set1. 
We can ignore these combinations in calculating estimates although they will be generated 
(with value zero or missing) by some statistical software. And again we can reduce the 
number of missing combinations by writing the explanatory component as

Explanatory component: [1] + Group + Set1 + Set2

which gives an equivalent model but no longer emphasizes the nested structure. Both spec-
ifications have aliasing present between the individual group effects and the extra levels for 
each set. As the Group term is fitted first, there is no information left on the aliased levels 
in the Group.Set (or Set) terms, which are estimated as zero. The parental effects and each 
set of nested effects are estimated as outlined previously. This is illustrated in Example 8.3B.

EXAMPLE 8.3B: SCREENING FOR PATHOGENICITY

Table 8.13 shows the definition of factors TypeA, which labels individual isolates 1–9 
within species A (with level 10 for isolates from species B), and TypeB, which labels 
isolates 1–4 within species B (with level 5 for isolates from species A). These factors are 
also listed in file brassica.dat.

A within-group nested model for resistance scores could be written in symbolic form as

Response variable: Logitp
Explanatory component: [1] + Species/(TypeA + TypeB)
Structural component: Rep/Tray

The groups from the combination of factors Species and TypeA are the individual iso-
lates within species A plus the whole set of isolates from species B. The Species.TypeA 
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effects for species A are therefore equal to the previous nested effects for this group (Table 
8.10), and those for species B are zero (Table 8.13). The Species.TypeA sum of squares is 
then calculated from these estimates, and hence has zero contribution from species B, 
and so quantifies variation about the mean within species A only. The Species.TypeA 
mean square can be used to test the null hypothesis that all of the nested effects within 
species A are equal to zero. A similar argument follows for the Species.TypeB term. 
The ANOVA for this model based on the logit-transformed percentages is in Table 8.14. 
Again, the sums of squares correspond to sums of squared estimated effects (from Table 
8.13) taken over all units.

The sum of squares for the Species main effect factor has not changed, as expected. 
The sum of squares and df for the term Species.Isolate from the previous analysis (Table 
8.12) have both been partitioned into components for Species.TypeA and Species.TypeB. 
The variance ratio for Species.TypeA shows strong evidence of variation between iso-
lates within species A (F 1)8 24 20 349 0 00, . , .S.TA = <P  but that for Species.TypeB gives no 

TABLE 8.13

Calculation of Nested Effects for Each Type of Isolate within Each Species (Example 8.3B)

Species TypeA TypeB
Treatment 

Effects
Species 
Effects

Species.TypeA 
Nested Effects

Species.TypeB 
Nested Effects

A 1 5 0.011 0.221 −0.210 0
A 2 5 −0.342 0.221 −0.563 0
A 3 5 −0.101 0.221 −0.322 0
A 4 5 −0.083 0.221 −0.304 0
A 5 5 −0.415 0.221 −0.636 0
A 6 5 1.777 0.221 1.555 0
A 7 5 0.418 0.221 0.197 0
A 8 5 1.835 0.221 1.613 0
A 9 5 −1.110 0.221 −1.331 0
B 10 1 −0.715 −0.498 0 −0.218
B 10 2 −0.565 −0.498 0 −0.068
B 10 3 −0.101 −0.498 0 0.397
B 10 4 −0.609 −0.498 0 −0.112

TABLE 8.14

Multi-Stratum ANOVA Table for the Logit-Transformed Percentage of Resistant 
Seedlings from the Pathogenicity Screening Experiment Using a Within-Group 
Nested Structure (Factors TypeA and TypeB for the Two Species, Respectively) 
(Example 8.3B)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Rep stratum
 Residual 2 1.8664 0.9332 6.492 0.006
Rep.Tray stratum
 Species 1 4.2896 4.2896 FS = 29.841 < 0.001
 Species.TypeA 8 23.4012 2.9251 FS.TA = 20.349 < 0.001
 Species.TypeB 3 0.6643 0.2214 FS.TB = 1.541 0.230
 Residual 24 3.4500 0.1437
Total 38 33.6715
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evidence of variation between isolates within species B (F 233 24 1 541 0 0, . , . )S.TB = =P . We can 
therefore conclude that there was some variation in resistance to isolates from species A, 
but no significant variation in resistance to isolates from species B.

We have shown above how to identify and express a nested structure, including the 
attribution of variation between members to the individual parental groups. This prin-
ciple can be applied to more complex explanatory structures. For example, consider an 
experiment which uses a treatment factor crossed with a nested structure, for example, 
Treatment*(Group/Member). In the context of Example 8.3, this structure would arise if 
each isolate had been tested with two treatments.

8.5 Adding Controls or Standards to a Set of Treatments

Many experiments include one or more control or standard treatments, and these can 
play several different roles. The concepts of negative and positive controls were briefly 
introduced in Section 3.1, and both are often intended as validation of the experimental 
process. A negative control is usually a null treatment that is included as a measure of 
baseline response, often used to demonstrate that other treatments have had a real effect. 
For example, consider a trial set up in glasshouse compartments to evaluate the effect of 
some new biocontrol agents on a glasshouse pest. In this case the negative control is a null 
treatment. If infestation in untreated compartments is small, then the experiment may be 
regarded as unsuccessful, as there is little scope to show any effect of the new agents. If, 
on the other hand, infestation is large in untreated compartments, then any effect of the 
new agents is more likely to be observed. A positive control is usually a treatment with a 
known effect that is included as a baseline for a good response. In our example, this might 
be an effective chemical control strategy. Finally, standard treatments may be defined for 
certain types of experiment and included as a means of comparing the response across 
several experiments and of providing a common reference point across experiments. This 
practice is common in variety trials, where some varieties are included in all trials across 
several years, with this standard set slowly evolving to reflect current elite varieties. It is 
also common in many laboratory procedures, where the standards are samples that are 
re-used either within or across experiments as quality controls, and might not have been 
part of the original experiment. The advantage of this approach is that behaviour of the 
standard is well-known, so any deviation from the expected response on these samples 
can give an immediate indication of problems in the experimental procedure. In this sec-
tion, we use the term ‘control’ to also refer to standard treatments.

The correct approach to analysis when controls are present depends on both the aims 
of the experiment and the purpose of the control. If the main purpose of the experiment 
is the direct comparison of individual treatments with the controls, for example, when 
screening a set of chemicals or varieties as to whether they are comparable to one or more 
positive controls, or better than a negative control, then the controls can be regarded as 
an integral part of an unstructured set of treatments, and comparisons can be made as 
described in Section 8.8.4. If the main purpose of the experiment is comparisons between 
non-control treatments, then the approaches described in the remainder of this section 
might be helpful. This often requires the definition of a complex explanatory model con-
taining both crossed and nested structures.
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EXAMPLE 8.4A: POTATO YIELDS

This experiment was introduced in Example 3.5 and the data were analysed according 
to a one-way treatment structure in Example 7.1. It consisted of a RCBD with four blocks 
to compare the yields of potatoes treated with four different fungicide sprays (F1, F2, F3, 
F4) with an unsprayed treatment (Control, negative control). The layout was shown in 
Table 7.1 (data in file potato.dat). The analysis in Chapter 7 showed differences between 
the treatments, with the control giving smaller yields than the four fungicide sprays. 
It would be useful to refine this analysis specifically to evaluate whether there are any 
differences in yield between the fungicide sprays.

We recommend that controls always be included in the analysis of an experiment, except 
in the special case where the controls are uninformative. This might be the case if the con-
trol is not to be compared with any other treatment and the background variation within 
the control is quantitatively different from that of other treatments. For example, consider 
a glasshouse trial designed to test the resistance of several varieties to a fungal disease, 
where inoculum has been sprayed onto the leaves to provide a consistent infection. Two 
types of negative control have been included in the trial: a susceptible variety sprayed with 
inoculum to show that conditions are suitable for disease progression, and the same vari-
ety sprayed with clean water to show that there has been no additional infection or cross-
infection during the trial. If the experiment is successful then all of the plants sprayed 
with water should show no sign of disease and have a consistent zero response. Because 
there is no variation within this group, including these plants in the statistical analysis 
will decrease the ResMS so that it underestimates the true extent of background variation. 
It is therefore legitimate to exclude these plants from the analysis. However, plants of the 
susceptible variety sprayed with inoculum should be retained in the analysis, because 
they provide real quantitative information on the biological system. An assessment as to 
whether controls are informative or not must be done on a case-by-case basis, and requires 
real understanding of both the experimental system and the statistical analysis.

Having decided to retain the controls within the statistical analysis, we need to decide 
which comparisons are of most interest. If the controls and treatments are analysed as 
a single unstructured set, i.e. labelled by a single factor, then the one-way ANOVA will 
provide only an overall test of variation within the full set. Treatment differences can then 
be extracted from the pairwise comparisons of predicted means, but there are dangers in 
this approach that are described in Section 8.8. Where the controls are expected to be sub-
stantially different from the treatments, or where comparisons within the set of treatments 
are the main purpose of the experiment, it can be helpful to partition the joint variation 
within the full set of treatments and controls into two components: one accounting for 
variation between the controls and the average treatment effect, and the other accounting 
for variation within the set of treatments. In the case of a single control, we start with the 
model in terms of the full set of control and treatment effects as presented in Equation 8.1, 
except that we allocate the first label, j = 1, to the control and allocate the remaining labels 
to the t − 1 non-control treatments. The treatment effects are then partitioned with a nested 
structure as

 τ γ δ γj r rj= + ( )  ,

where index r takes value 1 when j = 1 (control) and takes value 2 otherwise (treated). This 
requires the definition of a new factor, here denoted Type, that labels the control and treat-
ment sets. The explanatory model for this structure can then be written as
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 Explanatory component: [1] + Type/Treatment
 = [1] + Type + Type.Treatment

where the factor Treatment denotes the full unstructured set of treatment groups. The 
process of estimating effects and sums of squares is exactly the same as for the nested 
structures in Section 8.5, and the same issues of missing combinations and aliasing arise.

EXAMPLE 8.4B: POTATO YIELDS

The nested control structure can be represented by two factors (Type and Fungicide) as 
defined in Table 8.15. These factors are also given in file potato.dat.

The model can then be written in symbolic form as

 Response variable: Yield
 Explanatory component: [1] + Type/Fungicide
 Structural component: Block/Plot

This model can equivalently be written in mathematical form as

 Yield Block Type Fungicide Type eirs i r rs irs= + + + +µ ( )  ,

where Yieldirs is the yield in the ith block (i = 1 … 4) for treatment of type r (r = 1 for 
control, r = 2 for fungicide treatments) with the sth fungicide (s = 1 … tr with t1 = 1 and 
t2 = 4). Fungicide Control is of type 1 (Control), and fungicides F1, F2 … F4 are of type 2 
(Treated) as shown in Table 8.15, where we have omitted parameters corresponding to 
missing combinations. The structural component generates the block effects, denoted 
Blocki for i = 1 … 4, and the deviations eirs (equivalent to term Block.Plot). The parental 
effect of the rth type (control or treated) is denoted Typer, with Fungicide(Type)rs being the 
nested effect of the sth fungicide within the rth type.

The Type effects are estimated as the means of the control and treated groups. The 
Type.Fungicide groups with data present are the control treatment plus the individual 
fungicide treatments. The nested effect for the control is aliased with the control group 
parental effect, so the control nested effect is equal to zero. The nested effects for the 
fungicide treatments are differences from their group mean. The Type.Treatment sum 
of squares is then calculated from these estimates, and hence has zero contribution from 
the control and so quantifies variation about the mean within the fungicide treatments 
only, as required.

The resulting ANOVA table is Table 8.16. As expected, the variance ratio for factor 
Type (F 1)1 12 35 972 0 00, . , .T = <P  gives strong evidence of a difference between the con-
trol and average of the fungicide treatments. The variance ratio for the nested term 
Type.Fungicide (F 5293 12 0 778 0, . , . )T.F = =P  gives no evidence of any differences among 
the four fungicide treatments. This gives a quantitative confirmation of the tentative 
conclusions of Example 7.1D.

TABLE 8.15

Calculation of Type Parental Effects, and Nested Type.Fungicide Effects (Example 8.4B)

Fungicide Type
Treatment 

Effects
Type 

Effects
Type.Fungicide 

Effects

Control Control −158.3 −158.3 0
F1 Treated 4.7 39.6 −34.9
F2 Treated 49.7 39.6 10.1
F3 Treated 66.2 39.6 26.6
F4 Treated 37.7 39.6 −1.9
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This approach can be extended for more complex treatment structures with one or 
more controls, such as a factorial structure with added control. This type of structure may 
require a mixture of nested effects (to partition out the control) and crossed effects (to 
model the factorial structure) to extract information efficiently. If more than one control is 
present, then the structure can be extended in several different ways. If comparisons with 
these controls are unimportant, then it is sufficient to add one extra level to the Type factor 
for each type of control. The Type factor then evaluates differences among the individual 
controls and the average of the other treatments, and the Type.Treatment interaction evalu-
ates variation among the non-control treatments.

8.6 Investigating Specific Treatment Comparisons

In previous sections, we have defined new factors to enable partitioning of a set of struc-
tured treatment effects into meaningful comparisons, often with the aim of finding the 
simplest possible description of patterns within the set. Contrasts provide an alternative 
way of partitioning a set of treatment effects. A contrast translates a specific hypothesis 
about treatment effects into mathematical form. There are two approaches to dealing with 
contrasts. The first approach involves building the contrast into the ANOVA and the sec-
ond involves evaluating contrasts from tables of predicted means. In this section we use 
the former approach, and the latter is discussed in Section 8.8.

For example, consider an experiment set up as a RCBD with three blocks, investigating 
the resistance of six wheat varieties to virus transmission by aphids, measured in terms of 
virus concentration in the plant at the end of the experiment. A model for these data can 
be written in mathematical form as

 y b eij i j ij= + + +µ τ  ,  (8.4)

where bi is the effect of the ith block, i = 1, 2, 3, τj is the effect of the jth variety, j = 1 … 6, 
and all other terms are as defined previously. Throughout this section, we assume that 
we are using sum-to-zero constraints, so that τj represents the deviation from the overall 

TABLE 8.16

Multi-Stratum ANOVA Table for RCBD Potato Yield Trial with Treatment 
Effects (Factor Fungicide) Partitioned into ‘Control vs Treated’ (Factor Type) 
Plus Nested Variation among Fungicide Treatments (Type.Fungicide) 
(Example 8.4B)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Block stratum
 Residual 3 14,987.20 4995.73 1.434 0.283
Block.Plot stratum
 Type 1 125,294.45 125,294.45 FT = 35.972 < 0.001
 Type.Fungicide 3 8124.75 2708.25 FT.F = 0.778 0.529
 Residual 12 41,796.80 3483.07
Total 19 190,203.20
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mean due to the effect of the jth variety. If the first two varieties are related through a 
known resistant ancestor, it might be of particular interest to evaluate whether there 
is any difference in resistance between them. This question can be expressed as ‘Is the 
treatment effect for variety 1 equal to that for variety 2?’ so, in mathematical terms, we 
want to test the proposition H0: τ1 = τ2. In practice, we rewrite this in a form such that, 
if the null hypothesis is true, then the value is equal to zero, which means reformulat-
ing the proposition as H0: τ1 − τ2 = 0; this is now in the form of a linear contrast. If we 
build this contrast into our analysis, we can form a test for this hypothesis as part of our 
ANOVA table.

In general, and working in terms of a set of treatment effects τ1 … τt, a linear contrast, 
denoted ψ, is defined as a linear function of the treatment effects, i.e. of the form

 

ψ τ τ τ τ= + + + =
=
∑l l l lt t j j

j

t

1 1 2 2

1

…  ,

such that the sum of the contrast coefficients, the set lj for j = 1 … t, is equal to zero, i.e. 
Σj lj = 0. In our example above, ψ = τ1 − τ2 with l1 = 1, l2 = −1 and l3 = l4 = … = lt = 0.

EXAMPLE 8.4C: POTATO YIELDS

In the potato yield trial described in Example 8.4A, four fungicide treatments were 
tested with a negative control (no fungicide treatment). However, fungicides F1 and 
F4 use one mode of action (mode A) and fungicides F2 and F3 use another (mode B), 
and it is of interest to evaluate whether there is any overall difference between the 
two modes of action. The linear model for this RCBD trial is equivalent to Equation 
8.4 with four replicates and five treatment effects τ1 … τ5 referring to the control and 
fungicides F1 … F4, respectively. Equality of the two modes of action can be expressed 
in words as ‘Is the average effect of mode A fungicides equal to the average effect of 
mode B fungicides?’. The average effect of mode A fungicides is the average of the 
effects associated with F1 and F4, or ½(τ2 + τ5). Similarly, the average effect of mode B 
fungicides (F2 and F3) is equal to ½(τ3 + τ4). Equality between the two quantities can 
then be written as

 

1
2

1
2

2 5 3 4( ) ( )τ τ τ τ+ = +  .

We can rearrange this expression into a contrast by subtracting ½(τ3 + τ4) from both 
sides of the equation, to obtain

 
ψ τ τ τ τ τ τ τ τ= + − + = × + ×




− ×
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2
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2
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5τ  .

In this case, the contrast coefficients are: l1 = 0, l2 = l5 = 0.5, l3 = l4 = −0.5.

Because the true values of the treatment effects are unknown, so too is the true value of 
the contrast. The least-squares estimate is obtained by substitution of the estimated treat-
ment effects in place of the unknown true values, so

 

ˆ ˆ ˆ ˆ ˆψ τ τ τ τ= + + + =
=
∑l l l lt t j j

j

t

1 1 2 2

1

…  .
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For a RCBD or CRD with equal replication of all treatment groups, the variance of the 
contrast is equal to the sum of the squared coefficients multiplied by the background vari-
ance and divided by the replication, which is written as

 

Var( )  ˆ .ψ σ=
=
∑

2
2

1
n

lj

j

t

As usual, we estimate the unknown background variation, σ2, using s2, the residual mean 
square from the ANOVA table. The estimated contrast standard error, SE( )ˆ ,ψ  is calculated 
as the square root of its estimated variance. Under the null hypothesis that the true value 
of the contrast is equal to zero, i.e. H0: ψ = 0, the ratio of the contrast to its estimated stan-
dard error, i.e.

 
t

SE( )
 =

ˆ
ˆ

,
ψ
ψ

has a t-distribution with df equal to the ResDF from the ANOVA table. For a two-sided test, 
if the absolute value of the ratio exceeds the 100(1 − αs/2)th percentile of this t-distribution, 
then there is statistical evidence (at significance level αs) that the true value of the contrast 
is not equal to zero. The associated 100(1 − αs)% confidence interval can be formed as

 ˆ ( ˆ ) .[ / ]ψ ψα± ×t SE( )  ResDF
s 2 

We can construct an equivalent test by partitioning the TrtSS in the ANOVA table into a 
component corresponding to the contrast and a remainder. The contrast sum of squares 
can be written as
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As the contrast sum of squares has 1 df, it is equal to the contrast mean square. Under 
the null hypothesis, the variance ratio of the contrast mean square to the ResMS has an 
F-distribution with numerator df equal to 1 and denominator df equal to the ResDF. The 
portion of TrtSS left over is called the remainder sum of squares. Under the null hypoth-
esis that the contrast has accounted for all of the treatment variation, the remainder mean 
square has an F-distribution on t − 2 and ResDF df. If there is no evidence of variation in 
the remainder, then the contrast alone can be used to describe treatment differences.

Both the ratio of the contrast to its SE and the contrast sum of squares are invariant to 
re-scaling, for example, if the coefficients for a contrast are all multiplied by 2, the ratio and 
contrast sum of squares are unchanged. To simplify computation, some software packages 
therefore automatically standardize contrasts by re-scaling so that the sum of the squared 
contrast coefficients is equal to 1, i.e. Σj jl2 1= .
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EXAMPLE 8.4D: POTATO YIELDS

The estimated treatment effects for this trial were shown in the third column of Table 
8.15. To compare the fungicide modes of action we calculate the contrast using l1 = 0, 
l2 = l5 = 0.5, and l3 = l4 = −0.5. This contrast has Σj jl2 1=  and is estimated as

 

ˆ ( . ) ( . . ) ( . . ) ( . . ) ( . . )ψ = × − + × + − × + − × + ×0 0 0 0 0158 3 5 4 7 5 49 7 5 66 2 5 37 7
== + +
= −

0 02 35 24 85 33 1 18 85
36 75 ,

. – . – . .
.

with estimated variance equal to s2/n = 3483/4 = 870.75. The contrast SE is then 
equal to the square root of its variance at 29.51. The ratio of the contrast to its SE is 
−36.75/29.51 = −1.245. Compared to a t-distribution on 12 df, this gives P = 0.237 for a 
two-sided test. The contrast sum of squares is then 4 × (−36.75)2 = 5402.25, and results in 
the same conclusion as the ANOVA shown in Table 8.17 (F 237)1 12 1 551 0, . , .AvB = =P . Hence, 
there is no evidence of any difference in yield between fungicides with different modes 
of action. The remainder mean square (F P 1Rem

3 12 12 251 0 00, . , . )= <  indicates the presence 
of treatment variation not accounted for by this contrast.

Typically there are two or more comparisons of interest, generating a number of differ-
ent contrasts. We label the ith contrast as ψi, with contrast coefficients li1 … lit. In this situa-
tion, the concept of orthogonality becomes important, because it affects the interpretability 
of the contrasts. We construct the product of two contrasts, here denoted ψi × ψk, by taking 
the pair of coefficients relating to each treatment effect, multiplying these together, and 
summing over all treatment effects, so

 

ψ ψi k ij kj

j

t

l l× =
=
∑

1

.

Two contrasts are said to be orthogonal contrasts if their product is zero. Orthogonal con-
trasts are also statistically independent with zero covariance.

In general, the sum of squares associated with a set of t treatment groups with t − 1 df 
can be partitioned into t − 1 orthogonal contrasts each with 1 df. The use of orthogonal con-

TABLE 8.17

Multi-Stratum ANOVA Table for Potato Yields with Treatment Effects (Factor Fungicide) 
Partitioned into a Contrast to Compare Fungicides of Modes A and B Plus a Remainder 
(Example 8.4D)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Block stratum
 Residual 3 14,987.20 4995.73 1.434 0.283
Block.Plot stratum
 Fungicide 4 133,419.20 33,354.80 9.576 0.001
 Contrast: mode A vs mode B 1 5402.25 5402.25 FAvB = 1.551 0.237
 Remainder 3 128,016.95 42,672.32 FRem = 12.251 < 0.001
 Residual 12 41,796.80 3483.07
Total 19 190,203.20
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trasts has the advantage that the ANOVA table is invariant to the order in which contrasts 
are added into the model, and different information is contributing to each contrast.

EXAMPLE 8.4E: POTATO YIELDS

The analysis in Example 8.4D ignored our previous partitioning of the control as 
sepa rate from the fungicide treatments. We can reintroduce this partition via a 
contrast that compares the control with the mean of the fungicide treatments, as 
ψ1 = τ1 − ¼(τ2 + τ3 + τ4 + τ5). We denote our previous contrast for comparison of modes 
as ψ2. The coefficients for each of the contrasts ψ1 and ψ2 are shown in Table 8.18. Their 
product is calculated as 

 ψ1 × ψ2 = (1 × 0) + (−0.25 × 0.5) + (−0.25 × −0.5) + (−0.25 × −0.5) + (−0.25 × 0.5) = 0

and so these two contrasts are orthogonal. Furthermore, we can make comparisons 
between fungicides within each mode of action using contrast ψ3 = τ2 − τ5 to compare 
F1 with F4 and contrast ψ4 = τ3 − τ4, to compare F2 with F3. The coefficients for these 
contrasts are also in Table 8.18, and it is straightforward to verify that any pair of these 
four contrasts is orthogonal.

Table 8.19 is the ANOVA table with the TrtSS partitioned into single df terms for the 
contrasts fitted in order ψ1, ψ2, ψ3, ψ4, and it is straightforward to verify that the contrast 
sums of squares do not change if these contrasts are fitted in a different order. Each 
 contrast is independently summarizing a different aspect of the treatment information. 

TABLE 8.18

Coefficients for Four Orthogonal Treatment Contrasts for the Potato Yield 
Trial (Example 8.4E)

Control
τ1

F1
τ2

F2
τ3

F3
τ4

F4
τ5

Contrast ψ1 1 −0.25 −0.25 −0.25 −0.25
ψ2 0 0.5 −0.5 −0.5 0.5

ψ3 0 1 0 0 −1
ψ4 0 0 1 −1 0

TABLE 8.19

Multi-Stratum ANOVA Table for Potato Yields with Treatment Effects (Factor 
Fungicide) Partitioned into Four Orthogonal Contrasts: ψ1 … ψ4 (Example 8.4E)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Block stratum
 Residual 3 14,987.20 4995.73 1.434 0.283
Block.Plot stratum
 Fungicide 4 133,419.20 33,354.80 9.576 0.001
  Contrast ψ1 1 125,294.45 125,294.45 Fψ1 = 35.972 < 0.001
  Contrast ψ2 1 5402.25 5402.25 Fψ2 = 1.551 0.237

  Contrast ψ3 1 2178.00 2178.00 Fψ3 = 0.625 0.444

  Contrast ψ4 1 544.50 544.50 Fψ4 = 0.156 0.699
 Residual 12 41,796.80 3483.07
Total 19 190,203.20
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The only contrast giving evidence against its null hypothesis is contrast ψ1, which com-
pares the negative control with the fungicide treatments. In fact, contrast ψ1 here is 
equivalent to the use of factor Type in Example 8.4B, giving the same sum of squares 
and variance ratio (Table 8.16). Contrast ψ1 is estimated as −177.0 (SE 29.51), indicating 
that the yield of the control treatment is 177.0 units less than the average yield of the fun-
gicide treatments with 95% CI calculated as −177.0 ± (29.51 × 2.179) = (−241.3, −112.7). The 
predictive model for this experiment can therefore be reduced to this contrast, agreeing 
with the conclusion of Example 8.4C.

Factors with two levels can always be represented by an interpretable single contrast 
constructed as the difference between the two levels, i.e. with contrast coefficients l1 = −1 
and l2 = 1. Factors with t levels can be represented by t − 1 contrasts, but it is not always 
possible to construct orthogonal contrasts that ask sensible questions about the treatments. 
Sometimes it is reasonable to use contrasts to pick out a few comparisons of interest but 
not decompose the remainder. Within a factorial structure it may be sensible to partition 
one or more of the factors into one or more contrasts plus a remainder. This structure is 
then propagated into interactions involving those factors. Both of these approaches are 
illustrated in Example 8.5.

EXAMPLE 8.5: HERBICIDE EFFICACY

A factorial experiment was done to compare the general efficacy of three herbicides (factor 
Herbicide) against nine populations of black-grass (factor Population). Two of the herbi-
cides (labelled A and C here) are from the same group (type 1 in factor Type), the third 
(labelled B) is from a different group (type 2). The design was arranged as a RCBD with five 
blocks (factor Rep), each containing 27 pots (dummy factor DPot). Six plants were grown 
in each pot and their combined fresh weight (g, variate Fwt) was recorded at the end of the 
study. The data are listed in Table 8.20 and held in file herbicide.dat. Preliminary analysis 
indicated the need for a transformation of the fresh weight and the square root transforma-
tion, calculated as sqrtFwt = sqrt(Fwt), gave reasonable residual plots. There is interest in 
whether there is any systematic difference in herbicide effect both between and within the 
herbicide groups, and in whether this changes across the populations.

Here, a crossed treatment structure is appropriate, as the main effects of both herbi-
cide and population are of interest. The full model can be written in symbolic form as

Response variable: sqrtFwt
Explanatory component: [1] + Herbicide*Population
Structural component: Rep/DPot

The mathematical model can be written as

 yrsk = μ + Repk + Herbicider + Populations + (Herbicide.Population)rs + ersk ,

where yrsk is the response in the kth block (k = 1 … 5) for the rth herbicide (r = 1, 2, 3 for 
A, B, C) and the sth population (s = 1 … 9) with associated deviation ersk, μ is the overall 
mean, Repk is the effect of the kth block, Herbicider is the main effect of the rth herbi-
cide, Populations is the main effect of the sth population and (Herbicide.Population)rs is the 
interaction between the rth herbicide and the sth population. Within the herbicide main 
effect, the two types of herbicide can be compared using a contrast of the form

 ψ1 = 1
2

 (Herbicide1 + Herbicide3) − Herbicide2

 = 0.5 × Herbicide1 − Herbicide2 + 0.5 × Herbicide3 .



188 Statistical Methods in Biology

Similarly, herbicides A and C are compared via an orthogonal contrast of the form

 ψ2 = Herbicide1 − Herbicide3 .

Within the interaction, the contrasts are applied to each population as

 ψ1s = 0.5 × (Herbicide.Population)1s − (Herbicide.Population)2s

 + 0.5 × (Herbicide.Population)3s

 ψ2s = (Herbicide.Population)1s − (Herbicide.Population)3s

for s = 1 … 9, giving the estimates shown in Table 8.21. At this level, the interest is in 
whether the value of the contrast varies between populations. For example, consistency 
across populations in differences between types of herbicide corresponds to the null 
hypothesis H0: ψ1s = 0 for s = 1 … 9.

TABLE 8.20

Fresh Weight (g) from a Pot Experiment Testing the Efficacy of Three Herbicides on Nine 
Populations of Black-Grass Using a RCBD with Five Blocks (Example 8.5 and File herbicide.dat)

Fresh Weight (g)

Population Herbicide Block 1 Block 2 Block 3 Block 4 Block 5

P1 A 5.94 3.63 5.56 4.09 3.65
P2 A 3.88 2.17 0.63 2.82 1.73
P3 A 3.55 5.16 5.17 1.07 2.61
P4 A 6.45 5.56 1.99 5.21 2.51
P5 A 0.10 0.31 3.69 4.56 0.16
P6 A 4.94 5.21 2.51 3.76 1.90
P7 A 4.07 3.74 4.67 3.41 5.73
P8 A 2.13 6.46 5.02 2.36 2.88
P9 A 2.24 2.85 0.63 1.39 3.14
P1 B 1.25 1.01 0.92 0.98 0.26
P2 B 1.55 1.44 0.90 1.12 1.74
P3 B 1.53 4.21 3.39 4.13 1.85
P4 B 2.56 1.49 1.09 2.37 0.66
P5 B 4.96 5.11 4.84 4.64 4.96
P6 B 1.89 3.00 3.05 1.22 1.58
P7 B 0.67 0.39 0.25 0.44 0.40
P8 B 0.47 0.51 0.37 0.27 0.40
P9 B 0.53 0.66 1.70 0.70 0.17
P1 C 5.37 3.96 4.05 3.37 4.11
P2 C 3.60 1.81 1.82 5.21 2.13
P3 C 4.77 3.46 5.58 4.45 2.80
P4 C 4.10 4.48 7.92 5.46 3.97
P5 C 2.96 5.14 3.16 4.46 2.45
P6 C 2.59 5.33 5.38 5.13 2.61
P7 C 5.17 5.66 4.84 4.47 3.44
P8 C 2.63 5.93 4.74 4.71 4.63
P9 C 4.48 2.90 2.91 5.73 3.71

Source: Data from R. Hull, Rothamsted Research.
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The ANOVA table is Table 8.22; it partitions the Herbicide main effect and 
Herbicide.Population interaction sums of squares into components associated with 
the two contrasts.

Variance ratios for all but one of the treatment mean squares are statistically signifi-
cant. The Herbicide sum of squares is partitioned into the two contrasts, which are 
both highly significant (F F both 1).1,104

1v2 AvC= = <114 714 13 392 0 001 104. , . , ., P  The type 1 versus 
2  contrast is estimated as 0.685 (SE 0.0640), indicating that herbicides of type 1 (A and C) 
yielded on average 0.685 units more on the square root scale than those of type 2 (B). The 
herbicide A versus C contrast is estimated as −0.270 (SE 0.0739), indicating that herbicide 
A yielded 0.27 units (on the square root scale) less than C on average. These patterns can 
be seen in the full table of predicted means plotted in Figure 8.7.

TABLE 8.21

Estimated Effects and Contrasts for Main Effect (Herbicide and Population) and Interaction 
(Herbicide.Population) Terms (Example 8.5)

Estimated Effects

Herbicide (Type)
Main 
Effect

Estimated Contrasts

Population A (1) B (2) C (1) Type 1 vs 2 A vs C

P1 0.340 −0.320 −0.020 0.039 0.480 0.360
P2 −0.069 0.188 −0.119 −0.231 −0.283 0.050
P3 −0.130 0.308 −0.178 0.199 −0.463 0.048
P4 0.097 −0.145 0.048 0.191 0.218 0.048
P5 −0.750 0.948 −0.198 0.069 −1.422 −0.552
P6 0.006 0.117 −0.123 0.129 −0.176 0.128
P7 0.350 −0.523 0.173 −0.026 0.785 0.176
P8 0.256 −0.457 0.202 −0.108 0.686 0.054
P9 −0.099 −0.116 0.214 −0.263 0.174 −0.313
Main effect 0.093 −0.457 0.363 1.654 0.685 −0.270

TABLE 8.22

Multi-Stratum ANOVA Table for Black-Grass Fresh Weights (Square Root Scale) from the Herbicide 
Efficacy Experiment (Example 8.5)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Rep stratum
 Residual 4 1.3111 0.3278 2.671 0.036
Rep.DPot stratum

 Herbicide 2 15.7207 7.8604 64.053 < 0.001
  Type 1 vs 2 1 14.0774 14.0774 F1v2 = 114.714 < 0.001
  Herbicide A vs C 1 1.6434 1.6434 FAvC = 13.392 < 0.001
 Population 8 3.5080 0.4385 FP = 3.573 0.001
 Herbicide.Population 16 13.9437 0.8715 7.102 < 0.001
  (Type 1 vs 2).Population 8 12.4676 1.5585 F1v2.P = 12.700 < 0.001
  (Herbicide A vs C).Population 8 1.4761 0.1845 FAvC.P = 1.504 0.165
 Residual 104 12.7626 0.1227
Total 134 47.2461

Note: Treatment (factor Herbicide) sum of squares partitioned into comparisons between herbicides of types 1 
(A and C) and 2 (B), and between herbicides A and C.
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The main effect of population is highly significant (F 1),8,104
P = =3 573 0 00. , .P  reflect-

ing overall differences in fresh weight obtained from the different populations (aver-
aged over herbicides). The Herbicide.Population interaction term is partitioned into the 
interactions of the two contrasts with the Population factor. The interaction of the type 1 
versus 2 contrast is highly significant (F 18 104 12 700 0 00, . , . )1v2.P = <P , indicating that the dif-
ference between the two types changes across populations, and indeed Figure 8.7 illus-
trates that this difference is strongly positive for populations P7 and P8, but negative for 
P5. The interaction of the A versus C contrast is not significant (F 1658 104 1 504 0, . , . )AvC.P = =P  
indicating that the difference between these two herbicides is reasonably consistent 
across the populations. Again, this pattern can be observed in Figure 8.7. We can con-
clude that the relative effectiveness of the different herbicide types depends on the pop-
ulation considered but that within herbicides of type 1, herbicide A is generally more 
effective (lower fresh weight) than herbicide C.

We have seen in Example 8.5 that contrasts can be used to partition treatment infor-
mation within a two-way crossed structure. This principle can be extended to nested or 
higher-level crossed structures and contrasts may be used to simplify the model terms 
required for prediction. If all of the significant treatment variation can be captured by 
a small set of contrasts, then a simplified model based on those contrasts can be used 
for prediction. This procedure is thus qualitatively different from the evaluation of treat-
ment comparisons from the predictive model, which are discussed in Section 8.8.5. The 
approach is most useful when it is possible to write the treatment structure as a set of 
meaningful pairwise comparisons.

8.7 Modelling Patterns for Quantitative Treatments

When the groups associated with a treatment factor correspond to some real numeric 
(quantitative) scale, we might think of building a model to describe the trend in the 
response in terms of that numeric scale, for example, in Example 1.1, plant height increased 
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Predicted fresh weight (g, square root scale) with SED for nine black-grass populations (P1 … P9) treated with 
herbicides A (•), B (⚬) and C (•) (Example 8.5).



191Extracting Information about Treatments

linearly in relation to dose. If we can describe this linear trend, then we can use it to pre-
dict the response for any intermediate dose. Some responses are more complex, requiring 
a curve: plant yield tends to respond linearly to nitrogen application initially then tail 
off; fungal infection rates on plants tend to increase up to some optimal temperature and 
then decrease for higher temperatures. In this section, we examine the use of contrasts for 
fitting simple polynomial models to quantitative factors, i.e. factors where the groups cor-
respond to positions on some underlying numeric scale.

Here, we consider the numeric levels of a quantitative factor on each unit as a variate, x. 
A polynomial model consists of several terms, each of which is a power of x multiplied 
by a coefficient. The order of the polynomial is equal to the highest power of x present, so 
a first-order polynomial describes a linear relationship. A second-order polynomial, or 
quadratic model, also includes the second power or square of the explanatory variate, and 
takes the generic form

 f x x xi i i( )  = + +α β β1 2
2 .

This equation consists of three terms, and can be considered as three components: a con-
stant term (α), a linear term ( )β1xi  and a quadratic term ( ).β2

2xi  This model can be consid-
ered as an example of polynomial regression (as presented in Section 17.1.2), but here we 
use polynomial contrasts to fit models of this form.

As an example, consider an experiment set up as a RCBD with four blocks, looking at the 
response of hydroponic plant growth (measured as biomass) to eight relative concentra-
tions of nutrient solution (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2). A model for these data can be 
written in mathematical form as

 y b eij i j ij= + + +µ τ  ,

where bi is the effect of the ith block, i = 1 … 4, τj is the effect of the jth concentration, 
j = 1 … 8, and all other terms are as defined previously. Again, we use sum-to-zero con-
straints. The second-order polynomial model is applied to the set of treatment effects, τj, 
j = 1 … 8. We form one contrast for each polynomial term (here constant, linear and qua-
dratic) using the appropriate power of x to give the contrast coefficients. The constant 
contrast corresponds to Σjτj but, because of the sum-to-zero constraints, this is equal to zero 
and so is omitted. The linear contrast takes the form

 (0.25×τ1) + (0.50×τ2) + (0.75×τ3) + (1.00×τ4) + (1.25×τ5) + (1.50×τ6) + (1.75×τ7) + (2.00×τ8) ,

with the concentration values being used as the contrast coefficients. The quadratic con-
trast takes the form

 (0.252×τ1) + (0.502×τ2) + (0.752×τ3) + (1.002×τ4) + (1.252×τ5) + (1.502×τ6) + (1.752×τ7) + (2.002×τ8)
  = (0.0625×τ1) + (0.25×τ2) + (0.5625×τ3) + (1.00×τ4) + (1.5625×τ5) + (2.25×τ6) 
      + (3.0625×τ7) + (4.00×τ8) ,

with the square of the concentration values now being used as the contrast coefficients.
Unfortunately, this approach results in contrasts that are non-orthogonal, and so the 

apparent importance of each term can depend on the order in which it is fitted, and the 
estimated contrast value depends on which other contrasts are fitted. This non-orthogo-
nality can be seen in Figure 8.8a – all powers of x show an increasing pattern for x > 0 and 
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so have strong positive correlations across this range. This problem can be avoided by the 
use of orthogonal polynomials, rather than simple powers. Orthogonal polynomials are 
constructed so that the qth function is of order q, and is orthogonal to all of the lower order 
functions. This means that the contrast for each component picks out the elements of the 
pattern that are unique to that power. Figure 8.8b shows a set of orthogonal polynomi-
als: correlations within this set are all zero. The form of the orthogonal polynomials also 
illustrates the complexity allowed within these models: a second-order polynomial can 
accommodate one turning or inflexion point, a third-order model can have two turning 
points and so on.

Calculation of contrast coefficients for orthogonal polynomials is less straightforward 
than for simple powers and these coefficients depend on both the quantitative factor lev-
els and their replication. In practice, statistical software will calculate the necessary con-
trast coefficients. Once the contrast coefficients have been calculated, inference follows as 
described in the previous section.

In theory, it is possible to fit t − 1 orthogonal polynomials for a quantitative factor with t 
levels, i.e. a polynomial of order t − 1. However, this polynomial model would give exactly 
the same fit as use of the factor itself, and interpolation between factor levels would be 
uninformative – this is illustrated in Section 17.1.2 in the context of polynomial regression. 
The usual aim is to find a low-order (i.e. parsimonious) polynomial to describe the general 
trend across factor levels. Variation due to the quantitative factor that is not accounted for 
by these lower-order contrasts is usually allocated as a remainder term that amalgam-
ates variation associated with higher-order polynomial terms. This remainder can then 
be tested against the appropriate residual term to ensure that there is no statistically sig-
nificant variation associated with the higher-order terms. This remainder is sometimes 
also called ‘lack of fit’ and is discussed further in Section 12.8 in the context of regression 
models.

EXAMPLE 8.6: VOLTAGE RESPONSE

An experiment was conducted to investigate the affinity of a sugar transporter protein 
for a substrate within plant cells. A range of voltages associated with different sugar 
concentrations was tested, and the response was measured in terms of electric current 
(variate Km). Nine different voltages were used, in increasing steps from −160 to 0 mV 
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(a) Simple powers of explanatory variate: x (—), x2/2 (…), x3/8 (- -), x4/32 (- . -); (b) orthogonal polynomials of 
explanatory variate x of order 1 (—), 2 (…), 3 (- -) or 4 (- . -).
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(factor Voltage). The experiment was set up as a RCBD, with blocks corresponding to 
two different occasions (factor Rep) with one replicate of each voltage measured during 
each occasion (factor called DUnit, as the actual randomization of plants within runs is 
not available). The data are listed in Table 8.23 and held in file voltage.dat.

A natural logarithm transformation, logKm = loge(Km), was used to stabilize the vari-
ances. The model for the data can be written in symbolic form as

Response variable: logKm
Explanatory component: [1] + Voltage
Structural component: Rep/DUnit

The corresponding mathematical model is written as

 logKm Rep Voltage eij i j ij= + + +µ  ,

where logKmij is the loge-transformed observed current in the ith replicate (i = 1, 2) for 
the jth level of voltage applied (j = 1 … 9 for −160, −140 … 0 mV, respectively). The struc-
tural component generates the replicate effects, denoted Repi for i = 1, 2, and the devia-
tions eij (equivalent to term Rep.DUnit). The effect of the jth voltage is denoted Voltagej. 
The sum-to-zero constraints take the form ΣiRepi = 0 and ΣjVoltagej = 0.

The predicted treatment means for this model (presented with the data in Figure 8.9a) 
show a broadly linear pattern of increase in response as voltage increases with a sug-
gestion of slight curvature. This pattern can be investigated further by use of linear 
and quadratic polynomial contrasts. Table 8.24 lists the estimated treatment effects and 
coefficients for orthogonal linear and quadratic polynomial contrasts across voltages.

We evaluate the contrasts by multiplying the coefficients by the estimated voltage 
effects, which give the linear contrast equal to 162.6 and the quadratic contrast equal 
to 1218.8, but these values must be re-scaled (to correspond to standardized contrasts) 
before they can be related to the polynomial model for the response, and this is done 
automatically by statistical software. Table 8.25 is the ANOVA table with the Voltage 
sum of squares partitioned into components corresponding to the linear contrast, the 

TABLE 8.23

Electric Current (km) Observed in Plant Cells 
as a Response to Different Voltages Applied, 
Using a RCBD with Two Replicates (Example 
8.6 and File voltage.dat)

Voltage 
(mV)

km

Rep 1 Rep 2

−160 0.234 0.219

−140 0.320 0.227

−120 0.326 0.282

−100 0.327 0.277

−80 0.331 0.343

−60 0.489 0.386

−40 0.437 0.421

−20 0.786 0.476
0 0.842 0.611

Source: Data from Rothamsted Research (T. Miller).
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(a) Observed electric current (⚬ rep 1, • rep 2; loge(Km)) and fitted treatment means (•) for different levels of 
voltage and with (b) fitted linear component of trend (solid line) (Example 8.6).

TABLE 8.24

Calculation of Coefficients for Orthogonal Linear and Quadratic 
Polynomial Contrasts for Electrical Response to Voltages (Example 8.6)

Voltage
Estimated 

Voltage Effects
Coefficients for 

Linear Trend
Coefficients for 
Quadratic Trend

−160 −0.5097 −80 3733
−140 −0.3353 −60 933
−120 −0.2175 −40 −1067
−100 −0.2249 −20 −2267
−80 −0.1120 0 −2667
−60 0.1422 20 −2267
−40 0.1294 40 −1067
−20 0.4843 60 933
0 0.6435 80 3733

TABLE 8.25

Multi-Stratum ANOVA Table for the Electrical Responses from the Voltage Experiment with 
Treatment (Factor Voltage) Sum of Squares Partitioned into Components for Linear and Quadratic 
Trend and a Remainder (Example 8.6)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Rep stratum
 Residual 1 0.17622 0.17622 12.185 0.008
Rep.DUnit stratum
 Voltage 8 2.33653 0.29207 20.195 < 0.001
  Linear contrast 1 2.20458 2.20458 FLin = 152.435 < 0.001
  Quadratic contrast 1 0.06029 0.06029 FQuad = 4.169 0.075
  Remainder 6 0.07166 0.01194 FRem = 0.826 0.581
 Residual 8 0.11570 0.01446
Total 17 2.62845
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quadratic contrast and a remainder. The variance ratio for the remainder term is not 
significant (F 581Rem

6 8 0 83 0, . , . ),= =P  indicating no need for higher-order terms. The qua-
dratic component is close to significant (F 75Quad

1 8 4 17 0 0, . , . ),= =P  indicating weak evi-
dence for a quadratic component of trend. However, this is small compared with the 
linear component of trend (F 1),Lin

1 8 152 44 0 00, . , .= <P  which clearly dominates the pat-
tern. Given the small size of the quadratic component compared with the linear compo-
nent of trend, we can ignore the quadratic component and allocate it to the remainder 
(which must then be recalculated). The fitted linear trend model is shown in Figure 8.9b 
and takes the form (see Exercise 15.8)

 
ˆ . . .µi j jVoltage= − + ×0 0 00434 68  

In general, fitting quantitative trends by polynomial contrasts is a much less direct 
approach than regression (Chapters 12 to 15 and 17). However, it can be difficult to account 
adequately for structure within the regression context (Section 11.6). For quantitative fac-
tors in designed experiments, it is therefore usually advantageous to start with polynomial 
contrasts to investigate the presence and complexity of trend. If the observations have no 
structure, this process can be followed by regression analysis, allowing for other treatment 
factors present (as in Chapter 15). If there is structure present then linear mixed models 
(Chapter 16) can be used as a framework for regression modelling that includes a struc-
tural component.

8.8 Making Treatment Comparisons from Predicted Means

In this section, we consider issues that arise in making treatment comparisons from tables 
of predicted means. These methods should be used following analysis with an appropri-
ate explanatory model that reflects the experimental aims, as described in the preceding 
sections. The most common type of comparison is a simple pairwise difference of two 
treatments but more complex functions, such as contrasts, may also be of interest. We first 
consider the case of simple pairwise comparisons and return to contrasts in Section 8.8.5.

In the simplest case, the aim is to test a null hypothesis of equality between a pair of 
treatment population means, for example, H0: μi = μj for treatments i and j or, equivalently, 
to form a CI for the difference μi − μj. Recall that µ̂ j denotes the predicted mean for the jth 
treatment group for j = 1 … t. As introduced in Section 4.4, these hypotheses can be inves-
tigated with statistics of the form

 
t

SE( )
 =

−
−

ˆ ˆ

ˆ ˆ
,

µ µ
µ µ
i j

i j


where the numerator is a difference between the predicted treatment means and the 
denominator is their SED. This statistic has a t-distribution with df equal to the ResDF 
from the ANOVA table. The test is evaluated against a two-sided alternative hypothesis, 
H1: μi ≠ μj, at a specified significance level αs, typically αs = 0.05, known as the comparison-
wise significance level. As indicated in Section 2.3.2, αs is the Type I error, the probability 
of rejecting the null hypothesis when in fact it is true. The Type I error can therefore also 
be interpreted as the probability of obtaining a single false-positive result, i.e. declaring a 
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difference significant when in fact it is zero. It is important to realize that the Type I error 
rate applies to each individual hypothesis test done as part of a statistical analysis, and if 
we perform several tests then the probability of a false-positive result increases with the 
number of tests; this is sometimes referred to as the problem of multiple testing. If we 
make m independent tests at significance level αs, then we can regard the number of false-
positive results as having a Binomial distribution (Section 2.2.1) with m trials and success 
probability αs. It follows that

 Prob(at least one false positive) = αf = 1 − (1 − αs)m ,

where αf is known as the experiment-wise Type I error. For example, if we do 15 indepen-
dent tests with αs = 0.05, then αf = 1 − (0.95)15 = 1 − 0.463 = 0.537, i.e. a 53.7% chance of one 
or more false-positive results. However, in our context of treatment comparisons from a 
single experiment, the tests are not independent because their denominators, the SED for 
each comparison, are based on the same ResMS. When hypothesis tests are not indepen-
dent, there is less certainty about how the Type I error rate accumulates, as this depends 
on the degree of dependence between the tests: the greater the degree of dependence, the 
smaller the rate of increase in experiment-wise error rate, with

 αs ≤ αf ≤ m × αs .

The lower limit holds only in the case when the tests are perfectly correlated.
Here, we first consider two general approaches for dealing with multiple tests: the 

Bonferroni correction (Section 8.8.1) and the false discovery rate (Section 8.8.2). We then 
go on to discuss some more specific approaches for some common scenarios: pairwise 
comparison of all means within a table (often called multiple comparisons, Section 8.8.3); 
comparison of a set of treatments against a control or standard (Section 8.8.4); and evalua-
tion of a pre-planned set of comparisons or contrasts (Section 8.8.5).

8.8.1 The Bonferroni Correction

The Bonferroni correction adjusts the Type I error rate for each comparison, αs, down-
wards. The adjustment is based on the number of comparisons, m, to be evaluated, and 
aims to achieve the desired experiment-wise error, αf. The Bonferroni inequality was used 
above to put an upper limit on the experiment-wise error rate for m comparisons each 
made at significance level αs, namely αf ≤ m × αs.

The Bonferroni correction uses significance level α αs
* = f/m for each individual compari-

son, so that the experiment-wise error rate becomes bounded above by αf. For example, if 
we make 15 comparisons with a comparison-wise significance level of αs

* . ,= 0 003333  then 
the experiment-wise error rate is ≤ ×15 αs

* . .= 0 05  Use of αs
*  in place of αs means that the 

critical value of the test statistic required to obtain a significant result for any individual 
comparison increases. For example, if our case of 15 comparisons has 18 ResDF, then the 
critical value of the t-distribution moves from 2.10 to 3.38, i.e. absolute treatment differ-
ences need to be 1.6 times larger to be significant; however, we shall control the number of 
false positives.

The main disadvantage of this approach is that, where many comparisons are made, 
absolute treatment differences often have to become very large to exceed the Bonferroni-
corrected critical value, and so power (the probability of detecting a difference if one is 
present, Section 10.3) is likely to fall considerably.
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8.8.2 The False Discovery Rate

The false discovery rate, FDR, introduced by Benjamini and Hochberg (1995), is a different 
type of approach that does not attempt to control for the experiment-wise error rate, but 
instead seeks to quantify the expected proportion of Type I errors within the set of rejected 
hypotheses. So an FDR of 0.05 means that 5% of the differences that have been found sta-
tistically significant are expected to be false-positive results.

There are two ways to calculate the FDR for a given set of comparisons. One method 
fixes the significance level αs for individual tests and then calculates the observed FDR. 
The other calculates the required significance level, αs

* ,  for individual tests required to 
achieve a pre-specified value of FDR. Both methods are applied after the test results have 
been obtained, and we outline them both below.

We start by calculating the observed FDR for m comparisons made with comparison-
wise significance level αs. The observed FDR is calculated as the ratio of the expected num-
ber of significant results under the null hypothesis to the observed number of statistically 
significant results, s, or

 
FDR  = ×m

s
αs .

For example, suppose that we make 200 comparisons at αs = 0.05, of which 24 gave a 
significant result. Then FDR = 200 × 0.05/24 = 0.417, i.e. it is expected that 41.7% of the 
24 significant comparisons, i.e. approximately 10 of them, will correspond to false-positive 
results.

The procedure to set the comparison-wise significance level to obtain a given level of 
FDR is a little more complicated. First, we rank the observed significance levels from the 
individual comparisons in ascending order as

 P(1) ≤ P(2) ≤ … ≤ P(m) ,

where subscript (i) indicates the ith most significant test (i.e. the ith smallest observed sig-
nificance level). We then calculate the values m × P(k)/k for k = 1 … m. For control of the false 
discovery rate at level FDR, we find the largest value k such that

 m × P(k)/k ≤ FDR ,

and reject all null hypotheses with P(j) ≤ P(k). If there is no k that satisfies that condition, 
then none of the hypotheses are rejected.

This procedure can be followed for any set of m independent tests, and for dependent 
tests that meet certain conditions (see Benjamini and Yekutieli, 2001 for more details). 
This includes most situations of pairwise comparisons (Section 8.8.3) and comparisons 
of treatments with control (Section 8.8.4). For other sets of dependent tests the expres-
sions above are modified by replacing the total number of comparisons, m, by m* which 
is calculated as

 

m m
j

j

m

* .=
=
∑ 1

1
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The FDR approach seems a good compromise between two extremes: either ignoring the 
problem of multiple testing (as when we use unadjusted LSDs, Section 8.8.3.1), which may 
lead to many (unrecognized) false positives; or specification of the experiment-wise error, 
which may give a loss of power (as when we use the Bonferroni correction).

8.8.3 All Pairwise Comparisons

In this section, we consider several different methods used for making all pairwise com-
parisons (often called multiple comparisons) within a table of predicted means. This is 
most commonly used for an unstructured set of treatments, but it may also be used to 
investigate a table of means from a structured set of treatments. There are t × (t − 1)/2 pair-
wise comparisons for a set of t means, and the number of comparisons thus increases pro-
portionally to the square of the number of means. For example, for four treatment groups 
there are six possible pairwise comparisons, but for 10 treatment groups there are 45 pos-
sible pairwise comparisons. The set of tests associated with these comparisons are not 
independent. Here, we consider the use of the LSD, multiple range tests and Tukey’s simul-
taneous confidence intervals for pairwise treatment comparisons. We assume that all of 
the treatment comparisons are estimated with equal precision, i.e. that a single common 
SED applies to the table of predicted means, with associated residual df denoted ResDF.

In the context of multiple comparisons, we often rank the t predicted treatment means as

 
ˆ ˆ ˆ ,µ µ µ( ) ( ) ( )  1 2≥ ≥ ≥… t

where the subscript (i) denotes the ith largest mean, and differences within this ordered 
set are then examined. The statistical properties of this ordered set differ from those of 
a random sample and inference requires the distribution of the range of an ordered set 
under the null hypothesis that the population effects are all equal; this is known as the 
Studentized range distribution. Quantiles for this distribution are available in most statis-
tical software. We denote the 100(1 − αs)th percentile of the Studentized range distribution 
for t groups with ResDF residual df as qt ,

[ ] .ResDF
αs

8.8.3.1 The LSD and Fisher’s Protected LSD

The least significant difference, LSD, was introduced in Section 4.4. For two treatments 
labelled as i and j, the LSD was defined as the smallest absolute difference that would result 
in rejection of the null hypothesis H0: μi = μj at significance level αs, and was calculated as

 LSD t SED ,ResDF
s= ×[ / ]α 2

where tResDF
[ / ]αs 2  is the 100(1 − αs/2)th percentile of the t-distribution with ResDF df.

The unprotected LSD approach to multiple comparisons rejects the null hypothesis for 
any pair of treatments whose absolute difference exceeds the LSD, i.e. where | | LSD.ˆ ˆµ µi j− ≥  
This approach provides no control of the experiment-wise error rate, which therefore 
increases with the total number of pairwise comparisons as described above, although the 
Type I error rate for each individual comparison is maintained at level αs.

The protected LSD procedure differs only in its requirement that the overall F-test for 
the null hypothesis H0: μ1 = … = μt must be rejected before any individual comparisons 
are evaluated. However, this procedure gives no additional control of experiment-wise 
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error. It is possible (although uncommon) to obtain a significant F-statistic without any 
of the pairwise treatment differences exceeding the LSD. Conversely, it is also possible to 
obtain a non-significant F-statistic when there is one or more significant pairwise differ-
ences within the set of treatment comparisons. The protection afforded by the F-test may 
therefore be illusory.

Because these procedures provide no control of the experiment-wise error rate, they 
should be used only when this control is regarded as unimportant. A simple way of intro-
ducing this experiment-wise control suggested by Hsu (1996, Section 4.1.8) is to use an 
adjusted version, the aLSD, calculated as

 
aLSD SED .1,ResDF= ×−qt

[ ]αs

2

8.8.3.2 Multiple Range Tests

Multiple range tests work on the ranked set of predicted means and are used to iden-
tify groups of treatments with a similar response. The main difference between the most 
common procedures is in the significance level used at each stage. Here, we consider the 
Newman–Keuls and Duncan’s multiple range tests, as being among those most commonly 
used in practice. These procedures define a comparison-wise significance level αs

* (defined 
below) then run as follows.

Step 1: Compare the t-statistic for the largest and smallest means, i.e. t /( )( )( )1 1t t= ( − )( )µ µ   
SED, with qt ,

[ ] ,ResDF
*αs  the 1 100( ) th*− αs  percentile of the Studentized range distribution for t 

groups with ResDF df. If t ResDF
*

( )( ) ,
[ ] ,1 t tq≤ αs  then we conclude that there are no differences 

within this set of means and stop. Otherwise, we conclude that some differences are pres-
ent, and move onto step 2.

Step 2: Repeat the procedure on the test statistics t /SED( ) ( )( )( ) ( )1 1 1 1t t− −= −µ µ   and 
t = /SED,( ) ( )( )( ) ( )2 2t tµ µ −  adjusting the number of groups to t − 1 for the Studentized range 
distribution and testing whether t ResDF

*

( )( ) ,
[ ]

1 1 1t tq− −≤ αs  or t s
( )( ) ,

[ ] .2 1t tq≤ − ResDF
*α  If differences are 

present within a set, then we proceed to test subsets of t − 2 adjacent means within that set.
The procedures continue in this manner, working with progressively smaller subsets 

until all differences are less than the required value, giving groups of means that can be 
considered as not significantly different. For each subset so identified, a common letter is 
allocated to all members. The only exception is that a new letter is not allocated to any sub-
set of a group already found to contain no differences. Any mean not allocated to a group 
at the end of the procedure is assigned its own letter. This process is illustrated in Table 
8.26. In this example the groups are distinct, but in many cases they will overlap.

The Newman–Keuls method uses α αs s
* =  at each step, where αs is the comparison-wise 

error rate; this results in an experiment-wise error rate greater than αs. Duncan’s multiple 
range test uses α αs s

* ( ) ,= − − −1 1 1u  where u is the size of the subset being tested at each 
stage. These values are much larger than αs when u is large, so this procedure is more 
lax than Newman–Keuls at the initial stages. This approach is intended to preserve the 
comparison-wise error rate at αs. The experiment-wise error rate for Duncan’s multiple 
range test can therefore be considerably larger than αs.

In both cases, the actual experiment-wise error is difficult to determine (other than that 
it is greater than αs) and may depend on the unknown configuration of the true popula-
tion means. This ambiguity in the experiment-wise error rate is a major drawback to these 
methods and we therefore do not recommend their use.
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8.8.3.3 Tukey’s Simultaneous Confidence Intervals

Finally in this section, we describe the use of Tukey’s simultaneous confidence intervals, 
where the coverage probability applies to the full set of intervals. For treatments i and j, the 
100(1 − αs)% confidence interval for the comparison μi − μj is

 
( ) ,

[ ]

µ µ
α

 
i j

tq− ± ×ResDF SED .
s

2

This approach is perhaps more useful than simple testing, as it provides a range of plausi-
ble values for each comparison. Both the position and length of these confidence intervals 
may give useful information on treatment differences.

All of the formulae given in this section assume that treatment groups have equal rep-
lication and hence equal precision. Calculations become more complex when groups have 

TABLE 8.26

Schematic Representation of a Multiple Range Test with Five Treatments

Step

1

2

3

Set

0

0.1

0.2

0.1.1

0.1.2

0.1.1.1

0.1.1.2

Assign letters.

a

Final

4

b b b b

Result Action

t(1),(5) > q5,ResDF
Significant,
test subsets.

Significant,
test subsets.

Significant,
test subsets.

Significant,
no subsets,
stop.

Not significant,
stop.

Not significant,
stop.

Not significant,
stop.

Difference
Tested µ(1)ˆ µ(2)ˆ µ(3)ˆ µ(4)ˆ µ(5)ˆ

µ(1) – µ(5)ˆ ˆ

µ(1) – µ(4)ˆ ˆ

µ(2) – µ(5)ˆ ˆ

µ(1) – µ(3)ˆ ˆ

µ(2) – µ(4)ˆ ˆ

µ(1) – µ(2)ˆ ˆ

µ(2) – µ(3)ˆ ˆ

[α*]

t(1),(4) > q4,ResDF
[α*]

t(2),(5) > q4,ResDF
[α*]

t(1),(3) > q3,ResDF
[α*]

t(2),(4) > q3,ResDF
[α*]

t(1),(2) > q2,ResDF
[α*]

t(2),(3) > q2,ResDF
[α*]

Note: Steps, and tests within steps, are executed in sequential order. Set numbers relate to 
those from the preceding step, for example, 0.1.1 and 0.1.2 arise as subsets from set 
0.1. Rectangles represent the ordered predicted means ˆ ( )µ 1  to ˆ .( )µ 5  Means compared 
in each step are shown as filled bars; means found to differ are coloured in black; 
those that do not are coloured grey. At final step, groups of treatments found not to 
differ are assigned a common letter.
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unequal replication, and hence comparisons have unequal precision. In particular, this 
may give some inconsistencies in the groups formed at different steps within the multiple 
range tests.

8.8.4 Comparison of Treatments against a Control

The comparison of treatments against a control or standard treatment is a common require-
ment in screening trials, where a set of new treatments is evaluated against standard prac-
tice. This set of comparisons is a subset of all pairwise comparisons, but we can achieve 
more power by recognizing the structure of the subset. Dunnett’s method is simple and 
constructs a set of confidence limits for the comparison of each new treatment population 
mean (μj, j = 2 … t) with the control (μ1).

If the aim is to detect treatments that give a larger value than the control (a one-sided 
test) then the method generates lower limits for the difference of treatments with the con-
trol as

 
( ) ,

[ ]µ µ α 
j td− − ×−1 1 ResDF SED ,s

where dt−1,
[ ]

ResDF
αs  is the 100(1 − αs)th percentile of Dunnett’s distribution for t − 1 treatment 

groups (excluding the control) and ResDF df for the SED. Quantiles of Dunnett’s distribu-
tion are available in most statistical software. Any treatment with a lower limit greater 
than zero can then be considered as larger than the control at significance level αs. If the 
aim is the detection of treatments that give a smaller value than the control (another one-
sided test) then the method generates upper limits as

 
( ) ,

[ ]µ µ α 
j td− + ×−1 1 ResDF SED .s

Any treatment with an upper limit less than zero can be considered as smaller than the 
control. For a two-sided test, you should calculate both limits after adjusting the critical 
value, using

 
( ) ,

[ / ]µ µ α 
j td− ± ×−1 1

2
ResDF SED ,s

and consider any treatment with either a lower limit greater than zero or an upper limit 
less than zero as different from the control.

8.8.5 Evaluation of a Set of Pre-Planned Comparisons

In some situations, there may be a pre-planned subset of treatment comparisons that are of 
particular interest. To qualify as pre-planned, the comparisons must be determined before 
any results are obtained; this matter is discussed further in Section 8.8.6. In this more gen-
eral situation, it is difficult to obtain an optimal strategy, and so we deal with the problem 
of multiple testing by using the methods of Sections 8.8.1 and 8.8.2. If controlling Type I 
error is the main concern, then a Bonferroni correction to the significance level would be 
appropriate. If we wish to retain power, but with some insight into the false-positive rate, 
then use of the FDR may be more appropriate.
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In this context, comparisons that are more complex than simple differences, such as 
treatment contrasts, may be of interest. Here, a contrast is defined as a linear function of 
the population means, i.e. of the form

 

l l l lt t j j

j

t

1 1 2 2

1

µ µ µ µ+ + + =
=
∑…  ,

which is estimated by substitution of the predicted means in place of the unknown true 
population means. Estimation of the SE for this contrast is more difficult than with effects 
(Section 8.6) because correlations between the predicted means must be accounted for, but 
this can be done with statistical software.

Before our final summing up, we consider an example in which a set of pre-planned 
comparisons are of interest, and use all of the methods discussed in this section to demon-
strate some of the differences between them.

EXAMPLE 8.7: LUPIN VARIETY TRIAL

A field trial was set up to evaluate the overall performance of a set of lupin breeding 
lines. The experiment was laid out as a RCBD with three blocks of 14 plots (factors 
Block and Plot). Fourteen different lines were tested (factor Line), comprising 12 dwarf 
lines (DTN lines) and two non-dwarf lines (CH-304 lines). Performance across a range 
of characteristics, including the average number of plants per square metre (variate 
NPlant) and oil yield (t/ha, variate OilYield), was to be compared with the candidate 
variety for release, line DTN20. Here, we analyse oil yields. The data are held in file 
lupintrial.dat and listed in Table 8.27.

TABLE 8.27

Average Number of Plants (NPlant) and Oil Yield (t/ha,Yield) from a RCBD with Three Blocks and 
14 Lupin Breeding Lines (Example 8.7 and File lupintrial.dat)

Block 1 Block 2 Block 3

Plot Line NPlant Yield Line NPlant Yield Line NPlant Yield

1 DTN84 16.68 0.36 DTN84 31.13 0.34 DTN31 26.68 0.21

2 DTN108 24.46 0.58 DTN12 31.13 0.36 DTN78 28.90 0.36

3 DTN78 37.80 0.39 DTN04 24.46 0.33 DTN10 28.90 0.32

4 DTN19B 37.80 0.38 DTN11 55.58 0.38 CH304-70 26.68 0.24

5 CH304-73 22.23 0.37 DTN19B 37.80 0.33 DTN84 26.68 0.58

6 DTN10 37.80 0.30 DTN10 28.90 0.34 DTN108 6.67 0.56

7 DTN11 24.46 0.29 DTN108 26.68 0.54 DTN20 24.46 0.41

8 DTN19A 26.68 0.17 DTN20 24.46 0.35 DTN19B 40.02 0.32

9 DTN04 35.57 0.26 DTN31 31.13 0.18 DTN19A 8.89 0.30

10 DTN31 24.46 0.19 DTN01 37.80 0.37 DTN01 31.13 0.38

11 CH304-70 26.68 0.22 CH304-73 35.57 0.24 DTN04 28.90 0.23

12 DTN20 31.13 0.32 DTN19A 24.46 0.23 DTN11 46.69 0.28

13 DTN12 20.01 0.31 DTN78 35.57 0.59 DTN12 31.13 0.35

14 DTN01 42.24 0.32 CH304-70 17.79 0.24 CH304-73 26.68 0.29

Source: Data from I. Shield, Rothamsted Research.
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The full model can be written in symbolic form as

Response variable: OilYield
Explanatory component: [1] + Line
Structural component: Block/Plot

The mathematical model for these observations is written as

 OilYield Block Line eij i j ij= + + +µ  ,

where OilYieldij is response in the ith block (i = 1 … 3) for the jth line (j = 1 … 14). The 
structural component generates the block effects, denoted Blocki for i = 1 … 3, and the 
deviations eij (equivalent to term Block.Plot). The effect of the jth line is denoted Linej. 
The sum-to-zero constraints take the form Σi Blocki = 0 and Σj Linej = 0.

The oil yields did not require transformation, and the predicted treatment means are 
calculated as

 
ˆ ˆ .µ µj jLine= +   

These predicted means are listed in Table 8.28. The ResMS obtained from ANOVA 
was s2 = 0.0039 on 26 df, leading to SEDs for treatment comparisons calculated as 
√(2 × 0.0039/3) = 0.0509.

The aim of the analysis is comparison of other lines with line DTN20 (with predicted 
mean 0.360), which we can consider as comparisons with a control, as described in 
Section 8.8.4, and so we start by using Dunnett’s method. For a two-sided test, Dunnett’s 
method for significance level αs = 0.05 requires the 97.5% critical value of Dunnett’s dis-
tribution for 13 treatments and 26 df, i.e. d13 26

0 025 3 004,
[ . ] . .=  By rearranging the formula in 

Section 8.8.4, we find that treatments different to DTN20 must satisfy one of the follow-
ing conditions:

 

ˆ ˆ

ˆ
,

[ . ]µ µ

µ
j

j

d >  SED = 0.360 + 3.004 0.0509 = 0.5131 13 16
0 025+ × ×

<   SED = 0.360 3.004 0.0509 = 0.207ˆ ,
[ . ]µ1 13 16
0 025− × − ×d

Any line with predicted oil yield > 0.513 can be considered to yield more than DTN20, 
and any line with predicted oil yield < 0.207 can be considered to have a lower yield 

TABLE 8.28

Predicted Means for 14 Breeding Lines (SED = 0.0509 on 
26 df) in the Lupin Variety Trial (Example 8.7)

Line
Predicted 

Mean Line
Predicted 

Mean

CH304-70 0.233 DTN12 0.340
CH304-73 0.300 DTN19A 0.233
DTN01 0.357 DTN19B 0.343
DTN04 0.273 DTN20 0.360
DTN10 0.320 DTN31 0.193
DTN108 0.560 DTN78 0.447
DTN11 0.317 DTN84 0.427
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than DTN20. This range is shown in Figure 8.10 (labelled Dunnett), and only lines 
DTN31 and DTN108 are outside of this range.

Instead of using Dunnett’s method, we might have considered this as an arbitrary 
set of 13 pre-planned comparisons, and used a Bonferroni correction to the critical 
value. Instead of using αs = 0.05 for each individual comparison, we would then use 
αs

* . . .= =0 0 0 005/13 385  For a two-sided test, we use αs
*/2 then t26

0 00198 3 174[ . ] .=  and lines 
with predicted means outside the range (0.199, 0.521) can be considered different from 
DTN20. This range is very close to that obtained from Dunnett’s method, and is also 
shown in Figure 8.10 (labelled Bonferroni), leading to the same conclusions.

Instead of using the structure of the method, we might think of treating this as a 
problem of multiple comparisons, and extract conclusions for the tests we are inter-
ested in. The range of values considered not different from DTN20 using Tukey’s simul-
taneous confidence intervals are shown in Figure 8.10 (labelled Tukey CI). The range 
for this method is greater, because it allows for 14 × 13/2 = 91 tests to have taken place, 
whereas we are interested in only 13 of them (each line vs DTN20). This test identifies 
only DTN108 as having a yield different to DTN20. If instead we use the LSD (Figure 
8.10, labelled LSD) then there is no allowance for multiple testing, hence no adjustment 
to the significance level and lines DTN31, DTN19A, CH304-70 and DTN108 are identi-
fied as different to DTN20. However, if we use the adjusted LSD by substituting the 
Studentized range distribution in place of the t-distribution then the results are similar 
to Tukey’s simultaneous confidence intervals (Figure 8.10, labelled aLSD). In this con-
text, none of these procedures takes account of the number of tests of interest, and may 
either over- or under-estimate the number of differences. This mismatch illustrates the 
benefit of considering the structure of the problem rather than automatic use of multiple 
comparison procedures.

As another possibility, we might use the unadjusted LSD in combination with the 
FDR to give insight into the expected number of false-positive results. Testing at 
αs = 0.05, we identify four significant results out of 13, so the expected false-discovery 
rate is 100 × 13 × 0.05/4 = 16.25%. If we wish to restrict our false-positive rate to 5%, then 
the first step is to rank the 13 tests in order of the observed significance levels associ-
ated with the t-tests, as shown in Table 8.29. Calculating 13 × P(k)/k for each rank, i.e. for 
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FIGURE 8.10
Range of predicted oil yields of a set of lupin breeding lines considered not different from line DTN20 under 
different tests (Example 8.7). Lines not labelled: CH304-70 (= DTN19A), DTN10 (> DTN11), DTN19B (> DTN12) 
and DTN01 (< DTN20).
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k = 1 … 13, gives the last column in Table 8.29. Only the first two values are ≤ 0.05, so to 
obtain an FDR of 5% we reject only the two null hypotheses corresponding to the two 
smallest observed significance levels, which, in this case, matches the conclusions from 
Dunnett’s test.

8.8.6 Summary of Issues

We have presented several approaches to multiple testing and considered specific meth-
ods for multiple comparisons and comparisons against a control. The statistical literature 
contains many more methods and it can be difficult to decide which procedure is the most 
appropriate. Miller (1981) and Hsu (1996) provide a more detailed account of the subject. To 
finish, we discuss some controversial issues.

There is a school of thought that states that multiple comparisons should never be per-
formed for experiments where there is some structure within the set of treatments (see 
e.g. Bondari, 1999; Cousens, 1988; Gates, 1991; Gilligan, 1986; Madden, 1982; Pearce, 1993; 
Perry, 1986; Webster, 2007). The main concern of these authors is that multiple procedures 
ignore this structure, and we agree that this is a grave error. However, once the treatment 
structure has been used to obtain a set of predictive terms, it can be helpful to evaluate 
comparisons within these terms, and the issue of multiple testing should then be consid-
ered. For example, in a crossed three-way treatment structure with a significant three-
way interaction, it may be useful to use multiple comparisons to help disentangle patterns 
within the three-way table. If only main effects were significant, then comparisons within 
predictive tables for those main effects should be evaluated, not comparisons on the whole 
three-way table.

Somewhat different considerations arise when the response is examined after the exper-
iment is done to decide which comparisons to test, i.e. a posteriori. In any set of treatments, 
even if there are no differences between the true population means, some groups will 
have smaller responses and some larger responses, purely because of random sampling 
variation. The eye is drawn to comparisons comprising the larger differences, and this 

TABLE 8.29

Calculation of Significance Level Required to Obtain FDR of 5% (Example 8.7)

Rank 
(k) Line

Predicted 
Mean

Difference 
from DTN20 t P 13 × P/k

1 DTN108 0.560 0.200 3.933 0.001 0.007
2 DTN31 0.193 −0.167 −3.277 0.003 0.019
3 CH304-70 0.233 −0.127 −2.491 0.019 0.084
4 DTN19A 0.233 −0.127 −2.491 0.019 0.063
5 DTN04 0.273 −0.087 −1.704 0.100 0.261
6 DTN78 0.447 0.087 1.704 0.100 0.217
7 DTN84 0.427 0.067 1.311 0.201 0.374
8 CH304-73 0.300 −0.060 −1.180 0.249 0.404
9 DTN11 0.317 −0.043 −0.852 0.402 0.581
10 DTN10 0.320 −0.040 −0.787 0.439 0.570
11 DTN12 0.340 −0.020 −0.393 0.697 0.824
12 DTN19B 0.343 −0.017 −0.328 0.746 0.808
13 DTN01 0.357 −0.003 −0.066 0.948 0.948
– DTN20 0.360 0 – – –
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bias must be taken into account. This is done by adjustment of the experiment-wise error 
to control for all possible tests of pairs of treatments within the set, and this adjustment is 
necessary even if all of the tests are not made.

EXERCISES

 8.1 Re-analyse the data of Exercise 7.4 taking into account the crossed treatment struc-
ture (additional factors Cultivar and Rate can be found in file inoculation.dat). 
Write down the model for this analysis in both mathematical and symbolic form. 
Is there any evidence for differences among cultivars or inoculation rates, and do 
these factors act independently? Compare this analysis with that from Exercise 7.4: 
has the crossed structure clarified your results?

 8.2 An experiment designed as a RCBD with three blocks and a 2 × 2 × 2 factorial 
structure investigated the effect of three factors and their interactions on the rate 
of callus growth on wheat seeds. Wheat seeds were placed in separate isolation 
containers with sets of eight containers, one for each of the eight treatments, kept 
together in holding trays (factor Tray). The treatment factors were age of the seed 
(‘old’ or ‘young’, factor Age), concentration of growth media (2.5 or 5 mg, factor 
Conc) and type of growth promoter (Cutlass or Rapier, factor Type). Seeds were 
weighed (variate Weight) after they had been in the media for 15 days. Analyse 
the seed weights; the data set is in file callus.dat. Remember to check the model 
assumptions. What conclusions can you draw from this experiment?*

 8.3 A field experiment investigated the effect of two seed rates (40 or 80 seeds/
m2, factor Rate) and two row spacings (12 or 36 cm, factor Spacing) on the 
performance of four lupin genotypes: two determinate genotypes, A and 
B, and two new dwarf-determinate genotypes, C and D (factor Genotype). 
The experiment was designed as a three-block RCBD with 16 plots per block 
and a 4 × 2 × 2 factorial treatment structure. At harvest the number of lupin 
plants per m2 was recorded (variate NoPlants). The data set can be found in 
file lupindensity.dat. Analyse the densities at harvest and identify and inter-
pret a suitable predictive model. Do the determinate and dwarf-determinate 
genotypes behave differently?†

 8.4 A field experiment to investigate the effect of weed competitors on yield of win-
ter wheat was set up as a RCBD with three blocks of 18 plots. Three weed species 
were used: chickweed (CW), black-grass (BG) and cleavers (CL). Target weed 
densities were 0, 40, 80, 160, 320 and 640 plants per m2 for CW and BG, and 0, 
3, 6, 12, 24 and 48 plants per m2 for CL. However, the weed densities achieved 
were lower and differed among species. The unit numbers (ID), structural fac-
tors (Block, Plot), species sown (factor Weed), density achieved (variate Density) 
and the final yields at harvest (variate Yield, tonnes/hectare at 85% dry matter) 
are given in file weedcompetition.dat. Consider whether it is appropriate to 
consider density as crossed with or nested within weed species, and construct a 
suitable factor for the density treatment. Analyse the data and interpret the tests 
generated from your ANOVA table. What conclusions can you draw from this 
trial?‡

* Data from M. Wilkinson, Rothamsted Research.
† Data from I. Shield, Rothamsted Research.
‡ Data from P. Lutman, Rothamsted Research.
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 8.5 Re-analyse the data of Exercise 6.3 using new factors (and information supplied 
in file scab.dat) to answer the following questions: Does the addition of sulphur 
affect the level of scab? Does either of the rate or timing of application affect the 
level of scab? Do these two factors act independently? (We re-visit these data in 
Exercise 11.4.)

 8.6 An experiment assessed the effect of two lectins, Con-A and GNA, on nematode 
motility. Nematodes were incubated overnight with one of the two lectins or 
a buffer solution (PBS) as a control (factor Treatment). Nematodes were placed 
in the centre of Petri dishes, with four dishes allocated to each treatment com-
pletely at random. Here, we analyse the total distance moved by the nematodes 
in each dish after 40 min. File nematodes.dat contains the unit numbers (DDish), 
explanatory factor (Treatment) and distances moved (variate Distance). Analyse 
these data and construct contrasts to assess whether (a) addition of lectins affects 
nematode movement and (b) the two lectins have similar effects on movement.*

 8.7 An experiment at Rothamsted Research in 1996 investigated the yield response 
of forage maize to nitrogen fertilizer. The experiment was designed as a RCBD 
with three blocks of four plots, with nitrogen fertilizer rates of 0, 70, 140 and 
210 kg N. The whole crop forage yields from each plot (at 100% dry matter in 
tonnes/hectare) are shown in Table 15.11. File forage.dat contains unit numbers 
(ID), structural factors (Block, Plot), explanatory factor N and the final yields 
(variate Yield). Analyse these data using ANOVA and incorporate a first-order 
polynomial (linear trend) in nitrogen fertilizer rate. State your conclusions from 
this analysis.†

 8.8 Consider the data from the calcium pot trial of Example 4.1 (Table 4.1 and file 
calcium.dat). In this trial, the treatments A, B, C and D were concentrations of 
calcium in the soil, measured as relative concentrations of 1, 5, 10 and 20, respec-
tively. Re-analyse these data using polynomial contrasts. Which low-order poly-
nomial provides the best fit to these data?

 8.9 In Example 8.7, a three-block RCBD lupin breeding line experiment was 
described and the resulting oil yields analysed. Now analyse the average num-
ber of plants per square metre (variate NPlant) in a similar way. The data can be 
found in Table 8.27 and file lupintrial.dat. Compare the plant density of other 
lines with the line DTN20.‡ 

* Data from R. Curtis, Rothamsted Research/Bionemax.
† Data from P. Poulton, Rothamsted Research.
‡ Data from I. Shield, Rothamsted Research.
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9
Models with More Complex Blocking Structure

In this chapter we present the analysis of some common designs, introduced in Chapter 3, 
that have blocking structures somewhat more complex than that of the randomized com-
plete block design (RCBD). Recall that the structure of an experiment describes sources of 
heterogeneity among the experimental units (Section 3.1.3). Blocking is included within the 
structural component of the model, which also encompasses other aspects such as the pres-
ence of technical replicates. The blocking structure may be nested, crossed or contain both 
nested and crossed components (Section 3.2). To recap, nested structures comprise multiple 
units at lower levels of the experimental structure associated with a single unit at a higher 
level, with no relationship between lower level units contained in different higher level 
units. For example, in an experiment laid out as a RCBD (Chapter 7), plots are regarded as 
lower level units, and blocks as higher level units; it is assumed that there is no association 
between plots in different blocks and so plots are considered to be nested within blocks. On 
the other hand, crossed blocking structures occur when lower level units are simultane-
ously included within two independent higher level units associated with different factors. 
For example, consider a rectangular layout of pots in a glasshouse experiment, with both 
rows and columns of the layout regarded as blocking factors. Each pot is in both a row and 
a column; each row contains pots from each of the columns, and vice versa. Rows and col-
umns are therefore considered as crossed blocking factors in this context.

Several commonly used designs incorporate specific forms of blocking structure, and 
here we consider in detail three designs already introduced in Chapter 3: the Latin square 
(Section 3.3.3), split-plot (Section 3.3.4) and balanced incomplete block (Section 3.3.5) designs. 
For each we give a general description, state the underlying model, present the analysis of 
variance, describe the comparison of treatment means, and briefly discuss some common 
extensions to or variations on the basic design. We omit the mathematical expressions for 
some of the parameter estimates and sums of squares in this chapter (the calculations fol-
low from the principles introduced in Chapters 4, 7 and 8 for simpler designs), and instead 
emphasize the interpretation of results produced by statistical software. The Latin square 
design, which uses two crossed blocking factors, is described first in Section 9.1, followed 
by the split-plot design which, in its standard form, uses three nested blocking factors with 
two crossed treatment factors applied to different levels of experimental unit (Section 9.2). 
Finally, details are given for the balanced incomplete block design, a useful variant of the 
RCBD when the block size is smaller than the number of treatments (Section 9.3).

9.1 The Latin Square Design

The Latin square (LS) design was introduced in Section 3.3.3 and is used where heterogene-
ity is associated with two crossed blocking factors, both with the same numbers of levels. 
This design was originally used for field experiments with plots laid out on a square grid, 
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with heterogeneity expected across both rows and columns of the grid. The blocking fac-
tors are therefore often referred to as rows and columns and we use these generic terms in 
this section. However, the blocking factors may correspond to any two crossed sources of 
heterogeneity, such as time of day or observer. Some common situations where a crossed 
blocking structure may be appropriate, and where a LS design could be used, include the 
following:

• Field experiments laid out with plots on a square grid, with both rows and col-
umns of the grid expected to contribute to heterogeneity between plots. Factors 
influencing the heterogeneity could include soil characteristics (e.g. fertility or 
position on a slope), management practices, or the (potential) direction of influx of 
pests and diseases.

• Experiments in a glasshouse, controlled environment (CE) room or growth cabinet 
where the positioning of benches, shelves and so forth, with respect to walls, doors 
or light sources may introduce systematic variability (e.g. related to temperature, 
humidity or light) in different directions, for example, from left to right and from 
back to front (or, possibly, top to bottom).

• Laboratory experiments where there are two potential sources of variability, for 
example, scientists and machines (see Example 3.3), and we are concerned about 
the impacts of variation from the two sources.

The LS design is the simplest crossed blocking design suitable for such situations, and 
is a special case of a more general class known as row–column designs (see Section 9.1.5). 
For a LS design, the number of rows and columns (i.e. the number of levels of each block-
ing factor) must equal the number of treatments and also the number of replicates of each 
treatment; we denote this number by t. The treatment allocation is such that each treatment 
appears exactly once in each row and once in each column, with each row and each column 
containing the complete set of treatments. Estimates of treatment effects are then indepen-
dent of differences between either rows or  columns, and the row, column and treatment 
factors are mutually orthogonal (see Section 11.1). Overall, there are a total of N = t × t = t2 
experimental units, and each treatment is replicated exactly t times. The treatment struc-
ture associated with a LS design may comprise a single factor (with t levels), or any struc-
ture with a total of t treatment  combinations (see Chapter 8).

EXAMPLE 9.1A: LUPIN TRIAL

In Example 3.6, we introduced an experiment devised to investigate the effects of soil 
type and water availability on the growth of individual lupin plants in pots. Because 
of potential systematic trends due to temperature and light, the rows and columns of 
the square array of pots were considered as crossed blocking factors using a LS design. 
The treatments corresponded to a 2 × 2 factorial structure with two soil types (factor 
Soil; clay, C, or sand, S) combined with two levels of water supply (factor Water; low, 
L, or high, H). Initially, we consider a single set of four treatment combinations, coded 
in factor Treatment (with labels 1 = CH, 2 = CL, 3 = SH, 4 = SL). Plant heights (cm) were 
measured for each pot at the end of the experiment. The experimental layout and plant 
heights are shown in Table 9.1, with data held in file lupin.dat.

For this experiment the number of treatments is t = 4 with a total of t × t = 16 experi-
mental units (pots). It is easy to verify from Table 9.1 that each treatment combination 
is present once in each row and once in each column, such that each row (or column) 
contains all four treatment combinations.
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9.1.1 Defining the Model

A model for observations from a LS design with a single treatment factor with t levels 
takes the form

 y r c eijk i j k ijk= µ τ+ + + +  ,  (9.1)

where yijk is the observed response for the kth treatment in the ith row and jth column, μ 
the overall population mean, ri the effect of the ith row, cj the effect of the jth column, τk the 
effect of the kth treatment and eijk the deviation associated with that observation. Note that 
the treatment allocated to unit ij (in the ith row and jth column) is actually determined by 
the randomization of treatments to units, so in theory we do not need another subscript 
to indicate the treatment applied. However, this would make the notation more complex 
and so for simplicity we use the extra subscript. All of the subscripts i, j and k run from 1 
to t but because we have only t2 units, not all of the combinations are present. For example, 
for each ij combination, only one value of k, corresponding to the treatment applied to that 
unit, will be valid. We use sum-to-zero constraints such that Σiri = 0, Σj cj = 0 and Σkτk = 0. 
This model can be written in our symbolic notation as

Explanatory component: [1] + Treatment
Structural component: Row*Column

 = Row + Column + Row.Column

where factor Treatment labels the treatments, factor Row labels the level of the first (row) 
blocking factor and factor Column labels the level of the second (column) blocking fac-
tor present on each unit. The Row.Column term labels the individual observations and 
corresponds to the model deviations. In practice, the single treatment term will often be 
partitioned to investigate crossed or nested structures in terms of underlying factors as 
described in Chapter 8.

9.1.2 Estimating the Model Parameters

The parameters associated with the model in Equation 9.1 are the overall population mean, 
μ, the treatment effects τk, k = 1 … t, and the row and column effects, ri and cj for i, j = 1 … t. 

TABLE 9.1

Experimental Plan and Observed Response (Plant Heights, 
cm) for a LS Design with Two Treatment Factors: Soil Type 
(C = Clay, S = Sand) and Water Availability (L = Low, 
H = High) (Example 9.1A and File lupin.dat)

Column 1 Column 2 Column 3 Column 4
Row 1 CH

19.6
SL
23.5

CL
21.7

SH
19.0

Row 2 CL
15.5

SH
22.4

CH
23.2

SL
19.3

Row 3 SH
18.5

CH
23.5

SL
26.4

CL
19.0

Row 4 SL
19.8

CL
19.8

SH
23.9

CH
20.8

Source: Data from I. Shield, Rothamsted Research.
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The effects are estimated with the principle of least squares (see Section 4.2), and they take 
the same general form, i.e. sample means for treatments adjusted by the sample grand 
mean, as in the CRD and RCBD. The orthogonality of the design means that the effects 
of treatment, row and column are independent of one another. As previously, the overall 
population mean, μ, is estimated by the sample grand mean,

 
ˆ .µ = y  

The effect of the kth treatment is then estimated by the difference between the sample 
mean for that treatment and the sample grand mean,

 
ˆ ,τk ky y= −ii  

although here we take means only over the combinations of i and j present for each treat-
ment. Similarly, the effect of the ith row (jth column) is estimated by the difference between 
the sample mean for that row (column) and the sample grand mean,

 
ˆ ˆ .r y y c y yi i j j= − = −ii i i;  

Again, in these equations, we take means only across combinations of subscripts that are 
present in the design.

The quantity μk = μ + τk represents the population mean for the kth treatment. The best 
estimate of this population mean is then

 
ˆ ˆ ˆ ,µ µ τk k k ky y y y= + = + − =( )  ii ii

i.e. the sample mean for the kth treatment.

EXAMPLE 9.1B: LUPIN TRIAL

The model of Equation 9.1 applies to this experiment and can be written with a single 
set of treatments in symbolic form as

Response variable: Height
Explanatory component: [1] + Treatment
Structural component: Row*Column

The sample grand mean for the lupin trial is 20.99. Parameter estimates derived from the 
sample means are listed in Table 9.2.

9.1.3 Assessing the Importance of Individual Model Terms

Like the RCBD (Section 4.3.1), the LS is an orthogonal design, so it is possible to uniquely 
partition the total sum of squares of the observations (TotSS) into components due to the 
different sources of variation: here, rows (RowSS), columns (ColSS), treatments (TrtSS) and 
background variation (ResSS), so that

 TotSS = RowSS + ColSS + TrtSS + ResSS .
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These sums of squares can be written in terms of the parameter estimates, as

 

RowSS ; ColSS ; TrtSS ; ResSS= = = =
= = =
∑ ∑ ∑t r t c ti

i

t

j

j

t

k

k

t

ˆ ˆ ˆ ˆ2

1

2

1

2

1

τ eeijk

i j k

2  
, ,

,∑
where the summation for ResSS is made over combinations of i, j and k that are present in 
the design; this can be achieved by summation over any two of the indices. There is a cor-
responding partition of the total degrees of freedom as

TotDF = RowDF + ColDF + TrtDF + ResDF .

The total number of df are computed as

 TotDF 1 1 2= − = −N t ,

with the same number of df for each of the row, column and treatment terms, i.e.

 RowDF ColDF TrtDF 1 = = = −t .

The residual df (ResDF) are most easily obtained by subtraction as

 ResDF 1 1 1 1 3 2 1 2  2 2= − − − − − − − = − + = − × −( ) ( ) ( ) ( ) ( ) ( ) .t t t t t t t t

As usual, we calculate the mean square for each term by division of its sum of squares by 
its degrees of freedom (Section 4.3). If any of the sets of row, column or treatment effects 
are uniformly zero, then the corresponding mean squares are attributable solely to back-
ground variation. The variance ratios required to test null hypotheses of zero effects are 
therefore calculated as the appropriate mean square divided by the residual mean square, 
and these variance ratios are compared with the percentiles of an F-distribution with t − 1 
numerator and (t − 1) × (t − 2) denominator df.

To construct a multi-stratum ANOVA table, we need to recognize the strata in this 
design (see Section 7.5 for an introduction to this concept). The LS design has three strata, 
corresponding to rows (factor Row), columns (factor Column) and the individual units 
(Row.Column). The multi-stratum ANOVA table shown in Table 9.3 is partitioned accord-
ing to this structure. Because the complete set of treatments appears in each row and in 
each column of the design, there is no information on treatment effects in comparisons 

TABLE 9.2

Parameter Estimates (Row, Column and Treatment 
Effects) for the Lupin Trial (Example 9.1B)

Rows Columns Treatments

r̂1 −0.04 ĉ1 −2.64 τ̂1 0.78

r̂2 −0.89 ĉ2 1.31 τ̂2 −1.99

r̂3 0.86 ĉ3 2.81 τ̂3 −0.04

r̂4 0.08 ĉ4 −1.47 τ̂4 1.26
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between either rows or columns, and hence within either the Row or Column strata. As 
treatments are applied to the units defined by the combinations of rows and columns, 
variation in the Row.Column stratum is partitioned into the variation associated with the 
Treatment factor and residual variation.

Recall that, in addition to testing hypotheses about treatment effects, we can also use the 
multi-stratum ANOVA table to test hypotheses about terms in the structural component. 
Units within a higher-level stratum can always be constructed from units at some lower level 
(e.g. rows consist of a set of plots). If there is no heterogeneity at the higher level, then the 
ratio of the residual variances for these strata, as estimated by their mean squares, should be 
close to unity. In the LS design, we can compare variation between rows with background 
variation using the variance ratio RowMS/ResMS (Table 9.3). Under the null hypothesis that 
the row effects are all zero, this variance ratio is distributed as an F-distribution with t − 1 
numerator and (t − 1) × (t − 2) denominator df. An analogous test, based on ColMS/ResMS, 
can be made for column effects. Recall that these tests are made to give information on 
the major sources of variation present in the structure, and can give information useful in 
designing future experiments; they are not used to refine the predictive model.

EXAMPLE 9.1C: LUPIN TRIAL

The multi-stratum ANOVA table for this model is shown in Table 9.4.
The residual plots (not shown) indicate no obvious violations of the assumptions 

(Section 5.2). The variance ratio for the treatment mean square gives strong evidence of 
differences between treatments (F3 6 12 667, .T = , P = 0.005).

There is no evidence of differences between rows (corresponding to an expected light 
gradient, F3 6 3 165, .R = , P = 0.107), but there is strong evidence of differences between 
columns (corresponding to an expected temperature gradient, F3 6 38 478, .C = , P < 0.001). 
This suggests that columns are likely to be an important source of structural variation 
for any future experiments in this environment. Although row variation is not signifi-
cant for these data, it should still be allowed for in future experiments if previous expe-
rience suggests that it is sometimes substantial.

This analysis ignores the underlying treatment structure, and a more appropriate 
analysis uses a two-way crossed explanatory structure (Section 8.2) in terms of the 
underlying factors, Soil and Water, written as

Explanatory component:  [1] + Soil*Water
 = [1] + Soil + Water + Soil.Water

TABLE 9.3

 Structure of the Multi-Stratum ANOVA Table for a LS Design with t Rows (Factor Row), 
Columns (Factor Column) and Treatments (Factor Treatment), and a Total of N = t2 Units

Source of Variation df Sum of Squares Mean Square Variance Ratio

Row stratum
 Residual t −1 RowSS RowMS = RowSS/(t − 1) RowMS/ResMS
Column stratum
 Residual t −1 ColSS ColMS = ColSS/(t − 1) ColMS/ResMS
Row.Column stratum
 Treatment t − 1 TrtSS TrtMS = TrtSS/(t − 1) TrtMS/ResMS
 Residual (t − 1) (t − 2) ResSS ResMS =  ResSS/

[(t − 1) (t − 2)]
Total N − 1 TotSS
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The treatment sum of squares can then be partitioned into components for the two 
main effects and the interaction. The resulting ANOVA table is shown in Table 9.5. The 
sum of the main effect and interaction sums of squares is equal to the combined TrtSS 
in Table 9.4.

Starting at the bottom of the ANOVA table, there is strong evidence of a treatment 
interaction (F1 6 25 588, .S W. = , P = 0.002), indicating that the effect of soil type depends 
on the amount of water supplied. The presence of this interaction means that predic-
tions should be based on all model terms, and that main effects might not be easily 
interpreted. Nevertheless, growth appears to differ between soil types (F1 6 9 062, .S = , 
P = 0.024), with no overall effect of water supply (F1 6 3 352, .W = , P = 0.117).

9.1.4 Evaluating the Response to Treatments: Predictions from the Fitted Model

For an unstructured set of treatments, the best estimate of the population mean for the kth 
treatment is the treatment sample mean, i.e. µ̂k ky= ii  (Section 9.1.2). Uncertainty associated 
with this estimate is measured by its estimated SE,

 
SE( )

 
  ˆ ,µk

s
t

=
2

TABLE 9.4

Multi-Stratum ANOVA Table for the Lupin Trial with Four Rows, Columns and 
Treatments (Factors Row, Column and Treatment, Respectively) (Example 9.1C)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Row stratum
 Residual 3 6.162 2.054 FR = 3.165 0.107
Column stratum
 Residual 3 74.912 24.971 FC = 38.478 < 0.001
Row.Column stratum
 Treatment 3 24.662 8.221 FT = 12.667 0.005
 Residual 6 3.894 0.649
Total 15 109.629

TABLE 9.5

Multi-Stratum ANOVA Table for the Lupin Trial Using the Two-Way Crossed 
Explanatory Structure Soil*Water (Example 9.1C)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Row stratum
 Residual 3 6.162 2.054 FR = 3.165 0.107
Column stratum
 Residual 3 74.912 24.971 FC = 38.478 < 0.001
Row.Column stratum
 Soil 1 5.881 5.881 FS = 9.062 0.024
 Water 1 2.176 2.176 FW = 3.352 0.117
 Soil.Water 1 16.606 16.606 FS.W = 25.588 0.002
 Residual 6 3.894 0.649
Total 15 109.629
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using the estimate of background variation, s2 = ResMS, in place of the unknown true value, 
σ2. This can be used to form a 100(1 − αs)% CI for the treatment population mean as

 
ˆ ˆ , ˆ( )( )

[ / ]
( )( )
[ / ]µ µ µα α

k t t k k t t− ×



( + ×− − − −t SE( ) ts s

1 2
2

1 2
2 SSE( ) ˆ ,µk



)

where t s
( )( )
[ / ]
t t− −1 2

2α  is the 100(1 − αs/2)th percentile of the Student’s t-distribution with 
(t − 1) × (t − 2) df.

The best estimate of the difference between population means for the kth and sth treat-
ments is provided by the difference between their respective sample means, i.e.

 
ˆ ˆ ,µ µk s k sy y− = −ii ii  

and the estimate of the standard error of this difference is

 
SED SE( )  = , µ µ 

k s
s
t− = 2 2

with corresponding LSD = SED t s× − −( )( )
[ / ] .t t1 2

2α  As usual, the statistic

 
t

SED
= −ˆ ˆµ µk s

has a t-distribution with degrees of freedom equal to the ResDF, here (t − 1) × (t − 2), and 
can be used to evaluate the null hypothesis of equality of the two treatment population 
means against a two-sided alternative hypothesis. The corresponding 100(1 − αs)% confi-
dence interval for this treatment difference can be computed as

 ( ) LSD ( ) LSDˆ ˆ , ˆ ˆ .µ µ µ µk s k s− −( − + )

Predictions for crossed or nested structures within the set of treatments can be derived 
from the individual predictions as described in Chapter 8.

EXAMPLE 9.1D: LUPIN TRIAL

Table 9.6 shows predicted population means for each treatment combination. As the 
interaction term is statistically significant, this table is the most appropriate summary 
of this experiment (see Section 8.2.4), and the predictions and their SE are the same as 
would be obtained from use of the combined factor Treatment. The SE for the individual 
predictions is equal to 0.403, calculated using the ResMS = s2 = 0.649 from Table 9.5 as

 
SE( )   ˆ .

. .µk
s
t

= = =
2 0 649

4
0 403

The ResDF is (t − 1) × (t − 2) = 3 × 2 = 6 df. The SED for comparisons between pairs of 
individual treatments is √(2 × 0.649/4) = 0.570, with a 5% (two-sided) LSD calculated as
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 LSD t SED 2.447 0.570 1.394 .= × = × =6
0 025[ . ]

In combination with the LSD, the predictions in Table 9.6 indicate that there is no real 
difference in growth in sandy soil (Soil = S) across the two levels of water availability, 
but that growth is significantly reduced in clay soil (Soil = C) when less water is available 
(Water = L).

9.1.5 Constraints and Extensions of the Latin Square Design

The LS design has several serious disadvantages that make its use impractical in many cir-
cumstances. The numbers of rows, columns and treatments must be equal, but in practice 
it might not be possible to construct realistic blocks of the required size in both dimensions 
(rows and columns). In addition, when the number of treatments is small, the ResDF are 
also small. For example, if the number of treatments is three, four or five we have two, six 
and 12 ResDF, respectively. This means that the estimate of background variability is likely 
to be poor and the power to detect real treatment differences will be reduced (see Chapter 
10 for more discussion about statistical power). However, there are various extensions of 
LS designs that ease these restrictions, and we discuss some briefly here.

When the number of treatments is small, one way to increase the ResDF is to use mul-
tiple squares of the same size, with each square having a different randomization. The 
squares may either be considered as independent, with separate rows and columns, or as 
linked, with rows or columns shared across the squares to form a Latin rectangle design. 
The advantage of linked squares is that common effects can be used for the shared rows 
or columns, which further increases ResDF, as demonstrated in the following examples.

EXAMPLE 9.2: INDEPENDENT LATIN SQUARES

An experiment was set up to investigate the effect of petal colour on the influx of pollen 
beetles into a crop of oilseed rape. Five different shades of petal colour were considered, 
and a LS design was used to account for the unknown direction of migration into the 
crop. Previous studies had found much spatial variation in beetle counts, and so two 
replicates of the LS design were used to increase the precision of treatment compari-
sons. The two squares had the same orientation in adjacent fields, but common row or 
column effects could not reasonably be expected, and so the squares were regarded as 
independent. The experimental plan is shown in Table 9.7a. The structural component 
of the model takes the form

Structural component: Field/(Row*Column)
 = Field + Field.Row + Field.Column + Field.Row.Column

TABLE 9.6

Predicted Population Means (SE = 0.403, 
SED = 0.570 on 6 df) for the Lupin Trial 
(Example 9.1D)

Soil Type

Water Availability

H L

C 21.77 19.00
S 20.95 22.25
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A dummy multi-stratum ANOVA table, showing the sources of variation with their df, 
is presented in Table 9.8a. There are four strata, corresponding to the two fields (Field), 
rows and columns within fields (Field.Row and Field.Column) and the individual plots 
within fields (deviations, indexed by Field.Row.Column combinations). The ResDF is 
now 28 compared with only 12 for a single 5 × 5 square.

EXAMPLE 9.3: LINKED LATIN SQUARES

An experiment was required to investigate the growth of different strains of fungus on 
a new substrate. Five strains of the fungus were available, each applied to 10 dishes. The 

TABLE 9.8

Dummy Multi-Stratum ANOVA Tables for Two Replicates of a 5 × 5 LS with 
(a) Independent Squares (Example 9.2) in Different Fields and (b) Linked 
Squares Using Common Position Effects within Stacks (Example 9.3)

(a)
Source of Variation df

(b)
Source of Variation df

Field stratum Rep stratum
 Residual 1  Residual 1
Field.Row stratum Position stratum
 Residual 8  Residual 4
Field.Column stratum Rep.Stack stratum
 Residual 8  Residual 8
Field.Row.Column stratum Rep.Stack.Position stratum
 Treatment 4  Treatment 4
 Residual 28  Residual 32
Total 49 Total 49

TABLE 9.7

Designs using (a) Two Independent LSs (Example 9.2) with Separate Rows and 
Columns in Different Fields; (b) Two Linked LSs (Example 9.3) with Position within 
Stacks Considered as Common across Replicates

(a) (b) 

Field 1 Column Rep 1 Position within stack
1 2 3 4 5 1 2 3 4 5

Row

1 E C A D B

Stack

1 E D A B C
2 A D B E C 2 D C E A B
3 B E C A D 3 A E B C D
4 C A D B E 4 B A C D E
5 D B E C A 5 C B D E A

Field 2 Column Rep 2 Position within stack

Row

1

Stack

1
2 2
3 3
4 4
5 5

1 2 3 4 5
E C D B A
A D E C B
D B C A E
C A B E D
B E A D C

1 2 3 4 5
A C E D B
D A C B E
E B D C A
C E B A D
B D A E C
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dishes were to be held in vertical stacks of five dishes within a CE cabinet. The investi-
gator expected that position within each stack would affect growth rates, as well as the 
location of each stack on the shelf. Stack and Position were two independent sources of 
heterogeneity, and so the experiment was designed as two replicates of a 5 × 5 LS, with 
both replicates placed on the same shelf. The experimental plan is set out in Table 9.7b. 
Since the effect of position within stack was expected to be the same across all stacks, 
the two squares were considered linked, with position effects held in common. The 
structural component takes the form

Structural component: Rep + Position + Rep.Stack + Rep.Stack.Position

A dummy multi-stratum ANOVA table is Table 9.8b. This table also has four strata, 
corresponding to the two replicates (Rep), stacks within replicates (Rep.Stack), posi-
tion within stack (Position), and the individual dishes (indexed by Rep.Stack.Position 
combinations). As position effects are held in common across squares (replicates), 
fewer effects are fitted than would be the case if these effects were expected to differ 
across squares (replicates), and the additional df are passed into the ResDF in the low-
est stratum; now the ResDF equals 32 compared with 28 for the independent squares 
of Example 9.2.

There are some situations in which we can extend the constraints provided by a LS design 
to provide real benefits in controlling the impacts of adjacent treatments. For example, in 
insect pheromone trials, neighbouring treatments can interfere because of movement of 
the pheromone plumes by wind. Neighbour-balanced LS designs, also known as com-
plete or quasi-complete LS designs, are useful in such situations where rows and columns 
reflect the physical layout of the experiment. By balancing the occurrence of neighbouring 
pairs of treatments (so that each treatment occurs adjacent to each other treatment the 
same number of times within both rows and columns), these designs ensure that no indi-
vidual treatment has an unfair advantage (or disadvantage) over others due to a lucky (or 
unlucky) allocation of neighbours.

EXAMPLE 9.4: NEIGHBOUR-BALANCED LATIN SQUARE

A design was required to investigate strategies for pest control on a crop of field beans. 
The treatments were two semio-chemicals with repellent qualities, three field margin 
mixtures as a trap crop, and an untreated control. If one uses small plots, there is a dan-
ger of interaction (or contamination) between neighbouring treatments. For example, if 
the semio-chemicals are very effective, they might also repel pests from neighbouring 
plots. Conversely, a large pest population on the untreated control plots might start 
moving into neighbouring plots. A neighbour-balanced LS was used to even out any 
such interference. The experimental plan is set out in Table 9.9. It is straightforward to 
verify that each pair of treatments occurs as neighbours twice within rows and twice 
within columns.

Another design extending the constraints of the LS is the Graeco–Latin (or Euler) 
square design, which is an orthogonal combination of two LS designs. This design allows 
the independent assessment of the effects of two t-level treatment factors, with each of the 
t2 treatment combinations occurring once within a single Graeco–Latin square. The main 
effects of the two t-level treatment factors can be estimated but, as there is no replication 
of the individual treatment combinations, it is not possible to test for the presence of a 
treatment interaction. This design should therefore be used only when prior knowledge 
suggests that no interaction will occur. A common use of these designs is for perennial 
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crops, where different treatments may be applied in consecutive years, with the possibility 
of carry-over effects from treatments applied in previous years, but where we expect no 
interaction between previous and current treatments. These designs can also be adapted 
to situations where there are three (crossed) blocking factors and one treatment factor, all 
with t levels. Graeco–Latin square designs are even more restrictive than LS designs, and 
have even fewer residual degrees of freedom – for example, a single 4 × 4 Graeco–Latin 
square design has only 3 ResDF. Note that for some values of t (e.g. 6 and 10) it is not pos-
sible to construct Graeco–Latin square designs.

The LS design is a particular example of a row–column design, a class that includes 
more general designs with two crossed blocking factors. General row–column designs 
need not have equal numbers of treatments, rows and columns, and usually do not have an 
orthogonal structure. The simplest modification to a LS design might involve the removal 
of just a single row (or column) to produce an incomplete LS design, whilst the addition 
of a single row or column produces an extended LS design. Whilst these designs with 
one row or column deleted (or added) are no longer orthogonal, they are still balanced 
for treatment comparisons, and so can be analysed by standard multi-stratum ANOVA 
algorithms (see Section 11.6). As the discrepancy between the number of treatments and 
the number of replicates grows, however, it can be more challenging to find balanced row–
column designs. Further details on the construction and analysis of general row–column 
designs can be found in Mead et al. (2012, Chapter 8).

9.2 The Split-Plot Design

In some experimental situations, the natural scale of experimental unit varies between dif-
ferent treatment factors – examples include the following:

• Field experiments in which machinery constraints apply, for example, irrigation 
treatments often have to be set up for a large area, but varieties can be sown on 
much smaller plots.

• CE experiments where different regimes of temperature or lighting must be 
applied to whole rooms (or cabinets) whilst levels of other factors, such as plant 
variety or watering, can be applied within rooms (e.g. to plants in pots).

TABLE 9.9

 Neighbour-Balanced LS Design for Six Treatments: Control (C), Three Margin Mixtures (M1, M2, 
M3) and Two Repellent Semio-Chemicals (S1, S2) (Example 9.4)

Row

Column

1 2 3 4 5 6

1 S2 S1 M3 M1 M2 C
2 S1 M1 S2 C M3 M2
3 M3 S2 M2 S1 C M1
4 M1 C S1 M2 S2 M3
5 M2 M3 C S2 M1 S1
6 C M2 M1 M3 S1 S2
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One approach in these situations would be to apply all treatment factors at the coarser 
scale, but this quickly leads to experiments requiring substantially more resources than 
are usually available. A better alternative is the split-plot (SP) design, introduced in Section 
3.3.4, which is appropriate for factorial experiments where levels of one or more factors 
must be applied to larger experimental units while the levels of the other factor(s) can be 
applied to smaller units. It is worth noting, however, that a SP design should be used only 
when real constraints on the scale of treatment application are present, as the design is less 
efficient than the corresponding RCBD based on the same number of experimental units. 
SP designs occasionally arise as a means of modifying an existing experiment to enable 
the addition of a new treatment factor.

Similarly to the LS, the SP design had its origins in field experimentation, but it is much 
more widely applicable. We first consider one form of SP design, which we call the stan-
dard form, and discuss variations later. The standard SP design uses two treatment factors, 
A and B, with a factorial structure and a three-level nested structure for the experimental 
units. We assume that factor A can be applied only to large units but that factor B can be 
applied to smaller units, and that a crossed model (Section 8.2) is appropriate for these 
factors. The highest level of the structure corresponds to complete replicates of the set 
of treatments, and we denote this level as blocks. Each block is then divided into several 
whole plots (sometimes called main plots), with levels of treatment factor A randomized to 
the whole plots separately within each block (equivalent to the randomization of a single 
treatment factor in a RCBD). Finally, each whole plot is divided into several subplots, and 
the levels of factor B are randomized onto subplots within each whole plot (just as if we 
were considering the whole plots as blocks in a RCBD for factor B). Because the two treat-
ment factors, A and B, are applied within different strata, the main effects of factors A 
and B are assessed against different levels of background variation (between whole plots 
and between subplots, respectively, see Section 9.2.2) and hence estimated with different 
precision.

In general notation, in the standard SP design there are t treatments, formed from all 
factorial combinations of two treatment factors, A and B, where factor A has tA levels and 
factor B has tB levels, and t = tA × tB. The number of blocks is denoted m, and the number of 
whole plots in each block must be equal to tA (one for each level of factor A) giving a total 
of m × tA whole plots. The number of subplots per whole plot must then be equal to tB (one 
for each level of factor B) giving a total of N = m × tA × tB subplots. Each level of factor A 
will be present on one whole plot in each of the blocks, and each level of factor B will be 
present on one subplot within each whole plot. The replication for each level of factor A is 
m main plots whilst the replication for each level of factor B is m × tA subplots. Finally, the 
replication for each of the t individual treatment combinations is m subplots.

EXAMPLE 9.5A: WEED COMPETITION EXPERIMENT

A field experiment using a SP design to investigate the competitive effects of weeds, 
with and without irrigation, on the yield of winter wheat was introduced in Example 
3.7. The experiment used two irrigation regimes (non-irrigated or irrigated) in combi-
nation with three different weed species: Alopecurus myosuroides (black-grass), Galium 
aparine (cleavers) and Stellaria media (chickweed), abbreviated to Am, Ga and Sm, respec-
tively, and a negative control (no weeds). The SP design was used because the irrigation 
regimes could be applied only to larger areas of land. The experiment had four blocks 
(m = 4), with irrigation regimes applied to whole plots within each block (i.e. two whole 
plots per block, tA = 2), and different weed species were sown in subplots within the 
whole plots (i.e. four subplots per whole plot, tB = 4). The layout and data for this experi-
ment are shown in Table 9.10.
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For this experiment, the replication for each level of the irrigation factor is four (one 
whole plot in each block), and the replication for each of the four weed treatments is 
eight (one subplot in each whole plot in each block). Each individual treatment (combi-
nations of irrigation regime and weed species) is replicated four times.

9.2.1 Defining the Model

For this standard SP design we have a nested structure with three strata (blocks, whole 
plots within blocks, and subplots within whole plots within blocks) and a crossed treat-
ment structure with two factors. Ideally, we should label the whole plots and subplots for 
each observation according to the experimental plan, so as to maintain the distinction 
between the treatment and blocking structures. However, for simplicity of notation here 
we label the whole plots within blocks such that the jth whole plot has the jth level of treat-
ment factor A applied, and label subplots within whole plots such that the kth subplot has 
the kth level of treatment factor B applied. The linear model for this design can then be 
written as

 y b w eijk i j ij k jk ijk= + + + + + +µ α β αβ( )  ,

where yijk is the observed response on the kth subplot within the jth whole plot within 
the ith block. Parameter μ represents the overall population mean, bi is the effect of the 
ith block, αj the effect of the jth level of treatment factor A, wij the effect associated with 
the jth whole plot located in the ith block, βk the effect of the kth level of treatment factor 
B, (αβ)jk the interaction effect for the jth and kth levels from treatment factors A and B, 
respectively, and eijk the model deviation. The subscripts range over i = 1 … m, j = 1 … tA 
and k = 1 … tB. Sum-to-zero constraints are applied as Σj αj = Σk βk = Σj(αβ)jk = Σk(αβ)jk = 0, 
and Σibi = Σjwij = 0. Parameter estimation for a SP design again follows the principles of 
least-squares estimation. If we use the symbolic names Y for the response, Block to label 
the blocks, WholePlot to label the whole plots within blocks, and Subplot to label the 
subplots within whole plots within blocks, then this design can be represented in our 
symbolic notation as

TABLE 9.10

 SP Layout of the Weed Competition Experiment (Example 9.5A and File 
competition.dat)

Block 1 Block 2 Block 3 Block 4

Whole plot 1

–
7.92

Am
3.62

–
8.02

Ga
5.72

Sm
4.91

Ga
2.20

Am
3.71

–
7.16

Sm
5.70

Ga
4.49

Sm
6.32

Am
3.19

–
5.54

Am
1.97

Ga
6.51

Sm
6.65

Whole plot 2

–
9.11

Sm
6.77

Am
2.52

Ga
4.70

Am
2.92

Sm
6.64

Ga
4.91

Sm
5.78

Ga
7.59

Am
4.12

–
7.05

Sm
5.91

Ga
6.90

–
8.18

Am
2.73

–
8.22

Source: Data from P. Lutman, Rothamsted Research.
Note: Whole plots are shaded grey (irrigated) or white (non-irrigated) and each whole plot 

contains four subplots to which weed species (Am, Sm, Ga or no weeds, –) are applied.
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Response variable: Y
Explanatory component: [1] + A*B

 = [1] + A + B + A.B
Structural component: Block/WholePlot/Subplot

 = Block + Block.WholePlot + Block.WholePlot.Subplot

The term Block.WholePlot.Subplot defines the individual units and so corresponds to the 
model deviations, eijk.

9.2.2 Assessing the Importance of Individual Model Terms

We omit formulae for the sums of squares for the SP design, but instead concentrate on the 
general form and interpretation of the multi-stratum ANOVA table that can be obtained 
from statistical software. The total sum of squares of the observations (TotSS) is parti-
tioned into six components of variation: blocks (BlkSS), the main effect of treatment factor A 
(SS(A)), whole plots (WPtSS), the main effect of treatment factor B (SS(B)), the A.B interaction 
(SS(A.B)) and subplot or background variation (ResSS), giving the following relationship:

 TotSS = BlkSS + SS(A) + WPtSS + SS(B) + SS(A.B) + ResSS .

As usual, there is a corresponding partition of the total degrees of freedom. An impor-
tant aspect of the analysis of a SP design is the partitioning of treatment variation among 
strata; variation among main effects for treatment factor A, quantified by SS(A), must be 
compared with the background variation at the whole-plot level, represented by WPtSS. 
However, variation among main effects for treatment factor B and variation among the 
interaction effects, quantified by SS(B) and SS(A.B), respectively, must be compared with 
background variation at the subplot level, represented by ResSS. Within the ANOVA table, 
SS(A) therefore appears within the Block.WholePlot stratum, and SS(B) and SS(A.B) appear 
within the Block.WholePlot.Subplot stratum. The multi-stratum ANOVA table for this 
standard SP design is Table 9.11. As usual, each mean square is calculated by division of 
the corresponding sum of squares by its degrees of freedom.

TABLE 9.11

Structure of the Multi-Stratum ANOVA Table for a Standard SP Design with m Blocks (Factor 
Block), tA Whole Plots per Block (Factor WholePlot) and tB Subplots (Factor Subplot) per Whole Plot 
and a Total of N = m × tA × tB Units

Source of Variation df Sum of Squares Mean Square Variance Ratio

Block stratum
 Residual m − 1 BlkSS BlkMS BlkMS/WPtMS
Block.WholePlot stratum
 A tA − 1 SS(A) MS(A) MS(A)/WPtMS
 Residual (tA − 1) × (m − 1) WPtSS WPtMS WPtMS/ResMS
Block.WholePlot.Subplot 
stratum

 B tB − 1 SS(B) MS(B) MS(B)/ResMS
 A.B (tA − 1) × (tB − 1) SS(A.B) MS(A.B) MS(A.B)/ResMS
 Residual tA × (tB − 1) × (m − 1) ResSS ResMS
Total N − 1 TotSS

Note: Treatment factor A (tA levels) is applied to whole plots within blocks, treatment factor B (tB levels) is applied 
to subplots within whole plots.
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In addition to evaluating the variance ratios for treatment terms, we can consider the 
variation due to the experimental structure. The block mean square is compared with 
the whole-plot residual mean square (WPtMS), because if the block effects are all zero 
then variation between blocks arises from whole-plot variation alone. Similarly, the 
whole-plot residual mean square is compared with the subplot residual mean square. 
Note that the ResDF for the Block.WholePlot stratum will always be smaller than that 
for the Block.WholePlot.Subplot stratum, so that the background variation in the low-
est stratum is always estimated with greater precision. If the whole plots form natural 
blocks, so that units within the same whole plot are more similar than units in different 
whole plots, then we expect the Block.WholePlot stratum residual mean square to be 
larger than the Block.WholePlot.Subplot stratum residual mean square. These two facts 
together mean that the effects of treatment factor B and the A.B interaction are usually 
estimated with more precision than the effects of treatment factor A.

EXAMPLE 9.5B: WEED COMPETITION EXPERIMENT

To analyse the data from this experiment, we require factors to define the blocking struc-
ture corresponding to the physical layout, here called Block, WholePlot and Subplot 
and the two treatment factors, here called Irrigation and Species. Note the distinction 
between the levels of WholePlot and Irrigation (and similarly Subplot and Species) 
as the blocking factors represent the full field plan labelled systematically (shown in 
Table 9.10) to which the treatment factors have been randomized. These factors can be 
found in file competition.dat, along with a variate called Grain containing the response 
(weight of grain at 85% dry matter in tonnes/hectare). The full model written in sym-
bolic notation is

Response variable: Grain
Explanatory component: [1] + Irrigation*Species
Structural component: Block/WholePlot/Subplot

The multi-stratum ANOVA for these data is shown in Table 9.12. As expected, there are 
three strata in the ANOVA table, the top stratum (Block) contains no treatment informa-
tion, the middle stratum (Block.WholePlot) comprises variation due to the main effect of 
Irrigation and the whole-plot residual, and the lowest stratum (Block.WholePlot.Subplot) 
contains variation due to the Species main effect, the variation due to the Irrigation.Species 
interaction and the subplot residual. The associated residual plots (not shown) indicate 
no major violations of the model assumptions, so we can evaluate the treatment terms, as 
usual working upwards from the bottom of the ANOVA table. The interaction is highly 
significant ( F3 18 5 582, .I S. = , P = 0.007) indicating that the effect of irrigation on competition 
varies among weed species. The presence of this interaction indicates that we cannot sim-
plify our model for prediction, which needs to use all the explanatory terms, but out of 
interest we still examine the main effects to assess the relative importance of the differ-
ent model terms. There is very strong evidence for overall differences in the competitive 
effects of the weed species (F3 18 109 726, .S = , P < 0.001). The size of this F-statistic suggests 
that the interaction may be relatively small compared to these main effects. Despite the 
low ResDF in the whole-plot stratum, there is some evidence for overall differences 
between irrigation regimes (F1 3 9 480, .I = , P = 0.054). Patterns of response in the predic-
tions are explored further in Example 9.5C.

Examination of variation associated with the experimental structure indicates large 
variation between different whole plots (F3 18 5 751, .B W. = , P = 0.006) but little additional 
variation among blocks (F3 3 1 476, .B = , P = 0.378). These results suggest that spatial varia-
tion within the field occurs at reasonably fine (i.e. whole-plot) scales.
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9.2.3 Evaluating the Response to Treatments: Predictions from the Fitted Model

In Section 8.2.4, we stated our policy for making predictions from a crossed structure 
with two factors, namely, that predictions are made from all model terms if the interaction 
term is significant, and that predictions are made from any significant main effects when 
the interaction is not significant. Predictions from the standard SP design take the same 
form (i.e. treatment sample means) as described in Section 8.2.4, but the SEs and SEDs for 
estimates of treatment effects made within the whole-plot stratum take a slightly different 
form. The predictions are summarized in Table 9.13, together with their standard errors 
and associated df.

The estimated SE for predictions for factor B (averaged across all levels of factor A, 
denoted µ̂ik) are calculated from the ResMS, denoted s2 as usual, and the associated df are 
the ResDF from the subplot (Block.WholePlot.Subplot) stratum (ResDF). The estimated SE 
for predictions for factor A (averaged across all levels of factor B, denoted µ̂ ji ) take the same 

TABLE 9.12

 Multi-Stratum ANOVA Table for Grain Weight from the Weed Competition Experiment 
(Example 9.5B)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Block stratum
 Residual 3 6.6473 2.2158 FB = 1.476 0.378
Block.WholePlot stratum
 Irrigation 1 14.2311 14.2311 FI = 9.480 0.054
 Residual 3 4.5035 1.5012 FB.W = 5.751 0.006
Block.WholePlot.Subplot 
stratum

 Species 3 85.9257 28.6419 FS = 109.726 < 0.001
 Irrigation.Species 3 4.3714 1.4571 FI.S = 5.582 0.007
 Residual 18 4.6986 0.2610
Total 31 120.3776

Note: Two irrigation regimes (factor Irrigation) were applied to whole plots (factor WholePlot) 
within four blocks (factor Block), three weed species and a negative control (no weeds) (fac-
tor Species) were applied to subplots (factor Subplot) within whole plots.

TABLE 9.13

Form of Predicted Population Means for Combinations of Treatment Factors Applied to Whole 
Plots (Factor A) and Subplots (Factor B) in the Standard SP Design with Estimated SEs and 
Associated Df

Description Population Mean Prediction SE of Prediction df for SE

jth level of A µ ji µ̂ j jyi i i=  /s t mBw
2 ( )× (tA − 1) × (m − 1)

kth level of B µik µ̂i iik ky=  /s t mA
2 ( )× tA × (tB − 1) × (m − 1)

jth level of A with 
kth level of B

µ jk µ̂ jk jky= i  /( ( 1) ) ( )s t s t mB Bw
2 2+ − × × Equation 9.2
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form but are calculated from the residual mean square of the whole-plot (Block.WholePlot) 
stratum, estimated as sw WPtMS2 = , with replication expressed in terms of the number of 
subplots present with each level of factor A (as m × tB). The df associated with these SE are 
the ResDF from the whole-plot stratum. The estimated SE for prediction of an individual 
treatment combination, denoted µ̂ jk, takes a more complex form. These predictions are 
calculated as a mean of responses from subplots in different whole plots, and both the 
estimated whole-plot and subplot stratum variances, i.e. sw

2  and s2, contribute to the vari-
ance of this mean. The stratum variances are combined, taking account of the number of 
subplots per whole plot, as ( ( 1 ) )/w B Bs t s t2 2+ − × . This must then be divided by the replica-
tion of each treatment combination, m, before taking the square root to obtain the SE given 
in Table 9.13. The df for these SE take account of the contributions of the two stratum vari-
ances, using Satterthwaite’s formula (Satterthwaite, 1946), as

 
df

( )[ ( 1) ]
/( ) ( 1) /

 w B

w A B A
= − + −

− + −
m s t s

s t t s t
1

1

2 2 2

4 4 .
 

(9.2)

This quantity lies between the smaller of the ResDF for the two strata, here (m − 1) × (tA − 1), 
and the sum of the ResDF for the two strata, here (m − 1) × (tAtB − 1). It approaches its mini-
mum value when the whole-plot residual mean square is very much larger than the sub-
plot residual mean square, and takes the maximum value when s t s tw A A/2 21= −( ) , i.e. when 
the whole-plot residual mean square, WPtMS, is a specific proportion of the ResMS. These 
df will usually be non-integer: statistical software can calculate critical values for non-
integer df, but if statistical tables are to be used, then the df should be rounded down to 
the nearest integer. Confidence intervals for predictions can be obtained from the SEs and 
their associated df in the usual manner.

The difference between two population treatment means is as usual estimated by 
the difference in the two respective sample treatment means. Again, calculation of the 
estimated SEs for treatment comparisons (SEDs) is more complex where the comparison 
involves contributions from more than one stratum. Comparisons across individual 
treatment combinations with the same level of treatment factor A, for example, µ µjk js−  
with k ≠ s, are made entirely within the subplot stratum with the estimated SE calcu-
lated as

 SE /( )µ µ 
jk js s m− = 2 2

and associated df equal to the subplot ResDF, tA × (tB − 1) × (m − 1). Comparisons across 
different levels of treatment factor A, for example, µ µjk rs−  with j ≠ r, involve contributions 
from different whole plots and have their estimated SE calculated as

 SE [ ( ) ]/( )  w B B
( ) ,µ µ 

jk rs s t s t m− = + − × ×2 12 2

with associated df given by the Satterthwaite formula in Equation 9.2. This SE is valid 
whether the comparison is for the same level of treatment factor B (k = s) or for differ-
ent levels (k ≠ s). Comparisons of predictions for different levels of factor A averaged 
over all levels of factor B are made entirely within the whole-plot stratum, with esti-
mated SE
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 SE /(w B


i i( ) )µ µ 
j r s t m− = ×2 2

and associated df equal to the whole-plot ResDF, (tA − 1) × (m − 1). Finally, comparisons 
of predictions for different levels of factor B averaged over all levels of factor A are made 
entirely within the subplot stratum, with estimated SE

 SE /( A


i i( ) )µ µ 
k s s t m− = ×2 2

and associated df equal to the ResDF, tA × (tB − 1) × (m − 1). As usual a t-statistic, LSD or 
100(1 − αs)% CI associated with the null hypothesis of no difference between the popula-
tion means can be calculated from the appropriate SED and df.

EXAMPLE 9.5C: WEED COMPETITION EXPERIMENT

A statistically significant interaction between irrigation regime and weed species was 
found in the ANOVA table (Table 9.12) so the predictive model must use all of the 
explanatory terms, i.e. both main effects and the interaction. The predictions are listed 
in Table 9.14 and shown in Figure 9.1.

For this experiment we have m = 4, tA = 2 and tB = 4, with sw 1 5 122 0.=  and s2 = 0.2610 
(see Table 9.12). The estimated SEs for these predictions can therefore be calculated as

 
SE w B

B

( )
( ) . ( . ) .µ jk

s t s
t m

= + −
×

= + ×
×

= =
2 21 1 5012 3 0 2610

4 4
2 2843

16
0.. ,3778

with associated df calculated from Equation 9.2 as

 

( )[ ( 1) ]
/( ) ( 1) /

[w B

w A B A

m s t s
s t s t

− + −
− + −

× + ×1
1

3 1 5012 3 0 22 2 2

4 4t
= . . 6610

1 5012 0 2610
3 2 2843

2 3558
6 64

2

2 3
2

2

2]
df 

. .
.

.
. .

+ ×
×= =

SEDs between predictions for different species (labelled k and s) within the jth irriga-
tion regime are estimated as

 
SE / /( ) . . ,µ µ 

jk js s m− = = × =2 2 0 2612 4 0 36132

TABLE 9.14

Predicted Grain Weight for All Combinations of 
Irrigation Regime and Weed Species, with Comparisons 
across Irrigation Regimes within Species (Example 9.5C)

Species

Irrigation
Difference
No – YesNo Yes

– 8.117 7.182 0.935
Am 3.485 2.710 0.775
Ga 6.680 4.075 2.605
Sm 6.595 5.575 1.020

Note: Prediction SE = 0.3778 with 6.64 df. SED for comparisons 
within irrigation regime = 0.3613 on 18 df, SED for com-
parisons across irrigation regimes = 0.5344 on 6.64 df.
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with 18 df, and SEDs for different irrigation regimes (labelled j and r) within the kth 
species are estimated as

SE w B

B

( )
( ( ) ) ( . . )µ µ 

jk rk
s t s

t m
− = + −

×
= + ×

×
=2 1 2 1 5012 3 0 2610

4 4
22 2 ×× =2 284

16
0 5344

.
. , 

with 6.64 df (from the calculation above). In this case, SEs for comparisons across irri-
gation levels are substantially larger and considerably less precise than comparisons 
within each irrigation regime, because of relatively large variation between whole plots 
and the small ResDF at that level.

To interpret the patterns of yield response, we are interested in comparing the effect of 
irrigation on the competitive effects of each species (four comparisons, shown in Table 
9.14), and in comparing grain yields with each species present against the control in 
the absence of irrigation (another three comparisons). To allow for the number of tests 
(seven), we use a Bonferroni correction to the significance level (Section 8.8.1) giving 
adjusted significance level αs 5 7 7* . / .= =0 0 0 00 . The critical value of the t-distribution 
at significance level αs/* 2  for 6.64 df is 3.830 and for 18 df is 3.034. The LSD for differ-
ences across species for no irrigation is then 1.0960 (= 3.034 × 0.3613) and the LSD for 
comparisons within species across irrigation regimes is 2.0457 (= 3.830 × 0.5344). It is 
clear that all of the weed species reduce grain yield in the absence of irrigation, with 
the reduction (competitive effect) being greatest for Am (black-grass). The application 
of irrigation further increases the competitive effects for Ga (cleavers) but has no real 
impact on yield in other cases.

9.2.4 Drawbacks and Variations of the Split-Plot Design

The most important criterion that determines whether a SP design should be used is the 
existence of practical or operational limitations on experimental units to which the pro-
posed treatments can be applied. If the same experimental unit can reasonably be used 
for all factors and suitable (homogeneous) blocks are available, then the RCBD is almost 
always a better design because all treatment comparisons then have the same precision. 
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FIGURE 9.1
Predicted grain weight (t/ha) for each combination of species (x-axis; – = no weeds) and irrigation regime (○ = no 
irrigation, ● = irrigation) in the weed competition experiment (Example 9.5C). SED for comparisons within each 
irrigation regime = 0.361 on 18 df, SED for comparisons across irrigation regimes = 0.534 on 6.64 df.
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The main drawback of the SP design is in the small number of ResDF available within the 
whole-plot stratum, which limits the precision of any comparisons made across different 
levels of treatments applied to whole plots.

We have described one standard form of the SP design in which complete replicates 
of the design are arranged in separate blocks. There are several common variations on 
this design. For example, a SP structure may also be implemented without partitioning 
replicates into separate blocks. In this case, the design corresponds to a CRD at the whole-
plot level, rather than a RCBD, with the whole plots split into subplots as in the standard 
design. This type of design may be useful if there is no evidence or expectation of hetero-
geneity between whole plots assigned to different replicate blocks, as omitting the blocks 
increases the ResDF in the whole-plot stratum by m − 1 df. The model for this design is 
similar to that in Section 9.2.1 but excludes the block effect (bi), and the ANOVA table hence 
also omits the block stratum. We illustrate this situation in the following example.

EXAMPLE 9.6: TREE SEEDLING GROWTH

The effects of temperature and soil substrate on growth of tree seedlings are of interest. 
A glasshouse containing six temperature-controlled beds, each of which can be set at 
only one temperature at a time, will be used for this experiment. Each bed can accom-
modate two trays of plants, and substrates can be applied to individual trays. Previous 
experiments have shown no evidence of coarse-scale spatial heterogeneity within the 
glasshouse, hence a SP design without blocks is appropriate, with beds as whole plots 
and trays within beds as subplots. A randomized allocation of three replicates each 
of two temperatures (15°C and 20°C) is made onto the six beds. One tray in each bed 
contains plants growing in a vermiculite-based substrate and the other contains plants 
growing in a chipped-wood-based substrate, using a randomized allocation within 
beds. A schematic layout for this experiment is set out in Table 9.15.

With an obvious nomenclature for factors, the form of the symbolic model is

Explanatory component: [1] + Substrate*Temperature
Structural component: Bed/Tray

A dummy ANOVA table for this design is shown in Table 9.16. The Bed stratum has four 
ResDF here, which is very low, but a blocked form of this design would have only two 
ResDF at this level. This therefore seems a more sensible design if there is no previous 
evidence of heterogeneity across beds within the glasshouse.

TABLE 9.15

Layout of Tree Seedling Growth Trial (Example 9.6)

Tray 1 Tray 2

Bed 1 20°C/Chips 20°C/Vermiculite
Bed 2 20°C/Vermiculite 20°C/Chips
Bed 3 15°C/Chips 15°C/Vermiculite
Bed 4 15°C/Vermiculite 15°C/Chips
Bed 5 15°C/Chips 15°C/Vermiculite
Bed 6 20°C/Chips 20°C/Vermiculite

Note: Two temperatures (15°C or 20°C) each randomly allocated to three 
beds and two substrates (chips or vermiculite) randomly allocated 
to trays in each bed.
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Another common variant of the SP design occurs with CE cabinets (or rooms) or glass-
house compartments where the whole-plot treatment is an environmental condition (e.g. 
temperature, humidity or CO2 level). In this situation the cabinet is considered as the 
whole plot, but often the number of cabinets available is limited so that different replicate 
blocks comprise separate runs in different time periods using the same set of cabinets. 
To even out any bias associated with individual cabinets, a row–column design can be 
used for the allocation of treatments to cabinets across the runs (considering runs as 
the row blocking factor and cabinet as the column blocking factor). Ideally, the appli-
cation of whole-plot treatments is balanced across the cabinets as well as across runs. 
If the design is orthogonal, for example, if a LS design is used at the whole-plot level, 
then variation associated with individual cabinets and individual runs can be separated 
from the remaining variation between whole plots, potentially leading to a more pre-
cise evaluation of the whole-plot treatment effects (if sufficient ResDF are present at that 
level). Example 9.7 illustrates this situation and shows the structure of the multi-stratum 
ANOVA table.

EXAMPLE 9.7: ENRICHED CO2 TRIAL

An experiment was conducted to investigate the variation in growth rates of variet-
ies of spring wheat under ambient CO2 compared with two richer CO2 conditions in 
a set of three growth cabinets. Within each cabinet, pots of six separate varieties were 
grown. As differences were expected to be small, each CO2 treatment was repeated six 
times, and the limited number of growth cabinets meant that this replication could be 
implemented only by repeating the experiment over time. The allocation of CO2 levels 
to cabinets was assigned as two linked replicates of a 3 × 3 LS design (a Latin rectangle). 
A schematic layout for this experiment is shown in Table 9.17.

The structure of this experiment can be written as

Explanatory component:  [1] + CO2*Variety
Structural component: Square + Square.Run + Cabinet 

 + Square.Run.Cabinet + Square.Run.Cabinet.Pot

where factor Square (two levels) labels the two repeats of the LS part of the design 
and runs (factor Run, three levels) are labelled sequentially within each Square. The 
same cabinets are used in both squares and are expected to have a consistent effect. 

TABLE 9.16

 Dummy Multi-Stratum ANOVA Table for Tree 
Seedling Growth Trial (Example 9.6)

Source of Variation df

Bed stratum
 Temperature 1
 Residual 4
Bed.Tray stratum
 Substrate 1
 Substrate.Temperature 1
 Residual 4
Total 11

Note: Two temperatures (factor Temperature) were allo-
cated randomly to beds and two substrates (fac-
tor Substrate) randomly to trays within beds.
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In the  terminology of a SP design, the cabinets within each run (Square.Run.Cabinet 
term) correspond to the whole plots, and pots within cabinets correspond to subplots 
(term Square.Run.Cabinet.Pot). A dummy ANOVA table for this structure is shown 
in Table 9.18.

The CO2 treatments were applied to the individual cabinets within each run of the 
experiment, and so the CO2 sum of squares appears in the Square.Run.Cabinet stra-
tum. Due to the repetition over time, this experiment has achieved eight ResDF in this 
 stratum for testing the CO2 main effects. The different varieties were applied to pots 
within cabinets; hence, the Variety and Variety.CO2 sums of squares appear in the bot-
tom stratum, which corresponds to the Square.Run.Cabinet.Pot combinations.

TABLE 9.17

Design for Enriched CO2 Trial, with CO2 Treatments (Ambient or Two Levels of 
Enrichment) Allocated to Cabinets as Two Replicates of a 3 × 3 LS (Example 9.7)

Cabinet 1 Cabinet 2 Cabinet 3

Square 1
Run 1 Enriched level 1 Ambient CO2 Enriched level 2
Run 2 Enriched level 2 Enriched level 1 Ambient CO2

Run 3 Ambient CO2 Enriched level 2 Enriched level 1

Square 2
Run 1 Enriched level 2 Enriched level 1 Ambient CO2

Run 2 Enriched level 1 Ambient CO2 Enriched level 2
Run 3 Ambient CO2 Enriched level 2 Enriched level 1

Note: Six varieties allocated to positions within each cabinet at random (not shown).

TABLE 9.18

Dummy Multi-Stratum ANOVA Table for Enriched CO2 
Trial with Three CO2 Treatments (Factor CO2, Applied to 
Cabinets) on Growth of Six Plant Varieties (Factor Variety, 
Applied to Pots) (Example 9.7)

Source of Variation df

Square stratum
 Residual 1
Square.Run stratum
 Residual 4
Cabinet stratum
 Residual 2
Square.Run.Cabinet stratum
 CO2 2
 Residual 8
Square.Run.Cabinet.Pot stratum
 Variety 5
 Variety.CO2 10
 Residual 75
Total 107

Note: The experiment used two replicate LSs (factor Square) each 
with three rows (factor Run) and columns (factor Cabinet) 
and with six pots in each cabinet in each run (factor Pot).
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A third common extension to the standard SP design involves subdivision of the sub-
plots into even smaller units (i.e. sub-subplots). This design, known as a split-split-plot 
design, corresponds to a blocking structure with four nested strata. In the simplest exten-
sion, a third treatment factor is applied to the sub-subplots, and the explanatory compo-
nent becomes a three-way crossed structure. The analysis of data from such designs is a 
straightforward extension of the multi-stratum ANOVA table presented for SP designs in 
Section 9.2.2. In theory, any number of divisions and corresponding extra treatment factors 
may be included. However, the drawbacks of the standard SP design are amplified as new 
levels of subdivision are added, and so this type of design should be used only if the block-
ing structure matches real constraints on the experimental procedure. In addition, further 
complications arise from the calculations of SEs and SEDs because of the additional strata. 
Mead et al. (2012, Chapter 18) discuss variations on SP designs, including related designs 
such as the strip-plot or criss-cross design, in more detail.

Finally, multiple treatment factors can be included in one or more of the strata of a SP 
design. The analysis then involves partitioning the treatment variation between main 
effects and interactions corresponding to the underlying factors, following principles 
introduced in Chapter 8.

9.3 The Balanced Incomplete Block Design

In Section 3.3.5, the balanced incomplete block design (BIBD) was presented as a useful 
alternative to the RCBD for a situation in which the size of each homogeneous block is 
smaller than the number of treatments. As for the RCBD, the blocking structure associated 
with a BIBD consists of two nested strata, with the structural component written as

Structural component:  Block/Unit
 = Block + Block.Unit

using the symbolic names Block to label the blocks, and Unit to label the experimental 
units within blocks.

In general, an incomplete block design (IBD) is likely to be useful when either the num-
ber of treatments is very large, or the block size has to be very small. Some typical exam-
ples include

• Variety trials. Often many (> 100) varieties are grown within the same field trial. It 
is usually not possible to locate homogeneous blocks large enough to contain all 
varieties.

• Two-colour microarray experiments. In this experimental framework, two treat-
ments – labelled with different dyes – can be applied to a microarray slide simul-
taneously. Where more than two treatments are investigated, the combinations of 
treatments applied to each slide should be carefully chosen because direct com-
parisons within the same slide are generally more reliable than indirect compari-
sons across different slides.

There are many classes of incomplete block design, but here we concentrate on the class 
of BIBDs. Some new notation is required to describe this type of design, and this is sum-
marized in Table 9.19.
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We still use t and n to denote the number of treatments and the number of replicates 
per treatment, respectively. The total number of experimental units is therefore equal 
to N = n × t. These units will be arranged in a total of m incomplete blocks each consist-
ing of u experimental units, where u < t, so the block size is smaller than the number of 
treatments. The total number of experimental units can then alternatively be written as 
N = m × u. In a BIBD, each pair of treatments must occur together within blocks exactly 
the same number of times, denoted λ. This condition ensures that all treatment compari-
sons are evaluated with the same precision, as required by the definition of balanced 
designs.

EXAMPLE 9.8: GRAIN PROTEIN CONTENT

In Example 3.8, we described an experiment to evaluate the grain protein content for 
six different varieties (t = 6), A to F, each with five replicates (n = 5). Protein content 
was measured during six sessions (blocks, m = 6), with five samples processed in each 
 session (u = 5). Each treatment was omitted from just one of the sessions as shown in 
Table 4.6. In this design, each pair of treatments appears in only four of the six blocks. 
For example, both of treatments C and E appear in the first four blocks, and both of 
treatments B and D in the last four.

BIBDs cannot be constructed for every combination of treatment number, block size, 
and level of replication because of the requirement that all pairs of treatments must occur 
together within blocks the same number of times across the design. The following two 
relationships between the five design parameters must hold in order for a BIBD to exist 
(but do not guarantee that such a design does exist),

 

t n m u 

n

× = ×
× − = − ×

,
( ) ( ) .u t1 1  λ

The first relationship was introduced above. The second relationship concerns the num-
ber of within-block comparisons for each treatment. The left-hand side calculates the 
number of comparisons for a given treatment in terms of the number of blocks in which 
it appears (the number of replicates, n) multiplied by the number of comparisons in 
each block (one less than the number of units per block, u − 1). The right-hand side 
calculates this quantity using the number of times each treatment pair occur together 
within blocks (λ) multiplied by the number of other treatments (t − 1). Given the level of 
replication (n), number of treatments (t) and block size (u), the first relationship can be 

TABLE 9.19

Summary of Notation for Balanced Incomplete Block Designs (BIBD)

Symbol Description

N Total number of experiment units (N = t × n = m × u)
t Number of treatments
n Number of replicates of each treatment
m Number of blocks
u Number of units per block
λ Number of times each treatment pair occurs together within a block
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used to identify the number of blocks as m = (n × t)/u. The second relationship can be 
rearranged as

 
λ = −

−
n u

t
( )
( )

,
1

1
 

to indicate the number of times each treatment pair occurs in a block together. As for all 
the other design parameters, λ must be a positive integer – any non-integer value indicates 
that a BIBD does not exist. In addition, Bailey (2008) quotes Fisher’s inequality which states 
that, in a BIBD, the number of blocks must be greater than or equal to the number of treat-
ments (m ≥ t). Finally, a BIBD is called resolvable if the blocks of the design can be grouped 
into sets such that each set contains one replicate of each treatment. Obviously this can 
occur only when the number of treatments is exactly divisible by the number of units per 
block (i.e. t/u is an integer number).

Tables of BIBDs are given in some text books (e.g. Cochran and Cox, 1957; Fisher and 
Yates, 1963; Box et  al., 1978), and some of these designs can be generated by statistical 
software.

EXAMPLE 9.9A: DESIGNING A BIBD EXPERIMENT FOR SEVEN TREATMENTS

A scientist is interested in evaluating seven different treatments (t = 7), using blocks 
of size three or four (u = 3 or 4), with up to four replicates of each treatment (n ≤ 4), 
giving a maximum of 28 units in total (N ≤ 28). Because seven is a prime number, 
there are no resolvable BIBDs for this scenario. There are two possible BIBDs that fit 
these constraints, and both use seven blocks (the minimum possible number). The 
first design uses seven blocks of size three, 21 units in total, with three replicates 
of each treatment and each pair of treatments occurring together in just one of the 
blocks (m = t = 7, u = n = 3, λ = 1, see Table 9.20a). The second design uses seven blocks 
of size four, 28 units in total, with four replicates of each treatment and each pair of 
treatments occurring together in exactly two of the blocks (m = t = 7, u = n = 4, λ = 2, 
see Table 9.20b).

There is an obvious connection between these two designs: for each block in the first 
design, there is a corresponding block in the second design such that the pair of blocks 
contains the full set of treatments (e.g. block 1 in Table 9.20a and block 3 in Table 9.20b). 
Further information is required to make an informed decision on which design is more 

TABLE 9.20

 BIBDs for Seven Treatments in Seven Blocks with (a) Three Units per 
Block or (b) Four Units per Block (Example 9.9A)

(a) (b)

Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3 Unit 4

Block 1 1 5 7 4 1 2 7
Block 2 6 4 7 7 6 5 2
Block 3 2 5 4 3 6 2 4
Block 4 2 7 3 3 4 5 7
Block 5 4 3 1 6 5 1 4
Block 6 5 3 6 6 3 7 1
Block 7 2 6 1 3 5 1 2
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appropriate for the experiment (see Example 9.9B), though the greater replication will 
generally provide more power, provided that the larger block size still contains homog-
enous units.

9.3.1 Defining the Model

The linear model associated with a BIBD takes the same form as for the RCBD (see Section 
7.1). For a single treatment factor, the model can be written as

 y b eij i j ij= + + +µ τ  ,

where yij represents the observation on the jth treatment in the ith block, μ the overall 
mean, bi the effect of the ith block, τj the effect of the jth treatment and eij the deviation for 
this observation. Again, ideally we should label units within plots according to the experi-
mental layout to maintain the distinction between the blocking and treatment structures, 
but for simplicity we omit this distinction. The subscript i runs from 1 to m, and the sub-
script j runs from 1 to t, note however that, because we have only N = t × n = m × u units, 
not all combinations are present. In our usual symbolic notation, and with obvious defini-
tions of the factors, the full description of the model is

Response variable:      Y
Explanatory component:  [1] + Treatment
Structural component:   Block/Unit

In this case the Block.Unit combinations label the full set of units and correspond to the 
model deviations.

Complexities arise in analysis of the BIBD because the block and treatment factors are 
not orthogonal, as only a subset of the full treatment set is present in each block. The sim-
plest analysis, based on comparisons between treatments within blocks, and hence called 
the within-block or intra-block analysis, estimates treatment effects after adjustment for 
(elimination of) block effects. These treatment estimates take the form

 
ˆ ,τ j j jy B(w) EF

 = −( )•

1

where y j•  is the sample mean for the jth treatment, and Bj  the mean of all units in blocks 
that contain the jth treatment. For example, in the BIBD in Table 9.20a, treatment 3 occurs 
only in blocks 4, 5 and 6, so B3  would correspond to the average of all observations in those 
three blocks. Finally, EF is the efficiency factor, calculated as

 
EF  = ×

×
λ t
n u

.

The EF is the proportion of the information on treatment differences available from the 
within-block analysis, with 0 ≤ EF ≤ 1. The remainder of the information is available from 
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comparisons across blocks, called the between-block or inter-block analysis. When the 
EF is less than 1, the inter-block estimates of treatment effects take the form

 
ˆ

(
.τ j jB y(b) EF)

=
−

−( )1
1

This estimate involves the jth treatment via Bj , described above. The use of these intra- and 
inter-block estimates is discussed in Section 9.3.2.

9.3.2 Assessing the Importance of Individual Model Terms

The ANOVA table for the BIBD contains information on treatments, and therefore a sum 
of squares for treatments, in both the Block stratum (the between-block treatment sum of 
squares, BTrSS, corresponding to the inter-block estimates) and in the Block.Unit stratum 
(the within-block treatment sum of squares, WTrSS, corresponding to the intra-block esti-
mates), see Table 9.21.

Within each stratum, t − 1 df are allocated for estimation of treatment effects and the 
ResDF are calculated by subtraction from the TotDF (which equal m − 1 df for the Block 
stratum and N − m df for the Block.Unit stratum). As usual, the mean squares are obtained 
by division of each sum of squares by its df. The treatment mean squares are compared 
with the residual mean squares from the strata in which they occur, and the block mean 
square can be compared with the residual mean square from the Block.Unit stratum.

The immediate question on construction of this ANOVA table is: How do we reconcile 
the two separate variance ratios for treatments? If the EF is large (close to 1), then most 
of the treatment information lies within blocks. Since variation within blocks tends to be 
smaller (often much smaller) than variation between blocks, in these cases it makes sense 
to base inference on the within-block estimates of treatment effects. The population treat-
ment means, in this case, are then estimated as

 
ˆ ˆ ( ˆ ) ( ) ( ) ,( ) ( )µ τ µj w j jy s n= + = × ×(w) wwith SE / EF   2 2

where, as usual, s2 = ResMS is the estimate of background variability at the lowest stra-
tum. If the EF is small, then we might lose substantial information by ignoring treatment 
comparisons between blocks, and both sources of treatment information should be used. 

TABLE 9.21

 Structure of the Multi-Stratum ANOVA Table for a BIBD with m Blocks (Factor Block), u 
Units per Block (Factor Unit), t Treatments (Factor Treatment) and N = m × u Units in Total

Source of Variation df Sum of Squares Mean Square Variance Ratio

Block stratum
 Treatment t − 1 BTrSS BTrMS BTrMS/BlkMS
 Residual m − t BlkSS BlkMS BlkMS/ResMS
Block.Unit stratum  
 Treatment t − 1 WTrSS WTrMS WTrMS/ResMS
 Residual N − m − t + 1 ResSS ResMS
Total N − 1 TotSS
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However, the two variance ratios may give contradictory indications of the importance 
of treatment effects, and in cases when t = m (as in Example 9.9) the ResDF for the Block 
stratum will be zero, so that the variance ratio for treatments cannot be formed within 
that stratum. These problems can be solved by combination of information from the two 
strata to give a single estimate of the treatment effects, a single test statistic for the treat-
ment terms and a revised estimate of the stratum variances. This combined estimate is a 
weighted mean of the two components, with the weighting determined by the (revised) 
stratum variances and their estimated df, and is most easily obtained from linear mixed 
models (see Chapter 16), although some implementations of the multi-stratum ANOVA 
(e.g. GenStat) can also provide these estimates.

EXAMPLE 9.9B: DESIGNING A BIBD EXPERIMENT FOR SEVEN TREATMENTS

We now have more information to assess the proposed designs of Example 9.9A. The 
first design (Table 9.20a) has seven blocks of three units for seven treatments each with 
three replicates (N = 21, t = m = 7, n = u = 3), with each pair of treatments appearing 
together only in one of the blocks (λ = 1). Its EF is therefore (λ × t)/(n × u) = 7/9 = 0.778, so 
almost 78% of the treatment information is available within blocks. The SE for treatment 
comparisons based on the within-block estimates takes the form

 SE / EFw w
( ) ( ) ( ) . . ,( ) ( )µ µ j k s n s s− = × × = × =2 0 857 0 932 2

with N − m − t + 1 = 21 − 7 − 7 + 1 = 8 ResDF.
The second design (Table 9.20b) has seven blocks of size four for seven treatments each 

with four replicates (N = 28, t = m = 7, n = u = 4), with each pair of treatments appearing 
together in two of the blocks (λ = 2). Its EF is therefore (λ × t)/(n × u) = 7/8 = 0.875, so 
almost 88% of the treatment information is available within blocks. The SED for treat-
ment comparisons takes the form

 SE / EFw w
( ) ( ) ( ) . .( ) ( )µ µ 

j k s n s s− = × × = × =2 0 571 0 762 2

with N − m − t + 1 = 28 − 7 − 7 + 1 = 15 ResDF.
So, for a 33% increase in the number of units (from 21 to 28) we get a 13% increase in 

the proportion of information available within blocks (from 0.78 to 0.88) and an 18% 
reduction in the SE for treatment comparisons (if we assume that s would be similar 
across the two experiments). In addition, the ResDF has almost doubled from a value 
that is barely adequate (ResDF = 8) to a value (ResDF = 15) that is likely to give a reason-
able estimate of the background variation. Given that the original experimental outline 
allowed for 28 pots, this gives several good reasons to choose the larger experiment 
(Table 9.20b).

9.3.3 Drawbacks and Variations of the Balanced Incomplete Block Design

The BIBD is usually a good design when the number of treatments is only a little larger 
than the number of units within each block. The main drawback of these designs is that a 
BIBD might not exist for any given combination of treatment number, replication level and 
block size. Even when a BIBD design does exist, it might require many more replicates of 
each treatment than is practicable (recall that the number of blocks must be at least equal 
to the number of treatments). The explanatory structure can be extended to accommodate 
factorial and other structures (see Chapter 8), although requirements of balance across 



238 Statistical Methods in Biology

individual model terms then impose an even greater restriction on the available designs. 
For these reasons, several different classes of partially balanced incomplete block designs 
have been developed, dividing the treatment pairs into two or more groups. Treatment 
pairs within each group then have a different value of λ, so that different groups of treat-
ment comparisons are estimated with different levels of precision. These designs can relax 
some of the practical constraints imposed by BIBDs whilst retaining some advantages of 
a balanced design. Some classes of partially balanced incomplete block designs can be 
analysed with algorithms for multi-stratum ANOVA, but most can be analysed only with 
more general algorithms, such as those associated with linear mixed models (see Section 
11.6 and Chapter 16). Issues of balance and orthogonality associated with these and other 
forms of design are discussed further in Chapter 11. Partially balanced incomplete block 
designs and unbalanced designs are discussed by Mead et al. (2012, Chapters 7 and 9).

EXERCISES

 9.1 A 5 × 5 LS design was used to investigate the effect of sulphur fertilizer on the 
yield (tonnes/ha) of spring barley grown on a light soil. Five levels of fertil-
izer were applied (0, 10, 20, 30 and 40 kg S). File sulphur.dat contains the plot 
numbers (Plot), structural factors (Row, Col), the treatment factor (Sulphur) 
and the grain yield (variate Grain). Write down the full model for the yields in 
both mathematical and symbolic form. Analyse the data and state your conclu-
sions. What other hypotheses might you like to test? (We re-visit these data in 
Exercise 17.4.)*

 9.2 An experiment used three incubators to compare growth of fungal colonies of 
Metarhizium anisopliae at three temperatures (23°C, 30°C and 35°C; Wright, 2013). 
Replication of temperatures was achieved by repeating the experiment on three 
occasions. Temperatures were allocated to incubators according to a 3 × 3 LS, so 
each incubator ran once at each temperature. Small fungal plugs were placed in 
Petri dishes and three dishes were placed in each incubator on each occasion. 
The sizes of the fungal colonies were recorded after four days. The dish num-
bers (ID), structural factors (Incubator, Occasion and Dish), explanatory factor 
(Temperature) and size measurements (variate Size) are given in file size.dat. 
Write down the structural component of the model for the colony sizes. Analyse 
the data and state your conclusions. What can you say about the effect of tem-
perature on the growth of these fungal colonies?†

 9.3 A three-year field trial was set up to investigate the susceptibility of six variet-
ies of lily to the lily beetle, L. lilii (Salisbury et al., 2010). The trial was laid out 
as two independent 6 × 6 LSs. Regular counts of beetle adults, eggs and larvae 
were made between May and early August each year. The file lily.dat contains 
the unit numbers (ID), structural factors (Square, Row, Column), explanatory fac-
tor (Variety) and the total count of larvae observed during 2006 (variate Larvae). 
Analyse these data on an appropriate scale. Are these lily varieties equally 
susceptible?‡

* Data from S. McGrath, Rothamsted Research.
† Data from E. Wright, Rothamsted Research.
‡ Data from A. Salisbury, Royal Horticultural Society/Rothamsted Research/Imperial College London.
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 9.4 A series of field experiments tested various ‘push-pull’ strategies to control 
insect pests in oilseed rape. In one experiment the use of turnip rape (TR) as 
an earlier flowering trap crop (the ‘pull’) was tested alongside use of an anti-
feedant applied to oilseed rape in spring (S; the ‘push’). Untreated oilseed rape 
(U) was included as a control. The experiment was set up as a 6 × 6 LS with two 
replicates of each of the three treatments per row and column. An assessment 
of adult pollen beetle numbers was made on 10 plants per plot in early April, 
one day post-spray of the anti-feedant. The unit numbers (ID), structural factors 
(Row, Column), treatment factor (Treatment) and mean pollen beetle count per 
plot (variate Count) are given in file pollenbeetles.dat. Is there any evidence 
that either of the pull or push strategies works?*

 9.5 A field experiment investigated the effect of four herbicides (A, B, C, D) on the 
yield of three varieties of onions (V1, V2, V3). The herbicides could only be 
applied to relatively large areas of land due to the width of the spray boom, so 
the experiment was set up as a SP design with three blocks of four main plots 
to which the herbicides were applied. Each main plot comprised three subplots 
to which the varieties were allocated. The final yield of onions per subplot was 
recorded at harvest. The file onions.dat contains the unit numbers (ID), struc-
tural factors (Block, MainPlot, Subplot), explanatory factors (Herbicide, Variety) 
and final yields (variate Yield). Write down the structural and explanatory com-
ponents of the model for the onion yields. Analyse these data and summarize 
your conclusions.

 9.6 A field experiment studied forms and rates of nutrient application and the 
effect on the yield of spring barley in the presence or absence of foliar diseases. 
Nitrogen fertilizer was applied either in a liquid form, alone (L) or with a nitrifi-
cation inhibitor added (LI), or in a solid form, to the seedbed (SS) as a top-dress-
ing (ST) or split (half to the seedbed and half as top-dressing, SST). Each form 
was applied at two rates (70 and 110 kg N/ha), giving 10 nutrient treatments in 
total. The occurrence of foliar diseases was intended to be manipulated by a 2 × 2 
factorial in the presence or absence of a mildew fungicide (None, Tridemorph) 
and a rust fungicide, but no rust developed and so the latter fungicide was not 
applied. The trial used a SP design with two blocks. The 10 nutrient treatments 
were applied to main plots, each of which was split into four subplots, and 
the mildew fungicide was applied to two subplots in each main plot. The plot 
numbers (ID), structural factors (Block, MainPlot, Subplot), explanatory factors 
(NForm, NRate, MildewF) and yield at harvest (variate Yield, tonnes/hectare at 
85% dry matter) are in file springbarley.dat. Identify a suitable predictive model 
and comment on the comparison between liquid and solid forms of fertilizer.†

 9.7 A field experiment compared the effects of three strains of barley yellow dwarf 
virus (BYDV, a virus transmitted by aphids) on yield of two varieties of winter 
barley, one (Vixen) with genetic resistance to BYDV and the other susceptible 
(Igri). The experiment aimed to test the efficacy of any resistance, its consistency 
across the strains, and the effectiveness of insecticide sprays at different times 
of the year (Cypermethrin in October or December, or Pirimicarb in March). 
A  SP design was used with five blocks of six main plots each split into four 

* Data from L. Smart, Rothamsted Research.
† Data from J. Jenkyn, Rothamsted Research.
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 subplots. The six combinations of variety and spray timing were applied to main 
plots within blocks. The virus strains (MAV, PAV or RPV) were applied to sub-
plots by releasing infected aphids in the centre of the subplot; one subplot was 
left uninoculated in each main plot. The plot numbers (ID), structural factors 
(Block, MainPlot, Subplot), explanatory factors (Variety, Spray, Strain) and yield 
at harvest (variate Yield, tonnes/hectare at 85% dry matter) are in file bydv.dat. 
Analyse these data and relate your conclusions to the experimental aims stated 
above.*

 9.8 An experiment assessed the response of two aphid clones to a foliar insecticide 
applied to cabbage plants. The experiment used two simulators, each containing 
six plants in individual pots. All plants in one simulator were sprayed with the 
insecticide and all plants in the other were sprayed with water only (control). 
Two weeks after spraying adult aphids were placed onto the plants using clip 
cages. Two clip cages were attached to each plant, one containing three aphids of 
a clone susceptible to the insecticide, the other containing three aphids of a mod-
erately resistant clone. The number of nymphs produced by the adults in each 
clip cage was recorded after two days. The experiment was then repeated using 
two new simulators. File simulator.dat contains the unit numbers (ID), struc-
tural factors (Expt, DSimulator, Plant, DCage), explanatory factors (Treatment, 
Clone) and the nymph counts (variate Nymphs). Determine the structural and 
explanatory components for this experiment, write down the full model in sym-
bolic form and state the experimental units for the insecticide and clone treat-
ments. Analyse the data and verify that the explanatory terms are tested in the 
correct strata. Identify and interpret the predictive model. (We re-visit these data 
in Exercise 16.1.)†

 9.9 An experiment to compare yields of 13 varieties of corn was set up as a BIBD 
with 13 blocks, each containing four plots (Cochran and Cox, 1957, Table 11.2). File 
corn.dat contains the unit numbers (ID), structural factors (Block, Plot), explan-
atory factor (Variety) and plot yields (variate Yield, pounds per plot). Calculate 
λ and the efficiency factor for this design. Is the design resolvable? Is there any 
evidence of differences in yield among the varieties?

* Data from R. Plumb, Rothamsted Research.
† Data from S. Foster, Rothamsted Research.
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10
Replication and Power

In Chapter 3, we examined the principles of replication, randomization and blocking that 
are central to the construction of efficient designs. However, in doing so we did not say 
how to choose the number of replicates to be used for each treatment. The question ‘How 
many replicates do I need?’ is probably the most common question posed to consultant 
statisticians, but the answer is rarely obvious! As the number of replicates increases, 
smaller differences among a set of treatments can be detected because more informa-
tion becomes available. Conversely, with few replicates or large background variation, 
or both, we might not detect differences between treatment population means as statisti-
cally significant even if some of those differences are large and biologically meaningful. 
In general, the replication required in a study depends on numerous (possibly compet-
ing) features, such as

• The available resources (money, experimental material, space and time)
• Treatment structure
• Size of treatment difference(s) to be detected
• Relative importance of different treatment comparisons
• Risks associated with wrong decisions (false-positive or false-negative results)
• Variability associated with the experimental units and measurement process

The first five items in this list are usually either a matter of choice or restricted by 
practical considerations. The risks of making wrong decisions can be related to the ideas 
of hypothesis testing introduced in Section 2.3.2. However, the last item, namely the 
variation in the data, which we have called background variation and denoted σ2, is not 
under the control of the experimenter, is inherent to the process under study and is often 
unknown.

In this chapter, we discuss how to determine the number of replicates to be included in 
an experiment. To assess the required replication we must specify the minimum size of 
a true treatment difference (i.e. the difference between population means for two treat-
ments) that should be detected as statistically significant (for a given significance level αs). 
First, we describe some simple approximate methods to determine the number of repli-
cates required for an experiment, based on the required size of treatment difference and 
the estimated LSD (Section 10.1). These methods illustrate the importance of obtaining 
a good estimate of the background variation both before the experiment and within the 
analysis (Section 10.2). The important concept of the power of a design, which gives the 
probability of detecting a treatment difference of a given size, is then introduced (Section 
10.3). An example is used to illustrate these ideas for a particular scenario (Section 10.4). 
Finally, the usual null hypothesis (of no treatment differences) is not useful when the 
purpose of an experiment is to illustrate the equivalence of, rather than the difference 
between, treatments. In this case an alternative strategy of two one-sided t-tests (TOST) is 
often used to give a more powerful test (Section 10.5).
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10.1 Simple Methods for Determining Replication

In this section, we suppose that we wish to detect an observed difference of a given size 
between two treatments. We denote this observed difference as d to distinguish it from the 
true (but unknown) difference between the treatment population means, which we denote 
as δ. In the designs considered thus far, the least significant difference (LSD) (Section 4.4) 
has been defined as the smallest observed difference between two treatments that will 
be detected as statistically significant at a specified significance level. In this section, we 
determine replication in terms of the LSD, directly in Section 10.1.1 and indirectly, via the 
coefficient of variation, in Section 10.1.2. Both of these cases are illustrated for the CRD 
with equal replication, with extensions to other designs given in Section 10.1.3.

10.1.1 Calculations Based on the LSD

Initially, we focus on the CRD and consider an experiment with equal replication (n) for 
each of t treatments using a total of N = n × t experimental units. In Section 4.4, the LSD 
between two treatments in a CRD with equal replication was derived as

 
LSD t t ,[ / ] [ / ]= × = ×− −N t N t

s
n

α αs sSED  2 2
22

 
(10.1)

where t[ / ]
N t−
αs 2  is the 100(1 − αs/2)th percentile for the t-distribution with N − t df (the residual 

df, ResDF, for the CRD). However, in making calculations prior to experimentation, the 
estimate s2 is not available. Unfortunately, obtaining a realistic pre-experiment estimate of 
s2 is often difficult, and we discuss strategies for overcoming this problem in Section 10.2. 
For now, we assume that an appropriate value is available.

The LSD indicates the size of estimated (or observed) treatment differences that should 
be detected as statistically significant (at significance level αs) by ANOVA. If we wish to 
detect an observed difference d between two treatments as significant, then it follows that 
we want LSD ≤ d or, from Equation 10.1,

 
tResDF

s[ / ] .α 2
22× ≤s

n d
 

(10.2)

We can systematically evaluate the left-hand side of this inequality for increasing values of 
n: the required replication is the smallest value of n for which this inequality is satisfied.

EXAMPLE 10.1A:  SAMPLE SIZE CALCULATIONS FOR A NEW 
CALCIUM POT TRIAL

A scientist is planning a follow-up experiment to the calcium pot trial presented in 
Example 4.1 to confirm these results. This new experiment will again be a CRD with 
t = 4 treatments and, based on the previous experiment, s2 is expected to be approxi-
mately 75 (s = 8.66). Observed treatment differences of d = 10 cm are required to be 
detected as statistically significant with αs = 0.05. By systematic evaluation of the LSD 
for different values of n, as shown in Table 10.1, we find that a replication of 7 is the 
smallest value that gives a value of the LSD less than 10.
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Since the true value of the background variation is unknown, it is sensible to verify 
the impact of a range of values of s2. For example, here we might realistically expect s2 to 
lie between 50 and 100. As shown in Table 10.1, a CRD experiment with n = 7 replicates 
of each of t = 4 treatments has a 5% critical t-value of t .[ / ] [ . ]

N t− = =αs t2
24
0 025 2 064. The possible 

range of the SED is then calculated as

 minimum(SED) = √(2 × 50/7) = 3.78 ,

 maximum(SED) = √(2 × 100/7) = 5.35 ,

and the corresponding LSD values are

 minimum LSD minimum(SED)  s( ) t . . . ,[ / ]= × = × =−N t
α 2 2 064 3 78 7 79

 maximum LSD maximum SED 2.064 5.35 11.02 .( )s( ) t[ / ]= × = × =−N t
α 2

So, with seven replicates for each treatment, we might detect observed treatment dif-
ferences in the range 7.8–11.0 cm. If this worst-case scenario is unacceptable then we 
might consider further increasing the replication, or take additional measures to reduce 
background variation (if this is possible).

If the replication required exceeds the resources available then some compromise must 
be found. For example, some treatments might be eliminated to enable increased replica-
tion of the remaining treatments, or reduced precision might be accepted. This is dis-
cussed further at the end of Section 10.3.

10.1.2 Calculations Based on the Coefficient of Variation

The coefficient of variation (%CV) for a sample is defined as

 % ,CV /  = ×100 s y

where s is the unbiased sample standard deviation and y the sample mean (Section 2.1). 
The %CV can be a useful measure for evaluating the quality of experiments where the 
background variation increases with the mean, as the %CV is often quite stable for suc-
cessful experiments. An increase in %CV then indicates an unexpectedly large value of 
background variation and hence some problem with the trial.

TABLE 10.1

Calculation of SED and LSD for a CRD with t = 4 Treatments, Varying 
Replication (n) and Estimated Residual Variance s2 = 75 (Example 10.1A)

Replication (n) Units (N = n × t) Residual df (N − t) t[0.025]
N t− SED LSD

2  8  4 2.776 8.66 24.04
3 12  8 2.306 7.07 16.31
4 16 12 2.179 6.12 13.34
5 20 16 2.120 5.48 11.61
6 24 20 2.086 5.00 10.43
7 28 24 2.064 4.63  9.55
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The LSD can be rewritten, in terms of the %CV and sample mean, by multiplying both 
the numerator and denominator of Equation 10.1 by 100, and dividing both by the sample 
mean to obtain

 
LSD

/
/

s s s= × × = × × = ×− − −t t t[ / ] [ / ] [ / ]
N t N t N tn s n

s y
y

α α α2 2 22 2 100
100

2
nn y×



 ×%

.
CV

 
100

The LSD can thus be evaluated as a proportion of the mean for different levels of  replication. 
In this form, a suitable estimate of %CV rather than s2 is required, so if acceptable ranges 
of %CV are well established, this may provide a more useable approach to the calculation 
of an appropriate replication, as illustrated in Example 10.1B.

EXAMPLE 10.1B:  SAMPLE SIZE CALCULATIONS FOR A NEW 
CALCIUM POT TRIAL

The %CV for the calcium pot trial of Example 4.1 was 14% and experience of similar 
experiments suggests that the %CV should be at worst 20%. Example 10.1A suggested 
that a follow-up experiment should have replication n = 7. The LSD between two treat-
ment means each with seven replicates is estimated for %CV = 14 by

 
LSD t

%
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and for %CV = 20 by
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Hence, in the worst case, we expect to detect any observed difference between two 
treatments that is larger than 22% of the overall mean response as statistically signifi-
cant (at the 5% level). If the new experiment is as precise as the previous experiment, 
with %CV = 14, this decreases to 15% of the overall mean response.

10.1.3 Unequal Replication and Models with Blocking

In the calculations above we assumed the simplest experimental design of a CRD with 
equal replication. In general, a more complex design might be used, perhaps with unequal 
replication. Calculations for the case of unequal replication follow directly from the for-
mula for the SED between two treatments with replication ni and nj, respectively, i.e.

 
SED  = +







s

n ni j

2 1 1
.

The extension to more complex designs is similarly straightforward, requiring only that 
the appropriate form of the SED is substituted into Equations 10.1 and 10.2, and that the 
appropriate ResDF are applied to obtain the critical value of the t-distribution, which can be 
expressed in more general form as t[ / ]

ResDF
sα 2 . For example, for a RCBD with n blocks and t treat-

ments, the residual df must be adjusted to ResDF = (n − 1) × (t − 1) (see Section 7.3), whilst 



245Replication and Power

for a LS design with t treatments the residual df must be adjusted to ResDF = (t − 1) × (t − 2) 
(see Section 9.1).

10.2 Estimating the Background Variation

The methods presented in Section 10.1 require a plausible value (or range of values) for the 
estimated background variation, s2, to be available before the experiment is done. In some 
cases, the %CV can be a useful alternative, but this is often not available, and so a strategy 
to obtain a ‘reasonable’ estimate of s2 (or the %CV) is required.

The simplest option is to obtain estimates of variation from previous studies that used 
similar experimental units under similar conditions. Ideally, experiments from the same 
institution (or laboratory) should be used, as long as the study conditions and protocols are 
analogous. Another, albeit more expensive, alternative is to do a preliminary (or pilot) study, 
using a subset of the proposed experimental treatments to establish the size and sources 
of variability (see e.g. Case Study 19.1). Such preliminary studies are often used in labora-
tory work to calibrate new experimental techniques. Published reports or papers describing 
similar experiments are another possible source of information, but these may provide less 
reliable estimates if insufficient detail is given or if the experimental conditions are different.

If none of these options is available then a mixture of common sense and good guesswork is 
required. If the expected range of values (for a single treatment) is known, and these observa-
tions are expected to follow a Normal distribution, then the properties of this distribution can 
be used. It is well known that 95% of the observations from a Normal distribution are found 
within approximately two standard deviations of the population mean (Figure 2.4). Therefore, 
if the likely minimum and maximum values for experimental units receiving the same treat-
ment can be predicted then the population standard deviation σ can be approximated as

 
σ ≈ −maximum minimum

,
4

 

and this can be substituted for the estimate s. If there is much uncertainty about the likely 
variation then consideration of a range of possible values may be helpful (as in Example 10.1A).

When we do an experiment, we obtain a new estimate of the background variation and 
the precision of that estimate increases as the residual df increases, reflecting the amount 
of information available. For this same reason, the critical value t[ / ]

ResDF
sα 2  decreases as the 

residual df increases. As a rule of thumb, to ensure a reasonable estimate of the back-
ground variation the replication should be sufficiently large to give at least 10 residual df. 
As the gain in precision decreases as the residual df increases further, there is usually little 
advantage in having more than 20 residual df (see Chapter 19).

10.3 Assessing the Power of a Design

The calculations in Section 10.1 used the estimated LSD to assess whether an experiment 
would detect an observed treatment difference of a given size (denoted d). In practice, we 
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are more interested in the true treatment difference (δ), which cannot be observed directly 
and is estimated with error. Because of the stochastic nature of this error, we can use prob-
ability calculations to evaluate whether a true treatment difference of size δ is likely to 
be detected. The probability that a true treatment difference of size δ will be detected as 
statistically significant is called the power of the test, and hence of the design. The power 
is a function of the size of the treatment difference δ.

For any statistical test, the significance level and power are related to errors of inference 
that may occur when a given hypothesis is tested. The terminology associated with these 
inferential errors and the related probabilities is summarized in Table 10.2.

A Type I error occurs when H0 is rejected when it is true, i.e. a false-positive conclusion, 
for example, that the population means differ when in fact they are equal. The probability 
of a Type I error occurring is denoted αs, i.e. Prob(Type I error) = αs. As mentioned previ-
ously (Section 2.3.2), αs is the pre-determined significance level (or size) of a test, and is 
often chosen to be 0.05.

A Type II error occurs when H0 is not rejected when it is false, i.e. a false-negative conclu-
sion, for example, that the population means are equal when in fact they differ. The prob-
ability of a Type II error occurring is denoted βs, i.e. Prob(Type II error) = βs. The power 
of a test is directly associated with the Type II error rate and is defined as the probability 
of making the correct decision to reject H0 when H0 is false, so power = 1 − βs. Tests with 
large power (and therefore small βs) are preferred, as they give a larger chance of detect-
ing treatment differences for a given design. However, there is a relationship between the 
Type I and Type II error rates (αs and βs) that usually makes some compromise on either 
significance or power inevitable.

To demonstrate these concepts we consider a test concerning population means, μ1 and 
μ2, for two equally replicated treatments assessed in an experiment with a CRD. The null 
hypothesis of no difference, H0: μ1 = μ2 or H0: δ = μ1 − μ2 = 0, is to be tested against the one-
sided alternative hypothesis that the population mean of the first group is larger, H1: μ1 > μ2 
or H1: δ = μ1 − μ2 > 0. We use a one-sided test here for simplicity, but the same concepts 
extend to the two-sided case. We make the usual assumptions about the deviations (see 
Section 4.1). Figure 10.1 illustrates the relationship between the significance level and the 
power of the t-test for assessing these hypotheses as the value of the true treatment differ-
ence, δ = μ1 − μ2, varies. The curves represent the sampling distributions of the observed 
test statistic, i.e. the random variable t /SED= −( )µ µ1 2 , in different situations.

In both graphs, the left-hand curve represents the situation when the null hypothesis is 
true (δ = 0). This is a t-distribution with mean zero and df equal to the ResDF used to esti-
mate the SED (in this figure, ResDF = 24). The right-hand curve shows the distribution of the 
observed t-statistic under the alternative hypothesis. In Figure 10.1a, the true difference is 

TABLE 10.2

Terminology for Inferential Errors and Probabilities 
Associated with a Hypothesis Test

Decision (Probability)

 Accept H0 Reject H0

Null
hypothesis
(H0)

True Correct decision
(1 − αs)

Incorrect decision
(Type I error, αs)

False Incorrect decision
(Type II error, βs)

Correct decision
(Power, 1 − βs)
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δ = 2.5 × SED, and in Figure 10.1b, the difference is slightly larger, with δ = 3.5 × SED. These 
distributions are non-central t-distributions with non-centrality parameter δ/SED and 
ResDF df (see Section 2.2.4). The dotted vertical lines mark the median of each distribution. 
The dashed vertical line shows the critical value for the t-test, equal to the 100(1 − αs)th 
percentile of the t-distribution with ResDF df, i.e. tResDF

s[ ]α . Any observed difference between 
the treatment means that is greater than this critical value (to the right of the dashed line) 
is declared as significantly different from zero, and any observed difference smaller than 
this critical value (to the left of the dotted line) is declared as not significantly different 
from zero. The grey-shaded area corresponds to the rejection region of size αs, and the 
black-shaded area corresponds to the Type II error of size βs in each case. The power is 
equal to 1 − βs (i.e. the non-shaded area of the right-hand distribution). The grey area stays 
the same size whatever the true value of the difference, δ, whereas the size of the black area 
changes as δ changes: as δ increases, the black area (βs) decreases, and the power increases; 
as δ decreases, the black area (βs) increases and the power decreases. The power function 
of a test expresses the power as a function of δ. In practice, it is often easiest to state the size 
of difference δ that the test is required to detect and to calculate the corresponding power.

Figure 10.1 also indicates how characteristics of the test influence power. For example, 
increasing the significance level (i.e. decreasing αs, e.g. αs = 0.01 instead of αs = 0.05), shifts 
the critical value (dashed line) to the right and increases the black area (βs), thus reduc-
ing the power. A common compromise is to aim for a test with αs = 0.05 and βs = 0.20 
(power = 0.80) for a given treatment difference. A decrease in the SED, through a decrease 
in background variation, increase in replication or increase in the ResDF, makes the two 
distributions narrower so that their overlap decreases and hence the power increases.

For our example of a treatment comparison in a CRD, the calculations are straight-
forward. We calculate power in terms of the distribution of the test statistic under 
the alternative hypothesis, which is a non-central t-distribution with non-centrality 
 parameter δ/SED and df equal to the ResDF (defined in Section 2.2.4). Probability 
functions for these distributions are present in most statistical software, although not 

δ = 0 δ = 0δ = 2.5 × SED[αs]
ResDFt [αs]

ResDFt δ = 3.5 × SED

(a) (b)

FIGURE 10.1
Definition of Type I (grey area, αs) and Type II (black area, βs) error probabilities for the t-test of the null hypoth-
esis of no treatment differences (H0: δ = 0) against a one-sided alternative hypothesis (H1: δ > 0) for the difference 
δ between two treatment population means: (a) δ = 2.5 × SED, (b) δ = 3.5 × SED. tResDF

s[ ]α  denotes the 100(1 − αs)th 
percentile of a t-distribution with ResDF df.
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commonly available in statistical tables. We denote the cumulative distribution function 
for the  non-central t-distribution with non-centrality parameter c on D df at value x as 
Ft(x, c, D). The power of a one-sided test with H1: δ > 0 is the probability of rejecting the 
null hypothesis if the alternative hypothesis is true, and can be calculated as

 

Power Prob H rejected

Prob t t
0

ResDF
s

( ) ( | )

( |[ ]

δ µ µ δ

µ µα

= − =

= > − =
1 2

1 2 δδ

δα

)

( , / , ) ,[ ]= −1 F t SED ResDF  t ResDF
s

i.e. the portion of the non-central t-distribution that exceeds the critical value. The power 
of a one-sided test with H1: δ < 0 is calculated similarly as

 Power F t SED ResDF  t ResDF
s( ) ( , / , ) ,[ ]δ δα= −

i.e. the portion of the non-central t-distribution that is less than the critical value. This 
calculation uses the symmetry of the t-distribution to derive t tResDF ResDF

s s[ ] [ ]1− = −α α . Not surpris-
ingly, the power of a two-sided test, with H1: δ ≠ 0, combines these two expressions, having 
adjusted the critical value, and is calculated as

 Power F t /SED ResDF F tt ResDF
/

t ResDF
s s( ) ( , , ) ( ,[ ] [ / ]δ δ δα α= − + −1 2 2 // , ) ,SED ResDF  

i.e. the portion of the non-central t-distribution that lies outside of the two critical values.

EXAMPLE 10.1C:  SAMPLE SIZE CALCULATIONS FOR A NEW 
CALCIUM POT TRIAL

In Example 10.1A, we considered a follow-up experiment to the calcium pot trial origi-
nally introduced in Example 4.1. This had four treatments (t = 4), background varia-
tion of s2 = 75 (s = 8.66), with a requirement to detect observed treatment differences of 
10 cm at a significance level of αs = 0.05. The simple approach of Section 10.1 required 
replication of n = 7 for each treatment. Now we also want to consider the power associ-
ated with this design. For a two-sided test with ResDF = 24, the critical values are t24

0 975[ . ] 
and t24

0 025[ . ], equal to ±2.064. From Table 10.1, for seven replicates the SED is equal to 4.63. 
The non-centrality parameter is then δ/SED = 10/4.63 = 2.16. The CDF of the non-central 
t-distribution satisfies

 Ft(−2.064, 2.16, 24) < 0.0001, Ft(2.064, 2.16, 24) = 0.455 ,

and hence the power for a two-sided test with δ = 10 is 1 − 0.455 + 0.000 = 0.545. This 
means that with seven replicates, we have only a 55% chance of detecting a true treat-
ment difference of size 10 cm, given that our assumptions about the background varia-
tion are true. Table 10.3 shows the power for greater replication, and replication of n = 13 
pots per treatment (with a total of N = 52 pots) is necessary to get power greater than 
0.80 for a difference of 10 cm.

In principle, power can be calculated for any statistical test, but the calculations are often 
quite complex. In the context of ANOVA, we are often interested in the null hypothesis 
that a set of treatment population means are all equal against a general alternative hypoth-
esis of some difference between population means, evaluated by using an F-test. Power 
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calculations for this test are more complicated and details can be found in Montgomery 
(1997); however, the concepts are similar and this problem corresponds to an extension of 
the situation illustrated above. Most statistical software contains facilities to determine the 
power of standard designs, such as those described in previous chapters.

It is always useful to calculate the power of potential designs for an experiment, pref-
erably using a range of plausible values for background variation. If it is possible to use 
sufficient replication to give power > 0.8, then this should usually be done. However, 
huge replication is not always desirable: the treatment differences that can be detected 
might be too small to be biologically meaningful, which implies that the experiment 
is over-precise and potentially represents a waste of resources. Because of large back-
ground variation or limited experimental resources, or both, it is more common in much 
biological research to find that the intended design has weak power (< 0.5). In this case, 
there are several options open to the experimenter: the number of treatments tested 
might be reduced to allow the replication of the remaining treatments to be increased, 
or the experiment might be repeated at a later date. If neither of these options is avail-
able then the investigator must decide if it is worthwhile using resources to pursue an 
experiment that is unlikely to detect treatment differences of a given size even if they 
are present.

10.4 Constructing a Design for a Particular Experiment

In previous sections, we have considered how to calculate the power of a t-test within a 
given design. In practice, constructing the design for an experiment usually involves a com-
promise between several constraints (previously discussed in Chapter 3), of which power 
is only one. The first step in designing any experiment is to identify the experimental units 
that are to be used. Once these are identified, we need to determine any practical or physi-
cal constraints on the available resources, such as the maximum number of experimental 
units available (or affordable), and any physical or practical structures associating groups of 
these experimental units. These structures may arise from the intrinsic nature of the units, 
for example shelves within a CE cabinet, or from the way in which these units are used in 
the experiment, such as subsets of samples processed on different days. A parallel step is to 

TABLE 10.3

Calculation of SED and Power for a Difference of Size δ = 10 Units in a 
CRD with t = 4 Treatments, Varying Replication (n) and Estimated 
Residual Variance s2 = 75 (Example 10.1C)

Replication (n)
Units 

(N = n × t)
Residual 
df (N − t) SED δ/SED t[0.025]

N t− Power
7 28 24 4.63 2.16 2.064 0.545
8 32 28 4.33 2.31 2.048 0.606
9 36 32 4.08 2.45 2.037 0.661
10 40 36 3.87 2.58 2.028 0.710
11 44 40 3.69 2.71 2.021 0.753
12 48 44 3.54 2.83 2.015 0.790
13 52 48 3.40 2.94 2.011 0.822
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consider the set of treatments to be tested, and to recognize any structure within this set. 
Recall from Chapter 8 that use of a factorial structure is generally more efficient if several 
treatment factors are to be included. Finally, these components can be combined to form 
one or more candidate designs, and these designs can be compared in terms of power.

EXAMPLE 10.2: COMPARING DESIGNS FOR AN IRRIGATION EXPERIMENT

An experiment is required to screen a set of candidate willow varieties for susceptibil-
ity to drought. The experiment is to be on a site with good drainage and low rainfall, 
where drought stress would be expected to occur naturally in most years. The field plots 
are to be set up as four rows of six trees, with the eight trees in the centre of each plot 
being used for measurements. At most 72 field plots are available for the trial. Three 
irrigation treatments are to be applied: no irrigation, occasional (low) irrigation and 
frequent (high) irrigation. The irrigation treatments can be applied only to large blocks 
of land. A core set of four varieties must be included in the trial, but the scientists would 
like to include some of an additional set of six varieties if possible. The requirement to 
use larger blocks of land for irrigation suggests use of a split-plot design (Section 9.2), 
with the irrigation treatments applied to whole plots, and varieties applied to subplots 
within whole plots.

Drought stress is expected to reduce growth, and the primary aim of the experiment 
is to detect varieties badly affected by drought across a range of characteristics. A sec-
ondary aim is to quantify the typical response to the differences in water stress. Several 
variables are to be measured after three years, including the number of shoots, where 
all of the varieties are expected to have 15–20 shoots per tree in the absence of water 
stress. This variable is usually evaluated as the mean number of shoots per tree from 
the central eight trees in each plot, and analysed with a square root transformation. The 
design is required to be able to detect a 33% decrease in number of shoots per tree in 
both the irrigation main effect (secondary aim) and in the comparisons across irrigation 
regimes within variety (primary aim). Both tests are to use a significance level of 5%. 
For the square-root-transformed mean number of shoots per tree, previous trials have 
shown the estimated subplot variation, s2, is usually close to 0.25, and that the whole-
plot stratum variance increases with the size of the whole plots (number of subplots). 
Using these data from previous trials, it is estimated that the whole-plot stratum vari-
ance takes the approximate form s t sw B[( ) 1]2 20 1= × +. , where tB is the number of sub-
plots in each whole plot (equal to the number of varieties).

The statistical task is to find the most powerful design that fits within the constraints. 
The first problem is to fit the scientist’s question into the framework of the analysis. Most 
of the information is in a format that we can translate directly, except for the require-
ment to detect a 33% reduction in shoot numbers. This would translate into an additive 
difference if we were analysing data on the log-transformed scale, but we expect to use 
a square root transformation and on this scale there is no direct translation. However, a 
33% decrease from the expected mean value of about 17.5 shoots per tree is 11.7 shoots, 
or on the square root scale a decrease from 4.2 to 3.4, or 0.8 units and so we shall look for 
decreases of this order, i.e. set δ = −0.8.

There are two comparisons of interest, comparisons across irrigation regime within 
variety and overall comparisons of irrigation regime; we shall consider each in turn. 
We use the notation for split-plot designs introduced in Section 9.2. The population 
means for the different treatment combinations are labelled as μjk, where the first index 
j = 1 … tA labels the irrigation treatments and the second index k = 1 … tB labels the vari-
eties. The number of irrigation treatments is fixed at tA = 3 and the number of varieties 
is to be decided. The number of replicate blocks, denoted m, is also to be determined.

For the primary aim, we are interested in comparisons between irrigation treatments 
within a variety, i.e. comparisons of the form μjk − μrk with j ≠ r. From Section 9.2.3, we 
know that the SED of the estimated comparisons takes the form
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  SE [ ( ) )]/( )  w B B
( ) .µ µjk rk s t s t m− = + − × ×2 12 2

We can use our estimate of s2 = 0.25, with s t sw B
2 20 1 1= × +[( . ) ]  to calculate

 s t s t s t s t s tw B B B B B
2 2 2 2 21 0 1 1 1 1 1 0 275+ − = × + + − = × × = ×( ) [( . ) ] ( ) . . ,

and simplify the SED as

 
SE /( ) /  B B
( ) . . .µ µ 

jk rk t t m m− = × × × =2 0 275 0 55

The associated degrees of freedom (Equation 9.2) can be slightly simplified (using tA = 3 
and omitting redundant ‘×’ symbols) as
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If we chose a design with m = 5 blocks, each containing tB = 4 varieties, then the SED for 
variety comparisons is SED = √(0.55/5) = √0.11 = 0.332 with
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We can use these values to calculate power as described in Section 10.3 and dem-
onstrated in Example 10.1C. The critical value of the two-sided t-test under the null 
hypothesis is t39 11

0 025 2 023.
[ . ] .= . Under the alternative hypothesis δ = −0.8, the non-cen-

trality parameter is then δ/SED = −0.8/0.332 = −2.41. The CDF of the non-central t-dis-
tribution satisfies

 Ft(−2.023, −2.41, 39.11) = 0.653, Ft(2.023, −2.41, 39.11) = 1.000 ,

and hence the power for a two-sided test with δ = −0.8 is equal to 1 − 1.000 + 0.653 = 0.653. 
Similar calculations can be made for other numbers of blocks and varieties.

For the secondary aim, a similar process can be followed. Here, we are interested 
in overall comparisons between irrigation treatments, i.e. comparisons of the form 
μj∙ − μr∙ with j ≠ r. Again from Section 9.2.3, the SED of the estimated comparisons takes 
the form

SE /( /(w B B B B
( ) ) ( . ) ) . ( .µ µ 

j r s t m s t t m t• •− = × = + × = × +2 2 0 1 1 0 5 0 12 2 11) ) ,/(  Bt m×

with (tA − 1) × (m − 1) = 2 × (m − 1) df. For the design with m = 5 blocks, each containing 
tB = 4 varieties, then the SED for irrigation comparisons is

 SE /( /20B B
( ) . ( . ) ) . . . .µ µ 

j r t t m• •− = × + × = × = =0 5 0 1 1 0 5 1 4 0 035 0 187  ,
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with 8 df. The critical value of the two-sided t-test under the null hypothesis is 
t8

0 025 2 306[ . ] .= . Under the alternative hypothesis δ = −0.8, the non-centrality parameter is 
then δ/SED = −0.8/0.187 = −4.276, and the CDF of the non-central t-distribution satisfies

 Ft(−2.306, −4.276, 8) = 0.961, Ft(2.306, −4.276, 8) = 1.000 .

Hence, the power for this two-sided test with δ = −0.8 is equal to 1 − 1.000 + 0.961 = 0.961.
Table 10.4 presents the results of similar power calculations for several designs that fit 

the experimental constraints. The upper limit of 72 field plots means that as the number 
of replicate blocks increases, the number of varieties that can be tested decreases. For 
both comparisons, the power is heavily influenced by the number of replicate blocks: 
as the number of blocks decreases, so does the power. The power for the main effects is 
good (> 0.75) for all of the designs with three or more blocks. The power for the com-
parison within varieties is much less, and exceeds 0.5 only for designs with four or more 
blocks, which allows a maximum of six varieties. The design with four blocks and six 
varieties appears promising: it uses all of the available plots, has high power for the irri-
gation main effect (0.95) and reasonable power for the interaction (0.56), and tests two 
additional varieties. If this power is insufficient, then the design with six blocks and four 
varieties might be preferred, as this has power of 0.99 for the main effect and 0.74 for the 
variety comparisons.

TABLE 10.4

Split-Plot Design with m Blocks, Three Whole Plots and tB Subplots: SED, df and Power 
for Comparing Irrigation (Whole-Plot Treatment) within Varieties (Subplot Treatment) 
and the Main Effect of Irrigation (Example 10.2)

Number of
Irrigation Comparison 

within Varieties
Irrigation Main 

Effect

Varieties (tB) Blocks (m) Units (3 × tB × m) SED df Power SED df Power

4 6 72 0.30 48.89 0.736 0.17 10 0.987
4 5 60 0.33 39.11 0.653 0.19 8 0.961
4 4 48 0.37 29.33 0.550 0.21 6 0.887
4 3 36 0.43 19.56 0.427 0.24 4 0.701
4 2 24 0.52 9.78 0.281 0.30 2 0.335
5 4 60 0.37 36.92 0.556 0.19 6 0.927
5 3 45 0.43 24.61 0.435 0.22 4 0.762
5 2 30 0.52 12.31 0.291 0.27 2 0.372
6 4 72 0.37 44.35 0.560 0.18 6 0.951
6 3 54 0.43 29.57 0.440 0.21 4 0.807
6 2 36 0.52 14.78 0.297 0.26 2 0.405
7 3 63 0.43 34.42 0.440 0.20 4 0.839
7 2 42 0.52 17.21 0.302 0.25 2 0.432
8 3 72 0.43 39.18 0.445 0.19 4 0.864
8 2 48 0.52 19.59 0.306 0.24 2 0.454
9 2 54 0.52 21.92 0.308 0.23 2 0.474
10 2 60 0.52 24.20 0.311 0.22 2 0.491
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10.5 A Different Hypothesis: Testing for Equivalence

In the context of hypothesis testing, it is important to remember that although one can 
obtain evidence against the null hypothesis, one cannot evaluate evidence in favour of 
the null hypothesis. If the null hypothesis is not rejected, there are two possible explana-
tions: either the null hypothesis is true, or it is false but the background variation is suf-
ficiently large to mask treatment differences (i.e. the experiment has insufficient power to 
detect the true treatment difference). The question of interest is therefore usually posed 
as the alternative hypothesis. However, in some cases, the question of interest is whether 
there is equality (or equivalence) of treatment population means, which corresponds to 
the usual null hypothesis. This situation often occurs when a new (sometimes faster or 
cheaper) treatment is compared with a standard; the aim is to show that the new treatment 
is equivalent to the standard so that it can be adopted. This scenario is known as equiva-
lence testing and is widespread in pharmaceutical studies, although less well-established 
in plant science research. To test the question of equivalence, one must specify a region of 
equivalence and switch the roles of the two hypotheses. To illustrate these concepts we use 
a simple example with two treatment groups, with population means μ1 and μ2, respec-
tively, and difference δ = μ1 − μ2.

We first define a region of equivalence by specifying a quantity (c) such that a differ-
ence of c units between two population means is not considered biologically meaning-
ful, so that two population means are considered equivalent if |μ1 − μ2| = |δ| ≤ c. In this 
context, the null hypothesis to be tested is that the two population means are different, or 
H0: |δ| > c, against the alternative hypothesis H1: |δ| ≤ c. This is an interval hypothesis, 
i.e. the null hypothesis corresponds to a range of values. The equivalence testing proce-
dure splits this null hypothesis into two one-sided components:

 H0a: δ < −c ,

 H0b: δ > c .

Each of these null hypotheses then has a corresponding alternative hypothesis, i.e. 
H1a: δ ≥ −c and H1b: δ ≤ c. Each hypothesis can then be tested by a one-sided t-test, with test 
statistics ta and tb defined as

 
t

SED
; t

SED
 a b= + = −d c d c
.

Here d is the observed treatment difference, d = −ˆ ˆµ µ1 2, and SED is the estimated SE for 
the treatment comparison with associated df equal to ResDF. For a test with significance 
level αs, we then reject null hypothesis H0a if t ta ResDF

s≥ [ ]α . Similarly, we reject null hypoth-
esis H0b if t tb ResDF

s≤ − [ ]α . The overall null hypothesis, H0: |δ| > c, is rejected if both H0a and 
H0b are rejected, giving evidence in favour of the alternative hypothesis of equivalence 
between the treatment means. This procedure is generally referred to as two one-sided 
t-tests (TOST). As usual in hypothesis testing, there is a correspondence between the 
hypothesis test and a related confidence interval (CI). In this case, if the 100(1 − 2αs)% con-
fidence interval d ± ×( )[ ]SED tResDF

sα  is completely contained within the limits (−c, c), then the 
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null  hypothesis of inequivalence is rejected at significance level αs and we have positive 
evidence of equivalence.

This procedure can be particularly useful as a secondary test where differences detected 
by ANOVA are considered to be biologically unimportant. Once an equivalence range 
has been defined, an equivalence test can establish whether there is evidence to reject a 
null hypothesis of inequivalence. For a very precise experiment, it is possible for small 
differences between treatments to be detected as significant but to then obtain evidence 
of equivalence. However, questions of power still arise, and a non-significant equivalence 
test does not prove inequivalence.

It is possible to switch the null and alternative interval hypotheses to obtain a direct test 
for inequivalence. In this case, the null hypothesis is H0: |δ| ≤ c which is tested against 
the alternative hypothesis H1:|δ| > c. The test statistics are the same as above, with the null 
hypothesis (equivalence) rejected if either t ta ResDF

s< − [ ]α  or t tb ResDF
s> [ ]α . This test rejects equiv-

alence if the CI calculated as d ± ×( )[ ]SED tResDF
sα  has either its upper limit below −c or its 

lower limit above c. McBride (1999) demonstrates the use of this test (and equivalence tests) 
in the context of environmental monitoring. Note that this interval-based null hypothesis 
is not the same as our usual point null hypothesis H0: δ = 0, and so the results of the two 
tests might not match.

EXAMPLE 10.3: MEASURING SOIL MICROBIAL BIOMASS

An experiment was done to investigate the effects of changing the procedure for pro-
cessing samples to obtain measurements of carbon in soil microbial biomass (as mg 
C per kg soil). The protocol under examination used 200 g soil samples passed over a 
2.5 mm sieve and shaken for 60 min. The experiment tested the effects of a larger sieve, 
two smaller sample weights and a reduced shaking time, giving a 2 × 3 × 2 factorial 
structure. Each of the 12 treatment combinations was replicated four times in a CRD. 
The aim of analysis is to quantify the effects of the individual modifications, whether 
they interact, and to evaluate whether any of the modified procedures obtain results 
within 10% of the standard protocol. The data are listed in Table 10.5 and held in file 
biomassc.dat. The mean for the standard protocol is 1095.5 mg C/kg, so we consider 
differences smaller than 110 mg C/kg as unimportant.

Factors Size (sieve size), Weight (sample weight) and Time (shaking time) define the 
treatment combinations, with response variate C (microbial carbon biomass). There is 
no structural component of the linear model, which can be written as

Response variable: C
Explanatory component: [1] + Size*Weight*Time

The explanatory component is a three-way crossed structure, and the ANOVA table for 
this model is Table 10.6. There is no evidence of interactions between the different modi-
fications, but strong evidence that increasing the sieve size and decreasing the shaking 
time both decrease the quantity of biomass C measured. However, these results do not 
establish equivalence (or inequivalence) of any of the 11 test combinations in relation to 
the standard protocol and to evaluate this we examine 95% CIs based on the interval 
hypothesis, H0: |δ| < 110, shown in Table 10.7.

The confidence limits are calculated using the 90th percentile of the t-distribution on 
36 df (t36

0 10 1 688[ . ] .= ) with SED = 48.5. There is only one case (small sieve, 50 g weight, 
60 min shaking) where there is evidence of equivalence; in this case, the 95% CI (−61.4, 
102.4) is entirely contained within the limits (−110, 110). On the other hand, there is no 
evidence of inequivalence (no lower limits > 110 and no upper limits < −110). The absence 
of positive results here reflects the large amount of background variation and hence 
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uncertainty in this experiment; the power to detect a difference of 110 mg between two 
treatment combinations is only 60%. Moreover, we have not adjusted for the number of 
tests (11) made, and so our overall rate of Type I error will be larger than the nominal 
value of 0.05 (see Section 8.8). Following McBride (1999), we could adjust the significance 
level using a Bonferroni correction, making the confidence limits even wider.

We can conclude from this experiment that shaking time and sieve size affect the 
quantity of biomass measured, but we require additional data to establish whether the 
different procedures give measurements within the 10% range specified.

TABLE 10.5

Biomass Carbon (C) Measurements on 48 Samples from a CRD for Different Combinations 
of Sieve Size (S = 2.5 mm, L = 12 mm), Sample Weight (g) and Shaking Time (min), Listed in 
Treatment Order (Example 10.3 and file biomassc.dat)

Size Weight Time C Size Weight Time C Size Weight Time C

L 20 30 971 L 200 30 951 S 50 30 995
L 20 30 858 L 200 30 878 S 50 30 1177
L 20 30 984 L 200 30 882 S 50 30 951
L 20 30 900 L 200 30 918 S 50 30 1118
L 20 60 1062 L 200 60 974 S 50 60 1050
L 20 60 1028 L 200 60 1097 S 50 60 1196
L 20 60 1020 L 200 60 996 S 50 60 1116
L 20 60 1106 L 200 60 1048 S 50 60 1102
L 50 30 956 S 20 30 965 S 200 30 904
L 50 30 1083 S 20 30 1068 S 200 30 983
L 50 30 764 S 20 30 922 S 200 30 959
L 50 30 836 S 20 30 968 S 200 30 926
L 50 60 1030 S 20 60 1115 S 200 60 1050
L 50 60 1014 S 20 60 1123 S 200 60 1016
L 50 60 981 S 20 60 1167 S 200 60 1144
L 50 60 1065 S 20 60 1181 S 200 60 1172

Source: Data from Rothamsted Research (P. Brookes).

TABLE 10.6

ANOVA Table for Soil Microbial Carbon Biomass Measured Using Two 
Sieve Sizes (Factor Size), Three Sample Weights (Factor Weight) and Two 
Shaking Times (Factor Time) (Example 10.3)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Size 1 80,524.08 80,524.08 17.114 < 0.001
Weight 2 12,060.67 6030.33 1.282 0.290
Time 1 179,585.33 179,585.33 38.167 < 0.001
Size.Weight 2 10,543.17 5271.58 1.120 0.337
Size.Time 1 65.33 65.33 0.014 0.907
Weight.Time 2 8855.17 4427.58 0.941 0.400
Size.Weight.Time 2 5744.67 2872.33 0.610 0.549
Residual 36 169,385.50 4705.15   
Total 47 466,763.92    
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EXERCISE

 10.1 You need to design an experiment in which you have to first make extracts from 
different cultivars and then process those extracts through a machine to com-
pare the cultivars. You have four cultivars that you must test, and another four 
that you are quite interested in. It requires 10 plants (grown in the same pot) to 
make one extract to run through the machine and only one extract can be run at 
a time. You have the resources to make and process up to a total of 30 extracts. 
However, the machine needs resetting at least every eight runs, and the level 
of its readings may vary slightly each time it is reset. A batch of four to eight 
runs between resetting the machine can therefore be considered as a block. A 
pilot study has shown that the background variation across a set of four to eight 
runs is about 1 unit2, and you wish to detect treatment differences of 2 units. 
Consider and compare possible designs for both stages of this experiment.

TABLE 10.7

Treatment Means and Differences from Standard Protocol (Small Sieve, 200 g Sample 
Weight, 60 min Shaking Time) with 95% CI for the Differences Based on Interval 
Hypothesis H0: |δ| < 110 (Example 10.3)

Size Weight Time Mean Difference
Lower 
Limit

Upper 
Limit

Equivalent 
to 

Standard?

Large 20 30 928.25 −167.25 −249.1 −85.4 No
Large 20 60 1054.00 −41.50 −123.4 40.4 No
Large 50 30 909.75 −185.75 −267.6 −103.9 No
Large 50 60 1022.50 −73.00 −154.9 8.9 No
Large 200 30 907.25 −188.25 −270.1 −106.4 No
Large 200 60 1028.75 −66.75 −148.6 15.1 No
Small 20 30 980.75 −114.75 −196.6 −32.9 No
Small 20 60 1146.50 51.00 −30.9 132.9 No
Small 50 30 1060.25 −35.25 −117.1 46.6 No
Small 50 60 1116.00 20.50 −61.4 102.4 Yes
Small 200 30 943.00 −152.50 −234.4 −70.6 No
Small 200 60 1095.50 0 – – –
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11
Dealing with Non-Orthogonality

This chapter explores the concept of orthogonality, its role in designs and the conse-
quences of non-orthogonality, either between two (or more) treatment factors or between 
blocking and treatment factors. Non-orthogonality between explanatory variates, as may 
occur in regression models (Chapter 12), is usually termed collinearity and this concept 
is discussed in more detail in Chapter 14. A sufficient condition for two factors (or terms) 
to be orthogonal is given in Section 11.1. The procedure for analysis of a crossed model 
for two non-orthogonal treatment factors is then described in detail (Section 11.2). If two 
factors are non-orthogonal then parameter estimates may change according to the terms 
present in the model (Section 11.2.1) and a unique ANOVA table for the experiment no 
longer exists. Some consideration must be given to the order in which the factors are fitted 
and to the interpretation of the treatment sums of squares, giving rise to several possible 
sequential ANOVA tables (Section 11.2.2). This also results in different types of sums of 
squares (Section 11.2.3) and procedures for model selection (Section 11.2.4). The manner in 
which predictions are formed for individual treatments is also more complex, and affects 
their interpretation (Section 11.2.5).

Non-orthogonality between block and treatment factors can be planned, structured and 
exploited to obtain an efficient design (Section 11.3). Several classes of design for a facto-
rial treatment structure exploit non-orthogonality to reduce the resources required for an 
experiment. Fractional factorial designs (FFDs) (Section 11.3.1) reduce the replication and 
may even omit certain treatment combinations to minimize the number of experimental 
units, although some knowledge of the system is required to obtain a meaningful analysis. 
Factorial designs with confounding enable the efficient allocation of treatment combinations 
to small blocks (Section 11.3.2). Often non-orthogonality is unplanned, because either there 
are missing values in the data (Section 11.4), treatment factors are accidentally misallocated, 
or unplanned events lead to additional (extraneous) factors in the model (Section 11.5).

Most statistical packages contain several algorithms that can be used to analyse a linear 
model, depending on features of the design, and most such algorithms can deal with an 
explanatory component alone. Options become more limited when both explanatory and 
structural components are present. Multi-stratum ANOVA algorithms can deal with sepa-
rate explanatory and structural components, but require a balanced orthogonal structure. 
Linear mixed models provide a more complex alternative for non-orthogonal structures 
(Chapter 16). However, in some cases, one can combine the explanatory and structural 
components into a single model component and still obtain a valid analysis. This approach 
is often called an ‘intra-block analysis’ (Section 11.6).

11.1 The Benefits of Orthogonality

Two explanatory variables (or terms) in a linear model are said to be orthogonal if the 
estimated parameter effects and sum of squares for each term are the same regardless of 
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whether the other term is included or not in the model. A more rigorous mathematical 
definition of orthogonality is beyond the scope of this book (details can be found in Bailey, 
2008), but this definition will suffice here. For example, consider the case of two factors, A 
and B, in a design with equal replication of all factorial combinations and no experimental 
structure. Here, we consider the additive model, [1] + A + B, consisting of the overall con-
stant and main effects of the two factors. In this case, estimates of the A and B main effects 
are the same regardless of whether the other main effect is fitted. Likewise, the sums of 
squares for each main effect term are the same whether the model is specified as [1] + A + B 
or as [1] + B + A, as illustrated in Example 11.1A. The main effect terms, corresponding to 
factors A and B, are thus orthogonal in this design.

EXAMPLE 11.1A: BEETLE MATING

Consider the 2 × 2 factorial beetle mating experiment described in Example 8.1 (data 
in file beetles.dat) where females from two species of willow beetle (factor Species) 
mated with males from either their own species (intraspecies mating) or the other 
species (interspecies mating, factor MateType). The response analysed was the log10-
transformed number of eggs laid by each female. The parameter estimates for the main 
effects were derived in Example 8.1B (see Table 8.2) from the margins of a two-way table 
of observed treatment means. This derivation does not depend on the order in which the 
terms are fitted, or on which terms are fitted in the model. Table 11.1 shows the ANOVA 
tables for the explanatory component specified either as [1] + MateType + Species or 
with factors in the other order as [1] + Species + MateType. The sums of squares for 
each factor are the same for both orders, confirming that these factors are orthogonal.

For two treatment factors, the easiest way to assess the orthogonality of the design is 
to obtain a two-way table containing counts of replicates for each combination of the two 
factors. The simplest case of an orthogonal design is where observations are present in all 
cells with equal replication. If some cells are empty, or if replication is unequal, then the 
factors will usually (but not always) be non-orthogonal. As a rule of thumb, if all marginal 
means for one factor in the two-way table involve equal representation from levels of the 
other factor, then the design will be orthogonal.

For two factors, we can write down a mathematical condition sufficient for orthogonality 
(Mead et al., 2012, Chapter 7). If nrs is the replication for the rth level of the first factor and 
the sth level of the second factor, then the two factors are orthogonal if, for all combina-
tions of r and s,

 
n

n n
N

rs
r s= ×i i  ,

 
(11.1)

TABLE 11.1

ANOVA Tables for Main Effects Model Fitted in Two Different Orders for 
log10(Number of Eggs) in the Beetle Mating Experiment (Example 11.1A)

Sequence 1 Sequence 2

Source of 
Variation df

Sum of 
Squares

Source of 
Variation df

Sum of 
Squares

MateType 1 0.3807 Species 1 0.9031
Species 1 0.9031 MateType 1 0.3807
Residual 36 0.9484 Residual 36 0.9484
Total 39 2.2322 Total 39 2.2322
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where nr• = Σs nrs is the total number of observations for the rth level of the first factor, 
n•s = Σr nrs is the total number of observations for the sth level of the second factor and, as 
usual, N is the total number of observations.

EXAMPLE 11.1B: BEETLE MATING

Each of the four treatment combinations in the beetle mating experiment is replicated 
10 times, so nrs = 10 for r = 1, 2 and s = 1, 2. The total count for each level of the individual 
factors is 20, giving nr• = 20 and n•s = 20, with N = 40. Hence, the condition for orthogo-
nality given in Equation 11.1 is satisfied as

 

n n
N

r sr si i× = × =20 20
40

10 for any  = 1, 2,  = 1, 2 .

11.2 Fitting Models with Non-Orthogonal Terms

In this section we demonstrate the process of fitting models and making statistical infer-
ences for two non-orthogonal factors with a crossed treatment structure, paying partic-
ular attention to steps where the procedure or inference differs from that described in 
Chapter 8 for orthogonal factors. We illustrate these differences by comparing the analysis 
of Example 11.1, which has an orthogonal structure, with that of Example 11.2, which has 
a non-orthogonal structure. For simplicity, we have chosen examples with no structural 
component, but the same principles apply to investigation of the explanatory component 
when structure is present, within the context of a multi-stratum ANOVA.

EXAMPLE 11.2A: GENETICS OF ROOT GROWTH

An experiment was conducted to investigate the genetic component of root growth 
in manipulated lines. Two male parents (factor Male, levels M1 and M2) were crossed 
with five female parents (factor Female, levels F1–F5) and eight seeds were to be grown 
from each cross in a CRD. Root growth (maximum length) was measured (mm) after 
three weeks (variate Root). Unfortunately, many of the seeds were not viable because 
of genetic incompatibilities, leading to reduced replication of some treatments with 
only 30 observations in total. The data are provided in file cross.dat and displayed in 
Table 11.2.

For this two-way factorial the pattern of replication is without structure, as shown 
in Table 11.3 and the Male and Female factors are non-orthogonal. This can be verified 
using the condition presented in Equation 11.1. For example, consider the replication for 
offspring of male parent M1 with female parent F1, with n11 = 6. The marginal replica-
tion for male parent M1 is n1• = 19 and the marginal replication for female parent F1 is 
n•1 = 8, and there are 30 observations (N = 30). Orthogonality then requires replication 
of 19 × 8/30 = 5.07, but this is not an integer value and so cannot equal the actual replica-
tion, here n11 = 6, confirming that the structure is non-orthogonal.

11.2.1 Parameterizing Models for Two Non-Orthogonal Factors

Although sum-to-zero constraints are often used for balanced designs, this parameteriza-
tion becomes much less convenient for non-orthogonal structures, and so it is more com-
mon to use first-level-zero (or last-level-zero) constraints in this context. First-level-zero 
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parameterization was introduced for crossed models with two factors in Section 8.2.6, and 
is used throughout this chapter. Parameter estimates are again obtained by the method of 
least squares.

In this section, we consider a two-factor crossed treatment structure for factor A with tA 
levels and factor B with tB levels. As a preliminary step, we examine the two-factor addi-
tive model which excludes the interaction, i.e. [1] + A + B, to explain the parameterization 
and to demonstrate the difference between an orthogonal and a non-orthogonal structure. 
The additive model takes the general form

 y ersk r s rsk= + + +µ η ζ11  .

First-level-zero constraints are imposed as η1 = 0, ζ1 = 0, and this model corresponds to

Explanatory component: [1] + A + B

In this parameterization, μ11 is the overall constant associated with the term [1]. Because of 
the constraints, this constant represents the population mean under this additive model 
for a unit with the first level of both factors. The parameters ηr (r = 1 … tA) are associ-
ated with factor A and can be thought of as the expected difference between observations 
with the rth and first levels of factor A for any given level of factor B. Similarly, param-
eters ζs (s = 1 … tB), associated with factor B, represent the expected difference between 

TABLE 11.3

Replication of Parental Combinations for Germinated Seed 
in the Root Growth Experiment (Example 11.2A)

Female Parent

F1 F2 F3 F4 F5 Total

Male 
Parent

M1 6 3 2 5 3 19
M2 2 3 4 1 1 11
Total 8 6 6 6 4 30

TABLE 11.2

Observed Root Growth (mm) from Offspring of Crosses between Five Female and Two Male 
Parents (Example 11.2A and File cross.dat)

Female 
Parent

Male 
Parent

Root 
Growth

Female 
Parent

Male 
Parent

Root 
Growth

Female 
Parent

Male 
Parent

Root 
Growth

F5 M1 76 F3 M2 68 F1 M1 83
F1 M1 83 F4 M1 81 F4 M1 84
F1 M1 85 F3 M2 69 F2 M1 82
F3 M1 75 F5 M2 77 F2 M2 75
F1 M1 88 F2 M2 78 F5 M1 77
F1 M2 80 F2 M1 79 F2 M2 77
F1 M2 79 F4 M2 80 F1 M1 84
F4 M1 83 F1 M1 89 F3 M2 70
F3 M1 80 F4 M1 85 F4 M1 86
F2 M1 81 F5 M1 76 F3 M2 70
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observations with the sth and first levels of factor B for any given level of factor A. (If the 
response to the level of factor A depends on the level of factor B, or vice versa, then we 
should need to include the interaction term, as described below.) If we simplify the model 
further, by dropping out factor B, then this becomes

 y ersk r rsk= + +µ η1  ,

corresponding to the explanatory structure [1] + A, with constraint η1 = 0. Here, we have 
relabelled the overall constant, associated with term [1], as μ1 because it now represents the 
population mean for the first level of factor A. The parameters ηr (r = 1 … tA) are now the 
expected difference between observations with the rth and first levels of factor A (regard-
less of factor B). An analogous model can be constructed for factor B with factor A omitted, 
i.e. explanatory structure [1] + B, as

 y ersk s rsk= + +µ ζ1  ,

with constraint ζ1 = 0. The overall constant, associated with term [1], now represents the 
population mean for the first level of factor B, and parameters ζs (s = 1 … tB) are now the 
expected difference between observations with the sth and first levels of factor B. Note 
that the interpretation (and hence value) of μ1 changes according to the terms present in 
the model.

If the factors A and B are orthogonal, then the estimated parameters associated with each 
factor term do not change when the other factor is added to or dropped from the model, 
as illustrated in Example 11.1C. The same does not hold for the constant term, which is 
marginal to both terms A and B: because the interpretation of the constant changes as 
terms are added or dropped, so does its estimated value. (Note that this was not the case 
for the sum-to-zero parameterization, in which the interpretation of the constant term as 
the overall mean was consistent across different models.)

EXAMPLE 11.1C: BEETLE MATING

Here, we obtain parameter estimates for first-level-zero parameterization (using the 
generic notation introduced above) for main effects models with one or both factors. 
The estimates for both single factor models and the two-factor additive model are listed 
in Table 11.4. Effects labelled as η are associated with the MateType factor, and those 
labelled ζ are associated with the Species factor.

TABLE 11.4

Estimated Parameters for Several Models for the log10(Number of Eggs) in the Beetle Mating 
Experiment, Using First-Level-Zero Parameterization, with η1 = 0, ζ1 = 0, (ηζ)rs = 0 for r = 1 or s = 1 
(Example 11.1C)

Model

Term Parameter [1] + M + S [1] + M [1] + S [1] + M*S

[1] μ11 or μ1 1.561 1.711 1.658 1.513
MateType Intra η2 0.195 0.195 – 0.291
Species P. vulg. ζ2 0.301 – 0.301 0.396
MateType Intra. Species P. vulg. (ηζ)22 – – – −0.191

Note: In models M = MateType, S = Species.
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As each factor has only two levels, the estimated parameters represent the expected 
difference between the second and first levels of each factor. It is straightforward to 
verify that these figures are consistent with main effect estimates given under the sum-
to-zero parameterization in Table 8.2c. For example, under first-level-zero parameteriza-
tion the estimate of the effect ζ2, associated with Species P. vulgatissima and equal to 
0.301, is the difference between the main effect estimates for Species under the sum-to-
zero parameterization:

 
Species Species 

2 1 0 1503 0 1503 0 301− = − − =. . . .( )  

Since the MateType and Species factors are orthogonal, estimates associated with the 
individual factors are the same for both one-way models (i.e. models containing only 
one of these factors) and the additive model [1] + MateType + Species. These estimates 
are also unchanged if the order of the factors in the model is swapped to give model 
[1] + Species + MateType. As expected from its interpretation, the value of the estimated 
constant (labelled μ11 or μ1) differs between models.

EXAMPLE 11.2B: GENETICS OF ROOT GROWTH

We now repeat the analyses of Example 11.1C for this non-orthogonal data set, with the 
estimates obtained from both single factor models and the two-factor additive model 
listed in Table 11.5. Here, effects labelled as η are associated with the Female factor, and 
those labelled ζ are associated with the Male factor.

In these models the parameter ζ2, associated with the second male parent (M2), repre-
sents the expected difference in root growth with respect to offspring of the first male 
parent (M1) for a given female parent. The effect of the rth female parent (ηr) represents 
the expected difference in root growth with respect to offspring of the first female par-
ent (F1) for a given male parent. The two factors Male and Female are non-orthogonal, 
and so the estimates associated with each factor change in value when the other factor 
is added to or dropped from the model. For example, the estimated effect of the second 
male parent (M2) equals −4.8 mm in the additive model containing both factors, indi-
cating 4.8 mm less root growth for offspring of the second male parent when compared 
with the first male parent. But this estimate becomes −7.1 mm in a model containing the 

TABLE 11.5

Estimated Parameters for Several Models for Root Growth, Using First-Level-Zero 
Parameterization, with η1 = 0, ζ1 = 0, (ηζ)rs = 0 for r = 1 or s = 1 (Example 11.2B)

Model

Term Parameter [1] + F + M [1] + F [1] + M [1] + M*F

[1] μ11 or μ1 85.1 83.9 81.9 85.3
Female F2 η2 −4.0 −5.2 – −4.7
Female F3 η3 −9.9 −11.9 – −7.8
Female F4 η4 −1.1 −0.7 – −1.5
Female F5 η5 −7.4 −7.4 – −9.0
Male M2 ζ2 −4.8 – −7.1 −5.8
Female F2. Male M2 (ηζ)22 – – – 1.8
Female F3. Male M2 (ηζ)32 – – – −2.4
Female F4. Male M2 (ηζ)42 – – – 2.0
Female F5. Male M2 (ηζ)52 – – – 6.5

Note: In models F = Female, M = Male.
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Male factor only, indicating a considerably larger difference. One must therefore estab-
lish a suitable model before reliable inferences can be made.

The full model for a crossed treatment structure with two factors includes an interaction 
term and is written as

 y ersk r s rs rsk= + + + +µ11 η ζ ηζ( )  .

First-level-zero constraints are imposed as η1 = 0, ζ1 = 0 and (ηζ)rs = 0 when r = 1 or s = 1. 
This model corresponds to the crossed explanatory structure

Explanatory component: [1] + A*B
 = [1] + A + B + A.B

In this parameterization, μ11 is the overall constant associated with the term [1], which now 
represents the population mean under the crossed model for the first level of both factors. 
Interpretation of the other parameters also differs somewhat from that in the additive 
models described above. The parameters ηr (r = 1 … tA), associated with factor A, repre-
sent the difference between the rth and first levels of factor A at the first level of factor 
B. Similarly, parameters ζs (s = 1 … tB), associated with factor B, represent the difference 
between the sth and first levels of factor B at the first level of factor A. Because these param-
eters now represent different quantities, they also now take different values. The param-
eters (ηζ)rs (r = 1 … tA, s = 1 … tB) associated with the interaction term A.B can be thought 
of as deviations relative to the first row and column in the two-way table of unstructured 
treatment effects (see Section 8.2.6), and allow the response to a level of factor A to depend 
on the level of factor B, and vice versa.

This change in the interpretation of model parameters according to which terms are 
present can make the first-level-zero parameterization confusing. It is important to realize 
that the parameterization used is only a tool to facilitate estimation, and that any valid 
parameterization for a given model results in the same set of fitted values or predictions. 
The predicted value for a given treatment combination (rth level of factor A, sth level of fac-
tor B) is obtained by addition of the relevant parameter estimates, i.e. for the full crossed 
model

 
ˆ ˆ ˆ ˆ .µ µ η ζ ηζrs r s rs= + + +11 ( )  

These predictions for the full crossed model will always be equal to the observed treat-
ment means. Predictions from the simple additive models are obtained in a similar man-
ner by adding together the estimated parameters for the terms present in that model.

EXAMPLE 11.1D: BEETLE MATING

Column 6 of Table 11.4 lists estimates obtained from first-level-zero parameterization 
for the full crossed explanatory component, [1] + MateType*Species. The estimated con-
stant changes when the interaction is added into the model, and is equal to the observed 
mean for the first level of both factors (MateType inter, Species P. vitellinae). Although the 
MateType and Species factors are orthogonal, estimates of the main effects also change 
when the interaction is added into the model as the interpretation of these parameters 
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changes. The effect associated with intraspecies mating (MateType Intra, estimate 0.291) 
is equal to the difference between observed means for intra- and interspecies mating 
for the first level of Species, i.e. P. vitellinae (calculated as 1.804 − 1.513). Table 11.6 dem-
onstrates that predictions from the crossed model are equal to the observed treatment 
means, previously shown in Table 8.1a.

EXAMPLE 11.2C: GENETICS OF ROOT GROWTH

Column 6 of Table 11.5 lists estimates from first-level-zero parameterization for the full 
crossed explanatory component, [1] + Male*Female. These estimates can be used to 
obtain the predictions shown in Table 11.7, which are equal to the observed treatment 
means.

The estimated constant equals the observed mean for crosses derived from the first 
male parent (M1) and the first female parent (F1) (see Table 11.5). Other parameters 
are interpreted as described above. For example, the estimated effect associated with 
female parent F3 (−7.8) equals the difference between the observed means for crosses 
derived from male parent M1 with female parents F3 or F1 (77.5 − 85.3 = −7.8).

Interpretation of parameters under first-level-zero constraints becomes increasingly 
more complex as higher-order interactions are added into the model. As a general rule, 
individual parameter estimates are not of particular interest, except as components of pre-
dictions. We use ANOVA to determine which model terms are required to give a good 
description of a data set, and this also gives an estimate of background variation that can 
be used to estimate standard errors of parameter estimates and predictions.

TABLE 11.6

Predicted Population Means from First-Level-Zero Parameterization for the Full Crossed 
Model for the Beetle Mating Experiment (Example 11.1D)

Mating Type

Interspecies Intraspecies

Species of 
Female

P. vitellinae ˆ ˆ ˆ .µ η ζ ηζ11 1 1 11 1 513+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 1 2 12 1 804+ + + =( )

P. vulgatissima ˆ ˆ ˆ .µ η ζ ηζ11 2 1 21 1 909+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 2 2 22 2 008+ + + =( )

TABLE 11.7

Predicted Population Means from First-Level-Zero Parameterization for the Full 
Crossed Model for the Root Growth Experiment (Example 11.2C)

Male Parent

M1 M2

Female 
Parent

F1 ˆ ˆ ˆ .µ η ζ ηζ11 1 1 11 85 3+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 1 2 12 79 5+ + + =( )

F2 ˆ ˆ ˆ .µ η ζ ηζ11 2 1 21 80 7+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 2 2 22 76 7+ + + =( )

F3 ˆ ˆ ˆ .µ η ζ ηζ11 3 1 31 77 5+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 3 2 32 69 3+ + + =( )

F4 ˆ ˆ ˆ .µ η ζ ηζ11 4 1 41 83 8+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 4 2 42 80 0+ + + =( )

F5 ˆ ˆ ˆ .µ η ζ ηζ11 5 1 51 76 3+ + + =( ) ˆ ˆ ˆ .µ η ζ ηζ11 5 2 52 77 0+ + + =( )
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11.2.2  Assessing the Importance of Non-Orthogonal Terms: The Sequential 
ANOVA Table

As in previous chapters, ANOVA is used to partition the total variation into components 
associated with individual model terms and background variation. We do not give details 
of how to calculate the ANOVA here; instead we obtain the tables directly from statisti-
cal software. For non-orthogonal designs, the sums of squares in the ANOVA table may 
depend on the order in which terms are added into the model. It is therefore necessary to 
consider several sequences of sub-models that add terms into the full model in different 
orders. When constructing sequences of sub-models we respect the principle of marginal-
ity (see Section 8.2.1) and add a term only if all possible sub-terms are already in the model.

Consider a two-way crossed treatment structure with factors A and B, as defined above 
(Section 11.2.1). We consider the two sequences of sub-models shown in Figure 11.1, both 
of which start with the baseline model containing the overall constant. In Sequence 1, we 
first add factor A, then factor B, and then the A.B interaction term to get the full explana-
tory component as [1] + A + B + A.B. In the second sequence, the roles of factors A and B 
are reversed to obtain [1] + B + A + A.B. The principle of marginality means that we cannot 
add the interaction A.B before either of the main effects A or B, and we must include the 
overall constant first, so only these two sequences are valid.

Before proceeding, we need to introduce some new terminology. For any sub-model, 
we define its model sum of squares (ModSS) as the sum of squares accounted for by that 
sub-model. We identify a model sum of squares by explicitly specifying the sub-model it 
refers to within parentheses, so ModSS([1] + A + B) is the sum of squares associated with 
sub-model [1] + A + B. Similarly, the model df (ModDF) is defined as the total df associated 

[1]

[1] + A [1] + B

[1] + A + B

[1] + A + B + A.B

[1] + B + A

yrsk = µ + ersk

yrsk = µ1 + ζs + erskyrsk = µ1 + ηr + ersk

yrsk = µ11 + ηr + ζs + ersk yrsk = µ11 + ζs + ηr + ersk

yrsk = µ11 + ηr + ζs + (ηζ)rs + ersk yrsk = µ11 + ζs + ηr + (ηζ)rs + ersk

+A +B

+B +A

+A.B +A.B

Sequence 1 Sequence 2

[1] + B + A + B.A

FIGURE 11.1
Symbolic and algebraic forms of models for a two-way crossed structure obtained by sequentially adding one 
term at a time, respecting marginality.
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with the sub-model. Note that, because the overall mean is eliminated from the total sum 
of squares and the df, ModSS([1]) = 0 and ModDF([1]) = 0.

EXAMPLE 11.1E: BEETLE MATING

The model sums of squares and df are listed in Table 11.8. In this orthogonal design, 
we can calculate the sum of squares for the additive model [1] + Species + MateType 
(ModSS = 1.2838) by adding together the sums of squares associated with the two sub-
models: [1] + Species (ModSS = 0.9031) and [1] + MateType (ModSS = 0.3807).

EXAMPLE 11.2D: GENETICS OF ROOT GROWTH

The model sums of squares and df are listed in Table 11.9. In this non-orthogonal case, 
the sums of squares for the additive model [1] + Female + Male (ModSS = 747.11) is less 
than that obtained by addition of the sums of squares associated with the two sub-
models [1] + Female (ModSS = 610.62) and [1] + Male (ModSS = 354.08).

The ModSS, ModDF and parameter estimates for two (sub-)models containing the same 
terms are always identical, regardless of the order of fitting. Hence, for a two-way crossed 
treatment structure, the sum of squares and df for the two versions of the full model, 
[1] + A*B and [1] + B*A, are equal. Similarly, the model SS, df and estimates for the additive 
model [1] + A + B are the same as for model [1] + B + A.

An ANOVA table for each sequence of sub-models, called a sequential ANOVA table, 
can be derived from the model sums of squares and df. When a new term is added into the 
model, changes in the ModSS and ModDF are attributed to that new term. These changes 
are called the incremental or sequential sum of squares and df, respectively. To avoid 
ambiguity, the incremental sum of squares and degrees of freedom (denoted as SS and 
df) are labelled by both the new term added and terms already in the model. For example, 
moving from model [1] + A to [1] + A + B we describe the change as +B | ([1] + A), to be read 
as ‘adding factor B given that the overall mean and factor A are already in the model’, or 

TABLE 11.8

Model df (ModDF) and Sums of Squares (ModSS) for a Crossed Model and Its Sub-Models for the 
Beetle Mating Experiment (Example 11.1E)

Sequence 1 Sequence 2

Model ModDF ModSS Model ModDF ModSS

[1] + MateType 1 0.3807 [1] + Species 1 0.9031

[1] + MateType + Species 2 1.2838 [1] + Species + MateType 2 1.2838

[1] + MateType*Species 3 1.3751 [1] + Species*MateType 3 1.3751

TABLE 11.9

Model df (ModDF) and Sums of Squares (ModSS) for a Crossed Model and Its Sub-Models for the 
Root Growth Experiment (Example 11.2D)

Sequence 1 Sequence 2

Model ModDF ModSS Model ModDF ModSS

[1] + Female 4 610.62 [1] + Male 1 354.08

[1] + Female + Male 5 747.11 [1] + Male + Female 5 747.11

[1] + Female*Male 9 788.78 [1] + Male*Female 9 788.78
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equivalently, ‘adding factor B after eliminating the overall mean and factor A’. The forms of 
the incremental sums of squares for model sequence [1] + A + B + A.B are shown in Table 
11.10. The incremental df are derived similarly from the ModDF.

In the context of a sequential ANOVA table, we can use some abbreviations by consider-
ing the table as a whole. For example, instead of listing the change and the terms already 
present in the model, we can deduce the terms already in the model from previous lines 
in the ANOVA table and just indicate the change by using ‘ + ‘ with the name of the term 
added into the model. For example, in Table 11.10, SS(+B) and DF(+B) can be used as short-
hand to indicate SS(+B | [1] + A) and DF(+B | [1] + A), respectively.

We can now derive a full sequential ANOVA table. The residual sum of squares (ResSS) 
and df (ResDF) are those associated with full model, so here ResSS = TotSS − ModSS([1] + 
A*B), and ResDF = N − 1 − ModDF([1] + A*B). Mean squares are calculated by division of the 
incremental sums of squares by their incremental df. The designs considered here have no 
structure, so the variance ratios for each term are all calculated with respect to the ResMS. 
The structure of one sequential ANOVA table for a two-way crossed structure is shown in 
Table 11.11. The first row gives the change on addition of term A to the baseline model con-
taining only the overall constant term [1]. The second row corresponds to the change when 
term B is added to a model that already contains [1] + A, and is often described as ‘the sum 
of squares for B after eliminating A’. The third row corresponds to the change when the 
interaction is added to a model containing both main effects ([1] + A + B). An analogous 
table can be derived for the other sequence. For each line of the ANOVA table, the variance 
ratio can be used as a test statistic for the null hypothesis that addition of the term gives no 
improvement to the current model (explains no additional variation). The df for the associ-
ated F-test are, as usual, given by the df associated with the numerator and denominator 
mean squares of the variance ratio.

EXAMPLE 11.1F: BEETLE MATING

The two sequential ANOVA tables for the full crossed model are in Table 11.12. In this 
orthogonal design, the incremental sums of squares are the same in both sequences. 

TABLE 11.10

Incremental Sums of Squares for a Two-Way Crossed Structure Fitted as [1] + A + B + A.B

Model Change Incremental Sum of Squares

[1] + A +A | [1] SS(+A|[1]) = ModSS([1] + A) − ModSS([1])
[1] + A + B +B | ([1] + A) SS(+B|[1] + A) = ModSS([1] + A + B) − ModSS([1] + A)
[1] + A*B +A.B | ([1] + A + B) SS(+A.B|[1] + A + B) = ModSS([1] + A*B) − ModSS([1] + A + B)

TABLE 11.11

Structure of the Sequential ANOVA Table for a Two-Way Crossed Structure Fitted as 
[1] + A + B + A.B

Term Added
Incremental Sum 

of Squares
Incremental  

df Mean Square Variance Ratio

+ A SS(+A) DF(+A) MS(+A) = SS(+A)/DF(+A) MS(+A)/ResMS
+ B SS(+B) DF(+B) MS(+B) = SS(+B)/DF(+B) MS(+B)/ResMS
+ A.B SS(+A.B) DF(+A.B) MS(+A.B) = SS(+A.B)/DF(+A.B) MS(+A.B)/ResMS
Residual ResSS ResDF ResMS = ResSS/ResDF
Total TotSS TotDF
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For example, the sum of squares for Species eliminating MateType (i.e. +Species in 
Sequence 1) is the same as that for Species ignoring MateType (+Species in Sequence 
2), and the conclusions are exactly the same for both model sequences.

EXAMPLE 11.2E: GENETICS OF ROOT GROWTH

The two sequential ANOVA tables are in Table 11.13. In this non-orthogonal design, the 
incremental sum of squares on addition of the Male main effect (denoted M in Table 
11.13) to the model differs according to whether the Female main effect (denoted F in 
Table 11.13) has already been added to the model (eliminated) or not (ignored). A similar 
pattern is present for the Female main effects but, as expected, the incremental sum 
of squares for the interaction term (Female.Male) is the same in both sequences. The 
conclusions are the same from both sequences: there is some evidence of an interaction 
(F F4 20 4 20 2 821, , . ,F M M F. .= =  P = 0.053), but there is very strong evidence from both sequences 
that both main effects are required in the model.

In some cases, interpretation of the ANOVA table is less straightforward. For example, 
suppose that observed significance levels from the ANOVA table for a two-way crossed 
model, [1] + A*B, took the values listed in Table 11.14. In this case, Sequence 1 gives strong 
evidence that factor A accounts for variation in the response but that, once this term has 
been taken into account, addition of factor B and the interaction term into the model 
accounts for no further variation. In contrast, Sequence 2 indicates that when factor A is 
ignored, there is evidence that factor B accounts for variation in the response, although the 
interaction is still not significant. We need to put this information together in a way that 

TABLE 11.12

Sequential ANOVA Tables for a Crossed Model for the Beetle Mating Experiment (Example 11.1F)

Sequence 1 Sequence 2

Source df SS MS VR Source df SS MS VR

+ M 1 0.3807 0.3807 15.992 + S 1 0.9031 0.9031 37.932

+ S 1 0.9031 0.9031 37.932 + M 1 0.3807 0.3807 15.992

+ M.S 1 0.0914 0.0914 3.837 + S.M 1 0.0914 0.0914 3.837
Residual 36 0.8571 0.0238 Residual 36 0.8571 0.0238
Total 39 2.2322 Total 39 2.2322

Note: M denotes factor MateType and S denotes factor Species. df = incremental df, SS = incremental sum of 
squares, MS = mean square, VR = variance ratio.

TABLE 11.13

Sequential ANOVA Tables for a Crossed Model for the Root Growth Experiment (Example 11.2E)

Sequence 1 Sequence 2

Source df SS MS VR Source df SS MS VR

+ F 4 610.62 152.66 41.324 + M 1 354.08 354.08 95.849

+ M 1 136.48 136.48 36.945 + F 4 393.02 98.26 26.597

+ F.M 4 41.68 10.42 FF.M = 2.821 + M.F 4 41.68 10.42 FM.F = 2.821
Residual 20 73.88 3.69 Residual 20 73.88 3.69
Total 28 862.67 Total 28 862.67

Note: M denotes factor Male and F denotes factor Female. df = incremental df, SS = incremental sum of squares, 
MS = mean square, VR = variance ratio.
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makes sense. The fact that B is significant only when A is not in the model suggests that 
there is some association, or confounding, between levels of A and B.

In general, we prefer the simplest model that describes variation in the response – a par-
simonious model. Here, this would be the model that contains factor A only, as Sequence 1 
tells us that we do not need factor B or the interaction once we have factor A in the model. 
In selecting a model we also obey the principle of marginality; this implies that we work 
upwards from the bottom of the ANOVA table(s), as described in Section 8.3.

This process of model selection is reasonably straightforward for a model with two 
treatment factors, but becomes more complex when more factors and their interactions are 
present. The principle of marginality requires that we should fit the main effects before 
two-factor interactions, two-factor interactions before three-factor interactions and so on, 
but this may still result in a large number of valid sequences of sub-models to be compared 
(see Section 8.3). For this reason, different types of sum of squares have been developed to 
aid in model identification, and these are described in the next subsection.

11.2.3 Calculating the Impact of Model Terms

The incremental sums of squares described above, i.e. the change in the model sum of 
squares on addition of a new term into the model, are sometimes called the Type I SS. 
These sums of squares are widely used but, as shown above, they have the disadvantage 
that the value of the Type I SS for a given term changes according to the order in which the 
model terms are specified.

The Type II SS for a term is usually defined as the incremental sum of squares obtained 
when that term is added to a model that contains all terms marginal to itself. For example, 
consider a three-way crossed model containing all main effects and interactions for factors 
A, B and C. The Type II SS for the term A.B is then the incremental sum of squares obtained 
when term A.B is added to the model [1] + A + B. Sometimes the Type II SS is alternatively 
defined as the incremental sum of squares obtained when the term is added to a model 
that contains all other terms of lower or equal order. Using this second definition, the Type 
II SS for term A.B in our three-factor example is the incremental sum of squares obtained 
from adding the term A.B to the model [1] + A + B + C + A.C + B.C. Under both definitions, 
the Type II SS for term A.B.C would be the incremental sum of squares obtained when 
the three-way interaction is added to a model containing all main effects and two-factor 
interactions, i.e. [1] + A + B + C + A.B + A.C + B.C. These sums of squares can be useful in 
helping to establish a sensible model without having to refit terms in different orders, but 
they are not available in some statistical software.

The Type III SS (sometimes also called marginal or drop-one-out SS) are more complex, 
but broadly correspond to the change in the model sum of squares obtained when a term 
is dropped from the full model. Type IV SS are similar to Type III SS in principle, but use 

TABLE 11.14

Observed Significance Levels (P) from Sequential ANOVA 
Tables for a Two-Way Crossed Model with Factors A and B

Sequence 1 Sequence 2

Term Added P Term Added P

+ A 0.01 + B 0.04

+ B 0.08 + A 0.02

+ A.B 0.32 + B.A 0.32
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a slightly different calculation when there is no data for some treatment combinations. 
Further details of Type III and IV sums of squares can be found in Milliken and Johnson 
(2001). The Type I and Type III SS are always equal for the last term added into the model. 
We endorse the use of Type III SS whilst respecting the principle of marginality, as Type 
III SS may be inappropriate for any term that is a sub-term of one or more other terms in 
the model. We therefore should not use Type III SS to test terms that are marginal to other 
terms present in the model. For example, we should not calculate Type III SS for factor A 
whilst term A.B is present in the model.

11.2.4 Selecting the Best Model

The process of model selection applies to the explanatory component only; the structural 
component is used to obtain the correct strata and tests and so structural terms should 
never be dropped. Model selection for the explanatory component can proceed based on 
Type III SS, respecting marginality, as these allow us to start with the full model and to drop 
terms progressively. This process was described in Section 8.3 for an orthogonal three-way 
crossed structure. In that orthogonal case, the Type I and Type III SS are equivalent, and all 
tests could be obtained from a single ANOVA table. For non-orthogonal structures, the pro-
cedure is somewhat more complex. At each step, we use Type III SS to test all model terms 
that are not marginal to other terms still present in the model, i.e. only terms that are not 
contained within another term. For a fully crossed model, this means that, as a first step, 
we can test only the highest-order interaction. This process was illustrated in Figure 8.4. 
At each step, if any of the tested terms is not significant, then the least significant (largest 
observed significance level) can be dropped from the model. As each term is dropped, the 
model is refitted, and the process continues until no further terms can be dropped.

Because this process becomes more complex as the number of factors increases, some-
times automatic model selection procedures, such as stepwise selection, are advocated. 
These methods are discussed in detail in Section 14.9.1 in the context of regression models 
with quantitative explanatory variables and in Section 15.6 for models with factors. Here, 
we merely note that these methods must respect marginality to be valid, and that the pro-
cedure described above is equivalent to backward elimination. Forward selection is imple-
mented by addition of terms based on the incremental sums of squares, again respecting 
marginality, and this method may be inadvisable if interactions are present in the absence 
of main effects, as the procedure will then stop too soon. In practice, the stepwise selection 
algorithms implemented in statistical software do not usually respect marginality, and so 
some intervention will often be required.

11.2.5 Evaluating the Response to Treatments: Predictions from the Fitted Model

Recall that prediction is the use of the fitted model to estimate functions of the explanatory 
variable(s). For example, we might want to predict the population mean for a given experi-
mental treatment. In Section 8.2.4, for orthogonal structures, we used observed means to 
predict the effect of one factor whilst averaging across levels of other factors in the model. 
For a non-orthogonal structure this approach is not usually efficient, and is not possible 
when some treatment combinations are missing. A more general approach is therefore 
required, which also gives us the opportunity to consider other types of model predictions.

All predictions are based on the final fitted model. As we have already seen in Section 
11.2.1, once a model has been selected, the predicted value for any treatment combina-
tion is equal to its fitted value based on this model. The full set of model predictions can 
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be  presented in a multi-way table classified by the treatment factors. To produce predic-
tions for individual factors, or combinations of factors, we can take marginal means of this 
multi-way table. As in Chapter 8, we take account of the form of the final model: where 
significant interactions are present, we usually make predictions for combinations of fac-
tors rather than individual factors.

EXAMPLE 11.2F: GENETICS OF ROOT GROWTH

In Example 11.2E, the interaction term was not quite significant for αs = 0.05 (P = 0.053), 
and the interaction mean square was much smaller than those for main effects, and 
so we decide to omit the interaction from the model. The explanatory structure of the 
selected model thus takes the form: [1] + Female + Male. Table 11.15 contains the predic-
tions from this model for offspring of all possible crosses, formed as

 
ˆ ˆ ˆ ˆ ,µ µ η ζrs r s= + +11  

using the estimates shown in column 3 of Table 11.5. Because the interaction term has 
been omitted from the final fitted model, the predictions are not equal to the observed 
treatment means listed in Table 11.7, although the differences are small since the inter-
action effects were also small. The precision of the predictions, represented by their 
standard errors, reflects the amount of information available for the individual treat-
ment combinations.

Figure 11.2 plots these predictions, joining points by lines to make the pattern clear. In 
this additive model the lines are parallel, demonstrating that the expected difference in 
root growth between the two male parents is the same for each female parent. We can 
therefore simplify our summary of the model by taking marginal means of the predic-
tions with respect to each factor separately; these predictions are also listed in Table 
11.15. For example, the marginal predictions for females F1 and F3 show that offspring of 
female F3 tend to have on average 9.9 mm less root growth than offspring of female F1.

As well as using predictions to summarize the fitted model, we can also use them to 
estimate the expected outcome for specific scenarios. In this case, we might take mar-
ginal means even when interactions are present, and we might also use weights when 
taking marginal means. For example, consider an experiment done to evaluate the yield 
potential of several varieties (factor Variety) in several regions of a country (factor Region), 
with the aim of predicting potential yields under various scenarios of variety alloca-
tion. The experimental results can be summarized by use of the explanatory component 
[1] + Variety*Region. From the fitted model, we can produce a two-way table of predictions 

TABLE 11.15

Predictions with Standard Errors (SE) and Replication (nrs) from Explanatory Component 
[1] + Male + Female for the Root Growth Experiment (Example 11.2F)

Male M1 Male M2 Margin

Female Prediction SE n1s Prediction SE n2s Prediction SE n•s

F1 85.1 0.81 6 80.3 1.03 2 82.7 0.81 8
F2 81.1 1.00 3 76.3 1.00 3 78.7 0.90 6
F3 75.2 1.08 2 70.4 0.94 4 72.8 0.91 6
F4 84.0 0.91 5 79.2 1.17 1 81.6 0.94 6
F5 77.7 1.12 3 72.9 1.29 1 75.3 1.12 4
Margin 80.6 0.53 19 75.8 0.70 11 78.2 0.43 30
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for the yield of each variety in each region. If we wish to compare expected regional yields, 
then we need somehow to form averages of the predicted means across the varieties within 
each region. If we simply take marginal means of the two-way table, then we are taking 
averages by using equal weights for each variety in each region. This may be unrealistic 
if the area suitable for each variety varies across regions. Therefore, we could use weights 
based on the expected area of each variety grown within each region, allowing this to 
vary across regions. Many different weighting schemes are possible, but the weights used 
should be appropriate to the type of prediction desired.

The process is further complicated if some of the predictions for individual treatment 
combinations cannot be estimated. This can happen when interactions are significant and 
so retained in the model but some of the corresponding treatment combinations are absent, 
for example if some varieties are not grown in some of the regions. In this case, it is not 
possible to obtain a reliable prediction for the missing variety × region combinations and 
so the multi-way table of predictions contains missing values. One can obtain marginal 
means by assigning zero weight to these missing combinations, but this action obviously 
affects both the composition and interpretation of the resulting predictions. Some thought 
is required to form appropriate predictions in this situation and some of these issues are 
discussed by Lane and Nelder (1982).

Any of the predictions described above can be written as a linear combination of the 
model parameters. Some algorithms produce predictions that are formulated as marginal 
means of the multi-way table of predictions classified by all factors in the model. Other 
algorithms require direct specification of the coefficients in the required linear combina-
tion; many statistical packages allow specification in either form.

11.3 Designs with Planned Non-Orthogonality

The previous sections have considered non-orthogonality between treatment factors and 
the problems that this can cause. Non-orthogonality can also occur between blocking and 
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FIGURE 11.2
Predicted root length (mm) for offspring of each cross of two male (⚬ M1, ⦁ M2) and five female (F1–F5) parents 
from explanatory component [1] + Male + Female (Example 11.2F).
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treatment factors and this again complicates the statistical analysis. Many of the designs 
we have considered so far avoid these complications by ensuring that block factors are 
orthogonal to treatment factors. For example, in the RCBD, LS and SP designs, the number 
of units per block is equal to the number of treatments, so that each treatment occurs once 
in each block and therefore, using the criteria of Section 11.1, the block and treatment fac-
tors are orthogonal. We have analysed these designs using multi-stratum ANOVA. When 
blocks and treatments are non-orthogonal, the multi-stratum ANOVA can be sensibly 
constructed only if the design is balanced. Recall that a design is called balanced if all 
treatment comparisons (differences) are estimated with the same precision (Section 3.2). 
Orthogonal designs with equal replication are balanced, because all treatments occur once 
in each block and thus all comparisons have the same precision, i.e. equal SEDs. The BIBD 
(see Section 9.3) is an example of a design with a non-orthogonal structure between block-
ing and treatment factors, as it uses blocks with fewer experimental units than the num-
ber of treatments. This design creates balance by ensuring that, when considered across 
the whole experiment, each pair of treatments occurs together equally often within the 
same blocks. Moreover, a certain proportion of the information on treatment differences 
can be obtained from intra-block comparisons, with the remainder being obtained from 
inter-block comparisons, and these proportions are the same for any treatment differ-
ence. This decomposition of the information on treatments can be summarized in a multi-
stratum ANOVA table, as described in Section 9.3. The same principle can be extended to 
analyse partially balanced incomplete block designs (Section 9.3.3) within the framework 
of multi-stratum ANOVA. However, for a given block size, obtaining balanced (or par-
tially balanced) incomplete block designs becomes more challenging as the number of 
experimental treatments increases. This is particularly relevant with factorial structures, 
because of the large number of treatment combinations that may be generated, and there 
are two classes of design that exploit planned non-orthogonality to reduce the resources 
required. Fractional factorial designs (Section 11.3.1) use a carefully chosen subset of the 
full set of treatment combinations to provide information about main effects and low-
order interactions within a reduced number of experimental units, often with low levels of 
replication. Factorial designs with confounding enable the efficient allocation of factorial 
treatment combinations to small blocks (Section 11.3.2).

11.3.1 Fractional Factorial Designs

Fractional Factorial Designs (FFDs) are useful where the number of factorial treatment 
combinations is considered too large for full replication of all combinations, possibly 
because the number of treatment combinations is substantially larger than the number 
of experimental units in the natural blocking structures, and where interest is focussed 
on main effects and low-order interactions. The construction of a FFD involves the a priori 
assumption that some high-order interaction effects will be negligible, so that these can 
be aliased with the main effects and low-order interactions that are of interest. This usu-
ally requires some prior detailed knowledge and experience of the system under study. 
Given the natural block size, the challenge is then to identify an aliasing structure (i.e. the 
sets of high-order interaction effects that will be aliased with each main effect and low-
order interaction effect) that allows all of the main effects and selected low-order interac-
tions to be estimated. The aliasing structure defines the subset of treatment combinations 
to be used in the design. Often replication will still be possible, and the same subset of 
treatments will usually be repeated in each replicate block. Replication provides the main 
basis for the estimation of the background variation, although any estimates of high-order 
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interactions can also be assigned to the estimation of the background variation, given that 
we have assumed that these effects are negligible. Further exploration of FFDs is beyond 
the scope of this book, but details can be found in Mead et al. (2012, Chapter 14).

11.3.2 Factorial Designs with Confounding

Whether the available resources allow replication of the full set of factorial combinations, 
or just some fractional subset (as discussed in Section 11.3.1), the natural block size may 
still be too small to include the full set, or subset, of factorial combinations. In this case, 
the approach of factorial designs with confounding can be used, which divides the full 
set, or subset, of factorial combinations into groups to be assigned to different blocks. As 
with the FFD discussed in Section 11.3.1, we have to make the a priori assumption that 
some high-order interaction effects are negligible, and we can then confound these effects 
with the differences between blocks. This means that it is not possible to identify whether 
block differences are due to structural variability or the confounded high-order interac-
tion effect (assumed to be negligible). In this scenario, it is often necessary to assign some 
high-order interactions (assumed negligible) to provide our estimate of the background 
variation, though replication may also provide some information. The strategy for choos-
ing the terms to be confounded with blocks depends on the relationship between the num-
ber of factorial treatment combinations included and the natural block size, and on the 
comparisons of most interest. Further exploration of this design approach is beyond the 
scope of this book, but, again, further details can be found in Mead et al. (2012, Chapter 14).

11.4 The Consequences of Missing Data

Missing responses occur frequently in scientific studies, sometimes because of an error in 
the experimental procedure so that a planned observation either has not been obtained 
or is identified as unreliable. Occasionally most, or even all, of the observations associ-
ated with one or more treatment combinations are missing. This may happen because of 
experimental error, but is also likely to occur where the treatment is partly or wholly unvi-
able. Diagnostic checks (see Section 5.2) may also lead to observations being identified as 
outliers and omitted from analysis.

If the missing responses can be considered to occur at random independently of the 
treatment group or the (unseen) response, the pattern is known as missing completely at 
random (MCAR, for example, see Carpenter and Kenward, 2013). For example, if machine 
breakdown causes several field plot yields to be lost, this is likely to be unrelated to the 
treatment or the yields. If the missing responses can be considered to occur at random 
within each treatment group but independently of the (unseen) response, the pattern is 
known as missing at random (MAR). For example, suppose a study on seedling vigour 
uses 50 seeds from several varieties and measures biomass after seven days. Germination 
rates vary between varieties but are not thought to be related to seedling vigour. The val-
ues of biomass observed (conditional on germination) can then be considered as missing at 
random. In either of these cases (MCAR or MAR), it is valid to analyse the set of observed 
responses only and ignore the missing observations. If the pattern of missing responses is 
directly related to the (unseen) value of the response, then the pattern is known as miss-
ing not at random (MNAR, or sometimes NMAR). Here, missing responses cannot be 
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ignored without the introduction of potential bias, and so it is not valid to analyse only the 
observed responses. For example, some machines have a lower limit of detection (LOD), 
below which responses may be recorded as missing. Because the allocation as missing is 
related directly to the response (i.e. small responses are more likely to be missing) these 
data are MNAR. Ignoring these low values leads to an over-estimate of the response, and 
this bias is larger for treatment groups with larger proportions of observations below the 
LOD. In this specific case, the missingness is related to censoring, and techniques to adjust 
for censoring are available (see Taylor, 1973). Another example occurs with the detection of 
outliers, which usually depend on both the treatment group and the observed response. 
Observations omitted because they have been identified as an outlier should therefore be 
considered as MNAR. This interpretation highlights the potential dangers associated with 
removal of outliers, and the limitations of any analysis excluding such outliers. In gen-
eral, it is necessary to use more advanced modelling techniques to deal with observations 
MNAR (Carpenter and Kenward, 2013).

As stated above, where observations are MCAR or MAR, the subset of non-missing 
observations can be analysed. But, except in the case of an unstructured data set (e.g. 
CRD) with a single treatment factor, the presence of missing values usually leads to non-
orthogonality, even if the original design was orthogonal. Several algorithms have been 
developed to preserve orthogonality for the case of a few missing values in orthogonal 
designs. One example is the algorithm of Healy and Westmacott (1956), where missing 
observations are estimated (by an iterative procedure) at the value of the treatment group 
mean, which results in a zero residual for the observation. With this algorithm, the TrtSS 
is inflated but the ResSS is not. The ANOVA table is then approximate, and the residual df 
must be adjusted (i.e. reduced) to account for the missing observations. Estimates of treat-
ment effects and means are correct, but their standard errors do not take proper account of 
the missing data and so will be under-estimated. Use of this type of algorithm will often 
be satisfactory when the proportion of missing values is small, but not when a larger pro-
portion of the observations are missing. Beware that some statistical software applies this 
type of algorithm automatically when missing values are present in the data.

EXAMPLE 11.3: ELISA CALIBRATION

A calibration experiment was done to establish a suitable protocol for an experimental 
procedure. Three methods of preparation (factor Prep) were tested in combination with 
four different initial concentrations (factor Conc), with two replicates of each combina-
tion. The solutions were applied in randomized order to an ELISA plate and processed. 
The measured absorbances (variate Absorbance) are listed in Table 11.16 and stored in 
file calibrate.dat.

This is a CRD so there is no structural component. The appropriate explanatory com-
ponent is crossed, i.e. [1] + Prep*Conc, with specific interest in the interaction term: if 
this is large, then the preparation method has a differential effect on the response that 
depends on the concentration. The readings were transformed to logarithms before 
analysis. One reading (unit 9) was deemed invalid because of suspected contamination 
and set missing. ANOVA tables obtained with either the Healy–Westmacott algorithm 
or with missing responses ignored are in Table 11.17 and, in this case, the differences 
between the two analyses are small.

The Healy–Westmacott algorithm preserves the orthogonal structure, and so the 
ANOVA table is invariant to the order of the terms. This is not the case when missing 
values are omitted, but the degree of non-orthogonality for only one missing value is 
small, and hence the alternative sequential ANOVA table obtained by adding the factors 
in the other order is very similar to that shown.
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Later, another five observations (units 4, 11, 15, 17 and 20, all from different treat-
ments) were identified as having been subject to contamination and so the analysis was 
rerun with these observations also set missing. Two sequential ANOVA tables for the 
full model [1] + Prep*Conc are in Table 11.18.

Both ANOVA tables have the same (correct) estimate of background variation derived 
from the ResMS. But the inflated interaction sum of squares in the approximate (Healy–
Westmacott) ANOVA table suggest that there is strong evidence of an interaction, 

TABLE 11.16

Absorbances (Abs) from the ELISA Calibration Study with Four Concentrations of Substrate (Conc) 
and Three Preparation Methods (Prep) (Example 11.3 and File calibrate.dat)

Unit Prep Conc Abs Unit Prep Conc Abs Unit Prep Conc Abs

1 1 3 0.482 9 2 3 – 17 3 4 0.056
2 1 1 0.783 10 1 3 0.431 18 2 4 0.073
3 2 1 1.014 11 3 1 1.001 19 3 2 0.808
4 2 1 1.038 12 3 4 0.048 20 3 2 0.888
5 1 4 0.092 13 1 4 0.130 21 1 2 0.780
6 3 1 0.784 14 2 2 0.707 22 1 2 0.759
7 3 3 0.327 15 1 1 0.766 23 3 3 0.364
8 2 2 0.745 16 2 3 0.412 24 2 4 0.070

Source: Data from Rothamsted Research.

TABLE 11.17

Sequential ANOVA Table for the ELISA Calibration Study with One Missing Observation Using 
Either the Healy–Westmacott Algorithm or Ignoring the Missing Responses (Example 11.3)

Healy–Westmacott Ignoring Missing Responses

Source df SS MS VR P SS MS VR P

+ Prep 2 0.161 0.080 7.30 0.010 0.159 0.079 7.21 0.010
+ Conc 3 23.512 7.837 711.90 < 0.001 23.506 7.835 711.74 < 0.001
+ Prep.Conc 6 0.583 0.097 8.83 0.001 0.583 0.097 8.82 0.001
Residual 11 0.121 0.011 0.121 0.011
Total 22 24.369 24.369

Note: df = incremental df, SS = incremental sum of squares, MS = mean square, VR = variance ratio, P = observed 
significance level.

TABLE 11.18

Sequential ANOVA Table for the ELISA Calibration Study with Six Missing Observations Using 
Either the Healy–Westmacott Algorithm or Ignoring the Missing Responses (Example 11.3)

Healy–Westmacott Ignoring Missing Responses

Source df SS MS VR P SS MS VR P

+ Prep 2 0.290 0.145 11.69 0.009 0.112 0.056 4.52 0.064

+ Conc 3 23.465 7.822 630.83 < 0.001 16.818 5.606 452.13 < 0.001
+ Prep.Conc 6 0.568 0.095 7.64 0.013 0.367 0.061 4.94 0.037
Residual 6 0.074 0.012 0.074 0.012
Total 17 17.371 17.371

Note: df = incremental df, SS = incremental sum of squares, MS = mean square, VR = variance ratio, P = observed 
significance level.
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whereas the exact ANOVA table (ignoring the missing responses) has a larger observed 
significance level, although still statistically significant at the 5% level. This demonstrates 
the possible inflation of significance under the Healy–Westmacott algorithm as the num-
ber of missing values increases. Again, as the Healy–Westmacott analysis preserves the 
orthogonal structure, its ANOVA table is invariant to the order of fitting. This is not the 
case when the missing values are omitted, and the sequential ANOVA table obtained 
by fitting factor Conc first is now quite different (not shown) although the same sum of 
squares and observed significance level is obtained for the interaction term.

The fitted model (with the six disputed observations omitted) is shown on the log 
scale and back-transformed in Figure 11.3. The prediction SEs on the log scale are 0.079 
for treatment combinations with two observations and 0.111 for treatment combinations 
with one observation, and the SEDs range from 0.111 to 0.157. The absorbances decrease 
across the concentrations, but it appears that preparation methods 1 and 3 show no dif-
ference in response between the first two concentrations, whereas method 2 shows a 
consistent decrease in absorbance across the full set.

11.5 Incorporating the Effects of Unplanned Factors

Another frequent cause of non-orthogonality is the occurrence of unplanned events 
within a designed experiment or observational study. For example, if pigeons graze a 
field experiment unevenly, then we can classify plots as wholly, partially or not grazed to 
quantify the damage done and then incorporate this new factor into the model to account 
for the effect of grazing on yield. Because the presence of such variables is (by definition) 
unplanned, they usually result in a non-orthogonal structure. For example, pigeons are 
unlikely to distribute their grazing evenly across treatments, and so the grazing factor 
is likely to be non-orthogonal to the treatment factor(s). We use the term extraneous for 
variables that are unrelated to the original design. In this section, we consider only extra-
neous variables that are qualitative (i.e. factors); quantitative extraneous variables (i.e. 
variates) are dealt with by a technique called analysis of covariance, which is described 
in Section 15.5.
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Predicted absorbance (a) on log scale and (b) back-transformed for four relative concentrations and three meth-
ods of preparation (⚬ 1, ⦁ 2, ⦁ 3) (Example 11.3).
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Usually, the aim of analysis is to investigate whether treatments differ after the extrane-
ous factors have been taken into account, and hence these factors should be added into the 
explanatory component before treatment terms. This leads to adjusted estimates of treat-
ment effects, with the extent of the adjustment depending on the degree of non-orthog-
onality between the treatment and extraneous factors. The adjusted treatment effects 
should be more robust after the extraneous factors have been eliminated (corrected for), 
and including the extraneous factors usually reduces the estimate of background varia-
tion, and leads to more precise estimates and more sensitive tests.

It can also be useful to investigate whether there is any evidence of an interaction 
between the extraneous and treatment factors, but there may be practical difficulties in 
doing so. On the one hand, if only a small proportion of the full set of treatment × extrane-
ous factor combinations is observed, evaluation of their interaction is based on a small 
amount of information and may be unreliable. On the other, if all of the combinations are 
present but unreplicated then fitting this interaction is uninformative (as each combina-
tion will be fitted exactly) and may leave insufficient ResDF for a reliable test. However, it 
is important to understand that omitting this interaction requires an implicit assumption 
that the interaction is zero.

EXAMPLE 11.4: PLANT HEIGHTS IN GLASSHOUSE

A glasshouse experiment was done to investigate the effect of the dose of a growth regu-
lator on plant height under controlled conditions. Six increasing doses (factor Dose) were 
each applied to four replicate plants in separate pots that were arranged according to a 
CRD in a grid layout consisting of four rows (factor Row) and six columns (factor Column) 
on a bench. Plant heights (cm, variate Height) were measured six weeks later. The data are 
listed in the experimental layout in Table 11.19 and are held in file heights.dat.

Preliminary analysis of the plant heights, using explanatory component [1] + Dose, 
revealed a trend in the plot of standardized residuals against fitted values (see Figure 
11.4a). Further investigation showed that this was due to a strong pattern of increasing 
residual value across columns (see Figure 11.4b).

The glasshouse manager suggested that this pattern was real, as it could be explained 
by differential shading on one end of the bench. Columns of the design were therefore 
incorporated as an extraneous factor (called Column) in the analysis, with explanatory 
component [1] + Column + Dose. Table 11.20 shows the ANOVA tables for the mod-
els excluding and including this extraneous factor. There was strong evidence of dif-
ferences between doses from the original model that ignored columns (F5,18 = 4.03). 
However, the variance ratio for the term Dose increased greatly once the effect of col-
umns was eliminated (F5,13 = 18.83), as the shading effect was partly masking treatment 
differences. The predicted means for each dose before and after correction for column 
effects are shown with 95% CIs in Figure 11.5. When the column effects are ignored 

TABLE 11.19

Layout and Heights (cm) for Plants in Pots in a Glasshouse Experiment (Example 11.4 and File 
heights.dat)

Column of Layout

1 2 3 4 5 6

Row of 
Layout

1 (1) 58.4 (3) 56.8 (4) 61.8 (4) 68.2 (5) 61.6 (3) 70.3
2 (3) 55.5 (4) 57.2 (6) 50.8 (6) 57.4 (1) 70.0 (5) 61.1
3 (6) 49.9 (2) 60.9 (6) 50.7 (1) 71.3 (5) 61.3 (4) 70.0
4 (2) 56.7 (3) 54.5 (2) 61.3 (2) 66.6 (5) 65.8 (1) 69.8

Note: The dose level (1–6) applied to each plant is given within parentheses.



279Dealing with Non-Orthogonality

TABLE 11.20

ANOVA Table for Plant Heights from a Glasshouse Experiment with Treatment Effects (Factor 
Dose) Fitted Either Ignoring or Eliminating the Extraneous Factor Column (Example 11.4)

Ignoring Columns Eliminating Columns

Source df SS MS VR P df SS MS VR P

+ Column — — — — — 5 618.9 123.8 33.49 < 0.001
+ Dose 5 536.1 107.2 4.03 0.012 5 348.1 69.6 18.83 < 0.001
Residual 18 478.8 26.6 13 48.1 3.7

Total 23 1015.0 23 1015.0

Note: SS = sum of squares, MS = mean square, VR = variance ratio, P = observed significance level.
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Predicted plant heights (cm) with 95% CIs (a) ignoring column (SED = 3.65, 18 ResDF) and (b) eliminating col-
umn effects using explanatory component [1] + Column + Dose (min SED = 1.14, max SED = 2.10, 13 ResDF) 
(Example 11.4).

(a) (b)

St
an

da
rd

iz
ed

 re
sid

ua
l

St
an

da
rd

iz
ed

 re
sid

ua
l

2

1

0

–1

–2

Fitted value
52 54 56 58 60 62 64 66 68

Column

–2

1 2 3 4 5 6

–1

0

1

2

FIGURE 11.4
Plots of standardized residuals against (a) fitted values and (b) column positions using explanatory component 
[1] + Dose (Example 11.4).



280 Statistical Methods in Biology

(Figure 11.5a), it appears that only dose 6 restricts height. After adjusting for column 
effects (Figure 11.5b), prediction SEs (and hence CIs) are much smaller, and both doses 5 
and 6 restrict height. The reduction in the estimate for dose 5 is large because this treat-
ment occurred only in columns 5 and 6 on the bench, which had the largest responses. 
Clearly, any future experiment using this bench should use column as a blocking factor 
so that the shading can be accommodated in a more efficient manner and, ideally, as 
orthogonal to treatments.

11.6 Analysis Approaches for Non-Orthogonal Designs

Statistical software often includes several algorithms for the analysis of linear models. For 
example, most packages include algorithms to produce multi-stratum ANOVA or to fit a 
linear regression (Chapters 12 to 15), generalized linear model (GLM; Chapter 18) or linear 
mixed model (LMM; Chapter 16). Different algorithms present estimates in different for-
mats, possibly using different parameterizations. But it is important to understand that, 
when they can specify the same model, two different algorithms using the same method 
will produce equivalent results. Alternative algorithms are typically provided in statistical 
software because different approaches can be used to take advantage of special cases: the 
most general algorithms can be inefficient for simpler models.

The simplest case occurs when a study consists of a set of unstructured units, so that the 
structural component of the model is not required. Any general algorithm for analysis of 
linear models should be able to process a study of this form. This is not the case when both 
explanatory and structural components are present, which ideally requires an algorithm 
that recognizes the separate roles of the two components of the model.

The provision of commands to produce a multi-stratum ANOVA is probably the most 
important requirement of software to analyse designed experiments with blocking or 
other structure. Unfortunately, the multi-stratum ANOVA can be defined only for orthog-
onal block structures, and where the treatment structure satisfies certain conditions of 
balance. In general terms, a block structure is orthogonal if all units at a given level of 
the hierarchy each contain the same number of units from a lower level. For example, in a 
RCBD, all blocks contain the same number of plots; hence, this is an orthogonal blocking 
structure. Similarly, the BIBD, LS and SP designs described in Chapter 9 all have orthogo-
nal blocking structures (although the block and treatment structures are non-orthogonal 
for the BIBD, see Section 9.3).

For non-orthogonal block structures or unbalanced designs with a structural compo-
nent, a more general procedure is required. Algorithms for linear mixed models (LMMs) 
can be used for this purpose, and these methods are introduced in Chapter 16. If facili-
ties for LMMs are not available, then the explanatory and structural components must 
be combined into a single model. If most treatment comparisons are made within blocks, 
then it is often possible to get a good analysis by specification of the model terms in an 
order that mimics the multi-stratum analysis. However, this approach requires a good 
understanding of the experimental structure and loses information on treatment com-
parisons made between blocks; this strategy is known as the intra-block analysis. In the 
remainder of this section, we focus on strategies to produce an intra-block analysis that 
gives a reasonable approximation to the full analysis using both the explanatory and 
structural components.
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11.6.1 A Simple Approach: The Intra-Block Analysis

In the simplest case, in which treatment effects are estimated within the lowest stratum, an 
intra-block analysis can be obtained by specification of blocking or other structural factors 
(and any extraneous factors) before treatment terms in the explanatory component. The 
structural term corresponding to the deviations (lowest stratum) should always be omit-
ted in this context. For example, in a BIBD, the intra-block analysis can be obtained from

Explanatory component: [1] + Blocks + Treatments

The fitted model provides estimates of treatment effects adjusted for (eliminating) block 
effects. When a treatment term has deliberately been completely confounded with block-
ing or structure at some level, that treatment term should be fitted before the confounded 
structural term. For example, for the SP design presented in Example 9.2, the irrigation 
effects are confounded with whole plots within blocks, and so the combined explanatory 
component would be written as

Explanatory component: [1] + Block + Irrigation + Block.WholePlot + Species
     + Irrigation.Species

This results in the same mean squares as in the multi-stratum ANOVA, but some care is 
required to obtain the correct variance ratios. The Irrigation mean square must be divided 
by the Block.WholePlot mean square, but the Species and Irrigation.Species mean 
squares must be divided by the ResMS. Following these principles, one can reconstruct the 
multi-stratum ANOVA table. Unfortunately, the confounding between the Irrigation and 
Block.WholePlot terms induces dependencies that make the parameterization, and hence 
the estimated Irrigation effects, difficult to interpret. For the same reason, it is difficult to 
accommodate pseudo-replication within the explanatory component (although this can be 
avoided by analysis of means of the pseudo-replicates in cases of equal replication).

In general, the intra-block analysis with a single model formula is sensible only when 
most of the treatment differences are estimated at the lowest level of the structure. In other 
cases, use of LMMs (see Chapter 16) is preferable. An example of intra-block analysis for a 
design with non-orthogonal blocks and treatments is presented below.

EXAMPLE 11.5: EFFECT OF TYPE AND SIZE OF CUTTING ON WILLOW YIELD

A field experiment was designed to investigate whether the type of cutting planted 
affects the subsequent growth of willows. Cuttings of five different types (A–E, factor 
Type) were to be planted, and growth parameters would be measured over the follow-
ing seasons, including yield at the end of the first year. At planting time, it was realized 
that the cuttings to be planted varied greatly in size, and that this might also have an 
effect on subsequent growth. Two options were considered here. Cutting size could 
be confounded with blocks, so that each block contained cuttings of the one size only. 
Alternatively, cutting size could be investigated as an extraneous factor, in addition to 
type. The second option was taken, and cuttings were classified as small (S), medium 
(M) or large (L, factor Size). Not all of the type × size combinations were available, and 
the total number of plots was fixed at 25. The design was based on a five-block RCBD 
with respect to cutting type, and the different sizes were allocated in as balanced a way 
as possible across blocks (factor Block) and cutting types. The yield (variate Yield) with 
allocation of size and type combinations to the five blocks is shown in Table 11.21 and 
stored in file  cuttings.dat.
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Each cutting type appears once in each block, and each size appears at least once in 
each block, although the size × type combinations are unequally replicated, and two 
combinations (S × E and L × B) were not available (Table 11.22).

Since the design is unbalanced, a multi-stratum ANOVA cannot be formed. However, 
the treatment information for the cutting type main effect could be retrieved from 
within-block comparisons (as all types occur once in each block) and so an approximate 
analysis should be acceptable here, as this is the main focus of interest. Block effects 
(factor Block) must be added into the model first, followed by the extraneous factor Size, 
so that cutting size can be eliminated before comparing cutting types (factor Type). As 
a preliminary model, we include the interaction between cutting size and type (term 
Size.Type) to give

Explanatory component: [1] + Block + Size + Type + Size.Type

In the resulting ANOVA table (Table 11.23), there is strong evidence of differences in 
yield between blocks (F4 8 7 385, . ,B =  P = 0.009), and a suggestion of a difference between 

TABLE 11.22

Occurrence of Cutting Type × Size Combinations 
in the Willow Yield Trial (Example 11.5)

Cutting 
Size

Cutting Type

A B C D E Total

S 2 2 1 1 0 6
M 2 3 2 2 3 12
L 1 0 2 2 2 7
Total 5 5 5 5 5 25

TABLE 11.21

Yield after First Year for Willows Grown from Cuttings of Different Types (A–E) and Size (S, M, L) 
in Five Randomized Blocks of Five Plots (Example 11.5 and File cuttings.dat)

Block Plot Type Size Yield Block Plot Type Size Yield

1 1 D M 15.16 4 1 E M 23.84
1 2 E L 18.31 4 2 D L 21.30
1 3 A M 23.94 4 3 B M 24.51
1 4 B S 24.37 4 4 A S 25.77
1 5 C L 12.04 4 5 C M 18.34
2 1 D L 15.30 5 1 A S 23.01
2 2 A L 19.81 5 2 C L 14.74
2 3 E M 16.45 5 3 E M 21.67
2 4 B S 18.45 5 4 D S 17.30
2 5 C M 17.28 5 5 B M 16.63
3 1 B M 24.56
3 2 A M 24.60
3 3 C S 25.11
3 4 D M 22.90
3 5 E L 25.71  



283Dealing with Non-Orthogonality

sizes (F2 8 3 883, . ,S =  P = 0.066), although this term was partially confounded with blocks 
and so may be masked by block differences. There was some evidence of a difference 
between cutting types (F4 8 3 839, . ,T =  P = 0.050). There was no evidence of an interaction 
between cutting size and type (F6 8 0 557, . ,S T. =  P = 0.754) and so this term was dropped 
and the model refitted, with all other terms being retained.

Predictions of yield for different cutting sizes can be calculated from the table of fit-
ted values obtained from explanatory component [1] + Block + Size + Type. This gives 
a three-way table classified by Block, Size and Type, and marginal means can be taken 
for cutting type to give the predictions shown in Figure 11.6a.

Cutting types C and D produced the least yield, with larger yields produced by 
types A and E, and type B intermediate. For comparison, Figure 11.6b shows the pre-
dicted means obtained if the effect of cutting size is ignored, i.e. from explanatory 
component [1] + Block + Type. The two sets of predictions are very similar, partly 
because cutting sizes are reasonably balanced across the different types (so the anal-
ysis is close to orthogonal), and partly because the effects of cutting size are quite 
small. Predictions for cutting size are listed in Table 11.24, and it appears that first 
year yield is somewhat greater for smaller cuttings, with medium and large cuttings 
producing similar yield.

TABLE 11.23

Sequential ANOVA Table for the Willow Yield Trial (Example 11.5)

Change df Sum of Squares Mean Square Variance Ratio P

+ Block 4 186.4298 46.6074 FB = 7.385 0.009

+ Size 2 49.0181 24.5090 FS = 3.883 0.066

+ Type 4 96.9158 24.2290 FT = 3.839 0.050

+ Size.Type 6 21.0791 3.5132 FS.T = 0.557 0.754
Residual 8 50.4896 6.3112
Total 24 403.9324
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FIGURE 11.6
Predicted yields with 95% CIs (a) eliminating cutting size using explanatory component [1] + Block + Size + Type 
(min SED = 1.449, max SED = 1.538, 14 ResDF) and (b) ignoring cutting size (SED = 1.565, 16 ResDF) (Example 11.5).
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EXERCISES

 11.1 Thirty-two moths were assigned at random to separate flight mills, and the 
distance (m) flown by each moth during one night was measured electroni-
cally. The species (A, B or C) and sex (F, M) of each moth was recorded. File 
flight.dat contains the mill number (Mill), with the species, sex and distance 
flown (factors Sex, Species, variate Distance) for the moth in each mill. The 
aim of the statistical analysis is to investigate whether there are any consis-
tent differences among species or between sexes, and whether any difference 
between sexes is consistent across species.

 a. Write down an explanatory model for this experiment in terms of the two 
explanatory factors (Sex and Species). Consider the replication of each of 
the factor combinations and decide whether this structure is orthogonal.

 b. Fit your model with the log10-transformed distances as your response vari-
able. Use two different orders for adding terms into the model and explain 
the differences in the corresponding sequential ANOVA tables.

 c. Identify the best predictive model for these data. Interpret your model and 
produce predictions with SE for the distance flown overnight by each sex 
and species of moth.

 11.2 Weeds within a crop can greatly decrease yield and there is interest in the 
impact of different weed species, both alone and in combination. A RCBD with 
two blocks of 30 plots was set up to investigate the effect of different densities 
of barley and chickweed on the yield of a linseed crop. There were 29 treat-
ments in total: a factorial combination of five densities of barley with five den-
sities of chickweed (25 treatments), with duplicates of the control (no weeds), 
plus two higher densities of each of the individual species (four treatments). 
File density.dat holds the unit numbers (ID), structural factors (Block, Plot), 
the applied seed rate of barley and chickweed (variates B, C) and the resulting 
grain yield (variate Grain).*

   Create factor versions of the weed density variates. Write down an explana-
tory model in terms of these factors, identify the structural component of the 
model for this trial, and fit the model using both components (the intra-block 
analysis). Is there any evidence of an interaction between the weed species? 
Identify the predictive model and write down its form. Produce predictions 
with SE for each combination of weed seed densities present in the trial. (We 
re-visit these data in Exercise 17.9.)

* Data from P. Lutman, Rothamsted Research.

TABLE 11.24

Predicted Yield with SE for Cutting Sizes from Explanatory 
Component [1] + Block + Size + Type (Example 11.5)

Size

Small Medium Large

Prediction 22.394 20.109 19.347
SE 0.9889 0.6667 0.9190

Note: Maximum LSD (5% significance level) = 3.0335.
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 11.3 A glasshouse trial was set up to investigate the profit associated with differ-
ent methods of growing peppers (Mead et al., 2012, Chapter 7). The experiment 
continued over two years, and two blocks of six glasshouse compartments were 
used in each year (24 compartments in total), with one set of conditions applied 
to each compartment. The eight treatments were all combinations of standard 
(0) or enhanced (1) levels of heat, light and CO2. All treatments were tested in the 
first year (four tested twice, four tested once) and the best five were tested again 
in the second year (with one treatment repeated in each block). The unit num-
bers (ID), structural factors (Year, Block, DComp) and treatment factors (Heat, 
Light, CO2) are held in file peppers.dat, with a measure of profit (yield remaining 
after accounting for costs, variate Profit).

   Analyse the profit, taking account of the experimental structure (years and 
blocks), as well as the three treatment factors. Identify a sensible predictive 
model and suggest which combination of the three factors should be used in 
practice to maximize profit. (We re-visit these data in Exercise 16.3.)

 11.4 In Exercises 6.3 and 8.5 you analysed the score of potato scab from a CRD. 
Repeat your analysis and plot the residuals in field layout (as defined by the 
factors Row and Col provided in file scab.dat). Identify any clear spatial trend 
and add suitable extraneous factors into the model to account for this. Compare 
your new model with the original, and comment on whether the increased 
complexity is justified.

 11.5 A NIRS machine was used to measure the protein content of 35 accessions of 
wheat. Sets of six samples were analysed together in each run of the machine 
and the measurements were made in seven pairs of replicate runs. Each pair of 
runs used subsamples of seed from the same five accessions with a standard 
control sample (used in all runs). File nirs.dat holds the unit numbers (ID), 
structural factors (Pair, Rep), information on lines (factors Type, Accession) 
and protein measurements (variate Protein). Write down the explanatory and 
structural components of the model for this trial, and fit the model using both 
components (the intra-block analysis). Is there evidence of variation in pro-
tein content between the 35 accessions? What are the issues with the design of 
this experiment? Can you suggest a better design? (We re-visit these data in 
Exercise 16.3.)

 11.6 Five pruning treatments were tested on apple trees (Pearce, 1965, Section 6.2). A 
balanced incomplete block design was used to allocate the five treatments (a–e) 
to four branches on each of 15 trees (60 branches in total). One of the outcomes 
measured was the length of shoots from the middle third of each branch, but 
this was only measured for treatments a, b and d. The shoot lengths (vari-
ate Length) are in file shoot.dat with the unit numbers (ID), structural factors 
(Tree, Branch) and treatment factor (Treatment). Analyse these data, account-
ing for possible differences between trees as well as treatments. Can you iden-
tify which treatment produces the longest shoots? (We re-visit these data in 
Exercise 16.3.)

 11.7 An experiment using a Latin square design was intended to compare the 
yield of six varieties of turnip, but three plots were damaged by vandals 
before harvest and their yield could not be obtained (Hand et al., 1994, Data 
Set 78). The yield (variate FreshWt, fresh weight in pounds per plot), plot num-
bers (Plot) and the design (Row, Column) and treatment (Variety) factors are 
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held in file vandal.dat. Write down a model for this trial that recognizes the 
structure of the Latin square design. Compare analysis of the yield by multi-
stratum ANOVA with  Healy–Westmacott estimation of missing values to an 
intra-block analysis excluding the missing plots. Do the two methods give the 
same conclusions in terms of variety comparisons?  (We re-visit these data in 
Exercise 16.3.)
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12
Models for a Single Variate: Simple Linear 
Regression

In Chapter 1, we described experimental and observational studies as scientific enquiries 
in which an outcome (or response) is investigated with the objective of understanding 
how it is affected by the experimental conditions. In this context, statistical models are 
used to quantify relationships between the response variable and one or more explana-
tory variable(s) that define the conditions. Two simple examples were illustrated in Section 
1.3, where the single explanatory variable corresponded to either a qualitative variable (or 
factor, Example 1.1) or a quantitative variable (or variate, Example 1.2). In Chapter 4, we 
presented details of the analysis for data classified by a single explanatory factor, includ-
ing the form of the underlying model, parameter estimation and statistical inference. This 
was mainly placed in the context of designed experiments. We now focus on the analysis 
of data where the single explanatory variable is quantitative, or a variate. This is usually 
known as regression analysis. However, the situation with either a qualitative or a quan-
titative explanatory variable results in the same basic form of linear model (Section 1.4). 
Both consist of a systematic component and a random component, with analysis based on 
the same underlying statistical theory to estimate parameters and predict from the fitted 
model. In this chapter, we are concerned only with models including a single explana-
tory variate. More broadly, regression analysis refers to the more general approach with 
any number of quantitative (and qualitative) explanatory variables. In Chapter 14, we 
shall extend the model to incorporate two or more explanatory variates (multiple regres-
sion), and in Chapter 15, we consider models that also include qualitative explanatory 
variables (factors), sometimes called regression with groups. In Chapter 16, we use linear 
mixed models to take account of the structure in the observations, including blocking 
and pseudo-replication.

Here, we begin by presenting the simple linear regression (SLR) model (Section 12.1) 
followed by parameter estimation (Section 12.2). ANOVA assesses whether the variation 
in the response that is associated with the explanatory variate is large in comparison to 
the background variation (Section 12.3), and also provides an estimate of this background 
variation used for inference on the model parameters (Section 12.4). A primary purpose of 
regression analysis is prediction of the response at given values of the explanatory vari-
ate (Section 12.5). Goodness-of-fit statistics can be used to assess the quality of the fitted 
model or to compare it against other potential models (Section 12.6). Uncertainty in the 
explanatory variable changes the interpretation of the model, and we discuss this issue in 
Section 12.7. We then show how to use replication to formally evaluate the fit of the model 
(Section 12.8). Finally, we describe two simple variations on the basic SLR model – the use 
of standardized explanatory variates and regression through the origin – and explain the 
process of inverse prediction (Section 12.9).
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12.1 Defining the Model

The simplest model that can be used to describe the relationship between a response vari-
able and a quantitative explanatory variable (or variate) takes the form of a straight line 
passing through the scatter of points arising when values of the response variable are 
plotted against the corresponding values of the explanatory variate. This type of model is 
known as a simple linear regression (SLR) and it can be represented mathematically as

 y x ei i i= + +α β ,  (12.1)

where yi and xi are the values of the response and the explanatory variates, respectively, 
for the ith observation. The quantity ei represents a random deviation for the ith observa-
tion, and the subscript i ranges from 1 to N, where N is the total number of observations. 
The model is a straight line defined in terms of the model parameters α and β, as shown in 
Figure 12.1. Parameter α (often called the intercept or constant parameter) corresponds to 
the point at which the line intercepts the y-axis, and is the value of the straight line when 
the explanatory variate is equal to 0. Parameter β, the coefficient of the explanatory variate, 
is the slope (gradient) of the line, i.e. the change in the response produced by a unit change 
in the explanatory variate. The SLR is called simple because it contains a single explanatory 
variable and linear because the response is expressed in a linear form, i.e. as a sum of terms 
that each consists of a coefficient multiplied by an explanatory variable.

The deviation ei represents the random stochastic or probabilistic element of the model, 
sometimes called the random noise or residual error. It can be visualized as the verti-
cal displacement of the ith observation from the line (see Figure 12.1). In Section 4.1, we 
described the deviations as representing background variation about group means. In the 
context of regression analysis, background variation reflects the discrepancy in response 
between measurements from two units with the same value of the explanatory variate. 
However, here, we are fitting a structured model, in the form of a straight line, and if the 
pattern in the observations does not match the form of the model, then the deviations also 
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FIGURE 12.1
Representation of a SLR model, showing the line (—), with one observation (⦁) and its predicted value (⚬).
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encompass the systematic difference between that pattern and the straight line. This is 
undesirable, as the model then does not capture the trend and the deviations no longer 
represent purely random variation. Therefore, you should always view the data before 
fitting the model, for example by using a scatter plot, to check that the underlying relation-
ship could plausibly be a straight line. We consider the implications of this below and give 
methods for graphically examining the model fit in Chapter 13.

For the SLR model in Equation 12.1, the systematic component of the model is the straight 
line, α + βxi, and the random component is the deviation, ei. Recall that in Chapter 4, we 
introduced a symbolic notation to represent linear models. This notation specifies the 
response variable and the systematic component of the model in terms of the explanatory 
variables. This reflects the form of model specification required for statistical software, 
although the details vary according to the package used. For SLR, the straight line rela-
tionship is the explanatory component of the model, and we write the model in symbolic 
form as

Response variable: y
Explanatory component: [1] + x

where the variate y contains the observed responses. The term [1] denotes a variate that 
takes value 1 everywhere, and is associated with the intercept parameter, α. The variate 
x contains the values of the explanatory variable and is associated with the slope param-
eter β.

In the context of designed experiments, we partitioned the systematic component into 
explanatory terms (associated with treatments applied) and structural terms (associated 
with the experimental structure, such as blocking or pseudo-replication). For regression 
analysis, the same partition applies, although the structural component can be omitted 
when no structure is present, as may be the case for observational studies. However, if the 
units are structured, then it is important that the structure is incorporated into the model. 
This extension of the model is not usually provided within software designed for regres-
sion analysis and we discuss this further in Section 15.3 and Chapter 16.

EXAMPLE 12.1A: DIPLOID WHEAT

Several morphological traits were measured for 190 seeds selected at random from a 
line of diploid wheat, Triticum monococcum, with the aim of identifying variables asso-
ciated with differences in seed weight (Jing et al., 2007; Wheat Genetic Improvement 
Network (WGIN): www.wgin.org.uk). The variables measured were weight (mg), diam-
eter (mm), length (mm), moisture content (%) and endosperm hardness (single-kernel 
characterization system index value). The data are in file triticum.dat which contains 
a variate DSeed to identify each seed in addition to variates Weight, Diameter, Length, 
Moisture and Hardness. A subset of the data is in Table 12.1 and the full set is given in 
Table A.1.

Seed size, as measured by length, is expected to be a major contributor to differences 
in seed weight, and so, we start by examining the relationship between seed weight and 
seed length, using the scatter plot presented in Figure 12.2.

The relationship between the two variates appears approximately linear; so, it makes 
sense to fit a SLR that relates the weight of the ith seed, Weighti, to the length of the ith 
seed, Lengthi, to investigate this relationship further. The statistical model is

 Weight Length ei i i= + +α β  ,
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where ei represents the deviation in the weight of the ith seed from the straight line 
relationship and i runs from 1 to 190 to represent the 190 observations. Parameter α rep-
resents the intercept, the expected seed weight for zero seed length. From simple bio-
logical arguments, we would expect the intercept to be zero, but this ignores aspects of 
the statistical modelling process that we discuss further in Example 12.1B. This model 
is written in symbolic form as

Response variable: Weight
Explanatory component: [1] + Length

where the variate Weight contains the observed seed weights and variate Length con-
tains the corresponding seed lengths.

TABLE 12.1

First Four and Last Four Observations of Seeds of Diploid Wheat from a Study to Identify 
Variables Associated with Variation in Seed Weight (Example 12.1A, Full Data in File 
triticum.dat and Table A.1)

Seed Weight Length Diameter Moisture Hardness

1 30.15 3.27 2.09 10.27 −16.63

2 35.51 3.65 2.34 10.61 −8.27

3 29.16 3.36 2.15 10.27 −21.45

4 16.82 2.77 1.79 11.05 4.13

∙ ∙ ∙ ∙ ∙ ∙

187 27.66 3.60 2.31 10.88 −22.68

188 26.54 3.58 2.29 10.49 3.30

189 30.90 3.17 2.03 10.37 −17.83

190 18.94 2.45 1.62 10.08 −7.06

Source: Data from H.-C. Jing and K. Hammond-Kosack, Rothamsted Research.
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FIGURE 12.2
Scatter plot of weight (mg) versus length (mm) for 190 diploid wheat seeds (Examples 12.1A and 12.1E).
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To fit the SLR model, some assumptions must be made about the deviations, ei. These 
assumptions apply to any linear model, and so were presented in Section 4.1. Nevertheless, 
we repeat them here for completeness.

Assumption 1

 E for    ( ) .e i Ni = = …0 1

The expected value (function E) of each deviation is assumed to be zero. This means that 
the population mean of the deviations is zero, which implies no systematic bias in the 
observations.

Assumption 2

 Var for  ( ) .e i Ni = = …σ2 1

The variances (Var) of the deviations are the same for all units. This is also known as 
homoscedasticity, or homogeneity of variances.

Assumption 3

 Cov for all  and    ( , ) , , .e e i j i j Ni j = ≠ = …0 1

The covariance (Cov) between deviations for two separate observations is zero, i.e. the 
deviations are independent.

Assumption 4

 ei ~ Normal(0, σ2) .

The deviations follow a Normal distribution with mean 0 and variance σ2.

In addition, we make an assumption on the explanatory variables:

Assumption 5

The values of the explanatory variables (factors or variates) are known without error.

Common violations of Assumptions 1 to 4 were described and discussed in Chapter 5. 
Here, we reiterate that Assumption 3 is most often violated when data are collected from 
the same source at different times, and that Assumption 4 is required to make any statisti-
cal inferences valid that rely on the Normal distribution. Assumption 5, which states that 
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the explanatory variable is known or measured without error, is of particular importance 
for regression models. This assumption may be realistic in experiments where levels of 
the explanatory variate are controlled by the experimenter (e.g. fixed amounts of nitrogen 
fertilizer to be applied to field plots). However, in observational studies, values of explana-
tory variates are usually observed rather than under the control of an experimenter, and 
these observations are often prone to error. This does not invalidate the analysis, but it does 
change the interpretation of the fitted model and is discussed further in Section 12.7.

In Chapter 5, we introduced some diagnostic tools that can be used to check the plau-
sibility of assumptions made about the deviations in models with a single qualitative 
explanatory variable. As the same assumptions about the deviations apply here, the same 
tools can be used to check the validity of models with a single quantitative explanatory 
variable (they are also appropriate for more complex regression models). These tools are 
revisited in Chapter 13. These tools use the residuals obtained from fitting the model, 
and for regression models, it is particularly important to use standardized residuals for 
this purpose (see Section 5.1.2). However, the assumption of a structured form for the 
response, here a straight line, means that the form of the model must also be checked. We 
refer to a mismatch between the observed pattern and fitted model as model misspecifi-
cation, and some additional diagnostic tools to deal with such situations are described in 
Chapter 13.

12.2 Estimating the Model Parameters

In Section 4.2, we outlined the principle of least-squares estimation, the method that finds 
the best-fit model by minimizing the sum, across all observations, of the squares of the 
differences between the observed data and the fitted values. This principle can be used for 
any linear model, which includes the estimation of parameters for SLR. For the SLR model, 
the fitted values can be written as

 
ˆ ˆ ˆ .y xi i= +α β  

As stated earlier, the hats () over yi, α and β specify that they are estimates of population 
values for which the true values are not known. The simple residuals (see Section 5.1.1), 
which are estimates of the deviations, ei, are computed as

 
ˆ ˆ ˆ ˆe y y y xi i i i i= − = − +( ) .α β

The quantity minimized to obtain the parameter estimates is the sum of these squared 
residuals, which for the SLR model is

 

ˆ ( ˆ ) ˆ ˆ .e y y y xi

i

N

i i

i

N

i i

i

N
2

1

2

1

2

1= = =
∑ ∑ ∑= − = − +[ ( )]  α β

As in Section 4.2, when minimized, this quantity is known as the residual sum of squares, 
denoted as ResSS. Again, we do not present the mathematical details of the minimization 
process here, but the interested reader can find them in Section C.3.
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We can write estimates of the model parameters, α and β, in terms of sums of squares 
and cross-products of the response and explanatory variates. The sum of squares for 
the response variable is the sum, over all observations, of the squares of the differences 
between the observed responses and their mean, written in mathematical terms as

 
SS  yy i

i

N

y y= −
=
∑ ( ) .2

1

The sum of squares is simply equal to the unbiased sample variance multiplied by the 
degrees of freedom for this variance, N − 1 (see Section 2.1). We denote this sum of squares 
as SSyy, where ‘SS’ denotes a sum of squares and the subscript identifies the relevant variate.

The sum of squares for the explanatory variate takes a similar form: the sum, over all 
observations, of the squares of the differences between the values of the explanatory vari-
ate and their mean, i.e.

 
SS  xx i

i

N

x x= −
=
∑ ( ) .2

1

Again, the sum of squares for the explanatory variate equals its unbiased sample variance 
multiplied by N − 1.

Finally, the sum of cross-products between the response and explanatory variate is 
calculated as the difference between the observed response on each unit and the mean 
response, multiplied by the difference between the value of the explanatory variate on 
that same unit and the mean of the explanatory variate. These quantities are then summed 
over all observed units. This is mathematically written as

 
SS  xy i i

i

N

x x y y= − −
=
∑ ( )( ) .

1

The symbol for the sum of cross-products, SSxy, refers to the two variables used to form it, 
and the sum of cross-products is equal to the unbiased sample covariance between the two 
variates, sxy (Section 2.5), multiplied by N − 1. Note that the sum of cross-products between 
a variate and itself is simply the sum of squares for that variate.

The least-squares estimate of the unknown population slope parameter, β, is equal to the 
sum of cross-products between the response and explanatory variate, divided by the sum 
of squares for the explanatory variate, i.e.

 

ˆ .β =
SS
SS

 xy

xx

The estimate of the unknown population intercept parameter, α, can then be written in 
terms of the estimated slope and the sample means for the response and explanatory vari-
ates, thus

 
ˆ ˆ .α β= −y x  
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It follows directly that the best fitting line passes through both sample means, as when 
x xi = , the fitted value is the mean response, ˆ .y yi =

EXAMPLE 12.1B: DIPLOID WHEAT

We can now calculate parameter estimates for the SLR model for the diploid wheat data, 
which describe the variation in seed weight as a function of the explanatory variable 
seed length.

For these data, the sum of squares for the explanatory variate, seed length, takes 
the value SSxx = 19.2699, and the sum of cross-products between seed weight and seed 
length is SSxy = 330.9297. The mean length is x = 3 295.  mm and the mean weight is 
y = 28 658.  mg. The parameter estimates for the SLR model are therefore

 

ˆ .
.

. ,

ˆ ˆ . .

β

α β

= = =

= − = −

SS
SS

 

(

xy

xx

y x

330 9297
19 2699

17 173

28 658 17 1733 3 295 27 931× = −. . .)  

The fitted model can therefore be written as

 
Weight Lengthi i
 = − +27 931 17 173. . , 

where the hat over the variable name denotes the estimated fitted value. The units of 
the intercept and slope here are mg and mg/mm, respectively, and an increase of 1 mm 
in seed length is expected to produce an increase of 17.17 mg in seed weight. The inter-
cept represents the estimated average weight for seeds of length zero (i.e. −27.93 mg). 
Biologically, this is a startling value for two reasons: we clearly cannot have negative 
seed weights, and we expect a seed with zero length to have zero weight. This means 
we need to check that the model is appropriate for the data, but it does not necessarily 
mean that the model is inappropriate. The fitted model represents the best fitting line 
over the range of observed seed lengths (in this case from 2.45 to 4.13 mm). If this line 
is not representative of the unseen relationship over the range from 0 to 2.45 mm, then 
it is possible for the predicted value of zero length to be inaccurate even if the model 
is a good representation of the observed data. In this example, a length of 0 mm cor-
responds to an extrapolation far outside the range of the observed data. We discuss the 
distinction between interpolation and extrapolation in Section 12.5.

The fitted model is shown in Figure 12.3 together with the observed data (and a 95% 
confidence interval [CI] for the fitted line, explained in Section 12.5).

You should always inspect the behaviour of the fitted model, particularly for more 
extreme values of the explanatory variate. Figure 12.3 suggests some curvature in the 
relationship as all observations are above the fitted line for the shortest and longest 
seeds (length < 2.6 or > 4.8 mm). A composite set of residual plots for this model, based 
on standardized residuals, is presented in Figure 12.4. The histogram and the Normal 
plot do not indicate strong departures from a Normal distribution for the residuals 
(see Section 5.2.3), and the absolute residual plot shows no evidence of variance het-
erogeneity. The fitted value plot suggests some trend in the residuals, with more nega-
tive residuals for intermediate weights and largely positive residuals for the lightest 
and heaviest seeds. This gives further evidence of some curvature in the relationship, 
although a straight line appears to be a reasonable overall approximation. We discuss 
the use of residual plots to investigate the fit of this model in more detail in Chapter 13. 
However, for now, we consider that the data are reasonably consistent with the assump-
tions underlying the linear model.
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FIGURE 12.3
Scatter plot of weight versus length for 190 diploid wheat seeds together with the fitted straight line (—) and 
95% CIs (– –) for the expected mean response (Example 12.1B).
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FIGURE 12.4
A composite set of residual plots after fitting a SLR model to the diploid wheat data (Example 12.1B).
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12.3 Assessing the Importance of the Model

As for models containing qualitative explanatory variables (or factors), ANOVA can be 
used to assess how well the single explanatory variate model describes the variation in the 
observed response. In particular, ANOVA assesses whether the variation in the response 
that is explained by the explanatory variate is larger than the background variation. In 
more general linear regression models (Chapters 14 and 15), ANOVA can be used to fur-
ther assess the relative importance of several quantitative or qualitative explanatory vari-
ables, or both, in explaining variation in a response variable.

In the case of SLR (and like the single-factor model of Chapter 4), we use ANOVA to 
partition the total variation of the response into the portion explained by the systematic 
component of the model (here, a straight line depending on the explanatory variate) and 
the residual, or unexplained, portion attributed to the random component of the model. As 
described in Section 4.3, ANOVA quantifies variation in terms of sums of squares. Hence, 
the total variation (TotSS) is partitioned into the variation due to the model, i.e. the regres-
sion line (ModSS, the model sum of squares) and the residual variation (ResSS, the residual 
sum of squares) so that

 TotSS = ModSS + ResSS . (12.2)

As with the single-factor model (Section 4.3), we calculate the total sum of squares by tak-
ing the difference between each observed value and the overall mean response, squaring 
these differences and then adding them together. This is exactly the form of the sum of 
squares for the response, introduced earlier, so

 
TotSS SS  2= − =

=
∑ ( ) .y yi yy

i

N

1

The model sum of squares represents the variation in the response accounted for, or 
explained by, the fitted straight line and is calculated as the sum, over all observations, of 
the square of the difference between each fitted value and the overall mean. This equals 
the square of the sum of cross-products between the response and explanatory variate, 
divided by the sum of squares for the explanatory variate; so, we can write this algebra-
ically as

 
ModSS

(SS )
SS

where  2= ( ) , .y y y xi
i

N
xy

xx
i i   − = = +

=
∑

1

2

α β

Note the similarity between this expression and the TrtSS in Section 4.3.1 for the single-
factor model; the estimated treatment mean in that case is replaced by the estimated fitted 
value from the regression here.

Finally, recall from Section 12.2 that the residual sum of squares is calculated as the 
sum, over all observations, of the square of the difference between each observed response 
and its associated fitted value. Alternatively, we can rearrange Equation 12.2 to show that 
the residual sum of squares is equal to the total sum of squares minus the model sum of 
squares, and we can therefore write this algebraically as
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ResSS SS

(SS )
SS

 
2

= − = −
=
∑ ( ) .y yi i yy

xy

xxi

N

 2

1  
(12.3)

Once any two of the sums of squares are known, the third can be obtained by rearrange-
ment of Equation 12.2.

As in the case of the single-factor model, we also need to calculate the amount of infor-
mation associated with each sum of squares, quantified by the degrees of freedom. Again, 
there is a partition of the total degrees of freedom (TotDF) into a portion associated with 
the SLR (ModDF) and a portion associated with the residual variation (ResDF), such that

 TotDF = ModDF + ResDF .

To calculate the df associated with each component, we use the same recipe developed in 
Section 4.3.1. The individual components in each sum of squares consist of fitted values 
from some model minus an adjustment. The df for a sum of squares counts the num-
ber of parameters required in the model used to calculate the fitted values, minus the 
number required to calculate the adjustments. In the TotSS, the values are the individual 
observations (requires N parameters) and the adjustment is the overall mean (requires 
one parameter). Hence, the total df is TotDF = N − 1. In the ModSS, the values are the fit-
ted values from the SLR (requires two parameters) and the adjustment is again the overall 
mean (requires one parameter). Hence, the model degrees of freedom are ModDF = 1. And 
finally, in the ResSS, the values are the individual observations (requires N parameters) 
and the adjustment is the fitted values from the SLR (requires two parameters). Hence, the 
residual degrees of freedom are N − 2. Alternatively, the ResDF can be found by subtrac-
tion as

 ResDF = TotDF − ModDF = N − 2 .

The model and residual sums of squares are then divided by their corresponding degrees 
of freedom to produce their respective mean squares. These are then on a common scale 
and so quantify the amount of variation associated with each component of the model. Of 
particular interest is the residual mean square (ResMS) which is an estimate of the back-
ground variability, denoted as s2, and can be mathematically written as

 
s

N
2

2
= =

−
ResMS

ResSS
 .

Intuitively, the ResMS quantifies the variation of all observations around the true regres-
sion line and – if the model is a good description of the data – it should arise from back-
ground variation alone. The model mean square (ModMS) arises from variation associated 
with the straight line relationship. If there is no linear dependence of the response variable 
on the explanatory variable, then the ModMS can arise only from chance background 
variation, and so should be of similar size to the ResMS, allowing for sampling variation. 
This concept is formalized by consideration of the expected values of these mean squares. 
The expected value of the residual mean square is the true background variation, σ2, i.e.

 E(ResMS)  = σ2 .
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The expected value of the model mean square is equal to the true background variation, 
σ2, plus the sum of squares for the explanatory variate, SSxx, multiplied by the square of the 
true slope parameter, β, i.e.

 E(ModMS) SS  = +σ β2 2
xx .

If there is no linear dependence of the response variate on the explanatory variate, then the 
true slope parameter is zero (β = 0), and the second term in the expectation of ModMS also 
becomes zero, regardless of the values of the explanatory variate. Both mean squares will 
then have the same expected value. This is the basis for the use of an F-test in the context 
of ANOVA for a SLR, testing the null hypothesis of no linear dependence of the response 
variable on the explanatory variable, formally expressed as H0: β = 0. This null hypoth-
esis is compared against an alternative hypothesis of the presence of a linear dependence 
between these variables, namely H1: β ≠ 0, in which case the ModMS is expected to be 
larger than the ResMS.

We obtain the test statistic by dividing the model mean square by the residual mean 
square, and the quotient is the variance ratio or observed F-statistic, which we denote as 
F, i.e.

 
F

ModMS
ResMS

 = .

If the null hypothesis is true, we expect the value of the variance ratio to be close to 1. If 
this ratio is larger, so that the variation associated with the regression line is greater than 
the background variation, then this gives evidence that the slope of the line is not zero.

More formally, under the null hypothesis, such a ratio of two independent mean 
squares has an F-distribution, and the amount of evidence can be quantified. Here, the 
F-distribution numerator df is 1 (ModDF) and the denominator df is N − 2 (ResDF). As 
in the previous chapters, for clarity, we usually specify the observed variance ratio with 
its df as subscripts, for example, F1,N−2. If the observed statistic F1,N−2 is larger than the 
100(1 − αs)th percentile of this F-distribution, denoted F[ ]s

1 2, ,N−
α  then the null hypothesis is 

rejected at significance level αs. Equivalently, an observed significance level, P, can be 
calculated as

 P = Prob(F1, N−2 ≥ F1,N−2) ,

where F1,N−2 denotes a random variable with an F-distribution with 1 and N − 2 df. All 
the above calculations are conveniently summarized in an ANOVA table, as presented in 
Table 12.2.

EXAMPLE 12.1C: DIPLOID WHEAT

Consider again the diploid wheat seed data. Values of SSxx = 19.2699 and SSxy = 330.9297 
were given in Example 12.1B, and the total sum of squares is TotSS = SSyy = 7294.4090. The 
model sum of squares can be calculated from the sums of squares and cross-products as

 
ModSS

(SS
SS

(330.9297
19.2699

 = = =xy

xx

) )
. .

2 2

5683 1753



299Models for a Single Variate

By subtraction, we obtain the residual sum of squares as

 ResSS = TotSS − ModSS = 7294.4090 − 5683.1753 = 1611.2338 .

All these values, together with their corresponding degrees of freedom, are combined 
to give the ANOVA table shown in Table 12.3.

The observed value of F1,N−2 = 663.117 is huge: the 0.1% critical value of the F-distribution 
with 1 and 188 df is F[ ]

1 188
0 001 11 176,

. .= ; so, P < 0.001. Therefore, we have very strong evi-
dence to reject the null hypothesis that the slope parameter is zero, and we conclude 
that there is a statistically significant linear relationship for seed weight in terms of 
seed length.

12.4 Properties of the Model Parameters

Having fitted the SLR model and obtained estimates of the model parameters, we can use 
statistical theory to make further inferences about their underlying, unknown values. If 
the deviations follow a Normal distribution (Assumption 4, Section 12.1), then the esti-
mates of α and β also follow Normal distributions. In each case, the mean of the distribu-
tion is the unknown population parameter, and for this reason, the estimates are called 
unbiased. Their variances are functions of the explanatory variate, the number of observa-
tions and the unknown population variance σ2. We estimate these variances by replacing 
σ2 by its estimate s2, the residual mean square (see Section 12.3), giving

 
Var(

SS
Var( )

SS
  ˆ ) , ˆ .α β= × +







= × 





s
N

x
s

xx xx

2
2

21 1

The estimated standard error of a parameter estimate, SE() , is defined as the square root 
of its estimated variance.

TABLE 12.2

Structure of the ANOVA Table for a SLR

Source of 
Variation df Sum of Squares Mean Square Variance Ratio P

Model 1 ModSS ModMS = ModSS/1 F = ModMS/ResMS Prob(F1,N−2 > F)
Residual N – 2 ResSS ResMS = ResSS/(N − 2)
Total N – 1 TotSS

TABLE 12.3

ANOVA Table for a SLR Model for Seed Weight with Explanatory Variate Seed Length 
(Example 12.1C)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Model   1 5683.1753 5683.1753 663.117 < 0.001
Residual 188 1611.2338 8.5704
Total 189 7294.4090
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It is sometimes of interest to test whether one of the parameters is equal to a specified 
value, usually zero. Hypotheses of this type can be evaluated by the one-sample t-test 
presented in Section 2.4.1. For example, to test the null hypothesis that the slope takes any 
pre-defined value c, i.e. H0: β = c, we use the statistic

 
t

SE( )
 N

c
− = −

2

ˆ
ˆ ,

β
β

which has a t-distribution with N − 2 degrees of freedom under the null hypothesis. An 
analogous test can be constructed for the intercept α.

The test of the null hypothesis that the slope parameter, β, equals zero, i.e. H0: β = 0, 
against a two-sided alternative hypothesis, i.e. H1: β ≠ 0, is equivalent to the test of no 
linear dependence of the response variate on the explanatory variate against that of some 
linear dependence. Thus, the t-test is equivalent to the F-test obtained from the ANOVA 
table presented above, with F t1 2 2

2
, ( ) .N N− −=

The test of the null hypothesis that the intercept parameter, α, equals zero, i.e. H0: α = 0, 
against a two-sided alternative hypothesis, i.e. H1: α ≠ 0, is used to determine if the model 
passes through the origin, i.e. that the expected value of the response variable is zero 
when the explanatory variate is zero. If the null hypothesis is accepted, then we might fit a 
model that contains only a slope parameter, although this model can have some undesir-
able properties which are discussed in Section 12.9.2.

We can calculate the 100(1 − αs)% CI associated with these t-tests for the population 
parameters as

 

ˆ ˆ ˆ ˆ ,

ˆ

[ ] [ / ]
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α α α α

β
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α

− × + ×( )
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−

t SE( ), t SE( )  
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/
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2
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22
2
2] [ / ]ˆ , ˆ ˆ ,× + ×( )−SE( ) t SE( )  s β β βα

N

where t s
N−2

2[ / ]α  is the 100(1 – αs/2)th percentile of a t-distribution with N − 2 degrees of freedom.

EXAMPLE 12.1D: DIPLOID WHEAT

Using the summary statistics and parameter estimates obtained in Examples 12.1B and 
12.1C, we can calculate the estimated variances for the intercept and slope parameters as
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ˆ .
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Var( )
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 β s
xx

.. .4448 

Hence, the estimated standard errors for α̂ and β̂ are 2.2078 and 0.6669, respectively. For 
comparison with the ANOVA, we evaluate the evidence of linear dependence of weight 
on length using a t-test of the null hypothesis H0: β = 0 against H1: β ≠ 0. The observed 
t-statistic is

 
t

SE( )
 N− = = =2

17 173
0 667

25 751
ˆ

ˆ
.
.

. .
β
β
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The absolute value of this test statistic is compared with a critical value of the t-dis-
tribution with 188 df, for example, for a two-sided test with a significance level of 
5%, this critical value is t188

0 025 1 973[ . ] .=  and the null hypothesis is rejected. In fact, the 
test statistic is larger than the 0.1% critical value, t188

0 0005 3 343[ . ] .= ; so, we conclude that 
there is very strong evidence of a linear dependence of weight on length, in agreement 
with the ANOVA in Example 12.1C. As expected, the square of the observed t-statis-
tic, 25.7512 = 663.117, is equal to the value of the F-statistic obtained in Example 12.1C. 
Properties of the parameter estimates, including their estimated standard errors, the 
t-statistics for testing the null hypothesis that each parameter is equal to zero and the 
associated significance levels are often summarized in a form similar to Table 12.4. 
Variations in this form are commonly produced by statistical software, with parameters 
implicitly identified via the associated explanatory variate.

Using the information accumulated so far, we can now obtain CIs for both model 
parameters. A 95% CI for the intercept α is obtained as

 (−27.931 − (1.973 × 2.208), −27.931 + (1.973 × 2.208)) = (−32.286, −23.576) ,

and for the slope parameter, β,

 (17.173 − (1.973 × 0.667), 17.173 + (1.973 × 0.667)) = (15.858, 18.489) .

The CIs for the intercept and slope parameters often imply that there is a large set of 
 possible fitted lines that are consistent with the data. It is therefore helpful to generate pre-
dictions and CIs for the fitted response rather than for individual parameters.

12.5 Using the Fitted Model to Predict Responses

Once a SLR model has been fitted, we can use the parameter estimates to predict the 
response for a given value of the explanatory variate. In the general case, prediction uses a 
fitted model to estimate the expected response for given values of all explanatory variables 
(Section 1.4). Here, we consider two different forms of prediction for a specified value of 
the explanatory variate, or prediction point, denoted xpred. First, we predict the expected 
mean response, denoted μ(xpred), which is equal to the fitted response at xpred based on the 
observed sample. For clarity, we use the notation ˆ ( )µ xpred  for the estimate, which is calcu-
lated as

 
ˆ ( ) ˆ ˆ .µ α βx xpred pred  = +

TABLE 12.4

Parameter Estimates with Standard Errors (SEs), t-Statistics (t) and Observed Significance Levels 
(P) for a SLR Model for Seed Weight with Explanatory Variate Seed Length (Example 12.1D)

Term Parameter Estimate SE t P

[1] α −27.931 2.2078 −12.651 < 0.001
Length β 17.173 0.6669 25.751 < 0.001
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Second, we predict the value of a new individual response, which we denote ˆ ( ).y xnew pred

This prediction is equal to the fitted response at the prediction point, xpred, plus the devia-
tion associated with the new observation, denoted enew, or

 
ˆ ( ) ˆ ˆ .y x x enew pred pred new  = + +α β

The new deviation is unobserved and so unknown. If we assume it follows a Normal 
distribution with zero mean (in line with our assumptions on the deviations), then it is 
estimated at its expected value as zero. This prediction is therefore equal in value to the 
expected mean response given above. However, although the presence of the deviation 
does not affect the value of the prediction, it does influence its variance and standard error.

The estimated variance of the expected mean response at the prediction point xpred, is 
written as

 
Var( ))

( )
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pred
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x x

xx
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2 1

Again, here, the residual mean square, s2, is used as an estimate of the unknown popula-
tion variance, σ2. The prediction variance takes its minimum value when xpred is equal to 
the sample mean of the explanatory variate, x xpred = , at which point the uncertainty asso-
ciated with the fitted line is minimized and the second term (within parentheses) is equal 
to zero. As xpred moves away from the sample mean, this variance increases as uncertainty 
in the fitted response also increases.

The prediction for a new observation was written as the expected response plus a new 
deviation. The new deviation is independent of the fitted line and assumed to have vari-
ance equal to the population variance, estimated by s2. The estimated variance of a predic-
tion for a new observation is therefore equal to that for the expected mean response plus 
the estimated variance of the new deviation, which is
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Again, the minimum variance is obtained when x xpred = , and as xpred moves away from 
x , the variance increases. The additional variance of the new deviation means that this 
will always be greater than the variance of the expected mean response. For both types of 
prediction, the estimated SE is the square root of the estimated variance.

Finally, 100(1 − αs)% CIs for the two types of prediction are obtained as
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respectively, where t s
N−2

2[ / ]α  is the 100(1 − αs/2)th percentile of the t-distribution with N − 2 
degrees of freedom (the residual df). Figure 12.5 shows both types of CIs across the range 
of observed values of an explanatory variate x. The confidence limits have been joined to 
form envelopes, showing the CIs at each point on the fitted line. Since the estimated SEs of 
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the predictions increase as the value of the explanatory variate moves away from its mean, 
the width of the CIs also increases on moving towards the ends of the range of the explana-
tory variate. Also, as a consequence of the difference between their variances, the CIs for 
the expected response are always smaller than those for a new observation.

EXAMPLE 12.1E: DIPLOID WHEAT

To get a more helpful measure of the uncertainty in the fitted line for the seed weight 
data, we calculate the 95% CIs for the expected mean responses for seeds with lengths 
equal to the smallest, mean and largest values of the sample. The shortest observed seed 
length is xpred = 2.45 mm, with fitted response

 
ˆ . . ( . . ) . .µ( )  predx = = − + × =2 45 27 931 17 173 2 45 14 144

This prediction has estimated variance
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pred
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0 3628
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which corresponds to an estimated standard error of SE( ( ) 0.6023.pred
 ˆ . )µ x = =2 45  The 

residual df is 188 (Table 12.3), and calculation of a 95% CI requires the 97.5th percentile 
of the t-distribution with 188 df, equal to t188

0 025 1 973[ . ] . .=  Hence, a 95% CI for the expected 
mean response at xpred = 2.45 is calculated as

 ( . ( . . ) . ( . . )) ( . .14 144 1 973 0 6023 14 144 1 973 0 6023 12 955 15 3− × + × =, , 335) . 

Similarly, the 95% CI for the expected mean response at the average seed length 
observed from our sample (i.e. x xpred = = 3 30.  with SE = 0 2124. ) is

 ( . ( . . ) . ( . . )) ( . .28 741 1 973 0 2124 28 741 1 973 0 2124 28 322 29 1− × + × =, , 660) . 

y

x

FIGURE 12.5
SLR prediction (—) with CIs for the mean response ˆ ( )µ x  (– ⋅ –) and for prediction of a new observation ˆ ( )y xnew  
(– –).
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Finally, the 95% CI for the expected mean response at the longest seed length observed 
(i.e. xpred = 4 13.  with SE = 0 5959. ) is

 ( . ( . . ) . ( . . )) ( . .42 995 1 973 0 5959 42 995 1 973 0 5959 41 819 44 1− × + × =, , 770) . 

As expected, the CI for the predicted response at xpred = 3.30 is much narrower (range 
0.84) than that for the prediction at xpred = 2.45 (range 2.37) or at xpred = 4.13 (range 2.35). 
Figure 12.3 shows 95% CIs for the predicted response across the full range of the 
 explanatory variate.

So far, we have made predictions only within the observed range of explanatory variate 
values. This is known as interpolation, and is valid as long as the model fits the observed 
data well (in particular, if there is no evidence of model misspecification; see Chapter 13). 
As we have seen, the uncertainty about the predicted values increases (i.e. the SE increases) 
for prediction points towards the ends of the observed range of the explanatory variate. 
This is inherited from our uncertainty about the slope of the underlying relationship: the 
fitted line must pass through the mean of both variates, so that this point is fixed. A small 
change in the slope can then have a larger impact at the ends of the observed range than 
close to the mean of the explanatory variate.

Of course, we can also make predictions outside the observed range of the explana-
tory variate, known as extrapolation. We should be careful when doing this, however, 
because in addition to the increasing uncertainty associated with the fitted line, we have 
no indication of whether the true relationship follows the form of the extrapolated line. 
This is illustrated in Figure 12.6. Here, the solid circles represent the data used to fit the 
SLR model indicated by the straight line. The open circles represent an additional sample 
for smaller values of the explanatory variate and illustrate the main danger of extrapola-
tion: when considered over the extended range, the relationship is not a straight line, and 
so, predictions based on the fitted SLR give poor predictions for the smaller values of 
the explanatory variate. The same problems also occur for extrapolation in more complex 
models. Regression should always be regarded as an empirical descriptive technique: the 
fitted model describes the observed relationship between the response and explanatory 

y

x

FIGURE 12.6
Fitted SLR model (—) with 95% CIs (– –) with data used to fit model (⦁), additional data not used to fit model (⚬) 
and extrapolation of fitted line (---).
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variables and, in the absence of further information, this description can be valid only 
within the observed range of the explanatory variables.

The value of the estimated intercept parameter can be interpreted as a prediction of the 
response for a zero value of the explanatory variate, i.e. xpred = 0. If zero is substantially out-
side the observed range of the explanatory variate, then the intercept may be a substantial 
extrapolation. We might then not be too concerned if the estimated intercept value seems to 
be biologically unrealistic: this merely implies that the fitted model is not valid over a wider 
range. As long as the fit seems plausible over the observed range, this is sufficient for the 
descriptive model to be regarded as adequate. In Section 12.9.1, we centre the explanatory 
variate to estimate the intercept (constant) parameter at a value within the observed range.

12.6 Summarizing the Fit of the Model

It is important to check the goodness of fit of a model. This is primarily required to ensure 
that the model provides a reasonable description of the observed data, and the graphical 
procedures described in Chapter 13 are a vital part of this process. However, it is also use-
ful to have a simple numerical measure to compare different models for the same response 
variable. Goodness-of-fit statistics can be used to compare competing models based on dif-
ferent explanatory variates, or different transformations of the same explanatory variate 
(as we will see in Chapters 14 and 17). When values of the explanatory variate are repli-
cated, we can formally test whether the fit of our model is acceptable, and this is discussed 
in Section 12.8.

Several goodness-of-fit statistics are available, each with advantages and disadvan-
tages. The most common statistics are the coefficient of determination (R2) and the 
adjusted coefficient of determination (adjusted R2, or Radj

2 ), sometimes expressed as the 
percentage variance accounted for. These statistics are described below. Other statis-
tics are useful for regression models with several explanatory variates, and these are 
described in Section 14.8.

The coefficient of determination, here denoted as R2, measures the proportion of varia-
tion in a data set that is accounted for by the fitted statistical model, calculated as the ratio 
of the model sum of squares to the total sum of squares, i.e.

 
R2 = ModSS

TotSS
 .

Because of the relationship between the three sums of squares in Equation 12.2, we can 
rewrite this expression in terms of the residual and total sums of squares as

 
R2 = − = −TotSS ResSS

TotSS
1

ResSS
TotSS

 .

The coefficient of determination can take any value between 0 and 1, with larger values 
indicating a closer fit of the model to the data. In the context of regression models with 
several explanatory variates, this statistic has the major disadvantage that it does not take 
account of the number of parameters estimated (see Section 14.8).
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The adjusted coefficient of determination, denoted Radj
2  (or adjusted R2) is an alternative 

goodness-of-fit statistic that takes into consideration both the number of observations, N, 
and the number of estimated parameters. This statistic is calculated as
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N
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  ,

where TotMS = TotSS/(N − 1). For SLR, there is a linear relationship between R2 and Radj
2  

that depends on the number of observations (N) and Radj
2  takes values between −1/(N − 2) 

(when R2 = 0) and 1 (when R2 = 1), with larger values indicating a better fit. Negative val-
ues imply an extremely poor fit, with the intercept-only model providing a better fit than 
the regression line. The adjusted statistic takes account of the number of parameters esti-
mated in the model, and so it can guard against over-fitting, as will be discussed further 
in Section 14.8. Recall that ResMS is a measure of the variance not accounted for by the 
model and TotMS can be considered as a measure of the total variance in the data, and so, 
Radj

2  can be interpreted as the proportion of the variance accounted for by the model. When 
expressed as a percentage rather than a proportion (i.e. 100 × Radj

2 ), this statistic is therefore 
sometimes called the percentage variance accounted for. Within this book, we usually 
report adjusted R2 as a summary measure of fit for a model.

EXAMPLE 12.1F: DIPLOID WHEAT

The ANOVA for the SLR model for seed weight with explanatory variate seed length 
was shown in Table 12.3. The coefficient of determination for this model is

 
R2 0 779= = =ModSS

TotSS
5683.1753
7294.4090

 . .

This is a fairly large value, suggesting a reasonable fit of the model to the data, which 
can be verified by checking Figure 12.3, which shows a strong positive linear relation-
ship between seed weight and length. The adjusted coefficient of determination is

 
Radj

2 ResMS
TotMS

8.5704
 = − = − =1 1

38 5948
0 778

.
. ,

which is very close to R2 as N − 2 = 188 is very large and hence the adjustment 
(1 − R2)/ (N − 2) = 0.001 is small. The percentage variance in seed weight accounted 
for by the linear regression model using seed length as an explanatory variate is 
therefore 77.8%.

12.7 Consequences of Uncertainty in the Explanatory Variate

One of the basic assumptions of the linear model (presented in Section 12.1) is that the 
values of the explanatory variable(s) are known without error. In many cases, this assump-
tion is not valid, as it is often impossible to ascertain the exact values of an explanatory 
variate. This problem is common in observational studies, in which values of explanatory 
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variates are usually outside the control of the investigator. For example, in Example 12.1, 
all the variates are likely to be subject to some error in their measurements. It is important 
to appreciate the consequences of this for the fitted model: it does not make the model 
invalid, but it does change its interpretation.

When we fit a regression model, we think about fitting a model for the response in terms 
of the true value of the explanatory variate(s). In the SLR, uncertainty in the explanatory 
variate(s) acts to attenuate or dilute a regression relationship, so that the estimated slope 
tends to be smaller in size, and the estimate of background variability increases. This 
attenuation is less if the errors in the explanatory variate are small compared with the 
underlying variability of the (unobserved) true values. This is demonstrated in Figure 
12.7 for Example 12.1, where the original SLR fit for seed weight as a function of length is 
shown in Figure 12.7a. In Figures 12.7b and c, the seed lengths have had random Normal 
errors with standard deviations of 0.08 and 0.16 mm added to them (25% and 50% of the 
sample standard deviation for seed length), and the model has been refitted (solid line). 
The original fit is shown by the dashed line, and you can see that as error in the explana-
tory variate increases, the spread of the observations also increases and the slope of the 
fitted line decreases.

When there are errors in the explanatory variate, the estimated regression line is there-
fore a biased estimate of the true relationship, i.e. the underlying relationship between the 
response and the true value of the explanatory variate. However, the estimated regression 
line gives a valid estimate of the relationship between the response and the explanatory 
variate as measured, i.e. with error. If the objective is prediction of the response for new 
observations of the explanatory variate, and if these new values will be drawn from the 
same population (with the same distribution of error on the explanatory variable), then the 
fitted line is appropriate. In Example 12.1, our fitted model will be valid for prediction of 
seed weight from length measurements of the same type. If our objective was prediction 
of seed length given seed weight, then the role of our two variables should be reversed 
and a different regression line would be obtained. If the objective is estimation of the 
relationship between the true values of both variables, then more advanced techniques are 
required (e.g. Carroll et al., 2006).
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FIGURE 12.7
Seed weight plotted against (a) seed length, (b) seed length with Normal(0, 0.082) errors added, (c) seed length 
with Normal(0, 0.162) errors added, each with fitted SLR model (—) and original SLR fit (– –).
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One way to deal with measurement error is to ensure that it is minimized when the data 
are collected. Technical replication (Section 3.1.1) can be useful in this context, with several 
independent measurements of the explanatory variate made for each observation, and this 
can reduce uncertainty due to both sampling variation and instrument or process variability. 
The mean of the technical replicates can then be used as the value of the explanatory variate.

Measurement error is less important in the case of a designed experiment, when the values 
of the explanatory variate have been pre-defined. However, these errors may still be pres-
ent. For example, consider a field experiment with pre-defined levels of fertilizer application 
to be applied to plots: although operators will do their best to apply the required quantity, 
machinery is rarely precise enough to deliver this exactly. Similar problems of precision 
often occur, albeit on a much smaller scale, in laboratory experiments. As long as the errors 
can be regarded as random (rather than systematic), then no bias is introduced into estimates 
of the slope parameter, although the estimate of background variation will still be inflated.

12.8 Using Replication to Test Goodness of Fit

Replication is a basic principle of the statistical design of experiments and, as discussed 
in Chapters 3 and 4, involves the application of the same treatments to several indepen-
dent experimental units. Differences between replicates with the same treatment give a 
direct estimate of background variability that arises from uncontrolled variation within 
the experimental process. For this reason, it is useful to have replication present wherever 
possible. In this section, we describe how to use replication to evaluate whether a SLR 
model gives an adequate representation of the observed data.

In the previous sections, we estimated the background variation directly from the residu-
als obtained after fitting a regression model. However, these residuals consist of two com-
ponents that cannot be separated: variation of individual observations about the true but 
unknown trend (often called pure error); and systematic deviation of the fitted trend (here a 
straight line) from the true but unknown trend (commonly called lack of fit, and referred to 
earlier as model misspecification). When each of the values of an explanatory variate is repli-
cated across different experimental units, these two components can be separated, as shown 
in Figure 12.8. The mean of replicate observations can be regarded as an estimate of the true 

Lack of fit

x1 x2 x3

y

Pure error

FIGURE 12.8
Partitioning the deviation into pure error and lack-of-fit components. Fitted SLR for response y (—) with obser-
vations (⦁), fitted values (⚬) and observed mean (⦁) for each level of explanatory variate (x).
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but unknown trend. Discrepancies between these mean values and the fitted regression line 
can then be used to assess whether the model shows any evidence of lack of fit, and variation 
between the replicate observations and their mean can be used to estimate pure error. This 
gives the basis for an objective evaluation of the adequacy of the fitted model.

EXAMPLE 12.2A: CROP TRANSECT BEETLE COUNTS

A pilot study was done to investigate the pattern of an insect pest (beetles) entering a 
susceptible crop. It was suspected that the beetles entered the crop from the edge of 
the field and then progressed towards the centre. One field was surveyed periodically 
and, once the beetles were present in reasonable numbers, a transect was taken from 
the edge towards the centre of the field with samples taken at 2 m intervals. At each 
distance, beetle counts were made from four randomly selected plants, giving replicate 
measurements at each distance. The data are presented in Table 12.5 and can also be 
found in file transect.dat. This file holds the distance into the crop in variate Distance 
and the corresponding beetle counts in variate Count.

Because of heterogeneity of variances, it is conventional to analyse these counts on the 
logarithmic scale (see Chapter 6). Figure 12.9 shows the log10-transformed counts, which 
suggest that a linear model on the log scale is plausible, but certainly should be checked 
for lack of fit. The variation between observations made on plants at the same distance 
represents pure error, and this variation is substantial.

TABLE 12.5

Beetle Counts from Transect Sampling, with Four Plants 
Sampled at Various Distances from the Edge of a Crop 
(Example 12.2A and File transect.dat)

Plant

1 2 3 4

Distance from the 
edge of crop (m)

0 21 33 25 16
2 19 20 17 19
4 8 10 8 8
6 12 10 6 22
8 10 6 9 11

10 9 9 13 13

1.5
1.4
1.3
1.2
1.1
1.0lo

g 10
(c
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nt

)

0.9
0.8
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Distance
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FIGURE 12.9
Logged beetle counts from replicate plants along a transect into the crop. Distances (m) are measured from the 
edge of the crop (Example 12.2A).
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To explicitly identify the replicate observations, we must modify our notation to relabel 
the units. We shall refer to the distinct values of the explanatory variate as levels, which 
run from 1 to v. The kth level of the explanatory variate is represented as xk, for k = 1 … v, 
and the number of replicate observations for that level is denoted as nk, with at least two 
replicates required for each level, i.e. nk > 1. The response for the lth replicate observation 
of the kth level of the explanatory variate is represented as ykl, k = 1 … v, l = 1 … nk. The 
total number of observations is N = n1 + n2 + … + nv. The SLR model can be written with 
this new labelling as

 y x ekl k kl= + +α β  ,  (12.4)

where ekl is the deviation corresponding to observation ykl. Note that because we have a 
single value of the explanatory variate for each level k, there is no need to have a second 
index for this variable. As usual, this model is written in symbolic form as

Explanatory component: [1] + x

where [1] is a variate taking value 1 in all units, associated with the intercept parameter 
α, and x holds the values of the explanatory variate associated with the slope parameter 
β. This model fits a straight line through the set of observations. To assess lack of fit, we 
want to partition the residual term into a term that fits a separate mean for each level of 
the explanatory variate plus deviations about this term. We can do this by fitting a factor, 
denoted facx, in the explanatory model. The factor facx is defined so that different levels of 
the factor correspond to distinct values of the explanatory variate, and can be interpreted 
as a factor version of the explanatory variate. We therefore add this factor to the model, in 
symbolic form, giving

Explanatory component: [1] + x + facx

In mathematical form, this can be written as

 y x ekl k k kl= + + +α β κ * ,  (12.5)

where κk represents an effect associated with level k of the explanatory variate, associated 
with factor facx, and ekl

*  is used to denote the deviations from this more complex model. In 
fact, we have partitioned the model deviations from Equation 12.4 into a lack-of-fit com-
ponent that is common to each level of the explanatory variable, denoted as κk, and a pure 
error component comprising the separate individual deviations about this common com-
ponent, denoted as ekl

* , or

 e ekl k kl= +κ * . 

The above model (Equation 12.5) is over-parameterized, as we have v + 2 parameters to 
describe the pattern across v groups, and we shall discuss the implications of this later.

The ANOVA table for this model is Table 12.6. The model sum of squares, ModSS, is the 
same as from a SLR model. The sum of squares associated with the systematic component 
of the deviations, and factor facx, is called the lack-of-fit sum of squares, abbreviated as 
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LoFSS. This sum of squares accumulates the squared differences between the fitted value 
from the SLR and the mean of the replicates at each value of the explanatory variate, and 
can be written as

 
LoFSS  = −( ) = − −( )

== =
∑∑ ∑y y n y xk kl
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k k k
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where ŷkl is the SLR fitted value for observation ykl and yk i is the mean response for the 
explanatory variate value xk or, in our previous notation,
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The LoFSS has v − 2 df, as v parameters are required to generate the mean values yk i 
and two parameters are required to generate the fitted values ˆ .ykl  The remaining varia-
tion for this model arises from variation between replicates within each level of the 
explanatory variate, and is known as the pure error sum of squares, PESS, which can 
be calculated as
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==
∑∑ y ykl k

l

n

k

v k

i
2

11
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This sum of squares has N − v df. As usual, mean squares are calculated by division of 
each sum of squares by its df. As the pure error mean square, denoted PEMS, is the best 
estimate of background variation, this quantity is used as the denominator for calculation 
of variance ratios.

The variance ratio FM = ModMS/PEMS is used to test the model via the null hypothesis 
that there is no linear trend in the data, i.e. H0: β = 0. Under this null hypothesis, this vari-
ance ratio has an F-distribution with 1 and N − v df. If this variance ratio exceeds the chosen 
critical value of this F-distribution, it indicates the presence of significant linear trend. The 
second variance ratio, FL = LoFMS/PEMS, is used to test for lack of fit via the null hypoth-
esis that the deviations from the straight line, κk in Equation 12.5, are all zero, i.e. H0: κk = 0, 
k = 1 … v. Under this null hypothesis, the variance ratio has an F-distribution with v − 2 
and N − v df. If this variance ratio exceeds the chosen critical value of this F-distribution, 

TABLE 12.6

Structure of the ANOVA Table for a SLR with Residual SS Partitioned into Lack-of-Fit and Pure 
Error Components

Source of 
Variation df

Sum of 
Squares Mean Square Variance Ratio P

Model 1 ModSS ModMS = ModSS/1 FM = ModMS/PEMS Prob(F1, N−v > FR)
Residual

Lack of fit v − 2 LoFSS LoFMS = LoFSS/(v − 2) FL = LoFMS/PEMS Prob(Fv−2, N−v > FL)
Pure error N − v PESS PEMS = PESS/(N − v)

Total N − 1 TotSS
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it indicates that deviations of the group means from the fitted straight line are not all zero, 
and hence that we have some misspecification in the SLR model.

EXAMPLE 12.2B: CROP TRANSECT BEETLE COUNTS

A SLR model for log10-transformed beetle counts, logCount = log10(Count), shows a sta-
tistically significant association with distance into the crop (F = 13.764, P = 0.001) and 
accounts for 35.7% of the variation (adjusted R2 = 0.357). To investigate the lack of fit, we 
need to define a factor with six levels, one for each distance into the crop, and we call 
this factor fDist (also given in file transect.dat). The model taking account of the lack 
of fit can be written as

Response variable: logCount
Explanatory component: [1] + Distance + fDist

This model accounts for 59.9% of the variation, which is much larger than for the SLR 
model, and the summary ANOVA table is shown in Table 12.7.

This table has partitioned the residual variation of the SLR (ResMS = 0.0259 with 22 
df) into that associated with the fDist factor, which assesses lack of fit with 4 df, and the 
remainder, associated with variation within distances or pure error with 18 df. The pure 
error estimate of background variation (PEMS = 0.0161) is substantially smaller than 
the SLR estimate; so, the variance ratio for the explanatory variate Distance increases 
(FM = 22.073, P < 0.001). The lack-of-fit variation associated with the factor fDist is also 
large compared with pure error (FL = 4.321, P = 0.013), indicating significant deviations 
from the fitted line that require further investigation. Figure 12.10 shows the fitted line 
and group means.

The pattern of group means shows that there are more beetles within 2 m of the edge 
of the crop, and that the samples within the field (4–10 m from the edge) have smaller 
counts but do not continue to decrease with distance. The counts seem to fall into two 
groups rather than following the straight line required by linear regression, and this 
discrepancy is quantified by the lack-of-fit term. We can conclude that the SLR model is 
not suitable for these data and that further work is required to establish a better model.

We stated above that the model in Equation 12.5 is over-parameterized, and this 
arises because there are v + 2 parameters (α, β, κ1 … κv) used to fit means for v groups. 
Individual parameter estimates can therefore be difficult to interpret although the fitted 
values are equal to the observed group means. If there is no evidence of lack of fit, then 
the SLR model can be fitted to obtain the usual interpretable parameter estimates. If 
there is evidence of lack of fit, then the SLR model is not sufficient to explain the pattern. 
In this case, explanatory model [1] + facx, based on just the factor version of the explana-
tory variable, can be fitted to give an estimate of the response for each level to obtain 

TABLE 12.7

ANOVA Table for log10(Beetle Counts) Testing for Lack of Fit (Example 12.2B)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Model 1 0.3562 0.3562 FM = 22.073 < 0.001
Residual

Lack of fit 4 0.2789 0.0697 FL = 4.321 0.013
Pure error 18 0.2905 0.0161

Total 23 0.9256
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interpretable parameters. This factor-based model does not allow interpolation between 
levels in the same way as a regression model based on a variate. A better alternative 
would be to fit a regression model that follows the observed trend, perhaps a curved or 
non-linear model as discussed in Chapter 17.

Lack of fit can also be examined in more complex models, such as polynomial models 
(Section 17.1), multiple regression (Chapter 14) or regression with groups (Chapter 15). In 
each context, the technique for assessing lack of fit is the same: to add a factor version of 
the explanatory variable into the model everywhere that the variate version appears; this 
is illustrated in Example 18.4. Again, this should be done only where each value of the 
explanatory variable is replicated.

The advantage of using replication within the context of simple or multiple linear regres-
sion should now be clear: it allows for a quantitative assessment of model misspecification 
in addition to more subjective assessments based on residual plots. Unfortunately, it is 
possible to use replication only where the values of the explanatory variate are under the 
control of or can be chosen by the experimenter, which does not apply to most observa-
tional studies.

12.9 Variations on the Model

12.9.1 Centering and Scaling the Explanatory Variate

Centering is a simple transformation of a variate that subtracts the sample mean from all 
observations so that the transformed values have mean zero, i.e. they are centered about 
zero. The variance and standard deviation of the centered variate remain identical to that 
of the original variate. If zero is outside the range of the uncentered explanatory vari-
ate, this transformation can make the intercept parameter more easily interpretable (see 
Section 12.5). The centered model is written mathematically as

 y x x ei i i= + − +α β* ( ) , 
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FIGURE 12.10
Data (⦁), fitted regression line (−⚬−) and group means (⦁) for logged beetle counts from transect sampling at 
distances (m) from the edge of the crop (Example 12.2B).
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which replaces the values of the explanatory variate with those same values after subtract-
ing their sample mean, x. This model can be fitted by the use of a new variate defined as 
x x xi i

* = −  and by our rewriting the model as

 y x ei i i= + +α β* * . 

The intercept parameter, now relabelled as α*, is the predicted response at value zero of 
the centered explanatory variate, which is equal to the sample mean of the uncentered 
explanatory variate. Hence, the estimated intercept parameter is equal to the sample mean 
of the response, α* = y , since the fitted SLR line passes through the point y x,( ) for any 
parameterization of the model. The estimated slope is unchanged.

As an alternative to centering, the explanatory variate may be standardized by subtrac-
tion of the sample mean from each observation, and then division of this by the sample 
standard deviation, sx, as

 
x

x x
s

i
i

x

** .= −
 

The SLR model is then rewritten in terms of the standardized variate as

 y x ei i i= + +α β* * ** . 

The intercept here again represents the predicted response at the sample mean of the 
explanatory variate, and the slope parameter, relabelled as β*, represents the change in the 
response for 1 unit change in the standardized explanatory variate, which is equal to a 
change of 1 standard deviation in the original explanatory variate. This form of the model 
is most useful when there are several explanatory variates (see Chapter 14) with very dif-
ferent scales: using standardized variates makes the slope coefficients directly comparable 
across different explanatory variates. For interpretation, it is often helpful to translate the 
slope parameter for the standardized explanatory variate back into the units of the origi-
nal variate. This is done with the relationships

 
ˆ ˆ ; ˆ ˆ* *β β β β= =s sx xSE( ) SE( ) , 

i.e. the estimated slope in terms of the original units is equal to the estimated slope for the 
standardized variate multiplied by the unbiased sample standard deviation for the origi-
nal explanatory variate. The estimated standard error is similarly scaled by the unbiased 
sample standard deviation.

12.9.2 Regression through the Origin

We might also consider a restricted form of the SLR model with the intercept parameter 
set to zero, so that the response must be equal to zero when the explanatory variate is zero. 
This model may arise in two different ways. In some circumstances, it may be asserted 
from prior knowledge or expectations. This may be a reasonable biological assumption to 
make, for example in an early-growth experiment where one might expect zero biomass to 



315Models for a Single Variate

correspond to zero shoot length. In other cases, the model may arise from interpretation 
of the results of a SLR, when the fitted model suggests that zero is a plausible value for 
the intercept parameter or, more specifically, when the null hypothesis that the intercept 
parameter is equal to zero, i.e. H0: α = 0, cannot be rejected. If zero is within, or close to, the 
range of the explanatory variate, and the overall pattern is clearly consistent with a zero 
intercept, then it may be sensible to omit the intercept parameter if it is not statistically 
significant. If zero is well outside the range, then we can only infer that the intercept of a 
SLR model should be zero if it is also reasonable to assume that a common linear relation-
ship holds from zero up to the full observed range of the explanatory variate. Graphical 
diagnostics (see Chapter 13) should always be used to ensure that omitting the intercept 
has not introduced bias into the fitted model.

The new model, with α = 0, is called regression through the origin, and takes the form

 y x ei i i= +β  ,

where each term is described in Section 12.1. As with any other linear model, Assumptions 
1 to 5 of Section 12.1 also apply here. We can write this model using symbolic notation by 
omitting the constant term and specifying the explanatory variate alone as

Explanatory component: x

To estimate the slope parameter in this model, we must define some new statistics. The 
uncorrected sums of squares for the response (USSyy) and explanatory variable (USSxx) and 
the uncorrected sum of cross-products (USSxy) are defined as

 
USS ; USS ; USS  yy i

i

N

xx i

i

N

xy i i

i

N

y x x y= = =
= = =
∑ ∑ ∑2

1

2

1 1

.

These quantities take a similar form to the sums of squares and cross-products defined 
earlier as SSyy, SSxx and SSxy, but here we do not ‘correct’ the variables by subtraction of 
their sample means.

The least-squares estimate of the slope, β, for regression through the origin becomes

 

ˆ .β =
USS
USS

 xy

xx

This takes a similar form to the slope estimate from the standard SLR model, but here, the 
uncorrected sums of squares are used in place of the corrected sums of squares.

The construction of the ANOVA table for this simplified model is also based on a par-
tition of the total sum of squares as in Equation 12.2; however, the calculations are now 
based on uncorrected rather than corrected sums of squares. We modify the notation to 
reflect this change, with the uncorrected total (TotUSS), model (ModUSS) and residual 
(ResUSS) sums of squares defined as

 
TotUSS USS ModUSS

(USS )
USS

ResUSS TotUSS ModUSS .= = = −yy
xy

xx
; ;

2
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Since we have used uncorrected sums of squares, the degrees of freedom for each term 
must account for this. There is now no adjustment term present in the total or model sums 
of squares, so that their degrees of freedom are TotUDF = N and, as the regression model 
has one parameter, ModUDF = 1. The residual df can be obtained by subtraction as

 ResUDF = TotUDF − ModUDF = N − 1 .

As usual, the sums of squares are divided by their degrees of freedom to form mean 
squares, and the structure of the ANOVA table is shown in Table 12.8.

The observed F-statistic, calculated as the model mean square divided by the residual 
mean square, can be used to evaluate the null hypothesis H0: β = 0 against the alterna-
tive hypothesis H1: β ≠ 0. Under the null hypothesis, this statistic follows an F-distribution 
with 1 and N − 1 df. The estimated slope parameter has an expected value equal to the 
unknown true value, β, with estimated variance

 
Var( )

USS
  ˆ .β = × 





s
xx

2 1

As before, the background variation is estimated from the residual mean square, with

 s2 = ResUMS = ResUSS/(N − 1) .

Calculations of CIs for the estimated slope then follow the procedure in Section 12.4, but 
using ResUDF = N − 1 to determine the appropriate t-distribution.

The fit of the regression through the origin can again be assessed by goodness-of-fit 
statistics. A modified version of the coefficient of determination, known as the empirical 
coefficient of determination and denoted as Remp

2 , is required and is defined as

 
Remp

2 ResUSS
TotSS

 = −1 .

This statistic contrasts the uncorrected residual sum of squares to the corrected total 
sum of squares and can be compared with R2 for models with an intercept, as both statis-
tics have the same denominator. However, because the comparison is no longer related to 
a single partition of the total variation, Remp

2  can now take negative values.

EXAMPLE 12.3: AIR TEMPERATURE

Measurements of air temperature (°C) were made at approximately 9 a.m. on 100 days 
during 2006 (N = 100) with a standard glass mercury dry bulb thermometer and a new 

TABLE 12.8

Structure of the ANOVA Table for Regression through the Origin

Source of 
Variation df

Sum of 
Squares Mean Square Variance Ratio P

Model 1 ModUSS ModUMS = ModUSS/1 F = ModUMS/ResUMS Prob(F1,N−1 > F)
Residual N − 1 ResUSS ResUMS = ResUSS/(N − 1)
Total N TotUSS
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electronic dry bulb thermistor probe. A subset of the data is presented in Table 12.9, 
with the full set shown in Table A.2 and in file airtemp.dat.

The aim of the analysis is to model the new thermistor measurements (response 
variate Thermistor) in terms of the standard mercury measurements (explanatory 
variate Mercury) to investigate the relationship between them. It is of interest to 
determine whether the measurements are equivalent, i.e. whether a line that passes 
through the origin (thermistor reads zero when mercury reads zero) with slope equal 
to 1 is a plausible model for these observations. The measurements range between 
−3.2°C and 28.4°C and the scatter of points does appear to pass through the origin (see 
Figure 12.11).

We start by fitting the SLR model (Equation 12.1), which accounts for 98.6% of the vari-
ation in the thermistor measurements (adjusted R2 = 0.986), reflecting the very strong 

TABLE 12.9

First Four and Last Four Measurements of Air Temperature 
(°C) Made during 2006 Using a Standard Glass Mercury 
Thermometer and a New Electronic Thermistor (Example 
12.3, Full Data in File airtemp.dat and Table A.2)

Day Number Mercury Thermistor

1 5.3 5.3
7 6.6 5.5
8 8.9 8.7
13 6.9 6.7

∙ ∙ ∙
344 10.6 10.4
349 4.9 4.0
351 −1.5 −2.4
353 0 −3.2

Source: Data from T. Scott and M. Glendining, Rothamsted Research.
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FIGURE 12.11
Scatter plot of air temperature measurements (°C) made by a standard glass mercury dry bulb thermometer and 
a new electronic dry bulb thermistor (Example 12.3).
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linear relationship between the two sets of measurements. This model gives parameter 
estimates ˆ .β = 0 996 (SE = 0.0120), ˆ .α = −0 262 (SE = 0.1625) and the fitted model

 Thermistor Mercuryi i
 = − +0 262 0 996. . . 

First, we examine the intercept. The t-statistic for testing the null hypothesis H0: α = 0 is

 t /SE( ) 262/0.1625 1 613 = = − = −ˆ ˆ . . ,α α 0

with 98 df. The observed significance level for this test is P = 0.110; so, there is no evi-
dence that the estimated intercept is different from zero and it appears reasonable to 
drop this parameter and fit a regression through the origin. This model estimates the 
slope as ˆ .β = 0 979 (SE = 0.0059). The fitted line is shown in Figure 12.12, and the associ-
ated ANOVA table is Table 12.10.

As in the SLR, there is strong evidence that the estimated slope is not equal to zero. 
However, here, we are more interested in whether the slope is equal to 1, corresponding 
to the null hypothesis H0: β = 1. A t-statistic for testing this hypothesis against the two-
sided alternative H1: β ≠ 1 can be calculated as

 t ( )/SE( ) 979 1 / 59 3 597 = − = − = −ˆ ˆ ( . ) . . ,β β1 0 0 00

with 99 df. The observed significance level for this test is P < 0.001; so, there is strong 
evidence that the slope is not equal to 1 and we reject H0. Residual plots for this model 
based on standardized residuals are shown in Figure 12.13. The fitted values plot shows 
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FIGURE 12.12
Air temperature measurements (°C) with fitted line from regression through the origin (Example 12.3).

TABLE 12.10

ANOVA Table for Regression through the Origin for Thermistor Readings with Mercury Readings 
as the Explanatory Variate (Example 12.3)

Source of Variation df Sum of Squares Mean Square Variance Ratio P

Model 1 17,698.267 17,698.267 27,397.119 < 0.001
Residual 99 63.953 0.646
Total 100 17,762.220
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a clear trend, with residuals tending to be negative for the lowest and highest tem-
peratures, and positive for intermediate values. This suggests some non-linearity in the 
relationship which is also apparent in Figure 12.12 (and we discuss such patterns in the 
residual plots in more detail in Section 13.3). There are also two very large residuals, one 
at each end of the temperature range.

Putting all these results together suggests that there is not a 1:1 relationship between the 
two types of measurement, and that the thermistor measurements can markedly deviate 
from the traditional method for temperatures around or below 0°C or above 25°C.

Whether the thermistor can be used in practice as a substitute for the mercury read-
ings may depend on the context. If the mercury measurement is regarded as a gold 
standard to be replicated, then the thermistor readings are clearly not adequate. On the 
other hand, if the required accuracy is less, and the likely range of use is within 5–20°C, 
then the small (although statistically significant) difference from the 1:1 relationship 
might not be of practical importance and thermistor readings may be acceptable (see 
Section 4.4 for a discussion of biological vs. statistical significance).

One case of regression through the origin where additional care may be required 
occurs when the origin represents some initial or control condition. Observations made 
at, or very close to, the origin may then show little or no variation. For example, consider 
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FIGURE 12.13
Composite set of residual plots based on standardized residuals from regression through the origin for air 
temperature measurements (Example 12.3).
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a zero dose of inoculum in a disease-control experiment. The zero dose here acts both as 
a negative control (in the sense of Section 3.1) and as an initial condition, and should con-
sistently result in no symptoms present. The zero background variation at the zero dose 
will be inconsistent with natural variation found for positive doses, and so, the assump-
tion of a common variance across all deviations (Assumption 2, Section 12.1) does not 
hold (also see the discussion in Section 8.5). One solution is to exclude the initial/con-
trol condition (to avoid introducing bias into the estimate of background variation) and 
constrain the model to pass through the origin. Alternatively, if data are recorded as 
proportions or counts, then a GLM that accommodates such heterogeneity may be fitted 
(Chapter 18).

12.9.3 Calibration

The process of calibration, sometimes also called inverse regression or inverse predic-
tion, is required when scientists wish to use a quick or easy procedure to estimate a 
quantity that is hard to measure directly. For example, in many laboratory procedures, 
a target molecule can be labelled with a dye, and then light absorbance by the dye can 
be directly related to the quantity in a sample. We will call the variable of interest the 
target and the variable to be measured the substitute variable. The calibration proce-
dure uses known quantities of the target variable that span the range of interest (usu-
ally with replication) and measure the outcome in terms of the substitute variable. A 
regression model is then fitted with the substitute variable (which is subject to error) 
as the response and the target variable (which uses known quantities) as the explana-
tory variable. Here, we assume that the relationship is linear, but a similar procedure 
can also be followed for curved or non-linear models. Calibration will only be accurate 
if the regression relationship is a good fit, i.e. with adjusted R2 close to 1, and with no 
evidence of model misspecification. The fitted model is then used to make predictions 
with confidence limits for the target variable given new measurements of the substitute 
variable. In non-mathematical terms, this process derives a range of plausible values 
for the target variable from the CIs for the fitted line, as shown in Figure 12.14 (also see 
Draper and Smith, 1998, Section 3.2).

ynew

xupp
xnew

xlow

FIGURE 12.14
Inverse prediction for observed data (•) with fitted regression line (—) with 95% CIs for a new observation (– –). 
For new measurement ynew, the predicted value of the explanatory variable, xnew, occurs where the fitted line 
equals ynew, with 95% confidence limits, xlow and xupp, obtained as the points at which the CIs equal ynew.
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Suppose a calibration process leads to the fitted SLR model with predictions in the form

 
ˆ( ) ˆ ˆ ,y x xnew new  = +α β

with estimated background variance s2. If we have a new sample and take r independent 
measurements from it (technical replicates), then the mean of these values, denoted ynew, 
gives us an estimate of the true value of the substitute variable, with associated error s2/r. 
We assume that the process used to generate new measurements, and hence the associated 
errors, is the same one used to construct the calibration line. We can plug this new value 
into the prediction formula and rearrange it to get an estimate of the target variable as

 

ˆ
ˆ

ˆ ,x
y

new
new  = − α
β

but we also need some measure of uncertainty in this estimate. The variance associated 
with a prediction for a mean of r observations at value x takes the form
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and confidence limits can be formed from this value (as described in Section 12.5) for a 
range of values of x. Fieller’s theorem shows that the values of x at which the 100(1 − αs)% 
upper and lower confidence limits equal the value ynew give lower and upper 100(1 − αs)% 
confidence limits for the estimate ˆ .xnew  These limits are shown in Figure 12.14 and their 
mathematical formula is

 

ˆ ( ˆ )
ˆ( )

( ˆ )
( )

[ ]

x
g x x

g
s

g

x x
gN

xx
new

new
/

newt s

+ −
−

±
−

− + −−

1 1
12

2 2α

β SS
11 1 2

2 2

r N
g N+



 =







−, ˆ (ˆ )
.

[ ]

where 
t

/SE
 

s /α

β β

These limits only exist when g < 1, which occurs when the t-test for the null hypothesis 
H0: β = 0 exceeds the critical value t s /

N−2
2[ ]α  (see Section 12.4).

In building the calibration curve, it is important that the quantities of the target variable 
are known without error; if these values are also subject to uncertainty, then the fitted rela-
tionship will be subject to attenuation (see Section 12.7) and it would be better to regress 
the target on the substitute variable and directly predict from that relationship.

EXERCISES

 12.1 An experiment was conducted to quantify the growth rate of transplanted cab-
bage plants. Forty cabbage plants were transplanted and four plants (chosen 
at random) were destructively sampled and the number of leaves present was 
counted on the day they were transplanted and 8, 14, 21, 28, 35, 37, 42, 44 and 46 
days afterwards. File meancabbage.dat contains sample numbers (ID), sample 
times (variate Day) and the mean number of leaves per plant at each sample 
(variate NLeaves). Fit a SLR and verify the estimates of the slope and intercept by 
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calculating the relevant sums of squares. Plot the fitted model and comment on 
the quality of the fit. Give a 95% CI for the average growth rate over the period 
(as leaves per plant per day). (We re-visit these data in Exercises 13.2 and 18.2.)

 12.2 The Rothamsted Insect Survey collects insects using 12.2 m suction traps at 
locations across the United Kingdom. As part of an investigation into long-
term changes in the abundance of flying insects, indices of the total biomass 
collected per year (measured as wet weight) were created for 30 years from 
1973 to 2002 for four locations (Shortall et al., 2009). The wet weights (variate 
WetWeight, g) collected from the Hereford trap in each year (variate Year) are 
held in file hereford.dat. Use a SLR to investigate whether there is evidence 
of any linear trend over time in the log-transformed wet weights, calculated 
as log10(WetWeight + 0.5), and summarize the strength of the relationship. Use 
this model to predict the expected wet weight in 2010, and comment on the reli-
ability of this prediction. Plot the fitted model and consider whether there are 
any aspects of the fit that you would wish to examine further. (We re-visit these 
data in Exercises 13.4 and 15.1.)*

 12.3 A pilot study investigated whether measurements of leaf length and width made 
in the field could be used to accurately estimate leaf area. Twenty-five plants were 
chosen at random from a plot of a single variety and the length (cm) and width 
(cm) of the flag leaf on each plant was measured in situ. These leaves were then 
detached from the plants and their area was measured (cm2) using imaging soft-
ware. The data (variates Leaf, Length, Width, Area) are in file flagleaf. dat. Use 
SLR to explore the relationship between leaf area and its estimate constructed as 
length × width. Build and report a predictive model for leaf area, and critically 
assess its performance. In principle, we would expect leaves with zero length 
or width to have zero area; so, does it make sense to fit regression through the 
origin in this context?

 12.4 An experiment was conducted to identify varieties of willow with high yields 
of dry matter. However, as accurate measurement of dry matter is time consum-
ing, the use of a surrogate variable is desirable and several such variables were 
measured on a sample of 113 trees. File willowstems.dat holds the values of dry 
matter (variate DryMatter) and several summary variables, including the length 
of the longest stem (variate MaxLength), which is the simplest to measure. Fit a 
SLR relating dry matter to the maximum stem length – could we reasonably use 
this as a surrogate variable? (We re-visit these data in Exercises 13.5 and 14.5.)†

 12.5 The Rothamsted Insect Survey provided body mass (mg) and wing length (mm) 
measurements for a sample of moths from the Noctuidae family caught in a 
mercury-vapour trap at Rothamsted between 1999 and 2001 (Wood et al., 2009). 
These data are held in file noctuid.dat and include unit numbers (ID), species 
name (factor Species), wing length (variate WingLength) and body mass (variate 
Mass) for each moth. The aim of this analysis is to predict body mass from wing 
length. Use SLR to investigate the relationship between log10(Mass) and wing 
length. As wing lengths were measured to the nearest mm, and there are several 
observations at each distinct value of wing length, create a factor to test your SLR 

* Data from R. Harrington and C. Shortall, Rothamsted Research.
† Data from I. Shield, Rothamsted Research.
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for any evidence of lack of fit. What do you conclude? What other investigations, 
if any, would you like to make? (We re-visit these data in Exercise 15.2.)*

 12.6 A microarray study investigated genes associated with the senescence of leaves. 
Forty-four plants were grown in a controlled environment and the seventh 
leaf was excised from four of these plants at 2-day intervals from 19 to 39 days 
after sowing (at the same point in the day/night cycle each time). The plants 
were allocated to sample dates at random, with a CRD design. Four subsam-
ples (technical replicates) were taken from each leaf and allocated to separate 
microarrays. File senescence.dat holds unit numbers (ID), design information 
(variate Day, factor BiolRep) and the expression value for three genes (variates 
CATMA3A13560, CATMA2A31585 and CATMA1A09000) from each plant fol-
lowing normalization and combination of the values for the four technical rep-
licates. Use SLR to predict the expression of gene CATMA3A13560 over time. Is 
there any evidence of lack of fit to this relationship? (We re-visit these data in 
Exercises 13.1 and 17.2.)†

* Data from J. Chapman, Rothamsted Research.
† Data from V. Buchanan-Wollaston (PRESTA), University of Warwick.
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13
Checking Model Fit

In Chapter 5, residual plots were used to investigate the assumptions underlying the linear 
model for the case of a single qualitative variable (factor). As discussed and briefly dem-
onstrated in Chapter 12, all of these residual plots are also applicable to a model with a 
single quantitative variable or variate (i.e. SLR), as well as to the more complex regression 
models such as those described in Chapters 14 to 18. However, in models with quantitative 
explanatory variables, the additional question arises as to whether a linear trend is a good 
description of the relationship, and several diagnostic plots can be used to investigate this. 
Concepts such as influence and leverage can also help to examine the impact of individual 
points on the fitted line, and cross-validation techniques can quantify the predictive power 
of the model. In this chapter, we introduce these concepts, and review and introduce some 
techniques for checking the fit of regression models.

We start by considering the problem of model misspecification (Section 13.1) and for-
mally define some residual plots that were presented in Chapter 12. We then review the 
different types of residuals first described in Section 5.1 and introduce two new types, 
prediction and deletion residuals, that are particularly helpful in the context of regression 
(Section 13.2). The use of residual plots in regression is then considered (Section 13.3), with 
particular reference to checking for model misspecification. The concepts of leverage and 
influence are then defined and discussed (Section 13.4). Finally, some simple cross-valida-
tion techniques are introduced (Section 13.5).

13.1 Checking the Form of the Model

The form of a SLR model asserts that the response changes as a straight line function of the 
explanatory variate. Any systematic deviation from this form implies that the SLR model 
is not appropriate, or that the model has been misspecified. The first step in any regression 
should therefore consist of plotting the observations, i.e. the values of the response variate 
against the values of the intended explanatory variate, to check whether a linear response 
is plausible, as in Figure 12.2. If the relationship is clearly curved, then transformation 
of the explanatory variate or a non-linear model should be considered (further details in 
Chapter 17). If the relationship appears linear, then the model fitting may proceed and we 
are then in a position to check the quality of our fitted model using numerical tools (such 
as goodness-of-fit statistics, Section 12.6) and diagnostic plots. The fitted model plot, in 
which the fitted model is superimposed on a plot of the observations, can be used to detect 
model misspecification: if the data follow the form described by the model, then the fitted 
line should reflect the trend in the observations across the full range of the explanatory 
variate. Examples are shown for Example 12.1 in Figure 12.3 and for Example 12.3 in Figure 
12.12. In both, there is a suggestion that the model does not fit well at the ends of the range: 
in Example 12.1, the model appears to under-estimate the smallest and largest weights; in 
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Example 12.3, the model appears to over-estimate the smallest and largest temperatures. 
The fitted value plot, in which the standardized residuals are plotted against the fitted val-
ues (see Section 5.2 and below) can be used to investigate this pattern after removal of the 
overall trend. In the SLR model, this is equivalent to plotting the standardized residuals 
directly against the explanatory variate. This type of graph emphasizes deviations from 
the fitted model, as can be seen in Figures 12.4 and 12.13 for Examples 12.1 and 12.3, respec-
tively. These graphs show clear curvature in the pattern of the residuals and hence some 
evidence of model misspecification. A more complex form of model might be investigated 
(see Chapter 17), especially if good prediction is required at the extremes of the explana-
tory variate. However, some common sense is also required. In both cases, the deviations 
from the fitted model are relatively small, and the model accounts for most of the variation 
in the response (with adjusted R2 of 0.778 and 0.986 for Examples 12.1 and 12.3, respec-
tively), and so, the SLR might be deemed adequate as a simple descriptive model. This is 
not the case in the next example.

EXAMPLE 13.1: ELISA ABSORBANCE READINGS

A set of eight ELISA readings were obtained for a series of increasing concentrations 
of a substrate. Here, the aim of the analysis is to describe the relationship between the 
absorbance reading and substrate concentration. The data are presented in Table 13.1 
and can be found in file elisa.dat.

The absorbance is expected to be related to a power of the concentration and is hence 
approximately linearly related to the logarithm of the concentration. For convenience, we 
use the log10-transformation, with an offset (+1) included so that the background absorbance 
(zero concentration) can be included in the model. However, the relationship between 
absorbance and the log10-concentration is clearly not linear, as shown in Figure 13.1.

We already suspect that a SLR model is not appropriate for the data but, for the 
purposes of demonstration, we proceed with the analysis. The model in mathemati-
cal form is

 Absorbance Conc ei i i= + + +α β log ( )  10 1 ,

where the units are labelled with index i = 1 … 8 with Absorbancei and Conci being the 
observed absorbance and concentration for the ith observation. If variate Absorbance 

TABLE 13.1

ELISA Readings (Absorbance) Obtained for 
Different Concentrations of a Substrate 
(Example 13.1 and File elisa.dat)

Concentration Absorbance

0 0.100
0.5 0.678
1 1.107
2 1.609
4 1.958
8 2.202
16 2.414
32 2.485

Source: Data from Rothamsted Research.
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 contains the ELISA absorbance readings, and variate log10Conc contains the log10- 
transformed concentrations, then this model can be written in symbolic form as

Response variable: Absorbance
Explanatory component: [1] + log10Conc

The fitted model accounts for 85.8% of the variation in the data (adjusted R2 = 0.858), 
with the parameter estimates listed in Table 13.2. The slope parameter is clearly signifi-
cantly different from zero (t6 = 6.575, P < 0.001), indicating a strong linear trend in the 
absorbance response with changes in the log10-concentration. If we were to stop here in 
our investigation, we might think that this was a good representation of the data. But 
when we see the fitted model and fitted value plots in Figure 13.2, we realize that the 
straight line fits the data poorly. Although there is a trend present, in the sense that the 
absorbance reading increases with log10-concentration, there is also strong curvature in 
the relationship. Another model that accounts for the curvature must be sought for these 
data, and several possibilities are described in Chapter 17.

It can also be helpful to plot the observed response against the fitted values, particularly 
for the models with several explanatory variates considered in Chapter 14. Departures 
from the 1:1 line then indicate a poor fit of the model to the data. We might be tempted to 
assess this formally by fitting a regression through the origin to this representation, but 
the model is measured better by the goodness-of-fit statistics described in Sections 12.6 
and 14.8. An alternative approach is cross-validation as described in Section 13.5.
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FIGURE 13.1
ELISA absorbance readings plotted against log10(concentration + 1) of a substrate (Example 13.1).

TABLE 13.2

Parameter Estimates with Standard Errors (SEs), t-Statistics (t) and Observed Significance Levels 
(P) for a SLR Model for ELISA Absorbance Readings in Terms of Log10-Concentration of Substrate 
(Example 13.1)

Term Parameter Estimate SE t P

[1] α 0.5458 0.19392 2.815  0.031
log10Conc β 1.5284 0.23244 6.575 < 0.001
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In designed experiments, the values of the explanatory variable can be controlled and 
are often replicated. It is then possible to formally investigate model misspecification using 
the test for lack of fit introduced in Section 12.8.

13.2 More Ways of Estimating Deviations

In Section 5.1, we presented the simple and standardized residuals as estimates of the 
unknown deviations. These can be used to evaluate the validity of the underlying assump-
tions about the distribution of the deviations. We revisit these definitions here in the con-
text of a SLR model, and we also introduce some new types of residuals that are useful for 
models with quantitative explanatory variables.

Recall from Section 5.1 that the simple residuals, êi , are defined as the difference between 
the observed responses and their fitted values. For the SLR model with

 y x ei i i= + +α β  ,

this takes the form

 
ˆ ˆ ˆ ˆe y y y xi i i i i= − = − +( ) ,α β

which is the difference between the response and the fitted straight line. The simple resid-
uals from a SLR model do not have a common variance, as the variance of residual êi  
depends on the value of the explanatory variate, xi. For this reason, it is important to use 
standardized residuals, ri , for regression models, which are defined as
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SE( )
 

where SE( ) êi  is the estimated standard error of the ith simple residual. An explicit expres-
sion for this standard error is given in Section 13.4.2. These residuals are sometimes known 
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(a) Fitted model and (b) fitted values plot from SLR model for ELISA absorbance readings with 
log10(concentration + 1) as the explanatory variate (Example 13.1).
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as internally Studentized residuals. The standardized residuals are constructed to have 
a common variance equal to 1 (unit variance). Note that the standardized residuals appar-
ently take the form of a t-statistic (an estimated quantity divided by its estimated SE, see 
Section 2.4) but – because the numerator and denominator are not independent – they do 
not follow a true t-distribution.

Both the simple and standardized residuals are estimated from the model fitted to the 
full set of data; this has the disadvantage that if an individual observation strongly influ-
ences the model fit, then its influence might not be detected. An alternative method based 
on prediction residuals overcomes this problem. We obtain the ith prediction residual by 
fitting the proposed model with the ith observation excluded, and then predict that obser-
vation from the new fitted model. This approach highlights responses that do not follow 
the general pattern of the model when it is fitted to the rest of the observations. Here we 
use the subscript (i) to denote quantities calculated with the ith observation omitted, and 
ŷ i( ) denotes the prediction for the ith response from a model fitted excluding that observa-
tion. The prediction residual for the ith observation, denoted as ê i( ), is defined as the differ-
ence between the predicted value, ŷ i( ), and the response, yi, i.e.

 
ˆ ˆ .e y yi i i( ) ( )  = −

We shall see an explicit formula for these residuals in Section 13.4.2. Since each observa-
tion is not involved in fitting the model that provides its predicted value, these residuals 
provide a valid measure of the predictive ability of a model. Further discussion and the 
use of these residuals in cross-validation methods is presented in Section 13.5. However, as 
for simple residuals, the prediction residuals do not have a common variance. We therefore 
define the deletion residuals, r(i) , as a standardized version of the prediction residuals,
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ˆ

,

where the estimated standard error SE( )( )
 ê i  is also calculated from a regression analysis 

that omits the ith observation. Deletion residuals are sometimes referred to as externally 
Studentized residuals, and these residuals do follow a true t-distribution. Hence, as a 
simple rule, observations with deletion residuals outside the range of ±2 can be identified 
as potential outliers requiring further examination.

We have explained prediction and deletion residuals in terms of refitting the model to N 
subsets of the data obtained by excluding each observation in turn. In practice, all the quan-
tities required can be calculated from the results of fitting the model to the full set. In par-
ticular, the deletion residuals can be directly computed from the standardized residuals as

 
r r

N p
N p r

i i
i

( )  = − −
− −







1
2 ,

where ri is the standardized residual, N is the sample size and p is the number of param-
eters in the model (p = 2 for SLR models). Other forms are given at the end of Section 
13.4.2. The deletion residuals follow a t-distribution with N − p − 1 df, i.e. N − 3 df for a 
SLR model.
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In general, we recommend the use of deletion residuals as they more readily identify 
outlying observations that have had a strong influence on the fitted model. Further discus-
sion is presented in Section 13.4.

13.3 Using Graphical Tools to Check Assumptions

In Section 5.2, a composite set of residual plots was used to investigate the validity of 
the assumptions underlying a model with a single explanatory factor. In that context, the 
issue of model misspecification did not arise, because the model fitted an effect for each 
treatment or group. In that case, the residuals provide an untainted estimate of the model 
deviations. For SLR, if the model is misspecified then the residuals comprise a mixture 
of two components: one corresponding to the unknown model deviations and the other 
corresponding to the discrepancy between the model and the form of the response. For 
this reason, the residual plots can be used to assess properties of the deviations only if the 
model gives a good representation of the observed trend. When the form of the model is 
adequate, then the composite set of residual plots described in Section 5.2 can be used for 
models with quantitative explanatory variables, including the more complex regression 
models presented in Chapters 14, 15 and 17.

To recapitulate from Section 5.2, the residual plots can be used to check the assump-
tions that the deviations have equal variances (homogeneity of variances) and that they 
are consistent with observations from a Normal distribution. We usually check homo-
geneity of variance by plotting the standardized or deletion residuals, or their absolute 
values, against the fitted values from the model. In these graphs, variation is quantified as 
the vertical spread of the residuals: there should be no large change in this spread across 
the range of the fitted values (see Figure 5.2). If there is evidence of heterogeneity, then 
transformation of the response (Chapter 6) or a generalized linear model (Chapter 18) 
might be considered. The distribution of the residuals can be assessed with histograms 
and Normal probability plots (see Section 5.2.3). A histogram of residuals should show 
a symmetric, bell-shaped distribution, and the probability plot should yield an approxi-
mately straight line, with greater conformance to the expected shape being required for 
larger sample sizes.

EXAMPLE 13.2A: DIPLOID WHEAT

Recall that in Example 12.1, we fitted a SLR model to 190 diploid wheat seed weights 
with seed length as the explanatory variate. A subset of the data was presented in Table 
12.1 and the complete data set can be found in file triticum.dat and Table A.1.

As noted above, the fitted model and fitted value plots suggested some evidence 
of model misspecification. However, the curvature in the data was small compared 
with the strong linear trend and so – with caution – we use the composite set of 
plots based on deletion residuals (Figure 13.3) to assess assumptions about the model 
deviations.

For this large data set, these graphs are very similar to those from the same model 
presented in Figure 12.4, which were plotted with standardized residuals. Variation 
of the residuals appears reasonably constant across the range of the fitted values, 
which accords with the assumption of homogeneity of variances. The histogram of the 
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residuals is symmetric and approximately bell shaped and the Normal plot is approxi-
mately a straight line, which together indicate the consistency of the residuals with a 
Normal distribution. The largest residual (corresponding to a fitted value of just under 
37 mm) seems a little inconsistent with the rest of the distribution, although it does not 
stand out in the Normal plot. Weight and length measurements of this seed should 
perhaps be checked, but unless an error is found, it should be retained in the analysis 
(outliers were discussed in Section 5.4). 

As stated in Section 13.1, in a SLR model, the fitted value plot may be substituted by one 
of the residuals against values of the explanatory variate, but this is not the case for the 
more complex regression models discussed in Chapter 14, which have several explanatory 
variates. In these models, the residuals can be plotted against each explanatory variate in 
turn to look for model misspecification. If the model fits well, then the residuals should be 
distributed homogeneously around zero without any systematic pattern.

The residuals can also be plotted against an additional explanatory variate that might 
help to explain the response, leading to a multiple regression model (see Chapter 14). If this 
graph shows a linear trend, then adding the new explanatory variate to the model might 
improve the fit. If the trend is non-linear, then transformation of the explanatory variable 
or a non-linear model (Chapter 17) might be required. Unfortunately, this graph gives a 
biased impression of the contribution that the new variate would make to the model, but 
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FIGURE 13.3
Composite set of residual plots, based on deletion residuals, for a SLR model with seed weight as the response 
and seed length as the explanatory variate (Example 13.2A).
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an alternative graph, called an added variable plot, can be constructed to give an unbiased 
picture (see Section 14.6).

13.4 Looking for Influential Observations

When a SLR model is fitted, observations with more extreme values of the explanatory 
variate can have a large impact on the fitted line, which may make the resulting predic-
tions unreliable. For example, if we drop one observation from the model and there is a 
large change in the estimated slope parameter, then we should be concerned about the 
robustness of the model. The basic concepts used to investigate this type of problem are 
leverage and influence. Leverage is a measure that identifies the more extreme values of 
the explanatory variate, which have the potential to be highly influential. However, lever-
age cannot quantify whether the observation has had a large impact on the fitted model, 
which is evaluated by its influence. The influence of an observation is a measure of the 
change in the fitted values that would occur if that observation was omitted. These con-
cepts are illustrated for a SLR model in Figure 13.4.

(a) (b)

(c) (d)

yy

yy

x x

x x

FIGURE 13.4
Leverage and influence of the highlighted point (⚬): (a) small leverage and influence; (b) small leverage and large 
influence; (c) large leverage and small influence and (d) large leverage and influence. Black line represents the 
‘true’ straight line relationship, and grey line represents the fitted model.
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In each part of Figure 13.4, the black line represents the ‘true’ underlying straight 
line relationship while the grey line represents the fitted model. Each set of data has 
10 observations in common (solid circles) with one additional highlighted observation 
(open circle) taking a different value in each plot. Figure 13.4a shows the highlighted 
point (⚬) with a value that gives it a small leverage (in the centre of the range of the 
explanatory variate) and with a small influence on the fitted line, which is then close 
to the true line. In contrast, the highlighted point in Figure 13.4b, while also having a 
small leverage, has exerted influence over the fit by increasing the value of the intercept 
(i.e. inducing a bias). In each of Figures 13.4c and d, the highlighted point has a large 
leverage. The highlighted point in Figure 13.4c has little influence on the fit, as it is con-
sistent with the pattern in the rest of the data. In Figure 13.4d, the highlighted point is 
inconsistent with the rest of the data and has a large influence on the fitted line, causing 
changes in the estimates of both the intercept and slope parameters. Note that a point 
with large influence often appears inconsistent with the rest of the data, but might not 
appear as an outlier in residual plots if the fitted line is drawn towards it, as in Figure 
13.4d. These examples demonstrate that although leverage, influence and outliers are 
often closely related, this is not always the case.

13.4.1 Measuring Potential Influence: Leverage

As described above, in a SLR, leverage quantifies the distance between the value of 
an explanatory variate for a given observation and the sample mean of that variate. If 
an observation is an outlier with respect to the explanatory variate (i.e. it has a par-
ticularly small or large value in comparison with the rest of the observations), then 
it is called a leverage point. Observations with large leverage can affect the fit of the 
model, but only if they are inconsistent with the overall trend. Therefore, a point with 
large leverage is not necessarily an influential point (e.g. Figure 13.4c). For this reason, 
leverage is most useful for assessing potential problems prior to analysis. For example, 
if an experimenter has control over values of the explanatory variate, then leverage 
can be assessed for different allocations (of value and replication) for the explana-
tory variate. However, the leverages give further insight into the form of the residuals 
discussed in the previous section, and into calculations of influence, and so we give 
further details here.

One common measure of leverage is called the hat-value. In a SLR model, the hat-values, 
also known as leverages, give a measure of the distance of the ith value of the explanatory 
variate, xi, from its sample mean, x , computed as
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where SSxx is the sum of squares for the explanatory variate (as defined in Section 12.2) and 
N is the total number of observations. The name hat-value reflects the fact that these lever-
ages are related to the fitted values (‘y-hat’). In fact, the ith fitted value, ŷi, can be expressed 
as the sum of all N observed responses, identified as yj, j = 1 … N, multiplied by values hij 
defined as

 
h

N
x x x x

ij
i j

xx
= +

− −1 ( )( )
SS

 .



334 Statistical Methods in Biology

The fitted value for the ith observation can then be expressed as

 

ˆ .y h yi ij j

j

N

=
=
∑

1

 

These weights capture the extent to which the jth observation affects the ith fitted value. 
If hij is large, then the jth observation has a substantial influence on the ith fitted value. 
The leverages, hii, therefore correspond to the influence that an individual observation has 
over its own fitted value. Note that the form of the weights, hij, becomes more complex for 
models containing several explanatory variates.

The leverage hii can take values between 1/N and 1 (i.e. 1/N ≤ hii < 1) and the sum of 
the leverages is always equal to the number of (independent) parameters in the model, p; 
their average is therefore p/N in general, and so 2/N for SLR models. Observations with 
large hii values are identified as having more leverage and, as a rule of thumb, values of 
hii > 2 × p/N are considered to be potential influential points. Leverages can be plotted 
against an explanatory variate or the fitted values.

EXAMPLE 13.2B: DIPLOID WHEAT

For the SLR model from Example 13.2A, the leverage threshold is 2 × p/N  = 
2 × 2/190 = 0.021. Figure 13.5 shows the leverages plotted against the explanatory vari-
ate, with the threshold of 0.021 shown. This plot shows the quadratic relationship 
between the leverages and the explanatory variate in the SLR model, and that units with 
large leverages correspond to more extreme values of the explanatory variate. Clearly, 
most of the values are in the middle of the range with small leverage, but a few of the 
more extreme observations have leverages greater than the threshold of 0.021, with the 
maximum being 0.042. These observations are potentially influential points and should 
be further investigated by the influence measures described below.
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FIGURE 13.5
Leverages plotted against the explanatory variate (seed length, mm) for SLR with seed weight as the response 
(Example 13.2B). The horizontal line indicates leverage threshold (0.021).
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13.4.2 The Relationship between Residuals and Leverages

We can write explicit expressions for the standardized, prediction and deletion residuals 
defined earlier in terms of the leverages, which clarify the relationships between these 
residuals. The estimated variance of the simple residual associated with the ith observa-
tion, êi , can be written in terms of its hat-value as

 Var( ) ( ) , ê s hi ii= −2 1

and the estimated standard error is the square root of this variance. It follows that uncer-
tainty in the residual decreases as the leverage increases. This is because observations with 
very large leverage tend to get fitted more closely than observations with small leverage.

The standardized residual, ri, is calculated as the simple residual divided by its esti-
mated standard error, i.e.
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Since SE( ) êi  is smaller for observations with large leverage, the standardized residuals of 
these observations tend to be slightly inflated relative to observations with smaller lever-
ages. In practice, the range of leverages needs to be very large for this effect to become 
noticeable.

The prediction residuals, ê i( ), can also be written more simply in terms of the simple 
residuals and the leverages as
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So, we can obtain the prediction residual for the ith observation by re-scaling its simple 
residual by one minus its leverage. The variance of the prediction residual takes the form
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where s i( )
2  is equal to the residual mean square (ResMS) obtained from a SLR with the ith 

observation omitted, and this variance can be directly calculated from the SLR results as
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The deletion residual (Section 13.2) can then be expressed in terms of the other residuals as
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13.4.3 Measuring the Actual Influence of Individual Observations

While leverage indicates the potential of individual observations to have a large impact 
on the fitted model, influence statistics measure the actual impact of each observation 
on the fitted model, and are hence generally more useful. Influence statistics help us to 
detect these individual observations that truly affect the fitted model, known as influen-
tial points. An influential point may affect one or more aspects of the fitted model. For 
example, in Figure 13.4b, the highlighted point affects the estimated intercept but not the 
slope; in Figure 13.4d, the highlighted point affects the estimates of both the intercept and 
slope. In both cases, the fitted model is changed, and in this section, we present some com-
mon influence statistics that measure the impact of individual observations on the overall 
fit of the model via changes in the fitted values.

Cook’s statistic, Di, measures the influence of an individual observation in terms of the 
change in the fitted values that would occur if that observation was omitted. For the ith 
observation, this statistic can be computed as
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where ri is the standardized residual, hii is the leverage for the ith observation, and p is 
the number of (independent) parameters in the model. Larger values of Di correspond to 
observations with more influence on the fitted values. As a rule of thumb, values of Di > 1 
indicate influential points.

A modified form of Cook’s statistic can be more useful for diagnostic plots, because 
its values can be used in half-Normal plots, where deviations in the tail of the distribu-
tion indicate the presence of potentially influential points. This modified statistic, Ci, is 
defined as
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which uses the deletion residual rather than the standardized residual (Atkinson, 
1984). A plot of the modified Cook’s statistic against the explanatory variate(s) or fitted 
values can identify the location of influential points that exceed the threshold value of 
C N p Ni > −2 ( )/ .

Figure 13.6 shows the modified Cook’s statistics plotted against the fitted values and as a 
half-Normal plot (see Section 5.2.3) for the data of Figure 13.4c (large leverage, small influ-
ence) and Figure 13.4d (large leverage, large influence). When the highlighted observation 
has a small influence, all the Ci values fall below the threshold of 1.81 (11 )/= −2 2 11 
(Figure 13.6a) and the half-Normal plot shows an approximately straight line (Figure 
13.6b). When the highlighted observation has a large influence, it has a very large value 
of Ci = 6.87, substantially exceeding the threshold value (Figure 13.6c), and there is clear 
deviation from a straight line pattern in the half-Normal plot (Figure 13.6d).

Influential points might be outliers, but they do not necessarily appear as outliers in 
residual plots because the model fit has been adapted to accommodate them. In extreme 
cases, observations with both large leverage and large influence may be fitted almost 
exactly, giving a very small residual and possibly causing distortion elsewhere in the 
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model. The investigation, and treatment, of influential points should be similar to that for 
other potential outliers, as discussed in Section 5.4. An important difference, in the context 
of regression models, is that we know that if we omit the influential observations, then the 
fitted model will change. Such influential observations should be checked for errors – in 
either the response or the explanatory variate or both – and corrected if necessary. If there 
is no evidence of any mistake, then the presence of the influential observations might indi-
cate that the model is inadequate to explain the relationship: another explanatory variate 
might be required, or the shape of the relationship might be wrong. The influential obser-
vations should not be removed from the dataset without good reason, and any such action 
should be documented and reported. It may be helpful to consider the fit with and without 
any highly influential observations (possibly omitting potential outliers one at a time).

EXAMPLE 13.2C: DIPLOID WHEAT

The modified Cook’s statistics for the SLR model of Example 13.2A are plotted against 
the fitted values and as a half-Normal plot in Figure 13.7.

There are N = 190 observations, and the SLR model has p = 2 parameters, giving a 
threshold value of 2 190 2 190 1 99( )/− = . . Using this threshold, we might identify six 
to eight influential points, and the plot of the modified Cook’s statistics against the fitted 
values shows that most of the influential points are the seeds with the smallest and larg-
est predicted lengths. The half-Normal plot appears curved rather than straight, and the 
eight largest values are not convincingly part of this trend. We know from our previous 
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FIGURE 13.6
Modified Cook’s statistics plotted against fitted values from the SLR in (a) Figure 13.4c and (c) Figure 13.4d; half-
Normal plots of modified Cook’s statistics from the SLR in (b) Figure 13.4c and (d) Figure 13.4d.
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analysis (Figure 13.3) that there is some doubt about the fit of the model in these more 
extreme regions of the explanatory variate (seed length); the influence statistics now 
suggest that these regions may also affect the overall fit of the model. However, if we 
omit the eight points whose modified Cook’s statistic exceeds the threshold, then the 
change in the fitted line is small: the intercept decreases by −0.15 and the slope increases 
by 0.006 units; both changes are small compared with the standard errors of the esti-
mated parameters (see Table 12.4). We can conclude that collectively, these influential 
points have only a small impact on the overall fit of the model.

13.5 Assessing the Predictive Ability of a Model: Cross-Validation

Cross-validation methods are used to assess the predictive ability of a model, and they 
can also provide an effective basis for choosing between competing models (see Section 
14.9.3). Critical evaluation of a model is vital, as it enables limitations to be detected. This 
knowledge is especially important when the quality of real-life decisions depends on the 
reliability of predictions. For example, if a model is developed to predict contamination of 
grain via a sampling procedure, then the predictions must be accurate: if contamination is 
over-estimated, then good grain will be wasted; if it is under-estimated, then food quality 
might be compromised. To provide a realistic picture of its performance, a model should 
ideally be evaluated with an independent set of data, i.e. not the data on which the model 
was developed and fitted. The fitted model will tend to adapt to quirks in the original data 
that may not be representative of a wider population; so, the independent data should be 
representative of the population to which the model is going to be applied. The original 
data to which the model was fitted and the independent data used to test the model are 
commonly called the training and validation sets, respectively.

The cross-validation process consists of two steps. In the first step, a model is fitted to 
the training set. In the second step, this fitted model predicts the response for observa-
tions in the validation set. The differences between the observed and predicted values 
in the validation set, which we call discrepancies, may give some indication of ranges of 
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Modified Cook’s statistics from SLR for seed weight with explanatory variate seed length: (a) plotted against 
fitted values and (b) a half-Normal plot (Example 13.2C).
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the explanatory variable(s) for which predictions are reliable, and those for which they 
are unreliable. Note that the discrepancies are not the same as model residuals: residuals 
arise from the set of observations used to fit the model, whereas discrepancies arise from 
an independent set of observations not used in fitting the model. The overall predictive 
ability of the model may be quantified by summaries of these discrepancies in terms of 
statistics measuring bias or precision, which are described below. If the model is consid-
ered acceptable after the cross-validation process is complete, then a final model is often 
fitted from the combined training and validation sets.

In practice, it is often difficult or impractical to obtain further independent data and 
so, for the purposes of proper model validation, the original data may be split into two 
distinct subsets that form the training and validation sets. This cross-validation method is 
known as data splitting. At least half of the data will usually be allocated, at random, to 
the training set. The partitioning process has several drawbacks – both the quality of the 
fitted model and the results of the cross-validation may depend on the partition selected, 
particularly when the number of observations in either subset is small. The optimal parti-
tion depends on the context: a larger training set may produce a more robust model, but 
does not leave sufficient observations for reliable validation.

When there are too few data to be divided into two subsets, the leave-1-out cross- 
validation method can be used. Here, the training set (of size N − 1) contains all but one of 
the observations, which becomes the validation set (of size 1). This procedure is repeated 
for each observation in turn. Hence, the model is fitted N times: first, the model is fitted 
to the data with the first observation omitted and the response for the first observation is 
predicted; then the same procedure is followed for the second observation, and so on. In 
this case, the discrepancies are equal to the prediction residuals defined in Section 13.2. 
Another variant of this procedure, known as the leave-k-out cross-validation, splits the 
data into subsets of size k and uses these as validation sets with training sets of size N − k 
(the remaining observations). Again, the model is fitted for each training set and predicts 
the response in each validation set. A third variant, known as k-fold cross-validation, 
splits the data into k subsets of approximately equal size and uses each subset in turn as 
the validation set.

In all these cross-validation methods, the predictive ability of the model is assessed on 
the discrepancies between the observed values and predictions made for the validation 
set. If these discrepancies are small, then the model is deemed to have good predictive 
ability. To define summary statistics that quantify the discrepancies, we need to identify 
the validation set separately from the training set. We illustrate the approach for the case 
of a SLR model, but the procedure is similar for more complex models. We denote the 
number of observations in the validation set as M and represent these observations as Y1 
… YM, with X1 … XM as the associated values of the explanatory variate. From fitting a SLR 
model to the training set, we obtain parameter estimates α̂ and β̂. These can be used to 
form predictions for the validation set as

 
ˆ ˆ ˆY Xi i= +α β

for all observations, i = 1 … M. The discrepancies, Y Yi i− ˆ , measure the predictive ability of 
the model on the validation set. Plotting the discrepancies against the explanatory variate, 
Xi, might indicate specific ranges within which the model gives poor predictions.

Several statistics have been devised to summarize overall predictive ability. Here, we 
measure bias with the prediction bias statistic and we measure precision with the mean 
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absolute difference and the square root of the mean square error. The prediction bias (PB) 
of the fitted model is estimated as the mean of the discrepancies across all observations in 
the validation set, written as

 
PB ( ) = −

=
∑1

1
M

Y Yi i

i

M

ˆ .

The PB takes a positive value if the predictions persistently under-estimate the observed 
response, and a negative value if they persistently over-estimate the observed response. 
If the predictions are unbiased, then the PB should be close to zero, but note that this can 
also occur if positive bias in one area is cancelled out by negative bias in another; so, the 
numerical summary should be interpreted alongside a graph of the discrepancies against 
the fitted values. This cancelling out cannot happen with the mean absolute difference 
(MAD), which is calculated as the mean of the absolute discrepancy values, i.e.

 
MAD | = −

=
∑1

1
M

Y Yi i

i

M

| .

The MAD is close to zero only if most of the discrepancies are small. A related measure, 
the mean square error of prediction (MSEP) is the mean of the squared discrepancies, 
written as

 
MSEP ( )  = −

=
∑1 2

1
M

Y Yi i

i

M

ˆ .

This quantity is analogous to the ResMS from fitting the SLR model; the difference here 
is that estimation and prediction use different sets of data. If the predictive ability of the 
model is good, then the MSEP will be similar in size to the ResMS, on the assumption that 
the background variation is similar in the training and validation sets. The square root of 
the MSEP, known as the root mean square error (RMSE),

 RMSE MSEP  = ,

is a common alternative to the MSEP. Both the MAD and RMSE take positive values, with 
large values indicating a model with poor predictive ability. Both statistics are easily inter-
preted as they are on the same scale as the observations; the major difference between 
them is that the RMSE gives more weight to large discrepancies. These statistics are espe-
cially useful for comparisons of different models. It can also help to express the PB, MAD 
and RMSE as a percentage relative to the average response, Y, from the validation data 
set. For example, PB% = 100 × PB/Y represents the prediction bias as a percentage of the 
average response.

If you are concerned that the predictive ability of the model might change for specified 
subgroups, for example for large, medium or small values of the explanatory variate, then 
it may be appropriate to partition the validation set according to this criterion and to cal-
culate and compare these summary statistics for each subgroup separately.
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EXAMPLE 13.2D: DIPLOID WHEAT

In Examples 13.2A to 13.2C, we found some evidence of model misspecification in 
the SLR model that describes seed weight as a linear function of length. We can 
now examine the predictive ability of this model directly with cross-validation. To 
do this, we have split the data into two equally sized subsets: 95 observations were 
selected at random and allocated to the training set and the remaining 95 observa-
tions were allocated to the validation set. The SLR model was fitted to the training 
set, and accounted for 81.0% of the variance, with the parameter estimates shown in 
Table 13.3.

The parameter estimates accord with those from the full model (Table 12.4), although 
with a somewhat smaller intercept, steeper slope and larger standard errors, reflecting 
the reduced size of the training set.

The fitted model is shown in Figure 13.8a with the validation set, and Figure 13.8b shows 
the discrepancies between the observations in the validation set and their predicted val-
ues, plotted against the associated values of seed length, the explanatory variate.

The fitted model appears to run through the cloud of observations, but the discrepan-
cies appear to show a general trend of decreasing value as seed length increases, with the 
exception of one very long seed. This suggests that the fitted slope is not quite following 
the trend in the validation set, although the general pattern is reasonable. The PB takes 
value −1.07, or −3.9% as a percentage of the mean seed weight (Y  = 27.67 in the validation 
set), indicating slight over-estimation of the response on average. The MAD and RMSE 
are 2.62 and 3.22, respectively, or 9.5% and 11.6% of the mean response. For comparison, 
the estimated background standard deviation from the training set was s = 2.76 and so, 
the average discrepancy in the validation sets is close to background variation in the 
training set. These results suggest no great problems with the SLR model. If we decided 
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Cross-validation of SLR model for seed weight with seed length as the explanatory variate. (a) Validation set (95 
observations) plotted with the SLR model fitted to the training set (remaining 95 observations) and (b) discrep-
ancies plotted against the explanatory variate (Example 13.2D).

TABLE 13.3

Parameter Estimates with Standard Errors (SEs), t-Statistics (t) and Observed Significance Levels 
(P) for a SLR Model for Seed Weight in Terms of Seed Length, Based on a Randomly Selected 
Training Set of 95 Observations (Example 13.2D)

Term Parameter Estimate SE t P

[1] α −31.299 3.0537 −10.250 < 0.001
Length β 18.358 0.9158 20.045 < 0.001
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to fit a more complex model (e.g. Chapter 14), this type of cross-validation could be used 
to compare and evaluate different models.

In the case of leave-1-out cross-validation, the MSEP is known as the predicted residual 
sum of squares (PRESS), and a small value of the PRESS statistic indicates good predictive 
ability. Leave-1-out cross-validation is also closely related to the technique of jackknifing, 
which is used to obtain estimates of bias and precision for individual parameters or other 
model statistics. This technique is outside the scope of our account here, but you can find 
details in Efron and Tibshirani (1993).

EXERCISES

 13.1 The microarray study introduced in Exercise 12.6 (data in file senescence.dat) 
investigated gene expression associated with the senescence of leaves. Use SLR 
to predict the expression of gene CATMA2A31585 over time, and use diagnostic 
plots and a formal test of lack of fit to assess the quality of this model. (We re-visit 
these data in Exercise 17.2.)

 13.2 Now, consider the original data from the experiment described in Exercise 12.1. 
The numbers of leaves on each plant (variate NLeaves) are in file cabbage.dat 
with unit numbers (ID) and sample dates (variate Days). Fit a SLR and use diag-
nostic plots to check the fit of the model. Would a transformation be appropriate 
here? If so, implement it and re-fit the SLR on your chosen scale. Plot the fitted 
model and check for any evidence of lack of fit. Give a 95% CI for the growth rate 
over the period (as leaves per day) and interpret this estimate. Can you recon-
cile this result with the one you gave in Exercise 12.1? (We re-visit these data in 
Exercise 18.2.)

 13.3 Chickweed plants were sampled from a field trial to investigate whether the 
number of seeds produced could be related to the plant biomass, measured 
as dry weight (g). File chickweed.dat holds unit numbers (ID), the number of 
seeds (variate NSeed) and dry weights (variate DryWt) for 36 plants. Investigate 
the relationship between the variables, and use diagnostic plots to help decide 
whether you can use SLR to give a good description of this relationship. (We re-
visit these data in Exercises 17.3 and 18.7.)*

 13.4 In Exercise 12.2, you fitted a SLR to the log-transformed wet weight of flying 
insects collected over 30 years. Re-analyse these data without transformation, 
and use diagnostic plots to assess whether the model assumptions are better met 
on the untransformed or log scale. Check whether there is any sign of correla-
tion in the errors between successive measurements on your chosen scale. (We 
re-visit these data in Exercise 15.1.)

 13.5 In Exercise 12.4, you used SLR to establish whether the maximum stem length 
(variate MaxLength in file willowstems.dat) could be used as a predictor of dry 
matter (variate DryMatter).

 a. Use diagnostic plots to critically examine the fit of this SLR. Fit SLRs in terms 
of the other possible surrogate variables (variate SumLength is the sum of 
lengths of all stems, variate SumDiam is the sum of diameters of all stems 
and variate LengthTop5 is the average length of the five longest stems) and 

* Data from P. Lutman, Rothamsted Research.
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investigate the quality of the fit in each case. Which variable is the best pre-
dictor of dry matter?

 b. As there are 113 samples, there are sufficient data to compare these SLR mod-
els by cross-validation. Select 57 of the samples and re-fit the SLR for each 
explanatory variable from this subset, then assess their fit using the remain-
ing 56 samples: calculate the prediction bias (PB), mean absolute difference 
(MAD) and root mean square error (RMSE). Which model has the best pre-
dictive properties? How did you select your samples, and was this method 
satisfactory?

  (We re-visit these data in Exercise 14.5.)
 13.6 Yield and a measure of disease were gathered from a field trial to try to establish 

a yield loss relationship. The unit numbers (ID), disease index (variate Index) and 
yield (variate Yield) are in file yieldloss.dat. Fit a SLR and evaluate the quality 
of this model. What happens if you exclude any highly influential observations 
from the model? What can you conclude about the reliability of the SLR?

 13.7 The EXAMINE project (see Example 14.2) identified various measures of cold-
ness during the winter as good predictors of the date of the first capture of vari-
ous aphid species in suction traps. Here, we investigate the predictive ability of 
variable C60Day (the average temperature during the coldest 60-day period) to 
predict the date of the first capture of the aphid Myzus persicae (variable Mpe1st) at 
Long Ashton (in south-west England) over the periods 1970–1988 and 1993–2000. 
The data (variates ID, Year, C60Day, Mpe1st) are held in file longashton. dat. Fit 
a SLR and use diagnostic plots to examine the fit. Is there any evidence of tem-
poral correlation? Identify any influential observations and examine the impact 
of excluding them from the fitted model. What conclusions can you draw about 
the reliability of the SLR?*

* Data from R. Harrington, Rothamsted Research.
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14
Models for Several Variates: Multiple 
Linear Regression

In Chapter 12, we introduced simple linear regression, which models a response variable 
as a straight line function of a single quantitative explanatory variable, or variate. In this 
chapter, we extend the concept to allow several variates in a multiple linear regression 
(MLR) model. This extension is analogous to the multi-factor model (Section 8.1) which 
investigates the simultaneous effects of several different qualitative variables, or factors, 
on the response. These extensions allow more realistic models, as usually several differ-
ent explanatory variables might be associated with changes in the response, particularly 
in observational studies in which there is little or no control over the experimental con-
ditions. In these circumstances, there can be strong correlation, or collinearity, between 
explanatory variates that can complicate the choice of which variates to include in a model. 
This chapter outlines the basic properties of MLR models and introduces methods for 
selection of explanatory variables.

As with any modelling exercise, the first step in building a MLR model is to explore the 
data, in this case to investigate the inter-relationships among the explanatory variates as 
well as those between the response and the individual explanatory variates (Section 14.1). 
The general form of the MLR model (Section 14.2) is an extension of the SLR model and, 
as in that model, parameter estimation is achieved by the method of least squares (Section 
14.3). For a given set of explanatory variates, analysis of variance (ANOVA) is again used to 
estimate background variation, to assess whether the variability associated with the model 
is large compared with background variation, and to assess the contribution of individual 
explanatory variates to the model (Section 14.4). The estimate of background variation is 
used to make inferences on the model parameters, including predictions (Section 14.5). 
Prediction from the fitted model is often one of the main aims of a MLR, but accurate 
prediction requires a well-fitting model. We can investigate model misspecification by 
visualization of the contribution of individual explanatory variates to the model (Section 
14.6). The choice of explanatory variates to include in a model can be complicated by the 
presence of correlation, or collinearity, between them and cases of very strong collinear-
ity should be detected and avoided (Section 14.7). Additional goodness-of-fit statistics are 
available for MLR models (Section 14.8) and these can be used to compare models with 
different sets of explanatory variates. These statistics are utilized in various strategies for 
model selection (Section 14.9).

14.1 Visualizing Relationships between Variates

A MLR model aims to describe the relationship between a single response variable and 
two or more variates. Because correlation within the set of explanatory variates can affect 
the stability of a MLR model, we first inspect the data to detect which explanatory variates 
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are clearly associated with the response, to see if these relationships are approximately lin-
ear, and to detect any strong correlations between pairs of potential explanatory variates.

As with SLR models, it is assumed that there is a straight line relationship between the 
response variate and each potential explanatory variate; however, in a MLR model, this 
relationship might hold only after one or more other explanatory variates has been taken 
into account, and so may not be immediately apparent. The presence of strong correlations 
between pairs of explanatory variates is an indication of collinearity, where the two vari-
ates are essentially measuring the same characteristic of the response, and which can cre-
ate problems in interpretation and (in extreme cases) problems in fitting the model. These 
issues are discussed further in Section 14.7. Here, we investigate patterns of pairwise cor-
relation between variates by constructing a correlation matrix (see Section 2.5) and by 
visualizing the underlying relationships in more detail with a scatter plot matrix.

Calculation of the correlation matrix for a response variate and set of potential explana-
tory variates summarizes all pairwise correlations within the set (see Section 2.5). A scatter 
plot matrix displays the pairwise scatter plots for the set of response and potential explan-
atory variates in the form of a matrix so that each row of plots has the same variate plotted 
on the y-axis and each column has the same variate plotted on the x-axis (see Figure 14.1). 
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Scatter plot matrix for the diploid wheat seed data (Example 14.1).
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This visual inspection of patterns of association also allows detection of curved relation-
ships and of unusual, or outlying, observations.

EXAMPLE 14.1A: DIPLOID WHEAT

In Example 12.1, we described an experiment in which several morphological traits 
were measured on 190 seeds from a line of diploid wheat, Triticum monococcum. The 
traits measured on each seed were diameter (mm), length (mm), weight (mg), mois-
ture content (%) and hardness index. The aim of the analysis was the identification 
of variables associated with differences in seed weight. The data can be found in file 
triticum.dat and Table A.1. We previously fitted a SLR model to describe seed weight 
as a linear function of seed length, and this model accounted for 77.8% of the varia-
tion in seed weight (adjusted R2 = 0.778). Now, we want to know if we can improve this 
model by adding information from other explanatory variates.

A scatter plot matrix for the four explanatory variates (Length, Diameter, Moisture, 
Hardness) and the response variate (Weight) is shown in Figure 14.1.

Plots of seed weight against the explanatory variates are shown in the last row of 
the matrix. It is clear that weight is linearly associated with both length and diameter, 
but there is no obvious association of weight with either of moisture content or hard-
ness. However, it is still possible that there is a relationship between weight and either 
hardness or moisture content after adjustment for length (or diameter), as this type of 
indirect relationship would not necessarily be visible here. There is a very strong asso-
ciation between length and diameter, indicating that these variables contain essentially 
the same information (are almost collinear). There are no other associations apparent 
within the set of explanatory variables. The correlation matrix (Table 14.1) corroborates 
these observations, and quantifies the strong correlation between diameter and length 
(r = 0.999) and between both of these variates and seed weight (r = 0.883 and 0.887, 
respectively).

14.2 Defining the Model

Having gained some insight into the structure of the data, we can start to build models. 
For the moment, we ignore the topic of model (or variable) selection, which is discussed in 
Section 14.9, and assume that we know which explanatory variates we wish to include in 
a MLR model.

The simplest MLR model is an obvious extension of the SLR model to relate a response 
variate to two explanatory variates. Where a SLR model fits a straight line in a two-dimen-

TABLE 14.1

Sample Correlations among Response (Weight) and Explanatory Variates, with Observed 
Significance Level in Parentheses, for the Diploid Wheat Study (Example 14.1A)

Length —     

Diameter 0.999 (< 0.001) —    
Moisture −0.023 (0.748) −0.021 (0.773) —   
Hardness −0.124 (0.088) −0.125 (0.087) −0.112 (0.125) —  
Weight 0.883 (< 0.001) 0.887 (< 0.001) −0.063 (0.390)  −0.207 (0.004) —

Length Diameter Moisture Hardness Weight
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sional space, a MLR model with two explanatory variates fits a plane in a three-dimen-
sional space, as shown in Figure 14.2.

This model is represented mathematically as

 yi = α + β1x1i + β2x2i + ei , (14.1)

where, as for the SLR model, the index i is used to identify the individual observations 
with labels from 1 to N (the number of observations). The value yi is the ith observation of 
the response variate (symbolically denoted as variate y), x1i and x2i are the associated val-
ues of the first and second explanatory variates (denoted x1 and x2), and ei is the deviation 
from the plane for the ith observation (i = 1 … N). The intercept parameter, α, is the fitted 
response when both explanatory variates are zero, and parameters β1 and β2 are the slopes 
(gradients) of the response as the first and second explanatory variates vary, respectively. 
The standard assumptions presented in Section 12.1 all also apply to the MLR model.

We need also to extend the symbolic form of the explanatory component of the model. 
This component now includes the intercept and both explanatory variates as additive 
terms. So, the explanatory component of the model from Equation 14.1 is written symboli-
cally as

Explanatory component: [1] + x1 + x2

where, as in Section 12.1, [1] denotes the variate taking value 1 everywhere, which is associ-
ated with the intercept parameter α, and the explanatory variates x1 and x2 are associated 
with the slope parameters β1 and β2, respectively.

This model represents a plane in three-dimensional space, as shown in Figure 14.2, 
defined in terms of the parameters α, β1 and β2. Parameter α is the intercept of the fitted 
plane with the y-axis at the values x1 = x2 = 0, and is also the predicted response at that 
point. Parameter β1 is the change in value of the fitted plane for one unit increase in the 
first explanatory variate, x1, with the value of the second explanatory variate, x2, held con-
stant. Similarly, parameter β2 is the change in value of the fitted plane for one unit increase 

y
y = α + β2 x2

y = α + β1 x1

(yi, x1i, x2i)
x1

x2O

α 

FIGURE 14.2
Plane (y = α + β1x1 + β2x2) for a MLR with two explanatory variates x1 and x2. • observed values above the plane, 
● observed values below the plane, ○ fitted values on the plane. Solid vertical lines represent the deviations, ei, 
of the observations from the plane. O = origin (0, 0, 0).
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in the second explanatory variable, x2, with the value of the first explanatory variable, x1, 
held constant. This model is based on the assumption that the two explanatory variates 
affect the response variate independently, so that for a fixed value of the second explana-
tory variate, the relationship of the response variate with the first explanatory variate is a 
straight line: the intercept of this straight line varies according to the value of the second 
explanatory variate, but the slope remains constant. This can be seen mathematically by 
re-grouping the terms in Equation 14.1 as

 yi = (α + β2x2i) + β1x1i + ei .

With the value of the second explanatory variate held fixed, this is equivalent to a SLR 
model in terms of the first explanatory variate. Of course, a similar interpretation can be 
made for the second explanatory variate if the first is held fixed.

EXAMPLE 14.1B: DIPLOID WHEAT

From the analysis in Example 12.1, we already know that seed weight is strongly related 
to length. From biological arguments, we suspect that for a given length, the weight 
might also be affected by hardness of the seed, and so we add this second explanatory 
variate into the model. In mathematical form, the model can be written as

 Weighti = α + β1 Lengthi + β2 Hardnessi + ei ,

where Weighti, Lengthi and Hardnessi are the weight, length and hardness index of the 
ith seed, respectively, and ei is the deviation for that seed. As described above, α is the 
predicted seed weight for a seed of zero length and zero hardness. This is a substantial 
extrapolation beyond the range of the observed data and will probably not have biologi-
cal meaning (see discussion at the end of Section 12.5). Parameter β1 is the increase in 
seed weight for one unit increase in length (with hardness held fixed) and parameter β2 
is the increase in seed weight for one unit increase in hardness (with length held fixed). 
In symbolic form, this model is written as

Response variable: Weight
Explanatory component: [1] + Length + Hardness

where the variates Weight, Length and Hardness contain the values of seed weight, 
length and hardness index, respectively.

The MLR model can be extended from two to any number of explanatory variates, 
although simpler models – if plausible – are generally regarded as more desirable (see 
Section 14.9). The mathematical form of a general MLR model with q explanatory variates is

 yi = α + β1x1i + … + βlxli + … + βqxqi + ei , (14.2)

where yi is the ith observation of the response, xli is the associated value of the lth explana-
tory variate (denoted xl in symbolic form, l = 1 … q), and ei is the deviation for the ith 
observation. Again, the standard assumptions presented in Section 12.1 all apply to this 
model. We use p to denote the total number of parameters in a MLR model. Here, there 
are p = q + 1 parameters (β1 to βq and α) to be estimated from the data. The fitted surface is 
now a hyper-plane in multiple dimensions and hard to envisage, but the parameters can 
still be interpreted as previously. Parameter α is the predicted response with xl = 0 for all 
q explanatory variates. Parameter βl is the change in value of the fitted plane for one unit 
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increase in the lth explanatory variable with the values of all the other explanatory variates 
held constant.

14.3 Estimating the Model Parameters

Many of the principles introduced in the context of a SLR model apply directly also to a 
MLR model. Parameter estimates are obtained by the principle of least squares finding the 
parameter values that minimize the residual sum of squares, ResSS. For the general MLR 
model of Equation 14.2, the fitted values are written as

 
ˆ ˆ ˆ ˆ ˆ ,y x x xi i l li q qi= + + + + +α β β β1 1 … …  

(14.3)

where estimated values are again indicated by the hat () embellishment. The simple 
 residuals are again the differences between the observed and fitted values
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The ResSS is the sum of the squares of these simple residuals and so can be written as
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The estimated least squares parameters are those that minimize this quantity. We do not 
present the derivation of these parameter estimates, but details can be found in Rawlings 
et al. (1998). We also do not present the general form of the parameter estimates in the 
MLR model, as the expressions are often complex and difficult to interpret, and in prac-
tice we obtain these estimates from statistical software. However, for a MLR model with 
just two explanatory variates, the expressions are relatively easy to obtain, and give some 
insight into the adjustments made when more than one variate is present. As for the SLR 
model, estimates are based on the sums of squares and cross-products for the response 
and explanatory variates, introduced in Section 12.2. The sums of squares for the response 
and two explanatory variates are written as
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where y  is the mean of the response variate, and x1 and x2 are the means of the two explan-
atory variates, respectively. The sums of cross-products between the variates are written as
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Recall that the sums of squares and the sums of cross-products, as presented in Section 
12.2, are simply scaled versions of unbiased sample variances and covariances, respec-
tively. The two slope parameter estimates are then calculated as

 
β̂1 2

2 2 1 1 2 2

1 1 2 2 1 2

=
× − ×

× −
(SS SS ) (SS SS )

(SS SS ) (SS )
x x x y x x x y
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1 1 2 1 2 1

1 1 2 2 1 2

=
× − ×

× −
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x x x x x x ))2 ,

and the estimated intercept parameter can be written in terms of the estimated slopes and 
the response and explanatory variate means as

 
ˆ ˆ ˆα β β= − −y x x1 1 2 2  .

The estimated slopes for the explanatory variates (β̂1 and β̂2) usually differ from those 
obtained from two separate SLR models because of correlation between the two variates. 
However, if this correlation (and hence the sum of cross-products) is zero, i.e. if SSx x1 2 0= ,  
then the estimated slopes are equal to those that would be obtained in the two separate 
SLR models, because the second term in both the numerator and denominator of the 
expressions for the slope parameter estimates becomes zero when SSx x1 2 0= . When the 
correlation between two explanatory variates is zero, we refer to them as orthogonal, and 
their effect on the response can be ascertained independently (as discussed for factor mod-
els in Section 11.1). When the correlation is not zero, the coefficient for one variate must be 
adjusted for the presence of the other in the model, with the adjustment depending on the 
covariance between them.

EXAMPLE 14.1C: DIPLOID WHEAT

We now estimate parameters in the MLR model of Example 14.1B for seed weight in terms 
of the explanatory variates length (x1 = Length) and hardness index (x2 = Hardness).

The sums of squares and cross-products for this set of variables can be calculated 
as SS 19.2699x x1 1 = , SS 29,721.0461x x2 2 = , SS 330.9297x y1 = , SS 2033x y2 3049= − .  and 
SS 380x x1 2 94 0= − . . The variate means are y = 28.658, x1 = 3.295 and x2 = 13.297. Hence, 
the parameter estimates can be obtained as
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 ˆ . . . . . . .α = − ×( )− ×( ) = −28 66 16 93 3 30 0 049 13 30 27 795 

The fitted MLR model can therefore be written as

 Weight Length Hardnessi i i
 = − + × − ×2 95 16 934 0 0497 7. . . . 

Hence an increase of 1 mm in seed length corresponds, on average, to an increase in 
seed weight of 16.93 mg for a fixed value of hardness. This value is a little different to 
that obtained in the SLR model of Example 12.1B (in which the estimated slope was 
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17.17) because of an adjustment for hardness index in the model. This adjustment is 
small because the correlation between these two variables (r = −0.124, Table 14.1) is also 
small. For a given seed length, an increase of one unit in hardness index corresponds to 
a decrease in seed weight, on average, of 0.049 mg.

14.4 Assessing the Importance of Individual Explanatory Variates

For a MLR model, the ANOVA is used to estimate the background variability which can 
then be used to make statistical inferences, to assess whether variation associated with the 
fitted model is larger than background variation, and to assess the contributions of indi-
vidual explanatory variates to the model.

As with the SLR model, the summary ANOVA for a MLR model partitions the total sum 
of squares, TotSS, into a component due to the regression model, ModSS, and the residual 
variation, ResSS. The calculations for these quantities take the same generic form as those 
presented in Section 12.3, namely
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Their form in terms of sums of squares and cross-products is now more complex and so is 
omitted here. The degrees of freedom are partitioned in a similar manner, following the 
same principles as for the SLR model. In the MLR model, the total df is still TotDF = N − 1. 
The number of parameters, p, is now equal to the number of explanatory variates plus one, 
i.e. p = q + 1. The model df is then ModDF = q = p − 1, and the residual df is ResDF = N − p. 
The form of the resulting ANOVA table is shown in Table 14.2.

An estimate of the background variation, s2, is obtained from the residual mean square as

 
s

N p
2 = =

−
ResMS

ResSS
.

However, as for the SLR model, this quantity is a good estimate of the true background 
variation only if there is no model misspecification (see the discussion in Section 13.1). 
Diagnostic checks on the model fit and residuals should be made before conclusions are 
drawn; these checks are described in Section 14.6.

TABLE 14.2

Structure of the Summary ANOVA Table for a MLR Model with q Explanatory Variates and 
p = q + 1 Parameters

Source of 
Variation df

Sum of 
Squares Mean Square Variance Ratio P

Model p − 1 ModSS ModMS = ModSS/(p − 1) F = ModMS/ResMS Prob(Fp−1,N−p > F)
Residual N − p ResSS ResMS = ResSS/(N − p)   
Total N − 1 TotSS    
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The F-test for the model, based on the variance ratio F = ModMS/ResMS, now relates to 
the null hypothesis that all of the slope coefficients for the explanatory variates are equal 
to zero, i.e. H0: βl = 0 for l = 1 … q, and hence that there is no relationship between the 
response and the set of explanatory variates. The alternative hypothesis is that there is 
some relationship, and hence the regression coefficients β1 … βq are not all equal to zero. 
The F-test uses p − 1 numerator and N − p denominator df, corresponding to the degrees 
of freedom for the model and residual mean squares, respectively. An observed value of 
F larger than the 100(1 − αs)th quantile of this distribution gives evidence at significance 
level αs of some relationship between the response and the set of explanatory variables. 
Alternatively, an observed significance level can be calculated as P = Prob(Fp−1, N−p ≥ F).

EXAMPLE 14.1D: DIPLOID WHEAT

The ANOVA table from the MLR model relating seed weight to length and hardness 
index is shown in Table 14.3. The observed variance ratio, F = 349.106, is larger than the 
99.9th percentile of the F-distribution with 2 numerator and 187 denominator degrees of 
freedom (P < 0.001) giving strong evidence of a relationship between seed weight and 
this combination of explanatory variables. We should not be surprised as we had already 
established a strong association of seed weight with seed length in the SLR model.

A high significance (P < 0.05) for the F-test gives evidence of some association between 
the response variate and the set of explanatory variates, but does not indicate the contribu-
tion of individual explanatory variates to this association. These individual contributions 
can be evaluated by further partitioning the model variation (ModSS) into components 
associated with each of the explanatory variates, but when the explanatory variates are 
correlated, this partition is not unique. This leads us to the concept of a sequential ANOVA 
table, in which the sums of squares depend on the order in which explanatory variates are 
added into the model. We introduced this concept in Section 11.2 for models based on fac-
tors; here, we adapt it to regression models for explanatory variates.

14.4.1  Adding Terms into the Model: Sequential ANOVA and Incremental 
Sums of Squares

We can build a MLR model by starting with the intercept and adding each of the explana-
tory variates in turn, giving a sequence of sub-models that ends with the full model con-
taining all of the explanatory variates. These sub-models can be used to form a sequential 
ANOVA table, which quantifies the change in the model sum of squares as explanatory 
variates are added into the model in a particular sequence.

To construct the sequential ANOVA table, we first need to define some quantities asso-
ciated with the sequence of sub-models (previously defined for models with factors in 

TABLE 14.3

Summary ANOVA Table for a MLR Model for Seed Weight with 
Length and Hardness as Explanatory Variates (Example 14.1D)

Source of 
Variation df

Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Model 2 5753.4738 2876.7369 349.106 < 0.001
Residual 187 1540.9352 8.2403   
Total 189 7294.4090    
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Section 11.2). We identify the model sum of squares and df with a particular sub-model by 
explicitly specifying it within parentheses. For example, ModSS([1] + x1 + x2) is the model 
sum of squares associated with a model containing the intercept and explanatory variates 
x1 and x2, with degrees of freedom ModDF([1] + x1 + x2) = 2. This notation is not compact, 
but it has the advantage of being unambiguous. The model containing the intercept term 
alone is regarded as the initial or baseline model, and has zero sum of squares and df, i.e. 
ModSS([1]) = 0 and ModDF([1]) = 0; this is discussed further below.

The sequential ANOVA table is then derived from the set of model sums of squares 
and df. As each explanatory variate is added into the model, the increase in ModSS and 
ModDF is attributed to that variate. These changes in the sums of squares and degrees 
of freedom are called the incremental or Type I sums of squares and df, and both must 
always be greater than (or equal to) zero. These incremental quantities are labelled by both 
the explanatory variate added and the terms already in the model. For example, on adding 
the variate x2 to a sub-model containing the intercept and variate x1, we label the change 
as +x2|[1] + x1, to be read as ‘adding variate x2 given that the intercept and variate x1 are 
already in the model’ or equivalently ‘adding variate x2 after accounting for (eliminating) 
the terms [1] + x1’. The incremental sums of squares and df are denoted SS and DF, respec-
tively. So, for example

 SS(+x2|[1] + x1) = ModSS([1] + x1 + x2) − ModSS([1] + x1) ,
 DF(+x2|[1] + x1) = ModDF([1] + x1 + x2) − ModDF([1] + x1) .

Each quantity is calculated as a difference between the model containing all of the variates 
listed and the model containing only the variates listed after the ‘|’ symbol, i.e. those in 
the previous sub-model. Again, this notation is somewhat cumbersome but unambiguous.

In the context of a sequential ANOVA, we use some abbreviations by considering the 
table as a whole. For example, instead of listing the change and the terms already present 
in the model, we can deduce the terms already in the model from previous lines in the 
ANOVA table and just indicate the additional term. Hence, we can use SS(+x2) and DF(+x2) 
to denote SS(+x2|M) and DF(+x2|M), respectively, where M is a list of terms added in previ-
ous lines of the ANOVA table. For example, Table 14.4 is the sequential ANOVA table for 
the MLR model obtained by our fitting first the variate x1 and then the variate x2. The first 
line of the table adds variate x1 into a model containing the intercept only. The incremental 
sum of squares is then

 SS(+x1) = SS(+x1|[1]) = ModSS([1] + x1) − ModSS([1]) .

TABLE 14.4

Structure of the Sequential ANOVA Table for a MLR Model with Two Explanatory 
Variates, x1 and x2

Term 
Added Incremental df

Incremental Sum 
of Squares

Incremental Mean 
Square Variance Ratio

+ x1 DF(+x1) = 1 SS(+x1) MS(+x1) = SS(+x1)/1 F  MS /ResMSx x1
1= +( )

+ x2 DF(+x2) = 1 SS(+x2) MS(+x2) = SS(+x2)/1 F MS /ResMSx x2
2= +( )

Residual ResDF ResSS ResMS  
Total N − 1 TotSS   
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We then add the variate x2 into the model, with incremental sum of squares

 SS(+x2) = SS(+x2|[1] + x1) = ModSS([1] + x1 + x2) − ModSS([1] + x1) .

Mean squares are again calculated by division of the incremental sums of squares by the 
corresponding incremental df, and variance ratios for each explanatory variate are calcu-
lated with respect to the residual mean square, ResMS. The variance ratios can be used to 
test the null hypothesis that the response has no dependence on the explanatory variate 
being added, given that the explanatory variates previously included are also present in 
the model, i.e. that the coefficient for the explanatory variable added is equal to zero. For 
example, in Table 14.4, variance ratio F x1  is used to test the hypothesis that the response 
has no association with variate x1, given that the intercept is present in the model. The 
variance ratio F x2 is used to test the hypothesis that the response has no association with 
variate x2 given that both the intercept and variate x1 are already in the model or, equiva-
lently, whether adding variate x2 has made any improvement to the SLR model containing 
x1. Under the null hypothesis, each variance ratio in this sequential ANOVA table has an 
F-distribution with 1 numerator df and denominator df equal to ResDF.

As stated above, if the explanatory variates are correlated, then the values in the sequen-
tial ANOVA, and hence the incremental F-tests, depend on the order in which the variates 
are added into the model. This reflects the fact that the incremental F-tests are evaluating 
different hypotheses for different sequences of sub-models. In the example of two variates 
shown in Table 14.4, suppose that explanatory variate x2 was fitted first, followed by variate 
x1. In that case, the incremental F-test for explanatory variate x2 gives evidence on whether 
the response is associated with that variate, given that the intercept is in the model. The 
incremental F-test for the second explanatory variate added (x1) gives evidence on whether 
this variate leads to any improvement in the fit of a SLR model already containing x2. 
These hypotheses are different from those tested in the original sequence of sub-models 
and so it is possible for different results to be obtained. This can lead to some ambiguity in 
choice of model as, for example, we may find that the incremental F-tests for both x1|[1] and 
x2|( [1] + x1) are significant for model [1] + x1 + x2, but that only the test for x2|[1] is significant 
when fitting [1] + x2 + x1 (where the order of terms defines the order in which the terms are 
added to the model). In general, when selecting a model, we aim for parsimony, i.e. using 
the fewest parameters possible to get an adequate description of the response variable. In 
this example, this principle would choose the model with only the intercept and explana-
tory variate x2, because adding x1 does not then improve the fit.

EXAMPLE 14.1E: DIPLOID WHEAT

The two incremental ANOVA tables from fitting the MLR model relating seed weight 
to length and hardness index are in Table 14.5. In this case, the conclusions are straight-
forward, as all incremental F-tests are significant, indicating that both variates are 
required in the model. Even though the correlation between the two explanatory vari-
ates is weak, r = −0.124, the values of the incremental F-tests for the different model 
orders are distinctly different.

There is some ambiguity in the process for testing incremental sums of squares that 
requires further explanation. For example, if we are considering a model containing just 
variate x1, then the ResMS in the (sequential) ANOVA table is calculated having removed 
the effect of this term only. If we are considering a model with two explanatory variates, x1 
and x2, and we add x1 first, then we get the same incremental sum of squares for that variate, 
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but the ResMS in the resulting sequential ANOVA table is now calculated after removal of 
both terms. The variance ratio for x1 and the associated F-test, which depend on the ResMS, 
will therefore differ between these two situations. Perhaps surprisingly, both tests are valid 
even though they give different results, and each approach has its own advantages. First, 
we consider the approach of adding one explanatory variate to the model at a time, forming 
the sequential ANOVA table, and testing against the ResMS from the current model, i.e. 
the ResMS calculated after estimation of only the terms in the current model. This has the 
disadvantage that the approach may lack statistical power at early stages when important 
explanatory variates have not yet been included in the model, because the ResMS will be 
inflated and variance ratios will therefore be reduced in comparison with those for the 
full model. The alternative approach is to use just one ResMS in the calculation of variance 
ratios, taken from the ANOVA table for the full model including all explanatory variates. 
This has the potential disadvantage that the ResMS may be based on relatively few df when 
there are many potential explanatory variates present, so that the tests lack power. To illus-
trate this, we consider two contrasting situations: a designed experiment in which there are 
a few pre-defined explanatory variables; and an observational study, where many poten-
tial explanatory variables might be available. In the first situation, the concept of the ‘full 
model’, containing all explanatory variables of interest, is well defined, and in this context, it 
makes sense to form a sequential ANOVA for the full model and to base variance ratios on 
the ResMS from this full model. In the second situation, it is often not clear which explana-
tory variables are most likely to be relevant, and including the full set is unlikely to help. In 
this context, adding one term to the model at a time, and using the ResMS from the current 
model to form the variance ratios, appears more sensible. In practice, most examples fall 
between these two extremes, and the use of common sense is required.

Throughout this section, we have used a model containing the intercept term only as our 
baseline model. This is the usual convention, but it requires some modification for regres-
sion through the origin (Section 12.9.2) when no intercept term is included in the model. 
In this case, the definitions of model sum of squares and df used above are inappropriate, 
and must be amended to the uncorrected versions defined in Section 12.9.2.

14.4.2 The Impact of Removing Model Terms: Marginal Sums of Squares

We can also take a somewhat different approach to this problem and, instead of progres-
sively adding variates into a model, we can start with a model containing the full set of 
explanatory variates and obtain marginal F-tests by removing each explanatory variate 
from the model in turn. These marginal F-tests relate to the null hypothesis that the coef-
ficient of the lth explanatory variate is zero given that the rest of the explanatory variates 

TABLE 14.5

Sequential ANOVA Tables (Mean Squares Not Shown) from MLR for Seed Weight with 
Explanatory Variates Length (Length) and Hardness Index (Hardness) (Example 14.1E)

Term df SS VR P Term df SS VR P

+ Length 1 5683.18 689.68 < 0.001 + Hardness 1 312.83 37.96 < 0.001
+ Hardness 1 70.30 8.53 0.004 + Length 1 5440.64 660.25 < 0.001
Residual 187 1540.94   Residual 187 1540.94   
Total 189 7294.41   Total 189 7294.41   

Note: df = incremental df, SS = incremental sum of squares, VR = variance ratio.
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are present in the model. The changes in the model sum of squares caused by dropping 
each variate in turn are often called the marginal or Type III sums of squares. We denote 
these marginal sums of squares and df by defining the variate to be dropped from the 
model and the model from which it is to be dropped, for example

 SS(−x1|[1] + x1 + x2) = ModSS([1] + x1 + x2) − ModSS([1] + x2) ,
 DF(−x1|[1] + x1 + x2) = ModDF([1] + x1 + x2) − ModDF([1] + x2) .

The ‘ − ‘ sign indicates that the term is to be removed from the model following the ‘|’ sym-
bol. When the full model on the right-hand side is clear from context, we abbreviate the 
marginal sums of squares as SS(−x1). The form of the marginal sums of squares and F-tests 
for a MLR model with two explanatory variates, x1 and x2, is shown in Table 14.6. In this 
table, SS(−x1) is defined as above and SS(−x2) = SS(−x2|[1] + x1 + x2). Again, mean squares are 
obtained by division of the sums of squares by their df, and the ResMS is that taken from 
the full model specified.

EXAMPLE 14.1F: DIPLOID WHEAT

The marginal sums of squares and F-tests from the MLR model relating seed weight to 
length and hardness index are derived in Table 14.7. As expected, following the analysis 
of Example 14.1E, both marginal F-tests are significant.

Note that, for the last variate added to the model, the incremental (Type I) and mar-
ginal (Type III) sums of squares (and F-tests) are equal. In general, both the incremental 
and marginal sums of squares can help in deducing a suitable model. But when there are 
many explanatory variates, the situation becomes more complex as the number of different 
orders in which the variates can be fitted increases rapidly. One solution is the use of auto-
matic methods for model selection and comparison, and these are described in Section 14.9 
below. In addition to Types I and III, Type II and Type IV sums of squares have also been 

TABLE 14.6

Form of Marginal F-Tests for Two Variates, x1 and x2, with Full Fitted Model [1] + x1 + x2

Term 
Dropped Marginal df

Marginal Sum 
of Squares

Marginal Mean 
Square Variance Ratio

−x1 DF(−x1) = 1 SS(−x1) MS(−x1) = SS(−x1)/1 F MS /ResMSx x1
1= −( )

−x2 DF(−x2) = 1 SS(−x2) MS(−x2) = SS(−x2)/1 F MS /ResMSx x2
2= −( )

Residual ResDF ResSS ResMS  

TABLE 14.7

Marginal F-Tests from MLR for Seed Weight with Explanatory Variates 
Length (Length) and Hardness Index (Hardness) (Example 14.1F)

Term 
Dropped

Marginal 
df

Marginal Sum 
of Squares

Mean 
Square

Variance 
Ratio P

− Length 1 5440.6436 5440.6436 660.249 < 0.001
− Hardness 1 70.2985 70.2985 8.531 0.004
Residual 187 1540.9352 8.2404  



358 Statistical Methods in Biology

defined. These are less commonly used and so are not considered here, but they are briefly 
described in Section 11.2.3.

F-tests can also be used in a more general situation to evaluate the effect of simultane-
ously adding or dropping a group of terms from a model (see Example 17.3B). These tests 
follow exactly the same procedures as outlined above, but they are rarely as useful as 
testing individual terms, and so we shall not give details here. For further information we 
recommend Rawlings et al. (1998).

14.5 Properties of the Model Parameters and Predicting Responses

As for the SLR model, in the MLR model, we can use statistical theory to obtain the sam-
pling distribution of the parameter estimates and make statistical inferences about the 
true unknown parameters. If we can assume that the deviations follow a Normal distri-
bution (Assumption 4, Section 12.1), then estimates of the model parameters also follow 
Normal distributions. These are unbiased estimates, so the mean of each distribution is the 
unknown population parameter. We represent the estimated variances of these parameters 
as Var( ) α̂  and Var( ) β̂l , l = 1 … q, for a MLR with q explanatory variates, and SE() denotes 
the corresponding estimated standard error. The formulae represented by this shorthand 
notation are complex and so omitted here – we rely on the calculations made by statistical 
software. However, note that the estimated variances use the estimate of background varia-
tion based on the residual mean square and so inherit the residual degrees of freedom.

The most common use of these distributions and variance estimates is in testing the null 
hypothesis that the parameter for a given explanatory variate equals zero, i.e. testing the 
null hypothesis H0: βl = 0 against the alternative hypothesis H1: βl ≠ 0, for the lth explana-
tory variate, given that the remaining q − 1 variates are present in the model. This test 
statistic is calculated as
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Under the null hypothesis, this test statistic follows a t-distribution with degrees of freedom 
equal to the residual df, N − p. In fact, this test is equivalent to the marginal F-test obtained by 
dropping the lth explanatory variate from the full model, and the marginal F-test statistic is 
equal to the square of the t-statistic. Most statistical software prints these t-statistics with the 
parameter estimates (including the intercept parameter). This enables a quick assessment of 
whether individual explanatory variates can be immediately omitted from the model with-
out worsening the model fit. However, owing to collinearity, these tests can be misleading 
if more than one variate is dropped at a time and so a sequential approach is required. 
Automatic methods of model selection exist and these are discussed in Section 14.9.

A 100(1 − αs)% confidence interval can be calculated for each regression parameter as
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where, as before, t s/
N p−
[ ]α 2  is the 100(1 − αs/2)th percentile of the t-distribution with degrees of 

freedom equal to the residual df, N − p.

EXAMPLE 14.1G: DIPLOID WHEAT

Table 14.8 shows the estimated parameters for a MLR model for seed weight in terms of 
length and hardness index, together with their estimated SE, t-statistic and the observed 
significance level (P) associated with testing the null hypotheses H0: α = 0 and H0: βl = 0, 
for l = 1, 2. The t-tests give evidence that the response depends on each of the explana-
tory variates when the other is present in the model, so neither explanatory variate can 
be removed without making the fit worse, which agrees with the results of Example 
14.1F. We can verify that the squares of the t-statistics are equal to the marginal F-tests 
and give exactly the same observed significance level (Table 14.7).

As for a SLR model, we can use the fitted model to obtain predictions of the response 
for a given set of explanatory variate values, using the form given in Equation 14.3. An 
estimated standard error for the prediction can be calculated, but again we omit the for-
mula here and obtain the values from statistical software. The concepts of interpolation 
and extrapolation carry over from the SLR model case, but the situation is now somewhat 
more complex because of the interplay between the explanatory variates. For a prediction 
to be considered as interpolation, it must lie within the range of values defined by the set 
of explanatory variates as a whole. For example, in the diploid wheat data (Figure 14.1), 
the observed seed lengths run from 2.5 to 4 mm and the observed hardness index lies 
between −50 and +20. However, if we consider the two-dimensional spread of values, there 
is only good coverage in the square defined by lengths in the range 2.75–3.75 mm and 
hardness index in the range −30 to 10. Predictions outside of this area should be considered 
as extrapolation, as there are too few data there to support the form of the model.

Confidence intervals for any prediction can be calculated, as shown in Section 12.5, to 
obtain an interval for either the expected mean response or for an individual new observa-
tion. Details can be found in Rawlings et al. (1998).

14.6 Investigating Model Misspecification

As for the SLR model, you should check the validity of the assumptions underlying the 
fitted model using the residuals. And, again, you should exclude the possibility of model 
misspecification before trying to interpret residual plots. This process is complicated by the 
presence of several explanatory variates, any of which may be subject to misspecification. 

TABLE 14.8

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed 
Significance Levels (P) for a MLR Model for Seed Weight with Explanatory 
Variates Length (Length) and Hardness Index (Hardness) (Example 14.1G)

Term Parameter Estimate SE t P

[1] α −27.795 2.1653 −12.836 < 0.001
Length β1 16.934 0.6590 25.695 < 0.001
Hardness β2 −0.049 0.0168 −2.921 0.004
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Here, we describe some graphical methods to verify the form of the model for individual 
explanatory variates. Once this has been done, the methods of Sections 5.2 and 13.3 can 
be used to check the properties of the standardized or deletion residuals. The methods of 
Section 13.4.3 can also be used to investigate the influence of individual observations with 
respect to the model as a whole.

The basic building block for all these methods is again the simple residual calculated as 
the difference between the observed and fitted values, i.e.

 ˆ ˆ ˆ ˆ ˆe y y y x xi i i i q q= − = − + + +( ) .α β β1 1 …

Standardized, prediction and deletion residuals can be derived from the simple residuals 
as described in Section 13.2. Graphs of standardized or deletion residuals against each 
explanatory variate can indicate the presence of curvature in that particular relationship, 
but do not put this into the context of the overall model. To do this, we define a new type 
of residual, the partial residual. The partial residual for the ith observation on the lth 
explanatory variate (l = 1 … q) is denoted by eli  and calculated as the simple residual plus 
the contribution of the lth explanatory variate to the ith fitted value, i.e.

 e e xli i l li= +ˆ ˆ .β  

This gives a set of N partial residuals for each of the q explanatory variates. A scatter plot 
of the partial residuals against the values of the associated explanatory variate, known as 
a partial residual plot, should show a scatter of points around the fitted straight line rep-
resenting the model. Any systematic deviation, such as substantial curvature in the scatter 
of points, may indicate misspecification for that explanatory variate, which might be dealt 
with by the methods described in Chapter 17.

EXAMPLE 14.1H: DIPLOID WHEAT

Figure 14.3 shows partial residual plots for the MLR model for seed weight with explan-
atory variates Length and Hardness, with the fitted component of the model ( ˆ ,βl lix  
l = 1, 2) shown as a straight line in each case. As in the SLR model (Example 12.1), the 
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FIGURE 14.3
Partial residual plots for a MLR model for seed weight with explanatory variates (a) length (mm) and (b) hard-
ness index, with fitted component of model (—) (Example 14.1H).
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relationship with seed length is strong, with a slight hint of curvature at the ends of the 
range, where the partial residuals are all above the line representing the fitted model. 
However, this curvature is a small component of the overall trend. The relationship 
with hardness index is much noisier without any apparent curvature and, although 
statistically significant, the downwards trend might not be detected by eye.

The partial residual plot gives insight into the fit of an explanatory variate already included 
in the model. Residual plots can also help to investigate the potential role of an additional 
explanatory variate that has not yet been included in the model. Several naïve approaches 
are possible. Plotting the additional explanatory variate against the response (as in the ini-
tial exploratory data analysis) indicates whether a relationship exists in the absence of other 
explanatory variates, but it does not show whether a relationship exists after accounting for 
the variates already in the model. Plotting the standardized residuals against the additional 
variate does take some account of the current model, but the slope of this plot will not be 
equal to the estimated slope for the additional variable if it were added into the model (except 
in the special case where the additional variable is orthogonal to all of the variates in the cur-
rent model). One solution is the added variable plot, in which the observed slope equals the 
estimated slope that would be obtained if the explanatory variate was added to the current 
model. The added variable plot is a scatter plot of the simple residuals from the current model 
against a set of adjusted values of the additional variate. The adjustment obtains the required 
slope in the plot. The adjusted values are the simple residuals obtained from fitting a MLR 
model with the additional explanatory variate as the response, and using the set of explana-
tory variates in the current model. In theory, added variable plots can be used to screen a set 
of potential additional variates for inclusion in a model, but in practice, these plots can be 
noisy and difficult to interpret. They should generally be used in combination with formal 
testing, for example with the incremental F-tests obtained by addition of each of the new 
variates in turn to the current model. Further details can be found in Atkinson (1985).

14.7 Dealing with Correlation among Explanatory Variates

The term collinearity is used to indicate linear dependencies, or strong correlations, 
between two or more explanatory variates. The simplest case of collinearity occurs when 
two explanatory variates are strongly correlated, either positively or negatively, and this 
can be detected from a pairwise correlation matrix for the full set of explanatory variates 
(e.g. Table 14.1). Perfect collinearity occurs when the correlation between two explanatory 
variates is exactly 1.0 or −1.0, which implies that once one of these variates is included as 
an explanatory term in a model, the other provides no additional information (as it can be 
predicted exactly from the first variate). Clearly, there is then no need to have both variates 
in a MLR model, and in fact there is no unique estimate of parameter values for perfectly 
collinear variates in a MLR model. The simple solution is to include only one of these vari-
ates. However, perfect collinearity is rarely found in practice; more often two variates will 
be strongly, but not perfectly, collinear. This can be seen in Figure 14.1, where seed length 
and diameter are strongly correlated. In these cases, the second variate may account for 
a small amount of additional variation once the first has been included. Unfortunately, 
the inclusion of strongly collinear variates in a MLR model has the effect of making their 
parameter estimates unstable and uncertain, which is reflected in large standard errors.
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Multicollinearity is a more complex concept involving correlation among more than 
two variates. A set of variates is said to be perfectly multicollinear if any linear combina-
tion of the variates adds to a constant value. For example, suppose we weigh the above- 
and below-ground biomass of a plant separately, but then use the above-, below-ground 
and total biomass as explanatory variates: there is a perfect additive relationship between 
the three variables. Again, perfect multicollinearity is uncommon, but approximate mul-
ticollinearity can occur and makes parameter estimates unstable. Multicollinearity can be 
hard to detect, as it will often not be apparent from the pairwise correlations. Variance 
inflation factors (VIFs) can be used to detect (multi)collinearity within a set of explanatory 
variates. The VIF values are calculated for each explanatory variate (x1 … xq) as

 
VIF    l

lR
l q=

−
= …1

1
12 , ,

where Rl
2 is the coefficient of determination (as defined in Section 12.5, but also see Section 

14.8 below) obtained from a MLR model fitting variate xl as the response in a model that 
includes all of the other explanatory variates. Values of the coefficient of determination 
Rl

2 close to 1 indicate the presence of multicollinearity and result in large values of the 
VIF. When the set of explanatory variates are approximately mutually orthogonal (i.e. all 
pairwise correlations are close to zero and Rl

2 is close to zero for l = 1 … q), then all the 
VIF values will be close to 1. The VIF can be interpreted as the inflation in the variance 
of the lth coefficient, βl, compared to a situation in which the lth explanatory variate is 
orthogonal to the other explanatory variates. So, VIFl = 10 implies a 10-fold increase in 
parameter variance compared with this theoretical orthogonal scenario. Whether (multi)
collinearity is problematic depends on the context, and O’Brien (2007) cautions against 
the unthinking use of thresholds (e.g. VIF > 10) to dictate that (multi)collinearity must be 
dealt with, for example by removal of one or more explanatory variates. We suggest that 
large VIF values (VIF > 10, or equivalently Rl

2 > 0.9) should prompt investigation of the 
multicollinearity, and consideration of whether it is either desirable or sensible to keep 
all the explanatory variates in the model. This is illustrated in the next example, and then 
discussed in more generality.

EXAMPLE 14.1I: DIPLOID WHEAT

We now model seed weight as a MLR model with four explanatory variates: seed length, 
hardness index, moisture content and diameter. The model is written in mathematical 
form as

 Weighti = α + β1Lengthi + β2 Hardnessi + β3 Moisturei + β4 Diameteri + ei ,

where α is the intercept parameter and β1 to β4 are the slope parameters for the four 
explanatory variates. In symbolic form, the model is written as

Response variable: Weight
Explanatory component: [1] + Length + Hardness + Moisture + Diameter

The Rl
2 and VIFl values were obtained for each of the explanatory variates in turn 

by regression on the remaining explanatory variates, and the results are listed in 
Table 14.9.
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The large VIF values of 602.8 for both diameter and length are expected because of the 
strong pairwise correlation (r = 0.999) between these two variates. The small VIF values 
(≈1.0) for moisture content and hardness index indicate that, in addition to them being 
uncorrelated with each of the other explanatory variates individually (Table 14.1), there 
is no linear combination of those variates that is related to either moisture content or 
hardness index. The impact of the collinearity between length and diameter can be seen 
by examination of the parameter estimates from the fitted model, i.e.

 

Weight Length Hardness Moisturi i i
 = − − × − × − ×12 97 40 16 0 052 1 81. . . . ee

Diameter
i

i+ ×90 94. ,

also listed in Table 14.10. We can compare this to the fitted model obtained with only the 
first two variates, length and hardness (see Table 14.8), i.e.

 
Weight Length Hardnessi i i
 = − + × − ×27 79 16 93 0 049. . . . 

The most striking change is that the large positive coefficient for length in the model 
with two variates (+16.93) has changed to a negative coefficient (−40.16) in the model with 
four variates. This is surprising given the strong positive correlation of length with seed 
weight. The SE of this coefficient has also greatly increased (to be more than 20 times 
larger), as has the SE for the intercept. The coefficient for diameter is large and posi-
tive, as would be expected from the strong positive correlation between diameter and 
weight, but again with a large SE. The interplay between the coefficients for length and 
diameter may suggest that seeds with a larger diameter than expected for their length 
are also likely to be heavier. However, it is arguable that the small improvement to the fit 
on addition of diameter to a model already including length is not worth the difficulty 
in interpretation and the instability indicated by the large SEs of the parameters. On 

TABLE 14.9

Coefficient of Determination (R2) and Variance Inflation Factors 
(VIF) for Four Explanatory Variates (Example 14.1H)

Variate R2 VIF

Length 0.998 602.83
Hardness 0.029 1.03
Moisture 0.017 1.02
Diameter 0.998 602.79

TABLE 14.10

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and 
Observed Significance Levels (P) for a MLR Model for Seed Weight 
with Four Explanatory Variates (Example 14.1H)

Term Parameter Estimate SE t P

[1] α −12.970 10.1545 −1.277 0.051
Length β1 −40.155 14.5518 −2.759 0.002
Hardness β2 −0.052 0.0162  −3.238 < 0.001
Moisture β3 −1.805 0.9391 −1.922 0.014
Diameter β4 90.943 23.1755 3.924 < 0.001
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balance here, we accept this argument and exclude diameter from the set of explanatory 
variates; we continue our search for a model in Section 14.9. In general, it should also be 
considered whether the conflict between the coefficients of length and diameter might 
be driven by a few seeds with atypical shapes, as this accommodation of a few outlying 
values might produce worse predictions for seeds with more typical shapes. This can be 
investigated using cross-validation; see Section 14.9.3.

Collinearity is often found in data sets with few observations, where there is a greater 
chance of spurious correlation. For example, a model may be used to predict insect counts 
in a field from temperature and humidity, but these variables have similar daily and 
annual cycles. If the study covers only warm dry days, then the temperature and humidity 
measurements will be strongly correlated. If some warm but wet days were also included, 
then some contrast between the variables will appear, the correlation decreases, and the 
separate role of the two variables might be identified. A similar situation occurs when 
measurements are obtained within only a small range of the explanatory variates – vari-
ates that have weak correlation over a wide range of circumstances may appear strongly 
correlated over a restricted range. Of course, the risk of spurious multicollinearity greatly 
increases as the number of explanatory variates increases. This emphasizes the impor-
tance of carefully ‘designing’ the observations to be collected in an observational study so 
that the correlations between potential explanatory variables are kept as small as is pos-
sible. We shall return to this matter briefly in Section 19.1.

Most statistical software produces warnings (usually based on the VIFs) if substantial 
collinearity is found. Collinearity may also be indicated by a significant overall F-test for 
the model when all marginal F-tests are not significant, or by large changes in parameter 
estimates and SEs when a new variate is added to the model (as illustrated in Example 
14.1I). However, a change in estimated coefficients does not in itself indicate a problem. 
Consider the example of insect counts predicted by temperature and humidity introduced 
above, and suppose that insect counts tend to increase with temperature but decrease with 
humidity. In this case, we might find that humidity had a positive coefficient as a single 
explanatory variate in a SLR model because of the strong correlation between humidity 
and temperature. This could change to a negative coefficient in a MLR model that included 
temperature as an additional variate, as the response to humidity would now be modelled 
after accounting for temperature. The change in value has occurred because of collinearity, 
but the collinearity is not a problem here, as including both explanatory variates produces 
a more realistic model. This demonstrates the importance of understanding the biological 
context of the relationships modelled, and of using this knowledge when constructing a 
model, rather than just using statistical methods blindly.

Where collinearity occurs there are several possible approaches for dealing with it. If 
collinearity is present but not severe, and it is plausible that all of the correlated variates 
are introducing different biological information into the model, then all of the variates 
should be retained. If information is effectively duplicated across several variables, then 
some can be omitted with little loss of information. If the collinearity is very strong, then 
it is often better to drop variates progressively from the model: dropping either those with 
the largest VIF values, or those with large VIF values but least biological relevance. If you 
have few data, then making further observations over a wider range of the explanatory 
variates, in the hope of reducing the observed correlation between them, might help.

Finally, there are several other statistical techniques that can be used with the full subset 
of explanatory variates even when substantial collinearity is present. Techniques such as 
ridge regression and the lasso aim to minimize the residual sum of squares subject to a 
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penalty on the size of the regression coefficients. This reduces the variance (and hence insta-
bility) of the regression coefficients, but at the cost of introducing bias, so that the expected 
values of the estimates no longer equal their true population values. These methods can 
result in a smaller prediction error (the expected squared difference between model predic-
tions and the true underlying function), although choice of a suitable penalty introduces 
some further complexity into the analysis. Further details, with an intuitive comparison of 
these techniques, are given in Hastie, Tibshirani and Friedman (2001, Chapter 3).

14.8 Summarizing the Fit of the Model

Several goodness-of-fit statistics were introduced in Section 12.5 to summarize the fit of a 
SLR model. These statistics can also be calculated for MLR models and used to compare 
different MLR models. In addition, they can help to select which subset of variates should 
be included in a model, as described in Section 14.9.

The goodness-of-fit statistics presented in Section 12.5 can be used within the context of 
MLR models, after adjusting for the number of model parameters, p. These statistics are pre-
sented in Table 14.11 with some additional statistics useful for evaluation of MLR models.

The coefficient of determination (R2) and adjusted coefficient of determination (Radj
2  or 

adjusted R2) are defined as for the SLR model, although now the model sum of squares 
(ModSS) contains several model terms. For MLR models, the adjusted R2 statistic is 
usually preferred to the coefficient of determination, as the latter always increases 
when a new variate is added to the model, even though there might be no real improve-
ment in the model fit. The adjusted R2 statistic takes account of the change in both the 
model sum of squares and the df through the residual mean square (ResMS) and can 
decrease if adding a new variate does not improve the model fit. Note that even if the 
adjusted R2 statistic increases when a new variate is added, this might not correspond 
to a significant incremental F-test for the new term, and so is no substitute for a formal 
statistical test.

Other, more sophisticated, statistics are also available for comparing different models 
fitted to the same response variable. The information criteria, AIC (Akaike information 

TABLE 14.11

Statistics Used to Assess Goodness of Fit in MLR Models

Statistic Formula

Coefficient of determination (R2) R2 = = −
RegSS
TotSS

1
ResSS
TotSS

Adjusted coefficient of determination (Radj
2 ) R R

p
N p

Radj
ResMS
TotMS

2 2 21
1

1= − = −
−
−







−( )

Akaike information criterion (AIC) AIC = N × loge(ResSS) + 2 × p
Schwarz Bayesian information criterion (SBC) SBC = N × loge(ResSS) + loge(N) × p

Mallows’ Cp C p Np
p= + × −

ResSS
ResMS

( )
full

2
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criterion) and SBC (Schwarz Bayesian information criterion), are widely used for model 
comparison. Both criteria multiply the natural logarithm of the ResSS by the number of 
observations, N, and then apply a penalty that depends on the number of parameters esti-
mated, p. If the decrease in the ResSS on adding new explanatory variates into the model is 
large when set against the penalty for introducing those additional df into the explanatory 
model, then the values of the criteria decrease. Good models therefore correspond to small 
values of the information criteria. In the AIC, the penalty is simply twice the number of 
estimated parameters. In the SBC (sometimes also abbreviated as SBIC or BIC), the penalty 
is the number of estimated parameters, p, multiplied by loge(N). The SBC penalty therefore 
takes account of both the number of parameters estimated and the number of observa-
tions. In practice, the SBC tends to give preference to simpler models than does the AIC. 
Both criteria can produce a ranking of competing models and can be useful for screening 
numerous possible models, as discussed in the next section. However, these criteria do not 
provide a formal test of difference in fit between competing models and small differences 
in criterion value may not indicate any meaningful difference in model fit.

The Mallows’ Cp statistic corresponds to a situation with a total of m potential explana-
tory variates and is used to compare the fit of a sub-model containing q of these variates 
to the full model containing all of the m variates. In the Mallows’ Cp formula, ResMSfull 
corresponds to the residual mean square of the full model (i.e. including all m explanatory 
variates) and ResSSp is the residual sum of squares for a sub-model of interest that contains 
q explanatory variates (q < m) and hence p = q + 1 parameters. The value of Cp for the full 
model always equals m + 1, the total number of parameters in that model. Any sub-model 
containing q variates that has a similar value of the residual mean square (and hence simi-
lar precision) to the full model, will have a Cp value close to p. The Mallows’ Cp statistic 
can also be used to screen competing models, and is best visualized by plotting values of 
Cp against p together with the line Cp = p, so that good models appear close to this 1:1 line. 
Again, this statistic does not provide a formal test of difference in fit between models.

The use of these statistics in model comparison is illustrated in Example 14.1J.

14.9 Selecting the Best Model

When there are many explanatory variates, subsets of them can be formed in many dif-
ferent ways giving numerous possible models. In this situation, one of the main aims 
of regression analysis is to choose a subset of explanatory variates that provide a good 
description of the response. Here, a good model is one that accounts for the maximum 
amount of variation in the response with the minimum possible number of parameters, 
following the principle of parsimony. The process of finding such a model is known as 
model selection.

Procedures for model selection fit a number of possible models, which are assessed by 
one or more summary statistics, usually the goodness-of-fit statistics defined in Section 
14.8. If several models appear to perform equally well, each of these candidate models may 
be studied in detail to detect collinearity, misspecification, or departures from the under-
lying assumptions. The statistical significance of the estimated parameters should be 
checked, and any biological interpretation of the model parameters should be considered.

Ideally, candidate models should be selected from the set of all possible models. The 
number of possible models increases rapidly with the total number of explanatory variates, 
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however. With q explanatory variates, there are 2q different possible models (including the 
null model which contains the constant term only). For example, if we have 15 explana-
tory variates, then there are 215 = 32,768 possible models. The fitting and comparison of all 
possible models is often not computationally practical when there are many explanatory 
variates and, in these cases, automatic model selection strategies are usually employed. 
Some caution is required: if there are more explanatory variates than observations, then an 
exact fit to the data can be obtained, but this fit is completely uninformative with respect 
to the role of the explanatory variates in a larger study; this is an example of over-fitting 
(see also Section 17.1.2), where the model fits spurious detail at the expense of describing 
the larger-scale trends.

In fact, the practice of selecting models and estimating parameters on the same data is 
fraught with dangers, simply because models that over-fit often give better goodness-of-fit 
statistics. Their parameter estimates will be subject to bias resulting from the model selec-
tion procedure (selection bias), and our assessment of model fit will be over-optimistic 
(predicted errors will be too small). Fortunately, some of these problems can be reduced 
by cross-validation (introduced in Section 13.5). We return to this in Section 14.9.3 after 
we have described some common techniques for selecting models, and their associated 
problems, in more detail.

In the following example, we first illustrate model selection by fitting and comparing all 
possible subsets of explanatory variates (known as all subsets selection). In Section 14.9.1, 
we then discuss some of the automatic sequential procedures for selecting models that are 
useful for large numbers of explanatory variates.

EXAMPLE 14.1J: DIPLOID WHEAT

To find the best set of explanatory variates to describe seed weight, we fitted models 
with all subsets of the explanatory variates seed length, hardness index and moisture 
content. The variate diameter was excluded because of its collinearity with length, as 
discussed in Example 14.1I. A summary of the goodness-of-fit statistics obtained for the 
eight possible models is in Table 14.12.

The ‘best’ model according to each statistic is highlighted in bold type. For R2 and 
adjusted R2, larger values indicate better models, and both statistics have their largest 
values for the full model with all three explanatory variates. For the AIC and SBC sta-
tistics, smaller values indicate better models. The AIC takes its minimum value for the 
model with all three variates, but the SBC takes its minimum value for the model with 

TABLE 14.12

Summary Statistics for MLR Models for Seed Weight: Goodness-of-Fit Statistics for All 
Possible Subset Models (Example 14.1J)

Explanatory Model p R2 (×100) Radj
2 ( 100)× AIC SBC Cp

[1] 1 0.00 0.00 1692.0 1695.3 704.6
[1] + Length 2 77.91 77.79 1407.1 1413.6 11.2

[1] + Hardness 2 4.29 3.78 1685.7 1692.2 668.4

[1] + Moisture 2 0.39 0.00 1693.3 1699.8 703.1

[1] + Length + Hardness 3 78.88 78.65 1400.6 1410.4 4.6

[1] + Length + Moisture 3 78.09 77.85 1407.6 1417.3 11.6

[1] + Hardness + Moisture 3 5.03 4.02 1686.2 1696.0 663.7

[1] + Length + Hardness + Moisture 4 79.16 78.83 1400.0 1413.0 4.0

Note: The ‘best’ model for each statistic is indicated in bold.
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two variates: length and hardness index. On further inspection, this model is also close 
to the optimum values for AIC and both coefficients of determination. The Mallows’ 
Cp statistic is relatively, but not convincingly, close to the target value of three for the 
model containing length and hardness index, but is much larger for all other one- and 
two-variate models.

Our candidate models for closer inspection are therefore the full model and the 
model containing length and hardness index. The simplest quantitative way of compar-
ing these two models is to examine the incremental F-test for adding moisture content 
to a model already containing length and hardness index. The variance ratio for this test 
has value F = 2.57 with 1 and 186 df (P = 0.111). This suggests that there is no statistical 
improvement achieved by addition of moisture content to the simpler model. We have 
already found no evidence of misspecification for the model with length and hardness 
index as explanatory variates (Example 14.1H) and residual plots for this model accord 
with the assumptions regarding the deviations (Figure 14.4), although there is still a 
suggestion of underestimation of seed weight for very small and very large fitted val-
ues. The fitted model was presented in Example 14.1C, and the parameter estimates were 
listed in Table 14.8.

The final predictive model can be written as

 
ˆ ( , ) . . . .µ Length Hardness Length Hardness= − + −27 79 16 93 0 049  

This model can be used to predict the potential gain in plant yield that might be expected 
for a given increase in seed length and decrease in hardness index, on the assumption 
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that this could be achieved without affecting other aspects of the plant, such as the total 
number of seeds.

14.9.1 Strategies for Sequential Variable Selection

Automatic sequential selection strategies are often preferred when there are so many 
explanatory variates that fitting and comparing all sub-models becomes impractical. 
Automatic methods usually select a good set of explanatory variates, though not necessar-
ily the ‘best’ set. They are designed to be computationally efficient and so to investigate a 
relatively small number of the possible sub-models, but still have the pitfalls of bias, over-
fitting and over-optimism that we discuss in Section 14.9.2.

All of the sequential methods start with an initial or reference model, and at each step of 
the process they add or remove one explanatory variate. In all of the strategies presented 
here, the change at each step is evaluated via an F-test, and a threshold value must be 
chosen to control the process. It is easiest to explain the detail of these concepts in context, 
so below, we describe the three most common automatic selection methods: forward selec-
tion, backward elimination and stepwise regression.

Forward selection starts with the baseline model, containing the intercept term alone, 
and at each step adds the explanatory variate that gives the biggest improvement to the 
model fit, as measured by an incremental F-test, subject to this exceeding a threshold. This 
threshold can be defined as the minimum value of the incremental F-statistic that must be 
achieved in order for the variate to enter into the model, denoted Fin. If the Fin threshold 
value is chosen to be large, then the final model tends to contain fewer variates than for a 
smaller Fin threshold. The threshold can alternatively be defined in terms of the observed 
significance level of the incremental F-statistic, denoted SLE (significance level to enter). In 
this case, terms are added into the model only if the observed significance level is smaller 
than the SLE; the choice of a smaller SLE value leads to a final model with fewer terms.

Backward elimination starts with the full model, i.e the model containing all the explan-
atory variates, and at each step eliminates the variate that gives the smallest change to the 
model fit, as measured by a marginal F-test, subject to this being smaller than a threshold. 
This threshold can be defined as the maximum value of the marginal F-statistic that is 
allowed for a variate to be eliminated from the model, denoted Fout. If the Fout threshold 
value is chosen to be large, then the final model tends to contain fewer variates than for a 
smaller Fout threshold. The threshold can alternatively be defined in terms of the observed 
significance level for the marginal F-statistic, denoted SLS (significance level to stay). In 
this case, terms are eliminated from the model if the observed significance level is larger 
than the SLS; the choice of a smaller SLS value leads to a final model with fewer terms.

Both of these strategies can run into problems caused by multicollinearity among 
explanatory variates. In forward selection, a variable selected at an early step might not be 
required in the model once certain other variates have also been included. It might then 
be appropriate to remove it from the model, but this is not allowed within the forward 
selection framework. The reverse situation can occur with backward elimination, where 
variates removed at an early stage might later be used to improve the model, if this were 
allowed. The stepwise strategy incorporates such additional steps into the selection pro-
cess. In its most general form, this procedure evaluates at each step the effect of dropping 
each of the explanatory variates currently in the model, and the effect of adding each 
explanatory variate currently excluded. Model fit is quantified by some goodness-of-fit 
statistic (often ResMS) and the step that gives the best value of this statistic will be taken, 
subject to the change passing the forward/backward threshold criterion. Many variants 
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on this procedure are possible. For example, the variant forward stepwise selection starts 
as forward selection, but after each forward step, it switches to backward elimination, 
until no further variates can be dropped, and then forward selection is resumed. The vari-
ant backward stepwise selection uses the reverse procedure. In all cases, the final model 
is obtained when no further changes can be made. However, if the threshold Fin is smaller 
than threshold Fout (or SLE > SLS), then stepwise algorithms can get caught in a loop, add-
ing and then dropping the same variable repeatedly, and so a maximum number of steps 
is often specified. Because of the switch between forward and backward steps, stepwise 
selection is more flexible than the single direction strategies and should therefore have a 
greater chance of selecting a good model for the data.

Clearly, the threshold values of Fin and Fout (or SLE and SLS) have a large influence on 
the model selected. The significance level associated with a particular Fin will obviously 
depend on the residual degrees of freedom, which decrease as new variates are added, so 
that fixing Fin results in the significance level increasing at each step. Conversely, fixing 
the significance level (SLE) results in the incremental F-statistic threshold increasing as 
more terms are added to the model. These changes will be small unless the residual df are 
small or the number of explanatory variates added is large. Conversely, the significance 
level associated with a fixed Fout will decrease as terms are dropped, and the marginal 
F-statistic threshold associated with a fixed significance level (SLS) will also decrease. But 
in both cases, remember that the residual mean square changes as terms are added or 
dropped and this may perturb the expected pattern.

For forward selection, it is often argued that the ResMS of the null model will be much 
larger than true background variation because it includes contributions from important 
explanatory variates not yet entered into the model. This will reduce the observed F-statistics 
so that a smaller threshold of Fin (or equivalently a larger value of SLE) is appropriate. A 
typical value of Fin is 2, and SLE values are commonly set around 0.15. These values are 
approximately equivalent for large data sets (N > 100), but the criterion SLE ≤ 0.15 is more 
stringent for models with fewer residual df. It can be argued that these thresholds should 
be tightened (i.e. Fin increases, SLE decreases) as more explanatory variates are included in 
the model and any inflation of the ResMS is reduced. Backward selection starts with all of 
the explanatory variates in the model and so the ResMS should not be inflated, although it 
may be an unreliable estimate if the residual df of the full model is very small; in this case, 
backward selection is not advised. A typical value of Fout for backward selection is 4, cor-
responding to a SLS value of 0.05 (for N = 60). An initial discrepancy between Fin and Fout (or 
SLE and SLS) values is therefore based on a sound rationale despite the fact that it can cause 
recursion in stepwise selection procedures.

The details of the selection procedures, such as use of Fin and Fout rather than SLE and 
SLS and default values for the thresholds, differ among statistical packages; you should 
therefore always check the documentation. These variations mean that packages may 
select different final models, again indicating the need for cautious use of such approaches. 
We suggest that automatic selection procedures are used as the first step in a modelling 
exercise, followed by comparison of the ‘best’ model(s) identified and taking account of 
the biological context. The analysis in the following example, which illustrates the use of 
stepwise selection, was done using GenStat.

EXAMPLE 14.2: APHID CATCH

The EXAMINE project collated data on aphid catches in suction traps across Europe 
(www.rothamsted.ac.uk/examine/) to investigate environmental and landscape influ-
ences on the timing of aphid flight and abundance. Here, we investigate the relationship 
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between the Julian day of the first catch of the aphid Myzus persicae at 50 locations 
(Figure 14.5) during 1995 and several geographical, meteorological and land-use vari-
ates. The three geographical variates were latitude, longitude and altitude of each trap. 
The 10 meteorological variates were monthly rainfall from October 1994 to May 1995, 
mean temperature for the coldest 30-day period at that trap site and mean temperature 
for the following 60-day period. These variates were chosen as those most likely to 
affect aphid flight dates, which were expected to be earlier in warmer, drier climates. 
The eight land-use variates gave the proportions of land in a circle of radius 75 km 
around the sampling site under different uses (coniferous, deciduous or mixed forest, 
grassland, arable land, inland waters, sea or urban). Note that these proportions do not 
sum to 1 for most sites as several land-use categories with overall small proportions 
have been omitted. The data set can be found in file examine.dat and in Table A.3. Table 
14.13 lists the explanatory variates and their symbolic names.

The Julian day of first catch ranges between 1 (1 January) and 205 (24 July) with mean 
124.3 (4 May), lower quartile 100 (10 April) and upper quartile 146 (26 May). We first con-
sider exploratory data analysis, as strong correlations between geographic and climate 
variables are likely, but a scatter plot matrix becomes impractical with 21 explanatory 
variates. A correlation matrix of the response variate (Julian day of first catch) and all 
explanatory variates can be scanned for instances of strong correlation. The response 
(date of first catch) shows a strong positive correlation (r = 0.73) with the trap site latitude 
and a strong negative correlation (−0.80) with the mean temperature in the 60 days after 
the coldest period. The strongest correlation (0.90) within the set of explanatory variates 
is between the mean temperature in the coldest 30-day period (denoted C30Day, see 
Table 14.13) and that in the following 60 days (denoted F60Day). This strong correlation 
is expected, but these variates are together intended to quantify the depth and length of 
the winter period, and so both will be retained for analysis. Not surprisingly, there is a 
negative relationship between latitude and C30Day (−0.48) or F60Day (−0.70) as winter 
temperature decreases as latitude increases. There are also strong positive correlations 
(0.70–0.76) between monthly rainfall in December, January and February. Finally, there 
is a strong positive correlation between the proportion of mixed and deciduous forest 
close to a trap site (0.72) and a positive correlation between monthly May rainfall and 
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the proportion of mixed forest (0.79). All other correlations are less than 0.70 in absolute 
value.

There are more than two million subsets of 21 explanatory variates, so testing all 
possible subsets is impractical. Instead, automatic model selection strategies were 
implemented with GenStat. Here, four selection strategies were used for the full set of 
21 explanatory variates: forward selection, backward elimination and stepwise selec-
tion starting from either the null model (forward stepwise selection) or the full model 
(backward stepwise selection). Thresholds were chosen as Fin = 2 and Fout = 4. Hence, 
variates were added into the model if their incremental F-statistic was greater than 2 
and were dropped if their marginal F-statistic was less than 4. The results for forward 
selection and forward stepwise selection were the same except for variate MarRain 
(monthly March rainfall) which the stepwise procedure cycled over adding and drop-
ping (with F = 2.45). The models for backward elimination and backward stepwise 
selection were also the same except for variate MarRain which the stepwise procedure 
again cycled over adding and dropping (with F = 2.15). In both cases, the marginal 
F-tests for the MarRain variate were not significant (P > 0.05) and it was excluded. The 
models from the forward and backward strategies then accounted for 89.3% and 89.2% 
of the variation (adjusted R2), respectively. The set of explanatory variables selected by 
forward stepwise selection were (in order, with the variate names as defined in Table 
14.13)

 F60Day, MayRain, OctRain, FebRain, Urban, DecForest, Longitude and NovRain.

The set of explanatory variables retained by backward stepwise selection were

 FebRain, MayRain, OctRain, NovRain, C30Day, DecForest, Urban, Altitude, Latitude 
and Longitude.

To investigate differences in fit between these two models, we can use a scatter plot of 
the two sets of fitted values and calculate the correlation between them. In the scatter 
plot (not shown), the fitted values from the two models are very closely related, which 

TABLE 14.13

Explanatory Variates Available for Modelling Date of First Aphid Catch (Example 14.2)

Description Name Description Name

Weather Variables Geographic Variables

Monthly rainfall:  Site latitude Latitude

 October OctRain Site longitude Longitude

 November NovRain Site altitude Altitude

 December DecRain Land-Use Variables
 January JanRain Proportion of area under:  
 February FebRain  Coniferous forest ConForest

 March MarRain  Deciduous forest DecForest

 April AprRain  Mixed forest MixForest

 May MayRain  Grassland Grassland

Mean temperature during:  Arable crops Arable

 Coldest 30-day period C30Day  Inland water InlandWater

 Following 60-day period F60Day  Sea Sea

   Urban Urban
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is reflected in the correlation coefficient of 0.995. The parameter estimates from both 
models are shown in Table 14.14.

There is a set of seven explanatory variates common to both models, i.e.

 Longitude, OctRain, NovRain, FebRain, MayRain, DecForest and Urban,

and the parameter estimates for these explanatory variates are broadly similar in 
sign and size in the two fitted models. The backward method has retained Latitude, 
Altitude and C30Day in place of F60Day, which was selected by the forward method. 
Taking into account the observed correlations between these explanatory variates 
(shown in Table 14.15) and their estimated coefficients, it seems plausible that the 
combination of Latitude, Altitude and C30Day accounted for winter temperatures in 
an equivalent manner to F60Day.

One strategy for finding a final model is to take a model consisting of the seven vari-
ates held in common across the two models, and then to make an exhaustive search on 
adding subsets of the four variates that are in disagreement (C30Day, F60Day, Altitude 
and Latitude). The results of this search are shown in Table 14.16, which evaluates the 
adjusted R2, AIC and SBC statistics for each model and obtains the observed signifi-
cance level (P) associated with the marginal F-test for each of these four explanatory 
variates in each model.

The best model in terms of all three criteria is the one obtained by addition of variate 
F60Day only, the same model chosen by the forward selection method. The second best 
model for adjusted R2 contains the other three variates, i.e. the model selected by the 
backward methods, but this is not the second best model for AIC or SBC, which instead 
choose the model with F60Day and Latitude, in which the parameter for Latitude is 
not significantly different from zero (P = 0.539). On balance, we prefer the simpler, 
more parsimonious, model, in which only F60Day is added. Now, we are in position 
to look more closely at the properties of this model. Partial residual plots (not shown) 
suggest no evidence of model misspecification, and residual plots (Figure 14.6) show 
no great cause for concern. The Cook’s statistics (not shown) suggest the presence of 
one influential observation, but omission of this observation has little impact on the 

TABLE 14.14

Parameter Estimates (Standard Errors) and Observed Significance Levels 
(P) for MLR Models for Julian Day of First Catch Obtained by Forward 
Selection or Backward Elimination Strategies (Example 14.2)

Forward Stepwise Selection Backward Stepwise Elimination

Term Estimate (SE) P Estimate (SE) P

[1] 238.4 (11.43)  < 0.001  −88.4 (52.01) 0.097
Latitude — — 4.68 (0.854)  < 0.001
Longitude 1.16 (0.415) 0.008 1.70 (0.494) 0.001
Altitude — —  0.05 (0.025) 0.047
OctRain  −0.46 (0.076)  < 0.001  −0.39 (0.079)  < 0.001
NovRain  0.23 (0.107) 0.036  0.28 (0.108) 0.013
FebRain  0.37 (0.090)  < 0.001  0.35 (0.095)  < 0.001
MayRain  −0.72 (0.087)  < 0.001  −0.63 (0.097)  < 0.001
C30Day — —  −5.45 (1.577) 0.001
F60Day  −14.74 (1.132)  < 0.001 — —
DecForest 92.09 (28.387) 0.002 129.20 (34.911)  < 0.001
Urban  −194.76 (67.595) 0.006  −196.70 (68.107) 0.006
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parameter estimates. We therefore accept the forward selection model and move on to 
interpretation.

The fitted model (Table 14.14) suggests that the date of first catch of M. persicae is 
earlier within the year (has smaller fitted values) when the post-winter temperature (as 
measured by variate F60Day) is higher, for larger proportions of urban land use around 
the trap site, and when there is more rain in the previous October or in May of the 
same year. Conversely, the date of first catch is later (larger fitted values) when the trap 
site longitude is larger (further east within Europe), when the proportion of deciduous 
forest area around the trap site is greater, and when there is more rain in the previous 
November or in February of the same year. Of course, these variables do not vary inde-
pendently, but a prediction of date of first catch can now be made for any site for which 
all these variables have been recorded. As the observations were all made in the same 
year, predictions cannot be made with confidence for other years without expansion of 
the study (as systematic differences between years would be expected), but this model 
should still provide information about the relative difference in flight dates for different 
environmental conditions.

As already noted, all automatic model selection strategies should be used with caution. 
There is usually no unambiguous ‘best’ model, because it will depend on the strategy 
used and the thresholds chosen. Similarly, even if all sub-models can be evaluated, the 
‘best’ model may depend on the selection criterion used. It is often sensible to try sev-
eral different approaches, as shown in Example 14.2, to select a few candidate models for 
further investigation. These should then be studied in detail with regard to the model 
fit, assumptions (by checking residuals and investigating outliers) and to their biological 
interpretation.

TABLE 14.16

Summary Statistics (Radj
2 , AIC and SBC) for Addition of All Possible Subsets of Variates C30Day, 

F60Day, Altitude and Latitude to a MLR Model with Seven Other Explanatory Variates, with 
Observed Significance of the Marginal F-Test for Each Explanatory Variate (Example 14.2)

p

Goodness-of-Fit Statistics Observed Significance Level for Marginal F-Tests (P)

Radj
2 ( 100)× AIC SBC C30Day F60Day Altitude Latitude

8 46.23 549.68 564.97 — — — —
9 89.28 469.86 487.06 — < 0.001 — —
9 82.20 495.20 512.41 — — — < 0.001
9 81.74 496.47 513.68 < 0.001 — — —
9 46.77 549.96 567.17 — — 0.238 —
10 89.11 471.38 490.50 — < 0.001 — 0.539
10 89.01 471.83 490.95 0.877 < 0.001 — —
10 89.01 471.85 490.97 — < 0.001 0.941 —
10 88.29 475.04 494.16 < 0.001 — — < 0.001
10 86.19 483.25 502.37 — — 0.001 < 0.001
10 81.29 498.44 517.56 < 0.001 — 0.880 —
11 89.15 471.92 492.95 0.001 — 0.047 < 0.001
11 88.96 472.82 493.85 — 0.002 0.513 0.374
11 88.96 472.82 493.86 0.513 0.071 — 0.380
11 88.73 473.82 494.85 0.886 < 0.001 0.959 —
12 88.99 473.37 496.31 0.297 0.522 0.297 0.175

Note: The selected model is indicated in bold.
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14.9.2 Problems with Procedures for the Selection of Subsets of Variables

Above, we stated that procedures for model selection are subject to bias, over-fitting and 
over-optimism. In this subsection, we attempt to give some insight into these matters.

We start by considering the assumptions behind the incremental F-test for adding a 
term to a model, and how this relates to its role in forward selection. The distribution of 
the incremental F-test under the null hypothesis relates to a single pre-determined test. 
However, at the first step of the forward selection, the procedure calculates the incremen-
tal F-tests for each of the explanatory variates and chooses the largest to compare with the 
Fin threshold. Because we have deliberately chosen the largest of the set, this statistic will 
tend to be larger than we should expect under that F-distribution. The true significance 
level can therefore be much greater than the nominal value. We may therefore expect that 
some of the variables selected are actually unrelated to the response. This can lead to 
the phenomenon of over-fitting, where some of these extra variates accommodate random 
fluctuations at the expense of the overall trend. Including these extra explanatory variates 
in the model also reduces the ResMS and hence estimates of error – this makes estimates 
of uncertainty over-optimistic (too small). Similar considerations apply to all of the subset 
selection procedures in this section. For example, all subsets selection evaluates all subsets 
of a given size and chooses the best: again, chance variation can lead to the inclusion of 
some variables with no real underlying relationship with the response.

Miller (2002) suggests that one simple way to indicate whether uninformative variates 
have been included in a model is to introduce some new explanatory variates generated 
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377Models for Several Variates

from random numbers, then to repeat the selection procedure including these new vari-
ates. The point at which these random variates start appearing in the selected model indi-
cates the point at which no further useful information is being added, or where spurious 
information is being retained. Unfortunately, this approach requires that the number 
of random variates used is equal to the total number of explanatory variates, and so is 
impractical for small data sets with many explanatory variates. In other cases, it can give 
good insight into the possible reliability (or otherwise) of a selected model.

In addition to the inclusion of spurious variates, the process of model selection means 
that the coefficients of the selected variates tend to be biased. To demonstrate this, we con-
sider two explanatory variates, both with the same underlying true correlation with the 
response. The variate that, by chance, appears more strongly correlated with the response 
in the observed sample is more likely to be selected, and will also tend to have a larger 
absolute regression coefficient (positive or negative) than expected. This is known as selec-
tion bias and should not be confused with the systematic bias arising from the omission of 
an important explanatory variate from the model. There is no way to avoid selection bias, 
except by selection of the model on one data set, then estimation of the model parameters 
from another, independent, set. However, the reduction in bias achieved by doing this 
might be outweighed by the increase in uncertainty caused by use of a smaller data set for 
inference.

These issues are intrinsic to the selection procedures and are discussed in detail by 
Miller (2002). In practice, they are difficult to avoid, but you should be aware of these prob-
lems and be properly sceptical about the results of any selection procedure. One method 
that can combat over-fitting is cross-validation, and its use in model selection is described 
in the next section.

14.9.3 Using Cross-Validation as a Tool for Model Selection

In Section 13.5, cross-validation was used as a tool to diagnose model fit; here we use it as 
a tool for model selection. In this situation, the purpose of cross-validation is to obtain an 
unbiased measure of the predictive ability of competing models, so the model with the best 
performance can be selected. In the simplest case, the data is partitioned into two parts: 
the training set and the validation set. The training set is used to estimate parameters for 
some candidate models. We then obtain predictions from each of the models for the units 
in the validation set. The predictive ability of the candidate models can be evaluated by 
calculation of statistics such as the mean square error of prediction (MSEP or RMSE), mean 
absolute difference (MAD) or prediction bias (PB), as defined in Section 13.5. The candidate 
model with the smallest value of MSEP, or some other combination of these statistics, is then 
selected. Because the validation set is independent of the training set, the MSEP gives an 
unbiased estimate of the squared error of prediction for the selected model. A model with 
too many explanatory variates, that over-fits the training set, is unlikely to give good pre-
dictions for the unrelated validation set; hence, this approach guards against over-fitting.

When the data set is too small to be divided into two separate subsets, k-fold cross-vali-
dation can be used instead. This variant  divides the data into k subsets of (approximately) 
equal size. Each subset is used in turn as the validation set, with the remainder allocated 
to the training set. Again, the candidate models are fitted for each training set and then 
predict the response in each validation set. The evaluation statistics are calculated for each 
validation set, accumulated across sets, and then the model with best overall predictive 
ability is chosen. In this case, the training and validation sets are clearly not independent, 
but can still give a reasonable comparison of predictive performance.
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14.9.4 Some Final Remarks on Procedures for Selecting Models

We have described above some of the perils of model selection. Despite these perils, model 
selection is useful for identification of important explanatory variates and obtaining pre-
dictions, so long as the results are treated with due scepticism. However, selection of a 
single model can be dangerous, as often several models, possibly containing different 
explanatory variates, can give a similar goodness of fit by adapting to different features of 
the data. You should remember that there is usually no ‘true’ model, and that we are usu-
ally seeking a descriptive model that gives a good prediction of the response. In general, 
this does not imply any causative relationship, and often we shall be unable either to iden-
tify or measure the underlying variables that actually cause the response. Hence, several 
different descriptions can perform equally well and cross-validation can be used to com-
pare the predictive ability of different models. Alternatively, the technique of model aver-
aging might be used to combine predictions from several different models (see Chapter 8 
of Hastie et al., 2001, for a discussion of this topic).

We have described our strategies for model selection in terms of MLR, where the model 
consists of a set of explanatory variates. The methods apply to any linear models, including 
the models containing variates and factors and their interactions introduced in Chapter 15, 
where this topic is discussed further.

EXERCISES

 14.1 A random sample of a vegetatively propagated family of 4-year-old loblolly 
pine trees was taken from a study located at Randolph County, Georgia, with 
the objective of describing average crown width (CW, m) in terms of explana-
tory variables that are simpler to measure, such as diameter at breast height 
(DBH, cm), total tree height (Ht, m) and height to live crown (HLC, m). Two 
additional crown variables were measured as the average from three randomly 
selected branches from each tree: branch diameter (DiamB, cm) and angle 
(AngB, degree). File crown.dat contains unit numbers (ID) with these variates 
(CW, DBH, Ht, HLC, DiamB, AngB).*

 a.  First consider the three simplest explanatory variates: DBH, Ht and HLC. Fit 
a SLR model with response crown width (CW) for each individual explana-
tory variate, and compare it to a MLR model including all three variates. 
Can you reconcile the results? Which subset of these three variates best 
describes crown width? Obtain residual plots to check the fit and write 
down and interpret your final predictive model.

 b.  Now consider incorporating the two additional variables, DiamB and AngB, 
and repeat the subset selection process. Do you obtain the same result by 
considering these two additional variates with only those already selected 
in part (a) and, if so, discuss whether this will always be true or whether this 
strategy might sometimes fail?

 14.2 Samples of foliage from plots of red pine were analyzed to establish whether 
foliar nutrients could predict growth (Bliss, 1970, Exercise 18.8). File foliar.dat 
contains the plot number (Plot) with the quantity (mg) of potassium (variate 
K) and calcium (variate Ca) found in foliar samples of given weight (variate 
SampleWt, g) together with the increase in height (variate IncHt, ft) and basal 

* Data from FBRC, University of Florida.
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area (variate IncBA, sq ft/acre) over a 5-year period. Construct biologically 
meaningful explanatory variates and fit MLR models for the increases in height 
and basal area. Comment on the fit of your models, examine them for any evi-
dence of misspecification, and write down and interpret the best predictive 
model in each case. Give a 95% CI for the increase in height and basal area for a 
plot with 100 mg K and 20 mg Ca in a sample of weight 20 g.

 14.3 A set of samples were processed to calibrate a near infrared reflectance (NIR) 
instrument for the measurement of the protein content of ground wheat (Fearn, 
1983). File ground.dat holds the sample number (Sample) and protein content 
(variate Protein, %) established by a standard method and measurements of the 
reflectance at six wavelengths (variates L1–L6). Can you find a stable MLR to 
predict protein content? Write down and interpret your final predictive model.

 14.4 A forest biomass study combined data generated over several years from dif-
ferent research trials. In each study, several inventory plots were established 
and 2–12 slash pine trees from these plots were felled and components of bio-
mass measured. The combined data set contains 174 trees from 50 inventory 
plots with a wide range of ages and sizes. For each tree, the total aerial biomass 
(TAB, kg), diameter at breast height (DBH, cm) and total height (Ht, m) were 
measured. Stand level variables were also obtained from each plot, including 
basal area (BA, m2/ha), total number of trees (N, trees/ha), quadratic diameter 
(QD, cm) and stand age (Age, years). The objective of the study is to construct 
a model that predicts total aerial biomass using the tree and stand variables. 
File slash.dat contains unit numbers (ID) with plot numbers (Plot) and the 
explanatory variates (TAB, Ht, DBH, BA, N, QD, Age). The response TAB is usu-
ally log-transformed to obtain homogeneous variances. The generic model 
suggested in the literature takes the form

 loge(TABi) = α + β1 loge(DBHi) + β2 loge(Hti) + β3 loge(BAi) + β4 loge(Ni)
 + β5 loge(QDi) + β6 loge(Agei) + ei ,

  i.e. a MLR with six explanatory variates, with both the response and explana-
tory variates log-transformed. However, this set of explanatory variates often 
shows strong multicollinearity. Fit the MLR model described above, and criti-
cally evaluate it (e.g. investigate the collinearity, investigate misspecification 
using partial residual plots, plot the observed data against the fitted values). 
How robust is this model? Can you suggest a better model? (We re-visit these 
data in Exercise 16.6.)*

 14.5 Exercises 12.4 and 13.5 used SLR to predict dry matter (variate DryMatter) in 
terms of one of four explanatory variates: MaxLength (length of the longest 
stem), SumLength (sum of lengths of all stems), SumDiam (sum of diameters 
of all stems) and LengthTop5 (average length of the five longest stems). These 
variables are held in file willowstems.dat. Investigate whether you can obtain 
better predictions of dry matter from a MLR model and check the fit of any 
candidate models. If you have more than one candidate model, compare their 
fit using cross-validation (as in Exercise 13.5b).

* Data from FBRC, University of Florida.
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 14.6 In Example 14.2, a MLR model was found for a set of 50 traps from the EXAMINE 
project in 1995 (data file examine.dat).

 a.  Use residual plots to check the fit of this model (hint: look at the fitted values 
plot, a plot of the fitted versus observed values, Cook’s statistics and partial 
residual plots). Is there any cause for concern?

 b.  Data from the same study in 1996 are held (in the same format) in file 
 examine96.dat. Evaluate the three candidate models found in Example 14.2 
(i.e. the models from forward selection, backward selection and the final 
predictive model) by using cross-validation on the 1996 data. Which model 
performs best?

 c.  Perform model selection on the 1996 data to establish some candidate mod-
els. Check their fit using residual plots, as in part (a), and evaluate them by 
cross-validation on the 1995 data. Can you draw any conclusions by com-
paring the selected models across the 2 years?

 d.  Repeat the model selection exercise using the combined data set (held in 
file examine9596.dat) and check the fit of candidate models using resid-
ual plots. Write down your final predictive model. How much confidence 
would you have in predicting for other years?

 e.  Describe the structure of the combined data set. Can you take account of this 
structure in regression analysis? (We explore this further in Exercise 16.7.)
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15
Models for Variates and Factors

In the previous chapters, we developed models for one or more qualitative explanatory 
variables (factors; Chapters 4 to 11) and models for one or more quantitative explanatory 
variables (variates; Chapters 12 to 14). We now introduce models for a combination of 
qualitative and quantitative explanatory variables, i.e. one or more factors with one or 
more variates. Models for variates and factors arise in many situations, but they are simple 
extensions of the models discussed previously. We can think of them as either adding 
a variate to a model for factors, or vice versa. As an example of the first, consider a field 
trial set up as a CRD to study the effect of different types of fertilizers, where the linear 
model consists of a single factor to identify the response of each treatment group (fertilizer 
type). If differences in plant size between plots had been noticed (and measured) before 
the fertilizers were applied, the single factor model could be improved by incorporating an 
explanatory variate to quantify, and hence enable a correction for, the effect of initial plant 
size on final yield. This extension is known as analysis of covariance (ANCOVA), where 
an explanatory variate is used to account for underlying differences between experimental 
units. In the second case, we wish to incorporate information on groups into simple (or 
multiple) linear regression. The groups may arise from the application of different treat-
ments to the experimental units (e.g. different varieties, or levels of water stress) or due to 
observed differences between experimental units (e.g. males and females of a species, or 
different soil types). Each group might exhibit a unique pattern of response, so the pur-
pose of analysis is to investigate the differences, which might require separate intercept or 
slope parameters (or both) for each group. This process is often known as regression with 
groups or parallel model analysis.

In this chapter, we first focus on regression with groups for the case of a single factor and 
one explanatory variate. We start with an overview of the most common models (Section 
15.1.1), and then give a detailed explanation of each model and the sequential analysis of 
variance (ANOVA) used for model selection (Section 15.1.2). We consider some variations, 
such as building the model from different sequences of sub-models (Section 15.1.3) or 
imposing constraints on the intercept parameters (Section 15.1.4). There are several ways to 
extend the model, and next we allow multiple variates, i.e. multiple linear regression with 
groups (Section 15.2). We then discuss regression with groups as a method for modelling 
linear trends within a structured designed experiment (Section 15.3) and explore the rela-
tionship between ANCOVA and regression with groups (Section 15.4). We can define more 
complex models, including both multiple factors and multiple variates, and in Section 15.5, 
we discuss the issues that then arise in model selection and prediction. Finally, we note 
that fitting a factor in a model is in fact equivalent to fitting a set of specially defined 
explanatory variates, called dummy variates, and this equivalence is explained in Section 
15.6. Using this representation, we can write the model in matrix format, as used in math-
ematical statistical texts (Section 15.6.1).
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15.1 Incorporating Groups into the Simple Linear Regression Model

The aim of simple linear regression with groups (SLR with groups) is to investigate whether 
the straight line relationship between the response and a single explanatory variate changes 
from group to group. This is done by a combined analysis of the whole data set which, as 
usual, aims to find the simplest model that accounts for the patterns observed. As in the 
previous chapters, ANOVA is used as the tool for model selection. As a motivating example, 
consider a controlled environment trial where a range of doses of fungal inoculum are 
applied to a set of plants from several varieties under conditions known to be conducive 
to infection. The aim of the experiment is to see how the number of lesions present after 1 
week is related to the dose and whether this relationship changes across varieties, which 
may give a measure of variety resistance. If we can assume that the number of lesions 
increases linearly with the dose, then the most complex model for this experiment should 
allow separate lines (i.e. separate intercepts and separate slopes) for each variety (group). 
Observations consistent with this model are illustrated in Figure 15.1a. If ANOVA indicates 
no differences between the slopes of the regression lines across groups, then the model can 
be simplified, giving a set of parallel lines (with separate intercepts and a common slope); 
observations of this type are shown in Figure 15.1b. If there is no statistically significant 
difference in the average response levels, as indicated by the intercepts, then the model can 
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FIGURE 15.1
Data sets with three groups (•,▪,▴) showing fitted lines (—) when the required model is (a) separate lines, (b) 
parallel lines, (c) single line and (d) null.
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be simplified further, giving a single common line across groups, i.e. the SLR model (see 
Figure 15.1c). In this case, it is sensible to check for evidence of any association between the 
response and explanatory variate, and if there is not, then the response is best predicted by 
a constant value, as for the observations shown in Figure 15.1d.

15.1.1 An Overview of Possible Models

We start with an overview of the models outlined above, using a simple parameterization. 
As previously, we obtain least squares estimates for the parameters in the models. We do 
not derive these estimates here, leaving the calculations to statistical software. To define 
the models, we extend the notation for the SLR model to take account of the presence of 
groups. For convenience, we label the observations by the group to which they belong and 
then number the observations within each group. We therefore use yjk to represent the 
kth observed response in the jth group, with the corresponding value of the explanatory 
variable denoted xjk. The number of groups is denoted t, and so the index j runs from 1 to 
t groups (j = 1 … t) and the number of observations in the jth group is denoted nj, so the 
index k runs from 1 to nj (k = 1 … nj). The total sample size, denoted N as previously, is the 
sum of the number of observations in each group, N = n1 + n2 + … + nt.

The most complex model for SLR with groups, which we call the separate lines model, 
allows a separate intercept and a separate slope for each of the t groups, and is written 
most simply as

 yjk = αj + βjxjk + ejk , (15.1)

where the parameters αj and βj represent the intercept and slope of the regression line for 
the jth group, and ejk represents the random deviation for the kth observation in the jth 
group. The assumptions associated with the linear model listed in Sections 4.1 and 12.1 
also apply here. In symbolic form, this model is written as

Explanatory component: grp + x.grp

where x holds the values of the explanatory variate and grp is a factor indicating the allo-
cation of observations to groups. The grp term is associated with the individual group 
intercepts (αj). The composite term containing the variate and factor, x.grp, fits a separate 
slope for each group (βj).

EXAMPLE 15.1A: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

A survey was done of 41 plots containing natural stands of pure or mixed Nothofagus 
forest at the foot of the Andes. The resulting data can be found in file forest.dat and are 
displayed in Table 15.1. The stands were classified into three types defined by the domi-
nant species within the stand (factor Type) which was Coigue (type 1 with 13 plots), 
Rauli (type 2 with 9 plots) or Roble (type 3 with 19 plots). The variables recorded for 
each plot were the number of trees per hectare (stand density, variate SD) and the mean 
quadratic diameter in cm (variate QD).

The objective of the study was to model stand density as a function of quadratic diam-
eter and to compare this relationship among the three types of stand. The usual model 
fitted to such data is a SLR model with both variables transformed to natural loga-
rithms, and we follow this convention here. A scatter plot of the transformed variables 
(Figure 15.2) shows a negative relationship, with smaller log stand density correspond-
ing to larger values of log quadratic diameter. On this log-log scale, the relationship 



384 Statistical Methods in Biology

is reasonably linear both overall and within groups, although the range of quadratic 
diameter values for Rauli plots (group 2) is much smaller than for the other groups.

The separate lines model can be written as

 logSDjk = αj + βj logQDjk + ejk ,

where logSDjk and logQDjk are the natural logarithms of the stand density and mean 
quadratic diameter in the kth plot of the jth stand type, respectively (j = 1 … 3, k = 1 … nj, 

TABLE 15.1

Stand Density (Variate SD) and Mean Quadratic Diameter (Variate QD, cm) for 41 Plots of 
Mixed Nothofagus Forest Classified into Three Stand Types (Factor Type) According to the 
Dominant Species (Example 15.1A and File forest.dat)

Type SD QD Type SD QD Type SD QD

Coigue 1780 22.11 Rauli 2970 13.02 Roble 3440 11.60
Coigue 980 30.50 Rauli 1500 14.84 Roble 1600 13.17
Coigue 3100 16.98 Rauli 4080 15.02 Roble 3100 9.48
Coigue 4120 12.69 Rauli 1600 15.44 Roble 1420 17.85
Coigue 2280 17.92 Rauli 2040 18.66 Roble 2060 15.85
Coigue 4760 15.19 Rauli 1960 18.02 Roble 2440 14.54
Coigue 4960 12.00 Rauli 2120 15.20 Roble 1720 16.20
Coigue 1520 19.51 Rauli 2160 19.60 Roble 1220 18.27
Coigue 1480 21.39 Rauli 2720 11.53 Roble 4080 8.88
Coigue 5560 10.87 Roble 3890 11.95 Roble 3440 11.65
Coigue 2000 23.94 Roble 1070 22.74 Roble 760 26.31
Coigue 2960 14.21 Roble 1720 14.41 Roble 3840 12.04
Coigue 3240 19.67 Roble 2920 12.58 Roble 1600 14.38

Roble 2960 11.64 Roble 2320 12.60

Source: Data from Dra. Alicia Ortega Z., Universidad Austral de Chile.
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385Models for Variates and Factors

for n1 = 13, n2 = 9, n3 = 19), αj and βj are the intercept and slope for the jth stand type, and 
ejk are the random deviations. In symbolic form, this model is written as

Response variable: logSD
Explanatory component: Type + logQD.Type

where logSD = loge(SD) and logQD = loge(QD) are the loge-transformed variates. The 
explanatory terms Type and logQD.Type are associated with the separate intercepts and 
slopes for each stand type, respectively. The fitted model (adjusted R2 = 0.734) is shown 
in Figure 15.3a, and the parameter estimates are given with their standard errors in 
Table 15.2.

The parallel lines model allows a separate intercept for each group, but imposes a com-
mon slope so that the fitted model consists of a set of parallel lines. This model can be 
written in its simplest form as

 yjk = αj + βxjk + ejk , (15.2)
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Logged stand density (SD) plotted against logged quadratic diameter (QD, cm): • Coigue; ▪ Rauli; ▴ Roble with 
fitted lines (—) generated by: (a) separate lines, (b) parallel lines, (c) single line and (d) null models (Example 
15.1A). 
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where the parameter αj still represents the intercept of the regression line for the jth group, 
j = 1 … t, and parameter β now represents the common slope of the parallel lines. In sym-
bolic form, this model is written as

Explanatory component: grp + x

Here, the term grp is again associated with the individual group intercepts (αj), and the 
term x is associated with the common slope parameter (β).

EXAMPLE 15.1B: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

The parallel lines model for logged stand density is written as

 logSDjk = αj + β logQDjk + ejk .

Parameter αj is the intercept for the jth stand type, and β is the common slope of the 
decrease for logged mean quadratic diameter. In symbolic form, the explanatory model 
is written as

Explanatory component: Type + logQD

The Type term is associated with the separate intercepts for each stand type, and the 
term logQD is associated with the common slope. The fitted model (adjusted R2 = 0.723) 
is shown in Figure 15.3b and the parameter estimates are given in Table 15.2. For this 
data set, the parallel lines model appears similar to the separate lines model, particu-
larly for stands with Roble and Coigue as the dominant species.

The single line model does not allow for any difference between groups and is just a 
SLR model, written as

 yjk = α + βxjk + ejk , (15.3)

TABLE 15.2

Models for Logged Stand Density in Terms of Stand Type (Factor Type) and Explanatory Variate 
loge(Quadratic Diameter) (Variate logQD) (Examples 15.1A to C)

Term Parameter

Separate Lines Model 
(Example 15.1A)

Parallel Lines Model 
(Example 15.1B)

Single Line Model 
(Example 15.1C)

Estimate SE Estimate SE Estimate SE

[1] α — — — — 11.115 0.5174
Type 1 (Coigue) α1 12.534 0.6734 12.270 0.4393 — —
Type 2 (Rauli) α2 9.497 1.3727 11.926 0.4236 — —
Type 3 (Roble) α3 11.949 0.5536 11.735 0.4041 — —
logQD β — —  −1.536 0.1516  −1.232 0.1884
logQD.Type 1 β1  −1.628 0.2341 — — — —
logQD.Type 2 β2  −0.650 0.4999 — — — —
logQD.Type 3 β3  −1.617 0.2087 — — — —

SE = standard error.
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where the parameters α and β now represent the intercept and slope, respectively, of the 
common regression line. In symbolic form, this explanatory model is written as

Explanatory component: [1] + x

Recall from Chapter 12 that [1] represents a variate of length N that takes value 1 every-
where and is associated with the intercept parameter, α. As above, term x is associated 
with the common slope parameter, β.

EXAMPLE 15.1C: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

The single line model for logged stand density is written as

 logSDjk = α + β logQDjk + ejk .

Parameter α is the intercept and β is the slope of the common line. In symbolic form, the 
explanatory model is written as

Explanatory component: [1] + logQD

The fitted model (adjusted R2 = 0.511) is shown in Figure 15.3c and the parameter esti-
mates are given in Table 15.2. For this data set, this model appears inappropriate, as 
most of the observations for Coigue-type stands appear above the fitted line, and most 
of those for Roble-type stands appear below the fitted line.

The null model does not allow for any difference between groups or for any relationship 
with the explanatory variate and is written as

 yjk = α + ejk ,

where parameter α now represents the overall population mean. In symbolic form, this 
model is written as a single term

Explanatory component: [1]

where the term [1] is associated with the parameter α.

EXAMPLE 15.1D: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

The null model is written as

 logSDjk = α + ejk .

Parameter α now represents the population mean logged stand density. The symbolic 
form was shown above. The fitted model, with adjusted R2 = 0 and ˆ .α = 7 750 (SE 0.0731) 
is shown in Figure 15.3d and is clearly inappropriate for this data set as it does not cap-
ture the clear negative correlation between the logged number of trees and the logged 
mean quadratic diameter.

We use ANOVA to determine the appropriate model for any data set objectively, by 
fitting the models described above in order of increasing complexity, i.e. the single line, 
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parallel lines and separate lines models. There is no need to fit the null model as it is auto-
matically used as the baseline for comparisons. This sequence of models can be fitted by 
progressive addition of terms into the model, but that procedure leads to a more compli-
cated parameterization than used in this section. However, this parameterization is the 
default in most statistical software and so we explain it in some detail in the next section.

15.1.2 Defining and Choosing between the Models

We now look at the single line, parallel lines and separate lines models in more detail, using 
a more standard parameterization, and use the resulting sequential ANOVA to determine 
the most appropriate model for a given data set. As in the previous chapters (see Sections 
11.2 and 14.4), each model is quantified in terms of its model sum of squares, ModSS, and 
df, ModDF. Recall that the model sum of squares (SS) is the sum of squared differences 
between the fitted values from the current model and those from the baseline (null) model. 
The model df is equal to the number of independent parameters required to fit the model 
minus one, where the adjustment accounts for the single parameter in the baseline model. 
A sequential ANOVA table is constructed from the incremental sums of squares and df 
derived from these model sums of squares and df (details below), and we can use F-tests 
from this ANOVA table to find an appropriate model for the observed responses.

15.1.2.1 Single Line Model

As described above, the single line model is a SLR model that ignores groups and takes the 
form shown in Equation 15.3, with symbolic form

Explanatory component: [1] + x

As in Section 14.4, we represent the SS for this model as ModSS([1] + x) with 
ModDF([1] + x) = 1.

EXAMPLE 15.1E: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

For the stand density data, the parameter estimates are in Table 15.2 and the fitted model 
appears in Figure 15.3c. The model SS is equal to 4.583 with 1 df.

15.1.2.2 Parallel Lines Model

The parallel lines model represents the case where groups are constrained to have the 
same slope but allowed to have different intercepts. One simple form of this model is 
shown in Equation 15.2. However, it can also be considered as an extension of the single 
line model obtained by addition of the group factor into that model. Hence, the parallel 
lines model can also be written in symbolic form as

Explanatory component: [1] + x + grp

The variate [1] is still associated with a common intercept, and factor grp introduces a 
separate intercept for each group. In mathematical form, this model is written as

 yjk = α + βxjk + νj + ejk ,
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where β is still the common slope of the regression lines across groups, α can be thought 
of as an overall intercept, and the parameters νj (j = 1 … t) can be thought of as group-
specific deviations from the overall intercept. Unfortunately, this model is now over-
parameterized as we have only t groups, but have t + 1 parameters that determine the 
intercepts of those t groups. Some form of constraint on the parameter estimates is there-
fore required. One possibility (used in Section 15.1.1) is the omission of the overall inter-
cept term. The other possibility is to impose a constraint on the set of group intercepts, 
νj (j = 1 … t) and this is the choice usually made within statistical software. Here, we use 
first-level-zero constraints, which set ν1 = 0 and were previously used for factor models 
in Sections 4.5, 8.2.6 and 11.2.1. This parameterization changes the interpretation of the 
intercept and so we relabel that parameter. Some software packages, including SAS, use 
last-level-zero constraints which follow similar underlying principles but set νt = 0 (see 
Section 4.5). Grouping the intercept terms together and relabelling parameters produces 
the model

 yjk = (α1 + νj) + βxjk + ejk .

The intercept for the jth group is now α1 + νj. Here, α1 is still associated with a variate 
with value 1 everywhere (written symbolically as [1]), but because of the constraint 
ν1 = 0, parameter α1 is now equal in value to the intercept for the first group. The param-
eter νj is the difference between the intercepts for the jth and first groups (associated 
with the grouping factor, grp). The model SS is written as ModSS([1] + x + grp), and 
this model estimates t intercepts and one slope parameter, hence ModDF([1] + x + grp) = 
(t + 1) − 1 = t.

EXAMPLE 15.1F: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

Using first-level-zero parameterization, the parallel lines model for logged stand den-
sity is written as

 logSDjk = (α1 + νj) + βlogQDjk + ejk ,

with the explanatory component of the model written in symbolic form as

Explanatory component: [1] + logQD + Type

Parameter estimates for this model are ˆ .β = −1 536 (SE 0.1516), ˆ .α1 12 270=  (SE 0.4393), 
ˆ .ν2 0 344= −  (SE 0.1083) and ˆ .ν3 0 536= −  (SE 0.0948), with ν̂1 fixed equal to zero. The fit-
ted models for the three stand types are therefore

 Coigue (group 1) ( ): . .logSD   logQDk k


1 1 1 1 12 270 1 5= + + = −α ν β   336 1logQD k

 Rauli(group2): ( )logSD   logQD lk k


2 1 2 2 11 926 1 536= + + = −α ν β   . . oogQD k2

 Roble(group3) ( ): . .logSD   logQD lk k


3 1 3 3 11 735 1 536= + + = −α ν β   oogQD k3

This results in the same group intercepts as obtained in Example 15.1B and Table 15.2. 
The fitted parallel lines are shown with the data in Figure 15.3b, and the model SS is 
6.524 with 3 df.
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15.1.2.3 Separate Lines Model

This model allows separate intercepts and separate slopes for each of the t groups and was 
shown in simple form in Equation 15.1. This model can be considered as an extension of the 
parallel lines model, obtained by addition of a combined term formed from the explanatory 
variate and the groups factor. In symbolic form, the separate lines model is then written as

Explanatory component: [1] + x + grp + x.grp

Here, the term x is still associated with a component of slope held in common across 
groups, and the added term x.grp specifies that a different slope for variate x is to be fitted 
for each of the t groups. In mathematical form, this model is written in full as

 jk jk j j jk jky x x e= + + + +α β ν η  ,

where parameters are defined as above, but with the introduction of ηj (j = 1 … t) as group-
specific deviations from the common slope, β. This model is now over-parameterized in 
terms of both the intercepts and the slopes, as we still have only t groups, but t + 1 param-
eters that determine the intercepts and t + 1 parameters that determine the slopes for those 
t groups. So, now we implement the first-level-zero parameterization for both intercepts 
and slopes. Grouping the intercept terms and the slope terms together, and again slightly 
relabelling the parameters produces the model

 jk j j jk jky  x e= + + + +( ) ( )  α ν β η1 1 ,

with constraints ν1 = 0 and η1 = 0. As above, the intercept for the jth group is α1 + νj, and 
the slope for the jth group is now β1 + ηj. Here, β1 is still associated with the explanatory 
variate (x), but because of the constraint η1 = 0, β1 is now equal in value to the slope for the 
first group. The parameter ηj (associated with term x.grp) equals the difference between 
the slopes for the jth and first groups. The model SS is written as ModSS([1] + x + grp + x.grp), 
and this model estimates t intercept and t slope parameters, with ModDF([1] + x + grp +
x.grp) = 2t − 1.

EXAMPLE 15.1G: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

Using first-level-zero parameterization, we write the separate lines model for logged 
stand density as

 logSD    logQD ejk j j jk jk= + + + +( ) ( ) ,α ν β η1 1  

with the explanatory component of the model written in symbolic form as

Explanatory component: [1] + logQD + Type + logQD.Type

Parameter estimates for this model are shown in Table 15.3, from which we can derive 
the fitted model for each stand type as

 
Coigue(group1) ( ) ( ): . .logSD   xk k


1 1 1 1 1 1 12 534 1= + + + = −α ν β η    6628 1x k  ,
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 Rauli group2 : ( ) ( )( ) . .logSD   xk k


2 1 2 1 2 2 9 497 0 65= + + + = −α ν β η    00 2x k  ,

 Roble group3 : ( ) ( )( ) . .logSD   xk k


3 1 3 1 3 3 11 949 1 6= + + + = −α ν β η    117 3x k  .

Again, these results match the group intercepts and slopes obtained in Example 15.1A 
and Table 15.2. The fitted separate lines are shown with the data in Figure 15.3a, and the 
model SS is 6.725 with 5 df.

15.1.2.4 Choosing between the Models: The Sequential ANOVA Table

We now have all of the ingredients required to build the sequential ANOVA table for this 
set of models, starting with the single line model, moving to the intermediate parallel 
lines model and then to the more complex separate lines model. Recall from Sections 11.2 
and 14.4 that the incremental sums of squares and df in the sequential ANOVA table are 
calculated from the increase in the model SS and df as terms are added into the model. We 
calculate the incremental SS and df for the single line model by taking differences with the 
null, or baseline model, containing only the intercept term [1], which has ModSS([1]) = 0 
and ModDF([1]) = 0. Hence

 SS(x|[1]) = ModSS([1] + x) − ModSS([1]) = ModSS([1] + x)

 DF(x|[1]) = ModDF([1] + x) − ModDF([1]) = ModDF([1] + x) = 1

Similarly, on moving from the single line model to the parallel lines model, we obtain

 SS(grp|[1] + x) = ModSS([1] + x + grp) − ModSS([1] + x)

 DF(grp|[1] + x) = ModDF([1] + x + grp) − ModDF([1] + x) = t – 1

Finally, moving onto the separate lines model, we obtain

 SS(x.grp|[1] + x + grp) = ModSS([1] + x + grp + x.grp) − ModSS([1] + x + grp)

 DF(x.grp|[1] + x + grp) = ModDF([1] + x + grp + x.grp) − ModDF([1] + x + grp) = t – 1

TABLE 15.3

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance 
Levels (P) for a Separate Lines Model for Logged Stand Density in Terms of Factor Type 
(1 = Coigue, 2 = Rauli, 3 = Roble) and Explanatory Variate logQD (Example 15.1G)

Term Parameter Estimate SE t P

[1] α1 12.534 0.6734 18.615 < 0.001
logQD β1  −1.628 0.2341 −6.955 < 0.001
Type 1 ν1 0.000 — — —
Type 2 ν2  −3.037 1.5290 −1.986 0.055
Type 3 ν3  −0.586 0.8717 −0.672 0.506
logQD.Type 1 η1 0.000 — — —
logQD.Type 2 η2 0.978 0.5520 1.772 0.085
logQD.Type 3 η3 0.011 0.3136 0.036 0.972
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Recall also that within a sequential ANOVA table, we can abbreviate the incremental SS as 
SS(+term) to indicate that the term has been added into a model that already contains all of 
the terms in previous lines of the table. We follow a similar convention for the incremental 
DF. For this sequence of models, the incremental SS and DF can therefore be written as

 SS(+x) = SS(x|[1]), DF(+x) = 1

 SS(+grp) = SS(grp|[1] + x), DF(+grp) = t – 1

 SS(+x.grp) = SS(x.grp|[1] + x + grp), DF(+x.grp) = t − 1

We calculate mean squares as usual, by division of the incremental sums of squares by 
their df, and variance ratios by division of the mean squares by the residual mean square, 
ResMS, from the separate lines model. The sequential ANOVA table takes the form in 
Table 15.4.

As in SLR and MLR models, we should check for model misspecification before drawing 
conclusions. The residual plots described in Chapters 5 and 13 can be used for this check, 
and transformations may be used to stabilize variances if required (see Chapter 6). It may 
help to plot a separate graph for each group, especially when there are many observations 
within each group. If there is no suggestion of model misspecification, then we can pro-
ceed to use the sequential ANOVA to identify a parsimonious predictive model, i.e. the 
simplest model that describes the data well. As in Chapters 8 and 11, our full model is well 
defined, and so we start with the most complex model and progressively try to simplify it.

The variance ratio Fx.grp is associated with adding the final term x.grp into the parallel 
lines model to obtain the separate lines model. This tests the null hypothesis that the sepa-
rate lines model gives no statistical improvement over the parallel lines model, i.e. H0: ηj = 0 
for j = 1 … t, against the general alternative that this is not the case. If the null hypothesis is 
true, the variance ratio Fx.grp has an F-distribution with t − 1 numerator and N − 2t denomi-
nator df. If Fx.grp is larger than the 100(1 − αs)th percentile of this distribution, we reject this 
null hypothesis (at significance level αs), conclude that we cannot simplify the separate lines 
model, and use this as our predictive model. In this case, the t separate slopes and t separate 
intercepts should be reported with their standard errors. If Fx.grp is not significant, we move 
on to investigate the parallel lines model, using variance ratio Fgrp.

The variance ratio Fgrp is associated with addition of the factor term grp into the single 
line model to obtain the parallel lines model. This tests the null hypothesis that the paral-
lel lines model gives no statistical improvement over the single line (i.e. SLR) model, i.e. 

TABLE 15.4

Form of Sequential ANOVA Table for Regression with Groups Using Factor grp 
and Explanatory Variate x

Term Added
Incremental 

df
Incremental 

SS
Mean 

Square Variance Ratio

+ x 1 SS(+x) MS(+x) Fx = MS(+x)/ResMS
+ grp t − 1 SS(+grp) MS(+grp) Fgrp = MS(+grp)/ResMS
+ x.grp t − 1 SS(+x.grp) MS(+x.grp) Fx.grp = MS(+x.grp)/ResMS
Residual N − 2t ResSS ResMS
Total N − 1 TotSS

SS = sum of squares.
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H0: νj = 0 for j = 1 … t, against the general alternative that this is not the case. If the null 
hypothesis is true, the variance ratio Fgrp also has an F-distribution with t − 1 numerator 
and N − 2t denominator df. If Fgrp is larger than the 100(1 − αs)th percentile of this distribu-
tion, we reject this null hypothesis and conclude that we cannot simplify the parallel lines 
model. In this case, the common slope and t separate intercepts should be reported with 
their standard errors. If Fgrp is not significant, we move on to investigate the single line 
model, using variance ratio Fx.

The variance ratio Fx, associated with addition of the variate x into the null model to 
obtain the SLR model, is the test statistic for the slope in a SLR model (Section 12.3). If Fx is 
significant, then we conclude that the single line model adequately represents the data set, 
and the common slope and intercept should be reported with their standard errors. If Fx is 
not significant then we conclude there is no linear relationship between the response and 
the explanatory variate.

EXAMPLE 15.1H: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

The model SS and df from Examples 15.1E  to G give the sequential ANOVA table in 
Table 15.5. We have already verified (Figure 15.2) that the relationship between the 
response and explanatory variate is approximately a straight line within each group 
and that there is no sign of model misspecification. A composite set of residual plots 
from the separate lines model is shown in Figure 15.4, with points labelled by groups, 
and shows no real cause for concern. We judge that the pattern in the absolute residual 
plot reflects the sparsity of observations for small or large fitted values rather than vari-
ance heterogeneity.

We therefore proceed to interpret the ANOVA table to establish our predictive model. 
The variance ratio for separate lines, FlQD.T = 1.724 with 2 and 35 df (P = 0.193), gives no 
evidence that the slopes differ between types of plot. We therefore examine variance 
ratio FT to test the null hypothesis that the intercepts are all equal. Here, FT = 16.629 
on 2 and 35 df (P < 0.001) giving strong evidence that separate intercepts are required, 
so we use the parallel lines model to describe the relationship between logged stand 
density and logged quadratic diameter. The equations of the fitted parallel lines were 
given in Example 15.1F. Logged stand density is smaller for larger values of logged 
quadratic diameter, and decreases at the same rate for all three stand types. For a given 
value of quadratic diameter, logged stand density for Rauli and Roble type stands is 
on average 0.344 and 0.536 units less, respectively, than for Coigue type stands. Figure 
15.3b showed the data with the fitted parallel lines superimposed; this model appears 
to describe well the response within the observed range of logged quadratic diameter. 
In Exercise 15.4, we ask you to interpret this model on the original scale.

TABLE 15.5

Sequential ANOVA Table for Regression with Groups for Logged Stand Density 
with Factor Type and Variate logQD (Example 15.1H)

Term Added
Incremental 

df
Incremental 

SS
Mean 

Square
Variance 

Ratio P

+ logQD 1 4.5833 4.5833 FlQD = 78.562 < 0.001
+ Type 2 1.9403 0.9701 FT = 16.629 < 0.001
+ logQD.Type 2 0.2011 0.1006 FlQD.T = 1.724 0.193
Residual 35 2.0419 0.0583
Total 40 8.7667

SS = sum of squares.
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In this section, we have outlined the basic procedure for identifying a good model for 
simple linear regression with groups. The main complication is in the different parameter-
izations that can be used. It is important to realize that although different parameteriza-
tions of a model result in different estimates of individual parameters, the fitted model is 
invariant to the parameterization, i.e. the same fitted model, and hence predictions, are 
obtained for any valid parameterization. Similarly, the sequential ANOVA table will have 
the same entries regardless of the model parameterization.

We have explained the first-level-zero parameterization in some detail because this type 
of parameterization is common in statistical packages, and is commonly misunderstood. 
Having explained the principles for obtaining the fitted model from the parameter esti-
mates, the next challenge is in obtaining SEs for the amalgamated estimates of intercept 
and slope. Calculation of the SE of a sum (or difference) of estimates requires their covari-
ances (see Example 15.1I and Section C.4), which might not be presented as standard out-
put. One way to avoid this issue is to use the simple parameterization of Section 15.1.1 for 
the selected model, so that each intercept and slope is represented by a single parameter. 
Some models with several grouping factors cannot be represented in this manner, but 
most statistical software has facilities to calculate a SE for linear combinations of param-
eter estimates that can be used in this situation. Alternatively, if the interest is more in 
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lines model for logged stand density (Example 15.1H).
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prediction of the expected response than in the components of the model, it may be more 
informative to produce predictions for specific values of the explanatory variates, and to 
quantify uncertainty with the prediction SEs or confidence intervals (CIs).

EXAMPLE 15.1I: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

Standard errors for the combined estimates of the intercepts in the parallel lines model 
(Example 15.1F) can be derived from the variance–covariance matrix for estimates of 
the unconstrained parameters, which takes the form
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For example, the variance of the intercept for Roble stands (group 3) can be expressed 
as

 

Var( ) Var( ) Cov( , ) Var( )
0.1929 + 

   ˆ ˆ ˆ ˆ ˆ ˆα ν α α ν ν1 3 1 1 3 32+ = + +
= ((2 0.0193) 0.0090 

0.1633 .
× − +

=

The estimated SE is then the square root of this value, with SE( ) 0.4041 ˆ ˆ .α ν1 3+ =  A simi-
lar calculation gives SE( )2

 ˆ ˆ . ,α ν1 0 4236+ =  and SE( ) SE( ) ˆ ˆ ˆ .α ν α1 1 11 0 4393+ ==  since 
ˆ ,ν1 0=  matching the estimated SEs shown in Table 15.2.

In fitting the SLR with groups, we assume that the model deviations obey the assump-
tions stated in Sections 4.1 and 12.1. In particular, we assume that the deviations have a 
common variance and this implies that the variation is the same across all groups. You can 
check this assumption graphically by identifying groups, using different colours or sym-
bols, in residual plots (see Section 5.2). It is not possible to use Bartlett’s test (Section 5.3) 
here because the group sample variances are influenced by the values of the explanatory 
variate as well as by background variation. If variances differ between groups, and this 
heterogeneity cannot be corrected by applying a single transformation across all groups, 
then our assumptions no longer apply and conclusions from the ANOVA F-tests may be 
misleading. In this case, a weighted analysis might be appropriate but this is beyond the 
scope of this book (see Draper and Smith, 1998, or Montgomery et al., 2012).

As long as the residual df are not too small, then it is reasonable to perform model selec-
tion from the sequential ANOVA table as described above. If the residual df (ResDF) are 
small, then the estimate of background variation from the full model will be poor, giving 
low power for the analysis. In this case, if there is no evidence for the separate lines model, 
it is sensible to drop the x.grp term from the model and refit the parallel lines model to 
obtain a revised sequential ANOVA table. The incremental sums of squares and df for the 
model terms x and grp will be the same as those in the original table, but the combined 
term (x.grp) will now be merged with the residual to obtain a revised estimate of back-
ground variation. The variance ratios for terms x and grp are then calculated with respect 
to the revised residual mean square and will differ from those in the original table. This 
difference will usually be small if the ResDF in the original table were large (> 30) or if the 
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number of groups is small. Both sets of F-tests – from the original and revised tables – are 
valid, although their conclusions may differ. As a (somewhat arbitrary) rule of thumb, we 
suggest constructing the revised table when ResDF ≤ 10. In either case, once a model has 
been selected it is conventional to refit that model and to use its residual mean square as a 
basis for parameter SEs.

Finally, common sense is required in fitting these models. It is usually reasonable to 
compare behaviour across groups only if the range of the explanatory variate is simi-
lar across those groups. If there is not a strong overlap, there may be some ambiguity 
between differences in group intercepts and correlation with the explanatory variate. In 
some extreme cases, the sign of the estimated slopes can change depending on whether 
separate group intercepts are included in the model (e.g. see Figure 15.11c). Furthermore, 
comparison across groups is sensible only when there are sufficient observations within 
each group to give confidence in the conclusions.

15.1.3 An Alternative Sequence of Models

The sequence of models considered in the previous section started with the single line 
(SLR) model. We then added a factor to allow separate intercepts for each group, i.e. the 
parallel lines model, and finally added the interaction between the factor and variate to 
allow separate slopes for each group. Alternatively, we might start by adding the grouping 
factor into the null model giving a model of the form

 y ejk j jk= + +α ν  .

This model consists of a set of parallel lines with zero slope. As discussed previously, this 
model is over-parameterized, as it has t + 1 parameters to describe only t intercepts and so 
we introduce a constraint. Again, we use the first-level-zero parameterization so the model 
takes the form

 y ejk j jk= + +α ν1  ,

with ν1 = 0. As there is no explanatory variate in the model, the ‘intercept’ parameters can 
here be interpreted in terms of the population means for each group, where the parameter 
α1 represents the population mean for group 1, and the effect νj represents the difference 
between the population means for the jth and first groups. This model fits a separate popu-
lation mean for each group and so is called the separate groups model, with symbolic form

Explanatory component: [1] + grp

This is exactly the same model as used for a single explanatory factor in Chapter 4, with 
the model df equal to the number of groups minus one, i.e. t − 1.

Adding an explanatory variate into the separate groups model gets us back to the paral-
lel lines model with a common slope and separate intercepts. We therefore have two routes 
to this model: we can either add the variate and then the factor into the model or vice versa. 
The combined term is then added to obtain the separate lines model. These two sequences 
of models are illustrated in Figure 15.5.

We now have two possible sequential ANOVA tables. Except in the balanced case, where 
observations within each group are made at the same values of the explanatory variate 
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and the two variables are orthogonal, the incremental sums of squares for adding the 
variate (x) and factor (grp) terms will differ between these two tables. The incremental SS 
and F-test for the combined term (x.grp) is the same in both sequences. As in Section 14.4, 
the aim of analysis is to identify the simplest model that describes the pattern in the data, 
and we suggest the following procedure. Starting with the separate lines model, we test 
whether simplification to the parallel lines model is permissible. If it is, we refit the model 
if the ResDF are small; otherwise we work from the two original sequential ANOVA tables. 
We then have two choices: we might drop either the grouping factor (to give the single line 
model) or the explanatory variate (to give the separate groups model). We assess the F-tests 
associated with both options. If both are significant, then we cannot simplify the parallel 
lines model. If the F-test for dropping the variate is significant, but that for dropping the 
grouping factor is not, then we drop the factor to obtain the single line model, and then test 
whether the variate should be retained in the model. If the F-test for dropping the group-
ing factor is significant, but that for dropping the variate is not, then we drop the variate to 
obtain the separate groups model, then test whether the groups should be retained in the 
model. If neither test is significant, then we drop the least significant term (i.e. that with the 
largest observed significance level) first, then test the other.

EXAMPLE 15.1J: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

For the stand composition data, the sequential ANOVA table obtained by addition of the 
Type factor into the model first is Table 15.6.

In Example 15.1H, we established that we did not require separate slopes for each 
group and therefore we start from the parallel lines model. The incremental F-test for 

Null model

yjk = α + ejk 

Separate groups

yjk = (α1 + νj ) + ejk 

Single line

yjk  = α + βxjk + ejk  

Parallel lines

yjk = (α1 + νj ) + βxjk + ejk 

Separate lines

yjk = (α1 + νj ) + (β1 + ηj)xjk + ejk 

+ grp

+ x

+ x

+ grp

[1]

[1] + grp

[1] + x + grp [1] + x + grp + x.grp
+ x.grp

[1] + x

FIGURE 15.5
Two sequences of models for regression with groups.

TABLE 15.6

Sequential ANOVA Table for Regression with Groups for Logged Stand Density 
with Factor Type and Variate logQD: Adding the Grouping Factor into the Model 
First (Example 15.1J)

Term Added
Incremental 

df
Incremental 

SS
Mean 

Square
Variance 

Ratio P

+ Type 2 0.3025 0.1512 FT = 2.592 0.089

+ logQD 1 6.2212 6.2212 FlQD = 106.636 < 0.001
+ Type.logQD 2 0.2011 0.1006 FlQD.T = 1.724 0.193
Residual 35 2.0419 0.0583
Total 40 8.7667

SS = sum of squares.
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the logQD variate (after fitting the Type factor) is statistically significant (F1 35 106 64, . ,lQD =  
P < 0.001, Table 15.6), indicating that the common slope in response to the logged qua-
dratic diameter variate was non-zero. In the original ANOVA table, the incremental 
F-test for the Type factor (after fitting the logQD variate) was also highly significant 
(F2 35 16 63, . ,T =  P < 0.001, Table 15.5), indicating that separate intercepts were required. 
This confirms the parallel lines model cannot be further simplified and is therefore the 
most suitable model for these observations.

15.1.4 Constraining the Intercepts

Another model that might be considered relevant is one with a common intercept for 
all t groups but separate slopes for each group, known as the common intercept model. 
This model is based on the assumption that the straight line responses associated 
with the different groups all converge at a single point when x = 0. This model can be 
obtained by addition of the interaction directly to the single line model, and takes the 
symbolic form

Explanatory component: [1] + x + x.grp

Here, the term [1] corresponds directly to the common intercept, the variate x provides 
a common slope across all groups and x.grp specifies a different slope for each of the t 
groups. In mathematical form, and with first-level-zero parameterization, the resulting 
model is

 y x ejk j jk jk= + + +α β η( )  1 .

An example of this model is shown with artificial data in Figure 15.6a: the fitted lines 
diverge from a common intercept at x = 0.

Except in special circumstances, we advise against the use of this model. The arguments 
here are analogous to those against regression through the origin in Section 12.9.2. For 
this model to be useful, we first require that the origin (x = 0) is within (or close to) the 
range of the data, because we cannot objectively evaluate whether the common intercept 

(a)

0 Max
x

y

(b)

0 MaxMean
x

y

FIGURE 15.6
Non-invariance of the common intercept model: (a) fitted model (—) for two groups (•,▪) and untransformed 
explanatory variate; (b) fitted model (—)  with centered explanatory variate.
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model gives a good fit unless some observations are present in this region. Second, the 
origin should have some absolute meaning within the biological context of the data. This 
is required because changing the position of the origin, for example, as when changing 
from the Celsius to Fahrenheit scale of temperature, will also change the required point of 
convergence. Figure 15.6b illustrates the fitted common intercept model when the position 
of the origin is changed by standardization of the explanatory variate: the fitted model is 
very different and now inappropriate for the observed response.

In general, we follow the principles of marginality (previously discussed in Sections 
8.2.1, 8.3 and 11.2.2) also within the context of regression modelling. We consider a term as 
marginal to any term of which it is a sub-term; for example, terms A and B are both mar-
ginal to term A.B. The principle of marginality requires that for each term included in a 
model, all terms that are marginal to it, i.e. all sub-terms, should also be included. The only 
exception occurs when some sub-terms are not meaningful, for example, in nested mod-
els of form A/B, we do not require term B in the model before we fit A.B. We previously 
discussed this principle in the context of models containing only factors, but we apply it 
to all models. For example, the terms x and grp are both marginal to the term x.grp. The 
term [1] is regarded as marginal to all other terms. A model built by progressive addition 
of terms should only allow a term to be added if all of its sub-terms are already present, 
so we can add x.grp only to a model that already contains terms x and grp. Conversely, a 
term should not be dropped from a model if terms that it is marginal to are present in the 
model. For example, we should not drop term grp from a model that also contains term 
x.grp. Use of this principle with explanatory variates ensures that a model is invariant to 
changes of scale. The separate slopes with common intercept model discussed in this sec-
tion disobeys the rule of marginality, as it does not include the sub-term grp, and so is not 
robust to change of scale.

15.2 Incorporating Groups into the Multiple Linear Regression Model

We now generalize the regression with groups model to allow several explanatory vari-
ates, incorporating groups into a multiple linear regression model. The aim of analysis 
stays the same, namely, to find as simple a model as possible that describes the response 
well. We first describe the general form of the model, and then use an example with two 
explanatory variates to illustrate the procedure of model selection in this relatively simple 
case.

For a model with q explanatory variates and a single factor with t groups, the most com-
plex model allows a separate intercept for each group and a separate slope for each group 
for each explanatory variate. In the simplest parameterization, this model can be written 
in mathematical form as

 y x x x ejk j j jk lj ljk qj qjk jk= + + + + + +α β β β1 1 … …  ,  (15.4)

where, as previously, the units are labelled by index j indicating the group (j = 1 … t) 
and index k labelling the observations within each group. The index l is used to identify 
the explanatory variates (l = l … q) in the model. The model presented in Equation 15.4 
has t intercepts (α1 to αt), and q × t slope parameters (β11 … β1t to βq1 … βqt). Each group is 
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associated with one intercept and q slope parameters, one for each explanatory variate. 
This model can be written in symbolic form as

Explanatory component: grp + x1.grp + … + xl.grp + … + xq.grp

As before, grp is a factor (which allows a separate intercept for each group) and the term 
xl.grp is a combination of the grp factor and the lth explanatory variate, xl, which allows 
that variate to have a separate slope for each group.

In practice, we use a somewhat more complex form of the model by progressively adding 
terms to the null model. With first-level-zero parameterization, this results in the math-
ematical form

 y x x xjk j j jk l lj ljk t tj qjk= + + + + + + + + + +( )α ν β η β η β η1 11 1 1 1 1( ) ( ) ( )… … eejk  ,

with ν1 = 0 and ηl1 = 0 for l = 1 … t. Then, α1 is the intercept for the first group and νj is the 
difference between intercepts for the jth and the first groups. For the lth explanatory vari-
ate, βl1 is the slope for the first group and ηlj is the difference between the slopes for the jth 
and the first groups. In symbolic form, this model can be written as

Explanatory component: [1] + x1 + … + xl + … + xq + grp
 + x1.grp + … + xl.grp + … + xq.grp

In fitting this more complex form of model, we need to be aware of several potential 
problems. First, there may be collinearity within the set of explanatory variates. This 
can be investigated with exploratory scatter plots and the methods described in Section 
14.7. If variates are partially collinear, this can introduce ambiguity into the model selec-
tion process. If very strong collinearity is present, then the model may become unsta-
ble and one or more variates should be omitted. Second, in order for the separate lines 
model to be sensible, we now require a good overlap of values across groups for each of 
the explanatory variates as well as a reasonable number of observations in each group. 
Third, we may need to modify our strategy for model selection. With many explanatory 
variates, many different sequential ANOVA tables can be constructed by adding the 
variates into the model in different orders. If the full model, with separate slopes for each 
explanatory variate, makes biological sense and has a reasonable number of residual df 
then it is sensible to start from this model and use marginal F-tests to simplify it. When 
a term is dropped, the model is refitted and a new set of marginal F-tests calculated. 
An alternative strategy is to start from an intermediate model and to consider adding 
or dropping terms, refitting the model and recalculating the F-statistics each time the 
model is changed. In both cases, the principle of marginality should be respected: a term 
should be added only when all of its sub-terms are already present, and a term should 
not be dropped if it is a sub-term of another term still in the model. As previously, you 
should use diagnostic plots to check the fit of the model. We illustrate some of these 
principles in Example 15.2.

EXAMPLE 15.2: WEED SEED ABUNDANCE

An observational study was done to investigate whether the number of seeds produced 
by rye-grass could be related to plant characteristics. Between 17 and 24 samples were 
collected from each of four study sites (factor Site, with levels C, L, P and W). At each 
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sample point within each site, the total number of seeds was counted and converted to 
number per m2 (response variate TotalSeed), and the average head length (in mm, vari-
ate HLength) and average number of spikelets per head (variate Spikelets) on plants was 
recorded. The data are in Table 15.7 and file weedseed.dat. Before analysis, we transform 
the response variable using the log10-transformation, i.e. logSeed = log10(TotalSeed), to 
achieve homogeneity of variance of the residuals (see Chapter 6).

Preliminary exploration of the data indicates a fairly strong relationship between 
the two explanatory variates (sample correlation of r = 0.67, Figure 15.7). This implies 
that there may be some ambiguity as to which variate best explains differences in 
logged seed numbers. The range of both variates varies substantially across the four 
sites.

Plotting the log10(number of seeds) against the number of spikelets or head length 
suggests a positive but noisy relationship in both cases (Figure 15.8), and that logged 

TABLE 15.7

Observations of Total Seed Number per m2 (Total) with Average Head Length (HL) and Number 
of Spikelets per Plant (Spikes) at Four Sites (Labelled C, L, P and W) (Example 15.2 and File 
weedseed.dat)

Site HL Spikes Total Site HL Spikes Total Site HL Spikes Total

C 26.74 26.1 6232 L 26.21 21.1 13,320 P 33.76 26.4 120,937
C 23.77 28.7 6435 L 23.87 21.2 15,116 P 36.35 34.1 127,307
C 28.80 25.2 7022 L 27.58 21.1 15,243 P 35.98 28.7 137,416
C 29.89 30.1 10,700 L 23.57 19.6 16,830 P 31.22 27.5 161,070
C 31.01 29.1 11,524 L 28.33 24.7 18,856 P 33.96 25.4 162,154
C 26.00 26.3 12,814 L 24.39 26.1 20,930 P 32.76 27.7 173,734
C 31.25 21.4 13,093 L 20.95 21.7 24,200 P 29.47 27.7 181,971
C 33.48 27.7 14,991 L 30.03 24.6 24,369 P 32.35 25.9 190,408
C 24.86 28.0 15,137 L 26.92 26.0 24,944 P 35.48 30.8 215,477
C 25.71 28.0 16,162 L 27.47 23.1 25,097 P 34.53 30.5 245,200
C 26.79 27.9 16,956 L 26.46 27.0 28,136 P 30.59 27.2 246,758
C 31.19 27.8 16,962 L 28.19 23.1 31,434 P 31.75 29.2 300,595
C 30.79 26.8 17,234 L 27.81 21.8 33,256 W 20.09 19.8 59,321
C 33.17 28.7 17,409 L 27.26 21.6 34,690 W 21.92 22.6 59,960
C 30.74 26.1 17,414 L 31.30 24.2 38,623 W 18.21 18.0 62,700
C 31.62 25.5 18,828 L 27.20 21.5 54,260 W 22.74 20.4 66,096
C 30.22 28.1 22,611 L 30.38 25.9 58,827 W 26.92 24.9 78,618
C 31.59 28.6 23,690 P 28.28 24.2 35,042 W 23.00 22.1 80,400
C 29.72 26.1 25,108 P 31.50 25.1 42,312 W 24.91 25.9 84,607
C 31.23 27.6 26,121 P 38.44 27.5 60,867 W 19.99 19.2 90,436
C 37.12 30.0 28,161 P 33.99 25.1 62,047 W 20.80 21.0 93,800
C 33.12 27.5 28,637 P 29.31 23.4 65,286 W 23.85 24.3 105,700
C 25.22 27.2 31,439 P 29.16 24.6 80,327 W 20.35 23.1 106,321
L 19.66 23.5 7084 P 33.27 23.6 96,021 W 22.05 22.0 106,480
L 27.94 22.3 10,436 P 27.02 24.7 96,173 W 23.67 21.5 122,820
L 32.14 22.8 11,119 P 33.89 24.6 100,352 W 28.43 24.1 128,132
L 27.40 22.0 11,613 P 30.94 24.0 104,777 W 18.84 19.4 130,834
L 26.93 22.8 11,883 P 25.73 18.0 112,500 W 21.24 21.6 157,896
L 26.03 23.8 12,824 P 32.90 25.3 117,237 W 19.86 20.8 171,947

Source: Data from R. Alarcon-Reverte, Rothamsted Research.
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seed numbers may be more related to differences between sites than to either of the 
variates. For this reason, we fit factor Site as the first term in the model, followed by 
the two explanatory variates, and then the combined terms of factor Site with each of 
the two variates.

As there are between 17 and 24 observations at each site, it is a reasonable strategy to 
fit the full separate lines model and then seek to simplify it. The full model is expressed 
in symbolic form as

Response variable: logSeed
Explanatory component: [1] + Site + HLength + Spikelets + HLength.Site

 + Spikelets.Site

This model can be written in mathematical form, with first-level-zero parameterization, 
as
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FIGURE 15.8
Total number of seeds per m2 (log10 scale) vs (a) average head length (mm) and (b) average number of spikelets 
per head at four sites: ▴ C, • L, ▪ P, ▾ W (Example 15.2).
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FIGURE 15.7
Average head length (mm) vs average number of spikelets per head at four sites: ▴ C (site 1), • L (site 2), ▪ P (site 
3), ▾ W (site 4) (Example 15.2). 
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 logSeedjk = (α1 + νj) + (β11 + η1j) HLengthjk + (β21 + η2j) Spikeletsjk + ejk ,

with ν1 = 0, η11 = 0 and η21 = 0. In this model, the response logSeedjk represents the kth 
observation at the jth site, with j = 1 … 4, k = 1 … nj and n1 = 23, n2 = 23, n3 = 24 and 
n4 = 17, and corresponding values of the explanatory variates indicated by HLengthjk 
and Spikeletsjk. The overall intercept, α1 (associated with term [1]), represents the inter-
cept at the first site. The site-specific intercepts, νj (associated with term Site), represent 
the difference in intercepts between the jth and the first sites. The overall slope for 
explanatory variate head length, β11 (associated with the term HLength), represents the 
slope with respect to head length at the first site. The site-specific slopes of head length, 
η1j (associated with term HLength.Site), represent the difference between slopes at the 
jth and the first sites. Overall and site-specific slope parameters for the number of spike-
lets, β21 and η2j (associated with terms Spikelets and Spikelets.Site), are interpreted 
similarly.

Table 15.8 shows two sequential ANOVA tables in abbreviated form, the first con-
structed by adding head length before number of spikelets, and the second using the 
other order. Recall that the estimated parameters are the same from the two fits, but 
the sequential ANOVA tables differ because of the partial collinearity between the two 
explanatory variates. The full model has a total of 12 parameters (one intercept and 
two slopes for each of the four sites) and can be interpreted as fitting separate planes in 
terms of the two explanatory variates for each site.

The next step in our analysis is the identification of a suitable model. We first con-
sider the combined terms, Spikelets.Site and HLength.Site. We can obtain marginal 
F-tests for these terms from the sequential ANOVA tables in Table 15.8 and find that 
the F-statistic for dropping Spikelets.Site is less significant (F3 75 0 65, . ,Sp.S =  P = 0.584, 
Table 15.8a) and so drop this term. As there are 75 residual df in the full model, we do 
not refit the model, but can immediately consider whether we can then drop the term 
HLength.Site. Its F-statistic is not significant (F3 75 1 71, . ,HL.S =  P = 0.172, Table 15.8a) and so 
we also drop this term. There is therefore no evidence for separate slopes across sites 
for either of these variates.

We then consider whether we can drop either of the explanatory variates. We find 
that if we add the HLength variate after the Site factor and the Spikelets variate, there 
is no significant improvement to the model (F1 75 2 32, . ,HL =  P = 0.132, Table 15.8b). If we 
add the Spikelets variate after Site and HLength, then there is a small and borderline-
significant improvement to the model (F1 75 3 82, . ,Sp =  P = 0.054, Table 15.8a). This indicates 
that HLength adds no information once Spikelets is in the model, but Spikelets may add 

TABLE 15.8

Abbreviated Sequential ANOVA Tables for Separate Lines Model for Logged Seed Counts 
with Factor Site and Explanatory Variates Spikelets and HLength (Example 15.2)

(a) (b)

Term Added
Inc.
df

Mean 
Square P Term Added

Inc.
df

Mean 
Square P

+ Site 3 4.406 < 0.001 + Site 3 4.406 < 0.001
+ HLength 1 0.291 0.009 + Spikelets 1 0.351 0.004

+ Spikelets 1 0.155 0.054 + HLength 1 0.095 0.132

+ HLength.Site 3 0.070 0.172 + Spikelets.Site 3 0.024 0.623

+ Spikelets.Site 3 0.027 0.584 + HLength.Site 3 0.072 0.159
Residual 75 0.041 Residual 75 0.041
Total 86 0.198 Total 86 0.198

Inc. = incremental.
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a little information when HLength is in the model. We therefore drop the HLength vari-
ate from the model. This leaves the Site factor and Spikelets variate in the model; i.e. a 
parallel lines model in terms of Spikelets. We refit this model in both orders, giving the 
abbreviated sequential ANOVA tables in Table 15.9.

The incremental F-test for the Spikelets variate is not significant when it is fitted first 
(Table 15.9b), but is highly significant when fitted after factor Site (Table 15.9a). Factor 
Site is highly significant for both orders of fitting. The fitted model in Figure 15.9 shows 
the reason for this: differences in logged seed count between sites are so large that the 
relationship with number of spikelets can be detected only after we have corrected for 
this effect. This parallel lines model, with regression on Spikelets, is therefore our pre-
dictive model. Residual plots (not shown) indicate no conflict with the model assump-
tions, and plotting the residuals against the omitted HLength variate shows no evidence 
of any relationship. The predictive model accounts for 78.8% of the variation in the data 
(adjusted R2 = 0.788), and can be written in simple form as

 
ˆ ( ) ˆ ˆ ,*µ α βj jSpikelets Spikelets= +  

where ˆ ( )*µ j Spikelets  represents the prediction on the log scale at the jth site for the speci-
fied number of spikelets. The parameter estimates are listed in Table 15.10.

TABLE 15.9

Abbreviated Sequential ANOVA Tables for Separate Lines Model for Logged Seed Counts 
with Factor Site and Explanatory Variate Spikelets (Example 15.2)

(a) (b)

Term 
Added

Inc.
df

Mean 
Square P Term Added

Inc.
df

Mean 
Square P

+ Site 3 4.406 < 0.001 + Spikelets 1 0.002 0.815

+ Spikelets 1 0.351 0.005 + Site 3 4.522 < 0.001
Residual 82 0.042 Residual 82 0.042
Total 86 0.198 Total 86 0.198

Inc. = incremental.
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FIGURE 15.9
Logged number of seeds with predictive parallel lines model (—) in terms of average number of spikelets per 
head at each of four sites: ▴ C, • L, ▪ P, ▾ W (Example 15.2).
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Differences on the logarithm scale can be interpreted in terms of ratios on the original 
scale (Section 6.4), and so the predictive model can be interpreted as a multiplicative 
model, with

 
ˆ ( )

ˆ * ) ˆ ˆ ) ˆµ µ α β α
j

j Spikelets j Spikelets jSpikelets = = =+10 10 10( ( ×× 10
ˆ

.βSpikelets  

The difference between sites dominates the model. For a fixed number of spikelets, here 
denoted s, the log10-ratio of seed counts between any two sites (labelled i and j) can be 
written as

 log [ ( ) ( )] ( ) .10 µ µ α β α β α α       
i j i j i js s s s/  = + − + = −

We can therefore obtain a CI for the log-ratio in terms of a CI for the difference αi − αj, 
and then back-transform to get a CI for the ratio μi(s)/μj(s). For example, consider sites 
4 (W) and 1 (C). The estimated log10-ratio is

 log [ ( ) ( )] . . . ,10 4 1 4 1 4 376 3 450 0 926µ µ α α   s s/  = − = − =

with SE 0.084. A 95% CI for the log10-ratio, log10[μ4(s)/μ1(s)], can be calculated via the 
difference α4 − α1 as (0.759, 1.093). We back-transform to estimate the ratio μ4/μ1 as 
100.926 = 8.43, so we expect 8.43 times as many seeds at a location in the fourth site as 
in the first site (for the same number of spikelets), with a 95% CI for this ratio equal to 
(100.759, 101.093) = (5.74, 12.39).

Within a site, ˆ .β = 0 0277 (SE = 0.0096) represents the expected increase in logged seed 
count for an increase of one spikelet per plant. We can predict the relative change in 
seed count for an increase of one spikelet in terms of β̂  using
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We can therefore predict that seed count will increase by a factor of 100.0277 = 1.066 
(a 7% increase) for an increase of one spikelet per plant. We can calculate a 95% CI for 
β̂  as (0.0086, 0.0468) and can back-transform this to give a CI for the relative change as 
(100.0086, 100.0468) = (1.02, 1.11), corresponding to a 2–11% increase in seed count for plants 
with one additional spikelet.

TABLE 15.10

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed 
Significance Levels (P) for a Parallel Lines Model for Logged Seed Counts in 
Terms of Variate Spikelets and Factor Site with Four Levels (Example 15.2)

Term Parameter Estimate SE t P

Site 1 α1 3.450 0.2646 13.040 < 0.001
Site 2 α2 3.671 0.2249 16.324 < 0.001
Site 3 α3 4.343 0.2547 17.048 < 0.001
Site 4 α4 4.376 0.2142 20.432 < 0.001
Spikelets β 0.0277 0.00955 2.895 0.005
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15.3 Regression in Designed Experiments

Recall from Section 1.3 that we usually allow for both structural and explanatory com-
ponents within our models. We have not yet allowed for a structural component within 
regression models because software for regression modelling does not generally support 
this (as discussed in Sections 11.6 and 12.1). It is possible to incorporate some types of 
structure within the explanatory component of the model, however; this is the intra-
block analysis of Section 11.6.1 and, in the context of regression modelling, can be imple-
mented as regression with groups. This approach can be used in studies where we wish 
to account for structure prior to estimation of the regression line. A common example 
is regression within a RCBD, where a fixed set of values of the explanatory variate are 
applied to experimental units within each block. The RCBD model allows for an addi-
tive difference between responses to the same treatment from different blocks which, in 
combination with a linear response to the explanatory variate, corresponds exactly to a 
parallel lines model. When replication is present, we can formally test for lack of fit to 
the common regression line (see Section 12.8). Recall that we regard structural terms as 
intrinsic to the model, and so we do not formally test or omit these terms. We also treat 
structural terms differently to explanatory terms in the predictive model as, although 
we wish to account for structure, we do not usually wish to include it in predictions. 
When a parallel lines model is appropriate, we would usually present the response aver-
aged over structural variables as our predictive model, and we interpret this as the pre-
dicted response for the average conditions in the study. We illustrate these concepts in 
Example 15.3.

EXAMPLE 15.3: FORAGE MAIZE YIELDS

An experiment at Rothamsted Research in 1996 investigated the yield response of for-
age maize to nitrogen fertilizer. The experiment was designed as a RCBD with three 
blocks (factor Block) of four plots (factor Plot), with nitrogen fertilizer rates of 0, 70, 
140 and 210 kg N (variate N). The whole crop forage yields from each plot (at 100% dry 
matter in tonnes/hectare, variate Yield) are shown in Table 15.11 and are held in file 
forage.dat. The aim of analysis is to model the yield as a function of applied nitrogen. 
We start by analysing the experiment as a RCBD, with model

TABLE 15.11

Whole Crop Forage Yield (Yield, t/ha) from a RCBD with Three Blocks and Four 
Nitrogen Fertilizer Rates (N = 0, 70, 140, 210 kg N) (Example 15.3)

Block 1 Block 2 Block 3

Plot N Yield Plot N Yield Plot N Yield

1 0 10.42 1 70 11.62 1 70 11.13
2 140 12.21 2 0 11.98 2 210 12.57
3 210 12.85 3 210 12.81 3 0 9.82
4 70 12.22 4 140 12.67 4 140 10.92

Source: Data from P. Poulton, Rothamsted Research.
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Response variable:    Yield
Explanatory component: FacN
Structural component:  Block/Plot

where FacN is a factor with a separate level for each nitrogen application rate. The 
resulting multi-stratum ANOVA is shown in Table 15.12.

The residual plots are adequate and a plot of the predicted means shows a linear trend 
in applied nitrogen (Figure 15.10a). We could fit a linear polynomial contrast within the 
multi-stratum ANOVA, but an intra-block analysis is appropriate for a RCBD and we 
will take that option here. As a first step, we fit the parallel lines model and check for 
lack of fit (as in Section 12.8) with

Explanatory component: Block + N + FacN

This fits the structural factor Block first, then adds explanatory variate N to obtain the 
parallel lines model with a separate intercept for each block. To test whether the straight 
line captures the pattern of response, we then add the factor version of the explanatory 
variate (FacN) into the model, giving the sequential ANOVA in Table 15.13. The SS for 
Block is the same as in the multi-stratum ANOVA, the SS for the nitrogen treatments 
has been partitioned into variation due to the straight line (N) and deviations from it 

TABLE 15.12

Multi-Stratum ANOVA Table for Forage Yields from a RCBD 
with Three Blocks (Factor Block) of Four Plots (Factor Plot) and 
Four Nitrogen Treatments (Factor FacN) (Example 15.3)

Source of Variation df
Sum of 
Squares

Mean 
Square

Variance 
Ratio P

Block stratum
 Residual 2 2.8385 1.4192 4.399 0.067
Block.Plot stratum
 FacN 3 6.1434 2.0478 6.347 0.027
 Residual 6 1.9359 0.3227
Total 11 10.9178 0.9925
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FIGURE 15.10
Predictive model (—) with 95% CI (– –) for forage maize yields (at 100% dry matter in tonnes/hectare) in terms of 
nitrogen applied (kg) with (a) fitted treatment means (•) and LSD from multi-stratum ANOVA and (b) observed 
data (• = block 1, ▪ = block 2, ▴ = block 3) (Example 15.3).



408 Statistical Methods in Biology

(FacN after eliminating N), and the residual SS remains unchanged. The straight line 
accounts for most of the variation due to treatments and is highly significant (FN = 18.37, 
P = 0.005). There is no statistical evidence for lack of fit (FFacN = 0.33, P = 0.729) and no 
evidence of model misspecification in fitted model or residual plots when the lack-of-fit 
term (FacN) is omitted. We therefore accept the parallel lines model as our predictive 
model which, with first-level-zero parameterization, takes the form

 
ˆ ( ) ˆ ˆ ,µ α βi iN Block N= + +1

  

where ˆ ( )µi N  is the predicted yield (t/ha) in the ith block (i = 1 … 3) for nitrogen appli-
cation rate N (0 ≤ N ≤ 210), α̂1 is the estimated intercept for the first block, Blocki

  is 
the difference in intercept between the ith and the first blocks, and β̂ is the estimated 
slope of the relationship with nitrogen application rate. These estimates are listed in 
Table 15.14.

In this parallel lines model, we can summarize the overall performance by averag-
ing across blocks to obtain the predictive model for average conditions within the 
trial as
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TABLE 15.13

Sequential ANOVA for Forage Yields from a RCBD, Testing for Lack of Fit 
to Parallel Lines Model (Example 15.3)

Term Added
Incremental 

df
Incremental 

SS
Mean 

Square
Variance 

Ratio P

+ Block 2 2.8385 1.4192  4.399 0.067

+ N 1 5.9283 5.9283 FN = 18.374 0.005

+ FacN 2 0.2150 0.1075 FFacN = 0.333 0.729
Residual 6 1.9359 0.3227
Total 11 10.9178 0.9925

SS = sum of squares.

TABLE 15.14

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and 
Observed Significance Levels (P) for Parallel Lines Model for 
Forage Yield from a RCBD with Three Blocks and Explanatory 
Variate N (Example 15.3)

Term Parameter Estimate SE t P

[1] α1 10.982 0.3279 33.487 < 0.001
Block 1 Block1 0 — — —
Block 2 Block2 0.345 0.3667 0.941 0.374
Block 3 Block3 −0.815 0.3667 −2.223 0.057
N β 0.0090 0.00191 4.696 0.002
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The SE for the averaged intercept is calculated from the estimated variance–covariance 
matrix for the estimated intercepts (see Section C.4). Here, the averaged intercept is 
ˆ * .α = 10 825 (SE = 0.2505). The final predictive model therefore takes the form

 
ˆ ( ) . . .µ N N= +10 825 0 0090  

This predictive model is shown with 95% confidence intervals and the observed data in 
Figure 15.10. It is clear that this predictive model gives a good fit to the original treat-
ment means and passes through the centre of the observed data.

Where it is appropriate, the intra-block model is a valid alternative to multi-stratum 
ANOVA (see Sections 7.5 and 11.6). In principle, we prefer the multi-stratum ANOVA 
approach because it explicitly accounts for the different status of structural and explana-
tory terms in the model. In practice, it can be difficult to extract regression models (with 
SE) from multi-stratum ANOVA output, and so in these cases, we would accept the intra-
block analysis. Where the intra-block model is not appropriate, the linear mixed models 
discussed in Chapter 16 give a more general and flexible approach to regression modelling 
when structure is present.

15.4 Analysis of Covariance: A Special Case of Regression with Groups

The analysis of covariance (ANCOVA, sometimes also known as ANOCOVA) is used 
to incorporate a limited form of regression with groups into the analysis of a designed 
experiment to adjust treatment comparisons for the presence of quantitative extraneous 
variables. This is separate from, and often in addition to, the inclusion of structure dis-
cussed in Section 15.3. In this context, a covariate is an explanatory variate thought to 
influence the response that was not taken into account in the design of the experiment. 
Adjusting for this variate ensures that comparisons between treatments are not biased by 
its presence and may reduce uncertainty in estimates of group differences. For example, 
consider a field experiment designed to compare yield response to drought. If it is thought 
that soil depth varies across the field, and that this may affect response to drought, then 
the soil depth can be measured within each experimental plot and used as a covariate to 
account for variation in drought response that is unrelated to the experimental treatments. 
However, the ANCOVA approach is sensible only if a parallel lines model is a good fit to 
the data and if the covariate values are unrelated to the groups. For example, consider the 
scenarios shown in Figure 15.11.

In Figure 15.11a, the effect of the covariate is the same across all three groups, and so the 
parallel lines model describes the response well. In this case, the differences among the 
three groups can be sensibly summarized by comparisons at any given value of the covari-
ate; in practice comparisons are usually made at the covariate sample mean. In contrast, 
in Figure 15.11b, the effect of the covariate differs between the groups, so that differences 
among groups are highly dependent on the value of the covariate. In this case, we cannot 
summarize treatment differences without also taking into account the covariate value; 
here traditional ANCOVA, which is based implicitly on the assumption of parallel lines, is 
inappropriate and a separate lines model should be fitted and reported. In Figure 15.11c, 
although a parallel lines model appears appropriate, the range of the covariate differs 
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between the groups, and this can lead to problems of both estimation and interpretation, 
as differences in response can be attributed to either the covariate or the treatment groups. 
If the differences in the covariate values are intrinsic to the groups, i.e. if they would be 
replicated in other studies, then adjustment to a common covariate value might give a 
misleading impression of group differences. On the other hand, if we do want to adjust for 
the covariate but there is no overlap between the groups, then it is difficult to establish an 
appropriate value of the covariate at which to make comparisons, as this requires extrapo-
lation for one or more groups. Fitting a separate groups model (Section 15.1.3) with the 
covariate as the response can be used to detect this situation.

Within the literature on analysis of designed experiments, a tradition of ANCOVA has 
developed that largely ignores the wider context of regression with groups. One reason for 
this is the use of multi-stratum ANOVA to account for structure, which can easily incor-
porate explanatory variates using a parallel lines model, but cannot easily accommodate a 
separate lines model. Conversely, some books consider ANCOVA to be nothing more than 
regression with groups, but this approach often misses the nuances associated with struc-
ture in designed experiments. We recommend a hybrid approach, which we now outline 
before presenting an example. Remember that the aim of ANCOVA is to present group 
comparisons adjusted for covariate effects.

The first step is to test whether the covariate is related to the groups, incorporating any 
structure into the analysis. This can be done with multi-stratum ANOVA for balanced 
designs, and with intra-block analysis (Section 11.6.1) or linear mixed models (Chapter 16) 
for unbalanced designs. If the covariate does differ systematically between groups, then 
you should ask why, what the implications for interpretation are, and whether ANCOVA 
is a sensible approach. If there is no such relationship, or if you decide to proceed any-
way, then the next step is to consider whether a parallel lines model is plausible. If the 
number of observations within each group is reasonably large (> 5), it might help to fit a 
separate lines model and to test explicitly for group differences in response to the covari-
ate, again incorporating any structure. If the number of observations per group is small 
(≤ 5), then the fitted lines for individual groups are likely to be unreliable, so this step 
may be omitted. In either case, it usually helps to plot the response against the covariate 
with groups indicated (as in Figure 15.11) to give a visual assessment of the relation-
ship, and of the extent of overlap in covariate values among groups. If the parallel lines 
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FIGURE 15.11
Adjusting treatment differences using a covariate with three groups (•,▪,▴), showing predictive model (—): (a) 
common treatment difference for all covariate values; (b) treatment difference depends on covariate value; (c) 
covariate value dependent on group. 
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model still seems plausible, it can then be fitted to obtain estimates of group differences 
(still incorporating any structure in the model). The covariate is always fitted first in the 
parallel lines model so that differences between groups are assessed after the covariate 
has been taken into account. The fitted model and residual plots should be assessed to 
check for any evidence of model misspecification before the results are accepted and 
interpreted.

EXAMPLE 15.4A: THOUSAND GRAIN WEIGHTS

A field experiment was done to investigate the impact of growth regulator (+/−) on 
seed production for two varieties of oilseed rape (B or N) in a CRD with six replicates. 
Unfortunately, pigeons grazed some parts of the trial in early spring, and it was thought 
that this damage might affect plant growth and seed development. The extent of dam-
age to each plot was recorded as percentage area grazed (variate Damage), to the nearest 
10%, and the aim of analysis was to make treatment comparisons after accounting for 
bird damage, if possible. The response is thousand grain weight (abbreviated as TGW, 
held in variate TGW). The treatment combinations form the four factorial combinations 
of the two growth regulators and two varieties and are represented here by a single 
factor (Trt with groups labelled as +B, +N, −B, −N). The data are in Table 15.15 and file 
tgw.dat.

Figure 15.12 plots variate TGW against variate Damage, with a unique symbol for 
each group. The range of pigeon damage clearly differs between treatments, with the 
second (+N) and third (−B) groups having large and intermediate amounts of damage, 
respectively.

The first model fitted was used to investigate the relationship between the covariate 
and the treatment groups formally, as

Response variate: Damage
Explanatory component: [1] + Trt

TABLE 15.15

Thousand Grain Weight (Variate TGW) and Pigeon Damage (% Plot Grazed, Variate Damage) 
for a Field Experiment Comparing Two Varieties N and B (Factor Variety) with (+) or without (−) 
Growth Regulator (Factor GR) (Example 15.4 and File tgw.dat). Factor Trt Gives a Single Code 
for Each of the Four Treatment Combinations

Plot GR Variety Trt Damage TGW Plot GR Variety Trt Damage TGW

1  + N  +N 60 3.342 13  + N  +N 60 3.150
2  − B  −B 30 3.185 14  − N  −N 60 3.436
3  − N  −N 40 3.997 15  + N  +N 50 3.793
4  + N  +N 30 4.111 16  + N  +N 40 3.937
5  + B  +B 20 3.783 17  − N  −N 40 3.901
6  − B  −B 20 3.302 18  − B  −B 30 3.357
7  − N  −N 0 4.807 19  − B  −B 30 3.562
8  − N  −N 0 4.451 20  − B  −B 30 3.338
9  − B  −B 30 3.419 21  + B  +B 0 3.749
10  + B  +B 40 3.295 22  + B  +B 30 3.138
11  + B  +B 50 3.169 23  + B  +B 0 3.756
12  + N  +N 50 3.591 24  − N  −N 0 5.019
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This model suggests there may be differences between treatment groups (F3,20 = 2.642, 
P = 0.077), but it is not conclusive. A biological assessment of the matter concluded that 
the intention was to compare seed quality in the absence of pigeon grazing, so correc-
tion for such damage is appropriate in this context even if grazing did differ between 
treatments. The second model fitted was a separate lines model with the covariate and 
the treatment groups, specified as

Response variate: TGW
Explanatory component: [1] + Damage + Trt + Damage.Trt

The variance ratio F3 16 2 710, .D.Trt =  (P = 0.080) suggested some differences in slope between 
treatments, and the fitted lines are shown in Figure 15.12. The slope for the third group 
(−B) is positive whereas those for the other treatments are negative, but this group has 
such a small range of grazing damage (five plots have 30% grazing and one plot 20% 
grazing) that this line cannot be considered reliable. A parallel lines model was there-
fore deemed plausible, and the effect of the treatments was tested. The incremental 
F-statistic for the factor Trt (F3 16 28 874, . ,Trt =  P < 0.001) indicated large treatment differ-
ences after accounting for grazing damage. Estimates from the parallel lines model are 
shown in Table 15.16, and this predictive model is written in mathematical form, with 
first-level-zero parameterization, as

 
ˆ ( ) ( ˆ ˆ ) ˆ ,µ α ν βj jDamage Damage= + +1  

where ˆ ( )µ j Damage  represents the predicted TGW for the jth treatment group (j = 1 … 4) 
with grazing damage Damage. Parameter α̂1 is the estimated intercept for the first treat-
ment (+B), ν̂ j is the estimated difference in intercept for the jth treatment (relative to the 
first) and β̂ is the estimated slope associated with grazing damage.

Predictions from this model evaluated at the average damage of 30.83% grazing are 
shown in Table 15.17a. The LSDs for these predictions (at significance level αs = 0.05 with 
19 df) range between 0.2301 and 0.2615. It is clear that groups 2 (+N) and 4 (−N) give 
greater seed weights than the other groups (+B, −B), with no significant differences within 
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FIGURE 15.12
Thousand grain weight (TGW) with separate lines model (—) for pigeon damage (% plot grazed) with treatment 
groups (• +B, ▪ +N, ▴ −B, ▾ −N) (Example 15.4A). 
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each of these two sets. Given our knowledge of factorial structures (Chapter 8), we should 
be able to clarify our inferences in terms of the underlying factors, variety and use of 
growth regulator, and we examine this further in Example 15.4B. For now, we compare 
the predictions from the ANCOVA (parallel lines model) with those from the separate 
groups model, which ignores the covariate (Table 15.17b). Predictions from the parallel 
lines model have been shifted according to the amount of grazing observed: the predicted 
TGW for the +N group, which was more heavily grazed, is adjusted upwards and the 
predicted TGW for the +B and −N groups, which were less heavily grazed, are adjusted 
downwards. The prediction SEs and SEDs are substantially smaller in the parallel lines 
model because the covariate has accounted for some of the variation among replicate plots.

Within the context of designed experiments, the traditional ANCOVA procedure differs 
from that given above in several ways. First, it is not usual to fit the separate lines model to 
investigate formally whether there is evidence against the parallel lines model. However, 
we find this step useful, and recommend it where there are sufficient observations within 
groups to make the analysis meaningful. Second, it is usual to present a single composite 
ANOVA table with F-tests for treatment groups after elimination of the covariate and for 
the covariate after elimination of the treatment groups. This ANOVA table is amalgam-
ated from two different sequences of models: one with the covariate fitted first and the 
other with the factor(s) fitted first. In contrast, we have just used the sequential ANOVA 
table obtained by fitting the covariate first. Both approaches are correct, but we find our 
approach more straightforward. Another example of ANCOVA, this time for a structured 
experiment analysed by linear mixed models, is given in Example 16.2.

TABLE 15.16

Parameter Estimates with Standard Errors (SE), t-Statistics (t) 
and Observed Significance Levels (P) for Parallel Lines Model 
for Thousand Grain Weight with Treatment Groups (Factor Trt) 
Adjusted for Pigeon Grazing (Variate Damage) (Example 15.4A)

Term Parameter Estimate SE t P

[1] α1 3.926 0.0954 41.132 < 0.001
Damage β  −0.0190 0.00237  −8.018 < 0.001
Trt +B ν1 0 — — —

Trt +N ν2 0.648 0.1249 5.188 < 0.001
Trt −B ν3  −0.026 0.1106  −0.235 0.817

Trt −N ν4 0.787 0.1099 7.158 < 0.001

TABLE 15.17

Predicted Thousand Grain Weight with Standard Error (SE) 
from Two Explanatory Models for Four Treatment Groups 
with 30.83% Grazing Damage per Plot (Example 15.4A)

Treatment

(a) With Covariate (b) Without Covariate

Prediction SE Prediction SE

+B 3.339 0.0797 3.482 0.1586

+N 3.987 0.0881 3.654 0.1586

−B 3.313 0.0780 3.361 0.1586

−N 4.126 0.0797 4.268 0.1586
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15.5 Complex Models with Factors and Variates

In general, we might have several explanatory factors and variates and the corresponding 
models become considerably more complex. The aims of analysis stay the same, namely, to 
find a predictive model that uses as few parameters as possible to describe the response. 
The automatic model selection techniques described in Section 14.9 can be used, but they 
must be modified somewhat, and these modifications are described in Section 15.5.1. Once 
we have identified a predictive model, then we need to decide which predictions to make, 
and this is discussed in Section 15.5.2.

15.5.1 Selecting the Predictive Model

In Chapters 8, 11, 14 and 15, we have used various different strategies for model selection, 
so here we try to set them out in a coherent framework. In all cases, we obey the principle 
of marginality when adding or dropping terms, and if our explanatory model contains 
terms associated with the structural component then we fit the structural terms first and 
do not test them (see Section 15.3). Our strategy will depend on whether the explanatory 
variables are orthogonal (see Section 11.1), and whether the full model is well defined. 
The full model consists of meaningful terms constructed from the set of explanatory 
variables and appropriate combinations. The full model is considered well defined if 
it was specified during the design phase of the study and has a reasonable number of 
residual df.

When the explanatory variables are orthogonal, we can use a single sequential ANOVA 
table for model selection. This usually only occurs in the context of a designed study, 
where the full model is well defined. We then start with the full model and progressively 
test and drop non-significant terms (respecting marginality) to identify the predictive 
model (e.g. Section 8.3).

When the explanatory variables are not orthogonal, there may be many sequential 
ANOVA tables. We will consider separately the cases when the full model is well defined 
and those where it is not.

If the full model is well defined, then we again fit the full model and progressively 
test and drop non-significant terms, respecting marginality. If there are few sequential 
ANOVA tables, then we might form all of them. If the residual df are large, then there is 
no need to refit the model if we can deduce all the required information from these ini-
tial tables. If there are many different sequential ANOVA tables, then forming them all is 
impractical and it will usually be easier to use marginal F-tests to progressively simplify 
the full model. At each step of the process, we then identify the terms that can be dropped 
(respecting marginality), and form a marginal F-test for each of these terms. We drop the 
least significant term, i.e. the one with the largest observed significance level (P) subject 
to P > 0.05, and then refit the model. We repeat this process until no further terms can be 
eliminated. This is the backward elimination procedure of Section 14.9.

If the full model is not well defined, then we must start from a simpler model and 
consider both adding and dropping terms as for the stepwise regression procedures 
described in Section 14.9, but in these more complex models we must now also respect 
marginality.

These latter two approaches suggest that the automatic selection procedures described 
in Section 14.9 are more widely useful, although the caveats stated there still apply and 
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some modification is required to account for model terms involving explanatory factors. 
In particular, we now require automatic selection procedures to respect marginality when 
terms are added or dropped. Some caution is also required for model terms with more 
than 1 df. The numerator df for an F-test is always the change in model df obtained on 
adding or dropping the term. Since the critical value of an F-distribution decreases for 
larger numerator df, it is difficult to define a single threshold in terms of a critical value, 
especially where the df for the model terms cover a large range. In this case, it is usually 
more sensible to define thresholds in terms of the observed significance level, i.e. SLE or 
SLS (defined in Section 14.9).

EXAMPLE 15.4B: THOUSAND GRAIN WEIGHTS

We now reanalyse the TGW data to recognize and exploit the crossed structure within 
the treatment groups. The four treatment groups (+B, +N, −B, −N) form a factorial set 
related to the factors Variety (with two levels, B and N) and GR, indicating the presence 
or absence of growth regulator (with two levels + and −). It is appropriate to replace the 
term Trt by a crossed structure Variety*GR that partitions the treatment effects into the 
main effect of variety, the main effect of growth regulator and their interaction (see 
Section 8.2). For a full analysis of this data set, we therefore repeat the procedure of 
Example 15.4A, but making this replacement throughout. First, we check whether the 
covariate is related to the treatments, using model

Response variate: Damage
Explanatory component: [1] + Variety*GR

The main effects are not significant with (by numerical coincidence) both F1 20,
GR =  

1.865 and F1 20 1 865, .V =  (both P = 0.187), with the interaction of borderline significance 
(F1 20 4 197, . ,GR.V =  P = 0.054). In combination with the exploratory graphs in Figure 15.12, 
the reasoning given in Example 15.4A still stands, and we proceed with fitting the sepa-
rate lines model for grain weight, specified as

Response variate: TGW
Explanatory component: [1] + Damage + Variety + GR + Variety.GR

 + Damage.Variety + Damage.GR + Damage.Variety.GR

The covariate is fitted first, followed by terms associated with the treatment groups, 
with terms combining the covariate and the treatment groups at the end. Table 15.18 
shows the observed significance levels of marginal F-tests from a sequence of models 
for this data, with this model labelled as Model 1.

All other terms are marginal to Damage.Variety.GR, so as a first step we can test 
only this term. We find it non-significant (F1 16 0 341, . ,D.V.GR =  P = 0.567) and so drop it 
and refit to obtain Model 2 of Table 15.18. In this ANCOVA setting, we are first inter-
ested in whether we can reduce to a parallel lines model, so we next examine the 
terms Damage.Variety and Damage.GR. We can omit term Damage.GR (F1 17 2 163, . ,D.GR =  
P = 0.160) to obtain Model 3, but cannot then omit term Damage.Variety (F1 18 5 581, . ,D.V =  
P = 0.030). Figure 15.12 suggests that the individual slopes for variety B are both less 
steep than those for variety N, so by using the crossed structure we can now detect 
this difference that was previously masked. We therefore retain the Damage.Variety 
term and can no longer regard this as a traditional ANCOVA. However, we can sim-
plify the model further as term Variety.GR is eligible for testing but is not significant 
(F1 18 0 485, . ,V.GR =  P = 0.495). We drop the latter and refit the model (to obtain Model 4), 
and can then test term GR, which is not significant (F1 19 0 043, . ,GR =  P = 0.839). No further 
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simplification is possible. The predictive model is therefore a separate lines model in 
terms of explanatory variate Damage and the factor Variety, written as

Explanatory component: [1] + Damage + Variety + Damage.Variety

We can represent this predictive model in mathematical form, using first-level-zero 
parameterization, as

 
ˆ ( ) ( ˆ ˆ ) (ˆ ˆ ) ,µ α ν β ηr r rDamage   Damage= + + +1 1  

Here, ˆ ( )µr Damage  represents the predicted TGW for the rth variety (1 = B, 2 = N) with 
grazing damage equal to Damage. Parameter ˆ .α1 3 744=  (SE 0.1007) represents the inter-
cept for variety B and ˆ .ν2 1 051=  (SE 0.1345) is the difference in intercept for variety N 
(recall ν̂1 0= ). Similarly, parameter ˆ .β1 0 0125= −  (SE 0.00344) represents the slope for 
variety B, and ˆ .η2 0 0108= −  (SE 0.00403) is the difference in slope for variety N, with 
ˆ .η1 0=  The predictive model for the two varieties is shown in Figure 15.13 and can be 
written as

 

Variety B:

Variety N:

ˆ ( ) . .
ˆ (

µ
µ

B

N

Damage Damage

Damage

= −3 744 0 0125

)) . .= −4 795 0 0233Damage

We can conclude that there appears to be no effect of growth regulator on TGW, but 
that TGW is decreased by pigeon damage, and that there is a strong varietal difference 
which is also affected by the amount of pigeon damage. Although variety N always 
had a larger TGW than variety B in this experiment, it is also more affected by pigeon 
damage. For a 10% increase in plot damage, TGW is reduced by 0.125 units for variety 
B, but by 0.233 units for variety N. This analysis suggests that the ANCOVA analysis of 
Example 15.4A missed some of the nuances in the results by ignoring the structure of 
the treatment groups.

TABLE 15.18

Observed Significance Level (P) for Marginal F-Tests in a Sequence of 
Models for Thousand Grain Weights (Example 15.4B)

P

Term Model 1 Model 2 Model 3 Model 4 Model5

[1] — — — — —

Damage — — — — —

Variety — — — — —

GR — — — 0.839 *

Variety.GR — 0.806 0.495 * *

Damage.Variety — 0.015 0.030 0.020 0.015

Damage.GR — 0.160 * * *

Damage.Variety.GR 0.567 * * * *

Note: — = term in model but not eligible for testing, * = term omitted from model.
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15.5.2 Evaluating the Response: Predictions from the Fitted Model

In Section 11.2.5, we described the process of prediction for models containing explana-
tory factors. All of the considerations discussed there also apply here, but now we must 
also incorporate explanatory variates into the process. We start with the predictive model. 
When all of the explanatory variables are factors, we form predicted values for each com-
bination of the factor levels, and can then take marginal means (with care, as described in 
Section 11.2.5) to summarize differences between groups. When there are also variates in 
the model, the considerations are slightly different. It can be helpful to just present the fitted 
line for each group either in mathematical form (as at the end of Example 15.4B) or graphi-
cally with confidence intervals. Questions about differences in slope between groups are 
often best answered by directly testing these differences. Comparisons between groups 
can be more difficult. In a parallel lines model, comparisons between groups will be the 
same for any fixed value of the explanatory variates, and usually predictions are made at 
the sample mean of the variates so that the predictions are readily interpreted. In a separate 
lines model, differences between groups change according to the covariate value. Unless 
prediction is required at specific variate values, summary comparisons across groups are 
unlikely to be helpful and may be misleading. In either type of model, if the explanatory 
variates are distributed differently between groups, then it may be misleading to compare 
groups at a common value of the explanatory variates, as this may create predictions for 
combinations of variables that would never normally occur.

When making predictions from more complex models, you should therefore be careful 
to check that your predictions are meaningful and that any comparisons are interpretable.

15.6 The Connection between Factors and Variates

Up to this point, we have considered factors and variates as intrinsically different types of 
explanatory variables. In fact, a factor can be considered as a set of covariates with a particular 
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FIGURE 15.13
Thousand grain weight (TGW) with separate lines model (—) for pigeon damage (% plot grazed) with variet-
ies B (•) and N (▪) (Example 15.4B).
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structure, and in this section, we explain the connection in some detail. For simplicity, we 
start with the separate groups model of Section 15.3 written in mathematical form as

 yjk = α1 + νj + ejk . (15.5)

Written in this form, we have several models; one for each group. To rewrite this as a single 
model in terms of the full set of parameters, we define a set of dummy variates. For a fac-
tor with t groups, we construct t dummy variates, labelled by subscript l = 1 … t. The lth 
dummy variate corresponds to the lth group and its values are labelled by both the group, 
l, and the observation, jk, as dljk. The values of this dummy variate are 1 for observations 
belonging to the lth group, i.e. where j = l, and zero otherwise.

EXAMPLE 15.5A: CALCIUM POT TRIAL

Consider the pot trial data of Examples 3.4 and 4.1. Four relative concentrations of cal-
cium (A = 1, B = 5, C = 10, D = 20) were each applied to five individual plants growing in 
pots arranged as a CRD. At the end of the experiment, the total root length (cm) in each 
of the 20 pots was measured. The data and the set of dummy variates associated with 
the Calcium factor are in Table 15.19 and can be found in file calcium2.dat. The first 
variate, labelled d1, takes value 1 for observations with treatment A (j = 1), and value 
0 elsewhere. The remaining variates, d2, d3 and d4, are formed similarly in relation to 
calcium treatments B, C and D, respectively.

TABLE 15.19

Calcium Pot Trial Data from Table 5.6 with Additional Labelling 
in Terms of Calcium Treatment (j) and Replicate (k) and Dummy 
Variates d1–d4 Corresponding to the Calcium Factor (Example 15.5A)

Pot Calcium Length j k d1 d2 d3 d4

1 D 47 4 1 0 0 0 1
2 A 58 1 1 1 0 0 0
3 B 80 2 1 0 1 0 0
4 C 49 3 1 0 0 1 0
5 D 49 4 2 0 0 0 1
6 A 52 1 2 1 0 0 0
7 D 45 4 3 0 0 0 1
8 A 74 1 3 1 0 0 0
9 C 70 3 2 0 0 1 0
10 B 68 2 2 0 1 0 0
11 A 58 1 4 1 0 0 0
12 C 72 3 3 0 0 1 0
13 A 79 1 5 1 0 0 0
14 D 48 4 4 0 0 0 1
15 C 74 3 4 0 0 1 0
16 B 72 2 3 0 1 0 0
17 D 38 4 5 0 0 0 1
18 C 71 3 5 0 0 1 0
19 B 74 2 4 0 1 0 0
20 B 85 2 5 0 1 0 0
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We can now rewrite the separate groups model in terms of the dummy variates as

 y d d d ejk jk jk t tjk jk= + + + + +α ν ν ν1 1 1 2 2 …  .  (15.6)

Because each unit belongs to exactly one group, only one of the values d1jk to dtjk is 1, with 
the values of the other dummy variates being 0. For example, for the first observation in 
group 2, we have d221 = 1 and d2j1 = 0 for j ≠ 2. Hence

 

y e

e
t21 1 1 2 21

1 2 21

0 1 0= × × + + × +
= + +
α ν ν ν
α ν

+ +( ) ( ) ( )
,

…

and so the model for the first observation in group 2 (or any other observation in any other 
group) is equivalent to the form given in Equation 15.5. In the new form of Equation 15.6, 
often called the dummy variate representation, the separate groups model looks like a 
MLR in terms of the dummy variates d1 … dt and can be written in symbolic form as

Explanatory component: [1] + (d1 + … + dt )

We use parentheses () to emphasize the associations within the set of dummy variates that 
represent a factor. As explained previously, this model is over-parameterized. In this form, 
there is no information left after the first t − 1 dummy variates have been fitted, leading 
to last-level-zero constraints being imposed by default. We prefer to use first-level-zero 
constraints, so we impose ν1 = 0 and omit the first dummy variate from the model, giving 
symbolic form

Explanatory component: [1] + (d2 + … + dt)

The main difference between a MLR and this model is that we add all of the dummy vari-
ates corresponding to a factor (those in parentheses) into the model as a group, to obtain a 
combined incremental sum of squares for the term, rather than adding the dummy vari-
ates individually.

EXAMPLE 15.5B: CALCIUM POT TRIAL

The separate groups model for the calcium pot trial data can be specified with the 
dummy variates given in Table 15.19, with first-level-zero parameterization, as

Explanatory component: [1] + (d2 + d3 + d4)

The model SS is 2462.95, giving the ANOVA table in Table 15.20 which matches the 
ANOVA table previously obtained (see Table 5.5).

The dummy variate representation can be used whenever a factor appears in a model. 
So, for example, the separate lines model for a factor grp with three groups (coded as 
dummy variates d1, d2 and d3 ) can be written in symbolic form as either

Explanatory component: [1] + x + grp + x.grp

or equivalently, explicitly imposing first-level-zero constraints, as

Explanatory component: [1] + x + (d2 + d3 ) + (x.d2 + x.d3)
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Again, terms within parentheses are added into the model as a group. Terms of the 
form x.d2, composed of two variates, are equivalent to a single variate calculated by 
multiplication of the values of the contributing variates together for each observation. 
We now also have two ways to write our separate lines model in mathematical form. The 
following two forms are equivalent, and both use first-level-zero constraints, with ν1 = 0 
and η1 = 0:

 y x ejk j j jk jk= + + + +( ) (  α ν β η1 1 ) ,

 y d d d d d d xjk jk jk jk jk jk jk jk= + + + + + + +( ) ( )α ν ν ν β η η η1 1 1 2 2 3 3 1 1 1 2 2 3 3 ++ ejk  .

Similarly to the symbolic form, composite terms of the form d2jkxjk can be considered as a 
single value calculated by multiplication of the component values.

EXAMPLE 15.1K: STAND DENSITY OF MIXED NOTHOFAGUS FOREST PLOTS

The three dummy variates (d1, d2 and d3) required to represent the Type factor in the 
stand density data set are presented in Table 15.21 and can be found in file forest2.dat. 
Calculation of the composite terms logQD.d1, logQD.d2 and logQD.d3 are also shown in 
Table 15.21 as the product of the variates d1, d2 and d3, respectively, with logQD.

The separate lines model for these data can be written in symbolic form either in 
terms of the Type factor as

Explanatory component: [1] + logQD + Type + logQD.Type

or using the dummy variates and first-level-zero constraints as

Explanatory component: [1] + logQD + (d2 + d3) + logQD.(d2 + d3)
            = [1] + logQD + (d2 + d3) + (logQD.d2 + logQD.d3)

Fitting the model in terms of factor Type gave the ANOVA table shown in Table 15.5. 
Using the dummy variates, and fitting the terms in parenthesis together gives the same 
sequential ANOVA table, as shown in Table 15.22. The parameter estimates are the same 
as those obtained in Table 15.3 in both cases, although now labelled by the dummy vari-
ates rather than by the factor levels.

The interpretation of factors as a set of dummy variates allows both types of explana-
tory variable to be considered within a single framework, which facilitates a unified 

TABLE 15.20

Sequential ANOVA Table for the Separate Groups Model Fitted to the 
Calcium Pot Trial Data Using Dummy Variates d2–d4 (Example 15.5B)

Terms Added
Incremental

df
Incremental 

SS
Mean 

Square
Variance 

Ratio P

+ (d2 + d3 + d4) 3 2462.95 820.98 10.753 < 0.001
Residual 16 1221.60 76.35
Total 19 3684.55

SS = sum of squares.
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mathematical treatment of linear models. The terms [1] and [1], which both represent a 
vector with value 1 in all units, can be considered as equivalent. This framework allows 
statistical models to be written in matrix notation, and we give a very brief introduction 
to this topic below.

15.6.1 Rewriting the Model in Matrix Notation

So far, we have written our models in terms of individual observations. The use of dummy 
variates with matrix notation allows a succinct representation of the model for the whole 
set of observations simultaneously. Consider the separate groups model of Equation 15.6, 

TABLE 15.21

Dummy Variates (d1, d2, d3) and Their Products with Explanatory Variate logQD 
(logQD.d1, logQD.d2, logQD.d3 ) for Three Groups (Factor Type) of Mixed Nothofagus 
Forest Calculated for Four Plots in Each Group (Example 15.1K)

Plot Type logQD d1 d2 d3 logQD.d1 logQD.d2 logQD.d3

1 Rauli 2.57 0 1 0 0 2.57 0
2 Rauli 2.70 0 1 0 0 2.70 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
8 Rauli 2.98 0 1 0 0 2.98 0
9 Rauli 2.44 0 1 0 0 2.44 0
10 Roble 2.48 0 0 1 0 0 2.48
11 Roble 3.12 0 0 1 0 0 3.12
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
27 Roble 2.67 0 0 1 0 0 2.67
28 Roble 2.53 0 0 1 0 0 2.53
29 Coigue 3.10 1 0 0 3.10 0 0
30 Coigue 3.42 1 0 0 3.42 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
40 Coigue 2.65 1 0 0 2.65 0 0
41 Coigue 2.98 1 0 0 2.98 0 0

TABLE 15.22

Sequential ANOVA Table for Separate Lines Model for Logged Stand 
Density Using Explanatory Variate logQD and Dummy Variates d2, d3 to 
Represent Factor Type (Example 15.1K)

Term Added
Incremental 

df
Incremental 

SS
Mean 

Square
Variance 

Ratio P

+ logQD 1 4.5833 4.5833 78.562 < 0.001
+ (d2 + d3) 2 1.9403 0.9701 16.629 < 0.001
+ logQD.(d2 + d3) 2 0.2011 0.1006 1.724 0.193
Residual 35 2.0419 0.0583
Total 40 8.7667

SS = sum of squares.
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and suppose we have six observations in each of the t groups. We can write the model for 
all observations, ordering by groups and then by observations within groups as

 

y d d d e

y d d
t t

t

11 1 1 111 2 211 11 11

12 1 1 112 2 212

= + + + + +
= + + + +
α ν ν ν
α ν ν ν

…
… dd e

y d d d e

y d

t

t t t t tt t

t t

12 12

5 1 1 1 5 2 2 5 5 5

6 1 1 1 6

+

= + + + + +
= + +


…α ν ν ν

α ν ν22 2 6 6 6d d et t tt t+ + +… ν  

(15.7)

We can then abbreviate this rather lengthy form using matrix notation. A matrix is sim-
ply a rectangular array of numbers, with rules for addition and multiplication that are 
explained in Section C.5. Our model can then be written as

 y X e= +τ ,

where y is a matrix with N rows and 1 column (a vector of length N) containing the obser-
vations, X is a matrix with N rows and t + 1 columns (an N × (t + 1) matrix) containing the 
known coefficients associated with the parameters, τ is a matrix with t + 1 rows and 1 
column (a vector of length t + 1) and e is a matrix with N rows and 1 column (a vector of 
length N) containing the deviations. These matrices are defined as follows:
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The rules for matrix multiplication given in Section C.5 mean that this short form expands 
to give the full mathematical model in Equation 15.7. The matrix of coefficients, X, is usu-
ally called the design matrix and its columns correspond to the explanatory variates. In 
this example, the first column corresponds to the overall constant term, denoted in our 
symbolic form as [1], and the 2nd to (t + 1)th columns contain the dummy variates for the t 
factor levels, denoted earlier as d1 … dt. All of the elements in this case are therefore either 0 
or 1. For Example 15.5A, with four treatment groups, the 2nd to 5th columns of the design 
matrix correspond to the values given in the last four columns of Table 15.19. Another 
simple example is the SLR model of Section 12.1, which takes the form
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We can use this matrix notation for models with any combination of factors and variates. 
Using this notation, parameter estimates and SEs can be written in a general form in terms 
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of matrix operations on the design matrix, X, and the response vector, y, and this notation 
is therefore widely used in textbooks on mathematical statistics. We do not go into this 
further here but more details can be found in Mead et al. (2012) or Montgomery et al. (2012).

EXERCISES

 15.1 The biomass data (wet weights in g) for all four sites in the study described in 
Exercise 12.2 (and Exercise 13.4) are held in file allsites.dat (variate ID, factor 
Site, variates Year, WetWeight). Use regression with groups on this combined 
data set to investigate whether the trend found at Hereford is the same as for 
the other three sites. Present a summary of the results from your analysis.

 15.2 In Exercise 12.5, you fitted a SLR to the log-transformed body mass of a sample 
of moths with explanatory variate wing length and found evidence for lack of 
fit in the relationship. However, that SLR ignored the information on the spe-
cies of each sample that was also recorded (in data file noctuid.dat). Use this 
species information to investigate whether the relationship between log-trans-
formed body mass and wing length is consistent across species. Test for lack 
of fit in your model and compare your results with those from Exercise 12.5. 
Can you reconcile the two analyses? Specify and interpret your final predictive 
model.

 15.3 Many plant pathogens are dispersed through the crop by rain splash. To inves-
tigate the likely distance of travel, water drops of different sizes (weights) 
were dropped from various heights to give different velocities on impact. The 
average height of splash was measured for each combination of drop size and 
height. File splash.dat contains unit numbers (ID), the weight (variate Weight) 
and estimated terminal velocity (variate Velocity) for each run with the mean 
splash height (variate MeanHt). The aim of analysis is to predict splash height 
from drop velocity on impact. Form groups for the different weight classes and 
establish whether a common model across weight classes is appropriate. Would 
use of a common line lead to any erroneous conclusions? (We re-visit these data 
in Exercise 17.10.)*

 15.4 In Example 15.1, we explored models to predict the density of stands of three 
types from sample measurements of quadratic diameter, with models based on 
the log-transform of both the response and explanatory variables. We identified 
a parallel lines model as being most suitable for this data (Examples 15.1F and 
H). Using the results of Section 6.4, rewrite this parallel lines model in terms of 
the stand density and interpret the difference between stand types on this scale.

 15.5 A study was done to investigate the recovery of spring-applied fertilizer N in 
the harvested products of three arable crops (Macdonald et al., 1997): winter 
wheat, oilseed rape and potatoes. The recovery (% of applied N) was measured 
in potato tubers, rapeseed and wheat grain and here we investigate whether 
fertilizer recovery can be predicted by harvest index. The file recovery.dat 
contains sample numbers (ID), crop type (factor Crop), harvest index (vari-
ate HIndex) and fertilizer recovery rates (variate Recovery, %) from 8 plots of 

* Data from Rothamsted Research.
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wheat, 4 plots of potatoes and 12 plots of oilseed rape. Plot the data and discuss 
whether regression with groups is a sensible approach.*

 15.6 As part of a study to quantify phosphorus (P) use efficiency in crops, data on 
the increase in Olsen P and increase in total P in 52 plots in long-term experi-
ments across three sites with different soil types were compiled (Johnston et al., 
2001). The file p.dat contains index numbers (Plot), the site name (factor Site) and 
measurements of increase in Olsen P (variate IncOlsenP) and increase in total P 
(variate IncTotalP) for each plot. Investigate whether the increase in total P can 
predict the increase in Olsen P, and whether this relationship differs between 
soil types (sites). Find the simplest adequate model to describe these data, and 
write down and interpret your final predictive model.†

 15.7 The Julian date of the last record of the aphid Myzus ascalonicus (shallot aphid) 
in the Insect Survey suction trap at Rothamsted was obtained for 1968 to 2005 
(inclusive). Years could be classified as either early (last record < 210) or late 
(last record > 280). These groupings may be linked to the abundance of winged 
aphids in autumn, with early years corresponding to small (or absent) autumn 
migrations. Data file shallot.dat holds unit numbers (ID) with the year (Year), 
date of last observation (JDate) and classification as an early or late year (Group). 
Use regression with groups to establish whether there is any statistical evi-
dence that the date of last observation (response JDate) is changing over time 
(explanatory variate Year) and whether any trend over time differs between 
early and late years (factor Group). Check for evidence of temporal correlation. 
Write down your predictive model and report your conclusions.‡

 15.8 In Example 8.6, we analysed a designed experiment to investigate the affinity 
of a sugar transporter protein for a substrate within plant cells. We modelled 
the relationship between response loge(Km) and the equivalent voltage using 
polynomial contrasts within ANOVA. The unit numbers (ID), structural factors 
(Rep, DUnit), input voltage (variate Voltage) and response (variate Km) are held 
in file voltage.dat (Table 8.23). Refit the model as a linear regression, including 
replicates in the model. Is there any evidence of model misspecification? Check 
for lack of fit and verify that this gives the same results achieved in Example 8.6. 
Do you agree with the conclusions from our original analysis?

 15.9 The impacts of several methods of forming ground cover in apple orchards were 
compared in a designed experiment (Pearce, 1983). The standard method (code 
O) was compared to five types of permanent crops (codes A–E). The experi-
ment used four blocks of six trees, and treatments were allocated at random to 
trees within each block (a RCBD). The trees were old, and varied in productiv-
ity, and so their total yield (bushels) over the previous 4 years was provided 
as a covariate. The response was total yield (in pounds) over a 4-year period 
with the new treatments. File apple.dat contains unit numbers (ID), the struc-
tural factors (Block, DPlot), treatment codes (factor Trt) and the crop from each 
tree before (variate PrevCrop) and during the experiment (variate TotalCrop). 
Investigate the impact of the treatments, taking both the design and the covari-

* Data from A. Macdonald, Rothamsted Research.
† Data from A.E. Johnston, Rothamsted Research.
‡ Data from R. Harrington, Rothamsted Research.



425Models for Variates and Factors

ate into account. Is there any impact of including the covariate in the analysis? 
Which treatments would you recommend?

 15.10 An experiment investigated the oxygen consumption of wireworm larvae at 
several temperatures (Bliss, 1970, Exercise 20.2). Consumption was expected 
to vary with larval size, so uniform batches of larvae of different sizes were 
tested and their mean weights were recorded. File oxygen.dat contains unit 
numbers (Unit), the temperature group for each batch (factor Temperature), and 
the natural logarithms of mean bodyweight (variate logBodyWt, mg) and oxy-
gen consumption per individual (variate logConsumption, mL/h). Is there any 
evidence of differences in oxygen consumption between temperature groups 
after taking body weight into account? What do you need to check before you 
can answer this question? Write down a predictive model for oxygen consump-
tion at each temperature, and interpret the differences between temperatures. 
(We re-visit these data in Exercise 17.8.)
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16
Incorporating Structure: Linear Mixed Models

In Chapters 7 to 9, we showed how to analyse data arising from designed experiments 
using multi-stratum ANOVA to take proper account of structure in the experimental 
units and that this approach led to appropriate estimates of parameter standard errors. 
However, multi-stratum ANOVA does not apply to unbalanced structures, and so its use 
is limited. In Chapter 11, we saw that combining the explanatory and structural compo-
nents of the model – the so-called intra-block analysis – gives good results only for certain 
types of structure. We therefore need a more general approach to account for structure, 
and in this chapter, we introduce the class of linear mixed models. This class extends 
multi-stratum ANOVA to the cases of unbalanced and non-orthogonal structures, and 
extends regression models to include a structural component. We start with a short dis-
cussion of the need to include structure in models (Section 16.1) and then give a more 
formal definition of the linear mixed models that we use to achieve this (Section 16.2). We 
then describe methods for investigating the explanatory component of the model (Section 
16.3) and aspects of the structural component (Sections 16.4 and 16.5) before considering 
prediction (Section 16.6) and model checking (Section 16.7). We analyse a data set in some 
detail to illustrate the concepts discussed in the previous sections (Section 16.8), and we 
explain some of the difficulties that can be encountered with this more general form of 
model (Section 16.9). Finally, we give a general overview of extensions to this class of 
models (Section 16.10).

16.1 Incorporating Structure

In Chapters 7 and 9, we analysed experimental studies with structure such as hierarchical 
blocking and pseudo-replication. We specified models using two separate components: 
the explanatory component was used to describe the relationship between the explanatory 
variables and the response, and the structural component was used to describe structure 
present in the observations. We argued that incorporation of the structure is required to 
generate the correct parameter SEs and df for hypothesis testing, and we achieved this 
with multi-stratum ANOVA.

In observational studies, structure is also often present and should be accounted for. For 
example, consider a large-scale ecological survey taken across fields growing several types 
of crop within designated farms in a region. The farms are not of interest in themselves, as 
they are intended to provide a representative sample, but systematic differences between 
farms are expected as a result of local management practices and so farms are regarded as 
a structural factor. Some explanatory variables might apply to whole farms, for example, 
type of farm, while others might be measured on individual fields, for example, crop (qual-
itative) or field area (quantitative). Incorporating the structure of the observations (in this 
case, Farm/Field) ensures that explanatory terms are compared to background variation 
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in the correct level or stratum. Similarly, within the same study, several samples might 
be taken within each field to avoid bias due to small-scale variation. In the terminology 
of Section 3.1.1, the within-field samples are pseudo-replicates. Separation of within- and 
between-field variation (using the structural component Farm/Field/Sample) is required 
to assess accurately the precision of estimates for the effects of different crops and the 
relationship with field area.

Some statistical packages include algorithms for multi-stratum ANOVA which allow 
specification of both the explanatory and structural components of the model. However, 
algorithms for multi-stratum ANOVA require an orthogonal structure and balanced allo-
cation of treatments (see Chapter 11) which are rarely present in observational studies and 
sometimes not in more complex designed studies. In Chapter 11, we demonstrated the 
principles of combining the two components of the model (the intra-block analysis), and 
showed that this approach is appropriate when most of the treatment information occurs 
at the lowest level of the structure, but can be problematic otherwise, particularly when 
treatments are applied at higher levels or when pseudo-replication is present (details in 
Section 11.6.1). In these cases, it will often be better to use a linear mixed model (LMM), 
specifying the model using two components, which are usually called the fixed and ran-
dom models. For both experimental and observational studies, it is usually reasonable to 
allocate the terms of the structural component as random and the explanatory component 
terms as fixed. In general, the choice of which terms to classify as fixed and which as ran-
dom depends on the aims of analysis, and we discuss this further in Section 16.5. A major 
advantage of LMMs is that the structure does not have to be balanced, and the model may 
contain any mixture of factors and variates. In the remainder of this chapter, we describe 
briefly the analysis of LMMs, illustrated with two examples.

16.2 An Introduction to Linear Mixed Models

A LMM is defined by the response, a fixed model and a random model. As stated above, 
here we equate the fixed model with the explanatory component, describing treatments or 
conditions that may affect the response, and equate the random model with the structural 
component, describing any structure present in the study.

EXAMPLE 16.1A: WEED COMPETITION EXPERIMENT

This experiment was introduced in Example 9.5, the layout was shown in Table 9.10 and 
the data are in file competition.dat. This split-plot experiment investigated the com-
petitive effects of weeds (factor Species), with and without irrigation (factor Irrigation), 
on grain yield of winter wheat (variate Grain), with four blocks (factor Block). Within 
each block, two irrigation regimes were applied to whole plots (factor WholePlot), each 
of which was split into four subplots (factor Subplot) in which the different weed spe-
cies (no weeds, Am, Ga, Sm) were sown. This experiment has a nested structure with 
three strata: blocks, whole plots within blocks, and subplots within whole plots, i.e. 
Block/ WholePlot/Subplot. The explanatory component was a two-way crossed struc-
ture, i.e. [1] + Irrigation*Species. Irrigation effects were estimated within the whole-plot 
stratum and species effects and the interaction were estimated within the subplot stra-
tum. The LMM for this design translates directly from the explanatory and structural 
components as
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Response variable: Grain
Fixed model: [1] + Irrigation*Species
Random model: Block/WholePlot/Subplot

The assumptions behind the LMM differ slightly from those we have used previously. 
The fixed model is set up in exactly the same way as the explanatory component, usu-
ally with first-level-zero (or last-level-zero) parameterization (Section 11.2.1). The random 
model has a new set of assumptions, however. The effects associated with each random 
term are assumed to be a set of independent samples from a Normal distribution with 
a common variance, which is known as the variance component for that term. We have 
previously assumed that structural terms represent variation due to the physical structure 
of the experimental material or procedure: for continuous data it is then often reasonable 
to interpret these effects as samples from a Normal distribution. The model deviations 
become just one of these random terms, and the assumptions made for the deviations 
(Sections 4.1 and 12.1) also apply to each of the random terms. In addition, it is assumed 
that effects from different random terms are independent.

EXAMPLE 16.1B: WEED COMPETITION EXPERIMENT

The mathematical model for this split-plot experiment, with first-level-zero parameter-
ization and a crossed treatment structure, can be written as

 

Grain Block Irrigation Block WholePlot Specieijk i j ij= + + + +µ11 ( . ) ss

Irrigation Species e
k

jk ijk+ +( . ) , 
 

(16.1)

where Grainijk is the grain yield for the kth weed species (k = 1 … 4; 1 = no weeds, 2 = Am, 
3 = Ga, 4 = Sm) with the jth irrigation treatment (j = 1, 2; 1 = without, 2 = with irriga-
tion) in the ith block, for i = 1 … 4. The first-level-zero constraints impose Irrigation1 = 0, 
Species1 = 0 and (Irrigation.Species)jk = 0 for j = 1 or k = 1. Parameter μ11 represents the 
population mean without irrigation or weeds, Irrigation2 represents the effect of irriga-
tion with no weeds, Speciesk (k = 2 … 4) represents the effect of the kth weed species 
without irrigation, and (Species.Irrigation)2k is the effect of irrigation on the kth weed spe-
cies relative to the effect of irrigation without weeds (see Section 11.2.1). The effects 
Blocki, i = 1 … 4, are random block effects, assumed to be independent with common 
distribution Blocki ~ Normal( , ),0 2σb  the effects (Block.WholePlot)ij are random effects 
of whole plots within blocks, assumed to be independent with common distribution 
Block WholePlotij. ~ ,Normal ( , )0 2σw  and the deviations, eijk, are assumed to be indepen-
dent with distribution eijk ~ Normal( , ),0 2σ  as mentioned previously. The variance com-
ponents in this model are σ σ σb w

2 2 2, .and

The parameters of the LMM are the effects associated with the fixed terms and the vari-
ance components associated with the random terms. The random effects have a slightly 
different status, which is discussed further in Section 16.5. There is no requirement for a 
LMM to have a balanced structure, and so estimation by least squares is not always effi-
cient. The usual alternative, maximum likelihood estimation, gives biased estimates of the 
variance components and so Patterson and Thompson (1971) introduced a method called 
restricted (or residual) maximum likelihood (REML) to estimate the variance components, 
and this is the approach we take. The method estimates the variance components by 
minimizing a quantity called the restricted (or residual) log-likelihood function (for more 
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details, see Littell et al., 2006). The fixed effects are then estimated by the method of gener-
alized least squares, conditional on the estimated values of the variance components. One 
advantage of the REML method is that it gives the same estimates of fixed effects and SEs 
as obtained from multi-stratum ANOVA when the structure is balanced and, where treat-
ment information is divided across strata, estimates will be combined efficiently across 
strata into a single estimate.

16.3 Selecting the Best Fixed Model

The estimates of the fixed effects used with REML are often called BLUEs, which is an 
acronym for best linear unbiased estimates. The property of unbiasedness means that the 
expected value of the estimator is equal to the true parameter value. In this context, ‘best’ 
means that these estimates have minimum variance within the class of unbiased estima-
tors, conditional on the variance components. In practice, we do not know the true values 
of the variance components and so substitute their REML estimates to obtain empirical 
BLUEs, often called eBLUEs.

EXAMPLE 16.1C: WEED COMPETITION EXPERIMENT

Fitting the split-plot experiment as a LMM with first-level-zero parameterization gives 
the estimates of fixed effects for terms Species and Irrigation.Species shown in Table 
16.1. The estimate of the constant was ˆ .µ11 8 117=  (SE 0.4063) and the estimated effect of 
irrigation in the absence of weeds was Irrigation

2 0 935= − .  (SE 0.5344).

As described in Chapters 8 and 11, we usually wish to investigate the contribution of 
individual terms within the explanatory component (or fixed model) in explaining pat-
terns of response. We need to take proper account of the structural component (or random 
model) and any non-orthogonality in the explanatory component (fixed model). Because 
it is not possible to construct a multi-stratum ANOVA table for a general unbalanced 
structure, in LMMs we take a slightly different approach and construct test statistics that 
account for the experimental structure.

Because of non-orthogonality, we still need to consider both incremental and marginal 
forms of these statistics; recall that incremental statistics reflect the change in fit on sequen-
tial addition of individual terms into the fixed model, and marginal statistics reflect the 
change on omission of individual terms from the full fixed model (see Sections 11.2 and 
14.4). Recall that in a non-orthogonal structure, there may be many different sets of incre-
mental and marginal statistics, corresponding to different orders of adding terms into or 

TABLE 16.1

Estimated Fixed Effects with Standard Errors (SE) for Terms Species and Irrigation.Species 
with First-Level-Zero Parameterization in the Weed Competition Experiment (Example 16.1C)

Term Parameter – (k = 1) Am (k = 2) Ga (k = 3) Sm (k = 4) SE

Species Speciesk 0.000  −4.632  −1.437  −1.522 0.3613
Irrigation.Species (Irrigation.Species)2k 0.000 0.160  −1.670  −0.085 0.5109
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dropping terms from the model (see Section 11.2). We again follow the principles of model 
selection discussed in Section 15.5.1. In particular, we respect the principle of marginality 
and add a term only if all marginal terms are already present in the model (e.g. add A.B 
in a crossed structure only if A and B are both present), and do not drop terms that are 
marginal to other terms present in the model (e.g. do not drop A or B if A.B is in the model). 
Here, we describe two types of test statistic in common usage in LMMs, Wald tests and 
approximate F-tests.

For a model term associated with a single effect, the Wald statistic is equivalent to the 
square of the t-statistic obtained by division of the estimated effect by its estimated stan-
dard error. When several effects are associated with a model term, the calculation is more 
complex. If the structure is orthogonal, then the Wald statistic is equivalent to the sum of 
squares for that term divided by the ResMS from the appropriate stratum. In the general 
unbalanced case, the marginal Wald statistic for a term is effectively the sum of squares 
of its estimated effects weighted by their estimated variance–covariance matrix. Under 
the null hypothesis of zero effects, on the assumption that the variance components are 
known, the Wald statistic has an approximate chi-squared distribution with df equal to 
the change in df when the term is added to the model (for an incremental test) or removed 
from the model (for a marginal test). This is a one-sided test, as estimates with either a 
large positive or negative value (with respect to their variance–covariance matrix) lead 
to a large positive value of the Wald statistic. As this distribution ignores the sampling 
variation associated with estimation of the variance components, it is analogous to the 
use of a Normal distribution rather than a t-distribution for the test for a single parameter 
estimate. We can see the impact of this approximation in the following example.

EXAMPLE 16.1D: WEED COMPETITION EXPERIMENT

This split-plot design is orthogonal, so there is a unique set of incremental Wald sta-
tistics, and these are shown in the third column of Table 16.2. These statistics can be 
verified in each case to be equal to the SS for the term divided by the ResMS from the 
appropriate stratum (see the ANOVA in Table 9.12). The observed significance levels 
for the Wald statistics (column 4 in Table 16.2) are smaller than those from the multi-
stratum ANOVA table and, although the conclusions do not change, the strength of 
the evidence from the Wald tests appears greater. However, if the assumptions for the 
deviations are true, then the variance ratios from the multi-stratum ANOVA have an 
F-distribution, giving a known baseline for comparison and indicating that the Wald 
tests are over-confident.

Some caution is therefore required in the use of Wald tests, which tend to be too opti-
mistic, i.e. to give false-positive results more often than would be expected. The reference 

TABLE 16.2

Wald Statistics with Observed Significance Levels (P(Wald)) and Approximate 
F-Statistics with Estimated Denominator df (ddf) and Observed Significance Levels 
(P(F)) for the Weed Competition Experiment (Example 16.1D)

Term df Wald P  (Wald) F ddf P  (F)

+ Irrigation 1 9.480 0.002 9.480 3.0 0.054

+ Species 3 329.178 4.8 × 10−71 109.726 18.0 9.3 × 10−12

+ Irrigation.Species 3 16.747 8.0 × 10−4 5.582 18.0 0.007



432 Statistical Methods in Biology

distribution for this test is known as an asymptotic approximation, which indicates that 
it holds only for large samples. In fact, the phrase ‘large samples’ is slightly misleading 
here, as the requirement is more specifically for the uncertainty in the variance–covari-
ance matrix of the estimates to be small. This is difficult to check in a general situation, 
but in balanced situations requires that the ResDF should be large within strata where the 
fixed terms are tested.

To avoid this problem, various methods exist to convert Wald statistics into a form that 
has an approximate F-distribution, with denominator df that quantify uncertainty in 
the estimation of variances. The most popular method was developed by Kenward and 
Roger (1997, 2009). This method re-scales the Wald statistic so that it can be compared to 
an F-distribution with numerator df equal to those of the model term and an estimated 
denominator df. As with the Satterthwaite approximation (Section 9.2.3), the estimated 
denominator df will often be non-integer. For balanced designs, F-tests based on the 
Kenward–Roger method are identical to F-tests based on the variance ratios. This method 
is available in most software for LMMs, and these approximate F-tests should usually be 
preferred to the Wald tests.

EXAMPLE 16.1E: WEED COMPETITION EXPERIMENT

The fifth and sixth columns of Table 16.2 show the F-statistics and denominator df 
derived from the Kenward–Roger method. In this balanced case, the derived F-tests 
can be obtained by division of the Wald statistic for each model term by its df, and the 
estimated denominator df are equal to the ResDF from the appropriate stratum in the 
ANOVA table (Table 9.12). The resulting F-tests and observed significance levels (column 
7 in Table 16.2) therefore exactly match those from the multi-stratum ANOVA table.

16.4 Interpreting the Random Model

The variance components associated with the random terms generate a variance–covari-
ance matrix for the observations. The variance of an observation is equal to the sum of 
the variance components, and it can be derived from the algebraic form of the model: 
the variance of the fixed effects is zero, and the variance of each random effect equals 
its variance component. The covariance between any two observations depends on the 
random effects held in common across the observations, and it is the sum of the variance 
components for these common random effects. These calculations are illustrated in the 
following example.

EXAMPLE 16.1F: WEED COMPETITION EXPERIMENT

The estimated variance components for the weed competition experiment are in Table 
16.3. The block variance component is smaller than the whole-plot and subplot variance 
components, which are similar in size.

To estimate the variance of a single observation from this experiment, we start with 
the model in Equation 16.1. The fixed terms do not contribute to the variance, and we 
have assumed that all random effects are independent (both within and across terms), 
so we do not need to account for covariances between random effects, which are all 
zero. The variance is thus equal to the sum of the variances of the random effects, which 
is the sum of the variance components, i.e.
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This estimated variance is the same for all observations. The estimated covariance 
between observations from different subplots within the same whole plot (and hence 
the same block) can be derived similarly. Again, only the random terms contribute to 
the covariance and as we have assumed the random effects are independent, covari-
ances between different effects are zero:

Cov Cov( , ) ( . ,Grain Grain Block Block WholePlot e Bijk ijl i ij ijk= + + llock Block WholePlot e

Block Block Whole
i ij ijl

i

+ +
= +

. )

( ) ( .Var Var PPlotij )

. .
= +
=
σ σ b w

3994

2 2

0

The estimated covariance between observations from subplots in different whole plots 
within the same block is then equal to the estimated block variance component, 0.0893, 
and the covariance between observations from subplots in different blocks is zero. The 
covariance between observations therefore increases as their proximity within the hier-
archical structure also increases.

Our original definition of the variance components, as variances of the random effects, 
required these variances to be positive. The interpretation of the variance structure in 
terms of variances and covariances between observations requires only that the total vari-
ance is positive and that the variance of any linear combination of observations is also 
positive (this property is known as positive-definiteness). In general, we use random terms 
to reflect structure and we expect units with random effects in common to be more simi-
lar than units without, and so variance components are usually expected to be positive. 
But occasionally circumstances arise when it is natural to allow variance components to 
take negative values. For example, in field experiments, blocks are laid out on areas of 
ground thought to be reasonably homogeneous with respect to fertility and other trends. 
If a mistake is made, then plots within the same block may be less alike than plots in dif-
ferent blocks, and this can be modelled only by using a negative variance component for 
blocks. A similar effect can occur if shelves in a CE cabinet are used as blocks to account 

TABLE 16.3

Estimated Variance Components for the Weed Competition 
Experiment (Example 16.1F)

Term Parameter Estimate SE

Block σb
2 0.0893 0.2732

Block.WholePlot σw
2 0.3100 0.3072

Block.WholePlot.Subplot σ2 0.2610 0.0870

 SE = estimated standard error.
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for differences in lighting, but in fact a temperature gradient from the front to the back 
of the shelves has a much stronger effect. For these reasons, we prefer to allow variance 
components to be negative when required. Even if the true values of the variance compo-
nents are positive, it is possible that they may be estimated as negative values due to sam-
pling variability, particularly for terms with few levels. Some statistical packages always 
constrain estimates of variance components to remain positive, bounded below at zero 
(e.g. R function lmer), while others (e.g. GenStat and SAS PROC MIXED) give a choice on 
whether estimates should be constrained to remain positive or not. The default action dif-
fers between packages, so you should always check the documentation.

The presentation of estimated variance parameters also differs between statistical pack-
ages: SAS PROC MIXED and GenStat present the variance components, but R function lmer 
presents the square root of the variance components (labelled as standard deviations), 
arguing that these are easier to interpret as they are on the same scale as the observations. 
Standard errors of the variance component estimates are often provided, and the estimated 
variance components are often small compared with these SEs (e.g. Table 16.3), so it might 
be natural to think of dropping these terms from the model. We advise against this course 
for two distinct reasons. First, the SEs for variance components are reliable for testing only 
when there is a large amount of information contributing to the estimate; again, the SEs 
depend on an asymptotic approximation. A better approach is the use of likelihood ratio 
tests (LRTs); however, these tests are still the subject of research and their description is out-
side the scope of this book. Second, and more importantly in our context, the random terms 
have been included to describe the structure of the observations. This structure is a property 
of the data set and is used to obtain the denominator df for approximate F-tests: the removal 
of terms means that the random model no longer serves this purpose. There are contexts in 
which it is appropriate to try to simplify a random model, but this is not the case when it 
represents the structural component.

There is one situation in which it may be sensible to allocate part of the structural com-
ponent as fixed rather than random terms. This situation occurs when there are few levels 
in a random term, so its variance component is poorly estimated, and when the explana-
tory terms vary at a lower level of the structure. For example, a RCBD with many treat-
ments might have only two replicate blocks. The estimate of the block variance component 
is effectively based on only two agglomerated observations (related to the two block 
effects) and is unlikely to be reliable. In this design, all the treatment comparisons are 
made within blocks, and no information is lost by putting block as the first term into the 
explanatory component (the intra-block analysis of Section 11.6.1) or, equivalently in the 
context of a LMM, into the fixed model.

The remainder of this section explains the relationship between the variance compo-
nents obtained from a REML analysis and the stratum variances obtained by multi-stra-
tum ANOVA for a balanced set of data.

16.4.1 The Connection between the Linear Mixed Model and Multi-Stratum ANOVA

Estimates of variance components from REML are equivalent to those from multi-stra-
tum ANOVA when the structure is balanced. Within the ANOVA table, the variance 
components are hidden contributors to the stratum variances, which are estimated by 
the stratum ResMS. For a balanced nested structure, the relationship between the stra-
tum variances and the variance components is straightforward: each stratum variance is 
constructed as a weighted sum of variance components relating to random effects from 
that stratum and from all lower strata. The weight for each variance component is the 
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number of observational units corresponding to a single random effect from that term. 
As an example, we consider the standard split-plot structure with m blocks, each with tA 

whole plots, each of which in turn contains tB subplots. We denote the stratum variances 
for blocks, whole plots and subplots respectively as ξb, ξw and ξs. These stratum variances 
are related to the variance components as follows:
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The block.wholeplot.subplot stratum is the lowest level, with random effects equal to the 
model deviations. Each deviation corresponds to a single observation, and so the weight 
for the subplot variance component (σ2) is 1; this holds for all strata. In the block.wholeplot 
stratum, there are contributions from the whole-plot and subplot random effects. There 
are tB observations within each whole plot, so this is the weight for the whole-plot vari-
ance component ( ),σw

2  and again it applies to all higher strata. The block stratum contains 
contributions from the block, whole-plot and subplot random effects. Each block contains 
tA × tB observations and so this is the weight for the block variance component ( ).σb

2

EXAMPLE 16.1H: WEED COMPETITION EXPERIMENT

We can relate the estimated variance components in Table 16.3 to the estimated stratum 
variances obtained in Example 9.2. As in Section 9.2.3, we denote the estimates of stra-
tum variances provided by the Block, Block.WholePlot and Block.WholePlot.Subplot 
residual mean squares as sb

2 , sw
2  and s2, respectively. To derive estimates of the stratum 

variances, we use the formula given above, i.e.
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As expected, these estimates match the stratum ResMSs shown in Table 9.12.

From the formulae for the stratum variances, we can deduce that whenever the stratum 
variance for a term is smaller than that for strata lower in the hierarchy, the variance com-
ponent associated with that term must be negative. When statistical packages constrain 
variance components to remain positive, bounded below at zero, the variance component 
estimates may then not quite match those from the multi-stratum ANOVA table. Although 
the resulting differences are usually small, exact correspondence between multi-stratum 
ANOVA and REML is desirable and was one motivation for the development of the REML 
method. This is a strong argument for allowing negative estimates of variance components.

16.5 What about Random Effects?

We stated earlier that the parameters of the LMM are the fixed effects and the variance 
components, but we wrote down our models in terms of fixed and random effects. In this 
section, we discuss the status of the random effects.
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The LMM can be written in two forms. The model written in terms of both the fixed 
and random effects, for example, Equation 16.1, is known as the conditional form since the 
response is conditional on the random effects. The marginal form of the model is obtained 
by integrating over the population of random effects. In the marginal form, the model is 
specified in terms of the expected value of the observations, determined by the fixed terms 
alone, and the variance–covariance matrix of the observations generated by the random 
terms (as described in Section 16.4). Estimation takes place in the marginal model, the 
parameters of which are the fixed effects and the variance components. However, we are 
still often interested in the values of the random effects, and so would like to estimate 
them. This is possible only when the variance component for the term is positive, as ran-
dom effects cannot be defined with a negative variance. Because the random effects are not 
true parameters, we obtain predictors, rather than estimates, of their values that are called 
BLUPs, an acronym for best linear unbiased predictors. In this context, the adjective 
‘unbiased’ can be slightly misleading, as it means that the expected value of a predictor 
is equal to the expected value of the population, which is zero. Given the (unknown) true 
value of a random effect, its BLUP is biased towards zero, a property known as shrinkage. 
The adjective ‘best’ here means that these predictors have minimum mean squared error 
(defined as variance plus squared bias), conditional on the variance components. Again, 
in practice, we do not know the true values of the variance components and so substitute 
their REML estimates to obtain empirical BLUPs, often called eBLUPs. The property of 
minimum mean squared error is attractive where accuracy in prediction is more impor-
tant than unbiasedness, and is sometimes used as a justification for assigning terms to the 
random rather than the fixed model, particularly in the context of variety evaluation (see 
Smith et al., 2005, for discussion in this context).

All random effects, including the deviations, are estimated from a REML analysis as 
eBLUPs. This is different from multi-stratum ANOVA, which uses least-squares estimates 
for terms in the structural component, and so estimated effects for structural terms and 
residuals obtained from the two procedures often differ.

16.6 Predicting Responses

Prediction from LMMs follows the same basic principles laid out in Sections 11.2.5 
and 15.5.2, but additional decisions must be made about the role of the random effects. 
Predictions are based on the selected model: we form a table of fitted values from this 
model classified by the explanatory variables (factors and variates) and then take marginal 
means to obtain the predictions required. In the case of LMMs, we must decide whether 
to make predictions conditional on the observed values of the random effects (known 
as conditional or narrow-sense predictions), or to make predictions with respect to the 
population of random effects (known as marginal or broad-sense predictions). All model 
terms are used to form conditional predictions, and so in this case the table of fitted values 
is classified by all the explanatory variables. For marginal predictions, each random term 
contributes its population mean value (zero) to the fitted values, and the table is classified 
only by variables that appear in the fixed model terms. Intermediate schemes are also pos-
sible, where predictions are conditional with respect to some random terms and marginal 
with respect to others. These options are discussed in some detail by Welham et al. (2004) 
and McLean et al. (1991). Marginal and conditional predictions take the same value for 
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the LMMs considered here because the mean of the eBLUPs for random terms with inde-
pendent effects and common variance is equal to the population mean of zero. Marginal 
predictions have larger SEs than conditional predictions because of the additional uncer-
tainty associated with predicting for an unknown population rather than for an observed 
sample. Both types of prediction give the same SEDs for comparisons that do not directly 
involve random effects.

EXAMPLE 16.1I: WEED COMPETITION EXPERIMENT

Marginal predictions for the irrigation by species combinations (µ jk  for the jth irriga-
tion regime with the kth species) are formed by ignoring the structural component (i.e. 
random model) terms and forming predictions as

 
ˆ ˆ . .µ µjk j k jkIrrigation Species Irrigation Species= + + +11

  ( )  

It is straightforward to verify that these predictions are equal to the treatment means 
given in Table 9.14, and they have a common SE equal to 0.4063. The multi-stratum 
ANOVA (Example 9.2) obtained a SE of 0.3778 for the same predictions, and the differ-
ence occurs because the ANOVA SE ignores contributions from the block and whole-
plot effects. The SEDs are equal to 0.5344 for comparisons across irrigation regimes, 
and 0.3613 for within-irrigation regime comparisons. These are the same as the SEDs 
obtained from multi-stratum ANOVA because the contributions from structural (ran-
dom) terms cancel when taking differences.

16.7 Checking Model Fit

In this more general context of LMMs, model checking becomes both more important and 
more complex. Model misspecification with respect to explanatory variates can be investi-
gated with the techniques described in Sections 13.1 and 14.6. Assumptions regarding the 
random effects are investigated with the eBLUPs for each term (Section 16.5). The eBLUPs 
for the deviations are the equivalent of simple residuals and can be used in the resid-
ual plots described in Chapter 5 (see also Figure 16.3). Construction of the fitted values 
plot requires some thought, as fitted values can be defined either to include or to exclude 
eBLUPs associated with random terms (but always exclude the residual term). If random 
terms are included in the fitted values, then shrinkage can induce correlation between the 
residuals and the fitted values, so it is often better to exclude these terms. Histograms and 
Normal quantile plots of eBLUPs can be used to check the distributional assumptions for 
random terms.

There is no generally accepted analogue of the adjusted R2 statistic to quantify the 
explanatory performance of LMMs. It is generally acceptable to state whether fixed terms 
show evidence of group differences (for factors) or linear trend (for variates), based on 
the outcome of approximate F-tests. One approach to calculating the percentage variance 
accounted for by the fixed model is based on the variance of an observation, as defined in 
Section 16.3. The baseline total variance can be calculated as the sum of the variance com-
ponents when the constant term alone is included in the fixed model. This is compared 
with the sum of the variance components for the fixed model under consideration, and 
the percentage reduction measures the percentage variance accounted for by the fixed 
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model. This statistic can be used to quantify the performance of different fixed models for 
a given structural component (random model). Note that the AIC and SBC described in 
Section 14.8 cannot be used to compare LMMs with different fixed terms when the vari-
ance parameters have been estimated by REML.

16.8 An Example

In this section, we analyse a real set of data in some detail to draw together and illustrate 
the ideas introduced in the previous sections.

EXAMPLE 16.2: WEED ABUNDANCE

During 2000–2003, data were collected from an extensive UK-wide field experiment, 
known as the Farm Scale Evaluations (FSEs), to determine the ecological effects of man-
agement regimes associated with either genetically modified (GM) herbicide-resistant 
or conventional crops. For each of four crops, the FSEs were designed with whole fields 
(blocks) split into two half-fields to which the treatments (factor Treatment, conventional 
or GM regime) were applied. Further information can be found in Case Study 19.1. Here, 
we consider only spring oilseed rape and analyse the counts of total weed abundance 
(variate Weeds) recorded in half-fields after the last herbicide application was made to 
the GM crop (‘post-herbicide’; Heard et al., 2003). The seedbank in each half-field (vari-
ate Seedbank) was sampled before the crops were sown to provide a measure of initial 
seed densities. The aim of analysis here is to assess the impact of the two management 
regimes on weed abundance, taking into account the initial seedbank counts.

The trials used 62 fields during the spring seasons of 2000–2002 (factor Year, labelled 
chronologically as 1–3). The fields were located on 37 farms (factor Farm). Only one field 
per farm was used in each year, but some farms were studied in 2 or 3 years, with a dif-
ferent field used in each year (factor Field, numbered within farms as 1, 2 and 3). Half-
fields (factor DHalf, labelled 1–2) are labelled systematically with respect to treatment 
although treatments were originally allocated to the halves at random (see Case Study 
19.1). Two fields without seedbank counts, plus one further field where a zero seedbank 
count was regarded as suspect, were excluded from the analysis, leaving 59 fields (118 
half-field data values). The data are held in file sosr.dat and shown in Table 16.4.

The weed and seedbank data are plotted as counts and on log-log axes in Figure 16.1. 
We should usually take a log-transform of the weed counts to accommodate variance 
heterogeneity; the log-log plot indicates that a linear relationship with seedbank counts is 
obtained if this variate is also log-transformed. These variates were therefore transformed 
to the log10 scale as LogWeeds = log10(Weeds) and LogSeedbank = log10(Seedbank).

We can now consider a preliminary model for the logged weed counts. The struc-
ture is hierarchical, with half-fields nested within fields, and fields nested within farms. 
Eighteen of the 37 farms have two or three separate fields used. In terms of these factors, 
we therefore write the structural component of the model as

Structural component: Farm/Field/DHalf

Since there is only one measurement per half-field, the half-field effects are the model 
deviations. The explanatory component of the model must account for year and treat-
ment effects, and a crossed model is appropriate for these terms, i.e.

Explanatory component: [1] + Year*Treatment
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As a baseline, we first analyse the logged weed counts (LogWeeds) ignoring the initial 
seedbank counts. In addition, as we should ideally like to regard the initial seedbank 
counts as a covariate (see Section 15.4), we also use this model to check whether that 
covariate (LogSeedbank) is related to the explanatory terms.

To fit this as a LMM, the structural component becomes the random model and the 
explanatory component becomes the fixed model. Table 16.5 shows the estimated vari-
ance components for the two responses. Since the weed and seedbank counts are on 
different scales, we do not compare the values of the estimated variances for the two 
responses, but we do compare the pattern of relative sizes across strata.

In both cases, all three variance components are positive. This indicates some similarity 
across fields within farms, and across halves of the same field. This is expected, as weed 
management practices will differ between farms, and weed infestation often varies across 

TABLE 16.4

Weed and Seedbank Counts from Half-Fields under Conventional (C) or Genetically 
Modified (GM) Management Regimes in the FSE Study (Example 16.2 and File sosr.dat)

Farm Field Year

Weeds Seed bank

Farm Field Year

Weeds Seedbank

C GM C GM C GM C GM

1 1 1 195 200 56 93 17 1 2 741 780 70 70
1 2 2 470 395 154 218 17 2 3 337 176 23 60
1 3 3 432 192 68 103 18 1 2 113 56 150 68
2 1 1 142 128 71 126 18 2 3 634 547 98 139
2 2 2 1625 180 60 117 19 1 2 1302 692 241 271
3 1 1 121 84 52 56 20 1 2 653 492 252 283
4 1 1 505 115 156 145 21 1 2 73 163 49 55
4 2 2 234 248 146 504 22 1 2 286 154 65 116
4 3 3 1266 1166 256 289 22 2 3 1040 324 158 51
5 1 2 54 125 311 73 23 1 2 487 288 100 153
5 2 3 68 406 49 237 23 2 3 702 1388 239 543
6 1 2 104 48 69 190 24 1 2 473 225 44 41
7 1 2 42 19 20 7 24 2 3 485 270 240 178
8 1 2 255 387 59 39 25 1 2 1631 7875 251 384
8 2 3 101 121 40 19 25 2 3 640 587 471 413
9 1 1 1815 381 133 128 26 1 2 358 25 241 216
9 2 2 403 461 182 120 26 2 3 198 46 50 149
9 3 3 817 1395 734 969 27 1 2 29 292 33 110
10 1 2 40 111 126 79 28 1 3 244 178 88 29
10 2 3 203 327 99 51 29 1 2 921 178 89 51
11 1 1 125 558 60 124 30 1 1 376 263 173 563
11 2 3 66 149 46 57 30 2 2 248 55 113 50
12 1 1 432 272 26 50 30 3 3 404 482 213 340
12 2 2 636 25 149 156 31 1 3 2103 367 394 530
12 3 3 356 51 102 55 32 1 3 354 233 72 66
13 1 2 449 56 62 61 33 1 3 403 142 136 56
14 1 2 2620 1743 302 260 34 1 3 261 310 25 85
15 1 2 314 602 487 152 35 1 3 2041 1176 389 693
16 1 3 708 571 85 167 36 1 2 171 677 50 88

37 1 2 701 352 162 142

Source: Data from M. Heard, Centre for Ecology and Hydrology.
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fields within farms. For LogWeeds, the variation between half-fields is about twice that 
generated by farm and field effects, which are of similar sizes. For LogSeedbank, the 
three variance components are of similar sizes. This suggests that variation between half-
fields is relatively smaller for the initial seedbank counts. Again, this might be expected 
where fields have been managed as single entities prior to the trial.

Table 16.6 shows the approximate F-tests for the fixed terms in these preliminary 
models. The Year and Treatment factors are orthogonal, so there is a unique table of 
incremental tests that can be used to investigate fixed terms. None of the fixed terms is 
significant for LogSeedbank. This matches our prior expectations as seedbanks were 
assessed before sowing and, given the relative consistency of seedbank counts within 

TABLE 16.5

Estimated Variance Components for Log10-Transformed 
Weed and Seedbank Counts with Fixed Model 
[1] + Year*Treatment (Example 16.2)

Random Term LogWeeds LogSeedbank

Farm 0.0517 0.0521
Farm.Field 0.0628 0.0539
Farm.Field.DHalf (deviations) 0.1139 0.0443

TABLE 16.6

Incremental F-Statistics with Denominator df (ddf) and Observed Significance Level 
(P) for Log10-Transformed Weed (LogWeeds) and Seedbank (LogSeedbank) Counts 
with Fixed Model [1] + Year*Treatment (Example 16.2)

Term df

LogWeeds LogSeedbank

F-Statistic ddf P F-Statistic ddf P

+ Year 2 1.068 34.7 0.355 0.728 32.5 0.491

+ Treatment 1 5.415 56.0 0.024 1.413 56.0 0.240

+ Year.Treatment 2 0.048 56.0 0.953 1.576 56.0 0.216
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FIGURE 16.1
Weed counts for (•) conventional and (○) GM management regimes plotted against initial seedbank counts with 
both variables (a) untransformed and (b) transformed to logarithms (Example 16.2).
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whole fields, the possibility of an ‘unlucky’ random allocation is small. This analysis 
also confirms that there was no consistent difference in initial seedbank count across 
years or across treatments within years. For LogWeeds, the Year.Treatment interac-
tion and Year terms are not significant, indicating no differences across years, but the 
Treatment term is significant, and indicates a consistent difference between the two 
management regimes, with the conventional treatment 0.145 units (SE 0.0719) larger 
than the GM treatment on the log10 scale.

To try to understand the denominator df used by the approximate F-tests, we can 
construct a dummy multi-stratum ANOVA table, as in Table 16.7. The structural com-
ponent generates strata for farms (Farm), fields within farms (Farm.Field) and half-
fields within fields (Farm.Field.DHalf). There are 37 farms, so the Farm stratum has a 
total of 36 df. There are 12 farms with two fields and five farms with three fields used, 
giving 12 + (5 × 2) = 22 df in total for the Farm.Field stratum. Finally, since each of 
the 59 fields has observations made on both halves, there are 59 df in total in the 
Farm. Field.DHalf stratum. Since treatments are applied to half-fields, the Treatment 
and Year.Treatment effects are estimated entirely within the Farm.Field.DHalf stra-
tum, which removes three df (one for Treatment and two for Year.Treatment) and 
leaves 56 ResDF. This is the denominator df used by the F-tests for the Treatment and 
Year.Treatment terms, as we should expect. Although each farm uses a different field 
in each year, only five farms are present in all 3 years, and so effects for the Year term 
are estimated partly within and partly across farms, and the denominator df for this 
term is derived from both the Farm and Farm.Field strata. These denominator df then 
depend on both the allocation of information (which is the same for both responses) 
and on the relative values of the Farm and Farm.Field variance components (which dif-
fer), and so the denominator df for Year differ slightly for the two responses (estimated 
as 34.7 for LogWeeds and 32.5 for LogSeedbank).

Given the linear relationship between LogWeeds and LogSeedbank apparent in 
Figure 16.1, we might be able to improve our estimate of treatment effects by adjusting 
for the initial seedbank counts. Since most of the variation in seedbank counts occurred 
between rather than within fields, we expect that accounting for the initial seedbank 
will not have much impact on the estimated treatment effect (which is estimated from 
within-field comparisons), but we hope that accounting for this variation might increase 

TABLE 16.7

Dummy Multi-Stratum ANOVA Table for the FSE Study with 
59 Fields (Factor Field) on 37 Farms (Factor Farm) over 3 Years 
(Factor Year), and Two Treatments (Factor Treatment) Applied 
to Half-Fields within Fields (Factor DHalf) (Example 16.2)

Term df

Farm stratum
Year 2
Residual 34

Farm.Field stratum
Year 2
Residual 20

Farm.Field.DHalf stratum
Treatment 1
Year.Treatment 2
Residual 56

Total 117
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the precision of the estimate (i.e. decrease its SE). We first check whether the relation-
ship with the logged seedbank count is the same for both treatments (and across years) 
by fitting a model with separate slopes (see Section 15.4), leading to the fixed terms in 
a LMM as

Explanatory component: [1] + LogSeedbank*Year*Treatment

The terms in this model are not orthogonal, and so there are many sets of incremental 
Wald tests. Here, we use marginal F-tests to select the predictive model. In the full 
model, we can test only the three-way term LogSeedbank.Year.Treatment and we find 
that it is not significant (Model 1 in Table 16.8, F2 60 3 0 262, . . ,L.Y.T =  P = 0.770). We therefore 
drop this term and refit with all the remaining fixed and random terms. We can now 
test all of the terms containing two variables with the marginal F-tests shown for Model 
2 in Table 16.8. None of these terms appears significant, so we drop the least significant 
of them first (LogSeedbank.Year with F2 60 3 0 075, . . ,L.Y. =  P = 0.927), refit the model, and find 
we can then drop each of the other two-variable terms in turn (Year.Treatment then 
LogSeedbank.Treatment). The relationship with initial seedbank counts is therefore 
consistent across both treatments and years, and treatment differences also appear con-
sistent across years. This leaves only the single-variable terms in the model (Model 3 in 
Table 16.8). Marginal F-tests show no evidence of consistent differences between years 
(F 0.6982 43 5, . ,Y =  P = 0.503) and so the term Year can be dropped, but the remaining terms 
LogSeedbank and Treatment both have significant marginal F-tests, and form the pre-
dictive model. The full set of parameter estimates from this predictive model is shown 
in Table 16.9.

This predictive model can be written in algebraic form with first-level-zero param-
eterization as

    µ µ βijk i ij kLogSeedbank Farm Farm Field Treatment( ) .= + + + + 
1 LLogSeedbank .

Here, µijk LogSeedbank( ) is the predicted log10-transformed weed count for a given value 
of the log10-transformed seedbank count (LogSeedbank) with the kth treatment (k = 1, 2; 
1 = C, 2 = GM) in the jth field within the ith farm, for i = 1 … 37, j = 1, 2, 3. We repre-
sent eBLUPs with a tilde (~) rather than a hat () embellishment, which we reserve for 
estimates of the model parameters. The intercept, ˆ .µ1 1 297= (SE 0.2205), represents the 
prediction for the conventional (C) treatment for a zero value of LogSeedbank, which is 

TABLE 16.8

Marginal F-Tests from Explanatory Models for Log10-Transformed Weed 
Counts with Observed Significance Level (P) (Example 16.2)

Term Model 1 Model 2 Model 3

[1] — — —
L — — F1 85 3 31 797, . .L =  (P < 0.001)
Y — — F2 43 5 0 698, . .Y =  (P = 0.503)
T — — F1 57 8 7 969, . .T =  (P = 0.007)
Y.T — F2 61 0 0 103, . .Y.T =  (P = 0.902) *

L.Y — F2 75 5 0 075, . .L.Y =  (P = 0.927) *

L.T — F1 63 7 0 081, . .L.T =  (P = 0.777) *

L.Y.T F2 60 3 0 262, . .L.Y.T =  (P = 0.770) * *

 Variable names: L = LogSeedbank, Y = Year, T = Treatment. — = term in model but not 
eligible for testing, * = term omitted from model.
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outside of the observed range and so is an extrapolation. The estimate Treatment
2 0 173= .

(SE 0.0611) indicates that the intercept for the C treatment is 0.173 units larger than that 
for the GM treatment. This difference is a little larger than that found in the initial analy-
sis, with a smaller SE. In this parallel lines model, this difference between the treatments 
is the same for any value of LogSeedbank. The slope of the linear relationship between 
LogWeeds and LogSeedbank has estimate ˆ .β = 0 612(SE 0.1055). We conclude that the num-
ber of weeds increases as the initial seedbank increases, and that the GM management 
system reduces the number of weeds. The predicted responses (omitting random effects) 
are shown with 95% CIs in Figure 16.2, together with the observations adjusted for Farm 
and Farm.Field eBLUPs. It is clear that the model follows the observed pattern reason-
ably well.

A composite set of residual plots is shown in Figure 16.3, with fitted values calculated 
excluding the random effects Farm and Farm.Field. The distribution of the residuals 
appears a little skewed to the left, and the fitted values plot shows a few large negative 
residuals for fitted values around 2.50; these can also be seen in Figure 16.2. These resid-
uals correspond to half-fields with much smaller weed counts than would be expected 
from their initial seedbank counts. Of the four most negative residuals, two come from 
each treatment group. We suspect that these discrepancies are caused by patchiness of 
the weed populations.

The random farm effects have estimated variance of 0.0040, and the random field 
within farm effects have estimated variance 0.0494. The reduction in the estimated 

TABLE 16.9

Parameter Estimates with Standard Error (SE) from the Final Linear 
Mixed Model for Log10-Transformed Weed Counts (Example 16.2)

Parameter Estimate SE

Farm variance component 0.004 0.023
Farm.Field variance component 0.049 0.031
Residual variance 0.109 0.021
Constant 1.297 0.221
Treatment effect (C − GM) 0.173 0.061
Coefficient for LogSeedbank 0.612 0.106
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FIGURE 16.2
Fitted model (solid line) with 95% CI (dashed curved lines) for log10(Weed count) in terms of log10(Seedbank 
count) for (a) conventional or (b) GM management, with observations (•) adjusted for farm and field effects 
(Example 16.2).
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Farm variance component compared with the analysis without the covariate (Table 
16.5) suggests that the initial seedbank accounts for most of the overall farm differ-
ences in weed count, which may in turn reflect differing farm management practices. 
To calculate the percentage variance accounted for by the final model, we fit a baseline 
model with random terms Farm/Field/DHalf, as mentioned previously, and the fixed 
term [1]. The estimated variance components are 0.0542 (Farm), 0.0589 (Farm.Field) and 
0.1187 (Farm.Field.DHalf), giving total variance equal to 0.2318. From Table 16.9, the 
sum of variance components under the final model is equal to 0.1628. The percentage 
variance accounted for by the fixed terms is therefore calculated as 100 × (0.2318 − 0.16
28)/0.2328 = 30%.

16.9 Some Pitfalls and Dangers

Because LMMs are a more general class of model, allowing multiple random terms with-
out any requirement for balance, the iterative algorithms used for estimation are also more 
general, with more possibility of failure. If such failures occur, there are several possible 
causes that should be considered.
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Set of composite residual plots from the predictive model for log10(weed count) (Example 16.2).
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The first possibility is that some of the variance components are not estimable. If the 
same, or equivalent, terms are put into both the fixed and random models, then no infor-
mation is available for estimation of the variance component corresponding to the random 
term. Occurrence of this problem is not always obvious, as it is often possible to generate 
equivalent terms from combinations of different factors. A similar problem occurs if, in 
the terminology of balanced designs, there are zero residual df within any stratum, as the 
corresponding variance component then cannot be estimated. This usually indicates a lack 
of real replication for some combination of explanatory factors in the study. In either case, 
removal of the offending random term from the model also removes the corresponding 
stratum from the structure and the remaining variance components should be estima-
ble. However, any explanatory terms that should be tested in that stratum will instead be 
tested in a lower stratum, and this should be reported as part of the analysis.

Problems may also occur for variance components that are estimable, but estimated as 
a negative value. As discussed in Section 16.4, some algorithms permit only positive esti-
mates that are bounded below by zero, whereas others permit negative estimates; unfor-
tunately both approaches have problems associated with them. Variance components that 
are fixed at a lower bound of zero are ignored by the Kenward–Roger method. The impact 
on approximate F-tests (Section 16.3) for explanatory variables tested at that level of the 
structure is equivalent to dropping the random term from the model, so that the resulting 
denominator df corresponds to a lower stratum. In some implementations, variance com-
ponents are internally parameterized on a log scale which forces them to remain positive. 
This can lead to an apparent failure of convergence where the estimate should be zero (or 
negative), as zero estimates can never be reached on the log scale. This situation is easily 
detected if monitoring of the iterated estimates is examined. Finally, if negative estimates 
of variance components are allowed, occasional instability of the algorithm may result. 
The causes of this instability are usually due to difficulties in imposing positive definite 
constraints on the variance–covariance matrix as a whole during the estimation process. 
However, where negative estimates can be obtained, they can be used properly within the 
Kenward–Roger method.

Finally, we re-emphasize the role of the estimated variance components in the eBLUEs 
and eBLUPs. These estimates and predictors are usually treated as if the variance compo-
nents were known, whereas in fact they are not. Uncertainty in the variance components 
leads to additional uncertainty in the eBLUEs and eBLUPs that is not accounted for in their 
SEs. An alternative approach that does account for this uncertainty is the use of Bayesian 
mixed models. One feature of this approach is the requirement for prior information (i.e. 
distributions) on the fixed effects and variance components; while uninformative priors 
for fixed effects are well established, the natural scale for priors on variance components 
is less clear (Gelman, 2006).

16.10 Extending the Model

In this chapter, we have briefly introduced some aspects of LMMs. This class of models 
can be applied in many different situations, but its flexibility can also be a weakness: it 
can be easy to fit an inappropriate model and to obtain misleading results. It is therefore 
vital to assess the model and results critically before proceeding to interpret them. Galwey 
(2006) and Littell et al. (2006) provide good introductions to LMMs.
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We have discussed only the subset of LMMs in which the random effects for each term 
are independent with common variance; these are often called variance component mod-
els. In addition, we have insisted that the random model corresponds to the structural 
component of the model, with the fixed model corresponding to the explanatory terms. 
This approach can be generalized in several different ways, which we consider in turn.

There is rather more flexibility in the allocation of terms as fixed or random than our 
recipe of explanatory = fixed, structural = random acknowledges. There are several dif-
ferent grounds for assigning a term to the random model. First, if we believe that a set of 
random effects truly represents a sample from a (Normal) population then it is natural to 
assign them as random. This often applies to structure within experiments: those posi-
tions or locations or subsamples used are naturally regarded as a sample of the wider 
population that might have been used. In the context of field experiments repeated over 
several years, this reasoning often leads to treatment × year interactions being regarded 
as random. Second, if the aim of the experiment is to model variation across factor levels 
explicitly, then it is again natural to assign the factor as a random term. Finally, in Section 
16.5, we noted the minimum mean squared error property of BLUPs, and remarked that 
this can be used as a motivation for fitting variety effects as random rather than fixed 
where the aim is accurate prediction of relative variety performance across a set of trials. 
This principle can be applied more widely, and again leads to explanatory terms being 
assigned to the random model. It is important to remember that adding terms into the ran-
dom model changes the variance–covariance structure applied to the observations, and so 
may have an impact on SEs for other explanatory terms, and on the estimated denomina-
tor df for approximate F-tests.

Variance component models can be generalized if we allow more general variance–cova-
riance models on the random effects, or on the deviations, and this leads to correlated error 
models. These models are widely used in the analysis of longitudinal data (repeated mea-
surements), as they can model the correlation between successive measurements made on 
the same subject or unit, as well as allowing for changes in variance over time. A detailed 
review of this area is given by Verbeke and Molenberghs (2000). This type of model can 
also be used to account for spatial correlation in either experimental or observational set-
tings, for example small-scale smooth trend across a field or glasshouse bench. Gilmour 
et al. (1997) give some detailed examples in the context of field experiments, but the same 
principles apply more widely. As these models become more complex, the dangers of mis-
specification and algorithmic problems also increase, so additional care and thought is 
required.

It is also possible to use smoothing splines, or penalized splines, to model non-linear 
responses within the framework of LMMs. These models do not have a pre-specified form; 
instead, the fitted response is determined by the observed trend in the data. The imple-
mentation within LMMs is facilitated by a coincidence in the form of the equations for 
estimating the spline for a given smoothness and those for estimating eBLUEs and eBLUPs 
in a specific LMM. The smoothness of the fitted curve is determined by the smoothing 
parameter, which is usually estimated via a variance component within the LMM context. 
You can find a good introduction to this topic in Ruppert et al. (2003).

Finally, extensions have been made to extend the class of LMMs to apply to non-Normal 
responses and non-linear models. The exact evaluation of the restricted log-likelihood 
function used to obtain REML estimates is much harder in these contexts, involving com-
plex integrations, and so simpler approximate methods are often used. The main draw-
back to these methods is that the user might not know when the approximation is good 
enough to draw firm conclusions – this is currently an area of statistical research. Section 
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17.3 introduces the class of non-linear models, and these can be extended to include random 
effects through the class of non-linear mixed models (Pinheiro and Bates, 2000). Chapter 18 
introduces the class of generalized linear models (GLMs) that can be used to model certain 
types of non-Normal responses, and this class can also be extended to include random 
effects (see e.g. Lee et al., 2006).

EXERCISES

 16.1 In Exercise 9.8, you analysed a (slightly non-standard) split-plot design with 
multi-stratum ANOVA. Convert the explanatory and structural components for 
this experiment into a linear mixed model and fit this model. Obtain estimates 
of the variance components and verify that these match those obtained from 
the multi-stratum ANOVA. Use approximate F-tests to identify a predictive 
model and obtain predictions from this model and verify that the results match 
those from the multi-stratum ANOVA.

 16.2 An experiment was done to establish conditions for infection of young brassica 
plants with a foliar disease. Plants were subjected to different temperatures and 
periods of leaf wetness after exposure to one of two isolates of the pathogen. 
The experiment used four CE cabinets, with temperatures (5°C, 10°C, 15°C, 
20°C) allocated to cabinets and combinations of isolate (type 1 or 2) and leaf 
wetness (8, 16, 24, 48 or 72 h) allocated at random to trays within cabinets, with 
the four plants in each tray receiving the same treatment. (The original ran-
domization has been lost so cabinets and trays are labelled systematically.) The 
experiment was done in four runs, with random allocation of temperatures to 
cabinets within each run. Four treatment combinations were omitted from the 
full factorial set (as pilot studies showed them to produce no infection) and tem-
peratures 15°C and 20°C were omitted from the third and fourth runs, respec-
tively. The unit numbers (ID), structural factors (Run, Cabinet, Tray, Plant) and 
treatment factors (Temp, Wetness, Isolate) are held with the response (variate 
TotLesions, count of total lesions) in file lesions.dat. Write down the explana-
tory and structural components for the design of this experiment and trans-
late these into a linear mixed model. Fit this model (using a transformation to 
account for variance heterogeneity if required) and use approximate F-tests to 
determine a suitable predictive model. What would you recommend as optimal 
conditions for infection in future experiments?

 16.3 Exercises 11.3, 11.5, 11.6 and 11.7 comprised the intra-block analysis of a 
designed experiment by fitting block effects before treatment effects. We will 
now re-examine these experiments using mixed models to investigate when 
the intra-block analysis gives a good approximation to analysis by mixed mod-
els. Allocate the structural model terms as random and the explanatory terms 
as fixed and repeat the analysis. Obtain predictions for the target explanatory 
variable (stated below) with SE and SED and compare these to results from 
the intra-block analysis. Can you understand and explain any differences? 
Can you identify features of the data sets that make the use of mixed models 
advantageous?

 a.  Identification of economic conditions for growing peppers in a glasshouse 
(Exercise 11.3). You must select a predictive model (using approximate 
F-tests) and produce predictions from the selected terms.
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 b.  Measurement of protein by NIRS (Exercise 11.5). Obtain predictions for the 
full set of accessions.

 c.  Measurement of shoot growth for different pruning strategies (Exercise 11.6). 
Assess differences between the pruning strategies and produce predictions.

 d.  Estimation of variety differences from a vandalized experiment (Exercise 
11.7). Obtain a set of variety predictions.

 16.4 A dose–response experiment investigated the action of three insecticidal seed 
treatments on three clones of aphid. Eight doses (including a zero dose) of each 
insecticide were applied to batches of seed, and the (average) actual dose of each 
insecticide applied was recorded. Three plants were grown from each of these 
24 treatments, and one plant with each treatment was allocated to each type of 
aphid clone. The experiment used six cages of 12 plants, with an unbalanced 
design (an alpha design) allocating the 72 treatment combinations to cages and 
plants. Adult aphids of the designated clone were introduced onto each plant 
and the number of nymphs present after 2 days was counted. The experiment 
was conducted in two runs, with each treatment combination present once in 
each run. File cage.dat holds the unit numbers (ID), structural factors (Run, 
Cage, Plant) and treatment factors (Clone, Treatment, FDose) with the actual 
dose (variate Dose) and number of nymphs after 2 days (variate Nymphs).

   Write down the structural and explanatory components of the model for this 
experiment in terms of the explanatory factors. Consider carefully whether dose 
should be crossed with the other factors or nested within treatment. Translate 
your model into a linear mixed model and fit it, checking the model assump-
tions. Investigate whether the response to dose is a linear function, and whether 
this relationship differs between insecticides or clones or both. Identify and 
present a predictive model to summarize the results of this experiment.*

 16.5 The efficacies of six insecticidal treatments against aphids on vegetable brassicas 
were compared against an untreated control in a field trial. The trial comprised 
four complete replicates of seven plots, arranged as a grid with seven rows and 
four columns. The seven treatments were allocated to plots with a balanced row–
column design, so that each treatment occurred once in every column (replicate) 
and in four different rows. Each plot was split into two, with two crops (cauli-
flower or savoy cabbage) allocated to the halves at random. Within each half-plot, 
10 of the central (guarded) plants were sampled 14 days after the second spray 
application, and the number of peach–potato aphids on each plant was counted. 
The unit numbers (ID), structural factors (Row, Column, Plot, Halfplot, Plant), 
treatment factors (Insecticide, Crop) and response (variate Aphids) are held in file 
rowcol.dat. There were 15 missing plants in this sample. Write down the struc-
tural and explanatory models and compare two methods of analysis: multi-stra-
tum ANOVA using the Healy–Westmacott algorithm for estimation of missing 
values, and use of linear mixed models, with the missing observations omitted. 
Compare the results of the two analyses and discuss any differences.†

 16.6 In Exercise 14.4, you constructed a model to predict tree total aerial biomass 
(TAB, data file slash.dat). That analysis ignored the fact that several trees were 

* Data from S. Foster, Rothamsted Research.
† Data from R. Collier, University of Warwick.
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sampled from each inventory plot. We will now incorporate this structure into 
the model.

 a.  Write down the structural component of the model for these data. Consider 
which of the explanatory variables are assessed (predominantly) at each 
level of the structure. Discuss whether you could successfully model this 
structure using an intra-block analysis.

 b.  Using the structural component as random terms in a linear mixed model, 
fit all of the explanatory variables and perform backwards selection to iden-
tify a new predictive model. Interpret your model. Is there any evidence of 
correlation among measurements on trees from the same plot? What impact 
has accounting for this structure made to your predictive model?

 16.7 In Exercise 14.6(d), you developed a MLR for the combined EXAMINE data set 
for years 1995 and 1996 (file examine9596.dat). Now, we use linear mixed mod-
els to incorporate the crossed year × trap structure of this data set.

 a.  First, identify the level of the structure at which each explanatory variable 
shows variation, i.e. across years, across traps, or across year × trap combi-
nations. How should this affect tests of the explanatory variables?

 b.  Fit a baseline linear mixed model with random terms Year*Trap and no 
fixed terms, and take note of the estimated variance components.

 c.  Add the terms you identified for the joint MLR in Exercise 14.6 into the 
fixed model. How do the estimated variance components change when 
these terms are added into the model? Use marginal approximate F-tests to 
decide whether all of the fixed terms are still required? How do these tests 
differ from those obtained in Exercise 14.6(d)? Write down your final model. 
What percentage of the variation does this final model account for?

 16.8 New insect repellent compounds require testing in the field, and this process is 
complicated by large variations in insect abundance over both space and time. 
File midge.dat holds the results from a trial to test a potential repellent com-
pound against the Scottish biting midge (variables ID, Day, Run, Tent, Volunteer, 
Treatment and Total). The trial used two tents (A and B) in different parts of the 
same location, with several runs during each evening of three consecutive days. 
During each run, one volunteer was allocated to each tent with either the test 
formula or a positive (known active compound) or negative (blank) control (the 
three treatments). The number of midges entering the tent was counted from 
4–20 min after the start of the trial, and the total number was recorded. After 
an inter-run period of 20–30 min, the process was repeated with a different 
volunteer and compound in each tent. There were six volunteers available, and 
these were allocated to tents and compounds in as balanced a way as possible, 
but the resulting design is unbalanced.*

 a.  Write down the structure of this trial in terms of the Day, Run and Tent 
factors. Consider which factors are nested and which are crossed and iden-
tify the residual term. How much information is there at each level of this 
structure?

* Data from J. Pickett, Rothamsted Research, A.J. Mordue, Aberdeen University, and J. Logan, London School of 
Hygiene and Tropical Medicine.
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 b.  Use tables of counts to investigate the allocation of volunteers and treatments 
to days, tents and runs. Examine the replication of volunteer × treatment 
combinations. Is it possible to get sensible estimates for all combinations? 
What happens if you fit an effect for an unreplicated combination?

 c.  Set up a linear mixed model with random term Day.Run and fixed terms 
Day*Tent + Volunteer + Treatment. Use your answers to parts (a) and (b) 
to justify this model. Fit this model and use diagnostic plots to check the 
assumptions. Refit with a transformation if necessary. When you are sat-
isfied with the model fit, interpret the estimated variance components. Is 
there any evidence that the test treatment repels midges? Identify and inter-
pret a predictive model for this trial.

 d.  Discuss what information from these results can be used to design future 
trials of this type. What principles would you recommend future designs 
should follow?
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17
Models for Curved Relationships

The regression models discussed in the previous chapters fitted straight line relationships 
between a response variable and one or more explanatory variates. In many situations, 
this type of model adequately reflects the observed pattern, but sometimes a curved rela-
tionship is observed, or there might be a biological or physical reason for a curved rela-
tionship. Fitting a straight line will then produce an inadequate model and an alternative 
approach should be sought. In this chapter, we consider some simple techniques for fitting 
curved relationships in terms of one or more explanatory variates.

First, we describe approaches for a single explanatory variate that stay within the frame-
work of linear regression (Section 17.1). The simplest approach to deal with curved rela-
tionships is transformation of the explanatory variate, so that a new transformed variate 
is used in place of the original (Section 17.1.1). A slightly different approach uses a com-
bination of transformations of the explanatory variate together in a MLR model to create 
a curved relationship. This is often done with low-order polynomial functions (Section 
17.1.2) or trigonometric functions (Section 17.1.3). We then extend these approaches to 
the case of two explanatory variates that act together (rather than independently) on the 
response, so that interaction between the explanatory variates is required to generate an 
appropriate curved surface (Section 17.2). Finally, non-linear regression is a more sophis-
ticated approach that allows a wider range of models to be fitted (Section 17.3). However, 
this approach requires a different set of numerical and statistical techniques, which are 
mathematically and computationally more complex than those used in linear regression, 
and which we describe only briefly here.

17.1 Fitting Curved Functions by Transformation

We first consider transformations of a single explanatory variate as a means to produce 
curved relationships. A transformation of either the response or the explanatory vari-
ate changes the shape of the relationship. However, transformation of the response also 
changes the characteristics of the deviations, such as homogeneity of variance, as dis-
cussed in Section 6.1. For this reason, we use transformation of the response as a tool to 
find a scale that meets the underlying assumptions for the deviations, and we use trans-
formation of the explanatory variate as a tool to manipulate the shape of the relationship 
with the response. In this section, we concentrate on the latter.

17.1.1 Simple Transformations of an Explanatory Variate

The aim of a simple transformation of the explanatory variate is to find a scale on which 
the relationship with the response becomes a straight line. The first step in the process is 
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to plot the response against the potential transformation of the explanatory variate to see 
whether a straight line relationship is plausible on that scale. If it is, then the second step 
is to fit the model in terms of the transformed explanatory variate and to check for any 
signs of model misspecification (see Section 13.1). Alternative forms of transformation can 
be compared formally with goodness-of-fit statistics (such as adjusted R2) and by graphical 
inspection of the different model fits or, if sufficient data are present, by cross-validation 
(Section 14.9.3).

The most common transformations of an explanatory variate (x) used in this context are 
the square root (√x = x0.5), square (x2), logarithm (loge(x) or log10(x)), exponential (exp(x)) and 
reciprocal (1/x) transformations. Typical shapes for these functions are shown in Figure 
17.1. Trigonometric functions, for example, sin(x) or cos(x) or both, or other powers, for 
example, x3, can also be used, and these are discussed in more detail in Sections 17.1.2 and 
17.1.3. The modelling procedure entails calculation of the transformed variate, for example, 
w = √x, then a simple linear regression (SLR) model is fitted with the transformed variate w 
as the explanatory variate in the model.
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FIGURE 17.1
Typical shape of response (y) for simple functions of an explanatory variate (x): (a) y = x2, (b) y = 0.25ex, (c) y = x0.5, 
(d) y = loge(x), (e) y = e−x, (f) y = 1/x. In each case, the line shows the underlying curve and the points show a 
sample of 40 observations taken from the underlying function plus Normal deviations with common variance.
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Some of these functions are valid only for positive values of the explanatory variate 
(x > 0, e.g. for w = loge(x), log10(x) or 1/x), and some are valid only for non-negative values 
(x ≥ 0, e.g. for w = √x). If some of the values of the explanatory variate are outside the range 
allowed, for example, if xi = 0 for a log transformation, then a pragmatic solution is to 
add a positive offset c to all the values of the explanatory variate, for example, loge(x + c). 
The choice of a sensible offset value was discussed in Section 6.2 in the context of trans-
formation of the response. Here, the aim is to find an offset such that all of the values of 
the explanatory variate fall within the allowed range and the relationship between the 
response and transformed explanatory variate is a straight line. Different values of the 
offset can have a large impact on the shape of the curve and should be evaluated both 
graphically and with goodness-of-fit statistics.

Predictions of the fitted line, together with standard errors (SEs) and confidence inter-
vals (CIs), can be calculated in terms of the transformed variable (w) as for SLR (Section 
12.5). These predictions, SEs and CIs also apply directly to the original explanatory variate 
(x); this is illustrated in Example 17.1.

EXAMPLE 17.1A: OLSEN P

The exhaustion land long-term field trial at Rothamsted Research has been used to 
investigate the relationship between crop yields and applications of soil fertilizer. The 
data in Figure 17.2a, Table 17.1 and file phosphorus.dat are yields of spring barley from 
20 plots in 1986 (variate Yield) with the available soil phosphorus content measured as 
Olsen P (variate OlsenP).

There is no suggestion of variance heterogeneity in yield, so there is no reason to 
transform the observed response. However, there is clear curvature in the rela-
tionship. An alternative plot of yield against the log-transformed Olsen P values 
(LogOP = log10(OlsenP), Figure 17.2b) appears to give a straight line. The transformed 
variate can therefore be used in a SLR model of the form

 Yieldi = α + β LogOPi + ei ,

where Yieldi is the yield, LogOPi is the log10-transformed value of Olsen P and ei is the 
deviation for the ith plot, i = 1 … 20. The slope of the straight line is β, representing the 
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FIGURE 17.2
Yield plotted against (a) Olsen P phosphorus content, (b) log10(Olsen P) per plot for exhaustion land trial in 1986 
(Example 17.1A).
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increase in yield for an increase of one unit of log10(Olsen P), and α is the intercept of this 
straight line. In symbolic form, the model can be written as

Response variable: Yield
Explanatory component: [1] + LogOP

This model accounts for 79.7% of the variation in the data (adjusted R2 = 0.797) and 
the F-test from the ANOVA shows a strong association of yield with log10(Olsen P) 
(F1,18 = 75.410, P < 0.001). The parameter estimates are shown in Table 17.2, giving the 
predictive model

 ˆ ( ) . . .µ LogOP LogOP= +1 674 2 644  

We can rewrite this predictive model in terms of the untransformed explanatory 
 variable as

 ˆ ( ) . . log ( ) ,µ OlsenP OlsenP= +1 674 2 644 10  

and the parameter SEs still apply on this scale. The intercept predicts the response when 
log10(OlsenP) = 0, corresponding to OlsenP = 1 on the original scale. This model gives an 
increase of 2.64 units in yield for one unit of increase in log10(OlsenP). Since a one unit 
increase on the log10 scale is equivalent to a 10-fold increase on the original scale, this 
implies that a 10-fold increase in Olsen P would predict a 2.64 unit increase in yield. In 
practice, this model applies only across a sevenfold increase, as the Olsen P measure-
ments range from 2 to 14 units.

Prediction at the mean value of Olsen P = 7.095, with log10(OlsenP) = 0.8510, can then be 
made, using the notation of Section 12.5, as

 ˆ ( . ) . ( . . ) . .µ OlsenP = = + × =7 095 1 674 2 644 0 8510 3 923 

TABLE 17.1

Yield and Olsen P Measurements from the Exhaustion Land Experiment at Rothamsted Research 
in 1986 (See Example 17.1A and File phosphorus.dat)

Olsen P Yield Olsen P Yield Olsen P Yield Olsen P Yield

6.8 4.05 10.9 4.70 3.7 3.49 4.8 3.08
5.8 3.89 9.5 4.47 2 1.90 12.9 4.03
3.2 3.55 6.1 3.50 9.2 4.35 13.8 4.41
1.5 1.88 6.1 3.82 9.8 4.41 8.4 4.04
11.7 4.30 4.4 4.01 6.6 3.96 4.7 3.26

Source: Data from P. Poulton, Rothamsted Research.

TABLE 17.2

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance Levels (P) 
for the SLR for Yield with Explanatory Variate, LogOP = log10(OlsenP) (Example 17.1A)

Term Parameter Estimate SE t P

[1] α 1.674 0.2518 6.646 < 0.001
LogOP β 2.644 0.3044 8.684 < 0.001
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We can use the ResMS from the ANOVA (s2 = 0.1191) and the results of Section 12.5 to 
form a 95% CI for this prediction as (3.756, 4.090). In Figure 17.3, the fitted line is plot-
ted with 95% CI against both the log-transformed and the original Olsen P values. On 
the original scale, the fitted straight line becomes a curve, and the characteristic shape 
of the CI appears to change, although the width of the CI is the same at the equivalent 
points of the two x-axes.

Although the fitted model follows the overall trend in the data, there is a suggestion of 
model misspecification, as the fitted line lies above the observed yield at the extremes of 
the range. This is also clear in graphs of standardized residuals against the explanatory 
variate on either the transformed (Figure 17.4a) or original (Figure 17.4b) scale. Again, 
the same residuals are plotted in both parts of Figure 17.4, but the scale of the x-axis (and 
hence the trend line) has changed.

Finding an adequate transformation can be difficult and will not always be possible. In 
some cases, several models based on different transformations of the explanatory variate 
may appear plausible. The model chosen should give a good visual fit to the observations, 
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FIGURE 17.3
Yield with fitted model (—) and 95% CI (---) plotted against (a) log10(Olsen P) and (b) Olsen P values 
(Example 17.1A).
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Residuals from fitted model with trend line (.....) plotted against (a) log10(Olsen P) and (b) Olsen P values 
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show no evidence of misspecification, and should perform well with goodness-of-fit 
 statistics. All else being equal, transformations with a simple biological interpretation 
should be preferred. However, remember that a biological interpretation is not essential 
for a purely descriptive model, as long as the results are interpreted appropriately. The 
more complex approaches described below should be considered if the relationship cannot 
be captured by a single transformed explanatory variate.

Simple transformation of one or more explanatory variates to achieve straight line 
relationships can also be useful in the context of MLR models (Chapter 14). Once a suit-
able transformation is identified, models are selected from the transformed explanatory 
variate(s). Take care, however, as the correlation between explanatory variates may distort 
the shape of individual relationships with the response, and the diagnostics of Section 14.6 
can help to detect this. You can also extend MLR models by the addition of interactions 
between explanatory variates; this is discussed in Section 17.2.

17.1.2 Polynomial Models

It is often difficult to find a single transformation of an explanatory variate that can ade-
quately describe a curved relationship. Polynomial regression models use several powers 
of the explanatory variate to introduce curvature into a relationship via a MLR model. 
Here, we consider only positive integer powers, i.e. xq, where q is a whole number. The 
order of a polynomial model is equal to the highest power of the explanatory variate 
used. These models have the advantage that they are very flexible and can incorporate pat-
terns of both increasing and decreasing response within a model, i.e. non-monotonic func-
tions. Their major disadvantage is that high-order polynomials can lead to over-fitting, so 
that interpolation between observations can be unreliable. In addition, extrapolation may 
be unreliable even for low-order polynomials (see discussion later in this section).

The SLR model is the simplest case of a polynomial model, i.e. a straight line. Higher-
order polynomial models are obtained by the addition of power transformations of the 
explanatory variate, such as x2 or x3, into the model. For example, a second-order polyno-
mial, or quadratic model, includes the second power or square of the explanatory variate, 
and takes the form

 y x x ei i i i= + + +α β β1 2
2  .

This model is fitted by the construction of a new explanatory variate with values equal to 
xi

2 , then by the fitting of a MLR model with two explanatory variates: the original and the 
squared values. So, if variate x contains the original values and x2 contains the squared 
values, this MLR model is written in symbolic form as

Explanatory component: [1] + x + x2

A polynomial model of order q has p = q + 1 parameters and can be written as

 y x x x x ei i i q i
q

q i
q

i= + + + + + +−
−α β β β β1 2

2
1

1…  .

The sequential ANOVA table for a polynomial model of order q starts with the SLR model 
and then successively adds increasing powers of the explanatory variate into the model, 
giving incremental sums of squares and F-tests (see Section 14.4). Each power of the 
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explanatory variate is associated with 1 df, and so a polynomial model of order q has q 
df. Predictions and CIs can be formed from the fitted model as for any MLR (Section 14.5).

EXAMPLE 17.1B: OLSEN P

Here, we consider polynomial regression as an alternative to the log10 transformation 
tried in Example 17.1A. We fit a cubic polynomial, written in symbolic form as

Response variable: Yield
Explanatory component: [1] + OlsenP + (OlsenP)2 + (OlsenP)3

where the variate Yield holds the observations, OlsenP is the variate holding the Olsen 
P values and (OlsenP)2 and (OlsenP)3 represent variates holding the squared and cubed 
values of the OlsenP variate. Table 17.3 shows the sequential ANOVA table for this 
model, which accounts for 81.0% of the variation (adjusted R2 = 0.810).

The incremental F-tests for the first two terms (linear and quadratic, FL
1 16, =  

62 063 20 5591 16. , . ,,FQ =  both P < 0.001) are significant, but the test for the cubic term is not 
(FC

1 16 1 183, . ,=  P = 0.293). As the cubic term is added into the model last, its incremental 
F-test is also a marginal F-test and indicates that the fit of the model is not significantly 
worse if this term is dropped. We therefore drop this cubic term, and fit a quadratic 
model that accounts for 80.8% of the variation in the data (adjusted R2 = 0.808), with 
all terms significant. The parameter estimates for the quadratic model are listed in 
Table 17.4.

Figure 17.5 shows the fitted quadratic and cubic polynomial models with 95% CIs. A 
difference in the fit of the two models appears for larger values of Olsen P, where the 
yield is stable: the quadratic model starts to move downwards, whereas the cubic model 
stays level. The 95% CIs are narrower in the centre of the range of the explanatory vari-
ate, and get much wider at the ends of the range (like the SLR models in Section 12.5). 
The CIs for the cubic model are wider than those for the quadratic model because the 
extra term reduces the ResSS only a small amount while introducing another estimated 
parameter with its associated uncertainty.

We check residual plots for evidence of model misspecification. Figure 17.6 shows 
standardized residuals from the quadratic and cubic models plotted against the explan-
atory variate. There is a suggestion of misspecification in both graphs, particularly at 
the smallest values of Olsen P.

Problems of collinearity can occur in polynomial models, particularly for higher-order 
models. For example, in Example 17.1B, large VIFs (> 100, see Section 14.7) are obtained when 
one fits the cubic polynomial. This can be avoided by the use of orthogonal polynomials 

TABLE 17.3

Sequential ANOVA for a Cubic Polynomial Model for Yield with Explanatory Variate Olsen P 
(Example 17.1B)

Term Added Incremental df Incremental SS Mean Square Variance Ratio P

+ OlsenP 1 6.9157 6.9157 FL = 62.063 < 0.001
+ (OlsenP)2 1 2.2909 2.2909 FQ = 20.559 < 0.001
+ (OlsenP)3 1 0.1318 0.1318 FC = 1.183 0.293
Residual 16 1.7829 0.1114
Total 19 11.1213 0.5853

Note: SS = sum of squares.



458 Statistical Methods in Biology

rather than simple powers of the explanatory variate (see also Section 8.7). Orthogonal 
polynomials are constructed so that the qth function is of order q and is orthogonal to all of 
the lower-order functions. Figure 8.8 showed simple powers alongside the corresponding 
set of orthogonal polynomials. Orthogonal polynomials have zero pairwise correlations 
and so produce a stable model without collinearity problems. Their major disadvantage is 
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FIGURE 17.5
Observed yield and fitted curves (—) with 95% CI (---) for (a) quadratic and (b) cubic polynomial models 
(Example 17.1B).
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FIGURE 17.6
Residuals with trend line (.....) plotted against the explanatory variate for (a) quadratic and (b) cubic polynomial 
models (Example 17.1B).

TABLE 17.4

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance Levels (P) 
for a Quadratic Polynomial Model for Yield with Explanatory Variate Olsen P (Example 17.1B)

Term Parameter Estimate SE t P

[1] α 1.283 0.3290 3.900 0.001
OlsenP β1 0.593 0.0964 6.156 < 0.001
(OlsenP)2 β2 −0.0279 0.00618 −4.510 < 0.001
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that the estimated parameters are difficult to interpret, as the coefficients no longer relate 
to individual powers of the explanatory variate. We can deal with this problem by using 
orthogonal polynomials to establish the predictive model, and then refit it with simple 
powers of the explanatory variate to obtain interpretable parameter estimates. More infor-
mation on orthogonal polynomials can be found in Bliss (1970). Alternatively, centering the 
original explanatory variate (see Section 12.9.1) before taking powers may reduce collinear-
ity sufficiently to enable a stable model to be fitted (see Example 17.3B).

In general, polynomial models should be constructed sequentially by progressive addi-
tion of terms of higher orders, assisted by graphical inspection of the fit at each stage and 
sequential ANOVA tables. As in previous chapters, the aim is to produce a parsimonious 
model, i.e. a model of the lowest possible order that describes adequately the relationship 
between the response and explanatory variate. The model fitting process starts with a 
SLR model and higher-order powers of the explanatory variate are successively added. 
At each stage, lack of fit is tested if replicate observations are available (Section 12.8) and 
the fitted model and residual plots are examined visually for evidence of misspecifica-
tion. If the fit appears inadequate, the next higher-order term can be added. If the fit 
appears good, then no further terms need to be added and the current model should 
be checked. The need for the highest-order term in the model should be verified by the 
use of a marginal F-test from the sequential ANOVA table. If this term is not statistically 
significant (e.g. P > 0.05), then it should be omitted, and a lower-order model will suffice. 
Once a suitable order for the polynomial has been established, all lower-order terms are 
retained in the model, even if not statistically significant. This strategy follows from our 
arguments on marginality (see Sections 8.3 and 15.5): we consider any lower-order power 
(xk with k < q) to be marginal to a higher-order power (xq). This also implies that we should 
fit lower powers of the explanatory variate before higher powers, as described above. 
Following this principle also ensures that the model can be translated to other scales 
if required, for example, from a model in terms of orthogonal polynomials to a model 
based on simple powers; an exact translation may not be possible if lower-order terms are 
omitted.

Polynomial models are essentially descriptive models, as there is rarely a biological 
interpretation for models of this form. An advantage of low-order polynomials is that they 
can flexibly adapt to follow the form of the relationship. However, as there is no constraint 
on the form of the curve outside the range of the explanatory variate, one should never 
extrapolate with these models.

As the order of the polynomial increases the residual sum of squares will decrease, 
and the fitted curve will pass closer to the observations. In fact, for a data set with k 
distinct values of the explanatory variate, a polynomial model of order k − 1 will pass 
through the mean at each value of the explanatory variate. If the observed values of the 
explanatory variate are unreplicated, then this curve fits each observation exactly. This 
perfect fit is counterproductive, as the model often becomes unreliable for interpolation 
as it attempts to accommodate detailed, and probably random, patterns in the relation-
ship; this behaviour is known as over-fitting (see also Section 14.9). For example, Figure 
17.7 shows a polynomial of order 8 fitted to the yield observations from Example 17.1. 
The fitted model has adapted to be much closer to the observations than the lower-order 
polynomials (Figure 17.5), but the interpolated model shows an unrealistic shape, par-
ticularly with respect to the sharp dips around Olsen P values of 1 and 13. This graph 
shows the importance of evaluating complex curved models at a dense set of explana-
tory variate values, as the full form of the curve (and any over-fitting) may not be appar-
ent from the fit at the observed values of the explanatory variate.
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Smoothing techniques provide an alternative to polynomial models, as they flexibly 
adapt to follow a curved relationship. These techniques constrain the roughness of the 
fitted curve and thus largely avoid problems with over-fitting. Regression splines can 
be implemented directly as a MLR model, while smoothing splines or locally weighted 
regression (loess) smoothers can be implemented as additive models with a penalized like-
lihood approach. These models are outside the scope of this book, but Ruppert et al. (2003) 
provide a good introduction.

17.1.3 Trigonometric Models for Periodic Patterns

Trigonometric regression models are MLR models used to describe periodic cycles, and 
are often used to model observations related to yearly or daily cycles, for example, mean 
monthly temperature as shown in Example 17.2. The period of the cycles, i.e. the number 
of time units corresponding to a full cycle, is assumed to be known and denoted as ω. 
Trigonometric regression models use sine and cosine transformations of the measurement 
times as explanatory variates. Recall that the sine and cosine functions are cyclic over time 
with a period of 2π radians. To convert our explanatory variate with period ω on to this 
scale, we use the transformations sin(2πt/ω) and cos(2πt/ω), where t is a variate of observed 
measurement times. For example, a simple trigonometric regression model for monthly 
data that exhibit yearly cycles, with ω = 12, takes the form
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(17.1)

where yi is the ith observation made at time ti with deviation ei, and the unknown model 
parameters are α, β1 and β2. This is a MLR model with two explanatory variates, which 
are calculated as the sine and cosine functions of the observed times, ti. This model can be 
converted into a more interpretable form as a single sine function, written as
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FIGURE 17.7
Observed yield from Example 17.1 with fitted polynomial model of order 8 (—) and 95% CI (– –).
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In this form, the parameters are the average response over a full cycle (α), the amplitude 
of the sine curve (equal to half of the range of the curve, γ) and the phase of the curve (θ). 
The phase is the lag behind the standard sine curve (which has its maximum at π/2 and 
minimum at 3π/2 radians). The amplitude, γ, must always be non-negative (γ ≥ 0). Using 
standard results for trigonometric functions, we can expand the sine function in the equa-
tion above to give
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t t
ei

i i
i= + 
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+α γ π θ γ π θsin cos( ) cos sin( )
2
12

2
12

.

If we set β1 = γ cos(θ) and β2 = −γ sin(θ), then this is the model in Equation 17.1. We can 
therefore calculate the amplitude and phase of the fitted curve in terms of the original 
parameters as

 γ β β θ β β= + = −−
1
2

2
2 1

2 1, tan ( ) ./

This estimate of the phase is in radians and we can convert it to the scale of measurement 
by multiplying by ω/2π. Although inference and SEs for estimates of the original param-
eters (α, β1 and β2) follow directly from properties of MLR models (Chapter 14), SEs for esti-
mates of γ and θ are not straightforward, as these are non-linear functions of the original 
parameters. Approximate SEs can be calculated in statistical software by the delta method 
(see Casella and Berger, 2002).

EXAMPLE 17.2: ROTHAMSTED MONTHLY MEAN TEMPERATURE

The monthly mean temperatures at Rothamsted Experimental Station over the period 
1891–1990 are listed in Table 17.5 and can be found in file temperature.dat. For this 
response (held in variate Temperature), we expect a yearly cycle and so trigonometric 
regression is appropriate.

The explanatory variate, Month, has values 1–12. To obtain cycles of period 12, i.e. 
equal to 1 year, we calculate explanatory variates Sin and Cos as

 Sin = sin(2πMonth/12), Cos = cos(2πMonth/12) .

The model can then be written in symbolic form as

Response variable: Temperature
Explanatory component: [1] + Sin + Cos

TABLE 17.5

Monthly Mean Temperatures (°C) at Rothamsted (UK) over the Period 1891–1990 (See Example 17.2 
and File temperature.dat)

Month Month Temperature Month Month Temperature

January 1 3.1 July 7 16.0
February 2 3.4 August 8 15.7
March 3 5.3 September 9 13.5
April 4 7.7 October 10 9.8
May 5 11.1 November 11 5.9
June 6 14.0 December 12 4.0

Source: Data from Rothamsted Research.
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The fitted model accounted for 99.0% of the variation in the data (adjusted R2 = 0.990), 
and the parameter estimates are listed in Table 17.6.

The overall mean temperature is equal to the model intercept, which is estimated as 
9.12°C. The amplitude of the fitted curve is calculated as

 ˆ ˆ ˆ ( . ) ( . ) . ,γ β β= + = − + − =1
2

2
2 2 24 09 5 13 6 56 

hence the range of monthly temperatures is twice this value, equal to 13.12°C. Finally, 
we can consider the phase. We have

 ˆ tan ( ˆ ˆ ) tan [ . ( . )] tan ( . ) ,θ β β= − = − = −− − −1
2 1

1 15 13 4 09 1 255/ /  

and this has two solutions, θ = 2 244.  and θ = 5 385.  in the range 0 2≤ <θ π . The rela-
tionships ˆ ˆ cos(ˆ)β γ θ1 =  and ˆ ˆ sin(ˆ)β γ θ2 = −  tell us that cos( )θ < 0  and sin( ) ,θ > 0  and 
hence π θ π/2 ≤ <  radians (i.e. 1 57 3 14. .≤ <θ  radians) giving the solution ˆ . .θ = 2 244  
This is then translated onto the scale of the time variate by division by 2π then multipli-
cation by 12 to give the phase as 4.285 months. In the standard sine curve, the maximum 
and minimum occur at one-quarter and three-quarters of the period of the whole cycle, 
equivalent to three and nine months from the start of the yearly cycle here. In the fitted 
model, we therefore predict the maximum at 3 + 4.285 = 7.285 months (between July and 
August) and the minimum at 9 + 4.285 = 13.285 months, which because of the 12 month 
cycle is equivalent to 1.285 months into the year (between January and February). These 
features of the fitted curve can be verified in Figure 17.8, where the curve is extrapolated 
back to month 0 to demonstrate its periodicity. This graph suggests slight model mis-
specification at the extremes of the range, the fitted temperatures seem slightly too low 
at both the minimum and maximum points, but the fitted model describes the overall 
pattern well.

One difficulty with trigonometric regression is that the observations are often collected 
as time series or repeated measurements from the same unit, for example, monthly tem-
peratures at a single site over several years. This often gives rise to serial correlation in 
the deviations, which contradicts the assumptions of independence underlying regres-
sion (see Section 12.1). Example 17.2 avoids this problem by using mean temperatures 
accumulated over 100 years; averaging over so many years dilutes the influence of serial 
correlations within years. Where strong serial correlation is present, methods for analysis 
of time series of longitudinal data that account for serial correlation should be used. More 
details about models for longitudinal data or repeated measurements can be found in 
Diggle et al. (2002). If the length of the cyclic period is unknown and has to be estimated, 
then this is no longer a linear model and the methods of Section 17.3 must be used.

TABLE 17.6

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance Levels (P) 
for a Trigonometric Regression for Monthly Mean Temperature at Rothamsted (Example 17.2)

Term Parameter Estimate SE t P

[1] α 9.12 0.139 65.432 < 0.001
Sin β1 −4.09 0.197 −20.722 < 0.001
Cos β2 −5.13 0.197 −26.007 < 0.001
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17.2 Curved Surfaces as Functions of Two or More Variates

In Chapter 14, we considered MLR models that had several explanatory variates that acted 
independently. For example, in Example 14.1B, we modelled seed weight as a function of 
seed length and hardness. In these models, the change in the response due to one vari-
ate (e.g. length) is assumed to be the same regardless of the value of the other variate 
(e.g. hardness). For two explanatory variates, the resulting model can be represented as a 
plane in three-dimensional space (see Figure 14.2). This model is not always realistic, as 
the true three-dimensional surface might be curved rather than planar, which requires 
that the change in the response due to one variate depends on the value of the other vari-
ate. For example, the change in seed weight due to a change in length might also depend 
on the seed hardness. We can model some types of curvature by including an interaction 
between explanatory variates, and this is the subject of this section.

For simplicity, we start with the most basic MLR model based on two variates and writ-
ten in the form

 y x x ei i i i= + + +α β β1 1 2 2  , (17.2)

where yi is the value of the ith observation, x1i and x2i are the corresponding values of the 
two explanatory variates and ei is the deviation for that observation. The model parameters 
are the intercept α and the slopes, β1 and β2, respectively, for the two explanatory variates. 
We can introduce curvature into the model by including a new term, which combines the 
two variates, giving the model

 y x x x x ei i i i i i= + + + × +α β β β1 1 2 2 3 1 2( )  .  (17.3)

The extra term is equivalent to a new variate calculated by multiplication of the values of 
the two explanatory variates for each observation (e.g. x3i = x1i × x2i). In the spirit of crossed 
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FIGURE 17.8
Mean monthly temperature (°C) at Rothamsted Experimental Station over the period 1891–1990 with fitted 
curve from trigonometric regression (Example 17.2).
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models (see Section 8.2), we might think of this model as containing the main effects of 
each explanatory variate plus their interaction. If x1 is the first explanatory variate and x2 is 
the second explanatory variate, we can write this model in symbolic form as

Explanatory component: [1] + x1 + x2 + x1.x2

The term x1.x2 represents a variate holding the product of the values of the two individual 
variates. We can also interpret this model by rewriting it in a slightly different form as

 

y x x x e

x e
i i i i i

i i

= + + + +
= + +

( ) ( )

* *  
α β β β
α β

2 2 1 3 2 1

1 .  (17.4)

Here, the model is considered as a function of values of the first explanatory variate, x1i, 
for a specified constant value of the second variate, x2i. In this form, we can see that this 
is like a SLR model in terms of the first explanatory variate where both the intercept (here 
α* = α + β2x2i) and slope (here β* = β1 + β3x2i) depend on the value of the second explanatory 
variate. A similar interpretation in terms of the second variate can be formed by reversal 
of the roles of the two explanatory variates.

Including the combined term with both explanatory variates allows curvature in the 
fitted surface, but this curvature is of a specific form, so it is important to ensure that this 
matches the pattern seen in the data. We can check this by plotting residuals against both 
variates and by comparing the form of the observed and fitted surfaces using contour or 
surface plots. In the case of a designed experiment with replication, we can formally test 
for lack of fit (see Section 12.8) by fitting a factor version of the combined variates.

The sequential ANOVA table for the model of Equation 17.3 has three terms: one for each 
of the explanatory variates and one for the combined term, each with 1 df. The incremental 
sums of squares for the individual variates depend on the order in which they are fitted 
unless they are orthogonal (see Section 14.4). As usual, the aim is to find a parsimonious 
description of the response, so the simplest possible predictive model is sought. However, 
this process must again respect marginality, and both explanatory variates are marginal to 
the combined term. The individual explanatory variates should therefore be fitted before 
the combined term, and should not be dropped while the combined term is in the model.

EXAMPLE 17.3A: COTTON RESPONSE TO HERBICIDE AND INSECTICIDE

An experiment was done to evaluate the combined effects of five different doses of her-
bicide (0, 20, 40, 60 and 80 lb/acre) and five different doses of insecticide (0.0, 0.5, 1.0, 1.5 
and 2.0 lb/acre) on the root growth of cotton plants in containers within a glasshouse. 
Four replicates of each treatment combination were arranged in a CRD. After three 
weeks, the dry root biomass (g/plant) was measured for each container. The treatment 
means are presented in Table 17.7 and in file cotton.dat. The residual mean square 
from the factorial model analysis of the raw data was 174 on 75 df.

In mathematical form, denoting the ith observation of biomass (Biomassi) as a function 
of the herbicide (Herbicidei) and insecticide (Insecticidei) doses enables us to write a linear 
model with interaction (Equation 17.3) as

 Biomass Herbicide Insecticide Insecticide Heri i i i= + + + ×α β β β1 2 3( bbicide ei i)  + .

If the variates H and I contain the herbicide and insecticide doses, respectively, this 
model can be written in the symbolic form
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Response variable: Biomass
Explanatory component: [1] + H + I + H.I

where H.I can be calculated as the product of the variates H and I. The sequential ANOVA 
table for this model (Table 17.8) partitions variation between the treatment means into 
that accounted for by the explanatory terms and a remainder, which can be used to test 
lack of fit (see Section 12.8). The residual is calculated from variation between replicates 
and is an estimate of pure error, uncontaminated by lack of fit, and so we choose to use 
this residual for testing model terms.

We can first test the model as a whole by comparing the model mean square with the 
residual mean square (F3,75 = 6.06, P < 0.001) and this model accounts for 15.8% of the 
variation in the data (adjusted R2 = 0.158). As we can partition the variation into pure 
error and treatment variation, we can also calculate the percentage of treatment varia-
tion accounted for by comparing the remainder mean square (157 with 21 df) with the 
treatment mean square (291 with 24 df) as

 1 1
3295 21

573 5 3102 3295 24
0 4− = −

+ + +
=Remainder MS

Treatment MS
/

/( )
. 660 .

TABLE 17.7

Dry Root Biomass (g/Plant) of 3-Week-Old Cotton Plants from an Experiment Evaluating the Effects 
of Different Amounts of Herbicide (H) and Insecticide (I) (Example 17.3 and File cotton.dat)

H I Weight H I Weight H I Weight

0 0 122.00 1 0 52.00 2 0 29.25
0 20 82.75 1 20 71.50 2 20 72.00
0 40 65.75 1 40 79.50 2 40 82.50
0 60 68.00 1 60 68.75 2 60 68.25
0 80 57.50 1 80 63.00 2 80 73.25
0.5 0 72.50 1.5 0 36.25
0.5 20 84.75 1.5 20 80.50
0.5 40 68.75 1.5 40 65.75
0.5 60 70.00 1.5 60 77.25
0.5 80 60.75 1.5 80 69.25

Source: Data from Kuehl, R.O. 2000. Design of Experiments: Statistical Principles of Research Design and Analysis 
(2nd edition). Thomson Learning (Duxbury Press), Pacific Grove, California. 666 pp.

TABLE 17.8

Sequential ANOVA Table for Cotton Root Biomass Model in Terms of Variates H (Herbicide Dose), 
I (Insecticide Dose) and the Combined Term H.I (Example 17.3A)

Change Incremental df Incremental SS Mean Square Variance Ratio P

+ H 1 573 573 FH = 3.29 0.074

+ I 1 5 5 FI = 0.03 0.866

+ H.I 1 3102 3102 FH.I = 17.83 < 0.001
Remainder 21 3295 157 FRem = 0.90 0.589
Residual 75 13,050 174
Total 99 20,025

Note: SS = sum of squares.
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This model therefore accounts for 46.0% of the treatment variation. We then con-
sider the individual model terms. Because of the balanced allocation of treatments, 
variates H and I are orthogonal, and so we get the same incremental SS and tests for 
these terms fitted in either order. But we first examine the combined term, H.I, to see 
if we can simplify the model and find that the variance ratio (F1 75 17 830, . ,H.I =  P < 0.001) 
is highly significant and so we cannot. The predictive model therefore uses both 
variates and their combined term, and the estimated parameters are listed in Table 
17.9. The remainder sum of squares gives no evidence of lack of fit (F21 75 0 902, . ,Rem =  
P = 0.589).

In the form of Equation 17.4, with biomass as a function of herbicide dose for a given 
value of insecticide dose, the predictive model can be written as

 ˆ ( , ) ( . . ) ( . . ) ,µ H I I I H= − + − +99 35 0 573 29 05 0 557  

where for brevity now H indicates the herbicide dose and I indicates insecticide dose 
applied. As the insecticide dose increases, the slope for herbicide increases and the 
intercept decreases. The fitted model is plotted with the observations in this form in 
Figure 17.9, and it can be seen that the slope is negative for small doses of insecticide and 
positive for larger doses.

Although a straight line seems a reasonable approximation to the shape for each 
fungicide dose, it is apparent that the fitted lines are not giving the best possible fit to 
the observations: the slope is clearly too gentle for the zero dose and too steep for the 
largest dose. Figure 17.10 shows contour plots for the observations and for the fitted 
model, which allows a visual comparison of the observed and fitted surfaces. Although 
there is some similarity across the two surfaces in terms of general trends, it is clear 
that the fitted model does not reproduce the observed trends well. This contradicts the 
non-significant test for lack of fit (based on FRem), which indicates that the discrepancy 
between the fitted values and treatment means is small compared with background 
variation. However, the presence of systematic (rather than random) discrepancies in 
the fitted model, as seen in Figure 17.9, suggests that some improvement in fit may be 
possible.

An interaction between variates introduces one type of curvature into the fitted surface, 
but more general forms will often be required. The simplest generalization is to extend 
the methodology used for polynomial models (Section 17.1.2) to two dimensions. A model 
of order q then contains all combinations of the explanatory variates with powers that 
sum to ≤ q. A first-order model for two explanatory variates contains both individual 
variates (order 1) but not their interaction, which is of order 2; this model is a standard 
MLR (Equation 17.2). A second-order model adds the combined term and the squares of 
both variates. For convenience, we label the coefficients in these models by the powers of 

TABLE 17.9

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance Levels (P) 
for Cotton Root Biomass Model in Terms of Variates H (Herbicide Dose), I (Insecticide Dose) and 
Their Interaction H.I (Example 17.3A)

Term Parameter Estimate SE t P

[1] α 99.350 7.915 12.553 < 0.001
H β1 −29.050 6.4622 −4.495 < 0.001
I β2 −0.573 0.1616 −3.545 < 0.001
H.I β3 0.557 0.1319 4.223 < 0.001
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FIGURE 17.9
Observed cotton root dry biomass (g/plant) with predictive model in terms of herbicide dose (lb/acre), insecti-
cide dose (a) 0, (b) 20, (c) 40, (d) 60, (e) 80 lb/acre, and their interaction (Example 17.3A).
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(a) Observed cotton root dry biomass (g/plant) and (b) predictive model for cotton root biomass in terms of 
herbicide dose (lb/acre), insecticide dose (lb/acre) and their interaction (Example 17.3A).
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the explanatory variates in each term; hence, β11 is the slope associated with the product 
x1i × x2i. The second-order model can be written as

 y x x x x x x ei i i i i i i i= + + + + × + +α β β β β β10 1 01 2 20 1
2

11 1 2 02 2
2( )  . (17.5)

Similarly, a third-order model takes the form

 

y x x x x x x

x

i i i i i i i

i

= + + + + × +

+ +

α β β β β β

β β
10 1 01 2 20 1

2
11 1 2 02 2

2

30 1
3

2

( )

11 1
2

2 12 1 2
2

03 2
3( ) ( )  x x x x x ei i i i i i× + × + +β β .  

(17.6)

Again, the components x x x xi i i i1 2 1
2

2× ×,  and x xi i1 2
2×  represent combinations of powers of 

the two explanatory variates, calculated by multiplying the appropriate powers together.
The potential problems associated with polynomial models for a single explanatory 

variate, namely, collinearity between terms and over-fitting, may also be encountered with 
these models for several variates. The same solutions also apply, so collinearity can be 
reduced by the use of centered or orthogonal polynomials in place of simple powers, and 
the full fitted curve or surface should be plotted on a dense grid of values to check for any 
undesirable features. The previous model-building strategy can also be extended to two 
explanatory variates, so we start with a low-order model and use visual checks to see if 
the model fit is adequate. If replication is present then we can make a formal test for lack 
of fit. If the model is not adequate, then a set of higher-order terms can be added. Once you 
have found a suitable order, you should check whether the model can be simplified by test-
ing the highest-order terms with marginal F-tests. The least significant term is dropped 
first, and then other terms retested. This process must respect marginality, so that if a 
term is retained in the model then all terms marginal to it should also be retained (which 
makes the model invariant to changes of scale). At each stage, a term is eligible for test-
ing if it is not marginal to (i.e. a sub-term of) any other term still in the model (see Section 
8.3.1). A sub-term is one that has all of its components in common with the term, so, for 
example, x x xi i i1 1

2
2, ,  and x1i × x2i are all sub-terms of x xi i1

2
2× . This process is demonstrated 

in Example 17.3B. In the predictive model, all terms eligible for testing should have statisti-
cally significant marginal F-tests.

EXAMPLE 17.3B: COTTON RESPONSE TO HERBICIDE AND INSECTICIDE

In Example 17.3A, we detected systematic discrepancies between the observed biomass 
and the predictive model with individual variates H (herbicide dose), I (insecticide dose) 
and their interaction, H.I. Here, we consider higher-order models to see if a better fit can 
be obtained. To avoid problems with collinearity, we centre each variate before calcu-
lating powers. The centered variates are calculated as cH = H − 1 and cI = I − 40, using 
variates defined in Example 17.3A.

For a second-order model, we need the main variates cH, cI, and the products 
cH.cI = cH × cI, (cH)2 = cH × cH and (cI)2 = cI × cI. The second-order model, from Equation 
17.5, can then be written in symbolic form as

Response variable: Biomass
Explanatory component: [1] + cH + cI + (cH)2 + cH.cI + (cI)2

This model accounts for 17.5% of the variation in the data (and 52.3% of the variation in 
the treatment means). Examination of the fitted curves and surface (as in Figures 17.9 
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and 17.10) shows that although this fitted model is closer to the observations, there are 
still clear systematic discrepancies visible. We therefore try a third-order model, as pre-
sented in Equation 17.6. This model requires four additional variates to be calculated, 
i.e. the cubes of the original variates and the products of the squared and linear terms, 
and can be written in symbolic form as

Explanatory component:  [1] + cH + cI + (cH)2 + cH.cI + (cI)2 + (cH)3 + (cH)2.cI
 + cH.(cI)2 + (cI)3

Because the design is orthogonal, and we use the estimate of pure error as our residual 
mean square, we get a single sequential ANOVA table for this model shown in Table 
17.10.

In the full model, we first test the cube terms and both the herbicide dose (cH)3 
(FH3 = 0.03, P = 0.871) and insecticide dose (cI)3 (FI3 = 0.94, P = 0.336) terms can be removed 
from the model. Because the terms are orthogonal, we can immediately examine the 
third-order cross-product terms from the same table, and drop the product of the square 
of herbicide dose with insecticide dose (cH)2.cI (FH2.I = 1.36, P = 0.247). The square of her-
bicide dose (cH)2 is then eligible for testing, and this term can also be removed from the 
model (FH2 = 0.63, P = 0.432). No further terms can be removed. Parameter estimates in 
the final model are listed in Table 17.11, giving the predictive model as

 
ˆ ( , ) . . ( ) . ( ) . ( )( )

.

µ H I H I H I= + − − − + − −

−

75 29 4 84 1 0 016 40 0 557 1 40

0 00700 40 0 01452 1 402 2( ) . ( )( ) .I H I− − − −  

Because we have constructed the model in terms of centered variates, these centered 
variates must appear in the predictive model.

If we expand each term in full and gather together the coefficients for each combina-
tion of variables, the predictive model can be rewritten as

 
ˆ ( , ) . . . . . .

.

µ H I H I HI I HI= − − + + −

=

105 34 40 66 1 17 1 718 0 007 0 0145

105

2 2

334 1 17 0 007 40 66 1 718 0 01452 2− + + − + −. . ( . . . ) .I I I I H  

TABLE 17.10

Sequential ANOVA Table for Third-Order Polynomial Model for Cotton Root Biomass Models in 
Terms of Centered Variates cH (Herbicide Dose) and cI (Insecticide Dose) (Example 17.3B)

Change Incremental df Incremental SS Mean Square Variance Ratio P

+ cH 1 573 573 FH = 3.29 0.074

+ cI 1 5 5 FI = 0.03 0.866

+ (cH )2 1 109 109 FH2 = 0.63 0.432

+ cH.cI 1 3102 3102 FH.I = 17.83 < 0.001
+ (cI)2 1 553 553 FI2 = 3.18 0.079

+ (cH)3 1 5 5 FH3 = 0.03 0.871

+ (cH )2.cI 1 237 237 FH2.I = 1.36 0.247

+ cH.(cI )2 1 1180 1180 FH.I2 = 6.78 0.011

+ (cI )3 1 163 163 FI3 = 0.94 0.336
Remainder 15 1049 70 FRem = 0.40 0.975
Residual 75 13,050 174
Total 99 20,025

Note: SS = sum of squares.
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In terms of herbicide (H), the predictive model is still a straight line for a given value 
of insecticide, but both the intercept and the slope vary as a quadratic function of insec-
ticide dose. These straight lines are shown in Figure 17.11, and clearly provide a much 
better fit to the data than those from the simpler model shown in Figure 17.9. The shape 
of the fitted surface, shown as a contour plot in Figure 17.12, also appears a more reason-
able fit to the observed surface. This model accounts for 23.2% of the total variation, and 
71.7% of the treatment variation.

Given that we detected no formal evidence of lack of fit in our original model (linear 
plus interaction, Example 17.3A), we should check that our final model gives a quan-
tifiable improvement in fit. For these two nested models, we can construct an F-test 
based on the change in the model sum of squares and df on adding the extra terms 
into the model (see end of Section 14.4). For the linear plus interaction model, we found 
ModSS1 = 3680 with ModDF1 = 3, compared to ModSS2 = 5414 with ModDF2 = 5 for our 
final predictive model. We compare this change to our estimate of background varia-
tion, i.e. ResMS = 174 on 75 df. The F-statistic is calculated as

( ) ( ) ( ) ( )ModSS ModSS / ModDF ModDF
ResMS

/2 1 2 1 5414 3680 5 3
174

− − = − − = 11734 2
174

4 98
/ = . ,

with 2 and 75 df, giving P = 0.009. There is thus strong evidence that the final model 
gives a better fit compared to the simpler model. This example demonstrates that the 
lack-of-fit test sometimes lacks power; it might be possible to improve a model even 
when the formal test for lack of fit is not statistically significant.

Example 17.3 was a designed experiment, and so a balanced set of combinations of the 
two variates had been used, which made the variates orthogonal and which greatly simpli-
fied the process of model selection. This is much less likely to occur in observational data, 
especially where variates are correlated. In general, many more observations are required 
to get a good spread of observations across two explanatory variates than for one, a situa-
tion known as the curse of dimensionality. Good coverage of the two-dimensional space 
spanned by two explanatory variates is essential if the model is to be robust across the 
full space, and you can check this by plotting the explanatory variates against each other. 
Predictions for regions with few observations should be treated as extrapolation and can 
be unreliable.

The models presented in this section, sometimes called response surface models, can be 
extended to three or more explanatory variates, but verification of the form of the model 
becomes much harder, because a full visual representation of the model requires four or 

TABLE 17.11

Parameter Estimates with Standard Errors (SE), t-Statistics (t) and Observed Significance Levels 
(P) for Cotton Root Biomass Predictive Model in Terms of Centered Variates cH ( = H − 1) and cI 
( = I − 40) (Example 17.3B)

Term Parameter Estimate SE t P

[1] α 75.29 4.111 18.313 < 0.001
cH β10 4.844 5.814 0.833 0.407
cI β01 −0.016 0.0933 −0.169 0.866
cH.cI β11 0.557 0.1319 4.223 < 0.001
(cI)2 β02 −0.0070 0.00394 −1.783 0.079
cH.(cI)2 β12 −0.01452 0.005574 −2.604 0.011
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FIGURE 17.12
(a) Observed cotton root dry biomass (g/plant) and (b) predictive model for cotton root biomass in terms of 
herbicide dose (lb/acre) and insecticide dose (lb/acre) (Example 17.3B).
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FIGURE 17.11
Observed cotton root dry biomass (g/plant) with predictive model in terms of herbicide dose (lb/acre) and 
insecticide dose (a) 0, (b) 20, (c) 40, (d) 60, (e) 80 lb/acre (Example 17.3B).
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more dimensions. The curse of dimensionality also means that coverage is likely to be 
inadequate unless the observations come from a designed experiment.

17.3 Fitting Models Including Non-Linear Parameters

All of the models considered so far have been within the class of linear models, which 
means that the model can be written as a set of terms added together, each of which consists 
of an unknown coefficient (a model parameter) multiplied by a known value (an explana-
tory variable); for example, see Equation 17.2. As we have seen earlier in this chapter, these 
models can be used to fit curved as well as straight line relationships. However, these strate-
gies provide only a limited range of models, and in some cases, a good fit cannot be found 
with this approach. The set of possible models can be widened by introducing non-linear 
models, i.e. models that cannot be written in linear form. An advantage of these models 
is that for some types of response, where there is a good understanding of the underlying 
process, a non-linear model with biologically meaningful parameters may be constructed.

One simple example of a non-linear model takes the form

 y x ei i i= + +α β θ  ,

where α, β and θ are parameters to be estimated. If θ was fixed (e.g. θ = 2), so the quantity 
xi

θ was known, then this would be a linear model; it is the presence of θ as an unknown 
parameter that makes this model non-linear. Non-linear models can include several 
explanatory variates, although we consider only the case of a single explanatory variate 
here. In general, they may include several non-linear parameters, and so the number of 
parameters will not necessarily be one greater than the number of explanatory variates. 
For now, we label the set of p parameters in a non-linear model as γ1 … γp. Any non-linear 
model with a single explanatory variate can be written in general terms as

 y f x ei i p i= +( ) ,,  γ γ1…

where yi is the ith observation with value xi of the explanatory variate and deviation ei, and 
f (x, γ1 … γp) gives the form of the non-linear function. For the example given above, we have

 f x xi i( , , , )  ,2 1 2γ γ γ γ γ γ
1 3

3= +

where γ1 = α, γ2 = β and γ3 = θ. Our symbolic notation does not adapt easily to this frame-
work, and so we do not use it here.

As for the linear models of earlier sections, we obtain least squares estimates for the 
parameters, but the process must be modified to estimate the non-linear parameters. The 
least squares estimates minimize the residual sum of squares (see Section 1.5), which for 
non-linear regression takes the form

 
ResSS min  min [ ( , )]  = − = −

= =
∑ ∑( ) ... .y y y f xi i
i

N

i i p

i

N

  2

1

1
2

1

γ γ
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Unlike the corresponding equations for linear models, these equations cannot be solved 
directly and an iterative algorithm is required to search numerically for the least squares 
estimates (see Seber and Wild, 1989, for further information). This algorithm might be 
unstable if it starts far from the solution: it might fail to converge, or it might appear to 
converge but at a point that does not give a global minimum of the ResSS (known as a local 
minimum). For this reason, you should provide good initial values for parameters when-
ever possible, for example, from previous related work or prior knowledge. Alternatively, 
several different sets of initial parameter values, for example, covering a regular grid, can 
be tried and the fitted model with the smallest ResSS is selected. Always plot the model 
with the observations to ensure that the fit is adequate. The assumptions presented in 
Sections 4.1 and 12.1 also apply to non-linear models, and residuals should be examined 
to check for model misspecification and the validity of the assumptions with the graphical 
diagnostic tools of Chapters 5 and 13.

Some of the most common non-linear curves are the exponential, logistic, Gompertz and 
inverse linear models and we discuss these briefly here, with some typical curve shapes 
shown in Figure 17.13.

The standard exponential model has the form

 y x ei i i= + − +α β γexp( )  . (17.7)

Interpretation of individual parameters is not straightforward, but we might think of α as 
setting the level of the curve (analogous to an intercept), β as controlling the scaling (or 
effective range) of the curve and γ as controlling the curvature. The direction of this curve 
(and those considered below) varies according to the signs of the parameters β and γ. The 
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FIGURE 17.13
(a) Exponential curve with α = 5, β = 10, γ = 2; (b) inverse linear curve with α = 5, β = 10, γ = 2; (c) logistic curve 
with α = 5, β = 10, γ = 2, δ = 2; (d) Gompertz curve with α = 5, β = 10, γ = 2, δ = 2. Observations generated as func-
tion plus Normal deviations with common variance.
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form for β > 0 and γ > 0 is shown in Figure 17.13a. Here, the value of the curve decreases 
as the explanatory variate increases, it crosses the y-axis at intercept value α + β, and 
decreases towards a lower asymptote at value α. The rate of change decreases as the value 
of the explanatory variate increases. This curve is said to have a lower asymptote (limit) to 
the right (as the explanatory variate increases). An alternative to the exponential model is 
given by the inverse linear model, with form

 
y

x
ei

i
i= +

+
+α β

γ1
 .

For β > 0 and γ > 0 (Figure 17.13b), this curve also has a decreasing form with an intercept 
of α + β and a lower right asymptote of α, but is less sharply curved than the exponen-
tial model and approaches the asymptote more slowly. Varying the signs of parameters 
β and γ gives curves of different shapes. The exponential and inverse linear models both 
give decreasing functions with a lower right asymptote when β > 0 and γ > 0; increasing 
functions with a lower left asymptote with β > 0 and γ < 0; increasing functions with an 
upper right asymptote with β < 0 and γ > 0; and decreasing functions with an upper left 
asymptote when β < 0 and γ < 0. These models are often used for modelling growth curves 
or decay functions.

For S-shaped growth curves, we consider the logistic and Gompertz models. The logis-
tic model takes the form

 
y

x
ei

i
i= +

+ − −
+α β

γ δ1 exp[ ( )]
 .

Again, we might think of α as setting the level of the curve, β as controlling the scale (or 
effective range) of the curve, γ controlling the curvature and the new parameter δ as defin-
ing the positioning of the curve with respect to values of the explanatory variate. A logistic 
model is shown in Figure 17.13c in the form with β > 0 and γ > 0. This curve has a lower left 
asymptote at value α as the explanatory variate decreases and an upper right asymptote 
at value α + β as the explanatory variate increases. The curvature is symmetric about δ, 
which is the value of the explanatory variate at which the slope of the curve is steepest 
(known as the inflexion point). At this point, the curve is at the midway point between the 
two asymptotes, and takes the value α + β/2.

Another S-shaped curve is the Gompertz model, which is written as

 y x ei i i= + − − − +α β γ δexp{ exp[ ( )]}  ,

and is shown in Figure 17.13d with β > 0 and γ > 0. This curve also has a lower left asymp-
tote at value α and an upper right asymptote at α + β, but is asymmetric about the value 
x = δ. Again, the direction and shape of the logistic and Gompertz models can be manipu-
lated by changing the signs and values of the parameters β and γ.

EXAMPLE 17.1C: OLSEN P

In this example, we compare the fit of the exponential and inverse linear models to 
those fitted in Examples 17.1A and B. We first consider the exponential model, which 
accounts for 83.1% of the variation (adjusted R2 = 0.831) and gives fitted model
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 ˆ ( ) . – . .µ OlsenP OlsenP= × − ×( )4 4 5 4 412 exp 359  .0 0

This model has β < 0 and γ > 0 and so is an increasing curve with an upper asymptote, 
as required by the shape of the response. The upper asymptote is at ˆ .α = 4 405, but the 
intercept with the y-axis is not of interest as it is well outside of the range of the Olsen P 
measurements. The fitted curve is shown with 95% CIs in Figure 17.14a and clearly fol-
lows the pattern of response well.

In comparison, the inverse linear model accounted for 83.5% of the variation (adjusted 
R2 = 0.835) and gives the fitted model

 ˆ ( ) .
.

.
µ OlsenP

OlsenP
= −

+ ×
4 962

9 073
1 1 208( )

 .

Within the range of the observations, this model has a very similar shape to that of the 
exponential model (Figure 17.14b). It has a slightly higher asymptote ( ˆ .α = 4 962) but 
decreases much more sharply below the smallest Olsen P measurement. The 95% CIs for 
these two non-linear models have quite different shapes, reflecting different sources of 
uncertainty in the two models. The inverse linear model shows much more uncertainty 
around the point of maximum curvature, whereas the exponential model shows more 
uncertainty moving towards the upper asymptote.

Table 17.12 summarizes the goodness-of-fit statistics for the models fitted in all 
parts of Example 17.1. Based on the adjusted R2 and AIC statistics, the non-linear mod-
els fit better than all but the eighth-order polynomial model, which we previously 
dismissed on the grounds of over-fitting. The SBC, which penalizes the number of 
parameters more heavily, shows a clear preference for the non-linear models. There 
is little statistical difference in the fit of the two non-linear models, so either might 
reasonably be selected.

There are many variations and extensions of these models available in statistical soft-
ware, as well as other types of non-linear models. In addition, most software allows user-
defined non-linear functions to be fitted. Successful estimation of parameters in non-linear 
models depends on the amount of information available from the observations, as well 
as good initial values for the parameters. For example, the logistic or Gompertz curves 
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(a) Fitted exponential model (—) with 95% CI (---) and (b) fitted inverse linear model (—) with 95% CI (---) for 
yield in terms of Olsen P measurements (Example 17.1B).
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require some observations in the upper part of the curve to get a good estimate of the 
upper asymptote. Similarly, the precision of the curvature and position parameters (γ and 
δ) for these models becomes greater as the number of observations between the asymp-
totes increases. In general, it is desirable to have observations spread across the full range 
of the curve, and particularly at points where the slope of the curve changes. The param-
eterization used within non-linear models can influence the stability of the estimation 
procedure, and statistical packages use various different parameterizations. For example, 
the exponential model defined in Equation 17.7 can be written in an alternative form as

 y ei
x

i
i= + +α βϕ ,

where γ  = −logeφ and the other parameters retain their original interpretation. It can be 
helpful to try different parameterizations when problems with convergence are encoun-
tered, or to obtain parameters that have a biological interpretation.

Inference for non-linear models is not as straightforward as for linear models; in par-
ticular, SEs for parameter estimates and predictions are approximate, so that different sta-
tistical software can give somewhat different results. In most cases, approximate SEs and 
t-tests are reported in addition to ANOVA tables with approximate F-tests. Obtaining SEs 
for non-linear functions of parameters, for example, for γ = −logeφ, might also be neces-
sary and is usually achieved by the delta method, sometimes called linearization (see e.g. 
Casella and Berger, 2002 or Seber and Wild, 1989).

Non-linear models can easily be extended to cases where different groups are present, 
and the approaches are analogous to those described in Chapter 15. The most general 
models allow all parameters to be separate among groups (e.g. a different asymptote for 
each group) and the most restrictive insist on common parameters across groups, with 
many intermediate models to be investigated.

EXERCISES

 17.1 An experiment was done to establish the effectiveness of low doses of a fun-
gicidal compound. Six fractions of the standard dose (1, 1/2, 1/4, 1/8, 1/16 and 
1/32) were applied to individual leaves infected with a pathogen, and the num-
ber of colonies on each leaf were counted after a given period. Leaves without 
fungicide applied were included as a negative control. The design was a RCBD 
with three replicates, giving 21 leaves in total. File colonies.dat holds the unit 

TABLE 17.12

Summary Statistics for Models for Yield as a Function of Olsen P Measurements (Example 17.1A, 
17.1B or 17.1C)

Example Model
Number of 
Parameters ResMS Radj

2  (×100) AIC SBC

17.1A SLR with log10(Olsen P) 2 0.1191 79.7 19.2 21.2
17.1B Quadratic polynomial 3 0.1126 80.8 19.0 22.0
17.1B Cubic polynomial 4 0.1114 81.0 19.6 23.5
17.1B Eighth-order polynomial 9 0.0799 86.3 15.4 24.4
17.1C Exponential model 3 0.0991 83.1 16.4 19.4
17.1C Inverse linear model 3 0.0965 83.5 15.9 18.9
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numbers (ID), structural factors (Rep, Leaf), the dose applied (variate Dose) and 
the number of colonies observed (variate NColonies).

 a. Find a transformation of the dose variable that gives an approximate linear 
relationship with the number of colonies. Fit a SLR using this transformed 
variate, including the design structure in your model. Check for lack of fit 
and state the predictive model.

 b. Find a non-linear model for the number of colonies that accounts for the 
structure of the design. Check for lack of fit. Compare this non-linear model 
with the transformation used in part (a) and state which model you prefer, 
with reasons.

 17.2 The microarray study described in full in Exercise 12.6 investigated gene 
expression associated with senescence of leaves. File senescence.dat holds 
design information (ID, variate Day, factor BiolRep) and the expression value for 
three genes (variates CATMA3A13560, CATMA2A31585 and CATMA1A09000) 
from each plant following normalization.*

 a. Can you reasonably use polynomial regression to predict the expression of 
genes CATMA2A31585 or CATMA1A09000 over time? Over what range are 
your predictions reliable?

 b. Can you improve on these predictions by using non-linear models?
 17.3 Exercise 13.3 analysed a set of chickweed plants from a field trial to investigate 

whether the number of seeds produced could be related to the plant biomass, 
measured as dry weight (g). There was evidence of variance heterogeneity, but 
the log-transformation required to stabilize the variance gave a curved rela-
tionship. Here, we try to find a model for that curved relationship, but now 
also include similar samples from several different experiments, carried out 
in different years and in different crops. File cwtrials.dat holds unit num-
bers (ID) with a code for each trial (Trial), the year (factor Year) and crop type 
(factor Crop) as well as the number of seeds (variate NSeed) and dry weights 
(variate DryWt) for 193 plants. Find a transformation of the explanatory vari-
ate (DryWt) that linearizes the relationship with loge(NSeed) and use regres-
sion with groups to establish whether the relationship differs between crops or 
years, or both. Identify a predictive model for the log-transformed number of 
seeds. Write down and interpret this predictive model. (We re-visit these data 
in Exercise 18.7.)

 17.4 In Exercise 9.1, data from a field trial to investigate the effect of sulphur fertil-
izer on the yield of spring barley were analysed using ANOVA (data in file sul-
phur.dat). Now use polynomial regression to model grain yield as a function of 
applied sulphur, accounting for the structure of the experimental design. Check 
for lack of fit. Write down the predictive model and give a 95% CI for grain yield 
with 25 kg S applied.

 17.5 A microarray study was done to investigate the genes associated with infection 
of leaves by fungal pathogens. Ninety-six plants were grown in a controlled 
environment and the seventh leaf of each plant was excised at time zero and 
a mock inoculation was carried out (to give a baseline measurement). There 
were 24 sample points at 2-h intervals starting 2 h after the mock inoculation, 

* Data from V. Buchanan-Wollaston (PRESTA), University of Warwick.
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i.e. at 2, 4, 6 … 48 h, and randomization was used to allocate four leaves to each 
sample point. Gene expression at the designated time was measured for each 
leaf. File botrytis.dat holds unit numbers (ID) and structural factors (Hour, 
Leaf) with the expression values for one gene (variate CATMA1A00045). Plot 
the data. What do you notice about the pattern over time? Can you model this 
pattern using trigonometric regression? Is there any evidence of lack of fit to 
this relationship?*

 17.6 An experiment was done to measure the response of yield to dose of nitrogen 
fertilizer. The design was a RCBD with four blocks of five treatments, corre-
sponding to 0, 50, 100, 150 and 200 kg/ha of nitrogen applied and the response 
is plot yield. File fertilizer.dat contains the unit numbers (ID), structural fac-
tors (Block, Plot), the amount of nitrogen applied (variate N) and the plot yields 
(variate Yield). Find a non-linear model to describe the response of yield to 
applied nitrogen. Check your model for misspecification and lack of fit. Write 
down and interpret the predictive model.

 17.7 The yield response of Brussels sprout to applied nitrogen was investigated 
using a RCBD with three blocks of 13 plots. The treatments were 11 doses of 
nitrogen, between 0 and 250 kg/ha, with two replicates of 150 and 200 kg/ha 
per block. File sprouts.dat contains the unit numbers (ID), structural factors 
(Rep, Plot), applied nitrogen (variate Nitrogen) and yield converted to tonnes 
per hectare (variate Yield). Plot the data and establish a predictive model to 
describe the pattern of response.†

 17.8 Exercise 15.10 developed a model for oxygen consumption of wireworm larvae 
in terms of bodyweight and temperature groups. Now form a variate version of 
the temperature factor and investigate whether a surface can be developed in 
terms of temperature and bodyweight. Check your final predictive model for 
lack of fit and produce a visual representation of its fit. Write down and interpret 
your predictive model and comment on its usefulness.

 17.9 Exercise 11.2 fitted a model for linseed yield in terms of barley and chickweed 
densities as factors. Fit a surface model for linseed yield using the two explana-
tory variables as variates. Use visual checks for model misspecification as well 
as formal tests for lack of fit. Write down your predictive model and state the 
range of values over which it can be considered reliable.

 17.10 Exercise 15.3 established a separate lines model for splash heights in terms of 
velocity and weight classes. Now fit a surface in terms of the two explanatory 
variates. First, extract the estimates of intercept and slope for each weight class 
from the separate lines model and plot these against the weight values. Find a 
transformation of the weight variate that makes these two patterns into approx-
imately straight lines – this is the transformation of weight to use in the surface 
model. Identify a parsimonious predictive model for your surface in terms of 
velocity and the transformed weight variate. Write down an equation for your 
predictive model and visualize it as a surface or contour plot. Does this give a 
better or worse fit than a surface constructed from the untransformed weight 
variate?

* Data from  K. Denby (PRESTA), University of Warwick.
† Data from Horticulture Research International.
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18
Models for Non-Normal Responses: Generalized 
Linear Models

We have seen in the previous chapters that linear models relate a response variable to one 
or more explanatory variables (factors or variates) and that inferences from these models 
rely on assumptions about the distribution of the response, often expressed in terms of 
properties of the model deviations (presented in Sections 4.1 and 12.1). Two of the most 
important assumptions are that the deviations, and hence the observed responses, have 
a common variance and follow a Normal distribution. These properties are required to 
make the F- and t-distributions valid for statistical inferences such as hypothesis testing 
and calculation of confidence intervals (CIs). In Chapter 5, we presented a set of diagnostic 
tools that can be used to check those assumptions. In Chapter 6, we then suggested trans-
formation of the response variable to correct for heterogeneity of the variance and to make 
the distribution of the deviations approximate to a Normal distribution. However, for some 
types of response we expect, in advance of any statistical analysis, that their distributions 
will not be Normal, that their variances will be heterogeneous and that transformation 
might be unsatisfactory. Moreover, we can sometimes explicitly write the form of these 
distributions from knowledge of the underlying process(es) that generated the responses. 
Specifically, here we consider proportions that have been calculated from discrete counts 
(e.g. number of plants out of 20 affected by a disease) which are likely to have a Binomial 
distribution (Section 2.2.1), and responses that are generated as discrete counts (e.g. num-
ber of beetles caught in a pitfall trap during 24 h) which are likely to have a Poisson distri-
bution (defined in Section 18.3). Responses with these probability distributions, and some 
others to be discussed later, can be analysed with generalized linear models (GLMs). This 
broad class of models allows the response to arise from one of several different probability 
distributions, extending the methods to situations other than the Normal distribution; 
however, this additional flexibility means that somewhat more complex estimation and 
inferential techniques are required.

In this chapter, we briefly introduce GLMs for Binomial and Poisson responses and 
describe the underlying models. We start with a general overview of the GLM model 
(Section 18.1). We consider a GLM for proportions with a Binomial distribution (Section 
18.2), including some discussion about the detection and handling of over-dispersion 
(Section 18.2.2), checking model assumptions (Section 18.2.3) and the special case of 
binary responses (Section 18.2.7). We then introduce GLMs for discrete counts with a 
Poisson distribution (Section 18.3), and we end by describing briefly some other situations 
in which GLMs are used and some further extensions to these models (Section 18.4).
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18.1 Introduction to Generalized Linear Models

A generalized linear model (GLM) extends the linear model framework to the situation 
where the responses have certain forms of non-Normal distributions, specifically distri-
butions within the exponential family (Dobson, 1990) such as the Binomial and Poisson 
distributions. A Binomial distribution typically occurs where a fixed number of samples 
have been tested and the number passing (or failing) the test is counted. For example, in a 
survey of water sources we might take 20 separate samples from each source and count the 
number out of 20 with concentrations of mercury exceeding the maximum limit permit-
ted for drinking water. A Poisson distribution typically occurs where responses consist 
of discrete counts. For example, we might count the number of viable seeds produced by 
individual plants to compare productivity across different varieties of a plant species. A 
GLM directly accounts for the particular characteristics of the distribution associated with 
a response and uses these characteristics in parameter estimation and inference. However, 
because we are now dealing with non-Normal distributions, we must modify the form of 
our models. Recall that in Section 1.3 we wrote our statistical model in the form

 response = systematic component + random component ,

where the response was a numerical outcome, the systematic component was a mathemati-
cal function of one or more explanatory variables (factors, variates or both) and the random 
component (or model deviations) accounted for variation in the response not explained by 
the systematic component. Unfortunately, this partitioning of the model is specific to the 
Normal distribution and does not apply in a straightforward manner to non-Normal dis-
tributions. In general, it is more convenient to state the distribution of the response and to 
write the model in a different form as

 E(response) = systematic component ,

i.e. the expected value of the response is equal to the systematic component of our model. 
In mathematical terms, we often write this as E(yi) = μi, where μi is the expected value of 
yi, the response for the ith observation. The systematic component of the model is still a 
mathematical function of the explanatory variables, but now we allow a more complex 
form that involves a transformation. This transformation is used to account for boundar-
ies on the range of possible values of the response variable, which should therefore also 
apply to the expected value. For example, for Poisson responses, the expected value must 
remain positive, while for Binomial responses where m tests have been made on each indi-
vidual, the expected value must lie between 0 and m. The systematic component can then 
be expressed in general form as

 g(systematic component) = linear function of explanatory variables ,

where the function g() is called the link function because it provides the link between the 
response and the explanatory variables. The linear function of the explanatory variables 
on the right-hand side of this equation, which may comprise any combination of factors 
and variates, is known as the linear predictor. Various different link functions can be 
used, but each distribution has a canonical link which has good mathematical properties 
and often works well in practice. For Binomial and Poisson responses, the logit and the log 
are the canonical link functions, respectively.
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Once a model has been defined, the model parameters can be estimated. For non-Nor-
mal distributions, the simple method of least squares is no longer appropriate for param-
eter estimation. Instead, the principle of maximum likelihood estimation is used. We do 
not go into mathematical details here, but Dobson (1990) or Collett (2002) provide a good 
description. One of the consequences of this change is that, instead of obtaining exact SEs 
for parameter estimates, the estimated SEs become approximate, as does the calculation of 
CIs and hypothesis tests. These issues will be discussed in the following sections, where 
we consider the cases of Binomial and Poisson responses in more detail.

18.2 Analysis of Proportions Based on Counts: Binomial Responses

The Binomial distribution, which was introduced in Section 2.2.1, usually arises as the dis-
tribution of the number of successes out of a series of m independent binary tests (i.e. tests 
with only two possible outcomes: success or failure), where all tests have the same prob-
ability of success. In the context of a GLM, we have N Binomial responses, each of which is 
the result of a number of binary tests. The ith response consists of two pieces of informa-
tion: the number of tests, denoted mi, and the number of successes, denoted yi. Note that 
the number yi can take only integer values in the set 0, 1, 2, … mi, for i = 1 … N. If only one 
test is made on each unit, so that mi = 1, then we have binary observations that have only 
two possible values, zero or one. Many of the useful properties that apply to Binomial data 
fail in the case of binary data, and this is discussed in Section 18.2.7.

EXAMPLE 18.1A: DEMETHYLATION EXPERIMENT

This experiment is a pilot study intended to calibrate a scientific procedure. A demeth-
ylation agent is applied to plants: the agent has the effect of converting methylated 
nucleotides to non-methylated form, causing epigenetic changes that lead to abnormal 
phenotypes such as stunting and deformation (Amoah et  al., 2008). The pilot study 
aimed to investigate the relationship between dose and the resulting proportion of 
plants with a normal phenotype. Seed was treated with the demethylation agent at 
six doses, including a zero control dose. Plants were grown in trays, each tray sown 
with seeds treated with the same dose of agent and each dose was replicated in four 
trays: two with 60 plants, and two with 100 plants. The trays were arranged as a CRD 
(Chapter 4). Table 18.1 lists the number of plants with a normal phenotype in each tray 
(Normali, i = 1 … 24) with the number of plants per tray (Totali). The data can also be 

TABLE 18.1

Number of Normal Plants (Total Number of Plants) per Tray for Doses of Demethylation Agent 
(Example 18.1A and File demethylation.dat)

Dose

0 0.01 0.1 0.5 1.0 1.5

59 (60) 58 (60) 54 (60) 4 (60) 3 (60) 3 (60)
58 (60) 59 (60) 53 (60) 11 (60) 2 (60) 3 (60)
99 (100) 98 (100) 88 (100) 14 (100) 2 (100) 1 (100)
98 (100) 99 (100) 87 (100) 15 (100) 1 (100) 3 (100)

Source: Data from S. Amoah, Rothamsted Research.
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found in file demethylation.dat which contains explanatory variate Dose, response 
variate Normal and variate Total containing the number of plants for each tray, each 
identified using dummy index variate DTray (the original layout of trays was not 
recorded). Figure 18.1 shows the proportions of normal plants (Propi = Normali/Totali) 
plotted against the dose applied. We can think of the agent acting on each seed inde-
pendently, with the probability of producing a normal phenotype dependent on the 
dose applied. We therefore expect the number of plants with a normal phenotype in 
each tray to have a Binomial distribution.

Observations expected to follow a Binomial distribution with mi tests can be denoted 
as yi ~ Binomial(mi, pi), where pi is the underlying probability of success in each test, with 
0 ≤ pi ≤ 1. The probability of observing a response yi for the ith observation can then be 
written as

 
Prob( ; , )
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This probability depends on both the number of tests, mi, which is a known value, and on 
the probability of success, pi, an unknown parameter. We hypothesize that the probability 
of success may depend on explanatory variables, for example, in Example 18.1A, that the 
probability of obtaining a normal plant depends on the dose of the demethylation agent 
applied. If yi follows a Binomial distribution, then its expected value and variance are, 
respectively

 E(yi) = μi = mipi ; Var(yi ) = mipi(1 − pi) .

The expected value is the product of the number of tests and the probability of success in 
each test. As the number of tests is fixed (once the data have been obtained), modelling the 
probability of success is equivalent to modelling the expected value. The variance is also 
a function of the number of tests and probability of success. This variance is small if pi is 
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FIGURE 18.1
Proportion of normal plants per tray plotted against dose of demethylation agent (Example 18.1A).
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close to either zero or one, and increases to its maximum at pi = 0.5. This heterogeneity can 
be seen in Figure 18.1, where the observed proportions close to 0 and 1 show less variation 
than the proportions between 0.10 and 0.20 (for dose equal to 0.5). The variance can also be 
written in terms of the expected value as

 
Var( ) ( ) ,y

m
mi

i

i
i i= −µ µ

illustrating that the variance is a direct function of the expected value and the number of 
tests (mi) for each unit.

18.2.1 Understanding and Defining the Model

To aid understanding, we introduce the GLM for Binomial responses with a single quan-
titative explanatory variable (variate) using notation like that in the previous chapters. 
Later, we shall write models for qualitative variables (factors) or a mixture of factors, vari-
ates and interactions. To make clear the distinction between the expected value of the data 
and its transformed value, we write g(μi) = ηi, so ηi represents the expected value of the ith 
observation after transformation by the link function. Note that this usage of η, which is 
standard notation for GLMs, is somewhat different from that in previous chapters. The 
systematic component of a model with a single explanatory variate is then

 ηi = g(μi) = α + βxi ,

so that, after transformation by the link function, the expected value of the ith observation 
is a straight line function of the explanatory variate, xi. Recall from Chapter 12 that param-
eter α is the intercept of this straight line and parameter β is the slope. As stated earlier, the 
right-hand side of this equation is called the linear predictor, and so this is often referred 
to as the model on the transformed or linear predictor scale. For now, we concern our-
selves with the logit link function, which is the canonical link for Binomial data, so that 
our model with a single explanatory variate can be written as
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We can rewrite the logit function in terms of the success probability, pi, as
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This illustrates that the model above can equivalently be considered as

 η α βi i ip x= = +logit  ( ) ,  (18.1)
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i.e. the logit of the success probability is a linear function of the explanatory variate. 
The Binomial GLM with logit link is therefore often called logistic regression. The quan-
tity pi/(1 − pi) is known as the odds (in favour of success), so logit(pi) is equivalent to the 
logarithm of the odds, or log-odds. Hence, another interpretation of this model is that the 
log-odds is a linear function of the explanatory variate. By rearranging Equation 18.1, we 
can write the model in terms of the success probability as
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(18.2)

This is often called the model on the back-transformed or natural scale. This model is a 
non-linear function of the explanatory variate x (see Figure 18.2a). Given estimates of the 
parameters, this formula can be used to predict the success probability for any value of 
the explanatory variate. If we multiply Equation 18.2 by mi, then we can write this model 
equivalently in terms of the expected value as
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.

Putting all of these properties together, we can interpret the Binomial GLM with logit link 
as a non-linear model that accounts for the Binomial distribution of the responses and 
its associated heterogeneity. To give a symbolic form for a GLM, we extend our previous 
definition to include the probability distribution and link function. This is illustrated in 
Example 18.1B.

As stated above, parameter estimation is achieved by the method of maximum like-
lihood, which is beyond the scope of this book. Here, we quote results obtained from 
GenStat rather than deriving estimates directly. Once parameter estimates have been 
obtained, the fitted model should be checked for misspecification. You can achieve this by 
plotting the observations and fitted values against the explanatory variable (see Section 
13.1) to check that the fitted model follows the trend in the data.
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FIGURE 18.2
Observations (•) with fitted GLM (—, Binomial distribution and logit link) for explanatory variate Dose plotted 
on (a) natural and (b) logit scale (Example 18.1B).
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EXAMPLE 18.1B: DEMETHYLATION EXPERIMENT

For the demethylation experiment introduced in Example 18.1A, we can fit a Binomial 
GLM with logit link for the number of normal plants in the ith tray (Normali) in terms of 
the dose applied to that tray (Dosei). The model can be written as

 Normal Total p p Dosei i i i i i~ , ; ,Binomial( ) =logit( )  η α β= +

where pi is the probability that Dosei gives a normal phenotype, and ηi is its logit trans-
formation. We can write the model in an extension of our symbolic form as

Response variable: Normal
Probability distribution: Binomial (Number of tests = Total)
Link function: logit
Explanatory component: [1] + Dose

We have now included some additional information. First, as usual, we define the 
response variable, which is the variate containing the number of successes per unit 
(Normal). Then we specify the probability distribution of the response, here the 
Binomial distribution. For this particular distribution, we must also define the number 
of tests performed for each observation (here, the number of plants per tray, Total). We 
then specify the link function, here the logit transformation. Finally, as usual, we give 
the explanatory component of the model in terms of the explanatory variables, here the 
intercept, [1], and the explanatory variate, Dose.

We obtain the estimated parameters for this model from GenStat as ˆ .α = 2 793 and 
ˆ . ,β = −7 623  giving the fitted model on the scale of the linear predictor, i.e. the logit 
scale, as

 
ˆ . . .ηi iDose= − ×2 793 7 623  

On the natural scale, the fitted probability of a normal phenotype for the ith observation 
can be expressed as
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Both forms are shown in Figure 18.2, with the observed proportion of normal plants 
(on the natural scale; Figure 18.2a) or the logit-transformed proportion (on the linear 
predictor scale; Figure 18.2b).

This model is clearly misspecified (see Section 13.1), as the fitted lines deviate from the 
trend in the plot. This is clearer on the scale of the linear predictor, where the trend in 
the data is evidently non-linear although the form of the GLM model demands a linear 
trend on this scale. This shortcoming can be tackled either with a different link function 
(see Section 18.2.7), with a polynomial function of the explanatory variate (see Section 
17.1.2), or by transformation of the explanatory variable (as in Section 17.1.1), which is the 
route we take here.

We refit the model in terms of the log-transformed explanatory variate logDose =
loge(Dose + 0.1). The offset of 0.1 (see Section 6.2.1) is required to deal with the zero 
(control) dose, and has been chosen pragmatically (by inspection, using trial and error) 
to give a reasonable straight line on the linear predictor scale. The revised model takes 
the form

 
ˆ . . ,ηi ilogDose= − − ×3 188 3 148  
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where logDosei = loge(Dosei + 0.1). On the natural scale, this gives
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The fitted model is plotted on both the natural and linear predictor scales in Figure 18.3, 
which shows the fit to be much closer to the observed trend in the responses.

The estimated intercept ( . )α = −3 188  and slope ( . )β = −3 148  parameters relate to the 
straight line fitted on the linear predictor, or logit, scale. The negative slope indicates 
that the proportion of normal plants is smaller for larger doses. We can write the predic-
tive model as a continuous function of the original explanatory variable Dose as

 
ˆ ( ) . . log ( . ) .η Dose Dose= − − × +3 188 3 148 0 1e

From this formula, we can make predictions for any dose (staying within the observed 
range to avoid extrapolation). For example, for Dose = 0.3, with loge(Dose + 0.1) = −0.92, 
the predicted response on the logit scale is

 
ˆ ( . ) . . log ( . ) . .η Dose Dose= = − − × + = − − × −0 3 3 188 3 148 0 1 3 188 3 148( ) (e 00 92 0 304. . .)  = −

We can back-transform this prediction to estimate the probability of getting a normal 
phenotype at this dose as
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The estimated probability of our obtaining a normal plant after application of a dose of 
0.3 units is therefore equal to 0.425, i.e. a 42.5% chance of obtaining a normal plant. We 
can translate this to an expected number of normal plants per tray by multiplying by 
the number of plants in the tray.

Having fitted a GLM that appears to give a reasonable description of the data in the 
fitted model plot, we must get some formal quantification of the fit and the uncertainty 
associated with the estimated parameters. These topics are discussed in the next sections.
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Observations (•) with fitted GLM (— , Binomial distribution and logit link) for explanatory variate loge(Dose + 0.1) 
plotted on (a) natural and (b) logit scale (Example 18.1B).
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18.2.2  Assessing the Importance of the Model and Individual Terms: 
The Analysis of Deviance

In GLMs, the fit of a model is quantified by calculation of the deviance, which is a measure 
of the discrepancy between the fitted model and the data. This comparison is made via a 
function, called the log-likelihood function, which takes into account both the link trans-
formation and the underlying distribution and compares the fit of the proposed model 
against a perfect or saturated model that fits each observation exactly. For a Binomial 
distribution, the deviance for a model with fitted values µ̂i takes the form
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(18.3)

The fit of a model is usually summarized in an analysis of deviance (ANODEV) table. The 
ANODEV table starts with the total deviance of the observations, obtained as the deviance 
of a null or baseline model that assumes that the expected value is equal for all observa-
tions, i.e. ηi = η for i = 1 … N. This total deviance is partitioned into the change in deviance 
that occurs when the explanatory component is fitted, here called the model deviance 
(ModDev), and a remainder, the residual deviance (ResDev), which is the change in devi-
ance between the fitted and saturated models given by Equation 18.3. Each component 
of the total deviance has degrees of freedom associated with it, and those for the residual 
deviance are denoted ResDF. The ANODEV table is similar in spirit to the ANOVA table 
used to summarize the fit of a linear model (see Chapters 4 and 12) and takes the general 
form shown in Table 18.2 for a model with p (independent) parameters. For the model with 
an intercept and a single explanatory variate, we have p = 2. Because the components of 
the deviance generally increase as their degrees of freedom increase, it is helpful to divide 
the contributions by their degrees of freedom to get mean deviances that are on a common 
scale.

EXAMPLE 18.1C: DEMETHYLATION EXPERIMENT

In Example 18.1B, we modelled the number of normal plants (Normali) as a function of 
the log-dose of agent applied. The ANODEV table for this model is Table 18.3.

The model deviance represents differences between the null model (with one param-
eter representing the overall mean on the logit scale) and the fitted model, here a regres-
sion on logged dose. The change in deviance between these two models is 1874.77, with 
1 df as one extra parameter has been added (the slope parameter). The residual devi-
ance represents differences between the fitted model (in terms of logged dose) and the 
saturated model, which has an additional 22 parameters (to give 24 in total, one for each 
observation); the change in deviance here is much smaller. The total deviance  represents 

TABLE 18.2

ANODEV Table for a GLM with p Parameters and N Responses without Over-Dispersion

Source of Variation df Deviance Mean Deviance P (Chi-Squared)

Model p − 1 ModDev ModMDev = ModDev/(p − 1) Prob( ModDev)χp− >1
2

Residual N − p ResDev ResMDev = ResDev/(N − p)
Total N − 1 TotDev
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differences between the null and saturated models; the deviance and df from the model 
and residual contributions sum to the total values.

The appropriate method for assessment of the model depends on whether there is evi-
dence of over-dispersion, and so we consider this issue next. The residual deviance incor-
porates systematic discrepancies between the model and the observed responses, variation 
between replicate observations (observations on independent experimental units with the 
same values of the explanatory variables), and sampling variation arising from the distri-
bution of the data (here, the Binomial distribution). If there are no replicate observations 
and the fitted model provides an adequate description of the systematic trend, then only 
sampling variation contributes to the residual deviance. If this is true, then the residual 
deviance has an approximate chi-squared distribution (see Section 2.2.4) with df equal to 
the residual df. The null hypothesis that the model adequately describes the responses can 
therefore be rejected at significance level αs if the residual deviance exceeds the 100(1 − αs)th 
percentile of that chi-squared distribution. If this hypothesis is rejected, it indicates a poor 
fit of the model to the observations, which may happen for several reasons. First, the fit-
ted model might not follow the observed patterns in the data (i.e. model misspecification), 
as illustrated in Figure 18.2. In this case, the explanatory variate(s) may be transformed 
to try and improve the fit (as in Example 18.1B), or an alternative link function might be 
considered. For example, the logit link function requires the shape of the curve (on the 
natural scale) to be symmetric around probability 0.5; one alternative, the complementary 
log–log link function, allows some asymmetry in this relationship and will give a better fit 
for some data sets. Second, the response may depend on explanatory variables that have 
not been included in the model; additional explanatory variables should be tested to see if 
they improve the model. Third, the assumed distribution might be incorrect. For example, 
the Binomial distribution requires that the individual tests that comprise each observation 
should be independent. If they are not, then the observed variation might not match that 
expected for the Binomial distribution, and this will be reflected in the residual deviance. 
Fourth, outliers or influential observations may have either distorted the model or inflated 
the residual deviance. These different circumstances can be investigated with the methods 
introduced in Chapter 13 and are discussed in Section 18.2.3. If replicate observations are 
present, then variation between replicates might inflate the residual deviance even if the 
model gives an adequate fit to the data, but the checks outlined above should still be made.

In general, the quality of the approximation to the chi-squared distribution for the 
residual deviance improves as the number of observations increases; this is known as an 
asymptotic approximation. For Binomial data, the approximation improves as both the 
number of observations, N, and the number of tests per observation, mi, increase. However, 
the chi-squared approximation does not hold for binary data (i.e. mi = 1), and the approach 
for this situation is discussed in Section 18.2.7.

TABLE 18.3

ANODEV Table for the Demethylation Experiment with Explanatory Variate 
logDose = loge(Dose + 0.1) (Example 18.1C)

Source of Variation df Deviance Mean Deviance P (Chi-Squared)

Model 1 1874.772 1874.772 < 0.001
Residual 22 26.623 1.210
Total 23 1901.395
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If the residual deviance is larger than expected when compared with critical values of 
the appropriate chi-squared distribution, and if this cannot be dealt with by changing the 
model, then there is more variation present than can be accounted for by the assumed 
probability distribution. In this case, we say that the data show over-dispersion. The sim-
plest way to deal with over-dispersion is by extending the model to scale the variance 
function. In a Binomial distribution, the scaled variance takes the form
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The rationale for this approach is discussed by Collett (2002, Chapter 6). The parameter φ is 
a scaling factor, called the dispersion parameter, which is used to summarize the degree 
of over-dispersion present in the observations. Clearly, φ = 1 corresponds to the original 
model. This parameter can be estimated in several different ways. The deviance estimate 
of the dispersion is equal to the residual mean deviance (ResMDev), i.e.

 
ˆ .ϕ = ResDev/ResDF 

The Pearson estimate of the dispersion is equal to Pearson’s chi-squared (goodness-of-fit) 
statistic divided by the residual df,
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where Var( )µ i  is the variance function associated with the probability distribution (with 
φ = 1), evaluated at the estimated expected value for the ith observation. The default 
method for estimation of the dispersion parameter varies between statistical packages. 
Either of these parameter estimates can be used to give a more realistic assessment of the 
contributions of explanatory variables in the ANODEV table, and to inflate the estimated 
SEs of parameters to reflect the observed variation. However, estimation of the dispersion 
parameter changes the way that contributions to the ANODEV table should be evaluated. 
We must therefore establish whether over-dispersion is present before attempting to inter-
pret the ANODEV table.

EXAMPLE 18.1D: DEMETHYLATION EXPERIMENT

In the ANODEV table for the model with log-dose of the demethylation agent (Table 
18.3), the residual deviance takes the value 26.62 on 22 df, with P = 0.226 when com-
pared to the chi-squared distribution on 22 df. There is therefore no evidence of over-
dispersion for this model.

18.2.2.1 Interpreting the ANODEV with No Over-Dispersion

If there is no over-dispersion present, then the model and residual deviance contributions 
approximately follow chi-squared distributions with degrees of freedom equal to the df 
for each contribution. We can use the model deviance to test whether the inclusion of the 
explanatory component has improved the fit when compared with the null model. The 
null hypothesis is that the response is not related to the explanatory component. For a 
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model with a single explanatory variate, as in Example 18.1, the null hypothesis is equiva-
lent to H0: β = 0. If the model deviance, i.e. ModDev, is larger than the 100(1 − αs)th percen-
tile of the chi-squared distribution with degrees of freedom equal to the model df, then 
this null hypothesis can be rejected at significance level αs, indicating that the explanatory 
component has improved the fit compared with the null model.

EXAMPLE 18.1E: DEMETHYLATION EXPERIMENT

In Example 18.1D, there was no evidence of over-dispersion for the model with log-dose 
of the demethylation agent. In the ANODEV table (Example 18.1C, Table 18.3), the model 
deviance represents the change on addition of the logDose explanatory variate into the 
model. This deviance takes the value 1874.77 with 1 df, with P < 0.001 when compared 
with the chi-squared distribution with 1 df. This test gives strong evidence that the pro-
portion of normal phenotypes is related to the logged dose of the agent.

18.2.2.2 Interpreting the ANODEV with Over-Dispersion

If over-dispersion is present, then we expect all the components of deviance to be inflated, 
and so cannot compare them directly with a chi-squared distribution. Instead, we follow 
an approach similar to that taken in an ANOVA table (Chapters 4 and 12). The deviance 
contributions are divided by their degrees of freedom to get mean deviances that are on a 
common scale (analogous to the mean squares in ANOVA). The ratio of the model mean 
deviance (i.e. ModMDev) to the residual mean deviance (ResMDev) can then be used 
to assess whether the explanatory variable(s) have improved the fit compared with the 
null model. This introduces a new column of deviance ratios into the ANODEV table (see 
Table 18.4). Under the null hypothesis that the response is not related to the explanatory 
variable(s), the deviance ratio

 
F

ModMDev
ResMDev

=

has an approximate F-distribution, with numerator df equal to the model df (ModDF) and 
denominator df equal to the residual df (ResDF).

EXAMPLE 18.2A: LADYBIRD PREDATION

An experiment was done to investigate factors affecting predation by the Harlequin 
ladybird. Ladybirds of known sex (factor Sex, with levels 1 = female and 2 = male) were 
put individually into dishes containing six items of prey, which were either pea aphids 
or lacewing larvae (factor Prey, with levels 1 = aphid and 2 = lacewing). The experiment 
was designed as a RCBD with four rows (blocks) of four Petri dishes (one per treatment 

TABLE 18.4

ANODEV Table for a GLM with p Parameters and N Responses with Over-Dispersion

Source of 
Variation df Deviance

Mean 
Deviance Deviance Ratio P (F)

Model p − 1 ModDev ModMDev F = ModMDev/ResMDev Prob(Fp−1,N−p > F)
Residual N − p ResDev ResMDev
Total N − 1 TotDev
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combination) and was repeated on four occasions, although on one occasion only three 
rows could be completed, because of a shortage of lacewing larvae. The number of 
whole prey eaten after 60 min was counted within each dish (variate Eaten) and could 
be reasonably assumed to have a Binomial distribution. The final data set for analysis 
consisted of 60 observations (15 rows each with four treatment combinations), given in 
file prey.dat and in Table 18.5. For simplicity, here we do not distinguish between occa-
sions and label the rows as 1 … 15 (factor Row), combining the variation due to occa-
sions and rows (within occasions) into a single term.

We wish to fit a GLM with Binomial distribution and logit link. Unfortunately, it is 
not possible to account properly for the structural component within the standard GLM 
framework, as there is no parallel to the multi-stratum ANOVA. As discussed in Section 
15.3, we therefore have to either use a different method (see Section 18.4) or take an 
approximate approach by combining the explanatory and structural components. For a 
RCBD, treatment effects are estimated via within-block comparisons and an intra-block 
analysis allows us to exclude block (row) effects before we assess treatment terms, and 
so we take this approach. We use a two-way crossed structure (Section 8.2) to model the 
four treatments. This model can be written in mathematical form as

 Eaten p logit p Row Sexirs irs irs irs i r~ ( , ); ( )Binomial 6 111η η= = + + + PPrey Sex Preys rs+ ( . ) , 

where Eatenirs is the number of prey eaten in the ith row (i = 1 … 15) by the rth sex (r = 1, 
2 for 1 = female and 2 = male) with the sth prey type (s = 1, 2 for 1 = aphid, 2 = lacewing 

TABLE 18.5

Number of Prey Eaten by the Harlequin Ladybird (Example 18.2A and File prey.dat) in an 
Experiment with 15 Rows of Four Dishes, Each Containing One Ladybird (Female, F, or Male, M) 
and Six Items of Prey (Pea Aphids, A, or Lacewing Larvae, L)

Row Dish Sex Prey Eaten Row Dish Sex Prey Eaten Row Dish Sex Prey Eaten

1 1 F A 5 6 1 M L 1 11 1 M L 0
1 2 M A 2 6 2 F L 4 11 2 M A 0
1 3 F L 3 6 3 F A 0 11 3 F L 2
1 4 M L 0 6 4 M A 0 11 4 F A 2
2 1 F A 5 7 1 M A 0 12 1 M A 2
2 2 M A 2 7 2 M L 2 12 2 F L 0
2 3 F L 1 7 3 F L 2 12 3 M L 1
2 4 M L 1 7 4 F A 4 12 4 F A 4
3 1 F A 3 8 1 M A 3 13 1 M A 0
3 2 F L 0 8 2 M L 2 13 2 M L 0
3 3 M A 0 8 3 F L 5 13 3 F A 2
3 4 M L 0 8 4 F A 3 13 4 F L 0
4 1 M L 1 9 1 F L 1 14 1 M L 2
4 2 M A 1 9 2 M L 0 14 2 F L 3
4 3 F A 4 9 3 F A 0 14 3 F A 2
4 4 F L 2 9 4 M A 1 14 4 M A 1
5 1 M A 2 10 1 F A 4 15 1 F A 2
5 2 F A 1 10 2 M A 0 15 2 F L 1
5 3 M L 0 10 3 F L 0 15 3 M A 0
5 4 F L 4 10 4 M L 0 15 4 M L 0

Source: Data from P. Wells, Rothamsted Research.
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larvae), and pirs is the probability that an item of prey in this category is eaten, with 
logit transformation ηirs. We use first-level-zero parameterization (see Section 11.2.1), so 
Row1 = 0, Sex1 = 0, Prey1 = 0 and (Sex.Prey)rs = 0 for r = 1 or s = 1. Then, η111 is the logit of 
the probability for the first level of all factors (i.e. females in the first row with aphids), 
Rowi is the relative effect of the ith row, Sex2 is the difference in response between males 
and females (for aphid prey), Prey2 is the difference in response between lacewing larvae 
and aphids (for females) and (Sex.Prey)22 is the interaction effect, i.e. the additional differ-
ence for the combination of a male ladybird with lacewing larvae. The explanatory terms 
are the structural factor plus the two treatment factors and their interaction. On the logit 
scale, the model fits a separate effect for each sex × prey combination and allows a shift 
in the value for each row. This model is written with symbolic notation as

Response variable: Eaten
Probability distribution: Binomial (Number of tests = 6)
Link function: logit
Explanatory component: [1] + Row + Sex*Prey

The ANODEV table for this model is Table 18.6. The residual deviance is 69.66 with 
42 df with P = 0.005 (compared to a chi-squared distribution with 42 df). There is there-
fore evidence of over-dispersion for this model. We first consider whether we can deal 
with this by changing the model. As this is a designed experiment where we have fit-
ted effects for each row and each treatment combination, and there are no additional 
explanatory variables, we cannot identify any deficiency in the model that might be 
corrected. We might attribute the over-dispersion to variation between the behaviour of 
individual ladybirds, but we cannot usefully account for this within a simple model. We 
therefore include a dispersion parameter to model the over-dispersion, here estimated 
as the residual mean deviance,

 
ˆ .

. .ϕ = = =ResDev
ResDF

 
69 659

42
1 659

The model deviance represents the change in deviance when all of the explanatory 
terms are added into the model, with 17 df: 14 df for the 15 row effects (term Row) and 3 
df for the crossed structure Sex*Prey (four treatment combinations). To assess whether 
this model explains any variation in the response, we use the ratio of the mean devi-
ance for the model (4.214) with the residual mean deviance, to get 2.54 (= 4.214/1.659). We 
compare this deviance ratio to an F-distribution with 17 and 42 df, giving observed sig-
nificance level P = 0.007, and so conclude that there is statistical evidence that the model 
explains some of the patterns in predation. We investigate the importance of individual 
model terms in Example 18.2B.

A good strategy for analysis is to fit an initial model with the dispersion parameter 
set equal to one, assess the quality of the fit (see Section 18.2.3) and, when the fit appears 

TABLE 18.6

ANODEV Table for the Ladybird Predation Experiment (Example 18.2A)

Source of 
Variation df Deviance

Mean 
Deviance

Deviance 
Ratio P (F)

Model 17 71.635 4.214 2.54 0.007
Residual 42 69.659 1.659
Total 59 141.294
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adequate, to formally test whether the dispersion parameter is equal to one as shown 
above. Remember that this test is reliable only when the residual df is reasonably large 
and, for Binomial data, when the number of tests per observation (mi) is not too small. If 
there is evidence that the dispersion parameter is larger than 1, then over-dispersion is 
present and the analysis should proceed accordingly.

Occasionally, the dispersion parameter might appear to be substantially less than 1 and 
then under-dispersion should be considered as a possibility. Under-dispersion occurs 
where, for a given distribution, we detect less variation than expected, with ˆ .ϕ < 1  This is 
less common than over-dispersion and is often difficult to interpret or explain, and it is 
sensible to be wary in this situation. If the dispersion parameter is estimated as smaller 
than 1 when it is in fact equal to 1, then the significance of hypothesis tests will be inflated 
and estimated SEs will be too small. To avoid these problems, leave the dispersion param-
eter equal to 1 in cases of apparent under-dispersion.

18.2.2.3 The Sequential ANODEV Table

If the explanatory component consists of several different model terms, then we can cal-
culate a set of incremental deviances (and df) from the change in deviance (and df) that 
occur on successive addition of individual terms into the model, producing a sequential 
ANODEV table analogous to the sequential ANOVA tables introduced in Sections 11.2.2 
and 15.4.1. If there is no evidence of over-dispersion, then the incremental deviance is 
compared with a chi-squared distribution with df equal to the incremental df obtained 
on addition of the term into the model. If over-dispersion is present, then the deviance 
ratio for the term (incremental deviance divided by the incremental df, all divided by the 
residual mean deviance) is compared to an F-distribution, as illustrated in Example 18.2B. 
Because of the non-linear nature of the GLM, terms that would be orthogonal in a linear 
model (Section 11.1) will not be orthogonal in a GLM, i.e. the sequential deviance for a term 
in an ANODEV table depends on the order in which that term is added into the model, as 
illustrated in Example 18.2B. We can also construct a set of marginal deviances by calculat-
ing the change when a term is dropped from the model (c.f. Sections 11.2.3 and 15.4.2). In 
general, we follow the strategies for model selection outlined in Section 15.5.1 to obtain a 
predictive model.

EXAMPLE 18.2B: LADYBIRD PREDATION

Two sequential ANODEV tables for the ladybird predation experiment are shown in 
Table 18.7. In both sequences, we fit the structural factor Row first, followed by the 
explanatory crossed structure, which we fit as Sex*Prey in Table 18.7a and as Prey*Sex 
in Table 18.7b. First, we consider the former case. As we identified over-dispersion in 
Example 18.2A, individual model terms are assessed on their deviance ratios, with 
ResMDev = 1.659. Using similar notation for incremental deviances as that developed 
for incremental sums of squares earlier (Sections 11.2 and 15.4), we calculate the incre-
mental deviance ratio for factor Sex as

 
F

Dev( | /df |
ResMDev

/
1 42

33 471 1
1 659

2,
) ( ) ( . )

.
S Sex [1] Sex [1]= + + = = 00 181. . 

The numerator df for the F-statistic are the incremental df for the term added into the 
model and the denominator df are the residual df. Deviance ratios for other terms are 
calculated similarly from their incremental deviances and df.
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Our aim is to identify a parsimonious predictive model, so we progressively drop 
terms while respecting marginality (see Section 15.5). We therefore start by consider-
ing the interaction term, which is not significant (F 691 42 0 16 0 0, . , . ).S.P = =P  This test is the 
same in both sequential ANODEV tables because the term is fitted last in both cases. 
As the interaction is not significant, we can try to simplify the model further. We have 
many residual df (ResDF = 42) and there are only these two sequential ANODEV tables, 
so we can identify the predictive model from them. We therefore inspect the two main 
effects. In a linear model with this structure, factors Sex and Prey would be orthogonal, 
but Table 18.7 illustrates that this is not the case here, although the two tables are simi-
lar. We find that factor Sex is statistically significant whether it is fitted before or after 
factor Prey (P < 0.001 in both cases), and that factor Prey is not statistically significant 
in either sequence (P ≥ 0.085). As factor Row represents a structural term, we do not 
consider removing it from the model (see Section 15.5). Our predictive model therefore 
takes the form

Explanatory component: [1] + Row + Sex

Fitting this model leads to a residual mean deviance of 1.706 (with 44 df), and an 
observed F-statistic for the Sex main effect of F 1).1 44 19 617 0 00, . ( .S = <P  So this experi-
ment gives strong evidence that the number of prey eaten by male and female ladybirds 
differ, but no evidence of any preference between the two prey types. We explore this 
difference between male and female ladybirds further in Examples 18.2D and 18.2E.

18.2.3 Checking the Model Fit and Assumptions

The first step of model checking consists of plotting the fitted model with the observed 
data. Figure 18.2 demonstrated that, for a model with a single explanatory variate, prob-
lems with model fit may be highlighted by plots of the fitted model on the scale of the lin-
ear predictor, where a straight line is expected. The residual plots described in Chapters 
5 and 13 can also be used to give more information on the model fit, but the definition 
of the residuals needs to be extended for GLMs, and several methods are available. As 
previously, simple residuals can be defined as the difference between the observation, yi, 
and its fitted value, i.e. yi i− ˆ .µ  However, these residuals are subject to the same heteroge-
neity as the observations, and so are usually divided by the square root of the estimated 

TABLE 18.7

Two Sequential ANODEV Tables (Deviance Not Shown) for the Ladybird Predation Experiment 
with Explanatory Factors Row, Sex and Prey (Example 18.2B)

(a) (b)

Source of 
Variation df

Mean 
Deviance

Deviance 
Ratio

P 
(F)

Source of 
Variation df

Mean 
Deviance

Deviance 
Ratio

P 
(F)

+ Row 14 2.34 FR = 1.41 0.191  + Row 14 2.34 FR = 1.41 0.191

+ Sex 1 33.47 FS = 20.18 < 0.001  + Prey 1 4.62 FP = 2.79 0.103

+ Prey 1 5.15 FP = 3.10 0.085  + Sex 1 34.00 FS = 20.50 < 0.001
+ Sex.Prey 1 0.27 FS.P = 0.16 0.690  + Prey.Sex 1 0.27 FP.S = 0.16 0.690
Residual 42 1.66 Residual 42 1.66
Total 59 Total 59
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variance of the distribution, Var( ),µ i  to give the set of Pearson residuals, defined for the 
ith observation as

 

ˆ
ˆ
ˆ

.e
y

Pi
i i

i

= − µ
µVar( )

 

These residuals are called Pearson residuals as the sum of their squared values is equal 
to the Pearson goodness-of-fit statistic defined in Equation 18.4. Although we have now 
adjusted for heterogeneity of variance caused by the distribution of the observations, we 
still have to account for heterogeneity due to uncertainty in the predicted values (as in 
Section 13.2) and so we standardize the Pearson residuals by dividing them by their esti-
mated SEs.

An alternative set of residuals are constructed as the square root of the contribution 
that each observation makes to the deviance (Di defined in Equation 18.3) multiplied by 
the sign of the simple residuals; these are called the deviance residuals. For the Binomial 
distribution, the deviance residuals are calculated for the ith observation as
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The sum of the squared values of these deviance residuals is equal to the residual deviance 
of the fitted model given in Equation 18.3. These residuals must also be standardized to 
give a common variance for diagnostic plots. Both the standardized deviance and stan-
dardized Pearson residuals can be generalized to prediction and deletion residuals via 
the same ‘leave-one-out’ technique used to derive these residuals in the Normal case (see 
Section 13.2).

Because the underlying probability distribution assumed for the observations is not 
Normal, we do not necessarily expect the residuals to conform to a Normal distribution. 
However, with a few exceptions, the standardized deviance residuals have been shown 
to give a reasonable approximation to a Normal distribution. For the case of a Binomial 
distribution, the exception is when the number of tests per observation, mi, is small. In gen-
eral, the distribution of the standardized Pearson residuals may be less close to a Normal 
distribution, and Collett (2002) shows some examples for Binomial data. The standardized 
deviance residuals can therefore be considered analogous to the standardized residuals 
discussed in Chapters 5 and 13, and are appropriate for use in the residual plots described 
in those chapters.

EXAMPLE 18.2C: LADYBIRD PREDATION

Figure 18.4 shows a composite set of residual plots with standardized deviance residu-
als from the predictive model that describes numbers of prey eaten in terms of the 
factors Row and Sex (see Example 18.2B). Six diagonal stripes can be seen in the fitted 
values plot, running downwards from the left-hand side to the right-hand side of the 
graph. These stripes correspond to the six distinct observed responses (0, 1 … 5), and 
this type of pattern is likely to be found in any data set with a small number of discrete 
responses. There appears to be a little more variation in the centre of the range, but we 
judge the fitted values plot to be acceptable given the small Binomial total (six) per dish. 
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The histogram and Normal probability plots suggest that the residuals give a reason-
able approximation to a Normal distribution. These graphs therefore indicate no large 
discrepancies between the assumed model and the observed data.

18.2.4 Properties of the Model Parameters

As in the linear models seen previously, each parameter estimate in a GLM has an esti-
mated SE that can be used for inference. The derivation of these SEs is beyond the scope 
of this book, but note that they are approximate and that they must include the multiplier 
ˆ , i.e. the square root of the dispersion parameter, if this is estimated. If this multiplier is 

not used when over-dispersion is present, then the SEs under-estimate the uncertainty in 
the parameter values and this could lead to incorrect conclusions.

The decision on whether a term should be included in a model should be based on the 
sequential ANODEV table(s). A null hypothesis that a particular parameter is equal to 
zero can be tested by the parameter estimate divided by its SE, but remember that the 
interpretation and value of parameters associated with terms containing factors will 
depend on the parameterization of the model. Statistical software usually uses first- or 
last-level-zero constraints for GLMs (see Sections 4.5, 11.2 and 15.2 for further details). 
If there is no over-dispersion, then the ratio of a parameter to its SE has an approximate 
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FIGURE 18.4
Composite set of residual plots based on standardized deviance residuals for the ladybird predation experi-
ment (Example 18.2C).
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Normal distribution. If the dispersion parameter is estimated, then this ratio has an 
approximate t-distribution with degrees of freedom equal to the residual df. If the abso-
lute value of the ratio exceeds the 100(1 − αs/2)th percentile of the appropriate distri-
bution, then the null hypothesis that the parameter is equal to zero can be rejected at 
significance level αs. The SEs can be used to construct approximate CIs for parameter 
values in the usual manner.

EXAMPLE 18.2D: LADYBIRD PREDATION

The predictive model fitted in Example 18.2B can be written in mathematical form with 
first-level-zero parameterization as

 
ˆ ( ˆ ) ˆ ,η ηir ir i rp Row Sex= = + +logit  11

 

where p̂ir is the predicted probability that an item of prey is eaten in the ith row (i = 1 … 
15) for the rth sex (r = 1, 2; 1 = female and 2 = male) with logit transformation ˆ .ηir  Then, 
η̂11 is the logit of the expected value for females in the first row, Rowi

  is the relative 
effect of the ith row and Sex

2 is the difference in response between males and females 
on the logit scale. Table 18.8 shows the estimated parameters for this model with their 
estimated SEs.

The estimated effect of male ladybirds is Sex
2 = −1.550 (SE 0.3712), which indicates 

that males tended to eat less prey than females.

TABLE 18.8

Parameter Estimates (First-Level-Zero Parameterization) with Standard 
Errors (SE), t-Statistics (t) and Observed Significance Level (P), for the 
Ladybird Predation Experiment with Explanatory Factors Row 
(15 Levels) and Sex (Two Levels, 1 = Female, 2 = Male) (Example 18.2D)

Term Parameter Estimate SE t P

[1] η11 0.386 0.6013 0.642 0.524
Row 1 Row1 0 — — —
Row 2 Row2  −0.200 0.8259  −0.242 0.810
Row 3 Row3  −1.774 1.0117  −1.754 0.086
Row 4 Row4  −0.408 0.8354  −0.488 0.628
Row 5 Row5  −0.626 0.8496  −0.737 0.465
Row 6 Row6  −1.121 0.8983  −1.247 0.219
Row 7 Row7  −0.408 0.8356  −0.488 0.628
Row 8 Row8 0.582 0.8171 0.712 0.480
Row 9 Row9  −2.246 1.1303  −1.987 0.053
Row 10 Row10  −1.417 0.9420  −1.504 0.140
Row 11 Row11  −1.417 0.9414  −1.505 0.139
Row 12 Row12  −0.626 0.8492  −0.737 0.465
Row 13 Row13  −2.246 1.1387  −1.973 0.055
Row 14 Row14  −0.408 0.8355  −0.488 0.628
Row 15 Row15  −1.774 1.0119  −1.753 0.086
Sex 1 Sex1 0 — — —
Sex 2 Sex2  −1.550 0.3712  −4.176 < 0.001
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18.2.5 Evaluating the Response to Explanatory Variables: Prediction

In general, examination of estimated parameters from the predictive model has limited 
scope, as it is usually the overall response to explanatory variables that is of interest. The 
presence of the link transformation makes prediction for GLMs more complex than for 
linear models, although the issues that arise are similar to those for the presentation of 
results following analysis of transformed data (see Section 6.3).

Prediction on the linear predictor scale is straightforward, as on this scale the model 
is linear and the estimated SE usually gives a good approximation of the uncertainty 
associated with the predicted value. Prediction for a specific combination of explanatory 
variables can be made on the linear predictor scale, then a CI can be generated from the 
Normal distribution (no over-dispersion) or t-distribution (over-dispersion present), and 
the prediction and its confidence limits can be back-transformed to the natural scale. While 
software will calculate SEs on the natural scale (via the delta method), these SEs tend to be 
much less accurate than those calculated on the linear predictor scale because they make 
an additional set of approximating assumptions. Back-transformed CIs therefore tend to 
give a better measure of uncertainty than these approximate SEs.

Further complications arise when averages over variables are required, or where the 
main objective of the study is comparison between groups, or both.

Averaging over variables is required for predictions for a subset of the explanatory 
variables. The usual procedure is to form predicted values for all combinations of the 
explanatory variables, i.e. at specified values of variates and all levels of factors. In a 
linear model, predictions for the variables of interest are then obtained as averages over 
the remaining variables (Section 15.5.2). In a GLM, we must also consider back-transfor-
mation to the natural scale and this leads to two possibilities, either averaging before 
back-transformation or averaging afterwards, and these two strategies will give differ-
ent numerical results with different interpretations. This situation is discussed in the 
context of analysis of transformed data by Morris (1985) and illustrated in Example 18.2E. 
Averaging before back-transformation can be interpreted as making a prediction at an 
average value of the remaining variables. This gives individual predictions with SEs 
on the linear predictor scale, CIs can be formed for each prediction, and these CIs can 
be back-transformed to give a realistic measure of uncertainty on the natural scale. If 
instead the full set of predictions is back-transformed before averaging, this is analogous 
to predicting an average response on the natural scale for an experiment in which the 
predicted combination was applied with each combination of levels of the remaining 
variables. Unfortunately, only approximate SEs on the natural scale can be calculated for 
this type of prediction.

We now consider comparison between specific combinations of explanatory variables. 
Comparisons can easily be made on the linear predictor scale, with appropriate SEs, and 
so this is the scale on which you should test such comparisons. However, interpretation 
of comparisons on the natural scale can be difficult. We illustrate this problem using an 
experiment with a set of t treatment groups. We label the transform of the expected value 
for the jth group on the linear predictor scale as ηj, and are interested in the quantity 
ηj − ηk, with predicted value ˆ ˆ .η ηj k−  Ideally, as in the case of individual predictions, we 
should like to take a CI for this quantity and map it on to a meaningful quantity on the 
natural scale. This can be done for the log link function (see Section 18.3.1), since

 
ˆ ˆ log ( ˆ ) log ( ˆ ) log

ˆ
ˆ ,η η µ µ
µ
µj k j k

j

k
− = − =





e e e  



499Models for Non-Normal Responses

so the comparison on the log scale is the log of the ratio of the predictions on the natural 
scale, and this ratio can be back-transformed and interpreted (see Example 18.3). For a logit 
link function, we find that
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so the comparison on the logit scale is the log of the odds-ratio of the predictions on the 
natural scale. Unfortunately, the odds-ratio is rather less interpretable. In general, if the 
quantity of interest is the difference in expected values on the natural scale, i.e. ˆ ˆ ,µ µj k−  
then there is no real alternative to back-transforming predictions and using the approxi-
mate SE calculated on the natural scale. With link function g(), the difference is then esti-
mated as

 
ˆ ˆ ( ˆ ) ( ˆ ) .µ µ η ηi j i j− = −− −g g1 1  

EXAMPLE 18.2E: LADYBIRD PREDATION

We established a predictive model in Example 18.2D, and now we want to understand 
how an estimated decrease for males of 1.55 units on the logit scale translates into num-
ber of prey eaten. Table 18.9 lists the full set of predictions and the back-transformed 
proportions. The predictions for male ladybirds are 1.55 units smaller than for female 
ladybirds in the same row on the logit scale, but the same difference varies between 0.10 
(rows 9 and 13) and 0.37 (row 8) once back-transformed.

TABLE 18.9

Predictions for Ladybird Predation on Linear Predictor Scale and Back-
Transformed as Probabilities for Each Sex in Each Row (Example 18.2D)

Row

Linear Predictor Scale (Logit) Back-Transformed (Fitted Probability)

Female Male Female Male

1 0.386  −1.164 0.595 0.238

2 0.186  −1.364 0.546 0.204

3  −1.388  −2.934 0.200 0.050

4  −0.021  −1.571 0.495 0.172

5  −0.240  −1.790 0.440 0.143

6  −0.734  −2.284 0.324 0.092

7  −0.021  −1.571 0.495 0.172

8 0.968  −0.582 0.725 0.359

9  −1.860  −3.410 0.135 0.032

10  −1.031  −2.581 0.263 0.070

11  −1.031  −2.581 0.263 0.070

12  −0.240  −1.790 0.440 0.143

13  −1.860  −3.410 0.135 0.032

14  −0.021  −1.571 0.495 0.172

15  −1.388  −2.938 0.200 0.050
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To predict the difference in number of prey eaten between male and female ladybirds 
in an average row, we take the average of the predictions on the logit scale as
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We can construct 95% CIs for these predictions on the logit scale as (−0.996, −0.110) for 
females and as (−2.733, −1.473) for males. We back-transform these estimates and CI, 
and estimate the probability of an item of prey in an average row being eaten by female 
ladybirds as 0.37 with 95% CI (0.27, 0.47), and by male ladybirds as 0.11 with 95% CI (0.06, 
0.19). Note the asymmetry of the CI for the male ladybirds. Approximate SEs can be 
calculated directly for these back-transformed predictions as 0.051 and 0.030 for female 
and male ladybirds, respectively, so the approximation is better for the female than for 
the male ladybirds.

To predict the average difference in number of prey eaten between male and female 
ladybirds across the whole experiment, we take the average of the back-transformed 
predictions, as
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giving a predicted average proportion of prey eaten of 0.38 (approximate SE 0.044) for 
females and 0.13 (approximate SE 0.032) for males. In this example, these quantities dif-
fer only a little from those averaged on the linear predictor scale. In general, the appro-
priate scale for prediction will depend on the context of the study.

18.2.6 Aggregating Binomial Responses

It is not always clear how Binomial responses should be recorded. For example, consider 
an experiment looking at the prevalence of pests on different varieties within an orchard, 
where four individual branches are assessed as clean or infested on six trees of each vari-
ety. The investigator might wonder whether to record the results as binary scores (0 or 1) 
for each branch, as the number of infested branches per tree (out of 4), or as the number of 
infested branches per variety (out of 24)? As long as we fit the same explanatory compo-
nent, we obtain the same parameter estimates at any of these scales, but we shall obtain a 
different residual deviance. As a rule of thumb, we suggest that the appropriate scale for 
analysis (and hence the minimum scale for recording measurements) is the smallest exper-
imental unit present in the study (see Section 3.1), as this avoids the issues with binary data 
described in the next section. In our orchard example, this would be the individual tree, 
as the variety changes between but not within trees. The residual deviance then reflects 
expected tree to tree variation in the underlying susceptibility to disease in addition to 
Binomial sampling variation. A deviance larger than that expected for Binomial samples 
indicates that such variation is present, and this can be accounted for by the dispersion 
parameter φ.

In some circumstances, it can help to aggregate Binomial observations further, to give a 
single response for each of the study conditions, i.e. for each combination of explanatory 
variables, or group, present. It is appropriate to do this only when replicate observations 
are obtained under uniform conditions and no systematic differences between them are 
expected. The residual deviance can then be used to assess the fit, and any indication of 
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over-dispersion indicates lack of fit in the model (as discussed in Section 18.2.2). This is 
useful only when the df associated with the model is smaller than the number of groups, 
and relies heavily on the assumption of a Binomial distribution to derive the sampling 
variance.

18.2.7 The Special Case of Binary Data

Binary responses, also known as a Bernoulli data, are a special case of Binomial data with 
only one test per observation (i.e. mi = 1), so that the observations can take only the values 
0 or 1. Analysis follows the same procedure as for other Binomial responses, but not all of 
the results discussed above are valid for binary data. In particular, the residual deviance 
does not give a reliable measure of over- or under-dispersion, and so the use of an esti-
mated dispersion parameter is not recommended. The Pearson and deviance residuals are 
uninformative as they will not be distributed as an approximate Normal distribution, and 
a fitted values plot will often show strong patterns, even if the model is adequate.

From a practical point of view, it is better to avoid binary observations whenever pos-
sible, as they provide very little information per observation. One way of doing this is to 
take several independent replicate observations on each unit. For example, if the aim of an 
experiment is to assess disease incidence in a field trial then a binary assessment of each 
plot for presence or absence of the disease will be quick, but gives little information on the 
extent of infection (one plant infected per plot gives the same answer as all plants infected), 
and it can make it difficult to discriminate between treatments. If 10 (independent) plants 
per plot are individually assessed for presence of disease, then responses range from 0 
to 10, giving some information on the extent as well as presence of disease, as well as 
a more tractable analysis. This is an example where sub-sampling within experimental 
units provides valuable extra information and, in this type of situation, data should always 
be considered as total counts within each unit rather than individual binary observations 
(see remarks in Section 18.2.6). In scenarios where binary data are unavoidable, replicate as 
much as possible to counteract the lack of information per observation.

18.2.8 Other Issues with Binomial Responses

In this chapter, we have described one common implementation of a Binomial GLM; 
however, many variations are possible. For example, some statistical software prefers 
the Pearson rather than the deviance estimate of the dispersion parameter and provides 
Pearson rather than deviance residuals. Similarly, the dispersion parameter might be fixed 
at 1 by default rather than estimated, or might be estimated but not used within the model 
for testing and inference unless this is explicitly requested.

The logit link is the canonical link for the Binomial distribution and widely used, par-
ticularly in medical applications, because of its interpretation in terms of odds-ratios, 
although in practice this may be difficult to explain to non-mathematicians. Historically, 
a method called probit analysis was used for dose–response studies (Finney, 1971), and 
the simplest probit analysis model is equivalent to a Binomial GLM with probit link. The 
probit function is the inverse of the cumulative distribution function for the Normal dis-
tribution, and can be interpreted in terms of a Normal tolerance distribution. Both the logit 
and probit functions are symmetric around probability p = 0.5 and usually give similar 
answers. Another option is the complementary log–log link function, loge(−loge(1 − p)), 
which has asymmetric curvature. In all cases, the fit of a model and residuals should 
always be checked graphically, as this may reveal an inappropriate link function.
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It is common to find that the response needs to be modelled in terms of the logarithm 
of an explanatory variate, rather than in terms of the explanatory variate directly. This is 
interpreted by Collett (2002, Section 4.1) in terms of an asymmetric tolerance distribution, 
allowing a few individuals to have unusually high tolerances.

One limitation of regression within a Binomial GLM is that the success probability must 
tend to zero as the explanatory variate decreases to −∞, and must increase to one as the 
explanatory variate increases to +∞. If this is not the case, then a slightly more complex 
non-linear model is required, further details of these models are given in Collett (2002, 
Chapter 4) or Finney (1971).

One common use of logistic or probit regression in a dose–response context is the esti-
mation of the dose required to achieve a certain response. For example, in pesticide studies 
the LD50, the dose required to kill 50% of a sample, is often used to compare compounds. 
This is different from a standard prediction in that we are trying to predict the value of the 
explanatory variate at which a certain response is obtained, rather than vice versa. This is 
an example of calibration (sometimes called inverse prediction), and was discussed for 
SLR in Section 12.9.3. Approximate SEs or CIs for this prediction, sometimes called fiducial 
limits, can be obtained from Fieller’s theorem (Collett, 2002, Chapter 4). Note that use of 
an LD50 to compare compounds is sensible only if the responses can be fitted by a paral-
lel lines model on the linear predictor scale; otherwise, a single value cannot capture the 
overall differences between the compounds.

In Chapter 6, we suggested a logit transformation to deal with proportion data where 
the numbers of trials mi are reasonably large (> 20) and roughly equal across units, and 
the observed values are not too extreme (not too many observed proportions close to 0 
or 1). This recommendation is justified as a Normal distribution can provide a reason-
able approximation to the Binomial distribution under these conditions. This approach is 
particularly helpful when the experimental units are structured (e.g. a split-plot design), 
as this structure cannot always be accounted for easily in the GLM framework (as for 
regression, see Section 15.3). However, in all other cases, the use of the appropriate GLM 
is recommended.

Finally, think about the intended sampling scheme when Binomial data are to be col-
lected. It is important that trials are independent, so there should be no competition for 
resources between the individuals assessed. The number of trials and number of obser-
vations should also be considered. Increasing the number of trials per observation also 
increases the precision of an individual observation, so very small numbers of trials should 
be avoided whenever possible, but increasing the number of observations may have more 
effect on the precision of the overall analysis.

18.3 Analysis of Count Data: Poisson Responses

A Poisson distribution arises as a count of the number of times a phenomenon occurs 
within a fixed interval of time or space. Examples of counts that may be modelled as a 
Poisson distribution include

• The number of bees arriving at a rape plant per minute
• The number of mutations in a given length of DNA after radiation is applied



503Models for Non-Normal Responses

• The number of pine trees per unit area of mixed forest
• The number of bacteria in a given volume of liquid

If an observation is Poisson-distributed, then it can take only non-negative integer val-
ues, 0, 1, 2 … +∞. In theory, there should be no upper bound, but in practice, some physical 
upper bound can apply without invalidating the Poisson distribution assumption, so long 
as this limit is large enough in relation to the responses to avoid truncating the distri-
bution. The Poisson distribution is defined by a single parameter, the mean μ. We write 
that an observation yi is Poisson-distributed with expected value μi as yi ~ Poisson(μi). The 
probability of obtaining a specific value yi for the ith observation can be written in terms 
of its expected value as
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The probability of observing a specific outcome, for example, Prob(yi = 0), depends only on 
the unknown parameter μi. If yi follows a Poisson distribution, then both its expected value 
and variance are equal to the parameter μi, i.e.

 E(yi) = μi ; Var(yi) = μi .

There is therefore a strong variance–mean relationship for this distribution. In the context 
of GLMs, we hypothesize that the expected value of the observation, μi, may depend on 
one or more explanatory variables.

EXAMPLE 18.3A: PEA APHID SURVEY

An ecological survey was done to investigate the co-occurrence of various insect preda-
tor and prey species. Here, we consider a subset of the data relating to one aphid species, 
the pea aphid, Acyrthosiphon pisum. In each of three fields, 15 randomly chosen triplets of 
adjacent bean plants were inspected and the number of pea aphids present on the three 
plants was recorded. The data are in Table 18.10, and file aphids.dat contains explana-
tory factor Field (three levels) to identify the observations by field, factor Sample to label 
the 15 samples within each field, and response variate AphidCount which holds the 
total count of aphids at each sample point. The objective here is to determine whether 
infestation differed among the three fields.

The data are shown in Figure 18.5: they are discrete counts, and the variance between 
replicate observations for each field ( . , . , .s s s1

2
2
2

3
2= = =14 69 119 97 21 24) appears to 

increase with the mean count ( . , . , .y y y1 2 3• • •= = =4 6 15 4 6 7), although the variances 
are clearly much larger than the sample means in each case.

18.3.1 Understanding and Defining the Model

We recommend reading Section 18.2 before proceeding further as the analysis of Poisson 
responses using a GLM follows the same framework as the analysis of Binomial responses. 
The major difference between the two cases is in the form and interpretation of the model. 
Again, models can be written in terms of quantitative or qualitative variables, or both, but 
here we introduce the Poisson model using a single qualitative variable (factor) and later 
consider other cases. We label the units by groups (j = 1 … t) and label observations within 
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groups (k = 1 … nj), so that yjk is the response for the kth observation in the jth group. The 
model with a single explanatory factor is then written as

 E(yjk) = μj with ηj = g(μj) = η1 + νj ,

where g() is the link function, as described in Section 18.1. Each replicate observation in 
the jth group has a common expected value, namely, μj, and after transformation by the 
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FIGURE 18.5
Counts of pea aphid (•) from each of three bean fields (Example 18.3A) with predicted field counts (•) from the 
fitted model (Example 18.3B).

TABLE 18.10

Counts of Pea Aphid from 15 Samples in Three Bean Fields (Example 18.3A 
and File aphids.dat)

Field Sample Count Field Sample Count Field Sample Count

1 1 0 2 1 24 3 1 3
1 2 3 2 2 10 3 2 2
1 3 5 2 3 21 3 3 10
1 4 15 2 4 28 3 4 14
1 5 7 2 5 43 3 5 4
1 6 5 2 6 11 3 6 11
1 7 2 2 7 14 3 7 6
1 8 5 2 8 22 3 8 2
1 9 4 2 9 8 3 9 3
1 10 6 2 10 7 3 10 5
1 11 1 2 11 1 3 11 3
1 12 5 2 12 20 3 12 13
1 13 1 2 13 6 3 13 5
1 14 9 2 14 10 3 14 4
1 15 1 2 15 6 3 15 15

Source: Data from P. Wells, Rothamsted Research.
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link function, this takes the value ηj. The model uses first-level-zero parameterization (see 
Sections 4.5, 11.2 or 15.2 for details). The parameter η1  represents the transformed value of 
the population mean for the first group, and νj represents the difference between the jth 
and first group on the linear predictor scale, with constraint ν1 = 0.

The canonical link function for Poisson responses is the log link, and a model using this 
link function is called a log-linear model. The model can then be written as

 η µ η νj j j= log ( )  e = +1 ,

so the natural logarithm of the expected mean count changes according to the group it 
belongs to. We can rearrange this expression to write the model in terms of the expected 
counts as

 µ η η ν η νj j j j= = + = ×exp( ) exp( ) exp( ) exp( ) .1 1

On the natural scale, this is a multiplicative model (see also Section 6.4), and the fitted 
values can take non-negative values only. The Poisson GLM with log link can therefore 
be considered as an exponential model that accounts for the Poisson distribution of the 
responses and their associated heterogeneity. This exponential model is not completely 
general (see Section 17.3), as it is constrained to have a lower asymptote of zero.

For counts held in response variate Y with groups labelled by the explanatory factor 
Group, this Poisson GLM can be represented in symbolic form as

Response variable: Y
Probability distribution: Poisson
Link function: log
Explanatory component: [1] + Group

As in Section 18.2, to fully specify the GLM, we need to give the probability distribution 
and link function in addition to the response variate and explanatory component of the 
model.

Parameter estimation is achieved by maximum likelihood estimation, and again 
results will be obtained directly from statistical software rather than being derived here. 
For data with a Poisson distribution, the deviance for a model with fitted values µ̂ j takes 
the form
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Once parameter estimates have been derived, you should use the procedures described in 
Section 18.2 to check the model fit before drawing any conclusions.

EXAMPLE 18.3B: PEA APHID SURVEY

We want to fit a model to the pea aphid data of Example 18.3A to investigate whether 
the expected count of this aphid differs among the three fields. Using the explanatory 
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factor Field and the response variate AphidCount (see Example 18.3A), we can write the 
model in symbolic form as

Response variable: AphidCount
Probability distribution: Poisson
Link function: log
Explanatory component: [1] + Field

In mathematical form, this model is written with first-level-zero parameterization as

 AphidCount Fieldjk j j j j~ , log ( ) ,Poisson( )  eµ η µ η= = +1

where AphidCountjk is the count for the kth observation in the jth field (j = 1, 2, 3) 
with expected value μj. Then, ηj is the log-transform of μj, and Fieldj is the difference 
on the log scale between the jth and the first fields. The estimated parameters are 
ˆ . , .η1 21 526 1 208= =Field  and Field

3 0 371= . , giving predicted values

 
ˆ . , ˆ . , ˆ . .η η η1 2 31 526 2 734 1 897= = =  

We can back-transform these values to estimate the expected number of aphids per 
sample in each field as

 
ˆ exp( . ) . , ˆ exp( . ) . , ˆ exp( . ) .µ µ µ1 2 31 526 4 6 2 734 15 4 1 897 6 7= = = = = =  ..

These predictions are equal to the mean counts for each field (see Example 18.3A) and 
Figure 18.5 shows these estimated field means with the observations.

18.3.2 Analysis of the Model

As described in detail in Section 18.2.2, the ANODEV table is formed by a partition of the 
total deviance into the change in deviance between the null model (overall mean) and the 
fitted model, and the change in deviance between the fitted model and the saturated model 
(where each observation is fitted exactly). If the residual deviance is larger than expected, 
then the fit of the model should be examined graphically to check for misspecification or 
outliers and addition of other explanatory variables should be considered. If these measures 
do not reduce the residual deviance to a value consistent with the expected chi-squared dis-
tribution, then, as with Binomial data, a dispersion parameter can be added to the model, 
so that

 Var(yi) = φ μi .

The presence of an estimated dispersion parameter changes the interpretation of entries 
in the ANODEV table in the same manner as for Binomial responses (see Section 18.2.2.2), 
requiring the use of deviance ratios and tests based on the F-distribution. In practice, 
over-dispersion is usually present for count data. For models with several explanatory 
terms, sequential ANODEV tables or marginal tests can be used to identify the predic-
tive model. Assessment of individual parameters and prediction follows as described in 
Section 18.2.4.
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EXAMPLE 18.3C: PEA APHID SURVEY

Table 18.11 is the ANODEV for the model of Example 18.3B. Here, the residual deviance, 
ResDev, has value 191.475 with 42 df (P < 0.001 when compared with a  chi-squared dis-
tribution with 42 df). So there is strong evidence of over-dispersion for this model, 
which fits with our preliminary observation that the within-field variances were 
much larger than the within-field means (Example 18.2A). We might speculate that 
this over-dispersion arises from variation in prevalence (patchiness) between dif-
ferent areas of each field and perhaps between plants. The deviance estimate of the 
dispersion parameter is equal to 4.559 and the model deviance ratio is calculated as 
F = 52.728/4.559 = 11.566. Compared with an F-distribution with 2 and 42 df, this devi-
ance ratio is highly significant (P < 0.001). We therefore reject the null hypothesis and 
conclude that there are statistically significant differences in the mean count of pea 
aphids between fields.

Figure 18.6 shows the composite set of residual plots for these data based on standard-
ized deviance residuals (Section 18.2.3). In these plots, the residuals appear somewhat 
skewed, but there is no strong evidence of variance heterogeneity and the Normal plots 
form approximately straight lines, so the model appears to give an adequate description 
of the data.

Further discussion with the investigator revealed that samples were taken along 
transects rather than from random positions in each field. In this case, one might 
suspect dependence between samples, with samples closer together on a transect 
being more strongly correlated than those further apart. We investigate dependence 
(Section 5.2.2) using an index plot of the standardized residuals against transect posi-
tion (sample number) for each of the three fields separately (Figure 18.7a), and by plot-
ting each residual against the residual for the previous sample on the same transect 
(Figure 18.7b). There is no evidence in either graph of correlation between successive 
observations.

We therefore accept the model and move on to interpretation. Our main interest is in 
quantifying differences between fields. With a log link function, we can use the prop-
erty that differences on the log scale back-transform to give ratios on the natural scale 
(see Section 18.2.5). On the log scale, the estimated difference between the second and 
first fields is

 
ˆ ˆ . ,η η2 1 2 1 208− = =Field  

with SE = 0.2929 and P < 0.001, indicating significantly larger counts in field 2. Since

 
ˆ ˆ log ( ˆ ) log ( ˆ ) log ( ˆ ˆ ) ,η η µ µ µ µ2 1 2 1 2 1− = − =e e e /  

TABLE 18.11

ANODEV Table for the Pea Aphid Survey with Explanatory Factor 
Field (Example 18.3C)

Source of Variation df Deviance
Mean 

Deviance P (Chi-Squared)

Field 2 105.456 52.728  < 0.001
Residual 42 191.475 4.559
Total 44 296.931 6.748



508 Statistical Methods in Biology

the back-transformation of this difference gives us ˆ ˆ exp( ˆ ˆ ) exp( . )µ µ η η2 1 2 1 1 208= − = =
3 35. . The expected count in field 2 is therefore estimated to be 335% of the expected 
count in field 1. We can construct a 95% CI for this quantity on the log scale as

 
( ) . ( . . )[ . ]η η η η   2 1 42

0 025
2 1 1 208 2 108 0 2929− ± × −  = ± ×t SE( )   = ( . , . ) .0 617 1 799  

When transformed back to the natural scale, the CI is exp(0.617, 1.799) = (1.85, 6.05), indi-
cating that the ratio of expected counts between the fields may be smaller than 2 or as 
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(a) Index plot of standardized deviance residuals against transect position within each of three fields and (b) 
plot of residuals against previous residuals (within transects) for the pea aphid survey (Example 18.3C). • field 
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large as 6. If we follow a similar procedure for comparing the third field with the first 
field, we find

  ˆ ˆ . ,η η3 1 3 0 371− = =Field   

with SE = 0.334 and no evidence of a difference in expected count between these two 
fields (P = 0.273). Back-transformation estimates the ratio as 1.45 with 95% CI equal to 
(0.74, 2.84), confirming that a ratio of 1 is a plausible value. A similar calculation can be 
carried out for fields 2 and 3.

18.3.3 Analysing Poisson Responses with Several Explanatory Variables

In Example 18.3, we considered the case of Poisson responses with a single explanatory fac-
tor. We can also use log-linear models for variates or a mixture of factors and variates. Below, 
we demonstrate the modelling process for two explanatory variables, a factor and a variate.

EXAMPLE 18.4: CONIDIAL RELEASE EXPERIMENT

An experiment was set up with the primary aim of measuring aphid infection rates 
in response to differing doses of fungus. Aphids in inoculation chambers were sub-
jected to conidia showers from sporulating cadavers from one of two different sources 
(a clone or a standard source) for one of eight time periods ranging from 0 to 80 min. 
Estimates of the conidial doses received by the aphids were obtained as counts of 
spores on slides placed in the chambers. Here, we investigate the relationship between 
the achieved dose (variate Conidia) and infection time (variate Time) for the two types 
of source (factor Source). Each time period and source combination was tested in each 
of two experimental runs (factor Run). Separate sources were used for each replicate 
of each time period and the observed counts are listed in Table 18.12.

The zero time period is a negative control: it should not be possible for any conidia to 
be released in no time, so this category just checks for contamination of slides, and the 
resulting zero counts verify that this was not present. We remove this category prior 
to analysis as it contains no information relating to the explanatory variable (see also 
discussion in Section 8.5). The data, excluding the zero time periods, can be found in file 

TABLE 18.12

Number of Conidia Released by Different Sources 
over Eight Time Periods (Example 18.4 and File 
conidia.dat)

Time 
(min)

Source

Standard Clone

Run 1 Run 2 Run 1 Run 2

0 0 0 0 0
5 6 71 8 44
10 71 223 173 209
15 157 426 165 383
20 568 1391 584 1188
25 883 1098 1296 627
40 1436 993 400 1628
80 3543 4295 4981 4302

Source: Data from J. Baverstock, Rothamsted Research.
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conidia.dat. The aim of this analysis is to establish whether there is any difference in 
release rates between the two sources and this can be interpreted as a regression with 
groups (see also Section 15.1).

Preliminary investigation, plotting the log number of conidia against the time period, 
indicated a curved relationship in terms of time, but an approximate straight line rela-
tionship with a log transformation of time; hence, we construct the explanatory variate 
logTime = loge(Time). The experiment is set up as a RCBD, with runs as blocks and all 
the experimental conditions evaluated once within each run. As in Example 18.2, we 
incorporate the structural component (factor Run) in the explanatory component of the 
model to obtain an intra-block analysis, and fit the Run factor before the explanatory 
terms (see Section 15.3). The initial model fits separate lines for each source. In addi-
tion, as there are replicates for each treatment combination, we can formally investigate 
model misspecification with the lack-of-fit test described in Section 12.8, using a factor 
Period that has a separate level for each time period. The initial model can therefore be 
written in symbolic form as

Response variable: Conidia
Probability distribution: Poisson
Link function: log
Explanatory component:  [1] + Run + logTime + Period + Source

 + logTime.Source + Period.Source

The residual deviance of 2006.1 with 13 df for this model indicates substantial over-
dispersion (P < 0.001). This cannot be explained in terms of outliers, misspecification or 
missing explanatory variables, and the residual plots (not shown) are adequate, so we 
use an estimated dispersion parameter, ˆ . . .ϕ = =2006 1 13 154 3/  We use marginal F-tests 
to identify the predictive model, respecting marginality, and the model selection pro-
cess is shown in Table 18.13.

We start with the full model (Model 1 in Table 18.13) and examine the lack-of-fit term, 
Period.Source, which tests for deviations from the separate straight lines for each 
source. This term is not statistically significant (P = 0.987) and so we drop it. As we 
have few residual df here (ResDF = 13), we choose to refit the model excluding term 
Period.Source before proceeding to Model 2 in Table 18.13. Dropping a term does not 
change the other incremental deviances or mean deviances, but the dropped term is 
merged with the residual and so the residual deviance, residual df and deviance ratios 
all change. Because the mean deviance of the Period.Source term was substantially less 
than 1 and the residual df were small, the residual mean deviance for the revised model 

TABLE 18.13

Observed Significance Level (P) for Marginal F-Tests in a Sequence of 
Models for the Conidial Release Experiment with Explanatory Variate 
logTime and Explanatory Factors Run, Period and Source (Example 18.4)

Term

P

Model 1 Model 2 Model 3 Model 4

Run — — — —
logTime — — — —
Period — 0.038 0.034 0.028
Source — — 0.666 *
logTime.Source — 0.432 * *
Period.Source 0.987 * * *

Note: — = term in model but not eligible for testing, * = term omitted from model.
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is much reduced (equal to 116.4 with 18 df). We can then examine terms logTime.Source 
(separate lines, P = 0.432) and Period (lack of fit to common line, P = 0.038). At this stage, 
we drop term logTime.Source and refit to get a parallel lines model with lack of fit 
(Model 3 in Table 18.13). We can then test terms Source (separate intercepts, P = 0.666) 
and Period (lack of fit, P = 0.034). There is therefore no need for separate intercepts, so 
we drop term Source, leaving the SLR with lack of fit (Model 4), which cannot be simpli-
fied further. This predictive model can be written in symbolic form as

Explanatory component: [1] + Run + logTime + Period

This fits a separate effect for each time period, and is equivalent to the simpler form

Explanatory component: [1] + Run + Period

We can write this model in mathematical form as

 log ( ) ,e  µ η η  
ij ij i jRun Period= = + +11

 

where µ̂ij  is the prediction of the expected value of counts in the jth time period for the 
ith run. To predict for an average run, we average over the runs to get
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To determine the extent and source of the lack of fit, we can compare these predic-
tions with those obtained from a model excluding the lack-of-fit term, with explanatory 
component

Explanatory component: [1] + Run + logTime

This predictive model can be written in mathematical form in terms of continuous time 
(t) as

 ˆ ( ) ˆ ˆ log ( ) ,η α βi it Run t= + +
e  

and again, we can average this model over runs to predict for a typical run as 
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Figure 18.8 shows these predictions from both versions of the model on the natural and 
linear predictor scales.

There are two time periods, 20 and 40 min, where the counts appear inconsistent with 
the fitted line, either consistently larger (at 20 min) or smaller (at 40 min) than expected. 
Further investigation is required to determine whether this irregular behaviour is char-
acteristic of the experimental system or an anomaly specific to this trial. In either case, 
since the fitted line broadly follows the observed trend, we can use it to indicate likely 
levels of conidial release to help design further experiments. We can transform the pre-
dictive model back to the natural scale as

 
ˆ ( ) exp( ˆ ( )) exp( ˆ ˆ log ( )) exp( ˆ )exp(log ( ))* * ˆ
µ η α β α βt t t t= = + =e e == ˆ ,

ˆ
λ βt  

where ˆ exp( ˆ ).*λ α=  Our predictive GLM is therefore equivalent to a power model which 
is constrained to pass through the origin, i.e. μ(0) = 0, while accounting for variance 
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heterogeneity and the strong variance–mean relationship inherent to the Poisson dis-
tribution. The slope coefficient (β) is estimated as 1.43 with 95% CI equal to (1.20, 1.65), 
so the power relationship is greater than linear (β = 1) but less than quadratic (β = 2).

18.3.4 Other Issues with Poisson Responses

The form of the variance–mean relationship in the Poisson model is quite restrictive and 
is not appropriate for all count data. The Negative Binomial probability distribution pro-
vides an extension that allows for some clustering in the responses by introducing another 
parameter into the model. This can be useful for zero-inflated Poisson responses, which 
occur when the responses resemble a Poisson distribution but with an unusually large 
number of zero counts. More sophisticated mixture models are also available in this con-
text, and further details can be found in Ridout et al. (2001).

A GLM using the Poisson distribution with the log link function deals with discrete counts 
where the variance increases with the expected value. In Chapter 6, we suggested the log-
arithm transformation for data with this type of variance–mean relationship. If all of the 
expected counts are reasonably large (i.e. > 10), then a Normal approximation often provides 
a good approximation to the Poisson distribution. However, there is one important distinc-
tion between the GLM and transformation approaches in this case. As we saw in Chapter 6, 
the transformation approach leads to group population means being estimated by the group 
geometric means, as the means are taken after the logarithm transformation. In the GLM, the 
logarithm transformation is made on the expected value, so that (in simple cases) the estimated 
count for each group is the arithmetic mean. This is a major advantage of the GLM approach 
over transformation. The only disadvantage of the GLM approach is that it can be difficult to 
account properly for complex structure in the experimental units, where this is present.

18.4 Other Types of GLM and Extensions

In this chapter, we have considered Binomial and Poisson responses as being those most 
commonly encountered in biological research. Here, we describe two other common types 
of response that can be analysed using GLMs.

5(a)

4

3

1

0
0 10 20 30 40 50

Time
60 70 80

2

Co
un

t (
×1

03 )

(b)
8

7

6

5

4

3

2

1.5 2.0 2.5 3.0
loge(time)

lo
g e(c

ou
nt

)

3.5 4.0 4.5

FIGURE 18.8
Observations (•) with predicted response from SLR (—) with 95% confidence intervals (---), and from model 
incorporating lack of fit (•) on (a) natural and (b) log scale for the conidial release experiment (Example 18.4).
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An extension to the case of Binomial proportions occurs when trials have more than two 
outcomes, which are ordered (ordinal responses). For example, instead of a plant being 
classified as healthy or infected, it might be classified as healthy or with slight, moderate 
or severe infection, giving four ordered outcomes instead of two. Models to deal with this 
situation are often called ordinal regression, and are related to logistic regression, but are 
beyond the scope of this book. Further details can be found in Agresti (2010).

Contingency tables summarize counts when each unit has been classified in terms of 
several factors. This type of data often arises from surveys. For example, a survey of farms 
might classify several weed species according to their growth habits, winter hardiness, 
and abundance in different types of crop, and the number of fields in each habit × hardi-
ness × abundance × crop category forms a contingency table. The aim of analysis would be 
to establish any association between the classifying factors. For simple surveys, the table 
may be classified by just two factors, in which case the usual Pearson chi-squared test of 
association is appropriate (McClave and Sincich, 2012). For more complex surveys, a GLM 
can be used to investigate patterns of association. In this case, the responses have a multi-
nomial distribution, but after conditioning on marginal totals, it can be shown that this is 
equivalent to fitting a GLM with a Poisson distribution and log link. A thorough overview 
of the area is given by Agresti (2007).

Finally, we note that the Normal distribution with the identity link function (i.e. no 
transformation) is a special case of a GLM. However, treating this case as a GLM leads to 
exactly the same analysis as discussed in the previous chapters, and so to avoid potential 
confusion we have not elaborated the connections here.

Since the GLM framework does not allow specification of a structural component 
within the model, we have used an intra-block analysis to deal with blocking structure 
in Examples 18.2 and 18.4. Other forms of analysis that explicitly account for a structural 
component, but which are beyond the scope of this book, include generalized linear mixed 
models (GLMMs, see Stroup, 2012), and hierarchical generalized linear models (HGLMs, 
see Lee et al., 2006).

EXERCISES

 18.1 A series of experiments investigated the interactions between a fungus that 
infests aphids and broad bean plants. Here, we consider data from a trial in 
which germination of the fungal conidia was assessed on adult aphids. A batch 
of 50 aphids was exposed to fungal conidia then split into groups of 10 aphids 
which were allocated to five plants. Each plant was allocated to a sample time: 
3, 6, 9, 12 or 24 h. At each time, 10 adult aphids were sampled from the desig-
nated plant and examined under a microscope to determine the total number 
of conidia present and the number that had germinated. The numbers of ger-
minated and total conidia on aphids from each plant (variates NGerm, Total) 
are given with the sample time (variate Time) in file germination.dat. Use a 
GLM with a Binomial distribution to investigate the pattern of germination 
over time, remembering to check for over-dispersion. Determine the predictive 
model and interpret the results.*

 18.2 Exercise 13.2 (file cabbage.dat) analysed the numbers of leaves on a set of cab-
bage plants as a function of days after transplantation. A log transformation 
was used to deal with variance heterogeneity. Repeat the analysis using a GLM 

* Data from J. Baverstock, Rothamsted Research.
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with a Poisson distribution for the untransformed response and a log link func-
tion. What is your estimate for the growth rate from this model? Is it compa-
rable with that from your model from Exercise 13.2?

 18.3 A pilot study investigated the period of leaf wetness required to success-
fully infect leaves with a foliar disease. Trays of four young plants with four 
leaves were sprayed with inoculum and then kept wet for a period of 16, 
24, 48 or 72 h. The experiment used a CE cabinet with four shelves and was 
designed as a RCBD, with shelves used as blocks. File wetness.dat holds the 
unit numbers (ID), structural factors (Shelf, Tray) with the wetness period 
(variate Wetness) and number of leaves infected (variate NInf, number out of 
16). What distribution might you expect the number of infected leaves to fol-
low? Use a suitable GLM to model the number of infected leaves in each tray, 
taking account of the design structure by including shelves in the model. 
Check for evidence of over-dispersion, check residual plots and carry out a 
formal test for lack of fit. Is there any evidence that wetness period affects the 
number of infected leaves? Predict the probability that a leaf is infected after 
36 h of wetness, and give confidence limits for this prediction.

 18.4 Example 12.2 analysed a set of insect counts from a transect sample and we 
used a log transformation to deal with variance heterogeneity. Repeat the 
analysis (the data are in file transect.dat) using a suitable GLM and compare 
your results with the original analysis. Which analysis do you think is more 
appropriate?

 18.5 The ecological survey described in Example 18.3 took several samples from 
each field surveyed, using the same transects and distances, but not necessar-
ily the same plants in each sample. File aphids2.dat contains data for the pea 
aphid collected from the next sample after the one analysed in Example 18.3. 
Repeat this analysis for the new sample. What conclusions do you draw? Can 
you extend your analysis to take account of the previous sample?

 18.6 A greenhouse trial was undertaken to evaluate 63 families of loblolly pine for 
resistance to pine rust. The experiment was a RCBD with five replicates (blocks), 
and several seedlings from each family were tested in each replicate. Sets of 
seedlings were grown in trays, and each tray held 8–31 seedlings (median 17). 
File rust.dat holds information on the design (ID, factors Rep, DTray) and fam-
ily allocation (factor Family) with the number of seedlings affected by rust and 
total number in each tray (variates Rust, NSeedling). Use a GLM to estimate the 
probability of rust occurring on a seedling for each family, after accounting for 
differences between replicates. Is there any evidence of differences in resistance 
among families? Identify the families where individual trees have less than 
20% probability of being affected by rust.*

 18.7 In Exercise 17.3, you analysed a set of field trials (data file cwtrials.dat) to 
investigate whether the number of chickweed seeds produced by a plant could 
be related to its biomass, using a log transformation on both the response and 
dry weights. Repeat the analysis on the untransformed number of seeds using 
a suitable GLM. Does this model account for the variance heterogeneity?

* Data from FBRC, University of Florida.
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  18.8 Data from an agronomic trial is available to assess the effect of fungicide and 
a biological control agent on the incidence of white rot on onions. The trial was 
designed as a RCBD with five blocks of 12 plots. The 12 treatments were all 
combinations of three varieties with presence or absence of the fungicide (two 
levels) and the biological control agent (BCA, two levels). File bca.dat holds 
the unit numbers (ID), structural factors (Rep, Plot), treatment factors (Variety, 
Fungicide, BCA) and the total number of plants per plot (variate Emerged) and 
number with symptoms of white rot (variate Disease). Use a suitable GLM to 
identify a predictive model for both emergence and disease incidence. Note 
that the number of emerged plants is a small proportion of the seeds sown 
(which was not counted but was constant across plots) so is small compared 
to the unknown upper limit. What treatment would you recommend to maxi-
mize the number of unaffected plants for each variety?*

 18.9 An investigation of response to insecticide used 28 cages of clones each pro-
duced from a single aphid. There were 14 cages of each type of clone (S and 
R) and a target dose of active compound was applied to each cage, with the 
actual dose recorded. After a given period, the number of moving aphids in 
each cage was counted, and the clones were classified according to presence 
of a marker suspected to affect tolerance of the compound. File clone.dat 
contains unit numbers (ID), clone type (factor Clone), marker presence (factor 
Marker), and the logarithm of the dose applied (variate LogDose) with the 
number of moving aphids (variate Moving) and total aphids (variate Total) in 
each cage. Plot the data and comment on the structure of the groups (combi-
nations of clones and marker types). Identify and write down a parsimonious 
predictive model to describe the data.†

 18.10 A cage experiment was used to investigate the effect of three related insecticides 
on colonies of aphids with partial resistance to their common active compound. 
There were eight treatments: all combinations of the three insecticides or con-
trol (no insecticide) with two types of colony (susceptible or partially resistant). 
The experiment was organized as a RCBD with six blocks of eight cages, and 
one treatment combination was allocated to each cage in each block. A colony 
of the designated type was reared in each cage, and the number of live aphids 
was counted before the insecticide treatment was applied and then 2 and 6 days 
after application. Both births and deaths could occur within each cage between 
assessments. File repeat.dat holds the structural factors (ID, Block, Cage), treat-
ment factors (Insecticide, Clone) and responses (variates Pre, Day2, Day6). First, 
use a GLM to analyse the numbers before the insecticide treatment is applied. 
Should you take account of any differences in your analysis of the post-treat-
ment numbers? How can you do this? How does this change the interpretation 
of the analysis?‡

 18.11 The viability of carrot seed depends greatly on the conditions under which 
it is stored. Four batches of seed were stored in different conditions (labelled 
A–D). One hundred seeds were sampled from each batch: conditions A and 
B were sampled approximately every 60 days and conditions C and D were 

* Data from J. Clarkson, University of Warwick.
† Data from S. Foster, Rothamsted Research.
‡ Data from Horticulture Research International.
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sampled approximately every 30 days, and the number of non-viable seeds 
was  evaluated. File carrot.dat contains unit numbers (ID), the structural fac-
tors (Batch, Sample), explanatory variables (factor Condition, variate Days) and 
response (variate Count). Use a GLM to model the number of non-viable seeds 
over time in each condition and check the fit of the model carefully. Is there any 
evidence of model misspecification? Identify any features of the data that are 
incompatible with the GLM.*

* Data from D. Gray, Horticulture Research International.
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19
Practical Design and Data Analysis for Real Studies

In the preface, we identified the aim of this book as being to provide an introductory, practi-
cal and illustrative guide to the design of experiments and subsequent data analysis in the 
biological and agricultural sciences. We have provided a brief overview of basic statisti-
cal concepts and terminology in Chapter 1, and ideas of summary statistics, probability 
distributions and simple statistical estimates and tests in Chapter 2. The bulk of the rest 
of the book has introduced and developed various statistical approaches associated with 
designing experiments and analysing the data generated (Chapters 3 to 11) or with ana-
lysing regression models (Chapters 12 to 15). We have tried to use common terminology 
across these sections to emphasize that the same form of model, the linear model, under-
lies all of these situations. We then described some more advanced techniques. Chapter 16 
introduced linear mixed models that allow analysis of models with a structural component 
and any mixture of factors and variates in the explanatory component, with no require-
ment for a balanced structure. Chapter 17 extended the regression modelling approach to 
allow curved responses and non-linear models, and Chapter 18 introduced generalized 
linear models (GLMs) that allow analysis of models with any mixture of factors or vari-
ates in the explanatory component for data with certain types of non-Normal distribution. 
Throughout the book we have introduced real examples, either drawn from or inspired 
by our own experiences of working with scientists in research institutes and university 
departments. Our aim has been to show how the statistical approaches in this book can be 
used to address a range of real-life research problems across a number of application areas.

We hope that you have reached this final chapter of this book having worked through 
each of the preceding chapters and attempted some of the exercises. You should now have 
sufficient understanding of the various statistical concepts to enable you to apply what 
you have learnt to your own research. In this final chapter, we attempt to draw the vari-
ous strands of this book together by introducing case studies that illustrate how to use 
this accumulated knowledge to develop appropriate designs for different experimental 
scenarios, and by discussing how to apply sensible analysis approaches for individual 
scientific problems.

We start with a summary of the various issues concerned with designing real studies 
(Section 19.1). We should consider the aims, hypotheses and treatments associated with a 
study separately from the available resources and constraints before allocating the treat-
ments to the experimental material to construct an efficient design. During the design and 
planning stages, we also need to identify an analysis approach that enables us to address 
the aims of the study. In Section 19.2, we summarize and compare the various approaches 
introduced within the book, drawing out the similarities and differences between analysis 
methods for designed experiments and observational studies, and linking the analysis 
approach to the experimental aims. Finally, we discuss the information that needs to be 
presented when publishing the results of a study, including a description of the study 
design, data collection and analysis approaches, presentation of the results as provided by 
statistical software, and the interpretation of these results in the context of the scientific 
problem (Section 19.3).
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19.1 Designing Real Studies

The basic principles that we need to consider when designing any experimental or obser-
vational study are always the same (as introduced in Chapter 3), but it is important to 
remember that almost every new study will be unique, in terms of either the questions to 
be asked or the resources that are available, or both. So, to develop an appropriate design 
for any new study it is important that we explore both of these components (questions to 
be asked, available resources) separately before finding the best way of combining them.

19.1.1 Aims, Objectives and Choice of Explanatory Structure

A sensible starting point is always to carefully consider the aims of the study (Section 
3.1). In broad terms, these aims may be associated with identifying important differences 
in the response between treatments (combinations of selected levels of explanatory vari-
ables), understanding how the response from a biological system varies with changes in 
one or more explanatory variables, assessing how the response to one explanatory vari-
able is affected by other explanatory variables, or simply in finding the combination of 
levels of explanatory variables that produces the best response. In most cases, it should 
be possible to re-express these aims and objectives in terms of testable hypotheses, which 
should then lead directly to the identification of the explanatory variables, the experimen-
tal treatments and the explanatory component of the model to include in the design of the 
study. Sometimes a study forms part of a larger research project, possibly being one of a 
sequence of studies or experiments, where information collected from previous studies 
should inform the design of this new study, or where we are gathering information that 
will be used to inform later studies. However, similar aims at different stages of a substan-
tial research project may need to be addressed in different ways.

In Chapter 8, we discussed various ideas about extracting information from the explana-
tory component of the model to answer specific scientific questions. Consideration of the 
best approach should be included at the design stage of a study. Where there are multiple 
possible input variables, it is important to decide whether the inclusion of a factorial struc-
ture is useful; the possible benefits were described in Section 8.2.5.

At early stages in a project, the primary interest may be to identify those explanatory 
variables that have a major impact on the response (sometimes calling screening), rather 
than to determine the exact impact of each explanatory variable. An effective approach to 
this problem would be to use each explanatory variable at just two levels (low and high) 
within a multi-factorial arrangement. In industrial experimentation, specialized design 
approaches (e.g. Plackett–Burman designs, Plackett and Burman, 1946; see also Mead et al., 
2012, Chapter 14) have been developed to provide a highly efficient approach for screening 
a large number of potential explanatory variables (although requiring the assumption that 
only the main effects of each explanatory variable are important). Once the most impor-
tant explanatory variables have been identified, interest turns to the pattern of response 
across these key variables, using a factorial structure with those variables evaluated across 
a wider range of levels. Of course, this idea of screening explanatory variables using a 
small subset of their possible levels is really relevant only where the explanatory vari-
ables lie on some quantitative scale – for truly qualitative explanatory variables the con-
cepts of low and high levels are meaningless (Section 1.3). For these variables, the numbers 
of levels should be identified from the aims and objectives (scope) of the study. Where 
both qualitative and quantitative explanatory variables are to be included, a pilot study 
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with a few (combined) levels of the qualitative explanatory variable(s) might be used to 
screen for important quantitative explanatory variables. In any scenario, the convenience 
of this screening approach should be balanced against the possibility of missing important 
interactions.

For quantitative explanatory variables, it is necessary to select the number and spac-
ing of the values (levels) to be used. This is easier in the context of designed experiments, 
where levels are directly under the control of the experimenter, but should also be consid-
ered in observational studies. Without prior knowledge to suggest otherwise, it is difficult 
to argue against having equally spaced levels. In a simple regression modelling context, 
the response is usually assumed to be linear but a low-order polynomial (Section 17.1.2), or 
polynomial contrast in the context of a multi-stratum ANOVA (Section 8.7), might also be 
appropriate. The number of levels needs to be sufficient to allow the fit of the selected poly-
nomial model to be assessed; this requires at least three levels for a straight line model, 
four levels for a quadratic model, and higher-order polynomial models require additional 
levels. Replication can be used to give a direct test for lack of fit (Section 12.8). In the more 
general context of curved relationships (Chapters 17 and 18), it is important that levels 
cover the regions of greatest interest, which are often regions where the pattern of response 
changes most. It is always important that the selected levels span the full range of values 
relevant to the aims and objectives of the study. Where several quantitative explanatory 
variables are used, the ideas of factorial structures still apply, so observations should be 
selected to span both the range of interest for each individual explanatory variable, and, 
ideally, the combined ranges for all explanatory variables.

A final issue with regard to the choice of explanatory variables in a study is the need 
to include some sort of control or standard treatment (discussed in Section 8.5). Most tri-
als use some sort of control treatment with known properties, to give assurance that the 
experiment has run as expected. In Section 8.5, we identified three different types of con-
trol: the positive control, the negative control and the standard. The inclusion of several 
controls will usually be relevant for studies concerned with the treatment of some detri-
mental activity, such as weed, disease or pest control in agricultural crops. The positive 
control provides the best possible response, and can provide a benchmark against which 
any new treatments can be compared. For example, in insecticide trials, a positive control 
might be some form of exclusion treatment that ensures that no pests infest the crop. By 
contrast, the negative control provides the worst-case scenario, and is often useful only in 
checking that some control of the detrimental activity is needed. For example, in insecti-
cide trials, a negative control would be the lack of any chemical (or other) treatment, pro-
viding evidence of a pest infestation, and hence that the insecticide treatments are having 
a beneficial impact in controlling the pest. Finally, the standard or reference treatment can 
provide a known response or target value, so for an insecticide trial this might be the best 
commercially available product (or the most commonly used commercial product), and 
potential new products must perform at least as well as this standard treatment.

19.1.2 Resources, Experimental Units and Constraints

An important starting point when considering the resources to be used in a scientific 
study is to identify the experimental units. The choices made depend both on the aims of 
the study, and on the scientific methods used. For experimental studies, a useful defini-
tion was provided by Cox (1961), who stated that ‘an experimental unit corresponds to the 
smallest division of the experimental material such that any two units may receive dif-
ferent treatments in the actual experiment’. In Section 3.1, we were slightly more precise, 
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defining the experimental unit for each explanatory variable separately, since explanatory 
variables may be applied at different levels of the experimental material. A similar defi-
nition can be provided for observational studies, an experimental unit being defined, by 
analogy, as the smallest division of the biological material such that any two units may 
have different levels of the explanatory variable. Various examples of experimental units 
were listed in Section 3.1. It is also helpful to identify the measurement unit, the (bio-
logical) material on which each measurement is made. The measurement units may be the 
same as the experimental units for one or more explanatory variables, but often differ, as 
discussed in Section 3.1. The measurement unit almost always corresponds to the lowest 
level of experimental material. Where different experimental units are used for different 
explanatory variables, the ideas of multi-stratum designs should be used, such as the split-
plot design introduced in Section 9.2.

Having identified the experimental and measurement units, the next step is to determine 
the maximum number of units that are available for the study. Often, this will be defined 
by the cost associated with using each unit (applying treatments, recording responses) 
and some constraint on the total funding available for the study. Other forms of constraint 
might include the amount of time taken to process each unit, or the physical space that is 
available within the experimental facility (e.g. glasshouse, controlled environment room 
or cabinet, incubator). It will sometimes be necessary to be able to complete the study 
within a certain period of time, or using some specific experimental facility. Where dif-
ferent sizes of experimental unit are required, resulting in a multi-stratum design, these 
issues need to be considered for each stratum in turn, including choices about the relative 
numbers of units at each level of the structure.

It is also important to identify any anticipated systematic sources of variability or struc-
ture within the experimental material. This might be caused by the way in which the 
experimental units have to be managed (e.g. a constraint on the number of units that can 
be processed within a certain period of time, or that can be contained within some physi-
cal space), or by the origin of the experimental material (e.g. plants raised from differ-
ent batches of seed, or leaves on the same plant). Those units expected to have similar 
responses in the absence of any treatment should be grouped together into blocks, so that 
the systematic variation between these blocks can be separated from the background varia-
tion, hence increasing the precision of treatment comparisons by reducing the unit-to-unit 
background variability. This blocking is incorporated into the structural component of the 
model. In many situations, there will be multiple potential sources of variation, and so we 
may want to account for all sources in constructing the design. In Section 3.3, we discussed 
the distinction between nested and crossed structures; the presence of crossed structures 
naturally leads towards some form of row–column design (see Section 9.1), while nested 
structures with experimental units at several different levels suggest variations on the 
split-plot design (Section 9.2).

19.1.3 Matching the Treatments to the Resources

Having identified the combination of explanatory variables (treatment structure) to be 
included and the resources to be used for the study, the final step in constructing the 
design is to combine these two components. An important part of this process is deter-
mining the level of replication required to make likely the statistical detection of any treat-
ment differences regarded as biologically important – i.e. to allow the demonstration of 
statistical significance for treatment differences large enough to be of biological interest. 
As discussed in Chapter 10, the amount of replication required depends on a number of 



521Practical Design and Data Analysis for Real Studies

(possibly competing) elements, including the explanatory model, the magnitude of the dif-
ference to be detected and the variability associated with the experimental units and/or 
measurement process. Where such information is available, a power analysis (Section 10.3) 
can be used to calculate the required replication.

Assuming that sufficient resources are available, the construction of the design then 
just depends on matching the treatment structure to the resources, taking account of 
any blocking or other structure required. Where no blocking or other structural con-
straints need to be accounted for, then a completely randomized design can be used 
(CRD; Chapter 4). In some circumstances, where blocking is used for administrative 
convenience rather than to account for unavoidable heterogeneity, there is flexibility to 
choose the block size to match the number of treatments, resulting in a randomized com-
plete block design (RCBD; Chapter 7). More usually, sensible block sizes will not nec-
essarily match the desired number of treatments, or several levels of structure may be 
present, and then some more complex design will be necessary. Some simple ideas were 
introduced in Chapters 9 and 11, but a wide range of design approaches are possible, as 
described in Mead et al. (2012).

In cases where there is little or no information available about the various sources of 
background variation, as at the start of a new project, it may be sensible to run a pilot 
study to gather information before embarking on any major experimentation. Such stud-
ies can be used to also provide some preliminary information about the key explanatory 
variables (e.g. to identify the range of a quantitative explanatory variable to be included). 
But unless these preliminary studies are done in a way that makes them compatible with 
the main experiments, they may represent a sub-optimal use of resources. One way to 
avoid this is to use an adaptive or sequential design approach (see, e.g. Mead et al., 2012, 
Chapter 20), where each stage of the experimental process provides information for the 
following stages, and each stage can be analysed separately or as part of the whole series.

One way of assessing how effectively the design of an experiment uses the available 
resources is to evaluate the division of the resources, as measured by the degrees of free-
dom, between and within strata where treatment comparisons are made. As discussed in 
Section 10.2, a reasonable ‘rule of thumb’ is that there should be between 10 and 20 residual 
degrees of freedom in each stratum of the design where treatment comparisons are made; 
this ensures a reasonable estimate of background variability is obtained. Having too few 
(< 10) residual degrees of freedom in a stratum may result in low power for detecting treat-
ment differences in that stratum; so increasing the replication at that level of the design 
might be sensible. Having too many (> 20) residual degrees of freedom in a stratum gives 
no real advantage, and may imply that replication (in that stratum) can be reduced or that 
the opportunity to answer additional questions, through the inclusion of further treat-
ment factors, should be taken. In balanced designs with a nested structure, such as the 
split-plot design (Section 9.2), there are a fixed number of smaller units nested within each 
larger unit, and so changing the replication of larger units also changes the total number 
of smaller units. In these designs, the residual df are larger (sometimes much larger) for 
the lower strata, and this imbalance of information is one of the disadvantages of nested 
designs.

19.1.4 Designs for Series of Studies and for Studies with Multiple Phases

In many cases, an individual study forms part of a larger series. This is almost always the 
case for field trials, where results for a single trial in a single year can be notoriously unrep-
resentative. For example, official guidance for studies concerned with the development 
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and testing of new crop protection products (e.g. European and Mediterranean Plant 
Protection Organization; http://www.eppo.int/) indicates that experiments should be 
repeated across multiple sites, at which pest presence or intensity or timing might vary, as 
well as in multiple years, in which environmental conditions might impact on the effect of 
different treatments. Ideally, similar designs will be possible for each site × year combina-
tion, but sometimes there will be different constraints for each trial, requiring different 
designs. Similar issues occur in crop breeding programmes, as new varieties are required 
to perform well across a wide range of environments. In this context, limited seed in early 
generation trials may produce constraints, so that not all potential lines can be trialled 
in all environments within the same year, and new lines will be introduced in following 
years with less promising lines dropped from the programme.

For most series of studies, it is important that data from each separate study (e.g. at a 
single site in a single year) can be analysed on its own, so that the individual characteristics 
of each study can be determined before combining the data. The simplest design for a set of 
studies would use the same set of treatments and same design for each study. In this case, if 
the background variation is similar across the studies, then a combined analysis is straight-
forward within the ANOVA framework, incorporating study as a high-level structural 
component within which the common design is nested, and allowing for an interaction 
between the within-study explanatory component and study (i.e. the possibility of different 
treatment effects in the different studies). If the background variation differs, or if the set of 
treatments is common but a different design is used for each study, then a combined analy-
sis is possible but must account for the individual study designs and allow for different 
levels of background variation; this can be achieved using linear mixed models (Chapter 
16). Where a different set of treatments is used in each study, then some overlap – a subset of 
common treatments – must be present if the trials are to be analysed together. A combined 
analysis in these circumstances relies heavily on the assumption that no study × treatment 
interaction exists, particularly for the comparison of treatments not tested within the same 
trial. If several common treatments are present, then this assumption can be tested (to a 
limited extent) within that set of common treatments, but this assumption cannot be tested 
at all where only one common treatment is used. Where a set of studies cannot all use the 
same treatments, we therefore strongly advise the use of a large overlap, with the common 
set preferably including treatments that span the full range of responses. Again, analysis of 
the combined set of studies usually requires the use of linear mixed models.

Careful thought about design is also needed in the increasingly common context of two- 
or multi-phase studies. These often occur where a crop is grown in the field and then har-
vested and processed in the laboratory or to produce some food product. Treatments may 
be applied in both the field and laboratory phases, and the design must account for struc-
ture in both the field and the laboratory, as well as ensuring that suitable harvest samples 
can be obtained for the later processing phase. For example, a study to examine factors 
influencing bread-making quality of wheat might use a RCBD with several varieties and 
fertilizer regimes in the field, then split the harvest from each plot into four sub-samples, 
each to be used for a different variation in the bread-making process. The four samples 
from each plot are processed together, with each plot processed on a separate day. The 
experimental structure must account for blocking in the field and processing time in the 
laboratory, as well as all treatment effects. Such studies might then involve further phases, 
for example, the taste testing of the resulting bread by several people, each giving a subjec-
tive score. In designing multi-phase studies, it is important to be aware of all constraints 
during each phase of the study, to ensure that the effects of each treatment (and interac-
tions) can be extracted in the analysis, and to identify the structure within each phase. It 
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can be useful to confound structure between phases, for example, using blocks in the field 
as blocks in the laboratory, and it may be necessary to allow separate analyses to be made 
at the end of each phase. A useful approach and overview has been developed by Brien 
and Bailey (2006).

Multi-phase trials are now common in the use of high-throughput technologies devel-
oped in the ‘omics revolution, where the impact of different treatments on the levels of 
gene, protein or metabolome expression is measured. Typically, these studies involve an 
experimental phase (in the field or, more usually, controlled environment) during which 
treatments are applied, and plant material from each experimental unit is then harvested 
and processed to produce one or more samples used for the ‘omics phase. In this con-
text, there are often severe cost constraints on the total number of samples that can be 
used, and many technologies can process only small numbers of samples simultaneously. 
Given that substantial costs may be involved in obtaining expression readings for a single 
sample, it is important to ensure that the experimental phase is well designed, taking 
account of any constraints in the ‘omics phase. Common issues at the ‘omics phase include 
the allocation of experimental treatments to small blocks, the balance between different 
types of replication, and the assessment of response along a time course. Case Study 19.2 
discusses the allocation of experimental treatments to small blocks in the context of two-
channel microarray gene expression studies. Most ‘omics studies include both biological 
replication (samples from different biological organisms) and technical replication (several 
sub-samples prepared from each unit in the experimental phase to allow for variation dur-
ing the sample processing and measurement phases). Technical replication is particularly 
important if variability in the sample processing or measurement stages is large, whereas 
biological replication is important to ensure that results are not specific to one organism 
or sample. For time course studies, involving samples collected over time, it is important 
to identify whether the data form a cross-sectional study (samples collected from differ-
ent organisms at each time point), or a longitudinal study (samples collected repeatedly 
from the same organisms over time). A longitudinal study may provide more precise com-
parisons across time points, but the analysis must account for correlation between samples 
taken from the same organism.

19.1.5 Design Case Studies

As previously noted, each study is unique, and so it is impossible to provide a generic 
recipe for how to design any study. However, to illustrate some of the issues identified 
above, we present three case studies from our own experiences.

Case Study 19.1: Designing a Large-Scale, Multi-Site Field Experiment

Spring 2000 marked the beginning of an extensive ecological experiment, known as 
the Farm Scale Evaluations (FSEs). The aim of the study was to compare the effects of 
two treatments on various indicators of farmland biodiversity, including both plants 
and invertebrates. The two treatments represented the composite effects of manage-
ment practices associated with genetically modified herbicide-tolerant (GMHT) and 
conventional crop varieties. Simultaneous experiments were to be carried out for beet, 
maize, and spring and winter oilseed rape crops. The null hypothesis for each crop 
was that there was no difference between the two treatments in abundance and diver-
sity of the chosen indicators. The two-tailed alternative hypothesis was that the treat-
ments differed, in either a positive or negative direction.
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The FSEs, carried out by a consortium of UK research institutes, were to form the 
largest, and most highly scrutinized, ecological study of its kind to date, costing in the 
region of £6 million (Clark et al., 2006). Undertaking an experiment of such magnitude 
required much planning in practical, biological and statistical terms. The project began 
in 1999 with a pilot study to develop sampling protocols and to inform a statistical 
study to determine an appropriate design for the experiment. This statistical study 
examined choice of design structures, the power of any potential design to detect treat-
ment differences of a given size, and choice of subsequent analysis approaches for the 
data collected. Full details can be found in Perry et al. (2003) and Rothery et al. (2003); 
here we focus on four specific design issues: choice of experimental unit, allocation of 
treatments to units, estimation of sample size and sampling strategy.

As it was important that the results of the FSEs were representative of commercial 
British agriculture as a whole (e.g. farm location, farming intensity, weather condi-
tions, soil types), farms throughout Britain, especially in those areas where the chosen 
crops were typically grown, were to be selected to take part in the study. The most 
pertinent design issue was then the definition of the experimental unit. Two choices 
were considered (Figure 19.1): half fields within whole fields (i.e. a RCBD with fields as 
blocks and half-fields as experimental units), or whole fields within farms (i.e. a RCBD 
with farms as blocks and fields as experimental units). There were many biological 
considerations (e.g. mobility of insects and their behaviour at different spatial scales) 
but these had to be balanced with statistical considerations. The primary statistical 
argument for the half-field option was the potential reduction in residual variation 
that might be achieved due to two half-fields being more similar to each other (e.g. in 
soil type, surrounding habitat, previous management) than two paired whole fields. 
Limited data from previous studies, coupled with the small amount of data from the 
pilot study, suggested that half-fields were indeed likely to be less variable than paired 
whole fields. Other more practical issues, such as the availability of whole fields and 
ease of sampling, were also contributing factors. The final decision was made to use 
half-fields as the experimental unit. Only one field per farm was used in each year, but 
some farms were sampled in 2 or 3 years, with a different field used in each year.

The boundary line used to split any field into two was first determined by assessing 
the many factors that might influence the variability of wildlife within the field; the 
optimal choice being the line that divided the field into two halves as close to iden-
tical as possible with respect to these non-treatment influences on biodiversity. An 
example of the detailed plans drawn up to inform this decision for each field is shown 

(a) (b)Farm 1 Farm 1

Trt 1 
Trt 1 

Half-field 1

Field 1 Field 2

Half-field 2Trt 2 

Trt 2 
Field

FIGURE 19.1
Schematic representation at one farm of two possible choices of experimental unit for the FSE study (Case Study 
19.1). Both choices correspond to a RCBD, but in (a) treatments are applied at random to half-fields (units) within 
a field (block), and in (b) treatments are applied at random to whole fields (units) within the farm (block).
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in Figure 19.2. In this case, the main criterion for the location of the boundary is the 
presence of a field of beet to the south-east (right of plan) and the presence of nursery 
buildings to the north-west (left of plan) of the field. A split running from north-east 
to south-west (vertically on plan) would potentially confound the treatments with this 
environmental difference. The chosen split running north-west to south-east (hori-
zontally on plan) ensures that each half-field has boundaries including the beet crop 

FIGURE 19.2
Detailed field plan showing characteristics of the field to be sampled and other features in the immediate local-
ity that might influence the variability of wildlife within the field, the final choice of boundary for splitting into 
two half-field units, the final allocation of treatments to half-fields, and locations of within-half-field sampling 
transects T1–T12 (Case Study 19.1). (Courtesy of Matthew Skellern, Rothamsted Research.)
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and nurseries, as well as hedgerows, gardens and grass paddocks. The protocol then 
labelled the most northerly half-field (or westerly, depending on the overall orienta-
tion of the field) as ‘A’ and the other half as ‘B’. An envelope containing a predeter-
mined randomization of the two treatments to halves A and B was then opened to 
give the final allocation of treatments. For example, in Figure 19.2, half A (west) was 
sown with the GMHT variety and half B (east) with the conventional variety. This 
two-stage protocol ensured that the allocation of treatments was not influenced by 
any of the parties involved in the experiment, and that the final results would have 
statistical validity.

Next, the sample size (number of whole fields) had to be determined. As noted above, 
very little existing data were available to inform any power analysis. So, instead, a 
simulation study was done to complement the analysis of data collected from the pilot 
study. The full details are given in Rothery et al. (2003). Briefly, count data were simu-
lated according to the Negative Binomial distribution (Section 18.3.4) for a range of 
scenarios which included different overall mean counts (1, 5, 10 and 50), field effects 
covering a 100-fold span in variation, sizes of multiplicative treatment effects (1.3-fold, 
1.5-fold and 2-fold), levels of variability (%CV = 50%, 80%, 100%) and values of the 
Negative Binomial exponent parameter (allowing the background variance to be pro-
portional to the expected value or proportional to the square of the expected value). 
Power was estimated using randomization tests (e.g. Section 5.2.4) and 500 sets of simu-
lated data for each of five sample sizes (n = 20, 30, 40, 60 and 90 fields) for each scenario. 
The results of the power study were complex but the final recommendation was to aim 
to achieve 60 fields per crop (equivalent to 20 per year over the 3-year period of the 
experiment). The power of this scheme for detecting 1.5-fold treatment differences and 
achieving a 50% CV was estimated to exceed 80% for many of the scenarios studied.

Finally, the field-sampling protocols involved taking measurements from up to 12 
transects per half-field, each extending from the field edge in towards the centre of the 
field and spaced as evenly as possible around the three non-treatment-boundary field 
edges (see Figure 19.2). On each transect, there were five potential sample points at 
distances of 2, 4, 8, 16 and 32 m into the field. Up to 60 pseudo-replicate observations 
were therefore made per half-field, and the sub-samples were pooled to give half-field 
totals for analysis. Nevertheless, the within-half-field sub-sampling gave useful infor-
mation to later assess and compare variability in the responses at various spatial scales 
(see Clark et al., 2007).

In Example 16.2, we presented an analysis of one data set collected during the FSEs. 
There we wrote the model for the data using symbolic notation as

Structural component: Farm/Field/DHalf
Explanatory component: [1] + Year*Treatment

In that example, the factor Field labelled fields within farms (1–3), and the resulting multi-
stratum ANOVA table (Table 16.8) contained three strata relating to farms, whole fields 
within farms and half-fields within whole fields within farms. The first publications of 
FSE results (e.g. Brooks et al., 2003; Haughton et al., 2003; Hawes et al., 2003; Heard et al., 
2003; Roy et al., 2003; Bohan et al., 2005) focussed on the treatment effects, which are esti-
mated within fields. Effects in higher strata were of less interest and so the farm and field 
effects were combined by specifying the structural component of the model as

Structural component: Farm.Field/DHalf
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The Year main effect was also excluded from the explanatory model. As a result of these 
two changes, the two upper strata in Example 16.2 were combined into a single stratum 
subsuming the farm, whole field and year main effects. In addition, preliminary analy-
ses showed no evidence of treatment × year interactions (as in Example 16.2), and hence 
this term was also excluded from the model, with the explanatory structure specified as

Explanatory component: [1] + Treatment

Case Study 19.2: Multi-Phase Experiments – Gene Expression 
Microarrays for Plant Response to Pathogens

One important application of multi-phase experiments is the study of gene expression 
responses in plants grown in different environmental conditions, or exposed to different 
stress treatments. Here, we discuss a microarray study concerned with the measurement 
of gene expression responses in Arabidopsis thaliana, the model plant, over a 24-h time 
period post-infection with the pathogen Botrytis cinerea. Initial interest was in assessing 
the impact of infection by two contrasting isolates of the pathogen, with a third ‘mock 
inoculation’ treatment (inoculation with water) included to provide a baseline response.

The first phase of the study was the production of plant material to be inoculated, 
from which samples of genetic material (RNA, cDNA) could be obtained for process-
ing before application to the microarrays. The pathogen isolates and mock inoculation 
were to be applied to detached leaves, with the whole leaf then being processed to 
generate the genetic sample. Hence, separate leaves were needed at each time point for 
each inoculation treatment. Different plants would be used for replicates of the treat-
ments, but there were several options for use of plants within replicates. Three options 
were considered, as illustrated in Figure 19.3:

 a. Use a separate plant for each inoculation treatment with leaves within plants 
allocated to the time points (i.e. plants are the experimental units for inocula-
tion and leaves within plants are the experimental units for time)

 b. Use a separate plant for each time point, with leaves within plants allocated to 
the different inoculation treatments (i.e. plants are the experimental units for 
time and leaves within plants are the experimental units for inoculation)

 c. Use a separate plant for each inoculation × time point combination, but use 
a specific leaf (e.g. the seventh true leaf) within each plant (i.e. the plant.leaf 
combinations are the experimental units for both inoculation and time)

Treatment Time
(a)

1
1Mock

Mock
Isolate 1
Isolate 1
Isolate 2
Isolate 2

1 1
1

1
1

1
1

1
1

1

1

2 2

2

2

2
2

3
3

2

2

1

1

1 12 2 2 3 4 5 63
Plant (b) Plant (c) Plant

FIGURE 19.3
Three options for selecting leaves from plants to be treated with three different inoculation treatments and 
incubated for two different time periods, using separate plants for each (a) inoculation treatment, (b) time point 
and (c) inoculation × time point combination (Case Study 19.2). Highlighted boxes represent individual leaves 
to be sampled; numbers in boxes indicate leaf numbers within plants.



528 Statistical Methods in Biology

Option (a) would use fewest plants, and within-plant comparisons would avoid 
genetic variation between plants, therefore potentially providing for a more precise 
comparison of responses between time points. Option (b) would use more plants 
(assuming more than three time points are used), but would potentially provide a more 
precise comparison of responses between inoculation treatments within a time point. 
However, previous studies had identified substantial variation in gene expression 
between leaves of different ages, and this variation was often greater than that between 
plants. Hence option (c), which inoculates leaves of the same age, was preferred.

The total number of plants required then depended on both the number of replicates 
required for each inoculation × time combination and the number of time points. The 
researchers expected that there would be subtle changes in gene expression over the 
first 12 h, though some genes were not expected to show any response until 18–20 h 
post-infection. With a wide range of potential shapes of expression profiles over time, it 
was considered best to have the sampling times equally spaced – possibilities included 
sampling every hour (25 time points, starting immediately after inoculation), every 2 h 
(13 time points), every 3 h (9 time points) or every 4 h (7 time points). While replicate 
samples (technical replicates) would be generated during the post-harvest process-
ing, so that the gene expression for each plant sample would be measured on mul-
tiple microarrays, it was also important to be able to compare the variation in gene 
expression due to the different treatment (inoculation × time) combinations with the 
between-plant (biological) variation. Therefore, it was considered necessary to also 
include replicate plants for each treatment.

The plants were to be grown in controlled environment cabinets (to minimize varia-
tion due to the growing environment), with two separate cabinets available. Each cabi-
net had two shelves with space for 48 plants to be grown on each shelf in an array of 
four rows of 12 plants (Figure 19.4), giving an upper limit of 192 plants.

Biological replicates could be processed separately but, within each replicate, leaves 
for all treatments must be harvested at the same time, inoculated, and then sampled 
at different times after inoculation. Sampling every hour would require 75 plants 
per biological replicate (3 inoculations × 25 time points), so that only two replicates 
would be possible (2 × 75 = 150 plants), while sampling every 4 h would allow up to 
nine replicates (3 inoculations × 7 time points = 21 treatments, 9 replicates × 21 treat-
ments = 189 plants). The choice here is between improved precision for comparison of 
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FIGURE 19.4
Arrangement of plants on two shelves within one CE cabinet, with random allocation of sampling times (T1 … 
T13) to sets of three adjacent plants within rows, and of three inoculation treatments (M = Mock, I1 = Isolate 1, 
I2 = Isolate 2) to plants within each set (Case Study 19.2). Dashes indicate unused positions.
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treatment differences at given time points, and better information about the pattern 
of changes in gene expression over time. The compromise was to sample every 2 h 
(13 time points), which allows a reasonable number of time points over which to mea-
sure the responses of late-expressing genes. This scheme results in 39 treatments and 
each replicate could comfortably fit on a single shelf, allowing four complete biologi-
cal replicates. Any systematic differences between biological replicates introduced at 
later stages could then be confounded with differences between cabinets and shelves. 
There was potential variation both along and between rows within each shelf. It was 
therefore decided to randomly allocate sets of three adjacent plants in a row to a par-
ticular time point, with the three inoculation treatments randomly allocated (but not 
yet applied) to plants within each of these sets. The arrangement for one cabinet is 
shown in Figure 19.4, and a new randomization was used for the second cabinet. If 
data were measured at this point of the experiment, the structural component of the 
model would take the form

Structural component: Cabinet/Shelf/Set/Plant

The four biological replicates were harvested on four separate days. For each plant, 
the seventh true leaf was excised and the allocated inoculation treatment applied. At 
each 2-hourly time point, the appropriate set of three leaves (i.e. the set previously 
allocated to that time point) was freeze-dried to stop any further development prior 
to processing to obtain the genetic material. Throughout the subsequent processing 
steps (amplification, labelling), the 39 samples in each biological replicate were pro-
cessed together where possible. Where this was not possible, samples were processed 
in batches comprising either the 13 samples for a particular inoculation treatment 
or the three samples for a particular post-infection sampling time, with the order in 
which the batches and samples within batches were processed being randomized. As 
a two-channel microarray system was to be used to assess the gene expression for each 
sample, the labelling phase required the division of each sample into two sub-samples, 
one to be labelled with each dye. This step automatically introduces some processing/
measurement replication, with the potential for further such technical replication to be 
introduced during the microarray phase.

The final phase of the study involved the allocation of samples to microarrays to mea-
sure relative gene expression levels. Two separate samples can be compared directly 
on each array (essentially each array is a block of size two), with consistent differences 
in responses between the two dye labels also expected. The labelling of each sample 
with both dyes had already satisfied the ‘dye-balance’ principle, with each treatment 
measured using both dyes. There were 312 samples (three inoculation treatments × 13 
time points × four biological replicates × two sub-samples) to be allocated to arrays, 
requiring a minimum of 156 two-channel arrays (where the two channels relate to the 
two wavelengths used to read the expression response for the different dyes). Clearly, 
it would not be possible to directly compare all pairs of treatments using a reasonable 
number of arrays and so the strategy must be to directly make the comparisons of most 
interest. The most important comparisons are between adjacent time points within 
each inoculation treatment and between the different inoculation treatments at each 
time point. It is also of interest to allow direct comparison across the different biologi-
cal replicates so that interactions can be investigated. To allow all of these comparisons 
to be made, each sub-sample was used on two arrays, resulting in a total of 312 arrays, 
with each plant sample being measured on four separate arrays, two of these technical 
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replicates being labelled with each dye. The allocation of treatments to microarrays 
was split into two parts, each using 156 arrays, with each part focussing on a different 
set of comparisons.

The first part of the design focussed on the comparison of samples along the time 
course using a ‘loop design’ (Kerr and Churchill, 2001; Wit et al., 2005). Within each 
inoculation treatment and biological replicate, each time point appeared on an array 
with samples from the previous and next time points, and the two occurrences of each 
time point were labelled with different dyes (as shown in Table 19.1a).

This provided 12 blocks (one for each combination of the three inoculation treat-
ments and four biological replicates) of 13 arrays, and each block was processed on a 
separate day. Ignoring the controlled environment phase of the design, a model for this 
part could be written as

Structural component: (Day/Array)*Channel
Explanatory component: [1] + Dye + Inoculation*Time

This is a partially balanced incomplete block design, with the same 13 (out of the 78 
possible) time point comparisons appearing together on an array for each biological 
replicate of each inoculation treatment. Comparisons between inoculation treatments 
are made between days, and comparisons between time points are made partly within 
arrays (for adjacent time points), partly within channels and partly between arrays 
(other comparisons). Comparisons between the two dyes are completely confounded 

TABLE 19.1

Allocation of Treatments to Microarrays and Dyes: 
(a) Allocation of Time Points (1–13) for Each 
Inoculation Treatment and Biological Replicate in 
Part 1; (b) Allocation of Inoculation Treatments (M, 
1 or 2) and Biological Replicates (a, b, c, d) for Each 
Time Point in Part 2 (Case Study 19.2)

(a) (b)
Dye Dye

Array Red Green Array Red Green

1 1 2 1 Ma 1b
2 2 3 2 1b 2c
3 3 4 3 2c Md
4 4 5 4 Md 1a
5 5 6 5 1a 2b
6 6 7 6 2b Mc
7 7 8 7 Mc 1d
8 8 9 8 1d 2a
9 9 10 9 2a Mb
10 10 11 10 Mb 1c
11 11 12 11 1c 2d
12 12 13 12 2d Ma
13 13 1
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with differences between the two channels. Incorporation of structure from the con-
trolled environment phase can be achieved by adding this directly, so that the struc-
tural component becomes

Structural component: (Cabinet/Shelf/Set) + (Day/Array)*Channel

This structure is no longer balanced, and if any of the terms from the different phases 
are completely confounded, it is important to include only one of them in the structural 
component. In this example, there is no confounding, but the complexity of the struc-
ture is greatly increased, and some terms may be difficult to estimate. If we believe 
that variation within the CE cabinet shelves is small and can be ignored, then we could 
simplify matters by creating a new factor to represent the biological replicates, RepCE 
(equivalent to the Cabinet.Shelf combinations), and use this term in the explanatory 
component. This uses the ideas of intra-block analysis (Section 11.6) within the multi-
phase context. The model can then be written as

Structural component: (Day/Array)*Channel
Explanatory component: [1] + RepCE + Dye + Inoculation*Time

The RepCE term is estimated within the Day stratum, using 3 df and resulting in only 
6 residual df for that stratum. A dummy ANOVA table for this model is shown in 
Table 19.2a.

TABLE 19.2

Dummy ANOVA Table for (a) Part 1 and (b) Part 2 of Microarray Design 
Stage, Adjusting for Controlled Environment Phase (Case Study 19.2)

(a) Part 1 (b) Part 2

Source of Variation df Source of Variation df

Day stratum Day stratum
 RepCE 3  Time 12
 Inoculation 2
 Residual 6
Day.Array stratum Day.Array stratum
 Time 12  RepCE 3
 Inoculation.Time 24  Inoculation 2
 Residual 108  Inoculation.RepCE 6

 Residual 132
Channel stratum Channel stratum
 Dye 1  Dye 1
Day.Channel stratum Day.Channel stratum
 Residual 11  Residual 11
Day.Array.Channel stratum Day.Array.Channel stratum
 Time 12  RepCE 3
 Inoculation.Time 24  Inoculation 2
 Residual 108  Inoculation.RepCE 6

 Residual 132
Total 311  Total 311
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The second part of the design was used to make direct comparisons between inoc-
ulation treatments and biological replicates at each time point. This part of the design 
consisted of 13 blocks, one for the samples from each time point. Each block was 
processed on a different day and contained 12 arrays, again using a loop design, with 
the comparisons shown in Table 19.1b. Each array gave a comparison across inocula-
tion treatments and across biological replicates within a time point, and all combina-
tions of inoculation treatment and biological replicate appeared within each block, 
labelled by both dyes. Using the same strategy as in Part 1, the structure for this part 
of the design can be written as

Structural component: (Day/Array)*Channel
Explanatory component: [1] + Time + Dye + Inoculation*RepCE

A dummy ANOVA table for this model is shown in Table 19.2b. If this part of the 
design is considered alone, then the effects of time are completely aliased with differ-
ences between days. But there is information in this part of the design on comparisons 
between inoculation treatments and it is possible to check for differences in response 
to inoculation across the biological replicates. Combined analysis of the two parts of 
the design simultaneously allows these two different aspects to be combined, using 
the model

Structural component: (Day/Array)*Channel
Explanatory component: [1] + Dye + Inoculation*Time*RepCE

This experiment generated a vast quantity of data, with measurements being made 
on over 32,000 genes on each array. Initial analysis was performed on a gene-by-gene 
basis, rather than trying to analyse for treatment effects across all genes simultane-
ously. The lack of balance in the combined analysis requires the use of linear mixed 
models (Chapter 16). The careful consideration of the different constraints during each 
phase of the design, and the careful confounding of sources of variation between dif-
ferent phases are crucial in ensuring that the analysis model is relatively easy to con-
struct and interpret.

Case Study 19.3: Designing a Sampling Scheme to 
Detect Variation within a Population

Mapping populations are derived from inbred parental lines. In the case of recombi-
nant inbred lines (RILs), the two parental lines are crossed and then the individual 
offspring is self-crossed (usually by a process of single seed descent, see Kearsey and 
Pooni, 1996) for a number of generations (usually eight or more) to produce a popula-
tion of genetically stable offspring lines. The resulting population can be used to detect 
quantitative trait loci (QTLs, see Kearsey and Pooni, 1996), but it is helpful to first iden-
tify traits where variation between lines is present.

A new RIL population of 110 oilseed rape lines was grown in a glasshouse, using 
a RCBD with three replicates, with pots containing single plants as the experimental 
units. The aim of the study was to identify seed traits showing substantial varia-
tion between lines; here, we focus on seed weight (measured in grams). Oilseed rape 
plants are structured, with pods growing on branches within plants, and branches 
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flowering in succession from the top of the plant, starting from the end of each 
branch. A pilot study was done to identify structured sources of variation within 
plants, using all three replicates of 10 lines (chosen at random) and sampling eight 
pods along each of the first, third and fifth branches. The model for the pilot study 
was written as

Response variable: SeedWeight
Structural component: Rep/Unit/Branch/Pod
Explanatory component: [1] + Line*BranchNo*Position

where Position labels the relative position of a pod within the branch, BranchNo speci-
fies the position of a branch within a plant, Unit labels the experimental units (pots) 
within replicates and the remaining factor names are self-explanatory. The average 
seed weight per pod was analysed using ANOVA; the results gave weak evidence for 
differences between lines and suggested that seed weight might be larger on the first 
branch, and possibly also for the first pods set within each branch, but there was no 
evidence of any interactions within the explanatory model. We concluded that a sam-
pling scheme that takes account of the structure within plants should give a more 
efficient comparison across lines. The next task was to design a more comprehensive 
study that covered a much larger number of lines.

The constraints on the second study were that a maximum of 600 pods could be 
processed, with average seed weight per pod derived from the total weight per pod 
divided by the number of seeds per pod (usually 8–14). Using the methods of Section 
16.4.1, we derived estimated variance components for each component of the structural 
model as shown in Table 19.3. The experimental units for the lines are the individual 
pots, labelled as Rep.Unit combinations. For any structured sample, we can use the 
method of Section 16.4.1 to predict the Rep.Unit stratum variance in an ANOVA table, 
and use this to make power calculations for detecting line differences.

We consider a generic balanced scenario. We could sample nL lines (chosen at ran-
dom) using nR replicates, taking nP pods from nB branches. We would specify the 
branches to be used and the positions within each branch to give reasonable coverage 
of the plant. We can then use terms in the explanatory model to account for the system-
atic differences between branches and positions found in the pilot study. Our model 
for this structure hence takes the form

Structural component: Rep/Unit/Branch/Pod
Explanatory component: [1] + Line + BranchNo + Position

TABLE 19.3

Estimated Variance Components for Each Term in Structural 
Model for Measurements of Seed Weight (g) (Case Study 19.3)

Term Variance Component Estimate

Rep σR
2 ˆ .σR

2 0 0050=
Rep.Unit σU

2 ˆ .σU
2 0 0046=

Rep.Unit.Branch σB
2 ˆ .σB

2 0 0031=

Rep.Unit.Branch.Pod σP
2 ˆ .σP

2 0 0017=
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and a dummy ANOVA table for this structure can be constructed, as shown in 
Table 19.4a. Using the methods of Section 16.4.1, we can predict the stratum variances 
(Table 19.4a), and our prediction of the Rep.Unit stratum variance takes the generic form

 s n n nU B P U P B P
2 2 2 2= + +ˆ ˆ ˆ ,σ σ σ  

where ˆ , ˆσ σU B
2 2  and σ̂P

2  are the estimated variance components for units (pots), branches 
and pods, respectively. The variance of a line prediction is based on the Rep.Unit stra-
tum variance divided by the replication calculated as the number of pods sampled per 
line, i.e. nR × nB × nP, giving

 
SE  = = + +







s
n n n n n n n n n

U

R B P

U

R

B

R B
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R B P

2 2 2 2ˆ ˆ ˆ
.

σ σ σ

As a starting point, we assess a scenario using all three replicates (nR = 3) of 50 lines 
(chosen at random from the set not used in the pilot study), taking two pods (nP = 2) 
from each of two branches (nB = 2) and giving 600 pods in total. In this case, we might 
use the first and third branches, taking the two pods from the end and middle of each 
branch to maximize coverage of the plant structure. This structure matches a subset 
of the data from the pilot study which sampled the same experiment so, as long as the 
measurement methods have not changed in the interim, we can include the subset 
from the pilot study to obtain data on 60 lines, giving 720 observations in total and the 
dummy ANOVA table shown in Table 19.4b. In this case, the background variability for 
lines is sU

2 0 0263= .  (with 118 df) and so the SE of a line prediction is equal to

 
SE  = =

× ×
= =s

n n n
U

R B P

2 0 0263
3 2 2

0 0263
12

0 0468
. .

. ,

TABLE 19.4

Dummy ANOVA Table for a Balanced Sample from the Oilseed Rape Study Using a RCBD (a) with 
nR Replicates of nL Lines, Taking nP Pods from nB Branches from Each Plant, and (b) with 60 Lines 
Each with Three Replicates, Taking Two Pods from Each of Two Branches (Case Study 19.3)

(a) (b)

Source of Variation df Predicted Stratum Variance df
Predicted Stratum 

Variance

Block stratum
 Residual nR − 1 n n n n n nL B P R B P U P B Pˆ ˆ ˆ ˆσ σ σ σ2 2 2 2+ + + 2 0.6263

Block.Pot stratum
 Line nL − 1 59
 Residual ( )( )n nR R− −1 1 s n n nU B P U P B P

2 2 2 2= + +ˆ ˆ ˆσ σ σ 118 0.0263

Block.Pot.Branch 
stratum

 BranchNo nB − 1 1
 Residual ( )( )n n nR L B− −1 1 nP B Pˆ ˆσ σ2 2+ 179 0.0079

Block.Pot.Branch.
Pod stratum

 Position nP − 1 1
 Residual ( )( )n n n nR L B P− −1 1 σ̂P

2 359 0.0017

Total n n n nR L B P − 1 719
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with SED = 0.0662. In the pilot study, the average seed weight was 0.4 g and the new 
study is required to detect a change of ± 20%, i.e. differences of the order of 0.16 g. 
Using the methods of Section 10.3 to calculate the power for a RCBD, we find that the 
power of this design is 66.9%, i.e. giving a probability of 0.669 of detecting a difference 
in seed size of 0.16 g between two lines. This does not make any allowance for adjust-
ments required for multiple testing (Section 8.8).

This sampling scheme utilizes only just over half of the available lines, giving a high 
chance that we might omit some of the more extreme lines, and so we should also 
assess an alternative scenario that samples a greater proportion of the lines. To do this, 
we have to sacrifice replication at some other level in the structure, and this is best 
done where the background variability is relatively low. The pod variance component 
is the smallest value in Table 19.3, so suppose we sample only one pod from each of two 
branches (i.e. nP = 1), with the pod position fixed to avoid introducing variability due 
to pod position. We can then sample the full set of 100 lines not used in the pilot study, 
using 100 lines × 3 blocks × 2 branches × 1 pod = 600 pods. As we have overlap with 
the structure of the pilot study, we can again incorporate those data, giving data on the 
full set of lines. In this case, the bottom stratum is removed from the ANOVA table, as 
we cannot assess variation between pods within branches when only a single pod is 
sampled from each branch; however, the form of the rest of the table is unchanged. The 
Rep.Unit stratum variance is now estimated as

 sU U B P
2 2 2 23 3 0 0046 0 0031 0 0017 0 0186= + + = × + + =ˆ ˆ ˆ ( . ) . . . ,σ σ σ  

with line predictions having SE = 0.056 and SED = 0.079 (all with 218 df). This design 
has power of 52.5% for detecting differences of size 0.16 g. For a reasonably small 
decrease in power, we gain information on our full set of lines. In contrast, if instead 
we sampled two pods from one branch on each plant, then the Rep.Unit stratum vari-
ance would increase to 0.0355 (with 218 df) and the power would fall to 31.0%, which 
is unacceptably low.
 Other options can be investigated in a similar manner, but the second option of 
sampling one pod from the first and third branches of the 100 lines excluded from the 
pilot study appears to give the best option for getting information on the full set of 
lines with reasonable power and precision. This case study gives an example where a 
pilot study can be used to gain useful information that can also be incorporated into 
the main study.

19.2 Choosing the Best Analysis Approach

Different traditions for statistical analysis have developed for the analysis of data from 
designed experiments (where there is careful control of the levels of the explanatory vari-
ables used, usually resulting in a balanced structure) and for the analysis of data from obser-
vational studies (where the explanatory variables are usually not under the control of the 
researcher). These differences may seem illogical since both traditions work with the same 
underlying linear model, but can be understood by considering differences in the aims of 
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the two types of study, and in the approaches used to collect the data. The biggest difference 
between the two traditions is in the approach to building a model for the response.

In the analysis of a designed experiment, the model will usually have been determined 
by the design of the experiment. All of the terms incorporated into the design (in both the 
explanatory and structural components of the model) are fitted and, for orthogonal struc-
tures, all terms are retained in the model, whether or not the associated variance ratio is 
statistically significant (see Section 8.2.4). This approach retains the residual mean square 
in each stratum as an estimate of pure error, since it is based on variation between units 
with the same treatment combination applied. It can be argued that model terms that are 
not statistically significant can legitimately be merged with the residual; however, this may 
not be true when the term is not significant because the statistical power is low. For non-
orthogonal explanatory structures, any non-significant terms would be dropped from the 
model so that they do not influence the model predictions (Section 11.2.4). In both cases, 
all significant terms and any terms marginal to them form the model used for prediction.

In the analysis of data from observational studies, data may have been gathered on many 
different explanatory variables regarded as speculative or exploratory, with the statistical 
analysis being used to screen for variables that are related to the response. In many cases, 
there will be strong correlations within the set of explanatory variables and it would be 
counter-productive to include the full set in the model, and so the subset of variables (and 
interactions) that gives a good but parsimonious description of the response is selected 
(see Sections 14.9 and 15.5). Predictions are then made from this selected model.

The differences in procedure arise from differences in the aims and construction of a 
study. If an experiment has been designed, giving an orthogonal structure to investigate 
the effect of certain explanatory variables on the response, then the full model is pre-
defined and all effects are estimable. In some cases, such as the presence of extraneous 
covariates, it may be sensible to add unplanned terms to the model, but it will not be nec-
essary to drop terms from the model unless the structure is non-orthogonal. On the other 
hand, if a study has collected data on a number of uncontrolled explanatory variables, 
then there is no pre-defined model and it is appropriate to use model selection techniques 
(adding and/or dropping terms) to find a parsimonious statistical model that gives a good 
description of the response, and to identify which explanatory variables have some influ-
ence on the response.

However, within each type of study, there are further analysis issues that should be 
considered.

19.2.1 Analysis of Designed Experiments

As discussed above, the analysis of any designed experiment should be defined by the 
design chosen for the experiment. Certainly, the structural component of the model should 
be determined by the design, and an initial explanatory model can be identified based 
on the explanatory variables and structures (e.g. crossed or nested factorial structures) 
considered during the construction of the design. Where qualitative factors are included, 
some refinement of the analysis may be possible using contrasts to address questions more 
specific than ‘are the mean responses for the levels of the factor different?’. Of course, these 
questions (and contrasts) should have been identified and used to select factor levels dur-
ing the construction of the design, preferably enabling the contrasts identified to be fitted 
as an orthogonal set. If this is not the case, care must be taken in both specifying these 
contrasts (ensuring that the statistical package will not orthogonalize the contrasts during 
the model fitting process – a step that might change the meaning of each fitted contrast) 
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and in interpreting the results of the individual tests (as they may change according to the 
order in which the contrasts are fitted, see Section 11.2).

With quantitative factors, the fitting of orthogonal polynomial contrasts to explore the 
shape of the response can be planned during the construction of the design, using the 
expected maximum order of the polynomial to determine the number and spread of 
the factor levels included. Polynomial contrasts generally provide a good assessment of 
whether the response is linear or more complex, but extracting information about the fit-
ted polynomial is quite challenging in most statistical software. Therefore, the fitting of 
polynomial contrasts within the analysis of a designed experiment is often a precursor 
to translation of the model into the regression modelling framework. This can be chal-
lenging, as it requires that proper account is taken of the structural component of the 
model (see Sections 11.6 and 15.3), as well as ensuring that all qualitative explanatory fac-
tors and interactions are retained in the model (see Chapter 15). But analysis within the 
regression modelling framework does make it possible to use more complicated models, 
such as the non-linear models introduced briefly in Section 17.3. As an alternative, linear 
mixed models (Chapter 16) allow direct incorporation of the structural component of the 
model in addition to regression relationships within a general explanatory structure.

Finally, it is always important to investigate whether the observed response might have 
been influenced by any unplanned (extraneous) sources of variation. These might be 
noticed by the experimenter (e.g. pigeon grazing in one corner of a field) or detected dur-
ing statistical analysis (e.g. examining residuals according to their physical position in the 
experimental layout as in Figure 11.4). These effects can be incorporated in the analysis by 
including a measure of the unplanned quantity for each experimental unit as a factor or 
covariate (Sections 11.5 and 15.4).

19.2.2 Analysis of Observational Studies

When identifying the aims of any observational study, the primary response variable of 
interest should be determined, together with the set of potential explanatory variables to 
be measured. In most cases, some (or even all) of the explanatory variables will be quan-
titative, and observations should be collected to cover the full range of values normally 
observed for each variable. With quantitative explanatory variables present, a regression 
model will usually be the first approach considered, although this approach should still 
take account of any structure in the study (see Section 15.3). Before analysis, it is important 
to understand the extent of correlations among the explanatory variables (see Sections 
14.1 and 14.7). One possible preliminary step is to fit simple linear regression models to 
evaluate the relationship of the primary response variable with each individual quantita-
tive explanatory variable, and to fit a simple factor model for any qualitative explanatory 
variables. With simple data sets, this may be all that is required, but various extensions 
will usually need to be considered such as those listed below.

• For quantitative variables, is the relationship a straight line or would some form 
of curved relationship be more appropriate? Choice of the form of curved rela-
tionship depends on whether we just want to describe the response (polynomial 
models may be adequate) or want some deeper understanding of the underlying 
mechanism (some form of non-linear model may be more appropriate).

• Are there multiple explanatory variables? For a small number of variables, it might 
be possible to fit and compare models for all combinations of the explanatory 
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variables (excluding interactions), but for larger numbers some sort of model 
selection process (such as stepwise regression, Sections 14.9 and 15.5) might be 
needed as an initial step, before further exploring the models identified in more 
detail.

• Are there likely to be interactions among the explanatory variables? This depends 
on the explanatory variables present, and may require an understanding of the 
underlying biological science. Recall that interactions between quantitative and 
qualitative explanatory variables (variates and factors) correspond to regression 
with groups, and these regressions may be parallel or not (Chapter 15).

19.2.3 Different Types of Data

Much of the data that we collect from either designed experiments or observational stud-
ies will satisfy the assumptions associated with the linear model – i.e. that the model 
deviations are homogeneous (constant variability), that the deviations follow a Normal 
distribution, and that the deviations are mutually independent (see Sections 4.1 and 12.1). 
We have introduced diagnostic approaches (Chapters 5 and 13) that can be used to check 
that the first two of these assumptions are satisfied for the statistical analysis approaches 
covered in this book. The way in which the data are collected usually determines whether 
deviations can reasonably be expected to be independent (see Section 5.2.2). It should be 
obvious when planning a study whether this is likely to be an issue, and the data collection 
procedure can either be modified to ensure independence, or a more complex statistical 
analysis can be planned; for example, linear mixed models (Chapter 16) can allow for dif-
ferent patterns of correlation between observations.

Where the assumptions of homogeneity of variance or Normality are not met, then one 
approach is the use of transformation of the data prior to analysis (Chapter 6). This pro-
vides some challenges in the presentation of the results (see Section 6.3), but otherwise the 
analysis proceeds as for an untransformed variable. For some types of discrete data, such 
as unconstrained counts, or counts expressed as a proportion of some fixed total, transfor-
mation is unlikely to be successful and a better alternative is available. These forms of data 
are likely to follow either Poisson (counts) or Binomial distributions (proportions), and for 
these types of response we can fit models for both quantitative and qualitative explanatory 
variables within the GLM framework introduced briefly in Chapter 18.

Finally, studies might involve the collection of multiple response variables as well as 
multiple explanatory variables. While each response variable might be analysed individu-
ally, using the methods identified in this book, it might be more useful to analyse the set of 
response variables together, taking account of the associations and relationships between 
them. This requires the application of multivariate statistical methods, which are beyond 
the scope of this book.

19.3 Presentation of Statistics in Reports, Theses and Papers

Having carefully designed a study, collected the data and performed an appropriate sta-
tistical analysis to address the questions and hypotheses that motivated the study, we 
usually need to summarize the statistical aspects of the study in a report, thesis or paper. 
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Statistical information should appear in both the Materials and Methods and the Results 
sections of any publication, and we discuss each of these separately.

19.3.1 Statistical Information in the Materials and Methods

In the Materials and Methods section of a publication, the aim is to provide sufficient sta-
tistical information to allow the reader to be able to understand the structure of the study 
and repeat the statistical analysis.

The first step is to provide details about the design of the study. For a designed experi-
ment this should include information about the treatments and explanatory structures 
as well as the physical structure of the experiment, identifying any practical constraints 
associated with performing the experiment. Where a standard form of design has been 
used (such as a randomized complete block design or a Latin square design), it will usu-
ally be adequate to state the form of design by name with the level of replication (e.g. two 
replicates of a 3 × 3 Latin square design). Where a more complex or non-standard form 
of design has been used, it is necessary to provide more detail, and a diagram or table 
showing the structure of the design, possibly also including the treatment allocation, can 
be helpful (e.g. see Table 19.1). It is important to identify the form of the experimental unit 
that was used for each treatment factor, including the dimensions of the unit if this is 
otherwise unclear. For some studies, these dimensions might vary between experimental 
units (e.g. field size in Case Study 19.1), in which case it might be helpful to state the range 
of values. Where different experimental units are used for different explanatory vari-
ables, such as in Example 9.2, it is important to indicate the number of smaller experimen-
tal units that are combined to produce each larger experimental unit, as well as to clearly 
identify the explanatory variables that are applied to each type of experimental unit. It 
is also important to indicate the numbers of levels of each variable (the actual levels may 
have already been described as part of the biological methods, but might be usefully iden-
tified here as well), how variables are combined (e.g. as a crossed or nested factorial struc-
ture), whether there are additional control treatments, and, most importantly, the number 
of replicates of each treatment combination. It should be possible for the reader to relate 
the choice of experimental treatments directly to the stated aims of the study, but it may 
sometimes be useful to clarify the precise hypotheses being tested, and to indicate how 
these relate to the particular treatments or treatment combinations included. Such infor-
mation may also be used to justify the inclusion of contrasts within a treatment factor.

For observational studies, similar information needs to be provided, but with more 
focus on how the samples were selected, possibly identifying the sampling frame and any 
constraints on the selection of individual samples. Any broad differences in the character-
istics of the samples (related to spatial location, time of sampling, environmental variables, 
etc.) should be reported, together with the structure of the sample. For example, in a study 
that sampled fruit from trees in an orchard for an assessment of pesticide levels, we would 
need to indicate how the fruit were selected within each tree, possibly taking account of 
different locations within the tree (e.g. branch number or spatially defined parts of the 
tree), as well as how the trees were selected within the orchard, and, if the study used fruit 
from different orchards, how the orchards were selected. Design Case Study 19.1 contains 
some elements of an observational study, as well as elements of a designed experiment, 
illustrating how studies can be a hybrid of these two types.

Having described the structure and design of the study, the next part of the statisti-
cal methods relates to the data that have been collected. Details should be given of the 
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number of measurements or assessments made on each experimental unit (we might mea-
sure each individual plant within a plot of multiple plants, or take several measurements 
on each experimental unit), and any manipulation of these data prior to analysis. This 
would include the calculation of any quantity derived from several variables measured 
on each experimental unit (e.g. harvest index). If some transformation of the data has been 
performed prior to analysis in order to satisfy the model assumptions (primarily homoge-
neity of variance and Normality), then the form of data transformation should be stated, 
together with the reason for the transformation.

The final section of statistical methodology relates to the method(s) of analysis that have 
been applied to the data to extract answers to the original questions, i.e. to test the statisti-
cal hypotheses. Where a standard method has been used, such as simple linear regression 
to assess the relationship between a response and explanatory variate or ANOVA to sum-
marize data from a designed experiment, it will often be sufficient to just state the method 
without the need for further referencing. In other cases, it is helpful to state the full model 
fitted, including both explanatory and structural components; these can be described in 
the text (e.g. a crossed structure with two factors), but it is often clearer to explicitly give 
the symbolic form, including details of any contrasts fitted to extract information about 
particular treatment comparisons. Where model selection approaches have been used, the 
description should indicate the model terms or sequence of models being considered, as 
well as the selection strategy and selection criterion used to identify the best model. Where 
less standard analysis approaches are used, it will usually be more sensible to provide a 
reference to a good applied statistics text describing the method than to give details within 
the publication.

In addition, it is useful to state the statistical software used to perform the analysis, 
including version number and the relevant functions or procedures. However, this infor-
mation should be given in addition to, not instead of, the information on the methods 
listed above. It is a good practice to keep a safe copy of the analysis program and data file 
used to produce the results given in the paper, in case of any future revision or queries.

19.3.2 Presentation of Results

The best approach to the presentation of the results of statistical analyses, and the quantity 
of information required, varies considerably depending on the type of analysis that has 
been done. For simple statistical hypothesis tests, such as a two-sample t-test (see Section 
2.4.2), it is sufficient to present the test statistic, together with the associated degrees of 
freedom and the observed significance level, within the text. Interpretation of the test 
result (whether to reject or fail to reject the null hypothesis) might then follow, together 
with information about the mean values for the different treatments, and hence the direc-
tion of the difference and the biological interpretation.

For the analysis of variance of a designed experiment or the fitting of a regression 
model, more extensive results need to be presented. It is usually sufficient to identify the 
model terms used to form the predictive model (i.e. terms that are statistically signifi-
cant and those terms marginal to them), and then to present predictions. At this stage, 
a table or a graph provides a succinct yet powerful summary of the analysis, and the 
choice between these two forms usually depends on the complexity and quantity of the 
information to be presented. Tables may be the better choice for large, more complex sets 
of means (as might be produced from a multi-factorial designed experiment) and graphs 
are often better for showing simpler patterns (such as for a simple designed experiment 
or regression model).
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When presenting the results from the analysis of variance of a designed experiment, 
it is usually not necessary to present the full ANOVA table, although when the model is 
complex, a table showing the strata, model terms and their associated df can be a useful 
supplement to the description in the Materials and Methods section. F-tests for the vari-
ance ratios associated with each explanatory term can be quoted in the text (test statistic 
with df and observed significance level), with tables of means or simple graphs used to 
show the pattern of responses for the predictive model. Where a high-order interaction 
term has a significant F-test, then it is usual to show predictions for the levels of the associ-
ated main effects alongside the predictions for the interaction (i.e. for the combinations of 
levels of different factors) in a multi-way table. Careful thought is needed about the choice 
of factors to label the rows and columns of the table, as the human eye is good at seeing 
patterns down columns of numbers, but less good across rows. For a two-way table, one 
strategy is to assign columns to the factor which has larger differences between predic-
tions for different levels, with rows assigned to the other factor. The more subtle differ-
ences between predictions for the levels of the row factor (within each level of the column 
factor) are then more easily seen down each column. There is a natural ordering of the 
levels for quantitative factors, but careful ordering of levels for qualitative factors can make 
it easier to see patterns.

Graphs can give a good illustration of two-factor interactions, with the levels of one 
factor labelling positions on the horizontal axis and different colours or symbols used 
to indicate the points for the levels of the other factor. Point plots are preferable to bar 
charts, and it can be useful to draw lines between the points for each level of the second 
factor (as we did from Chapter 8 onwards), although it is important to realize that these 
lines do not imply that we can interpolate between levels. Again, there will be a natural 
ordering of factor levels on the horizontal axis for quantitative factors but where the factor 
is qualitative, careful ordering of the levels can enhance the interpretation of the interac-
tion. The best choice of factor used to label the horizontal axis depends on context, and it 
is usually worth creating both of the possible graphs to identify the option that provides 
the clearest interpretation. Graphs can also be used to illustrate three-way interactions 
by creating separate plots to illustrate the interaction between two of the factors for each 
level of the third factor; however, if the patterns are complex, then a table may make bet-
ter use of space.

Whether presenting predictions using tables or graphs, it is vital to also present informa-
tion about the precision of the predictions or of differences between them. Where interest 
is in the estimated response for a particular level of a factor (a single prediction), then 
the estimated SE is the appropriate measure of precision, either as a summary or used to 
construct a confidence interval (usually at the 95% level). If the predictions are presented 
graphically, then bars for confidence intervals (or SEs) can be added to the point for each 
prediction, with the form of error bar and its associated df clearly stated in the figure 
legend. For a balanced design with equal replication, the SEs will be the same, and so 
only this common value needs to be presented with a table of predictions. However, most 
studies are more concerned with assessing differences between pairs of predictions, and 
so the presentation of the estimated SE of the difference (SED) for each comparison, with 
its associated df, is more useful. Alternatively, the LSD can be derived for any comparison 
and presented with its associated df and chosen level of significance stated. Again, for a 
balanced design with equal replication, there will be only one SED or LSD value to be pre-
sented and, in this case, it is best to just add a single SED or LSD bar to a graph of predicted 
values, suitably positioned to allow easy visual assessment of the comparison(s) of most 
interest (e.g. Figure 4.6).
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More care is required where a transformation has been applied to the data prior to anal-
ysis (see Chapter 6). Here, the analysis has been applied to the transformed response, so 
that assessment of the significance of differences between predictions must be made on 
that transformed scale using the appropriate SEDs or LSDs. However, we often want to 
interpret these differences on the scale on which the data were originally measured. The 
usual approach is to present both the predictions on the transformed scale, with appropri-
ate SEDs/LSDs (plus associated df), and the back-transformed predictions. This is rela-
tively easy when presenting the predictions in a table, as the back-transformed values 
can be presented in parentheses alongside the predictions. For graphical presentation, one 
option is to plot the predictions (with SEDs or LSDs) on the transformed scale but with 
the vertical axis labelled on the back-transformed scale. Where this is not possible, or does 
not provide a clear representation of the pattern of response, it may be better to present 
the back-transformed means graphically with the means on the transformed scale (and 
their associated precision) shown in an accompanying table. Where interest is in single 
predictions, so that confidence intervals give an appropriate measure of precision, then 
confidence intervals can be calculated on the transformed scale and both the mean value 
and the confidence limits back-transformed for graphical display.

For a regression model with a single explanatory variate, a graph of the fitted model 
imposed on a scatter plot of the observations will usually be helpful to demonstrate 
the fit of the model. This is a useful approach for a linear (Chapter 12) or non-linear 
(Chapter 17) model, as well as for models with additional explanatory factor(s) (Chapter 
15). The equation of the fitted model should be presented alongside the graph, showing 
the estimated parameters and their standard errors (with the associated df), and appro-
priate goodness-of-fit statistics (Section 14.8). A graphical representation of the fitted 
model is more difficult for multiple regression models, but a plot of the observations 
against the fitted values can be helpful. For models with a large number of parameters, 
presentation of the estimated parameters and their SE in a table may be more effective 
than trying to list them within the text (e.g. Table 14.14). Comparisons between models 
within a nested sequence (Chapters 14 and 15) can be reported in terms of the F-tests 
from the sequential ANOVA table, presenting each test statistic with its df and observed 
significance level.

Issues in the presentation of results from fitting GLMs (Chapter 18) closely mirror those 
associated with the analyses of transformed data, with parameters being estimated on the 
scale defined by the link transformation. Results are best presented in terms of predictions 
on the back-transformed scale for qualitative variables or plots of the fitted model on the 
back-transformed scale for quantitative variables, with information about the significance 
of parameter estimates, or comparisons between predictions, presented on the scale of the 
link transformation.

Finally, we return briefly to the issue of the precision with which numerical values should 
be presented, initially discussed in Section 2.6. The conventions described there provide a 
set of guidelines for the presentation of numerical results. We introduced the convention 
that test statistics, critical values and observed significance levels should be presented to 
three decimal places, generally providing sufficient detail for interpretation of the tests. 
We also introduced the concept of identifying the granularity of the observed response, 
and that other statistics should be presented with a precision defined in terms of this 
granularity. Predictions and estimated parameters should be presented to one more signif-
icant figure than the granularity of the original data, and variances, standard deviations 
and standard errors (including LSDs) should use two more significant figures. Following 
these guidelines, with a sprinkling of common sense thrown in, should ensure that you 
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present your numerical results with sufficient detail to allow your reader to understand 
and appreciate the analysis and interpretation you present.

19.4 And Finally…

We hope that we have provided a clear understanding of a wide range of statistical meth-
ods to underpin your scientific research and education, and have provided you with suf-
ficient knowledge to allow you either to design your own studies and analyse the data that 
you collect, or to be able to instigate a fruitful collaboration with a professional applied 
statistician. We have all worked in organizations in the latter role and are well aware of the 
value, enjoyment and success that such collaborations can bring to both sides.

Probably the most valuable single piece of advice we can give is that you should look 
critically at your statistical analysis, as it is easy to fit statistical models that do not make 
biological sense and which may therefore give misleading results. Always make sure that 
you understand the model you have fitted and cross-check that the results are consistent 
with simple summaries of your study. If your results contradict previous work, then check 
for a mistake in your data processing or analysis procedures before celebrating your new 
discovery!

Our intention is to maintain and expand the online software resources associated with 
this book (www.stats4biol.info), and hope that you continue to find these and the contents 
of the book useful as you pursue the application of statistical approaches to add value to 
your research and study.
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Appendix A: Data Tables

TABLE A.1

Measurements of Weight (W), Length (L), Diameter (D), Moisture Content (M) and Hardness Index 
(H) for 190 Seeds (Example 12.1A and File triticum.dat)

Seed W L D M H Seed W L D M H

1 30.15 3.27 2.09 10.27 −16.63 39 25.42 3.01 1.93 10.68 −22.04
2 35.51 3.65 2.34 10.61 −8.27 40 30.28 3.45 2.21 10.37 2.25
3 29.16 3.36 2.15 10.27 −21.45 41 27.41 3.30 2.11 10.41 −3.94
4 16.82 2.77 1.79 11.05 4.13 42 38.75 3.84 2.47 10.68 −20.41
5 23.42 2.78 1.80 10.02 −2.05 43 19.69 3.14 2.01 10.28 −11.05
6 31.77 3.37 2.15 10.34 −41.78 44 24.80 3.09 1.98 10.67 −30.84
7 16.45 2.52 1.66 10.64 −5.33 45 33.27 3.39 2.17 10.79 −21.12
8 32.89 3.48 2.23 10.44 −13.91 46 22.43 2.91 1.87 10.47 −28.66
9 22.55 3.17 2.03 10.28 −10.87 47 49.47 4.12 2.66 10.59 −42.47
10 28.03 3.20 2.05 10.22 −16.28 48 22.30 3.07 1.97 10.97 −1.61
11 32.27 3.58 2.29 10.32 −12.81 49 27.29 3.42 2.19 10.37 11.24
12 40.62 3.97 2.56 10.40 10.46 50 34.26 3.63 2.33 10.39 −4.45
13 29.28 3.54 2.27 10.64 −32.43 51 24.30 3.06 1.96 10.85 11.87
14 22.68 3.23 2.07 10.78 −19.04 52 24.55 3.24 2.07 10.30 −21.16
15 29.78 3.53 2.26 10.39 −25.78 53 19.06 2.89 1.86 10.25 −9.72
16 27.16 3.05 1.96 10.49 −34.65 54 27.04 3.18 2.04 10.36 −6.46
17 17.94 2.86 1.85 10.37 −5.24 55 29.03 3.36 2.15 10.67 −8.63
18 20.93 3.08 1.97 10.97 −6.41 56 36.38 3.64 2.33 10.59 −19.23
19 30.78 3.48 2.23 10.83 −4.09 57 24.30 3.22 2.06 10.78 −0.93
20 45.85 3.78 2.43 10.37 −18.00 58 22.68 3.11 1.99 10.38 −22.53
21 30.78 3.27 2.09 10.70 −3.21 59 33.89 3.51 2.25 10.64 −5.04
22 33.64 3.54 2.27 10.52 −21.18 60 33.39 3.45 2.21 10.65 −18.14
23 34.89 3.47 2.22 10.74 −18.36 61 25.54 3.45 2.21 10.28 7.83
24 22.55 3.09 1.98 10.55 −9.35 62 32.52 3.67 2.35 10.51 −13.93
25 28.28 3.38 2.16 10.51 −7.74 63 31.27 3.41 2.18 10.30 −24.13
26 25.04 3.07 1.97 10.06 −7.46 64 31.15 3.40 2.17 10.48 3.35
27 39.25 3.80 2.44 10.76 −28.34 65 19.19 2.93 1.89 10.59 −5.89
28 26.79 3.09 1.98 10.26 6.31 66 23.42 3.22 2.06 10.34 −1.76
29 24.55 3.10 1.99 10.36 4.18 67 25.17 2.87 1.85 10.54 −20.72
30 33.02 3.58 2.29 10.56 −22.34 68 28.91 3.10 1.99 10.56 −11.31
31 24.30 2.74 1.78 10.54 −19.77 69 27.79 3.38 2.16 10.45 −6.73
32 25.92 3.10 1.99 10.67 −28.64 70 34.76 3.45 2.21 10.70 −36.98
33 34.51 3.57 2.29 10.61 −9.14 71 29.53 3.24 2.07 10.05 −20.59
34 28.16 3.00 1.93 10.21 −15.51 72 24.80 3.30 2.11 10.54 −7.83
35 28.16 3.09 1.98 10.52 −11.11 73 29.65 3.31 2.12 10.52 −25.70
36 19.81 2.85 1.84 10.94 −14.08 74 29.90 3.36 2.15 10.42 −34.76
37 27.16 3.39 2.17 10.37 −19.96 75 21.81 2.82 1.82 10.71 −8.90
38 16.07 2.61 1.71 10.31 −5.11 76 25.29 3.12 2.00 10.77 15.07

continued
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TABLE A.1 (continued)

Measurements of Weight (W), Length (L), Diameter (D), Moisture Content (M) and Hardness Index 
(H) for 190 Seeds (Example 12.1A and File triticum.dat)

Seed W L D M H Seed W L D M H

77 33.77 3.43 2.19 10.61 −24.60 121 31.90 3.33 2.13 10.56 −5.52
78 37.13 3.81 2.45 10.70 −15.98 122 24.05 2.73 1.77 10.77 −30.30
79 31.52 3.43 2.19 10.55 −14.59 123 35.88 3.63 2.33 10.65 −17.86
80 32.65 3.48 2.23 10.50 −22.41 124 41.12 3.83 2.46 10.70 −8.30
81 28.16 3.55 2.27 10.79 −42.05 125 30.90 3.71 2.38 10.88 −25.06
82 25.67 3.33 2.13 10.65 8.38 126 23.67 3.18 2.04 10.65 −1.61
83 16.07 2.46 1.63 10.69 −4.47 127 22.43 2.92 1.88 10.54 −11.17
84 31.90 3.34 2.14 10.71 −14.63 128 26.79 3.23 2.07 10.59 −23.49
85 40.99 4.00 2.58 10.68 −2.88 129 43.49 3.96 2.55 10.67 −30.67
86 22.68 3.19 2.04 10.20 6.77 130 27.66 3.42 2.19 10.65 −7.37
87 24.55 3.17 2.03 10.90 −19.53 131 30.28 3.49 2.23 10.70 4.89
88 31.77 3.61 2.31 10.62 −9.93 132 21.81 3.20 2.05 10.91 1.78
89 30.90 3.63 2.33 10.51 −10.35 133 33.52 3.46 2.21 10.30 −21.35
90 29.65 3.56 2.28 10.66 16.00 134 17.19 2.81 1.82 10.72 −17.29
91 33.39 3.34 2.14 10.38 −21.67 135 15.57 2.64 1.72 10.67 −22.46
92 27.54 3.49 2.23 10.29 −10.27 136 23.80 3.10 1.99 10.34 −20.90
93 35.14 3.82 2.45 10.24 4.35 137 35.26 3.60 2.31 10.77 −14.34
94 37.13 3.64 2.33 10.21 −31.31 138 47.47 4.13 2.67 10.72 −27.76
95 19.06 2.94 1.89 10.48 22.05 139 25.17 2.90 1.87 10.28 26.26
96 31.65 3.31 2.12 10.01 −10.07 140 41.99 3.86 2.48 10.38 −20.44
97 25.92 3.01 1.93 10.55 −4.62 141 29.16 3.62 2.32 10.57 −7.22
98 25.17 3.09 1.98 10.77 −19.43 142 18.57 3.08 1.97 10.54 −26.78
99 21.06 2.90 1.87 10.61 −6.36 143 24.17 3.31 2.12 10.98 −24.60
100 27.66 3.12 2.00 10.54 −5.06 144 35.88 3.66 2.34 10.14 −1.33
101 32.27 3.15 2.02 10.70 −34.37 145 20.56 2.90 1.87 10.85 2.23
102 22.93 2.84 1.83 10.21 −6.84 146 30.28 3.44 2.20 10.26 −21.36
103 29.41 3.03 1.94 10.62 −10.74 147 28.41 3.35 2.14 10.39 −16.57
104 31.03 3.54 2.27 10.43 1.11 148 24.80 2.88 1.86 10.44 −14.64
105 25.54 3.23 2.07 10.52 −29.74 149 28.53 3.45 2.21 10.58 −10.61
106 32.77 3.36 2.15 10.49 11.20 150 32.52 3.46 2.21 10.71 −8.90
107 34.89 3.64 2.33 10.90 −14.96 151 26.91 2.97 1.91 10.63 −6.45
108 22.93 2.87 1.85 10.97 −20.46 152 25.42 3.01 1.93 10.57 −38.91
109 35.26 3.54 2.27 10.58 −5.39 153 33.27 3.61 2.31 10.49 −0.79
110 21.81 3.16 2.02 10.53 −14.53 154 29.16 3.34 2.14 10.36 −18.54
111 31.27 3.49 2.23 10.61 −31.34 155 25.17 3.09 1.98 10.74 −28.62
112 32.02 3.50 2.24 10.78 −20.25 156 28.53 3.17 2.03 10.52 −21.63
113 29.41 3.49 2.23 10.25 −9.70 157 20.68 2.92 1.88 10.81 −47.75
114 25.04 3.11 1.99 10.34 −10.69 158 23.42 2.76 1.79 10.42 −7.09
115 37.50 3.83 2.46 10.70 −4.61 159 27.41 3.06 1.96 10.98 −24.94
116 17.94 2.74 1.78 10.84 −30.76 160 22.18 3.06 1.96 10.68 −21.83
117 32.15 3.26 2.09 10.74 −11.28 161 28.03 3.22 2.06 10.29 −19.64
118 26.29 3.33 2.13 10.57 −21.02 162 35.01 3.36 2.15 10.66 −22.98
119 27.29 3.24 2.07 10.59 0.42 163 29.03 3.10 1.99 10.45 −22.79
120 32.15 3.47 2.22 10.34 −19.32 164 23.92 2.95 1.90 10.82 −10.84
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TABLE A.1 (continued)

Measurements of Weight (W), Length (L), Diameter (D), Moisture Content (M) and Hardness Index 
(H) for 190 Seeds (Example 12.1A and File triticum.dat)

Seed W L D M H Seed W L D M H

165 26.54 3.32 2.12 10.88 −15.84 178 37.38 3.67 2.35 10.73 −17.74
166 36.63 3.59 2.30 10.50 −5.22 179 35.01 3.65 2.34 10.34 −15.01

167 31.90 3.51 2.25 10.42 −8.95 180 28.03 3.30 2.11 10.83 −5.60

168 22.80 2.90 1.87 10.85 −5.56 181 34.14 3.51 2.25 10.56 −4.95

169 28.28 3.44 2.20 10.46 −20.97 182 26.79 3.34 2.14 10.55 −19.84

170 39.12 3.69 2.37 10.08 −19.53 183 38.13 3.65 2.34 10.31 −27.10

171 28.16 3.51 2.25 10.19 −27.23 184 31.90 3.37 2.15 10.40 −16.98

172 38.88 3.71 2.38 10.64 −17.95 185 33.64 3.56 2.28 10.73 −34.58

173 23.92 3.07 1.97 10.34 −3.73 186 27.29 3.04 1.95 10.55 −7.29

174 20.81 2.90 1.87 10.54 −1.51 187 27.66 3.60 2.31 10.88 −22.68

175 29.03 3.22 2.06 10.36 −6.98 188 26.54 3.58 2.29 10.49 3.30

176 19.69 3.02 1.94 10.38 3.78 189 30.90 3.17 2.03 10.37 −17.83

177 33.27 3.47 2.22 10.48 −14.60 190 18.94 2.45 1.62 10.08 −7.06

Source: Data from H.-C. Jing and K. Hammond-Kosack, Rothamsted Research.
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TABLE A.2

Measurements of Air Temperature (°C) for 100 Days during 2006 from a Standard Glass Mercury 
Thermometer (M) and a New Electronic Thermistor (ET) (Exercise 12.2 and File airtemp.dat)

Day M ET Day M ET Day M ET

1 5.3 5.3 127 12.1 12.4 244 17.9 17.4
7 6.6 5.5 132 12.6 12.7 246 20.7 19.5
8 8.9 8.7 134 11.7 11.4 251 20.3 19.6
13 6.9 6.7 139 11.3 11.9 253 18.4 18.3
15 8.8 8.6 141 12.0 11.6 258 16.3 16.6
20 2.0 1.8 148 10.0 10.3 260 17.0 17.5
22 0.5 −0.1 153 13.6 13.6 261 21.0 20.5
27 3.9 3.8 155 19.1 19.3 265 16.0 16.1
29 −0.5 −0.7 160 28.4 23.0 267 15.2 15.9
34 4.0 3.8 162 14.3 13.8 272 15.6 14.9
36 5.5 4.6 167 17.5 17.8 274 12.1 12.3
41 8.2 8.0 169 15.0 15.3 279 16.9 15.8
43 9.3 8.9 174 12.7 12.9 281 15.5 15.6
48 4.2 3.4 176 16.4 16.7 286 12.5 12.7
50 2.0 2.0 181 24.1 24.2 288 14.5 14.5
55 3.1 2.7 183 23.0 22.7 293 11.0 10.9
57 0.5 −0.2 188 18.5 19.0 294 11.0 10.9
62 4.0 2.7 190 19.9 20.0 295 11.5 10.9
64 9.4 8.7 195 24.9 23.9 300 12.5 12.0
69 1.2 0.7 197 27.9 26.4 302 4.6 4.3
71 4.1 3.5 202 23.0 22.5 307 6.6 5.8
76 4.3 4.0 204 26.9 25.0 309 9.0 8.1
78 3.6 2.7 209 20.5 20.4 314 14.7 14.3
83 10.9 11.0 211 16.3 17.2 316 12.4 12.2
85 7.9 7.6 216 16.6 16.8 321 11.8 11.2
90 8.4 8.4 217 17.3 18.3 323 5.0 4.8
92 4.5 4.5 218 16.9 17.2 330 6.1 4.7
97 4.8 5.0 223 14.2 14.3 335 8.8 8.1
99 8.9 8.5 225 18.8 17.6 337 8.5 8.6
106 10.1 10.4 230 15.9 16.1 344 10.6 10.4
111 8.4 8.5 232 17.3 17.6 349 4.9 4.0
113 11.9 11.7 239 14.8 14.7 351 −1.5 −2.4
120 13.9 14.2 241 16.3 16.7 353 0.0 −3.2
125 11.8 12.0

Source: Data from T. Scott and M. Glendining, Rothamsted Research.
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Appendix B: Quantiles of Statistical 
Distributions

TABLE B.1

95th Percentiles of F-Distribution with N Numerator and D Denominator df

N

D 1 2 3 4 5 6 7 8 9 10

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.543 241.882
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396
3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.785
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137
10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978
11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544
16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297
24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255
26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220
28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190
30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165
32 4.149 3.295 2.901 2.668 2.512 2.399 2.313 2.244 2.189 2.142
34 4.130 3.276 2.883 2.650 2.494 2.380 2.294 2.225 2.170 2.123
36 4.113 3.259 2.866 2.634 2.477 2.364 2.277 2.209 2.153 2.106
38 4.098 3.245 2.852 2.619 2.463 2.349 2.262 2.194 2.138 2.091
40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077
45 4.057 3.204 2.812 2.579 2.422 2.308 2.221 2.152 2.096 2.049
50 4.034 3.183 2.790 2.557 2.400 2.286 2.199 2.130 2.073 2.026
55 4.016 3.165 2.773 2.540 2.383 2.269 2.181 2.112 2.055 2.008
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993
70 3.978 3.128 2.736 2.503 2.346 2.231 2.143 2.074 2.017 1.969
80 3.960 3.111 2.719 2.486 2.329 2.214 2.126 2.056 1.999 1.951
100 3.936 3.087 2.696 2.463 2.305 2.191 2.103 2.032 1.975 1.927

continued
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TABLE B.1 (continued)

95th Percentiles of F-Distribution with N Numerator and D Denominator df

N

D 11 12 13 14 15 16 18 20 22 24

1 242.984 243.906 244.690 245.364 245.950 246.464 247.323 248.013 248.579 249.052
2 19.405 19.413 19.419 19.438 19.443 19.447 19.454 19.460 19.464 19.468
3 8.763 8.745 8.729 8.715 8.703 8.692 8.674 8.660 8.648 8.638
4 5.936 5.912 5.891 5.873 5.858 5.844 5.821 5.802 5.787 5.774
5 4.704 4.678 4.655 4.636 4.619 4.604 4.578 4.558 4.541 4.527
6 4.027 4.000 3.976 3.956 3.938 3.922 3.896 3.874 3.856 3.841
7 3.603 3.575 3.550 3.529 3.511 3.494 3.467 3.444 3.426 3.410
8 3.313 3.284 3.259 3.237 3.218 3.202 3.173 3.150 3.131 3.115
9 3.102 3.073 3.048 3.025 3.006 2.989 2.960 2.936 2.917 2.900
10 2.943 2.913 2.887 2.865 2.845 2.828 2.798 2.774 2.754 2.737
11 2.818 2.788 2.761 2.739 2.719 2.701 2.671 2.646 2.626 2.609
12 2.717 2.687 2.660 2.637 2.617 2.599 2.568 2.544 2.523 2.505
13 2.635 2.604 2.577 2.554 2.533 2.515 2.484 2.459 2.438 2.420
14 2.565 2.534 2.507 2.484 2.463 2.445 2.413 2.388 2.367 2.349
15 2.507 2.475 2.448 2.424 2.403 2.385 2.353 2.328 2.306 2.288
16 2.456 2.425 2.397 2.373 2.352 2.333 2.302 2.276 2.254 2.235
17 2.413 2.381 2.353 2.329 2.308 2.289 2.257 2.230 2.208 2.190
18 2.374 2.342 2.314 2.290 2.269 2.250 2.217 2.191 2.168 2.150
19 2.340 2.308 2.280 2.256 2.234 2.215 2.182 2.155 2.133 2.114
20 2.310 2.278 2.250 2.225 2.203 2.184 2.151 2.124 2.102 2.082
22 2.259 2.226 2.198 2.173 2.151 2.131 2.098 2.071 2.048 2.028
24 2.216 2.183 2.155 2.130 2.108 2.088 2.054 2.027 2.003 1.984
26 2.181 2.148 2.119 2.094 2.072 2.052 2.018 1.990 1.966 1.946

28 2.151 2.118 2.089 2.064 2.041 2.021 1.987 1.959 1.935 1.915

30 2.126 2.092 2.063 2.037 2.015 1.995 1.960 1.932 1.908 1.887

32 2.103 2.070 2.040 2.015 1.992 1.972 1.937 1.908 1.884 1.864

34 2.084 2.050 2.021 1.995 1.972 1.952 1.917 1.888 1.863 1.843

36 2.067 2.033 2.003 1.977 1.954 1.934 1.899 1.870 1.845 1.824

38 2.051 2.017 1.988 1.962 1.939 1.918 1.883 1.853 1.829 1.808

40 2.038 2.003 1.974 1.948 1.924 1.904 1.868 1.839 1.814 1.793

45 2.009 1.974 1.945 1.918 1.895 1.874 1.838 1.808 1.783 1.762

50 1.986 1.952 1.921 1.895 1.871 1.850 1.814 1.784 1.759 1.737

55 1.968 1.933 1.903 1.876 1.852 1.831 1.795 1.764 1.739 1.717

60 1.952 1.917 1.887 1.860 1.836 1.815 1.778 1.748 1.722 1.700

70 1.928 1.893 1.863 1.836 1.812 1.790 1.753 1.722 1.696 1.674

80 1.910 1.875 1.845 1.817 1.793 1.772 1.734 1.703 1.677 1.654

100 1.886 1.850 1.819 1.792 1.768 1.746 1.708 1.676 1.650 1.627
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TABLE B.1 (continued)

95th Percentiles of F-Distribution with N Numerator and D Denominator df

N

D 26 28 30 35 40 45 50 60 80 100

1 249.453 249.797 250.095 250.693 251.143 251.494 251.774 252.196 252.724 253.041
2 19.472 19.474 19.477 19.482 19.485 19.488 19.491 19.494 19.498 19.501
3 8.630 8.623 8.617 8.604 8.594 8.587 8.581 8.572 8.561 8.554
4 5.763 5.754 5.746 5.729 5.717 5.707 5.699 5.688 5.673 5.664
5 4.515 4.505 4.496 4.477 4.464 4.453 4.444 4.431 4.415 4.405
6 3.829 3.818 3.808 3.789 3.774 3.763 3.754 3.740 3.722 3.712
7 3.397 3.386 3.376 3.356 3.340 3.328 3.319 3.304 3.286 3.275
8 3.101 3.090 3.079 3.058 3.043 3.030 3.020 3.005 2.986 2.975
9 2.886 2.874 2.864 2.842 2.826 2.813 2.803 2.787 2.767 2.755
10 2.723 2.710 2.700 2.678 2.661 2.648 2.637 2.621 2.601 2.588
11 2.594 2.582 2.570 2.548 2.531 2.517 2.506 2.490 2.469 2.456
12 2.491 2.478 2.466 2.443 2.426 2.412 2.401 2.384 2.363 2.350
13 2.405 2.392 2.380 2.357 2.339 2.325 2.314 2.297 2.275 2.261
14 2.333 2.320 2.308 2.284 2.266 2.252 2.241 2.223 2.200 2.187
15 2.272 2.259 2.247 2.223 2.204 2.190 2.178 2.160 2.137 2.123
16 2.220 2.206 2.194 2.169 2.151 2.136 2.124 2.106 2.083 2.068
17 2.174 2.160 2.148 2.123 2.104 2.089 2.077 2.058 2.035 2.020
18 2.134 2.119 2.107 2.082 2.063 2.048 2.035 2.017 1.993 1.978
19 2.098 2.084 2.071 2.046 2.026 2.011 1.999 1.980 1.955 1.940
20 2.066 2.052 2.039 2.013 1.994 1.978 1.966 1.946 1.922 1.907
22 2.012 1.997 1.984 1.958 1.938 1.922 1.909 1.889 1.864 1.849
24 1.967 1.952 1.939 1.912 1.892 1.876 1.863 1.842 1.816 1.800
26 1.929 1.914 1.901 1.874 1.853 1.837 1.823 1.803 1.776 1.760
28 1.897 1.882 1.869 1.841 1.820 1.803 1.790 1.769 1.742 1.725
30 1.870 1.854 1.841 1.813 1.792 1.775 1.761 1.740 1.712 1.695
32 1.846 1.830 1.817 1.789 1.767 1.750 1.736 1.714 1.686 1.669
34 1.825 1.809 1.795 1.767 1.745 1.728 1.713 1.691 1.663 1.645
36 1.806 1.790 1.776 1.748 1.726 1.708 1.694 1.671 1.643 1.625
38 1.790 1.774 1.760 1.731 1.708 1.691 1.676 1.653 1.624 1.606
40 1.775 1.759 1.744 1.715 1.693 1.675 1.660 1.637 1.608 1.589
45 1.743 1.727 1.713 1.683 1.660 1.642 1.626 1.603 1.573 1.554
50 1.718 1.702 1.687 1.657 1.634 1.615 1.599 1.576 1.544 1.525
55 1.698 1.681 1.666 1.636 1.612 1.593 1.577 1.553 1.521 1.501
60 1.681 1.664 1.649 1.618 1.594 1.575 1.559 1.534 1.502 1.481
70 1.654 1.637 1.622 1.591 1.566 1.546 1.530 1.505 1.471 1.450
80 1.634 1.617 1.602 1.570 1.545 1.525 1.508 1.482 1.448 1.426
100 1.607 1.589 1.573 1.541 1.515 1.494 1.477 1.450 1.415 1.392
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TABLE B.2

Percentiles of t- and Chi-Squared Distributions with D df

t-Distribution Chi-Squared Distribution

D 95th 97.5th 99th 99.5th 95th 97.5th 99th 99.5th

1 6.314 12.706 31.821 63.657 3.841 5.024 6.635 7.879
2 2.920 4.303 6.965 9.925 5.991 7.378 9.210 10.597
3 2.353 3.182 4.541 5.841 7.815 9.348 11.345 12.838
4 2.132 2.776 3.747 4.604 9.488 11.143 13.277 14.860
5 2.015 2.571 3.365 4.032 11.070 12.833 15.086 16.750
6 1.943 2.447 3.143 3.707 12.592 14.449 16.812 18.548
7 1.895 2.365 2.998 3.499 14.067 16.013 18.475 20.278
8 1.860 2.306 2.896 3.355 15.507 17.535 20.090 21.955
9 1.833 2.262 2.821 3.250 16.919 19.023 21.666 23.589
10 1.812 2.228 2.764 3.169 18.307 20.483 23.209 25.188
11 1.796 2.201 2.718 3.106 19.675 21.920 24.725 26.757
12 1.782 2.179 2.681 3.055 21.026 23.337 26.217 28.300
13 1.771 2.160 2.650 3.012 22.362 24.736 27.688 29.819
14 1.761 2.145 2.624 2.977 23.685 26.119 29.141 31.319
15 1.753 2.131 2.602 2.947 24.996 27.488 30.578 32.801
16 1.746 2.120 2.583 2.921 26.296 28.845 32.000 34.267
17 1.740 2.110 2.567 2.898 27.587 30.191 33.409 35.718
18 1.734 2.101 2.552 2.878 28.869 31.526 34.805 37.156
19 1.729 2.093 2.539 2.861 30.144 32.852 36.191 38.582
20 1.725 2.086 2.528 2.845 31.410 34.170 37.566 39.997
22 1.717 2.074 2.508 2.819 33.924 36.781 40.289 42.796
24 1.711 2.064 2.492 2.797 36.415 39.364 42.980 45.559
26 1.706 2.056 2.479 2.779 38.885 41.923 45.642 48.290
28 1.701 2.048 2.467 2.763 41.337 44.461 48.278 50.993
30 1.697 2.042 2.457 2.750 43.773 46.979 50.892 53.672
32 1.694 2.037 2.449 2.738 46.194 49.480 53.486 56.328
34 1.691 2.032 2.441 2.728 48.602 51.966 56.061 58.964
36 1.688 2.028 2.434 2.719 50.998 54.437 58.619 61.581
38 1.686 2.024 2.429 2.712 53.384 56.896 61.162 64.181
40 1.684 2.021 2.423 2.704 55.758 59.342 63.691 66.766
42 1.682 2.018 2.418 2.698 58.124 61.777 66.206 69.336
44 1.680 2.015 2.414 2.692 60.481 64.201 68.710 71.893
46 1.679 2.013 2.410 2.687 62.830 66.617 71.201 74.437
48 1.677 2.011 2.407 2.682 65.171 69.023 73.683 76.969
50 1.676 2.009 2.403 2.678 67.505 71.420 76.154 79.490
55 1.673 2.004 2.396 2.668 73.311 77.380 82.292 85.749
60 1.671 2.000 2.390 2.660 79.082 83.298 88.379 91.952
65 1.669 1.997 2.385 2.654 84.821 89.177 94.422 98.105
70 1.667 1.994 2.381 2.648 90.531 95.023 100.425 104.215
75 1.665 1.992 2.377 2.643 96.217 100.839 106.393 110.286
80 1.664 1.990 2.374 2.639 101.879 106.629 112.329 116.321
85 1.663 1.988 2.371 2.635 107.522 112.393 118.236 122.325
90 1.662 1.987 2.368 2.632 113.145 118.136 124.116 128.299
100 1.660 1.984 2.364 2.626 124.342 129.561 135.807 140.169
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Appendix C: Statistical and Mathematical 
Results

C.1  Derivation of Least Squares Estimates for a Model 
with a Single Factor

For a set of N observations with a single explanatory factor, we represent the data as yjk, 
j = 1 … t, k = 1 … nj, where yjk is the kth observation for the jth treatment, t is the number of 
treatments and nj is the number of replicates of the jth treatment, with N = n1 + n2 + … + nt. 
The model (Equation 4.1) is written as

 y ejk j jk= +µ  ,

where μj is the unknown population mean for the jth treatment, and ejk is the deviation 
from that population mean for the kth observation on that treatment. We can write the 
residual sum of squares (Section 4.2) as a function of the estimated population means:
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We use a standard mathematical approach to find the estimates that minimize this func-
tion. At any local minimum of a continuous function, its first derivative will be equal to 
zero and its second derivative will be positive. We therefore take the first derivative of the 
ResSS function with respect to each of the estimates, set the resulting equations equal to 
zero, and solve them to obtain estimates that minimize the ResSS. We can verify that we 
have found a minimum by calculating the second derivative of the ResSS function at these 
estimates.

The first derivative of the ResSS function with respect to µ̂ j is
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If we set this equation equal to zero and solve for ˆ ,µ j  we find
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To check that we have found a minimum, we calculate the second derivative as

 

∂
∂

=
2

2 2
ResSS

 ˆ ,
µ j

jn

which is positive as required, and in fact is constant (and hence positive everywhere). The 
set of estimates that minimize the ResSS are hence the set of treatment sample means. For 
further details, Kuehl (2000) presents a simple demonstration for the CRD and Searle (1982) 
shows a complete derivation for any linear model using matrix notation (matrix notation 
is introduced in Section 15.6.1).

C.2  Partitioning the Total Sum of Squares for a Model 
with a Single Factor

In Section 4.3.1, we saw that the total sum of squares takes the form

 
TotSS  = −

==
∑∑ ( ) .y yjk

k

n

j

t j

2

11

This formula can be expanded, without any change in its value, by subtraction and then 
addition of each group mean to give
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We then make use of the following relationship for two quantities A and B:

 ( ) ( )( ) .A B A B A B A AB B+ = + + = + +2 2 22

We now substitute A y yjk j= − i and B y yj= −i  into this expression to get
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We will consider each of the components of Equation C.1 in turn. The first component 
is equal to the residual sum of squares (ResSS, Section 4.3.1). The third component is the 
treatment sum of squares (TrtSS, Section 4.3.1), which can be rewritten as
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We now look at the second component of Equation C.1, which can be rewritten as
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We can perform summation over the k index first (for each value of j), to give
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The second component of Equation C.1 is therefore also equal to zero, leaving the result as 
required, i.e.
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which is equivalent to

 TotSS = TrtSS + ResSS .

The same result holds for any linear model, and the principle of this proof still holds 
although the details become more complicated when there are more terms in the model.

C.3  Derivation of Least Squares Estimates for a Model 
with a Single Variate

For a set of N observations with a single explanatory variate, we represent the data as yi, for 
i = 1 … N, where yi is the ith observation. The model (Equation 12.1) is written as

 y x ei i i= + +α β  ,

where α is the intercept and β is the slope of the straight line relationship, xi is the value of 
the explanatory variate and ei is the deviation from the straight line for the ith observation. 



566 Appendix C

We can write the residual sum of squares (Section 12.2) as a function of parameter esti-
mates in the form

 
ResSS( , )  ˆ ˆ ( ˆ ˆ ) .α β α β= − −

=
∑ y xi i

i

N
2

1

We use the same approach as Section C.1. We take the first derivative of the ResSS function 
with respect to each of the estimates, set the resulting equations equal to zero, and solve 
them to obtain estimates that minimize the ResSS. We can verify that we have found a 
minimum by calculating the second derivative at these estimates.

The first derivative of the ResSS function with respect to α̂ is
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If we set this equation equal to zero and solve for ˆ ,α  we find
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which can be rearranged to give a unique solution as
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The first derivative of the ResSS function with respect to β̂ is
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If we set this equation equal to zero and solve for ˆ ,β  we find
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At this point, we need to substitute for our estimate ˆ ,α  as we cannot have both estimates 
defined in terms of the other. This gives
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We need to group terms with β̂ together, to get the revised form
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We can then use the following identity for sums of squares to simplify the expressions:
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This relationship holds for any two variables, giving
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as in Section 12.2. In both cases, the second derivative is positive as required.

C.4  Variances and Standard Errors of Linear Combinations 
of Random Variables

For a set of m random variables Y1 … Ym, the variance of a linear combination Z, where
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The following results can be derived directly:
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If the m variables are independent (zero covariance) with variance equal to σ2, this gives
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C.5 Matrix Addition and Multiplication

A matrix A of size p × q is an array of numbers with p rows and q columns. We write the 
elements of matrix A as Aij for i = 1 … p and j = 1 … q, for example a 2 × 3 matrix A takes 
the form

 
A =











A A A

A A A
11 12 13

21 22 23
 .

A vector is a special case of a matrix with one column (q = 1). Two matrices with the same 
dimensions (same number of rows and same number of columns) can be added together 
via addition of their corresponding elements. So, for matrices A and B of the same size, 
matrix C = A + B means that Cij = Aij + Bij. The matrix product operation is more complex, 
and we denote it with the compound symbol ‘*+‘. The product of two matrices A and B can 
be formed as AB = A *+ B only if the number of columns of A is equal to the number of 
rows in B. For a p × q matrix A and a q × r matrix B, we can form their product as C = A *+ B 
with matrix C, of size p × r, having elements defined as

 
C A B i p j rij ik kj
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= = =
=
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1 1… …, .

This is sometimes described as taking the vector product of a row of matrix A with a col-
umn of matrix B.
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approaches described, and most importantly,

• An appreciation of how to interpret the results of these statistical analyses 
in the context of the biological or agricultural science within which you are 
working.

The book concludes with a practical guide to design and data analysis. Overall, 
it gives you the statistical understanding required to successfully identify and ap-
ply these statistical methods to add value to your scientific research. 

Statistics
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