COMPARATIVE OSTEOLOGY

A LABORATORY AND FIELD GUIDE OF COMMON NORTH AMERICAN ANIMALS

$=$

BRADLEY ADAMS AND PAM CRABTREE

Comparative Osteology

The views or opinions expressed in this book are solely those of the author and do not necessarily represent those of the City of New York.

Please visit our Companion Web site, where you can magnify and zoom into images to see specific skeletal landmarks and features which will assist with species and bone identification.
http://booksite.academicpress.com/9780123884374

Comparative Osteology A Laboratory and Field Guide of Common North American Animals

Bradley Adams
Forensic Anthropology Department Office of Chief Medical Examiner New York, New York, USA
Pam Crabtree
Department of Anthropology
Center for the Study of Human Origins
New York University
New York, New York, USA

Academic Press is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA
First published 2012
Copyright © 2012 Elsevier Inc. All rights reserved
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library
Library of Congress Control Number: 2011931789
ISBN: 978-0-12-388437-4
For information on all Academic Press publications visit our website at www.elsevierdirect.com

Printed and bound in China

$12131415 \quad 10987654321$

Working together to grow
 libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID
 Sabre Foundation

Contents

Chapter 1: Introduction, Scope of Book, and Credits 1
Archaeological Context 5
Forensic Context 6
Book Terminology and Organization 6
Background of the Specimens Included in this Book 8
Photographic Credits 9
Chapter 2: Crania. 11
Crania of Large Species 12
Adult Human 13
Horse 14
Cow 15
Bear 16
Deer. 17
Pig 18
Goat 19
Sheep 20
Dog 21
Crania of Small Species 22
Newborn Human 23
Raccoon 24
Opossum 25
Cat 26
Rabbit 27
Duck 28
Chicken 29
Chapter 3: Humeri 31
Humeri of Large Species 32
Adult Human 33
Horse 34
Bear 35
Cow 36
Pig 37
Dog 38
Deer. 39
Sheep 40
Goat 41
Humeri of Small Species 42
Newborn Human 43
Turkey 44
Duck 45
Raccoon 46
Cat 47
Opossum 48
Rabbit. 49
Chicken 50
Chapter 4: Radii and Ulnae 51
Radii and Ulnae of Large Species 52
Adult Human 53
Horse 54
Cow 55
Bear 56
Pig 57
Deer 58
Dog 59
Sheep 60
Goat 61
Radii and Ulnae of Small Species 62
Newborn Human 63
Turkey 64
Raccoon 65
Cat 66
Duck 67
Opossum 68
Chicken 69
Rabbit 70
Chapter 5: Femora 71
Femora of Large Species 72
Adult Human 73
Horse 74
Cow 75
Bear 76
Pig 77
Deer. 78
Dog 79
Sheep 80
Goat 81
Femora of Small Species 82
Newborn Human 83
Raccoon 84
Turkey 85
Cat 86
Rabbit 87
Opossum 88
Chicken 89
Duck 90
Chapter 6: Tibiae 91
Tibiae of Large Species 92
Adult Human 93
Horse 94
Cow 95
Bear 96
Deer. 97
Dog 98
Sheep 99
Pig 100
Goat 101
Tibiae of Small Species 102
Newborn Human 103
Turkey 104
Chicken 105
Duck 106
Raccoon 107
Cat 108
Rabbit 109
Opossum 110
Chapter 7: Human (Homo sapiens) 111
Cranium 112
Humerus 115
Radius 118
Ulna 121
Femur 123
Tibia 126
Fibula 130
Scapula 132
Sternum 135
Pelvis 136
Sacrum 138
Vertebrae 139
Metacarpals, Metatarsals, and Tarsals 141
Chapter 8: Horse (Equus caballus) 145
Cranium 146
Humerus 147
Radius and Ulna 149
Femur 153
Tibia 156
Fibula 160
Scapula 161
Sternum 163
Pelvis 164
Vertebrae 167
Metacarpus and Metatarsus 168
Chapter 9: Cow (Bos taurus and Bos indicus) 171
Cranium 172
Humerus 173
Radius and Ulna 175
Femur 178
Tibia 181
Scapula 183
Pelvis 184
Metacarpus, Metatarsus, and Tarsals 186
Chapter 10: Bear (Ursus americanus) 189
Cranium 190
Humerus 191
Radius 192
Ulna 193
Femur 195
Tibia 196
Fibula 198
Scapula 199
Sternum 200
Pelvis 201
Sacrum 202
Vertebrae 203
Metacarpals, Metatarsals, and Tarsals 204
Chapter 11: Deer (Odocoileus virginianus) 207
Cranium 208
Humerus 209
Radius 211
Ulna 214
Femur 215
Tibia 218
Scapula. 220
Pelvis 222
Sacrum 223
Vertebrae 224
Metacarpus, Metatarsus, and Tarsals 225
Chapter 12: Pig (Sus scrofa) 229
Cranium 230
Humerus 231
Radius and Ulna. 234
Femur 238
Tibia 240
Fibula 243
Scapula. 244
Sternum 245
Pelvis 246
Vertebrae 247
Metacarpals, Metatarsals, and Tarsals 248
Chapter 13: Goat (Capra hircus) 253
Cranium 254
Humerus 255
Radius 258
Ulna 260
Femur 262
Tibia 265
Scapula. 267
Pelvis 269
Metacarpus and Metatarsus 270
Chapter 14: Sheep (Ovis aries) 273
Cranium 274
Humerus 276
Radius and Ulna. 278
Femur 282
Tibia 284
Scapula 286
Pelvis 287
Sacrum 288
Metacarpus, Metatarsus, and Tarsals 289
Chapter 15: Dog (Canis familiaris) 293
Cranium 294
Humerus 295
Radius 297
Ulna 299
Femur 300
Tibia 302
Fibula 304
Scapula 305
Pelvis 306
Sacrum 307
Vertebrae 308
Chapter 16: Raccoon (Procyon lotor) 309
Cranium 310
Humerus 311
Radius 312
Ulna 313
Femur 314
Tibia 315
Scapula 316
Pelvis 317
Vertebrae and Baculum 318
Chapter 17: Opossum (Didelphis virginiana) 319
Cranium and Mandible 320
Humerus 322
Radius 324
Ulna 325
Femur 326
Tibia 327
Fibula 328
Scapula 329
Pelvis 330
Vertebrae 331
Chapter 18: Cat (Felis catus) 333
Cranium 334
Humerus 335
Radius 336
Ulna 337
Femur 338
Tibia 339
Fibula 340
Scapula 341
Pelvis 342
Vertebrae 343
Chapter 19: Rabbit (Oryctolagus cunniculus and Sylvilagus carolinensis). 345
Cranium 346
Humerus 347
Radius and Ulna. 348
Femur 349
Tibia and Fibula 350
Scapula 351
Pelvis 352
Sacrum 353
Vertebra 353
Chapter 20: Turkey (Meleagris gallopavo) 355
Humerus 356
Radius 357
Ulna 358
Femur 359
Tibiotarsus 360
Fibula 361
Pectoral Girdle 362
Pelvis 363
Synsacrum 364
Carpometacarpus 365
Chapter 21: Duck (Anas platyrhynchos) 367
Cranium 368
Humerus 369
Radius 370
Ulna 371
Femur 372
Tibia 373
Fibula 374
Scapula. 375
Sternum. 376
Pelvis 377
Synsacrum 378
Carpometacarpus and Tarsometatarsus. 379
Chapter 22: Chicken (Gallus gallus) 381
Cranium 382
Humerus 383
Radius 384
Ulna 385
Femur 386
Tibia 387
Fibula 388
Scapula 389
Sternum 390
Pelvis 391
Carpometacarpus and Tarsometatarsus 392
Chapter 23: Miscellaneous. 393
Subadult Skeletal Elements 394
Adult Skeletal Elements 397
Rat 398
Bobcat 399
Fox 400
Turtle 401
Chapter 24: Traces of Butchery and Bone Working. 407
Introduction 407
Modern Butchery: Eighteenth Century to Present 410
Butchery Using Cleavers and Heavy Knives 419
Prehistoric Butchery 422
Bone as a Raw Material 424
References 429
Index 433

Introduction, Scope of Book, and Credits

Regardless of the context (forensic or archaeological), the correct identification of human and non-human remains is a very serious issue in osteological analyses. While the difference between various species is often very striking, it can also be quite subtle (Figures 1-01 and 1-02). Case studies and textbooks have highlighted similarities between some species, for example the hand and foot bones (metacarpals and metatarsals) of the human hand and the bear paw, in the forensic realm (Byers 2005; Owsley and Mann 1990; Stewart 1979; Ubelaker 1989). These comparisons between the human and bear are also presented in Chapter 10 of this book. Sometimes the morphological similarities between species are quite unusual and counterintuitive. For example, there is a remarkable correspondence between the adult human clavicle and the adult alligator femur (Figure 1-03).

The goal of this book is to create a comprehensive photographic guide for use by experienced archaeologists and forensic scientists to distinguish human remains from a range of common animal species. The first part of the atlas (Chapters 2-6) focuses on specific skeletal elements including crania, humeri, radii/ulnae, femora, and tibiae. The next 17 chapters (7-23) are organized by species. Chapter 7 includes selected elements pertaining to humans (Homo sapiens), both newborn human bones and adult bones. For the following chapters, the nonhuman species have been photographed alongside their human counterparts to allow easy comparison. The larger mammal species are compared to an adult human skeleton, while the smaller mammal, bird, and reptile species are compared to a newborn human skeleton. We have chosen to photograph the Old World domesticates - cow (Bos taurus for cranial material and Bos indicus for postcranial material), sheep (Ovis aries), goat (Capra hircus), horse (Equus caballus), and pig (Sus scrofa) - since these animals are frequently found on historic archaeological sites in North America, and are commonly recovered from Neolithic and later sites in the eastern hemisphere. Furthermore, they are also common in modern contexts and could easily end up being submitted as a forensic case.

The atlas includes three domestic bird species; two of them, chicken (Gallus gallus) and duck (Anas platyrhynchos), were initially domesticated in the eastern hemisphere, while the third, turkey (Meleagris gallopavo), was first domesticated by Native Americans. We have also chosen to illustrate a range of North American wild mammals, including many that were frequently hunted by Native Americans in pre-Columbian and colonial times. These include black bear (Ursus americanus), white-tailed deer (Odocoileus virginianus), raccoon (Procyon lotor), and opossum (Didelphis virginiana). We have also included two species of rabbit.

Figure 1-01: Comparison of anterior/cranial views of left femora from a newborn human (A), chicken (B), and adult cat (C).

The smaller is the native wild rabbit or cotton-tail (Sylvilagus carolinensis), while the larger is a domestic rabbit (Oryctolagus cunniculus) that is of European origin. Commensal species are frequently found in historic-period archaeological sites, and we have illustrated two of the most common: dog (Canis familiaris) and cat (Felis catus). We have also included a chapter of miscellaneous photographs (Chapter 23). In this chapter various views are presented of infant and adult human skeletons, and of selected comparisons between human and red fox (Vulpes vulpes), bobcat (Lynx rufus), rat (Rattus norvigecus), and snapping turtle (Chelydra serpentina). The snapping turtle is the only reptile that is included as many of

Figure 1-02: Posterior views of a newborn human left humerus (A) and femur (B) compared with caudal views of a fetal deer left humerus (C) and femur (D).
the bones are distinctive in shape and they are commonly recovered from North American archaeological sites.

Most archaeological faunal remains are the leftovers from prehistoric and historic meals. Many animal bones show traces of butchery that reveal the ways in which the carcass was dismembered. In this atlas we have illustrated a range of different butchery marks and techniques (Chapter 24), including both prehistoric cut marks made with stone tools and historic cut marks made with cleavers and saws. We have also included examples of sawn and butchered faunal bones, along with schematic diagrams of modern, commercial butchery patterns. Since bone was a common raw material throughout antiquity and up until the early twentieth century, we have also illustrated a number of examples of worked bone artifacts. Finally, knife cuts and saw marks in bone are not unique to non-human remains. There are numerous cases each year of intentional body mutilation using knives and/or saws.

Figure 1-03: Comparison of an adult human left clavicle (A) with a crocodile's (Crocodylus acutus) right femur (B) and an alligator's (Alligator mississippiensis) right femur (C). Note the similar morphology of the human and non-human elements.

In cases of human dismemberment (usually implying sawing through bones) or disarticulation (usually implying separation between joints) it is quite possible that a badly decomposed or skeletonized human body portion may appear non-human to the untrained eye. A forensic example of postmortem human dismemberment is presented in Chapter 24 to show the similarity of tool mark evidence in human and non-human remains.

The ability to differentiate between human and non-human bones, both complete and fragmentary, is dependent on the training of the analyst and the available reference and/or comparative material. It is truly a skill that requires years of training and experience and is not something that can be gleaned entirely from books. There is no substitute for coursework and training in osteology with actual skeletal material in order to appreciate the range of variation within all animal species. An experienced osteologist should always be consulted for confirmation of element type and species if there is any doubt.

Archaeological Context

Animal bones have played critical roles in archaeological interpretation for more than 150 years of scientific endeavor. The discovery of the bones of extinct animals in association with simple chipped stone tools in sites in France and Britain helped to establish the antiquity of the human presence in Europe and to overthrow the traditional 6000-year biblical chronology for human life on earth. Faunal remains have also played a crucial role in the reconstruction of early human subsistence practices, in the study of animal domestication in both the eastern hemisphere and the Americas, and in the analysis of the ways in which historic cities were provisioned with food. Large numbers of animal bones are often recovered from archaeological sites, and these bones can be used to study past hunting practices, animal husbandry patterns, and diet. In order to use animal bones in archaeological interpretation, zooarchaeologists (archaeologists who specialize in the study of faunal remains) must be able to identify the bones, determine sex and age at death when possible, and examine the bones for evidence of butchery marks and traces of bone working.

While archaeologists expect to find human remains in cemeteries, human bones are often found in other contexts. For example, two adult human burials and the remains of several infants were unexpectedly recovered from the habitation area of the early Anglo-Saxon village site of West Stow in eastern England (West 1985: 58-59). This was the case even though the settlement site was associated with a nearby contemporary cemetery. In another example, at the late Neolithic site of Hougang near Anyang in China, burials of infants in pits or urns were associated with house construction activities (Chang 1986: 270). In short, zooarchaeologists and physical anthropologists must be able to confidently identify both animal bones and human remains in order to accurately interpret past cultures.

The first step in the analysis of animal bones recovered from archaeological sites is the careful identification of both body part and animal species. Precise identification requires a good
comparative collection of modern specimens whose species, sex, and age are well documented. However, a comparative collection must be supplemented by identification guides and atlases that can help the researcher distinguish between different species. Most zooarchaeological identification guides focus solely on non-human species (e.g., Brown and Gustafson 1979; Cornwall 1956; Gilbert 1990; Gilbert et al. 1981; Olsen 1964, 1968), even though human remains are commonly found in archaeological sites. Exceptions to this are Schmid (1972) and Hillson (1995) who illustrate human bones, but there is no comparison with subadult human bones, and France (2009) which includes photographs of both human and non-human skeletal remains.

Forensic Context

It is equally important for forensic scientists working with human skeletal remains to be able to differentiate between human and non-human bones. In the modern forensic context, it is quite common for non-human bones to be mistaken for human remains and end up in the medical examiner's or coroner's system. It is of obvious importance that they are correctly identified, or the consequences could be substantial. It is usually the role of a forensic anthropologist to make this assessment of "human versus non-human" and generate the appropriate report. In most forensic scenarios, once a determination of non-human is made it is seldom of investigative significance to correctly identify the species. There are numerous skeletal anatomy books dedicated to human osteology (e.g., Bass 2005; Brothwell 1981; Schaefer, et al. 2009; Scheuer and Black 2000; Steele and Bramblett 1988; White 2000; White and Folkens 2005). Some guides and textbooks on human osteology and forensic anthropology do include sections on differentiating between human and non-human remains (e.g., Bass 2005; Byers 2010; Ubelaker 1989) but these are more cursory discussions.

When attempting to differentiate between human and non-human skeletal remains, fragmentation only compounds the problem. If fragmentation is so extreme that gross identification of human versus non-human bone is not possible, microscopic (i.e., histological) techniques can be employed (e.g., Cattaneo, et al. 2009; Hillier and Bell 2007; Mulhern and Ubelaker 2001). Under magnification, the shape of the bone cells may be indicative of non-human bone, but this technique is not foolproof as some non-human animals (e.g., large dogs, bovines, and non-human primates) are nearly identical to humans microscopically. This atlas will only focus on the gross assessment of bones.

Book Terminology and Organization

In constructing this atlas, we have chosen to illustrate examples of both adult and juvenile animal bones in addition to both adult and newborn human skeletons. Other guides to the identification of birds and mammals from archaeological sites illustrate only adult bones. However, many animal bones recovered from archaeological sites and within the forensic context are the remains of juvenile animals. Farmers who keep cattle for milk, for example,
often slaughter excess male calves during their first year of life. In a meat-oriented economy, farmers frequently choose to slaughter adolescent animals, since these animals are nearly fullgrown and continuing to feed animals beyond adolescence results in only limited increases in meat output. We have included illustrations of both adult and juvenile pigs, and we have illustrated both an adult sheep and an immature and an adult goat. We have also photographed examples of immature chickens, since most chickens consumed today are quite young.

In general, the animals in this atlas are presented in the order of their size, progressing from largest to smallest. In Chapters 7-22 the corresponding human and non-human elements are presented alongside each other in order to fully appreciate the variation in size and shape between them. To add a scaled perspective, a ruler (centimeters and inches) is present in each photograph along with a US penny. For consistency, all of the images depict left elements unless otherwise noted. When a right element was better preserved than its left counterpart, the image was reversed to show it as a left element. In most instances, the human bone is photographed on the left side of the image and is separated from the non-human counterpart by the scale and penny. Letters and arrows have been added to some images to highlight specific landmarks or skeletal elements.

Bipedalism (upright walking on two legs) is one of the most important developments in all of human evolution. However, as a result of bipedalism, many human bones are oriented in somewhat different ways to comparable bones in other mammals. In addition, the directional terms used to describe parts of the body differ somewhat between humans and other mammals (Figures 1-04 and 1-05). For example, in human osteology the term anterior is used to describe the front portion of a bone, while in quadrupeds the term cranial is used. Similarly, the back portion of the femur is described as posterior in humans, but it is described as caudal in other mammals. Different terms are also used for the lower portions of non-human limbs. For example, the surface of the forelimb (distal to the radius and ulna) that faces the ground is described as palmar (or volar), while the comparable surface in the hindlimb (distal to the tibia) is described as plantar. The opposite surfaces of the bone are described as dorsal. The terms proximal, distal, medial, and lateral are used to describe surfaces in both human and non-human bones. For humans, we have used the directional terms as described in Bass (2005). For other mammals, we have used the terms as defined in Evans and de Lahunta (1980) and Getty (1975). In describing bird bones, we have followed the terminology used by Cohen and Serjeantson (1996).

We have used the following notation for referring to adult dental formulae: upper incisors/ lower incisors.upper canines/lower canines.upper premolars/lower premolars.upper molars/ lower molars. For example, the adult human maxillary dentition includes 2 incisors on each side, 1 canine on each side, 2 premolars on each side, and 3 molars on each side. The mandibular dentition also includes 2 incisors, 1 canine, 2 premolars, and 3 molars on each side. The human dental formula is written as follows: $2 / 2.1 / 1.2 / 2.3 / 3$.

Figure 1-04: Schematic diagram of human skeleton in standard anatomical position (i.e., standing with arms at the side and palms forward so that no bones are crossing) labeled with anatomical terminology.

Background of the Specimens Included in this Book

Most of the non-human skeletons that are illustrated in this atlas come from the collections of the zooarchaeology laboratory in the Anthropology Department of New York University. The bear skeleton was borrowed from the Department of Mammology of the American Museum of Natural History. Some of the horse bones that are illustrated here are from a horse skeleton that was borrowed from the Museum Applied Science Center for Archaeology (MASCA) at the University of Pennsylvania Museum. The raccoon skeleton was borrowed from Susan Antón. The alligator and crocodile femora were provided by the Herpetology Department at the American Museum of Natural History and were photographed by Ilana Solomon and Tam Nguyen. The original photograph of the turkey skull was provided courtesy of the National

Figure 1-05: Schematic diagram labeled with the anatomical terminology used for faunal remains. For long bones the proper term for the forward-facing side of a bone in humans is "anterior," while in faunal remains the term "cranial" is used instead. For the back of a long bone, it is "posterior" in humans and "caudal" in faunal elements. The terms proximal, distal, medial, and lateral are used synonymously with both human and non-human elements.

Wild Turkey Federation, while Gina Santucci performed the artistic modifications to the photograph. Seth Brewington provided the photograph of the antler comb from Iceland. The horse metacarpus and metatarsus were borrowed from the Zooarchaeology Laboratory in the Anthropology Department at Hunter College. The human remains are from unidentified individuals that were analyzed at the Office of Chief Medical Examiner in New York City. We are grateful to everyone who loaned us specimens and assisted in this project.

Photographic Credits

Many of the original photographs used in this book were taken by Gina Santucci. Additional photographs were taken by Douglas Campana and Bradley Adams. Line drawings for the title pages of chapters 2-6 were created by Douglas Campana. The artistic images and layouts for the title pages of Chapters 7-23 were created by Gina Santucci.

This page intentionally left blank

CHAPTER 2

Crania

Figure 2-02: Adult human cranium: lateral right (top) and inferior (bottom) views.

Figure 2-03: Horse cranium: lateral right (top) and ventral (bottom) views. Note how the horse has upper incisors.

Figure 2-04: Cow cranium: lateral right (top) and ventral (bottom) views. Note how the cow lacks upper incisors.

Figure 2-05: Bear cranium: lateral right (top) and ventral (bottom) views. Several premolars are missing antemortem (before death) and several incisors are missing postmortem (after death).

Figure 2-06: Male deer cranium: lateral right (top) and ventral (bottom) views; the deer's antlers have been sawn off. Note how the deer lacks upper incisors.

Figure 2-07: Pig cranium: lateral right (top) and ventral (bottom) views. Adult pigs often have large, curved canines. These canines are missing postmortem (after death) from this specimen, as are the incisors and several premolars.

Figure 2-08: Goat cranium: lateral right (top) and ventral (bottom) views. The goat's cranium has been sawn sagittally and the halves have been realigned in the ventral view. Note how the goat lacks upper incisors.

Figure 2-09: Sheep cranium: lateral right (top) and ventral (bottom) views. Note how the sheep lacks upper incisors.

Figure 2-10: Dog cranium: lateral right (top) and ventral (bottom) views.

Figure 2-12: Newborn human cranium: lateral right (top) and inferior (bottom) views. In fetal, newborn, and infant remains the teeth are usually still forming and are unerupted. In very young individuals, the bones of the cranium will often be separate as opposed to articulated when skeletonized.

Figure 2-13: Raccoon cranium: lateral right (top) and ventral (bottom) views. Numerous teeth are missing postmortem (after death) from this specimen.

Figure 2-14: Opossum cranium: lateral right (top) and ventral (bottom) views. The opossum has a very distinctive dental pattern with five incisors on each side of the cranium. Several teeth are missing postmortem (after death) from this specimen.

Figure 2-15: Cat cranium: lateral right (top) and ventral (bottom) views. Numerous teeth are missing postmortem (after death) from this specimen.

Figure 2-16: Rabbit cranium: lateral right (top) and ventral (bottom) views.

Figure 2-17: Duck cranium: lateral right (top) and ventral (bottom) views. Some of the fragile bones of the cranium are damaged and missing from this specimen.

Figure 2-18: Chicken cranium (without beak): lateral right (top) and ventral (bottom) views.

This page intentionally left blank

Figure 3-02: Adult human left humerus: anterior and posterior views.

Figure 3-03: Horse left humerus: cranial and caudal views.

Figure 3-04: Bear left humerus: cranial and caudal views. Note how the fusion line is still visible at the proximal epiphysis.

Figure 3-05: Cow left humerus: cranial and caudal views. Note how the fusion line is still visible at the proximal epiphysis.

Figure 3-07: Dog left humerus: cranial and caudal views.

Figure 3-08: White-tailed deer left humerus: cranial and caudal views.

Figure 3-09: Sheep left humerus: cranial and caudal views. Degenerative changes associated with "penning elbow" are present on the distal end.

Figure 3-11: Left humeri showing the differences in scale between some of the smaller animals. Pictured are the anterior view of a newborn human (A) and cranial views of a turkey (B), duck (C), raccoon (D), cat (E), opossum (F), rabbit (G), and chicken (H).

Figure 3-12: Newborn human left humerus: anterior and posterior views.

Figure 3-13: Turkey left humerus: cranial and caudal views.

Figure 3-14: Duck left humerus: cranial and caudal views.

Figure 3-15: Raccoon left humerus: cranial and caudal views.

Figure 3-16: Cat left humerus: cranial and caudal views.

Figure 3-17: Opossum left humerus: cranial and caudal views. Note how the fusion line is still visible at the proximal and distal epiphyses.

Figure 3-18: Rabbit left humerus: cranial and caudal views. Note how the fusion line is still visible at the proximal epiphysis.

Radii and Ulnae

Figure 4-02: Adult human left ulna and radius: anterior and posterior views

Figure 4-03: Horse left ulna and radius: cranial and caudal views.

Figure 4-04: Cow left ulna and radius: cranial and caudal views. The proximal epiphysis of the ulna is unfused. The fusion line is also still visible at the distal epiphysis.

Figure 4-05: Bear left ulna and radius: cranial and caudal views.

Figure 4-06: Juvenile pig (A and D) and adult pig (B and C) left ulnae and radii: cranial and caudal views. Note how the ulna and radius are separate elements in the juvenile, whereas they are often fused together in the adult. The separate epiphyses of the juvenile pig are pictured. Also, the fusion line is still visible at the distal end of the adult pig.

Figure 4-07: White-tailed deer left ulna and radius: cranial and caudal views.

Figure 4-08: Dog left ulna and radius: cranial and caudal views.

Figure 4-09: Sheep left ulna and radius: cranial and caudal views. Note the pathology, sometimes termed "penning elbow," that is visible on the lateral portion of the proximal radius of this elderly sheep (arrows).

Figure 4-10: Juvenile goat (A and D) and adult goat (B and C) left ulnae and radii: cranial and caudal views. Note how the ulna and radius are separate elements in the juvenile, whereas they are fused together in the adult.

Figure 4-13: Turkey left ulna and radius: cranial view.

Figure 4-14: Raccoon left ulna and radius: cranial and caudal views.

Figure 4-15: Cat left ulna and radius: cranial and caudal views.

Figure 4-16: Duck left ulna and radius: cranial view.

Figure 4-17: Opossum left ulna and radius: cranial and caudal views. Note how the fusion lines are still visible at the proximal and distal epiphyses.

Figure 4-18: Chicken left ulna (lateral view) and radius (cranial view).

Figure 5-02: Adult human left femur: anterior and posterior views.

Figure 5-03: Horse left femur: cranial and caudal views.

Figure 5-04: Cow left femur: cranial and caudal views. Note how the fusion lines are still visible at the proximal and distal epiphyses.

Figure 5-05: Bear left femur: cranial and caudal views. Note how the fusion line is still visible at the proximal epiphysis.

Figure 5-06: Juvenile pig (A and D) and adult pig (B and C) left femora: cranial and caudal views. The separate epiphyses are pictured with the juvenile pig.

Figure 5-07: White-tailed deer left femur: cranial and caudal views.

Figure 5-08: Dog left femur: cranial and caudal views.

Figure 5-09: Sheep left femur: cranial and caudal views.

Figure 5-10: Juvenile goat without epiphyses (A and D) and adult goat (B and C) left femora: cranial and caudal views.

Figure 5-11: Left femora showing the differences in scale between some of the smaller animals. Pictured is the anterior view of a newborn human (A) and cranial views of a raccoon (B), turkey (C), cat (D), rabbit (E), opossum (F), chicken (G), and duck (H).

Figure 5-12: Newborn human left femur: cranial and caudal views.

Figure 5-13: Raccoon left femur: cranial and caudal views.

Figure 5-14: Turkey left femur: cranial and caudal views.

Figure 5-15: Cat left femur: cranial and caudal views.

Figure 5-16: Rabbit left femur: cranial and caudal views. Note how the fusion lines are still visible at the proximal and distal epiphyses.

Figure 5-17: Opossum left femur: cranial and caudal views. Note how the fusion lines are still visible at the proximal and distal epiphyses.

Figure 5-18: Adult (A and D) and juvenile (B and C) chicken femora: cranial and Caudal views.

Figure 5-19: Duck left femur: cranial and caudal views.

Figure 6-02: Adult human left tibia: anterior and posterior views.

Figure 6-03: Horse left tibia: cranial and caudal views.

Figure 6-04: Cow left tibia: cranial and caudal views. Note how the fusion line is still visible at the proximal epiphysis.

Figure 6-05: Bear left tibia: cranial and caudal views.

Figure 6-06: Deer left tibia: cranial and caudal views.

Figure 6-07: Dog left tibia: cranial and caudal views.

Figure 6-08: Sheep left tibia: cranial and caudal views.

Figure 6-10: Juvenile goat without epiphyses (A and D) and adult goat (B and C) left tibiae: cranial and caudal views.

Figure 6-12: Newborn human left tibia: anterior and posterior views.

Figure 6-13: Turkey left tibiotarsus: cranial and caudal views.

Figure 6-14: Chicken left tibiotarsi: cranial (A and B) and caudal (C and D) views. The smaller element is from a younger chicken.

Figure 6-15: Duck left tibiotarsus: cranial and caudal views.

Figure 6-16: Raccoon left tibia: cranial and caudal views.

Figure 6-17: Cat left tibia: cranial and caudal views.

Figure 6-18: Rabbit left tibiae: cranial and caudal views. Note how the rabbit's fibula is fused to the tibia. The fusion line is still visible at the proximal epiphysis.

Figure 6-19: Opossum left tibia: cranial and caudal views. Note how the fusion lines are still visible at the proximal and distal epiphyses.

CHAPTER 7

Human (Homo sapiens)

Figure 7-01: Adult human cranium (A) lateral view, right side; (B) inferior view. The adult human maxillary dentition includes 2 incisors, 1 canine, 2 premolars, and 3 molars on each side of the body. The mandibular dentition also includes 2 incisors, 1 canine, 2 premolars, and 3 molars on each side of the body. The human dental formula is written as follows: $2 / 2.1 / 1.2 / 2.3 / 3$, listing the number of upper and lower incisors, canines, premolars, and molars of each side of the body.

Figure 7-02: Newborn human cranium (A) lateral right view; (B) inferior view. At this age the teeth are still forming in the crypts but are unerupted.

Figure 7-03: Selected newborn cranial bones (frontals and maxillae) and mandible. Note how the bones of the skull in infants are still separate and have not fused. Some unerupted/forming teeth are visible within the sockets.

Figure 7-04: Adult human left humerus (anterior and posterior views).

Figure 7-05: Adult human left humerus (A) humeral head, superior view; (B) distal end, inferior view.

Figure 7-06: Newborn human left humerus (anterior and posterior views).

Figure 7-07: Adult human left radius (anterior and posterior views).

Figure 7-08: Adult human left radius (A) radial head, superior view. Note the circularity of this epiphysis; (B) distal end, inferior view. Note the raised tubercles that are present on the posterior surface (arrow).

Figure 7-09: Newborn human left radius (anterior and posterior views).

Figure 7-10: Adult human left ulna (A) anterior and posterior views; (B) distal end, inferior view. Note how this epiphysis is teardrop shaped and includes a styloid process (arrow).

Figure 7-11: Newborn human left ulna (anterior and posterior views).

Figure 7-12: Adult human left femur (anterior and posterior views). The distal condyles of the human femur show a distinctive asymmetry that is a result of "kneeing in," or bringing the knees under the body, which occurs, because in humans the hips are widely spaced but the knees are much closer to the center of the body. This is also referred to as the valgus knee.

Figure 7-13: Adult human left femur (A) femoral head, greater trochanter, and lesser trochanter, superior view; (B) distal end, inferior view. Note how the articular surface is higher on the lateral surface (arrow).

Figure 7-14: Newborn human left femur (anterior and posterior views).

Figure 7-15: Adult human left tibia (anterior and posterior views).

Figure 7-16: Adult human left tibia (medial and lateral views).

Figure 7-17: Adult human left tibia (A) proximal epiphysis, superior view; (B) distal epiphysis, inferior view. Note the location of the medial malleolus (arrow).

Figure 7-18: Newborn human left tibia (anterior and posterior views).

Figure 7-19: Adult human left fibula (lateral and medial views). A distinct groove (arrow) is located on the posterior aspect of the articular surface of the distal epiphysis.

Figure 7-20: Newborn human left fibula (lateral and medial views).

Figure 7-22: Adult human left scapula (lateral view), showing acromion process (A), coracoid process (B), and glenoid cavity (C) associated with the shoulder joint.

Figure 7-23: Juvenile human left scapula (anterior and posterior views).

Figure 7-24: Adult human sternum (anterior view).

Figure 7-25: Adult human left innominate (medial and lateral views).

Figure 7-26: Juvenile human left innominate (medial and lateral views). Note how the ilium (A), ischium (B), and pubis (C) are separate and have not yet fused. The arrows mark the location of the sciatic notch.

Figure 7-27: Adult human sacrum (anterior and posterior views).

Figure 7-28: Adult human vertebrae: atlas (A), axis (B), and examples of typical cervical (C), thoracic (D), and lumbar (E) vertebrae. Images on the left are anterior, middle are superior, and right are lateral.

Figure 7-29: Newborn human vertebrae: atlas (A), axis (B), and examples of thoracic (C) and lumbar (D) vertebrae. Note how the centra are not yet fused to the vertebral/neural arches.

Figure 7-30: Human left metacarpals (anterior views). Each metacarpal is numbered corresponding to its anatomical location (e.g., " 1 " is the first metacarpal). The distal ends of the bones are pictured at the top of the photograph.

Figure 7-31: Human left metatarsals (superior views). Each metatarsal is numbered corresponding to its anatomical location (e.g., " 5 " is the fifth metatarsal). The distal ends of the bones are pictured at the top of the photograph.

Figure 7-32: Adult human left talus and calcaneus (superior views).

This page intentionally left blank

Horse (Equus caballus)

Figure 8-01: Horse cranium (A) lateral view, right side; (B) ventral view. The horse's dental formula is $3 / 3.0-1 / 0-1.3 / 3.3 / 3$. Canines are usually seen only in males.

Wear on horse incisors can be used as an indication of age.

Figure 8-02: A human left humerus (anterior view) is compared to a horse's left humerus (cranial view). The proximal end of the horse's humerus includes an intermediate tubercle (arrow), which is not seen on the human humerus.

Figure 8-03: A human left humerus (posterior view) is compared to a horse's left humerus (caudal view). The shaft of the horse's humerus has a large deltoid tuberosity (arrow).

Figure 8-04: An adult human proximal humerus (superior view) is compared to a horse's proximal humerus (dorsal view).

Figure 8-05: An adult human distal humerus (inferior view) is compared to a horse's distal humerus (ventral view). The horse's barrel-shaped trochlea and the olecranon fossa are visible in this view.

Figure 8-06: A human left radius and ulna (anterior views) are compared to a horse's radius and ulna (cranial view). Note the large olecranon process on the horse's ulna (arrow).

Figure 8-07: A human left radius and ulna (posterior views) are compared to a horse's radius and ulna (caudal view). The horse's ulna is partially fused to the radius in adults.

Figure 8-08: A human left radius and ulna (lateral views) are compared to a horse's radius and ulna (lateral view). Note that the horse's ulna tapers to a point about two thirds of the way down the shaft of the radius (arrow).

Figure 8-09: Horse proximal radius and ulna (left side, dorsal view). The olecranon process of the proximal ulna (arrow) is visible in this view.

Figure 8-10: A human left distal radius (inferior view) is compared to a horse's left distal radius (ventral view). The articular facets for the horse's first carpal row are visible in this view.

Figure 8-11: A human left femur (anterior view) is compared to a horse's left femur (cranial view). The horse's femur shows a well-developed third trochanter (arrow).

Figure 8-12: A human left femur (posterior view) is compared to a horse's left femur (caudal view).

Figure 8-13: A human left proximal femur (superior view) is compared to a horse's left proximal femur (dorsal view). The head and the greater trochanter are visible in this view. The arrow points to the large, V -shaped fovea capitis that is distinctive in horses.

Figure 8-14: A human left distal femur (inferior view) is compared to a horse's left distal femur (ventral view). The distal condyles and the trochlea (patellar surface) are visible in this view. Note the enlarged medial portion of the horse's trochlea (arrow). This can be used to distinguish the horse femur from the cow femur.

Figure 8-15: A human left tibia (anterior view) is compared to a horse's left tibia (cranial view). The horse distal tibia includes both a medial and a lateral malleolus. The lateral malleolus is the evolutionary remnant of the distal fibula (arrow).

Figure 8-16: A human left tibia (posterior view) is compared to a horse's left tibia (caudal view).

Figure 8-17: A human left tibia (lateral view) is compared to a horse's left tibia (lateral view).

Figure 8-18: An adult human left proximal tibia (superior view) is compared to a horse's left proximal tibia (dorsal view). The two large facets for articulation with the condyles of the femur are visible in this view.

Figure 8-19: An adult human left distal tibia (inferior view) is compared to a horse's left distal tibia (ventral view). Note that in the horse the two facets for the articulation of the astragalus are oriented obliquely.

Figure 8-20: A human left fibula (medial view) is compared to a horse's left fibula (lateral view). The horse's fibula is greatly reduced. The rounded head is transversely flattened, and the shaft tapers to a point.

Figure 8-21: A human left scapula (anterior view) is compared to a horse's left scapula (medial view). Both scapulae are oriented as they would be in a human.

Figure 8-22: A human left scapula (posterior view) is compared to a horse's left scapula (lateral view). Note that the spine of the horse's scapula rises from the scapular neck (arrow).

Figure 8-23: The human and horse glenoid cavities are shown in this view.

Figure 8-24: A human sternum (anterior view) is compared to one of the horse's sternabrae.

Figure 8-25: A human left innominate (lateral view) is compared to a horse's left innominate (lateral view). The articular surface on the horse's acetabulum is crescent shaped (arrow).

Figure 8-26: A human left innominate (posterior view) is compared to a horse's left innominate (dorsal view).

Figure 8-27: A human axis (C2) is compared to a horse's axis (C2). Both views are lateral. The cervical vertebrae generally reflect the length of the animal's neck. Note how much longer the horse's axis is compared to the human axis.

Figure 8-28: Three caudal, or tail, vertebrae of a horse (dorsal views). While the numbers may vary, most horses have about 18 caudal vertebrae. These bones can sometimes be confused with human phalanges.

Figure 8-29: Horse metacarpus and metatarsus, left sides. Dorsal view of a metacarpus (A), dorsal view of a metatarsus (B), plantar view of a metatarsus (C), and volar view of a metacarpus (D). The horse has a single main metacarpus (third metacarpal) and metatarsus (third metatarsal). The remnants of the second and fourth metacarpals and second and fourth metatarsals can be seen in the volar/plantar views (shown on the right). These "splint bones" (lateral metapodia) taper to a point more than half way down the shaft of the main metapodial.

Figure 8-30: Horse proximal metacarpus (left side, dorsal view). The proximal end of the main (third) metacarpus is visible in the center. On either side are the small proximal ends of the second and fourth metacarpi (arrows).

Figure 8-31: Horse distal metacarpus (left side, ventral view). In the horse, each distal metacarpus articulates with a single proximal/first phalanx.

Figure 8-32: Horse proximal metatarsus (left side, dorsal view). The large third metatarsus is flanked by the smaller second and fourth metatarsi (arrows). While the horse's proximal metacarpus is D-shaped, the proximal metatarsus is more circular in shape.

Figure 8-33: Horse distal metatarsus (left side, ventral view). In the horse, each distal metatarsus articulates with a single proximal/first phalanx.

Cow (Bos taurus and Bos indicus)

Figure 9-01: Cow cranium (A) lateral view, right side; (B) ventral view. The cow has no upper incisors or canines. The cow's dental formula is 0/3.0/1.3/3.3/3.

Figure 9-02: A human left humerus (anterior view) is compared to a cow's left humerus (cranial view). On the proximal end, the greater and lesser tubercles are far more well developed in the cow than they are in the human. On the distal end, the cow has a barrelshaped trochlea (arrow).

Figure 9-03: A human left humerus (posterior view) is compared to a cow's left humerus (caudal view). Note that the cow's humerus has a particularly deep olecranon fossa (arrow) when compared to the human example.

Figure 9-04: Proximal views of a human and a cow's left humerus. The head of the humerus and the greater and lesser tubercles are visible in this superior view. The arrow points to the deltoid tuberosity on the cow's humerus (dorsal view).

Figure 9-05: Distal ends of a human (inferior view) and a cow's (ventral view) left humerus. The cow's trochlea is barrel shaped, and the deep olecranon fossa is visible on the caudal surface (arrow).

Figure 9-06: A human left radius and ulna (anterior views) are compared to a cow's left radius and ulna (cranial view). The human radius and ulna are roughly equal in size. With the exception of the large olecranon process (arrow), the cow's ulna is greatly reduced.

Figure 9-07: A human left radius and ulna (posterior views) are compared to a cow's left radius and ulna (caudal view). Note that the cow's ulna is fused to the lateral side of the radius shaft.

Figure 9-08: A human left radius and ulna (lateral views) are compared to a cow's left radius and ulna (lateral views). The shaft of the cow's ulna is quite slender. In adult animals, it is usually fused to the caudal surface of the radius.

Figure 9-09: An adult human proximal radius (superior view) is compared to a cow's proximal radius (dorsal view). The human radius has a distinct circular shape, while the cow's is more elongated and broad and has a slightly concave articular surface.

Figure 9-10: An adult human distal radius (inferior view) is compared to a cow's unfused distal radius (ventral view). Note that the cow's radius is broadly D-shaped in cross-section. The undulating and pitted character of the cow's metaphysis is distinctive of immature animals lacking the epiphyses. The distal radius does not fuse in a cow until about 3.5-4 years of age
(Silver 1969: 285). Castration can also delay fusion.

Figure 9-11: A human left femur (anterior view) is compared to a cow's left femur (cranial view). The cow skeleton illustrated here is a 6-7-year-old ox, or male castrate. While the distal epiphysis usually fuses by about 3.5-4 years of age (Silver 1969: 286), castration has delayed epiphyseal fusion in this specimen. The greatest length of the human femur extends from the head to the distal condyles; in the cow the greatest length extends from the greater trochanter to the condyles.

Figure 9-12: A human left femur (posterior view) is compared to a cow's left femur (caudal view). The human femur includes a linea aspera, which appears as a projecting ridge for the muscle attachment (black arrows). This is a unique human feature that is not seen in other mammals as it is an area of attachment for the muscles used in bipedalism. The cow's femur includes a supercondular fossa that can be seen on the lateral portion of the shaft (white arrow).

Figure 9-13: A human left proximal femur (superior view) is compared to a cow's left proximal femur (dorsal view). The head of the femur and the greater trochanter are visible in this view of the cow femur. The arrow points to the cow's small, round fovea capitis.

Figure 9-14: A human left distal femur (inferior view) is compared to a cow's left distal femur (ventral view). The two condyles and the trochlea (for articulation with the patella) are visible in both specimens in this view.

Figure 9-15: A human left tibia (anterior view) is compared to a cow's left tibia (cranial view). The shaft of the cow's tibia is significantly more robust.

Figure 9-16: A human left tibia (posterior view) is compared to a cow's tibia (caudal view).

Figure 9-17: A human left proximal tibia (superior view) is compared to a cow's left proximal tibia (dorsal view). The two large facets articulate with the distal femur.

Figure 9-18: A human left distal tibia (inferior view) is compared to a cow's left distal tibia (ventral view). The two large parallel grooves seen on the cow's distal tibia are articular surfaces for the astragalus. The two small facets on the lateral side articulate with the malleolus bone. It is all that remains of the distal fibula. The arrow points to the medial malleolus on the cranial portion of the bone.

Figure 9-19: A human left scapula (anterior view) is compared to a cow's left scapula (medial view). Note that these bones are oriented as they would be in the human skeleton. Since the cow is a quadruped, the glenoid cavity forms the distal part of the bone. The blade of the cow's scapula is shaped like an elongated triangle.

Figure 9-20: A human left scapula (posterior view) is compared to a cow's left scapula (lateral view). The acromion process is well developed in humans (arrow); it is very small in the cow and other ruminant artiodactyls. The greatest length of the cow's scapula (and the scapulas of most other mammals) extends from the glenoid cavity to the dorsal border (parallel to the scapular spine). This is not the case in humans, where the greatest length lies between the superior and inferior borders.

Figure 9-21: A human left innominate (lateral view) is compared to a cow's left innominate (lateral view).

Figure 9-22: A human left innominate (medial view) is compared to a cow's left innominate (medial view).

Figure 9-23: Cow metacarpus and metatarsus. The cow's left metacarpus (A, dorsal view), metatarsus (B, dorsal view), left metatarsus (C, plantar view), and left metacarpus (D, palmar (volar) view) are shown. These bones are formed through the fusion of the third and fourth metacarpals and metatarsals. Each of the two distal condyles articulates with a proximal/first phalanx.

Figure 9-24a: Cow proximal metacarpus (left side, dorsal view). The proximal articular surface is D-shaped, and the larger articulation is located on the medial side.

Figure 9-24c: Cow proximal metatarsal (left side, dorsal view). In comparison to the metacarpus, the proximal end is squarer in shape. The articular facets for the distal tarsal row are visible in this view.

Figure 9-24b: Cow distal metacarpus (left side, volar view). Each distal metacarpus articulates with two proximal/first phalanges.

Figure 9-24d: Cow distal metatarsus (left side, plantar view). Each distal metatarsus articulates with two proximal/first phalanges.

Bear (Ursus americanus)

Figure 10-01: Bear cranium (A) lateral view, right side; (B) ventral view. The bear's dental formula is 3/3.1/1.2-4/2-4.2/3.

Figure 10-02: A human left humerus (anterior view) is compared to a bear's left humerus (cranial view). The lateral epicondylar crest (proximal to the lateral epicondyle) is well developed in the bear, as is the deltoid tuberosity (arrow).

Figure 10-03: A human left humerus (posterior view) is compared to a bear's left humerus (caudal view). The arrow marks the well-developed epicondylar crest.

Figure 10-04: A human left radius (anterior view) is compared to a bear's left radius (cranial view).
Human skeletons are oriented with the palms forward, so that the radius and ulna are not crossed. Quadrupedal animals are oriented with their paws facing the ground. This means that the proximal ulna is medial to the radius, while the distal ulna is on the lateral side.

Figure 10-05: A human left radius (posterior view) is compared to a bear's left radius (caudal view).

Figure 10-06: A human left radius (medial view) is compared to a bear's left radius (medial view).

Figure 10-07: A human left ulna (anterior view) is compared to a bear's left ulna (cranial view). Note that the bear's olecranon process (arrow) is larger and more well-developed.

Figure 10-08: A human left ulna (posterior view) is compared to a bear's
left ulna (caudal view).

Figure 10-09: A human left ulna (lateral view) is compared to a bear's left ulna (lateral view).

Figure 10-10: A human left ulna (medial view) is compared to a bear's left ulna (medial view).

Figure 10-11: A human left femur (anterior view) is compared to a bear's left femur (cranial view). The distal condyles of the human femur show a distinctive asymmetry that is a result of "kneeing in," or bringing the knees under the body. This is also referred to as the valgus knee.

Figure 10-12: A human left femur (posterior view) is compared to a bear's left femur (caudal view). The human femur shows the distinctive linea aspera (arrows), which is not seen in quadrupeds.

Figure 10-13: A human left tibia (anterior view) is compared to a bear's left tibia (cranial view).

Figure 10-14: A human left tibia
(posterior view) is compared to a bear's left tibia (caudal view).

Figure 10-15: A human left tibia (lateral view) is compared to a bear's left tibia (lateral view).

Figure 10-16: A human left tibia (medial view) is compared to a bear's left tibia (medial view).

Figure 10-17: A human left fibula (medial view) is compared to a bear's left fibula (medial view).

Figure 10-18: A human left fibula (lateral view) is compared to a bear's left fibula (lateral view).

Figure 10-19: A human left scapula (anterior view) is compared to a bear's left scapula (medial view). Both scapulae are oriented as they would be in a human skeleton.

Figure 10-20: A human left scapula (posterior view) is compared to a bear's scapula (lateral view). The spine of the bear's scapula (arrow) divides the scapula into roughly equal halves. This feature is seen in many carnivores.

Figure 10-21: A human sternum is compared to a complete bear's sternum plus the associated cartilaginous ribs. Note the differences in the shape of the human and the bear's manubria (arrows).

Figure 10-22: A human left innominate (lateral view) is compared to a bear's pelvis (ventral view). The broad ilium is typical of human pelves and is related to bipedalism. Quadrupeds have longer, narrower ilia.

Figure 10-23: A human left innominate (medial view) is compared to a bear's pelvis (dorsal view). The two bear innominates are fused along the pubic symphysis.

Figure 10-24: A human sacrum (anterior view) is compared to a bear's sacrum (ventral view).

Figure 10-25: A human sacrum (posterior view) is compared to a bear's sacrum (dorsal view).

Figure 10-26: A human atlas (C1, superior view) is compared to a bear's atlas (C1, cranial view). Note the large wings (arrows) on the bear's atlas; these are typical of carnivores.

Figure 10-27: A human axis (C2, lateral view) is compared to a bear's atlas (C2, lateral view). The bear's atlas is much longer and includes a large spinous process (arrow).

Figure 10-28: Human left metacarpals 1-5 (anterior view) are compared to a bear's left metacarpals (volar view). The similarity in size and shape between human and bear metacarpals is frequently noted. The distal ends of the bones are pictured at the top of the photograph.

Figure 10-29: Human left metatarsals 1-5 (superior view) are compared to a bear's left metatarsals (dorsal view). The distal ends of the bones are pictured at the top of the photograph.

Figure 10-30: A human left talus (superior view) is compared to a bear's left astragalus (plantar view).

Figure 10-31: A human left calcaneus (superior view) is compared to a bear's left calcaneus (dorsal view). While these two bones are generally quite similar in form, note the differences in the shape of the sustentaculum tali (arrows).

Deer (Odocoileus virginianus)

Figure 11-01: Male white-tailed deer cranium (A , lateral view, right side). In most deer species, the males have antlers while the females do not. The one exception is the reindeer; both male and female reindeer have antlers. Antlers differ from horns and are found only in cervids (e.g., deer and moose). (B, ventral view). The deer's dental formula is 0/3.0/1.3/3.3/3.

Figure 11-02: A human left humerus (anterior view) is compared to a deer's left humerus (cranial view). Note the height of the greater tubercle on the deer's proximal humerus (arrow).

Figure 11-03: A human left humerus (posterior view) is compared to a deer's left humerus (caudal view). Note the deeper olecranon fossa on the deer's distal humerus (arrow).

Figure 11-04: An adult human proximal humerus (superior view) is compared to a deer's proximal humerus (dorsal view). The greater and lesser tubercles and the head of the humerus are visible in this view.

Figure 11-05: An adult human distal humerus (inferior view) is compared to a deer's distal humerus (ventral view). The deer has a very broad, barrelshaped trochlea. The arrow points to the olecranon fossa.

Figure 11-06: A human left radius (anterior view) is compared to a deer's left radius (cranial view).

Figure 11-07: A human left radius (posterior view) is compared to a deer's left radius (caudal view). The human proximal radius has a distinct head and neck. The articulation with the ulna is visible on the lateral part of the caudal surface of the deer's radius (arrow).

Figure 11-08: An adult human proximal radius (superior view) is compared to a deer's proximal radius (dorsal view). The deer's radius has a slightly concave articular surface.

Figure 11-09: An adult human distal radius (inferior view) is compared to a deer's distal radius (ventral view). The facets visible on the deer's distal radius articulate with the first carpal row. The radial grooves (arrow) are more well marked in the cervids than they are in the bovids.

Figure 11-10: A human left ulna (anterior view) is compared to a deer's left ulna (cranial view). Note the slender shaft of the deer's ulna.

Figure 11-11: A human left ulna (posterior view) is compared to a deer's left ulna (caudal view).

Figure 11-12: A human left ulna is compared to a deer's left ulna (both lateral views). Note the well-developed olecranon process on the deer's ulna (arrow).

Figure 11-13: A human left femur (anterior view) is compared to a deer's left femur (cranial view). Note the well-developed greater trochanter in the deer's femur (arrow).

Figure 11-14: A human left femur (posterior view) is compared to a deer's left femur (caudal view).

Figure 11-15: An adult human left proximal femur (superior view) is compared to a deer's left proximal femur (dorsal view). The greater trochanter, lesser trochanter, and head are visible in both specimens. The arrow points to the fovea capitis.

Figure 11-16: An adult human left distal femur (inferior view) is compared to a deer's left distal femur (ventral view). The two condyles and the trochlea for articulation with the patella are visible in this view.

Figure 11-17: A human left tibia (anterior view) is compared to a deer's left tibia (cranial view).

Figure 11-18: A human left tibia (posterior view) is compared to a deer's left tibia (caudal view).

Figure 11-19: A human left tibia (lateral view) is compared to a deer's left tibia (lateral view). Note the well-developed tibial tuberosity on the deer's tibia (arrow).

Figure 11-20: An adult human left proximal tibia (superior view) is compared to a deer's left proximal tibia (dorsal view). The facets that articulate with the distal condyles of the femur are visible in this view.

Figure 11-21: An adult human left distal tibia (inferior view) is compared to a deer's left distal tibia (ventral view). The two large parallel articular facets mark the articulation with the astragalus. The two small facets on the lateral side (arrows) mark the articulation with the malleolus, a small tarsal that is the remnant of the distal fibula.

Figure 11-22: A human left scapula (anterior view) is compared to a deer's left scapula (medial view). Both bones are positioned as they would be in a human.

Figure 11-23: A human left scapula (posterior view) is compared to a deer's left scapula (lateral view). Note the large acromion process on the human scapula (arrow).

Figure 11-24: A human left scapula and a deer's left scapula are compared (glenoid views). Note that the deer's glenoid cavity is very round in shape. Those of the sheep and the goat tend to be somewhat more oval.

Figure 11-25: A human left innominate (lateral view) is compared to a deer's left innominate (lateral view).

Figure 11-26: A human sacrum (anterior view) is compared to a deer's sacrum (ventral view). The wings of the deer's sacrum are wide in relation to the body.

Figure 11-27: A human sacrum (posterior view) is compared to a deer's sacrum (dorsal view).

Figure 11-28: Superior views of typical human cervical (A, left), thoracic (B, left), and lumbar (C, left) vertebrae. Cranial views of typical white-tailed deer cervical (A, right), thoracic (B, right), and lumbar (C, right) vertebrae.

Figure 11-29: White-tailed deer metacarpus and metatarsus. The deer's left metacarpus (A, dorsal view), metatarsus (B, dorsal view), left metatarsus (C, plantar view), and the left metacarpus
(D, palmar (volar) view). These metapodia are composed of the fused third and fourth metacarpals and metatarsals. The deer's metapodia have distinctive concave grooves along the plantar/volar surfaces that distinguish them from the metapodia of the bovids.

Figure 11-30a: Deer proximal metacarpus (left side, dorsal view). The articulation is D-shaped, with the larger articular facet on the medial side.

Figure 11-30c: Deer proximal metatarsus (left side, dorsal view).

Figure 11-30b: Deer distal metacarpus (left side, volar view). The distal condyles articulate with two proximal/first phalanges.

Figure 11-30d: Deer distal metatarsus (left side, plantar view). The distal condyles articulate with two proximal/first phalanges.

Figure 11-31: Human left talus (A, superior view) and calcaneus (B, superior view) are compared to a white-tailed deer's astragalus (C, plantar view) and left calcaneus (D, dorsal view). The deer's astragalus has the typical "double pulley" form that is characteristic of the artiodactyls. The dorsal calcaneus includes an articulation for the malleolus, a small tarsal that is the evolutionary remnant of the distal fibula.

This page intentionally left blank

Pig (Sus scrofa)

Figure 12-01: Pig cranium (A) lateral view, right side; (B) ventral view. The pig's dental formula is $3 / 3.1 / 1.4 / 4.3 / 3$. Note that the incisors, canines, and some premolars were lost postmortem (after death) from this specimen.

Figure 12-02: A human left humerus (A , anterior view) is compared to adult (B) and juvenile (C) pig left humeri (cranial views). Note the large greater tubercle in the adult pig's proximal humerus (arrow). The unfused epiphyses of the juvenile pig are also shown.

Figure 12-03: A human left humerus (A, posterior view) is compared to adult (B) and juvenile (C) pig left humeri (caudal views). The unfused epiphyses of the juvenile pig are also shown.

Figure 12-04: A human left proximal humerus (superior view) is compared to an adult pig's left proximal humerus (dorsal view). The head of the humerus and the pig's large tubercles are visible in this view.

Figure 12-05: A human left distal humerus (inferior view) is compared to a pig's left distal humerus (ventral view). The pig's trochlea and the olecranon fossa are visible in this view. The pig's distal humerus is one of the earliest fusing of all the pig limb bones. It fuses at about one year and is one of the elements that is commonly found in archaeological assemblages.

Figure 12-06: A human left radius and ulna (A, anterior views) are compared to adult (B) and juvenile
(C) pig left radii and ulnae (cranial views). In the adult pig, the radius is often attached to the ulna. The unfused epiphyses of the juvenile pig's radius are also shown.

Figure 12-07: A human left radius and ulna (A, posterior views) are compared to adult (B) and juvenile (C) pig left radii and ulnae (caudal views). The unfused epiphyses of the juvenile pig's radius are also shown. In pigs, the ulna and radius are similar in size. The ulna is a much smaller bone in cattle, sheep, goats, and deer. In the horse, the distal ulna is completely absent.

Figure 12-08: A human left radius and ulna (lateral views) are compared to an adult pig's left radius and ulna (lateral view). Note the large size of the pig's olecranon process (arrow).

Figure 12-09: A human left proximal radius (superior view) is compared to a pig's left proximal radius (dorsal view). Most of the caudal surface of the pig's radius articulates with the large pig ulna. The surface that articulates with the distal humerus is visible in this view.

Figure 12-10: An adult human left distal radius (inferior view) is compared to a pig's left distal radius (ventral view). The articular facets for the first carpal row are visible in this view.

Figure 12-11: A human left femur (A, anterior view) is compared to adult (B) and juvenile (C) pig left femora (cranial views). Note the larger and more developed greater trochanter on the adult pig's femur (arrow). The unfused epiphyses of the juvenile pig are also shown.

Figure 12-12: A human left femur (A, posterior view) is compared to adult (B) and juvenile (C) pig left femora (caudal views). Note the presence of the linea aspera (arrows) on the human femur. The unfused epiphyses of the juvenile pig are also shown.

Figure 12-13: An adult human left distal femur (inferior view) is compared to a juvenile pig's left distal femur (ventral view). Note the distinctive notch on the lateral condyle of the pig (arrow).

Figure 12-14: A human left tibia (A, anterior view) is compared to adult (B) and juvenile (C) pig left tibiae (cranial views). Note that the proximal epiphysis of the large pig is unfused; this epiphysis fuses at about 3.5 years of age in the pig. The unfused epiphyses of the juvenile pig are pictured.

Figure 12-15: A human left tibia (A, posterior view) is compared to adult (B) and juvenile (C) pig left tibiae (caudal views). The unfused epiphyses of the juvenile pig are pictured.

Figure 12-16: A human left tibia (lateral view) is compared to an adult pig's left tibia (lateral view). Note that the proximal epiphysis of the pig is unfused.

Figure 12-17: A human proximal tibia (superior view) is compared to a pig's proximal tibia (dorsal view). The patella is also pictured with the pig tibia.

Figure 12-18: A human distal tibia (inferior view) is compared to a pig's distal tibia (ventral view). The malleolus and the two parallel grooves for the articulation of the astragalus are visible in this view. The arrow points to the small facet for articulation with the distal fibula on the lateral side of the bone.

Figure 12-19: A human left fibula (medial view) is compared to a juvenile pig's left fibula (medial view).

Figure 12-20: A human left scapula (A, anterior view) is compared to adult (B) and juvenile (C) pig left scapulae (medial views). Note that the large human acromion process is not entirely blocked by the body of the scapula and is visible in the anterior view (arrow).

Figure 12-21: A human left scapula (A, posterior view) is compared to adult (B) and juvenile (C) pig left scapulae (lateral views). The pig's scapula has a large tuberosity of the spine (black arrow) but only a rudimentary acromion process (white arrow).

Figure 12-22: A human sternum (anterior view) is compared to two pig sternebrae.

Figure 12-23: A human left innominate (lateral view) is compared to adult and juvenile pig left innominates (lateral views). Gaps in fusion of the pelvic bones are visible on the juvenile pig in the acetabulum. Note the large size of the ischial tuberosity on the adult pig's pelvis (arrow).

Figure 12-24: A human left innominate (A, medial view) is compared to adult (B) and juvenile (C) pig left innominates (medial views).

Figure 12-25: A human axis (C2) is compared with an adult pig's axis (C2). Both views are lateral.

Figure 12-26: Human third and fourth left metacarpals (anterior views) are compared to adult pig left third and fourth metacarpals (dorsal views). The pig is an artiodactyl or even-toed ungulate. It has four metapodia (II-V present) on each foot. The third and fourth metapodia are larger central metapodia, while the second and fifth metapodia are smaller. The distal ends of the bones are pictured at the top of the photograph.

Figure 12-27a: Pig left third proximal metcarpal (dorsal view). The pig has four metacarpals on each forefoot. The third and fourth metacarpals are larger and located medially. The second and fifth metacarpals are smaller and located laterally.

Figure 12-27b: Pig left fourth proximal metacarpal (dorsal view).

Figure 12-27c: Pig left third distal metacarpal (volar view).

Figure 12-28: Human third and fourth left metatarsals (superior views) are compared to adult pig left third and fourth metatarsals (dorsal views). Note that the distal epiphyses on the pig are unfused. The pig is an artiodactyl or even-toed ungulate. It has four metapodia (II-V present) on each foot. The third and fourth metapodia are larger central metapodia, while the second and fifth metapodia are smaller. The distal ends of the bones are pictured at the top of the photograph.

Figure 12-29a: Pig left third proximal metatarsal (dorsal view). The pig has four metacarpals on each forefoot. The third and fourth metacarpals are larger and located medially. The second and fifth metacarpals are smaller and located laterally.

Figure 12-29b: Pig left fourth proximal metatarsal (dorsal view).

Figure 12-29c: Pig left third distal metatarsal (plantar view).

Figure 12-30: A human left talus (superior view) is compared to an adult pig's left astragalus (dorsal view). Note that the pig's astragalus has the "double pulley" form that is characteristic of the artiodactyls.

Figure 12-31: A human left calcaneus (A, superior view) is compared to adult (B) and juvenile (C) pig left calcanei (dorsal views).

Goat (Capra hircus)

Figure 13-01: Goat cranium (A, lateral view, right side). The sheep and goat are closely related species, and fragmentary remains of the two taxa can be difficult to distinguish. Boessneck and colleagues (Boessneck 1969; Boessneck et al. 1964) present the most comprehensive guide to the osteological distinctions that are evident on the postcranial skeleton. (B, ventral view the cranium has been sagittally split). The goat's dental formula is $0 / 3 \cdot 0 / 1.3 / 3.3 / 3$. Since the publication of Boessneck's work, researchers have attempted to identify distinguishing features of the dentition of sheep and goats. Payne (1985) identifies several distinctions that can be seen on the deciduous dentition, while Halstead, et al. (2002) identify differences on the mandibles and mandibular teeth of adult sheep and goats. Zeder and Pilaar (2010) assess the reliability of the criteria used to distinguish mandibles and mandibular teeth, while Zeder and Lapham (2010) assess the reliability of the postcranial criteria.

Figure 13-02: A human left humerus (A , anterior view) is compared to a mature goat's left humerus (B, cranial view), an immature goat's left humerus with epiphyses (B, cranial view), and an immature goat's left humerus with epiphysis (C, cranial view). When compared to sheep, the greater tubercle is higher and narrower in goats. The nutrient foramen (arrows) is often located on the dorsal surface of the humeral shaft in goats.

Figure 13-03: A human left humerus (A, posterior view) is compared to a mature goat's left humerus (B, caudal view), an immature goat's left humerus with epiphyses (C, caudal view), and an immature goat's left humerus without epiphyses (D, caudal view).

Figure 13-04: Adult goat left humerus (medial and lateral views). The arrow points to the lateral epicondyle.

Figure 13-05: An adult human proximal humerus (superior view) is compared to an adult goat's proximal humerus (dorsal view).

Figure 13-06: An adult human distal humerus (inferior view) is compared to an adult goat's distal humerus (ventral view). The goat's barrel-shaped trochlea is visible in this view.

Figure 13-07: A human left radius (A, anterior view) is compared to a goat's left radius (B, cranial view with epiphyses) and a goat's left radius without epiphyses (C, cranial view).

Figure 13-09: A human left proximal radius (superior view) is compared to a goat's left proximal radius (dorsal view). The articular surface is concave and lateral bicipetal tuberosity (arrow) is poorly developed in goats. Note the circular shape of the human proximal radius.

Figure 13-10: A human left distal radius (inferior view) is compared to a goat's left distal radius (ventral view). The articular facets for the first carpal row are visible in this view.

Figure 13-11: A human left ulna (anterior view) is compared to a goat's left ulna (cranial view).

Figure 13-12: A human left ulna (posterior view) is compared to a goat's left ulna (caudal view).

Figure 13-13: A human left ulna (lateral view) is compared to a goat's left ulna (lateral view).

Figure 13-14: An adult goat's left radius and ulna in various views: lateral (A), cranial (B), medial (C), and caudal (D). The radius and ulna will often fuse together in older goats. In the caudal view, the slender shaft of the ulna extends along the lateral portion of the radius shaft.

Figure 13-15: An adult goat's radius and ulna (proximal views). Note that the ulnar articulation extends all the way to the lateral side of the proximal radius (arrow).

Figure 13-16: A human left femur (A , anterior view) is compared to an adult goat's left femur (B, cranial view), a juvenile goat's left femur with epiphyses (C, cranial view), and a juvenile goat's femur without epiphyses (D, cranial view).

Figure 13-17: A human left femur (A, posterior
view) is compared to an adult goat's left femur (B, caudal view), a juvenile goat's left femur with epiphyses (C, caudal view), and a juvenile goat's femur without epiphyses
(D, caudal view).

Figure 13-18: Adult goat femur (lateral and medial views). In the lateral view, the greater trochanter is visible on the proximal end (arrow). The supracondylar fossa is also visible on the distal end (arrow).

Figure 13-19: A human left proximal femur (superior view) is compared to an adult goat's left proximal femur (dorsal view). The head and the greater trochanter are visible on the proximal end. The head of the femur is generally more ball-shaped in goats than in sheep, and the greater trochanter is located somewhat closer to the head of the femur in goats.

Figure 13-20: A human left distal femur (inferior view) is compared to an adult goat's left distal femur (ventral view). When viewed from this angle, the trochlea is slightly more V-shaped in goats than in sheep (arrow).

Figure 13-21: A human left tibia (A , anterior view) is compared to an adult goat's left tibia (B , cranial view), a juvenile goat's left tibia with epiphyses (C, cranial view), and a juvenile goat's tibia without epiphyses (D, cranial view). The arrow points to the remnant of the proximal fibula.

Figure 13-22: A human left tibia (A, posterior view) is compared to an adult goat's left tibia (B, caudal view), a juvenile goat's left tibia with epiphyses (C, caudal view), and a juvenile goat's tibia without epiphyses (D, caudal view).

Figure 13-23: An adult human proximal tibia (superior view) is compared to a goat's proximal tibia (dorsal view).

Figure 13-24: An adult human distal tibia (inferior view) is compared to a goat's distal tibia (ventral view). The large parallel facets for the articulation of the astragalus are visible in this view. The two small facets are for the articulation of the malleolus, a small tarsal that is the evolutionary remnant of the fibula, are visible on the lateral side (arrows).

Figure 13-25: A human left scapula (A, anterior view) is compared to an adult goat's (B) and a juvenile goat's (C) left scapula (medial views).

Figure 13-26: A human left scapula (A, posterior view) is compared to an adult goat's (B) and a juvenile goat's (C) left scapula (lateral view). Note the large acromion process on the human scapula (arrow). The blade of the goat's scapula is broadly triangular. The spine divides the blade into two unequal parts.

Figure 13-27: A human left scapula (A, lateral view) is compared to an adult goat's (B) and a juvenile goat's (C) left scapula (distal view). The glenoid cavity and the base of the spine are visible in this view. The goat's and sheep's glenoid cavities are generally more oval in shape, while the deer's is more rounded.

Figure 13-28: A human left innominate (A, lateral view) is compared to an adult goat's (B) and a juvenile goat's (C) left innominate (lateral view).

Figure 13-29: An adult goat's left innominate (medial and lateral views).

Figure 13-31: (A) Goat left proximal metacarpus (dorsal view). (B) Goat left proximal metatarsus (dorsal view). When compared to the D-shaped proximal metacarpus, the proximal metatarsus in goats is more circular in shape. The facets mark the articulation with the distal row of tarsals.

This page intentionally left blank

Sheep (Ovis aries)

Figure 14-01: Horned sheep cranium (A, lateral view, right side). The horn core, the bony portion of the skull that underlies the horn, is visible in this view. Horns differ from antlers and are found in bovids (e.g., cattle, sheep, and goats). The horn itself is made of keratin and rarely survives in archaeological contexts. (B, ventral view, the left portion of the maxilla is missing). The sheep's dental formula is $0 / 3.0 / 1.3 / 3.3 / 3$. The mandibular canine is incisiform and is followed by a long diastema.

Figure 14-02: (A) Polled (hornless) sheep cranium (lateral view, right side). Sheep and goat are closely related species, and fragmentary remains of the two taxa can be difficult to distinguish. Boessneck and colleagues (Boessneck 1969; Boessneck, et al. 1964) present the most comprehensive guide to the osteological distinctions that are evident on the postcranial skeleton. Since the publication of Boessneck's work, researchers have attempted to identify distinguishing features of the dentition of sheep and goats. Payne (1985) identifies several distinctions that can be seen on the deciduous dentition, while Halstead and Collins (2002) identify differences on the mandibles and mandibular teeth of adult sheep and goats. Zeder and Pilaar (2010) assess the reliability of the criteria used to distinguish mandibles and mandibular teeth, while Zeder and Lapham (2010) assess the reliability of the postcranial criteria. (B) Polled sheep cranium (ventral view). The sheep's third molars have not erupted but are visible in the crypts.

Figure 14-03: A human left humerus (anterior view) is compared to a sheep's left humerus (cranial view). A slight exostosis is apparent on the lateral epicondyle of the sheep's distal humerus (arrow). This is an example of "penning elbow," a pathological condition that is relatively common in domestic sheep and is caused by trauma to the joint area. Note also that the greater tubercle is more well developed in the sheep's humerus than it is in the human humerus.

Figure 14-04: A human left humerus (posterior view) is compared to a sheep's left humerus (caudal view). Note that the overall morphology of the sheep's skeleton is quite similar to the cow's, but that the sheep is significantly smaller.

Figure 14-05: A human proximal humerus (superior view) is compared to a sheep's proximal humerus (dorsal) view. The head of the humerus and the tubercles are visible in this view.

Figure 14-06: A human distal humerus (inferior view) is compared to a sheep's distal humerus (ventral view). Note the closer view of "penning elbow" (arrow).

Figure 14-07: A human left ulna and radius (anterior views) are compared to a sheep's left radius and ulna (cranial view). Note that the sheep's radius is large in relation to the ulna. In many older adult sheep the shaft of the radius is fused to the ulna.

Figure 14-09: A human left radius and ulna (medial views) are compared to a sheep's left radius and ulna (medial view). Although the shaft of the sheep's ulna is very slender, the olecranon process is well developed compared to the human olecranon process (arrows).

Figure 14-10: Sheep radius and ulna (proximal end, dorsal view). The proximal ulna (olecranon process) is visible in this view.

Figure 14-11: A human proximal radius (superior view) is compared to a sheep's proximal radius (dorsal view). Note that the lateral bicipital tuberosity (arrow) is more well developed in sheep than it is in goats.

Figure 14-12: A human distal radius (inferior view) is compared to a sheep's distal radius (ventral view).

Figure 14-13: A human left femur (anterior view) is compared to a sheep's left femur (cranial view). The most proximal point of the human femur is the head, while the most proximal point on the sheep's femur is the greater trochanter. The sheep and goat are quite similar (both are members of the subfamily Caprinae), and the differences between their postcranial skeletons are quite subtle. The angle formed between the head and the greater trochanter is generally about 90 degrees in sheep, while the angle is acute in goats.

Figure 14-14: A human left femur (posterior view) is compared to a sheep's left femur (caudal view). The sheep's femur is marked by a supercondylar fossa on the lateral portion of the shaft (arrow). The linea aspera along the midline of the posterior femur shaft is a distinctively human feature.

Figure 14-15: An adult human proximal left femur (superior view) is compared to a sheep's proximal left femur (cranial view). The sheep's femoral head, greater trochanter, and lesser trochanter are visible in this view.
The arrow points to the small, circular fovea capitis.

Figure 14-16: An adult human distal left femur (inferior view) is compared to a sheep's distal left femur (ventral view). The two condyles and the trochlea (for articulation with the patella) are visible in both specimens.

Figure 14-17: A human left tibia (anterior view) is compared to a sheep's left tibia (cranial view).

Figure 14-18: A human left tibia (posterior view) is compared to a sheep's left tibia (caudal view).

Figure 14-19: A human left tibia (lateral view) is compared to a sheep's left tibia (lateral view). Note that the tibial tuberosity and crest (arrow) are well developed in the
sheep.

Figure 14-20: A human proximal left tibia (superior view) is compared to a proximal sheep's left tibia (cranial view). The facets for articulation with the distal condyles of the femur are visible in this view for both specimens. It is very difficult to distinguish sheep from goats based on the proximal tibia.

Figure 14-21: A human distal left tibia (inferior view) is compared to a sheep's distal left tibia (ventral view). The medial malleolus and articular facets for the tibia (parallel grooves) are visible in this view. The two small facets on the lateral surface (arrows) are for the articulation with the malleolus, a small tarsal that is the evolutionary remnant of the distal fibula.

Figure 14-22: A human left scapula (anterior view) is compared with a sheep's left scapula (medial view). Both scapulae are oriented as they would be in a human skeleton. In comparison to the human scapula, the sheep's scapula is elongated.

Figure 14-23: A human left scapula (posterior view) is compared to a sheep's left scapula (lateral view). The acromion process in the sheep is quite small, while it is quite large in the human. In addition, a small crest is visible on the caudal border of the neck of the sheep's scapula (arrow). The presence of this crest can be used to distinguish sheep from goats.

Figure 14-24: A human left innominate (lateral view) is compared to a sheep's left innominate (lateral view).

Figure 14-25: A human left innominate (medial view) is compared to a sheep's left innominate (ventral view). Note the sheep's elongated ilium.

Figure 14-26: A human sacrum (anterior view) is compared to a sheep's sacrum (ventral view). The wings of the sheep's sacrum are quite wide, while the rest of the sacrum is relatively narrow.

Figure 14-27: A human sacrum (posterior view) is compared to a sheep's sacrum (dorsal view).

Figure 14-28: The sheep's left metatarsus (A, dorsal view) and metacarpus (B, dorsal view) are shown on the left. The sheep's metacarpus (C, palmar view) and metatarsus (D, plantar view) are shown on the right. The sheep's metapodia are composed of the fused third and fourth metacarpals and metatarsals.

Figure 14-29a: Sheep proximal left metacarpal (dorsal view). The two large facets for the articulation of the distal carpal row, including the fused second and third carpals (larger medial facet) and the fourth carpal (smaller lateral facet), are visible in this view.

Figure 14-29b: Sheep distal left metacarpal (volar view).

Figure 14-29c: Sheep proximal left metatarsal (dorsal view). This view shows the articular facets for the distal tarsal row. the articular facets for the distal tarsal row.
While the proximal metacarpus is D-shaped, the proximal metatarsus is roughly circular in outline.

Figure 14-29d: Sheep distal left metatarsal (plantar view).

Figure 14-30: A human left talus (A, superior view) and calcaneus (B, superior view) are compared to a sheep's left calcaneus (C, dorsal view) and a sheep's left astragalus (D, plantar view). The sheep's astragalus has the "double pulley" form that is seen in all artiodactyls. The sheep's calcaneus is elongated and includes a dorsal articular facet for the malleolus (the evolutionary remnant of the distal fibula).

This page intentionally left blank

Dog (Canis familiaris)

Figure 15-01: Dog cranium (lateral view, right side). The dental formula for the adult dog includes three incisors, one large canine, four premolars, and two molars on the maxilla, and three incisors, one canine, four premolars, and three molars on the mandible (not shown). In the carnivores, the large canines are used to seize and dispatch prey. The sectorial cheek teeth work like a pair of scissors to cut meat into pieces that are small enough to be swallowed. (B) Dog cranium (ventral
view). The dog's dental formula is $3 / 3.1 / 1.4 / 4.2 / 3$.

Figure 15-02: A human left humerus (anterior view) is compared to a dog's left humerus (cranial view). One of the features of the dog's humerus is that the radial fossa communicates with the olecranon fossa, producing a supratrochlear foramen (arrow). These foramina (also called septal apertures) are sometimes seen in humans. A small septal aperture is seen in this human specimen.

Figure 15-03: A human left humerus (posterior view) is compared to a dog's left humerus (caudal and medial views). When compared to the human head of the humerus, the head of the humerus in the dog is elongated sagittally.

Figure 15-04: An adult human proximal humerus (superior view) is compared to a dog's proximal humerus (dorsal view). The greater tubercle, lesser tubercle, and head are visible in both specimens in this view.

Figure 15-06: A human left radius (anterior view) is compared to a dog's left radius (cranial view). Both the human and the dog's radius have a distinctive head and neck. Note the elongated neck on the human radius (arrow).

Figure 15-07: A human left radius (posterior view) is compared to a dog's left radius caudal view).

Figure 15-08: A human proximal radius (superior view) is compared to a dog's proximal radius (dorsal view).

Figure 15-09: A human distal radius (inferior view) is compared to a dog's distal radius (ventral view).

Figure 15-10: A human left ulna (anterior view) is compared to a dog's left ulna (cranial view).

Figure 15-11: A human left ulna (posterior
view) is compared to a dog's left ulna (caudal view).

Figure 15-12: A human left ulna (medial view) is compared to a dog's left ulna (medial view). The olecranon is larger and more well developed in the dog (arrow).

Figure 15-13: A human left femur (anterior view) is compared to a dog's left femur (cranial view). When compared to the human femur, the dog's greater trochanter is more well developed (arrow). The distal condyles of the human femur show a distinctive asymmetry while the distal femur of the dog is more even and symmetric.

Figure 15-14: A human left femur (posterior view) is compared to a dog's left femur (caudal view). Two small articular facets are visible on the dog's femur, just proximal to the distal condyles (arrows). These are the medial and lateral articular facets for two sesamoids that are located in the origin of the gastrocnemius muscle.

Figure 15-15: A human left proximal femur (superior view) is compared to a dog's left proximal femur (dorsal view).

Figure 15-16: A human left distal femur (inferior
view) is compared to a dog's left distal femur (ventral) view. The two distal condyles and the trochlea are visible in this view.

Figure 15-17: A human left tibia (anterior view) is compared to a dog's left tibia (cranial view).

Figure 15-18: A human left tibia (posterior view) is compared to a dog's left tibia (caudal view).

view) is compared to a dog's left tibia (lateral view). Although these two tibiae are broadly similar in form, the proximal
tibia of the dog has a more well-
developed tibial tuberosity (arrow).

Figure 15-20: A human left proximal tibia (superior view) is compared to a dog's left proximal tibia (dorsal) view. The dog's tibia is elongated in the dorsal-plantar
(anterior-posterior) direction when compared to the tibiae of the cow, sheep, goat, deer, and horse. The dog's tibia is relatively narrow mediolaterally.

Figure 15-21: A human left distal tibia (inferior view) is compared to a dog's left distal tibia (ventral view). The two facets for the articulation of the talus (astragalus) are oriented obliquely (arrows), unlike those in the artiodactyls.

Figure 15-22: A human left fibula (lateral view) is compared to a dog's left fibula (lateral view). The body of the dog's fibula is quite slender.

Figure 15-23: A human left fibula (medial view) is compared to a dog's left fibula (medial view).

Figure 15-24: A human left scapula (anterior view) is compared to a dog's left scapula (medial view). Both bones are oriented as they would be in a human. Note that the dog's scapula is elongated.

Figure 15-25: A human left scapula (posterior view) is compared to a dog's left scapula (lateral view). Note that the spine of the dog's scapula (black arrow) divides the scapula into two nearly equal halves. The human scapula's larger acromion process is visible in this view (white arrow).

Figure 15-26: A human left innominate (lateral view) is compared to a dog's pelvis (ventral view). The two dog innominates are fused at the pubic symphysis.

Figure 15-27: A human left innominate (medial view) is compared to a dog's pelvis (dorsal view).

Figure 15-28: A human sacrum (anterior view) is compared to a dog's sacrum (ventral view). The dog's sacrum is usually composed of three fused vertebrae, while the human's is usually composed of five fused vertebrae.

Figure 15-29: A human sacrum (posterior view) is compared to a dog's sacrum (dorsal view).

A

B

C

D

Figure 15-30: A superior view of a human atlas (A) and a lateral view of a human axis (B) are compared to ventral views of a dog's atlas (C) and axis (D). All mammals have seven cervical vertebrae and, in general, the lengths of these vertebrae reflect the length of the animal's neck. The dog's atlas and axis are clearly longer than the human's. The dog's atlas is marked by large transverse processes or wings (arrows).

Figure 15-31: Superior views of typical thoracic (A, left) and lumbar (B, left) human vertebrae are compared to cranial views of typical thoracic (A, right) and lumbar (B, right) dog vertebrae.

Raccoon (Procyon lotor)

Figure 16-01: Raccoon cranium (A) lateral view, right side; (B) ventral view. The raccoon's dental formula is $3 / 3.1 / 1.4 / 4.2 / 2$. Numerous teeth are missing postmorterm (after death) from this specimen.

Figure 16-02: A newborn human left humerus (anterior view) is compared to a raccoon's left humerus (cranial view). The raccoon, like the cat, has a supercondylar foramen (arrow). The raccoon has a more well-developed lateral epicondylar crest than the cat.

Figure 16-03: A newborn human left humerus (posterior view) is compared to a raccoon's left humerus (caudal view).

Figure 16-04: A newborn human left radius (anterior view) is compared to a raccoon's left radius (cranial view).

Figure 16-05: A newborn human left radius (posterior view) is compared to a raccoon's left radius (caudal view).

Figure 16-06: A newborn human left ulna (anterior view) is compared to a raccoon's left ulna (cranial view). Note that the distal end of the raccoon's ulna tapers to a small, blunt point, the styloid process
(arrow).

Figure 16-07: A newborn human left ulna (posterior view) is compared to a raccoon's left ulna (caudal view).

Figure 16-08: A newborn human left ulna (lateral view) is compared to a raccoon's left ulna (lateral view).

Figure 16-09: A newborn human left femur (anterior view) is compared to a raccoon's left femur (cranial view). Note that the second trochanter on the raccoon femur is clearly visible distal to the head (arrow).

Figure 16-10: A newborn human left femur (posterior view) is compared to a raccoon's left femur (caudal view).

Figure 16-11: A newborn human left tibia (anterior view) is compared to a raccoon's left tibia (cranial view).

Figure 16-12: A newborn human left tibia (posterior view) is compared to a raccoon's left tibia (caudal view).

Figure 16-13: A newborn human left scapula (anterior view) is compared to a raccoon's left scapula (medial view). Both are oriented as they would be in a human skeleton. Although the shapes of the two scapulae are similar, the prominent acromion process (arrow) is visible from the anterior view of the human scapula but not that of the raccoon.

Figure 16-14: A newborn human left scapula (posterior view) is compared to a raccoon's left scapula (lateral view). The spine of the raccoon's scapula (arrow) divides the scapula neatly in half.

Figure 16-15: A newborn human left innominate (medial view) is compared to a complete raccoon's innominate (ventral view). The two halves of the raccoon's pelvis have fused along the pubic symphysis. Note the broad blade of the ilium on the human innominate (arrow).

Figure 16-16: Superior views of a newborn human atlas (A) and axis (B) are compared to a raccoon's atlas (C, ventral view) and axis (D, lateral view).

Figure 16-17: A baculum (penis bone) from a male raccoon. The baculum is found in male carnivores, insectivores, bats, and non-human primates.

Opossum (Didelphis virginiana)

Figure 17-01: Opossum cranium (A) lateral view, right side; (B) ventral view. One canine and two premolars are missing postmortem (after death) from this specimen.

Figure 17-02: Opossum cranium (ventral view) and mandible (dorsal view). The opossum dental formula is $5 / 4.1 / 1.3 / 3.4 / 4$. Note that opossums have different numbers of incisors in the upper and lower jaws. Opossums have more teeth than any other land

Figure 17-03: A newborn human left humerus (anterior view) is compared to an opossum's left humerus (cranial view). The possum humerus has a well-developed lateral epicondylar crest (arrow).

Figure 17-05: An opossum's left humerus with epiphyses (cranial view) is compared to an opossum's left humerus without epiphyses (cranial view). This photo shows the size and shape differences that may be encountered within the same species.

Figure 17-06: A newborn human left radius (anterior view) is compared to an opossum's radius (cranial view).

Figure 17-07: A newborn human left radius (posterior view) is compared to an opossum's radius (caudal view).

Figure 17-08: A newborn human left ulna (anterior view) is compared to an opossum's left ulna (cranial view). Note the larger and more well-developed olecranon processes on the opossum's ulna.

Figure 17-09: A newborn human left ulna (posterior view) is compared to an adult opossum's left ulna (caudal view).

Figure 17-10: A newborn human left ulna (lateral view) is compared to an opossum's left ulna (lateral view).

Figure 17-13: A newborn human left tibia (anterior view) is compared to an opossum's left tibia (cranial view).

Figure 17-14: A newborn human left tibia (posterior view) is compared to an opossum's left tibia (caudal view).

Figure 17-15: A newborn human left fibula (medial view) is compared to an opossum's left fibula (medial view).

Figure 17-16: A newborn human left fibula (lateral view) is compared to an opossum's left fibula (lateral view).

Figure 17-17: A newborn human scapula (anterior view) is compared to an opossum's scapula (medial view). Both scapulae are oriented as they would be in a human skeleton. Note that the opossum's scapula is more elongated than the human scapula.

Figure 17-18: A newborn human scapula (posterior view) is compared to an opossum's scapula (lateral view). The spine of the opossum's scapula (arrow) divides the scapula into two equal halves.

Figure 17-19: A newborn human left innominate (lateral view) is compared to an adult opossum's left innominate (lateral view). The epipubic bone can be seen on the opossum's innominate (arrow).

Figure 17-20: A newborn human left innominate (medial view) is compared to an adult opossum's left innominate (medial view). The female opossum's pelvis includes epipubic bones. These bones are found only in marsupials, and they serve to support the pouch.

Figure 17-21: A newborn human atlas (A, superior view) and axis (B, superior view) are compared to an opossum's atlas (C, ventral view; E, cranial view) and axis (D, ventral view; F, cranial view).

This page intentionally left blank

Cat (Felis catus)

Figure 18-01: Cat cranium (A) lateral view, right side; (B) ventral view. The cat's dental formula
is $3 / 3.1 / 1.3 / 2.1 / 1$. The incisors and canines are missing postmortem (after death) from this specimen.

Figure 18-02: A newborn human left humerus (anterior view) is compared to a cat's left humerus (cranial view). The cat's humerus includes a supercondylar foramen on the distal portion of the shaft (arrow).

Figure 18-03: A newborn human left humerus (posterior view) is compared to a cat's left humerus (caudal view).

Figure 18-04: A newborn human left radius (anterior view) is compared to a cat's left radius (cranial view). Although the two bones are quite similar, the human radius has a longer neck (arrow).

Figure 18-05: A newborn human left radius (posterior view) is compared to a cat's left radius (caudal view).

Figure 18-06: A newborn human left ulna (anterior view) is compared to a cat's left ulna (cranial view). Note the larger and more well-developed olecranon process on the cat's ulna (arrow).

Figure 18-07: A newborn human left ulna (posterior view) is compared to a cat's left ulna
(caudal view).

Figure 18-08: A newborn human left femur (anterior view) is compared to a cat's left femur
(cranial view).

Figure 18-10: A newborn human left tibia (anterior view) is compared to a cat's left tibia (cranial view).

Figure 18-11: A newborn human left tibia (posterior view) is compared to a cat's left tibia (caudal view).

Figure 18-12: A newborn human left fibula (medial view) is compared to a cat's left fibula (medial view).

Figure 18-13: A newborn human left fibula (lateral view) is compared to a cat's left fibula (lateral view). The body of the cat's fibula is relatively slender.

Figure 18-14: A newborn human left scapula (anterior view) is compared to a cat's left scapula (medial view). Both are oriented as they would be in a human. Note the presence of the prominent acromion process on the human scapula (arrow) that is visible from the anterior view.

Figure 18-15: A newborn human left scapula (posterior view) is compared to a cat's left scapula (lateral view). The cat's scapula is longer than the human scapula.

A

B

C

Figure 18-16: A newborn human left innominate (A, lateral view) is compared to a cat's left innominate (B, lateral view) and a complete cat's pelvis (C, ventral view). Note that the blade of the ilium is much narrower in the cat than in the human.

Figure 18-17: A newborn human axis (A, superior view) and an adult human axis (B, lateral view) are compared to a cat's axis (C, lateral view). Note the presence of the large spinous process on the cat's axis (arrow).

This page intentionally left blank

Rabbit (Oryctolagus cunniculus and Sylvilagus carolinensis)

Figure 19-01: Rabbit cranium (A) lateral view, right side. All photographs in this chapter are domestic rabbits (Oryctolagus cunniculus) unless otherwise indicated. (B) ventral view. Rabbits are lagomorphs and have distinctive dental patterns. The rabbit dental formula is 2/1.0/0.3/2.3/3. The rabbit upper second incisor is a small peg tooth that is located directly behind the upper first incisor. The rabbit's teeth are open-rooted and continue to grow throughout the animal's lifetime.

Figure 19-02: A newborn human left humerus (anterior view) is compared to a rabbit's left humerus (cranial view). The rabbit's humerus sometimes has a supratrochlear foramen (arrow).

Figure 19-03: A newborn human left humerus (posterior view) is compared a rabbit's left humerus (caudal view).

Figure 19-04: A newborn human left radius and ulna (A, anterior views) are compared to an Oryctolagus left ulna and radius (B , cranial view, separate) and a Sylvilagus left radius and ulna (C, cranial view, fused). The human radius includes a distinctive head and neck, while the olecranon process is much larger on the rabbit's ulna.

Figure 19-05: A newborn human left radius and ulna (A, posterior views) are compared to an Oryctolagus left radius and ulna (B, caudal views, separate) and a Sylvilagus left radius and ulna (C, caudal view, fused). In the rabbit, the ulna crosses behind the radius and terminates on the lateral side of the carpus.

Figure 19-06: A newborn human left femur (anterior view) is compared to a rabbit's left femur (cranial view). Note that the rabbit femur has a small third trochanter (arrow), which is not seen in the human femur.

Figure 19-07: A newborn human left femur (posterior view) is compared to a rabbit's left femur (caudal view).

Figure 19-10: A newborn human left scapula (anterior view) is compared to a rabbit's left scapula (medial view). Note the elongated shape of the rabbit's scapula.

Figure 19-11: A newborn human left scapula (posterior view) is compared to a rabbit's left scapula (lateral view). The rabbit's scapula includes a metacromium that is not found on the human scapula. It is the small process that can be seen near the base of the spine (arrow).

Figure 19-12: A newborn human left innominate (lateral view) is compared to a rabbit's left innominate (lateral view).

Figure 19-13: A newborn human left innominate (medial view) is compared to a rabbit's left innominate (dorsal view).

Figure 19-14: Rabbit sacrum (ventral and dorsal views).

Figure 19-15: A newborn human atlas (superior view) is compared to a rabbit's atlas (cranial view).

This page intentionally left blank

Turkey (Meleagris gallopavo)

Figure 20-01: A newborn human left humerus (anterior view) is compared to a turkey's left humerus (cranial view). Note the pneumatic fossa near the proximal end of the turkey's humerus (arrow). The pneumatic fossa allows for the invasion of the clavicular air sac, which pneumatizes the interior of the humerus.

This lightens the skeleton, which is an adaptation for flight.

Figure 20-02: A newborn human left humerus (posterior view) is compared to a turkey's left humerus (caudal view).

Figure 20-03: A newborn human left radius (anterior view) is compared to a turkey's left radius (cranial view).

Figure 20-04: A newborn human left radius (posterior view) is compared to a turkey's left radius (caudal view).

Figure 20-05: A newborn human left ulna (anterior view) is compared to a turkey's left ulna (cranial view)

Figure 20-07: A newborn human left femur (anterior view) is compared to a turkey's left femur (cranial view).

Figure 20-08: A newborn human left femur (posterior view) is compared to a turkey's left femur (caudal view).

Figure 20-09: A newborn human left tibia (anterior view) is compared to a turkey's left tibiotarsus (cranial view).

Figure 20-10: A newborn human left tibia (posterior view) is compared to a turkey's left tibiotarsus (caudal view).

Figure 20-11: A newborn human left fibula (medial view) is compared to a turkey's left fibula (medial view).

Figure 20-12: A newborn human left fibula (lateral view) is compared to a turkey's left fibula (lateral view).

Figure 20-13: A newborn human left scapula (A, posterior view) is compared to the pectoral girdle of the turkey. The bird pectoral girdle includes three elements: the coracoid, the scapula, and the furcula (wishbone). A turkey's left coracoid (B, ventral view; C dorsal view), a turkey's scapula (D, costal view), and a turkey's furcula (E) are pictured.

Figure 20-14: A newborn human left innominate (A, lateral view) is compared to a turkey's left pelvis (B, medial view; C, lateral view). Note that the turkey's acetabulum is perforated (arrow).

Figure 20-15: Turkey synsacrum (ventral and dorsal views).

Figure 20-16: Turkey left carpometacarpus (dorsal and ventral views). The bone is made up of three fused elements: the second, third, and fourth metacarpals.

This page intentionally left blank

Duck (Anas platyrhynchos)

Figure 21-01: Duck cranium (A) lateral view, right side. (B) ventral view.

Figure 21-02: A newborn human left humerus (anterior view) is compared to a duck's left humerus (cranial view). Note the pneumatic fossa near the proximal end of the duck's humerus (arrow). This is an adaptation for flight.

Figure 21-03: A newborn human left humerus (posterior view) is compared to a duck's left humerus (caudal view).

Figure 21-04: A newborn human left radius (anterior view) is compared to a duck's left radius (cranial view).

Figure 21-05: A newborn human left radius (posterior view) is compared to a duck's left radius (caudal view).

Figure 21－06：A newborn human left ulna（anterior view）is compared with a duck＇s left ulna（cranial view）．

Figure 21－07：A newborn human left ulna（lateral view）is compared to a duck＇s left ulna（caudal view）．

Figure 21-10: A newborn human left tibia (anterior view) is compared to a duck's left tibiotarsus (cranial view).

Figure 21-11: A newborn human left tibia (posterior view) is compared to a duck's left tibiotarsus (caudal view).

Figure 21-12: A newborn human left fibula (medial view) is compared to a duck's left fibula (medial view).

Figure 21-13: A newborn human left fibula (lateral view) is compared to a duck's left fibula (lateral view).

Figure 21-14: A newborn human left scapula (A, posterior view) is compared to the pectoral girdle of a duck. The bird pectoral girdle includes three elements: the coracoid, the scapula, and the furcula (wishbone). A duck's left coracoid (B, ventral view; C, dorsal view), a duck's scapula (C, costal view), and a duck's furcula (E) are pictured.

Figure 21-16: A newborn human left innominate (A, lateral view) is compared to a duck's left pelvis (B, lateral view; C, medial view). Note that the duck's acetabulum is perforated (arrow).

Figure 21-17: Dorsal (A), lateral (B), and ventral (C) views of the duck's synsacrum. In birds, the synsacrum is a made up of the fused lumbar and sacral vertebrae.

Figure 21-18: The duck's left carpometacarpus (dorsal and ventral views).

Figure 21-19: The duck's left tarsometatarsus (dorsal and plantar views). This bone is composed of the fused distal tarsal bones along with three metatarsals.

This page intentionally left blank

Chicken (Gallus gallus)

Figure 22-01: Chicken skull (no beak) (A) lateral view, right side; (B) ventral view.

Figure 22-02: A newborn human left humerus (A , anterior view) is compared to two chicken left humeri (B and C, cranial views). The smaller element is from a younger chicken.

Figure 22-03: A newborn human left humerus (A, posterior view) is compared to two chicken left humeri (B and C , caudal views).

Figure 22-04: A newborn human left radius (A, anterior view) is compared to two chicken left radii (B and C, cranial views). The smaller element is from a younger chicken.

Figure 22-05: A newborn human left radius (A, posterior view) is compared to two chicken left radii (B and C, caudal views).

Figure 22-06: A newborn human left ulna (A, lateral view) is compared to two chicken left ulnae (B and C, lateral views). The smaller element is from a younger chicken.

Figure 22-07: A newborn human left femur (A , anterior view) is compared to two chicken left femora (B and C, cranial views). The smaller element is from a younger chicken.

Figure 22-08: A newborn human left femur (A, posterior view) is compared to two chicken femora (B and C, caudal views).

Figure 22-09: A newborn human left tibia (A , anterior view) is compared to two chicken left tibiotarsi (B and C, cranial views). The smaller element is from a younger chicken.

Figure 22-10: A newborn human left tibia (A, posterior view) is compared to two chicken left tibiotarsi (B and C, caudal views).

Figure 22-11: A newborn human left fibula (A, medial view) is compared to two chicken left fibulae (B and C, medial view).

The smaller element is from a younger chicken.

Figure 22-13: A newborn human scapula (A, posterior view) is compared to the pectoral girdle of a chicken. The bird pectoral girdle includes three elements: the coracoid, the scapula, and the furcula (wishbone). A chicken's left coracoid (B, ventral view; C, dorsal view), a chicken's scapula (D, costal view), and a chicken's furcula (E) are pictured.

Figure 22-14: Chicken sternum (ventral and lateral views). The keel on the sternum forms the origin for the muscles involved in flight.

Figure 22-15: A newborn human left innominate (lateral view) is compared to a chicken's left pelvis (lateral and medial views). Note that the chicken's acetabulum is perforated (arrow).

Figure 22-16: A chicken's left carpometacarpus (dorsal and ventral views).

Figure 22-17: A chicken's left tarsometatarsus (dorsal and plantar views). This bone is composed of the fused distal tarsal bones along with three metatarsals. Male chickens have a bony spur core on the midshaft of the tarsometatarsus. The spur occurs
only rarely in females.

Miscellaneous

Figure 23-01: Major skeletal elements of a newborn human skeleton positioned in anatomical order (i.e., anterior view with hands at the side and palms forward).

Figure 23-02: Subadult human bones of the upper extremity. The left arm and shoulder bones from a newborn infant (left) are compared to those of a 3-4-year-old child (right). The bones represented include the clavicle (A), scapula (B), humerus (C), and ulna and radius (D).

Figure 23-03: Subadult human bones of the lower extremity. The left pelvis and leg bones from a newborn infant (left) are compared to those of a 3-4-year-old child (right). The bones represented include the innominate (A), femur (B), and tibia/fibula (C).

Figure 23-04: Adult human skeleton positioned in anatomical order (i.e., anterior view with hands at the side and palms forward).

Figure 23-05: A newborn human left femur (anterior view) is compared to a rat's (Rattus norvegicus) left femur (cranial view).

Figure 23-06: A cat's left humerus (cranial view) is compared to a juvenile bobcat's (Lynx rufus) left humerus (cranial view). Note the presence of the supercondylar foramen on both specimens (arrows).

Figure 23-07: A dog's left femur (cranial view) is compared to a fox's (Vulpes vulpes) left femur (cranial view). Note the morphological similarities between the two canid species.

Figure 23-08: A newborn human left humerus (anterior view) is compared to a snapping turtle's (Chelydra serpentina) left humerus (cranial view).

Figure 23-09: A newborn human left humerus (posterior view) is compared to a snapping turtle's left humerus (caudal view).

Figure 23-10: A newborn human left radius and ulna (A, anterior view) are compared to a turtle's right and left radii (B) and ulnae (C).

Figure 23-11: A newborn human left femur (anterior view) is compared to a snapping turtle's left femur (cranial view).

Figure 23-12: A newborn human left femur (posterior view) is compared to a snapping turtle's left femur (caudal view).

Figure 23-13: A newborn human left tibia and fibula (A, anterior views) are compared to a snapping turtle's right and left tibiae (B) and fibulae (C).

Figure 23-14: A newborn human left scapula (A) anterior view is compared to a snapping turtle's left shoulder girdle. Note that the turtle's shoulder girdle includes three elements: the scapula (C, horizontal position), the acromion (C, vertical portion), and the anterior coracoid (B). The scapula and the acromion are fused. The clavicle is fused to the plastron, or base of the shell.

Traces of Butchery and Bone Working

Pam Crabtree and Douglas V. Campana

Introduction

Animal bones often reveal marks of butchery associated with meat or marrow processing. Butchered bones may be recovered as important behavioral evidence from archaeological sites, or they may be collected within the forensic context and mistaken for human bones with marks of trauma. Archaeologists can use these butchery marks to study the ways in which past human populations butchered, distributed, and consumed meat. In a forensic context, tool marks on bone may be a good indication that the remains are non-human in origin, but this is not always the case. The intentional dismemberment of a human body by another individual (usually with the goal of hindering identification or facilitating transportation of the remains) may mimic the appearance of a butchered cow or pig to the untrained observer. An experienced osteologist should always be consulted if there is any doubt. Figure 24-01 shows several commercially butchered cow bones that were mistaken for human remains and turned over to law enforcement. Figures 24-02 and 24-03 are views of a human femur and humerus from an individual who was murdered and subsequently dismembered with a power saw.

This chapter will illustrate the types of butchery marks that are typically found on animal bones from modern-day, historic, and prehistoric contexts. Butchered remains of cattle and pigs are most commonly found on historic archaeological sites in North America, while prehistoric sites often yield substantial numbers of butchered deer bones. Cow and pig are also the most frequently encountered butchered bones from the present-day context and, based on their size, they are commonly mistaken for human bones. This chapter will also include schematic drawings of a pig, a cow, a lamb, and a deer that show the major cuts of meat. The chapter will conclude with a brief discussion of some of the ways in which bone has been used as a raw material for the manufacture of tools and other artifacts.

Figure 24-02: Proximal right human femur (A) and proximal left human humerus (B), both anterior views. These bones are from an adult individual who was murdered and then dismembered with a power saw. Note the false start kerf(arrow), which is an incomplete cut with the saw blade. Measurements of the kerf width can be an indication of blade type.

Figure 24-03: Different views of the dismembered human femur and humerus in Figure 24-02 that show the sawn margins and associated striae created by the saw's teeth.

Modern Butchery: Eighteenth Century to the Present

Butchers have two main goals: they seek to divide the animal carcass into a number of smaller and more manageable pieces and, in many cases, they also seek to remove some of the meat from the animal's skeleton. The typical cuts of beef, pork, mutton, and venison are illustrated in Figures 24-04 through 24-07. Since the eighteenth century, American butchers have used saws to butcher large animals, and saw marks are some of the most common traces of butchery seen on modern animal skeletons. Hand saws were used in the eighteenth and nineteenth centuries, but modern butchery most commonly employs power saws. Sawing can be readily recognized by the characteristic kerfs, or saw marks, left behind on the sawn bone surface. Hand-sawn bone can be distinguished by the somewhat irregular sawn surface, with groups of parallel, often coarse, striations at angles to one another on the kerf walls; machinesawn bone usually shows a flat, polished surface with fine, parallel striations on the kerf walls. The analysis of kerf features can also be very informative in the forensic context when assessing tool marks left on bone from human dismemberment cases (e.g., Symes et al. 1998, 2002). For the processing of food remains, saws are used both to split the carcass into sides and to subdivide the carcass into joints of meat.

Figure 24-04: Modern beef cuts.

Figure 24-05: Modern pork cuts.

Figure 24-06: Modern lamb (mutton) cuts.
A. Neck
B. Shoulder
C. Fore Shank
D. Rib
E. Breast
F. Loin
G. Flank
H. Sirloin
I. Leg
J. Hind Shank

Figure 24-07: Modern deer (venison) cuts.

Figure 24-08 shows a cow scapula that has been sawn with a hand saw. This bone dates to the eighteenth century and was recovered from deposits associated with the New York City Poor House, located on the grounds of the modern City Hall. Figure 24-09 shows a cow's atlas (C1) that has been sagittally sawn. This example came from a forensic case file from New Jersey. Figures 24-10 and 24-11 are sawn bones from a late-twentieth-century pig farm in central New Jersey. In this case, a saw has been used to separate the lower limbs from the meatier portions of the upper fore- and hindlimbs. The central portion of the tibial shaft (Figure 24-10) and the distal parts of the radial and ulnar shafts (Figure 24-11) have all been sawn through.

Saws are commonly used to divide an animal's carcass into a series of joints of meat. Figure 24-12 shows a cow's humerus from a nineteenth-century deposit at the archaeological site of Fort Johns in Sussex County, New Jersey (Crabtree et al. 2002). The humerus has saw marks near the distal end and on the central portion of the shaft. A second saw mark is visible on the central portion of the shaft where the butcher's saw must have slipped early in the process. These saw marks were used to produce a chuck or arm roast.

Saws are often used to divide beef ribs into small, 4-6inch ($10-15 \mathrm{~cm}$) sections. Figure 24-13 (top) shows a central portion of a cow's rib with saw marks on either end, producing a crossrib cut. This example was also recovered from a nineteenth- or early-twentieth-century context at the Fort Johns site. A second rib section from Fort Johns (Figure 24-13, bottom) includes the articular portion of the bone (the part closest to the vertebral column).

Other typical examples of nineteenth-century butchery from the Fort Johns site include a cow's ilium (Figure 24-14a) that has been sawn into a roughly 1 inch (2.5 cm) segment, probably for a steak, and the glenoid portion of a cow's scapula (Figure 24-14b) that has been sawn through, possibly to produce a chuck roast. The Fort Johns excavations also produced a dorsal spine of a cow's thoracic vertebra (Figure 24-14c) that has been sawn through. Large, sawn sections of less meaty elements, such as tibial and radial shafts of cattle, are often used as soup bones (Milne and Crabtree 2002: 164). Figure 24-14d shows a sawn section of a cow's tibia from the Five Points site, a nineteenth-century multi-ethnic neighborhood in lower Manhattan (Milne and Crabtree 2001).

Knife cuts and other butchery traces resulting from meat removal can often be seen on modern faunal remains. For example, Figure 24-15 shows an immature pig's femur and tibia cut across each shaft. Figure 24-16 shows an immature pig's tibia that has been made into a spiral ham. The circular cut marks can be seen on the proximal shaft of the tibia.

Figure 24-08: A cow's scapula that has been sawn in half. This example is from the eighteenthcentury Poor House in New York City.

Figure 24-09: A cow's cervical vertebra on which saw marks can be seen.

Figure 24-11: Sawn shafts of a pig's tibia (A), radius (B), and ulna (C) from a late-twentiethcentury farm in New Jersey.

Figure 24-12: A sawn cow's humerus from the historic Fort Johns site in Sussex County, New Jersey. Arrows show locations of saw marks.

Figure 24-13: A sawn section of a cow's rib from the Fort Johns site (top). Also shown (bottom) is the sawn section of a cow's rib including the dorsal portion that articulates with the thoracic vertebrae.

Figure 24-16: Proximal tibia of a modern pig showing cut marks (arrows). This bone is the remnant of a spiral-cut ham.

Figure 24-15: Distal femur and proximal tibia from a juvenile pig showing cut marks through the shafts of both bones.

Figure 24-17: A butchered cow's femur from Brandon, a Middle Saxon (ca. 650-850 AD) site in eastern England that has been split with a cleaver. An initial, unsuccessful chop mark can also be seen on the proximal end near the femoral head (arrow).

Figure 24-18: A split cattle metatarsus from the Middle Saxon site of Brandon.

Butchery Using Cleavers and Heavy Knives

Prior to about 1700 AD , most butchery was carried out using cleavers and heavy knives. These tools were also commonly used for home butchery during the eighteenth and nineteenth centuries. Figure 24-17 shows a cow's proximal femur that has been split using a cleaver. An initial, unsuccessful chop mark can also be seen on the proximal end near the femoral head. This example comes from the Middle Saxon (ca. 650-850 AD) settlement site of Brandon in eastern England (Carr et al. 1988).

Figure 24-19: Chop marks (arrows) on a cow's mandible from the second- to fourth-century Roman site of Icklingham in eastern England.

Lower limb bones, especially the metacarpals and metatarsals of the ruminant artiodactyls, are often split for the extraction of marrow. Figure 24-18 shows a cattle metatarsal that has been axially split. This example was also recovered from the Brandon site.

Professional butchers can dismember a large animal carcass skillfully using sharp cleavers. The following examples from the Roman (second- to fourth-century AD) site of Icklingham in eastern England show how Roman butchers could dismember animal carcasses using sharp iron tools. Figure 24-19 shows the types of chop marks that are typically produced by a heavy knife or cleaver. These marks appear near the gonial angle of a cow's mandible. Figure 24-20 shows similar heavy chop marks on the caudal portion of a cow's radius. Figure 24-21 shows a cow's pubis that has been chopped through using a cleaver.

Figure 24-20: Chop marks (arrows) on the caudal portion of a cow's radius from Icklingham.

Figure 24-21: Chop marks (arrow) on a cow's pubis from Icklingham.

Figure 24-22: An astragalus fragment of a wild goat (Capra aegagrus) from the Middle Paleolithic levels of Shanidar Cave in Iraq showing stone tool cut marks.

Prehistoric Butchery

Before the development of high-quality metal tools, butchery was carried out using stone tools. The earliest examples of animal bones butchered with stone tools date back to about 2.6 million years ago in East Africa (Semaw 2000; Semaw et al. 2003). In North America, animal bones were butchered using stone tools until the early seventeenth century, when metal knives and other tools were introduced from Europe. For example, a well-preserved iron cleaver was recovered from the seventeenth-century site of Martin's Hundred in Virginia (Noël Hume 1979: 147). Archaeologists working on prehistoric sites in the Americas are likely to encounter animal bones that have been butchered using stone knives and flakes. When compared to the traces left by iron tools, butchery traces left by stone tools are far more subtle. For example, a butcher using iron tools will often separate the femur from the

Figure 24-23: A wild goat's (Capra aegagrus) second phalanx from the Middle Paleolithic levels of Shanidar Cave showing cut marks (arrows) made with a stone tool.
acetabulum by chopping through the neck of the femur (see Figure 24-17). A prehistoric butcher using stone tools would cut around the outside of the acetabulum to detach, or disarticulate, the femur.

Figure 24-22 shows an astragalus of a wild goat (Capra aegagrus) that was butchered by the Neanderthals inhabiting Shanidar Cave in Iraq between 60,000 and 44,000 BP (Solecki 1971). The relatively deep, V-shaped cuts across the bone were left by the edge of a flint flake during the disarticulation of the animal's leg. Figure 24-23 is the phalanx of a Shanidar goat; these clear, somewhat shallower V-shaped cuts were left during the process of skinning the animal. Figure $24-24$ is a phalanx of a modern white-tailed deer (Odocoileus virginianus) that has been experimentally skinned using flint tools similar to those found at Shanidar. The placement and appearance of these markings are very similar to those found on the archaeological specimens.

Figure 24-24: Experimental cut marks (arrows) made with a stone tool on a white-tailed deer's first phalanx.

Bone as a Raw Material

Bone has served as an important raw material throughout nearly all of human history. Bone was commonly used as a raw material for tools and other artifacts until its replacement by plastic after World War II. For example, bone toothbrushes are commonly found on nineteenth-century archaeological sites. Bone spools were used to hold thread for tatting (lace-making) as recently as the 1930s.

Not all bones are equally suitable for the manufacture of bone tools and artifacts. Prehistoric and historic craftworkers often chose to use ungulate metacarpals, metatarsals, and tibiae because these bones are characterized by a relatively long, cylindrical shaft made up of thick, compact bone. This bone is made up of a calcitic matrix deposited around a central nutrient canal, forming the osteons, or Haversian system. The osteons of long bones are oriented parallel to the shaft, splaying outwards toward the ends. The combination of thick, compact bone with parallel osteons results in a set of physical characteristics of the material in the bone shaft that is advantageous for the manufacture of bone implements. The shaft of a long bone is markedly anisotropic in strength; that is, it is much stronger when stressed along the length

Figure 24-25: A sawn section of a cow's metatarsal from the Iron Age site of Dún Ailinne in Ireland. This appears to be a blank for bone working.
of the bone than it is around the circumference of the bone. Consequently, long bones tend to fracture in long, thin fragments that are suitable for making into tools and other artifacts.

Figure 24-25 shows a section of a cow's metatarsal that has been sawn at both the proximal and the distal ends. The metatarsus was recovered from the Iron Age (approximately 200 BC to 100 AD) site of Dún Ailinne in Ireland (Wailes 1990, 2004; Johnston and Wailes 2007). Although sawing was not used in butchery in Ireland until about 1700, saws were used in bone working from the early Iron Age onward. This bone object is the earliest known example of sawing in Ireland (Raftery 1994: 119). This bone appears to be a blank that was prepared for bone working. Figure 24-26 shows a finished bone tool made on a split gazelle

Figure 24-27: A red deer (Cervus elaphus) skull from the Anglo-Saxon site of Brandon in eastern England. One antler has been chopped off, while the other has been sawn off.
metapodial from the 11,000-year-old site of Salibiya I in the lower Jordan Valley, West Bank (Crabtree et al. 1991).

Deer antler was also a valuable raw material that was commonly used for handles and other artifacts. Figure 24-27 shows a red deer (Cervus elaphus) skull from the medieval Brandon site in eastern England. Both a saw and a heavy cleaver have been used to remove the antlers from the deer's skull. In the Middle Ages, antler was commonly used to manufacture bone combs. Figure 24-28 is an example of an early medieval antler comb from Iceland.

Figure 24-28: An antler comb from medieval Iceland.

References

Bass, W. M. (2005). Human osteology (5th ed.). Columbia, MO: Missouri Archaeological Society.
Boessneck, J. (1969). Osteological differences between sheep (Ovis aries Linne) and goat (Capra hircus Linne). In D. Brothwell \& E. Higgs (Eds.), Science in archaeology (pp. 331-358). New York, NY: Praeger.
Boessneck, J., Muller, H. H. \& Teichert, M. (1964). Osteologische Unterscheidungsmerkmale zwischen Schaf (Ovis aries Linne) und Ziege (Capra hircus Linne). Kuhn-Archiv, 78, 1-129.
Brothwell, D. R. (1981). Digging up bones (3rd ed.). Ithaca, NY: Cornell University Press.
Brown, C. L. \& Gustafson, C. E. (1979). A key to postcranial skeletal remains of cattle/bison, elk, and horse. Pullman, WA: Washington State University. Washington State University Reports of Investigations 57.
Byers, S. N. (2010). Introduction to forensic anthropology (4th ed.). Boston, MA: Pearson Education.
Carr, R. D., Tester, A. \& Murphy, P. (1988). The Middle-Saxon settlement at Staunch Meadow, Brandon. Antiquity, 62, 371-377.
Cattaneo, C., Porta, D., Gibelli, D. \& Gamba, C. (2009). Historical determination of the human origin of bone fragments. Journal of Forensic Science, 54(3), 531-533.
Chang, K. C. (1986). The archaeology of ancient China (4th ed.). New Haven, CT: Yale University Press.
Cohen, A. \& Serjeantson, D. (1996). A manual for the identification of bird bones from archaeological sites (Revised ed.). London: Archetype Publications.
Cornwall, I. W. (1956). Bones for the archeologist. New York, NY: Macmillan Press.
Crabtree, P. J., Campana, D. V., Belfer-Cohen, A. \& Bar-Yosef, D. (1991). First results of the excavations at Salibiya I, Lower Jordan Valley. In O. Bar-Yosef \& F. Valla (Eds.), The Natufian culture of the Levant (pp. 161-172). Ann Arbor, MI: International Monographs in Prehistory.
Crabtree, P., Campana, D. V. \& Wright, J. R. (2002). Exploring the archaeological potential of French and Indian war fortifications. CRM, 25(3), 21-22.
Evans, H. E. \& de Lahunta, A. (1980). Miller's guide to the dissection of the dog. Philadelphia, PA: W. B. Saunders.

France, D. L. (2009). Human and Nonhuman Bone Identification. Boca Raton: CRC Press.
Getty, R. (1975). Sisson and Grossman's the anatomy of the domestic animals (5th ed.). Philadelphia, PA: W. B. Saunders.
Gilbert, B. M. (1990). Mammalian osteology (2nd ed.). Columbia, MO: Missouri Archaeological Society.
Gilbert, B. M., Marin, L. D. \& Savage, H. G. (1981). Avian osteology. Columbia, MO: Missouri Archaeological Society.
Halstead, P., Isaakidou, V. \& Collins, P. (2002). Sorting the sheep from the goats: Morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. Journal of Archaeological Science, 29, 545-553.
Hillier, M. L. \& Bell, L. S. (2007). Differentiating human bone from animal bone: A review of histological methods. Journal of Forensic Science, 52(2), 249-263.
Hillson, S. (1995). Mammal Bones and Teeth. Institute of Archaeology, London.
Johnston, S. A. \& Wailes, B. (2007). Dún Ailinne: Excavations at an Irish Royal Site, 1968-1975. Philadelphia, PA: University of Pennsylvania Museum.
Milne, C. \& Crabtree, P. J. (2001). Prostitutes, a rabbi, and a carpenter - Dinner at Five Points in the 1830s. Historical Archaeology, 35(3), 31-48.
Milne, C. \& Crabtree, P. J. (2002). Revealing meals: Ethnicity, economic status and diet at Five Points, 1800-1860. In R. Yamin (Ed.), Tales of the five points: Working class life in nineteenth century New York, Volume II: An interpretive approach to working class life (pp. 130-196). New York, NY: General Services Administration.
Mulhern, D. M. \& Ubelaker, D. H. (2001). Differences in osteon banding between human and nonhuman bone. Journal of Forensic Science, 46, 220-222.
Noël Hume, I. (1979). Martin's Hundred: The discovery of a lost colonial Virginia settlement. New York, NY: Dell.
Olsen, S. J. (1964). Mammal remains from archaeological sites. Cambridge, MA: Peabody Museum. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University 56-1.
Olsen, S. J. (1968). Fish, amphibian and reptile remains from archaeological sites. Cambridge, MA: Peabody Museum. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University 56-2.
Owsley, D. W. \& Mann, R. W. (1990). Medicolegal case involving a bear paw. Journal of the American Podiatric Medical Association, 80, 623-625.
Payne, S. (1985). Morphological distinctions between the mandibular teeth of sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 12, 139-147.
Raftery, B. (1994). Pagan Celtic Ireland: The emigma of the Irish Iron Age. London: Thames and Hudson.
Schaefer, M., Black, S. \& Scheuer, L. (2009). Juvenile Osteology. San Diego: Academic Press (Elsevier).

Scheuer, L. \& Black, S. (2000). Developmental juvenile osteology. San Diego, CA: Academic Press.
Schmid, E. (1972). Atlas of animal bones for prehistorians, archaeologists, and quaternary geologists. New York, NY: Elsevier.
Semaw, S. (2000). The world's oldest stone artifacts from Gona, Ethiopia: Their implications for understanding stone technology and patterns of human evolution between 2.6-1.5 million years ago. Journal of Archaeological Science, 27, 1197-1214.
Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., et al. (2003). 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45, 169-177.
Silver, I. A. (1969). The ageing of domestic animals. In D. Brothwell \& E. Higgs (Eds.), Science in archaeology (pp. 283-302). New York, NY: Praeger.
Solecki, R. S. (1971). The first flower people. New York, NY: A. Knopf.
Steele, D. G. \& Bramblett, C. A. (1988). The anatomy and biology of the human skeleton. College Station, TX: Texas A\&M University Press.
Stewart, T. (1979). Essentials of forensic anthropology. Springfield, IL: Charles C. Thomas.
Symes, S. A., Berryman, H. E. \& Smith, O. C. (1998). Saw marks in bone: Introduction and examination of residual kerf contour. In K. J. Reichs (Ed.), Forensic osteology (pp. 389-409) (2nd ed.). Springfield, IL: Charles C. Thomas.
Symes, S. A., Williams, J. A., Murray, E. A., Hoffman, J. M., Holland, T. D., Saul, J. M., et al. (2002). Taphonomic context of sharp-force trauma in suspected cases of human mutilation and dismemberment. In W. D. Haglund \& M. H. Sorg (Eds.), Advances in forensic taphonomy (pp. 403-434). Boca Raton, FL: CRC Press.
Ubelaker, D. H. (1989). Human skeletal remains: Excavation, analysis, interpretation. Washington, DC: Taraxacum.
Wailes, B. (1990). Dún Ailinne: A summary excavation report. Emania, 7, 10-21.
Wailes, B. (2004). Irish royal sites. Ancient Europe 8000 B.C.-A.D. 1000. In P. Bogucki \& P. Crabtree (Eds.), Encyclopedia of the barbarian world (vol. 2, pp. 239-240). New York, NY: Scribner's.
West, S. E. (1985). West Stow: The Anglo-Saxon village. East Anglian archaeology. Ipswich: Suffolk County Planning Department. No. 24.
White, T. D. (2000). Human osteology (2nd ed.). San Diego, CA: Academic Press.
White, T. D. \& Folkens, P. A. (2005). Human bone manual. San Diego, CA: Elsevier Academic Press.
Zeder, M. A. \& Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 2887-2905.
Zeder, M. A. \& Pilaar, S. E. (2010). Assessing the reliability of criteria used to identify mandibles and mandibular teeth in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 225-242.

This page intentionally left blank

Index

3-4-year-old child
lower extremity bones 396
upper extremity bones 395

A

acromion process, human scapula $133,220,244,305,316,341$
adult chicken
see also chicken
femur 2, 82, 89
adult goat
see also goat
femur 81, 262-4
humerus 41, 255-7
innominate 269
metacarpals 270-1
metatarsals 270-1
radius 52, 61, 258-9, 261
scapula $221,267-8$
tibia 101, 265-6
ulna 52, 61, 260-1
adult human 1-9
see also human
calcaneus 143, 188, 206, 227, 252, 292
cranium $12,13,111-12$
femur 72, 73, 123-4, 153-5, 158, 178-80, 195, 21517, 238-9, 262-3, 283-4, 300-1, 408-9
fibula 130, 160, 198, 243, 304
humerus $32,33,115-16,147-$ 8, 173-4, 191, 209-10, 231-3, 255-7, 276-7, 295-6, 407-9
innominate 136, 164-5, 1845, 201, 222, 246, 269, 288, 306
metacarpals $1,141,204,225$, 248-51, 270-1
metatarsals 1, 142, 205, 225, 250-1, 270-1
radius 52, 53, 118-19, 149-52, 175-7, 192, 211-13, 234-7, 258-9, 278-82, 297-8
sacrum 138, 202, 223, 289, 307
scapula 132-3, 161-2, 183, 199, 220-1, 244, 267-8, 287, 305
skeletal elements positioned in anatomical order 8, 397
sternum 135, 163, 200, 245
talus $143,188,206,227,252$, 303
tarsals 143, 188, 206, 227, 252, 292
tibia 92, 93, 126-8, 156-9, 181-2, 196-7, 218-19, 240-2, 265-6, 285-6, 302-3
ulna 52, 53, 120-1, 149-50, 175, 192-4, 211, 214, 234-6, 260-1, 278-80, 299
vertebrae 139, 166-7, 203, 224 adult pig
see also pig
calcaneus 252
femur 72, 77, 238-9
humerus 32, 37, 231-3
innominate 246
metacarpals 248-51
radius 57, 234-7
scapula 244
tarsals 250-1
tibia 92, 100, 240-2
ulna 57, 234-6
alligator (Alligator mississippiensis)
$1,4,8$
Anas platyrhynchos see duck anatomical terminology and organization of the book 6-9
Anglo-Saxon sites
Brandon, England, Middle Anglo-Saxon (AD650850) settlement site 420, 421, 429
West Stow, England 5
anthropologists 5, 6 antlers
male deer 17, 207-8, 429, 430
reindeer 208
archaeological context 5-6, 233,
407, 418, 421, 424, 425, 426
astragali
see also tali
bear 206
cow 188
deer 209, 227
dog 301
goat 266, 425
pig 241, 252
sheep 292
atlas
see also vertebrae
bear 203
dog 308
human 203, 308, 331, 353
opossum 331
rabbit 353

B

baculum (penis bone), raccoon 318
bear $1-2,8,12,16,32,35,52,56$, $72,76,92,96,189-206$
astragalus 206
atlas 203
calcaneus 206
canines 190
cranium $12,16,189-90$
dental formula 190
femur 72, 76, 195
fibula 198
humerus 32, 35, 191
innominate 201
mandible 190
metacarpals 1, 204
metatarsals 1, 205
pelvis 201
radius 52, 56, 175-7
sacrum 202
scapula 199
sternum 200
talus 206
tarsals 206
tibia 92, 96, 196-7
ulna 52, 56, 192-4
vertebrae 203
beef see cow
bipedalism 7, 178, 201, 215
human pelves 201
muscles 178, 215
birds 1-2, 7
see also chicken; duck; turkey
bobcat, humerus 2-3, 399
bone combs $8,429,430$
bone working see butchery and
bone working
Bos indicus see cow
Bos taurus see cow
Brandon, England, Middle
Anglo-Saxon (AD650-850)
settlement site, butchery and
bone working 420, 421, 429
butchery and bone working 3-4,
6-7, 407-30
Brandon, England, Middle Anglo-Saxon (AD650850) settlement site 420, 421, 429
cleavers and heavy knives 420-3, 429
cuts of beef/pork/lamb/venison 407, 410-11, 412
dismemberment 410, 412, 413
Dún Ailinne (200BC-toAD100) site in Ireland 427
Fort Johns site in Sussex County, New Jersey 412, 417-18
goals of butchers 407, 410, 412, 421
historic contexts 3-6, 407-30
Icklingham, England, Roman (AD second-to-fourthcentury) site 421, 422-3
kerfs 409, 410
modern context 3-4, 410-20
New Jersey farms 412-20
New York City, Medical Examiner's Office 9, 408
New York City, Poor House 412, 413
prehistoric context 3-6, 407, 424-6
Salibiya I (11,000-year-old) site in the lower Jordan Valley, West Bank 428, 429
Shanidar Cave in prehistoric Iraq 424, 425
tools from bones 3-4, 407, 426-30
tools used 3-6, 407-30

C

calcanei
see also tarsals
bear 206
cow 188
deer 227
human 143, 188, 206, 227, 252, 292
pig 252
sheep 292
canines
bear 190
cat 333-4
$\operatorname{dog} 294$
horse 146
opossum 320-1
Canis familiaris see dog Capra aegagrus see goat
Capra hircus see goat carpometacarpals see also metacarpals
chicken 392
duck 379
turkey 365
castration 177, 178
cat $2-3,22,26,42,47,62,66,82$,
86, 102, 108, 311, 333-43,
399
canines 333-4
cranium 22, 26, 333-4
dental formula 334
femur 2, 82, 86, 338
fibula 340
humerus 42, 47, 311, 335, 399
ilium 342
innominate 342
mandible 333-4
pelvis 342
radius 62, 66, 336
scapula 341
tibia 102, 108, 339
ulna 62, 66, 337
vertebrae 343
caudal vertebrae, horse 167
Cervas elaphus see deer
cervical vertebrae
see also vertebrae
cow 412, 414
horse 166
human 139-40, 166, 224, 308
Chelydra serpentina see snapping turtle
chicken $1-2,7,22,29,42,50,62$, $69,82,89,102,105,381-92$
see also adult...; juvenile...
carpometacarpus 392
coracoid 389
cranium 22, 29, 381-2
femur 2, 82, 89, 386
fibula 388
furcula (wishbone) 389
humerus 42, 50, 383
innominate 391
metacarpals 392
metatarsals 392
pectoral girdle 389
pelvis 391
radius 62, 69, 384
scapula 389
spurs on the male tarsometatarsus 392
sternum 390
tarsometatarsus 392
tibiotarsus 102, 105, 387
ulna 62, 69, 385
China, Hougang Neolithic site near Anyang 5
circular fovea capitis, sheep femur 284
clavicular air sack, turkey humerus 356
cleavers and heavy knives, butchery and bone working 420-4, 429
coracoids
see also pectoral girdles
chicken 389
duck 375
human scapula 133
snapping turtle 405
turkey 362
cow $1,6-7,12,15,32,36,52,55$, $72,75,92,95,155,171-88$,
276, 303, 407-27
astragalus 188
butchery and bone working 407-27
calcaneus 188
cervical vertebrae 412,414
cranium $12,15,171-2$
cuts of beef 407, 410-12
dental formula 172
femur $72,75,155,178-80$, 407-8, 420, 424, 425
horse femur 155
humerus 32 , 36, 173-4, 408-9, 412, 417
ilium 412, 418
innominate 184-5, 412
mandible 172, 421
metatarsals 186-7, 421, 426, 427
milk farmers 6-7
patella 180
pelvis $184-5,418,422$
pubis 421, 423
radius 52, 55, 175-7, 422
scapula $183,412,413,418$
sheep 276
tarsals 188
thoracic vertebrae 408, 412, 417
tibia 92, 95, 181-2, 303, 412
ulna 52, 55, 175
vertebrae $412,414,417$
crania 1, 11-29, 111-14, 145-6,
171-2, 207-8, 229-30,
253-4, 273-5, 293-4, 309-10,
319-21, 333-4, 345-6, 367-8, 381-2
adult human 12, 13, 111-12
bear 12, 16, 189-90
cat $22,26,333-4$
chicken 22, 29, 381-2
cow 12, 15, 171-2
deer 12, 17, 207-8, 426, 429
$\operatorname{dog} 12,21,293-4$
duck 22, 28, 367-8
goat $12,19,253-4$
horse $12,14,145-6$
human 12, 13, 22, 23, 111-14
large species scale differences 12
larger animals scale differences 12
male deer 17
newborn human 22, 23, 113-14
opossum 22, 25, 319-21
pig 12, 18, 229-30
rabbit 22, 27, 345-6
raccoon 22, 24, 309-10
sheep 12, 20, 273-5
small species scale differences 22
crocodile (Crocodylus acutus) 1, 4, 8
cuts of beef/pork/lamb/venison in butchery $407,410-11,412$

D

deer $1-2,12,17,32,39,52,58,72$, 78, 92, 97, 207-27, 234, 303, 407, 411, 425, 426, 429
see also male...; white-tailed... antlers 9, 17, 207-8, 429-30
astragalus 219, 227
bone combs 8,429
butchery and bone working 407, 411
calcaneus 227
cranium 12, 17, 207-8, 429
cuts of venison 410, 411
dental formula 208
femur 72, 78, 215-17
fibula remnant 219, 227
humerus 32, 39, 209-10
innominate 222
metacarpals 225-6
metatarsals 225-6
radius 52 , 58, 211-13
reindeer 208
sacrum 223
scapula 220-1
tarsals 219, 227
tibia 92, 97, 218-19, 303
ulna 52, 58, 211, 214, 234
vertebrae 224
dental formula
bear 190
cat 334
cow 172
deer 208
dog 294
goat 254
horse 146
opossum 321
pig 230
rabbit 346
raccoon 310
sheep 254, 274-5
Didelphis marsupialis see opossum
directional terms 7
dismemberment see butchery
$\operatorname{dog} 2-3,6,12,21,32,38,52,59$,
72, 79, 92, 98, 293-308, 400
astragalus 303
atlas 308
canines 294
cranium 12, 21, 293-4
dental formula 294
femur 72, 79, 300-1, 400
fibula 304
humerus 32, 38, 295-6
innominate 306
mandible 293-4
pelvis 306-7
pubis 306
radius 52, 59, 297-8
sacrum 307
scapula 305
tibia 92, 98, 302-3
ulna 52, 59, 299
vertebrae 308
domestication of animals 5-6
'double-pulley' form of astragalus deer 227
pig 252
sheep 292
duck $1-2,22,28,42,45,62,67,82$, 90, 102, 106, 367-79
carpometacarpus 379
coracoid 375
cranium 22, 28, 367-8
femur 82, 90, 372
fibula 374
furcula (wishbone) 375
humerus 42, 45, 369
innominate 377
metacarpals 379
metatarsals 379
pectoral girdle 375
pelvis 377-8
radius 62, 67, 370
scapula 375
sternum 376
synsacrum 378
tarsometatarsus 379
tibiotarsus 102, 106, 373
ulnae 62, 67, 371
Dún Ailinne (200BC-to-AD100) site in Ireland, butchery and bone working 427

E

England, Middle Anglo-Saxon (AD650-850) settlement site of Brandon, butchery and bone working 420, 421, 429
England, Roman (AD second-to-fourth-century) site of Icklingham, butchery and bone working 421, 422-3
England, West Stow, Anglo-Saxon site 5
epipubic bone, opossum 330

Equus caballus see horse
exostosis 276
extinct animals 5

F

Felis catus see cat
femora 1, 2, 4, 8, 71-90, 123-5, 153-5, 158, 178-80, 195, 215-17, 238-9, 262-4, 283-4, 286, 300-1, 314, 326, 338, 349, 359, 372, 386, 396, 398, 400, 403, 407, 408-9, 412, 419, 424-5
3-4-year-old child 396
adult human $72,73,123-4$, 153-5, 158, 178-80, 195, 215-17, 238-9, 262, 264, 283-4, 300-1, 407, 408-9
alligator/crocodile 1, 4 bear $72,76,195$
cat $2,82,86,338$
chicken $2,82,89,386$
cow 72, 75, 155, 178-80, 407, 408, 420
deer 72, 78, 215-17
$\operatorname{dog} 72,79,300-1,400$
duck $82,90,372$
fox 2,400
goat $72,81,262-3,283,286$
horse $72,74,153-5,158$
human $2,72,73,82,83,123-$ 5, 153-5, 158, 178-80, 195, 215-17, 238-9, 262, 264, 283-4, 300-1, 314, 326, 338, 349, 359, 372, 386, 396, 398, 403, 407, 408-9
large species scale differences 72
newborn human $2,82,83,125$, 314, 326, 338, 349, 359, 372, 386, 396, 398, 403
opossum 82, 88, 326
pig 72, 77, 238-9, 412, 419
rabbit $82,87,349$
raccoon $82,84,314$
rat 2-3, 398
sheep 72, 80, 264, 283-4, 286
small species scale differences 82
snapping turtle 403
turkey 82, 85, 359
fibulae 102, 109, 130-1, 156, 160, 198, 219, 227, 243, 265, 266,
292, 304, 328, 340, 350, 361,
374, 388, 396, 404
3-4-year-old child 396
adult human 130, 160, 198, 243, 304
bear 198
cat 340
chicken 388
deer 219, 227
dog 304
duck 374
goat 265, 266
horse 156,160
human 130-1, 160, 198, 243, 304, 328, 340, 350, 361, 374, 388, 396, 404
newborn human 131, 328, 340, 350, 361, 374, 388, 396, 404
opossum 328
pig 243
rabbit 102, 109, 350
sheep 292
snapping turtle 404
turkey 361
Five Points site, Manhattan, butchery and bone working 412, 418
flint tools, prehistoric butchery 3-6, 425
forensic context 4-5, 6, 407, 410, 412
Fort Johns site in Sussex County,
New Jersey, butchery and bone
working 412, 417-18
fox, femur 2, 400
frontals
human 114
newborn human 114
furculae (wishbones)
see also pectoral girdles
chicken 389
duck 375
turkey 362

G

Gallus gallus see chicken
gazelle, metapodia 427, 428
glenoid cavities
see also scapulae
deer scapula 221
goat scapula 221, 268
horse scapula 162
human scapula 133, 162, 221
sheep scapula 221,268
goat $1,7,12,19,32,41,52,61,72$, 81, 92, 101, 221, 234, 253-71,
274, 281, 283, 287, 303, 425
see also adult...; juvenile...; sheep
astragalus 266, 424
cranium 12, 19, 253-4
dental formula 254
femur 72, 81, 262-4, 283, 286
fibula 265, 266
fibula remnant 266
humerus $32,41,255-7$
innominate 269
mandible 253-4, 274
metacarpals 270-1
metatarsals 270-1
pelvis 269
radius 52, 61, 258-9, 261, 281
scapula 221, 267-8, 287
tarsals 266, 271
tibia 92, 101, 265-6, 286, 303
ulna $52,61,234,260-1$

H

hand saws 410-12
Haversian system 426
hip bones see innominates
Homo sapiens see human
horned sheep 274
see also sheep
horse $1,8-9,12,14,32,34,52,54$, $72,74,92,94,145-70,303$
canines 146
caudal vertebrae 167
cervical vertebrae 166
cow femur 155
cranium $12,14,145-6$
dental formula 146
femur 72, 74, 153-5, 158
fibula 156, 160
humerus 32, 34, 147-8
innominate 164-5
metacarpals 9, 168-70
metatarsals 9, 168-70
radius 52, 54, 149-52
scapula 161-2
sternabrae 163
tibia 92, 94, 156-9, 303
ulna 52, 54, 149-52
vertebrae 166-7
Hougang Neolithic site near Anyang in China 5
human $1-9,12,13,22,23,32,33$, $42,43,52,53,62,63,72,73$,
82, 83, 92, 93, 102, 103, 111-
43, 147-66, 173-88, 191-206,
209-27, 231-52, 255-69,
276-92, 295-308, 311-18,
322-31, 335-43, 347-53,
356-63, 369-77, 383-91,
395-406, 407-10
see also adult...; large species scale differences; newborn...; small species scale differences
anatomical terminology 6-8
atlas 203, 308, 331, 353
burials 5-6
calcaneus 143, 188, 206, 227, 252, 292
cervical vertebrae 139-40, 166, 224, 308
cranium $12,13,22,23$, 111-14
directional terms 7-8
femur $2,72,73,82,83,123-5$, 153-5, 158, 178-80, 195, 215-17, 238-9, 262-4, 283-4, 300-1, 314, 326, 338, 349, 359, 372, 386, 396, 398, 403, 407-10
fibula 130-1, 160, 198, 243, 304, 328, 340, 350, 361, 374, 388, 396, 404
frontals 114
humerus 32, 33, 42, 43, 11517, 147-8, 173-4, 191, 209-10, 231-3, 255-7, 276-7, 295-6, 311, 322-

3, 335, 347, 356, 369, 383, 395, 401, 407-10
identification of body parts and animal species 4-6, 407-10
ilium 137, 201, 342
innominate 136-7, 164-5, 184-5, 201, 222, 246, 269, 288-9, 306, 317, 330, 342, 352-3, 363, 377, 391, 396, 406
ischium 137
lumbar vertebrae 139-40, 224, 308
mandible 114
maxilla 114
metacarpals $1,141,204,225-$ 6, 248-51, 270-1
metatarsals 1, 142, 205, 2256, 250-1, 270-1
patella 180
pelvis 136-8, 164-5, 184-5, 201, 222-3, 246, 269, 288-9, 306-7, 317, 330, 342, 352-3, 363, 377-8, 391, 396, 406
phalanges 167
pubis 137, 201, 306, 317
radius 52, 53, 62, 63, 118-20, 149-52, 175-7, 192, 211-13, 234-7, 258-9, 278-82, 297-8, 312, 324, 336, 348, 357, 370, 384, 395, 402
sacrum 138, 202, 223, 289, 307
scapula 132-4, 161-2, 183, 199, 220-1, 244, 267-8, $287,305,316,329,341$, 351, 375, 389, 395, 405
skeletal elements positioned in anatomical order 8, 394, 397
specimen-sources included in the book 8-9
sternum 135, 163, 200, 245
talus 143, 188, 206, 227, 252, 292, 303
tarsals 143, 188, 206, 227, 252, 292
thoracic vertebrae 139-40, 224, 308
tibia 92, 93, 102, 103, 126-9, 156-9, 181-2, 196-7, 218-19, 240-2, 265-6, 285-6, 302-3, 315, 327, 339, 350, 360, 373, 387, 396, 404
ulna 52, 53, 62, 63, 122, 14950, 175, 192-4, 211, 214, 234-6, 260-1, 278-80, 299, 313, 325, 337, 348, 358, 371, 385, 395, 402
vertebrae 139-40, 166-7, 203, 224, 318, 331, 343, 353
humeri 1, 31-50, 115-17, 147-8,
173-4, 191, 209-10, 231-3,
236, 255-7, 276-7, 295-6,
311, 322-3, 335, 347, 356,
369, 383, 395, 399, 401, 407-
10, 412, 417
3-4-year-old child 395
adult human 32, 33, 115-16, 147-8, 173-4, 191, 20910, 231-3, 255-7, 276-7, 295-6, 407-10
bear 32, 35, 191
bobcat 2-3, 399
cat 42, 47, 311, 335, 399
chicken $42,50,383$
cow 32, 36, 173-4, 407-10, 412, 417
deer 32, 39, 209-10
$\operatorname{dog} 32,38,295-6$
duck 42, 45, 369
goat $32,41,255-7$
horse $32,34,147-8$
human 32, 33, 42, 43, 115-17, 147-8, 173-4, 191, 20910, 231-3, 255-7, 276-7, 295-6, 311, 322-3, 335, 347, 356, 369, 383, 395, 401, 407-10
large species scale differences 32
newborn human 42, 43, 117, 311, 322-3, 335, 347, 356, 369, 383, 395, 401
opossum 42, 48, 322-3
pig 32, 37, 231-3, 236
rabbit 42, 49, 347
raccoon 42, 46, 311
sheep 32, 40, 276-7
small species scale differences 42
snapping turtle 401
turkey 42, 44, 356

I

Icelandic medieval antler comb 9, 429, 430
Icklingham, England, Roman (AD
second-to-fourth-century) site, butchery and bone working 421, 422-3
ilia 137, 201, 288, 342
see also innominates
cow 412, 417
human 137, 201, 342
newborn human 137, 342
innominates 136-7, 164-5, 184-5,
201, 222, 246, 269, 288-9,
306, 317, 330-1, 342, 352-3,
363, 377, 391, 396, 406, 411-
12, 418, 420, 423, 424
see also ilia; ischia; pelves; pubis
3-4-year-old child 396
adult human 136, 164-5, 184-5, 201, 222, 246, 269, 288-9, 306
bear 201
cat 342
chicken 391
cow 184-5, 412, 417, 423, 424
deer 222
dog 306
duck 377
goat 269
horse 164-5
human 136-7, 164-5, 184-5, 201, 222, 246, 269, 2889, 306, 317, 330-1, 342, 352-3, 363, 377, 391, 396, 406
newborn human 137, 317, 330-1, 342, 352-3, 363, 377, 391, 396, 406
opossum 330-1
pig 246-50
rabbit 352-3
raccoon 317
sheep 288-9
turkey 363
Iraq, Shanidar Cave in prehistoric
Iraq, butchery and bone working 425-6
Ireland, Dún Ailinne Iron Age
(200BC-to-AD100) site, butchery and bone working 426-7
ischia
see also innominates
human 137
newborn human 137

J

juvenile chicken
see also chicken
femur 89
juvenile cow 6-8
see also cow
juvenile goat 8
see also goat
dental formula 254
femur 72, 81, 262
humerus 32, 41, 255
innominate 269
radius 61
scapula 267-8
tibia 92, 101, 265
ulna 61
juvenile pig 7
see also pig
calcaneus 252
femur 77, 238-9, 420, 421
fibula 243
humerus 37, 231, 233
innominate 246
radius 57, 234
scapula 244
tibia 100, 240, 418, 419
ulna 57, 234
juvenile sheep 7
see also sheep

K

keratin 274
kerfs 409-10
see also sawing
'kneeing in', human femur 123, 195, 300

L

lamb see sheep
large species scale differences 6-9, $12,32,52,72,92$
see also bear; cow; deer; dog; goat; horse; human; pig; sheep
crania 12
femora 72
humeri 32
radii 52
tibiae 92
ulnae 52
lumbar vertebrae 139-40, 224, 308, 378
see also vertebrae
human 139-40, 224, 308
Lynx rufus see bobcat

M

machine saws $407,409,412,415$
male deer see also deer cranium 17, 207-8
malleolus, tibia 128, 266, 286
mandibles
bear 190
cat 333-4
cow 172, 421
dog 293-4
goat 253-4, 274
human 114
newborn human 114
opossum 321
sheep 254, 274-5
Manhattan, Five Points site, butchery 412, 418
marrow, butchery 420-1
marsupials, epipubic bones 330
Martin's Hundred site in Virginia 424
maxillae
human 114
newborn human 114
Meleagris gallopavo see turkey metacarpals 1, 141, 168-70, 186-7, 204, 225-6, 248-51, 270-1,

290-1, 365, 379, 392, 421, 426-30
see also carpometacarpals
adult human 1, 141, 204, 2256, 248-51, 270-1
bear 1, 204
chicken 392
deer 225-6
duck 379
goat 270-1
horse 9, 168-70
human 1, 141, 204, 225-6, 248-51, 270-1
pig 248-51
sheep 290-1
tools from bones 426-30
turkey 365
metapodials
gazelle 427-30
pig 248-51
metatarsals 1, 142, 168-70, 186-7, 205, 225-6, 250-1, 270-1, 290-1, 379, 392, 420, 421, 426-30
see also tarsometatarsals
adult human $1,142,205$, 225-6, 250-1, 270-1
bear 1, 205
chicken 392
cow 186-7, 412, 419, 420, 427, 428
deer 225-6
duck 379
goat 270-1
horse $8,168-70$
human 1, 142, 205, 225-6, 251-2, 270-1
pig 250-1
sheep 290-1
tools from bones 426-30
Middle Anglo-Saxon (AD650-850)
settlement site of Brandon,
England, butchery and bone
working 420, 421-3, 429
miscellaneous animals $2-3$,
393-406
see also bobcat; fox; rat; small species...; snapping turtle modern butchery 3-4, 407-30 muscles, bipedalism 178, 215
mutton see sheep

N

Neanderthals, butchery and bone working 425-6
Neolithic site of Hougang near Anyang in China 5
New Jersey farms, butchery 412-20
New Jersey, Fort Johns site in Sussex County, butchery 412, 420-4
New York City
Medical Examiner's Office 9, 408
Poor House, butchery 412, 413
newborn human 1-9
see also human
cranium 22, 23, 113-14
femur 2, 82, 83, 125, 314, 326, 338, 349, 359, 372, 386, 396, 398, 403
fibula 131, 328, 340, 350, 361, 374, 388, 396, 404
frontals 114
humerus 42, 43, 117, 311, 322-3, 335, 347, 356, 369, 383, 395, 401
ilium 137, 342
innominate $137,317,330-1$, 342, 352-3, 363, 377, 391, 396, 406
ischium 137
mandible 114
maxilla 114
pubis 137, 317
radius $62,63,120,312,324$, 336, 348, 357, 370, 384, 395, 402
scapula $134,316,329,341$, 351, 375, 389, 395, 405
skeletal elements positioned in anatomical order 394
tibia 102, 103, 129, 315, 327, 339, 350, 360, 373, 387, 396, 404
ulna $62,63,122,313,325$, 337, 348, 358, 371, 385, 395, 402
vertebrae 140, 318, 331, 343 , 353
non-human primates 6

0

Odocoileus virginianus see deer olecranon process 149-50, 173, $174,175,193,210,214,233$, 235, 279-80, 295, 325
opossum 1-2, 22, 25, 42, 48, 62,
$68,82,88,102,110,319-31$
atlas 331
canines 320-1
cranium 22, 25, 319-21
dental formula 321
epipubic bone 330-1
femur $82,88,326$
fibula 328
humerus 42, 48, 322-3
innominate 330-1
mandible 321
pelvis 330-1
pubis 330-1
radius $62,68,324$
scapula 329
tibia 102, 110, 327
ulna 62, 68, 325
vertebrae 331
Oryctolagus cunniculus see rabbit
osteological analyses 1-9
overview of the book 1-9
Ovis aries see sheep

P

patellae
cow 180
human 180
pectoral girdles
see also coracoids; furculae...; scapulae
chicken 389
duck 375
turkey 362
pelves
see also innominates; sacra
3-4-year-old child 396
bear 201
cat 342
chicken 391
cow 184-5, 412, 413, 422, 423
dog 306-7
duck 377-8
goat 269
human 136-8, 164-5, 184-5, 201, 222-3, 246, 269, 288, 306-7, 317, 330-1, 342, 352-3, 363, 377-8, 391, 396, 406
opossum 330-1
pig 246
rabbit 352-3
raccoon 317
sheep 288
snapping turtle 406 turkey 363
penis bone see baculum
'penning elbow', sheep 60, 276, 277-8
phalanges, human 167
photographic credits 6-9
pig $1,8,12,18,32,37,52,57$,
72, 77, 92, 100, 229-52, 407,
410-12, 415-16, 418, 419
see also adult...; juvenile...
astragalus 242, 252
butchery and bone working 407, 410-12, 415-16, 418, 419
calcaneus 252
cranium $12,18,229-30$
cuts of pork 407, 410-12
dental formula 230
femur 72, 77, 238-9, 413, 419
fibula 243
humerus 32, 37, 231-3, 236
innominate 246
metacarpals 248-51
metapodia 248-51
metatarsals 250-1
pelvis 246
radius 52, 56, 57, 234-7, 412, 416
scapula 244
spiral-cut ham 419
sternum 245
talus 252
tarsals 252
tibia 92, 100, 240-2, 415-16, 418, 419
ulna 52, 57, 234-6, 412, 416
vertebrae 247
polled sheep 275
see also sheep
Poor House, New York City, butchery 410, 412, 413
pork see pig
power saws $407,409,412,415$
prehistoric context, butchery and
bone working 3-6, 407, 422-8
Procyon lotor see raccoon pubis
see also innominates
cow 422, 423
$\operatorname{dog} 306$
human 137, 201, 306, 317
newborn human 137, 317
opossum 330-1
raccoon 317

R

rabbit $1-2,22,27,42,49,62,70$,
82, 87, 102, 109, 345-53
atlas 353
cranium 22, 27, 345-6
dental formula 346
femur 82, 87, 349
fibula 102, 109, 350
humerus 42, 49, 347
innominate 352-3
Oryctolagus ulna and radius 2, 70, 348
pelvis 352-3
radius $62,70,348$
sacrum 353
scapula 351
Sylvilagus ulna and radius 2, 70, 348
tibia 102, 109, 350
ulna 62, 70, 348
vertebrae 353
raccoon $1-2,7-9,22,24,42,46$, $62,65,82,84,102,107$, 309-18
baculum (penis bone) 318
cranium $22,24,309-10$
dental formula 310
femur 82, 84, 314
humerus 42, 46, 311
innominate 317
pelvis 317
pubis 317
radius 62, 65, 312
scapula 316
tibia 102, 107, 315
ulna $62,65,313$
vertebrae 318
radii $1,7,51-70,118-20,149-52$,
175-7, 192, 211-13, 234-7,
258-9, 261, 278-82, 297-8,
312, 324, 336, 348, 357, 370,
384, 395, 402, 416, 419, 422
3-4-year-old child 395
adult human 52, 53, 118-19, 149-52, 175-7, 192, 211-13, 234-7, 258-9, 278-82, 297-8
bear 52, 56, 192
cat 62, 66, 336
chicken 62, 69, 384
cow 52, 55, 175-7, 419, 422
deer 52, 58, 211-13
$\operatorname{dog} 52,59,297-8$
duck 62, 67, 370
goat 52, 61, 258-9, 261, 281
horse 52, 54, 149-52
human 52, 53, 62, 63, 118-20, 149-52, 175-7, 192, 211-13, 234-7, 258-9, 278-82, 297-8, 312, 324, 336, 348, 357, 370, 384, 395, 402
large species scale differences 52
newborn human 62, 63, 120, 312, 324, 336, 348, 357, 370, 384, 395, 402
opossum 62, 68, 324
pig 52, 56, 57, 234-7, 412, 416
rabbit 62, 70, 348
raccoon 62, 65, 312
sheep 52, 60, 278-82
small species scale differences 62
snapping turtle 402
turkey 62, 64, 357
rat (Rattus norvegicus), femur 2-3, 398
references 431-3
reindeer, antlers 208
reptiles 3
see also snapping turtle
Roman (AD second-to-fourthcentury) site of Icklingham, England, butchery and bone working 419, 421-3

S

sacra 138, 202, 223, 289, 307, 353, 378
adult human 138, 202, 223, 289, 307
bear 202
deer 223
dog 307
human 138, 202, 223, 289, 307
rabbit 353
sheep 289
Salibiya I (11,000-year-old) site in the lower Jordan Valley,
West Bank, butchery and bone working 427-8
sawing
butchery and bone working 4, 407-30
prehistoric butchery 4, 426-30
scapulae 132-4, 161-2, 183, 199, 220-1, 244, 267-8, 287, 305, 316, 329, 341, 351, 362, 375, 389, 395, 405, 410, 412, 413, 418
see also glenoid cavities; pectoral girdles
3-4-year-old child 395
adult human 132-3, 161-2, 183, 199, 220-1, 244, 267-8, 287, 305
bear 199
cat 341
chicken 389
cow 183, 410, 412, 413, 418
deer 220-1
dog 305
duck 375
goat 221, 267-8, 287
horse 161-2
human 132-4, 161-2, 183, 199, 220-1, 244, 267-8, 287, 305, 316, 329, 341, 351, 362, 375, 389, 395, 405
newborn human 134, 316, 329, 341, 351, 362, 375, 389, 395, 405
opossum 329
pig 244
rabbit 351
raccoon 316
sheep 221, 268, 287
snapping turtle 405
turkey 362
Shanidar Cave in prehistoric Iraq, butchery and bone working 423-4
sheep $1,7,9,12,20,32,40,52,60$,
72, 80, 92, 99, 221, 234, 254,
264, 268, 273-92, 303, 407,
410-12
see also goat
astragalus 292
butchery and bone working

$$
407,410-12
$$

calcaneus 292
cow 276
cranium 12, 20, 273-5
cuts of lamb 407, 410-12
dental formula $254,274-5$
femur 72, 80, 264, 283-4, 286
fibula 292
horn 274
humerus 32, 40, 276-7
ilium 288
innominate 288
mandible 254, 274-5
metacarpals 290-1
metatarsals 290-1
pelvis 288
'penning elbow' $60,276,277-8$
radius 52, 60, 278-82
sacrum 289
scapula 221, 268, 287
tarsals 292
tibia 92, 99, 285-6, 303
ulna 52, 60, 234, 278-80
shoulder girdle, snapping turtle 405
skeletal adult human elements
positioned in anatomical order 8, 397
skeletal newborn human elements positioned in anatomical order 394
small species scale differences 6-9,
$22,42,62,82,102$
see also cat; chicken; duck; miscellaneous animals; newborn human;
opossum; rabbit; raccoon; turkey
crania 22
femora 82
humeri 42
radii 62
tibiae 102
ulnae 62
snapping turtle 2-3, 401-6
coracoid 405
femur 403
fibula 404
humerus 401
pelvic girdle 406
radius 402
scapula 405
shoulder girdle 405
tibia 404
ulna 402
soup bones, butchery 412
specimen-sources included in the book, background information 8-9
spiral-cut ham 419
spurs on the male chicken tarsometatarsus 392
sternums 135, 163, 200, 245, 376, 390
adult human 135, 163, 200, 245
bear 200
chicken 390
duck 376
horse sternabrae 163
human 135, 163, 200, 245
pig 245
stone tools, prehistoric butchery and bone working 3-6, 422-8
styloid process, human ulna 121
supercondular fossa $178,263,283$, 399
supratrochlear foramen 347
Sus scrofa see pig
Sylvilagus carolinensis see rabbit synsacra
duck 378
turkey 364

T

tali
see also astragali; tarsals
human 143, 188, 206, 227, 252, 292, 303
tarsals 143, 188, 206, 219, 227,
252, 266, 271, 292, 379, 392
see also calcanei; tali; tarsometatarsals
adult human 143, 188, 206, 227, 252, 292
bear 206
cow 188
deer 219, 227
goat 266,271
human 143, 188, 206, 227, 252, 292
pig 252
sheep 292
tarsometatarsals
see also metatarsals; tarsals
chicken 392
duck 379
terminology and organization of the book 6-9
thoracic vertebrae
see also vertebrae
cow 412, 417, 418
human 139-40, 224, 308
tibiae 1, 7, 91-110, 126-9, 156-9, 181-2, 196-7, 218-19, 240-2, 265-6, 285-6, 302-3, 315, 327, 339, 350, 360, 373, 387, 396, 404, 412, 415-16, 41819, 426-7
3-4-year-old child 396
adult human 92, 93, 126-8, 156-9, 181-2, 196-7, 218-19, 240-2, 265-6, 285-6, 302-3
bear 92, 96, 196-7
cat $102,108,339$
chicken tibiotarsus 102, 105, 387
cow 92, 95, 181-2, 303, 412
deer 92, 97, 218-19, 303
$\operatorname{dog} 92,98,302-3$
duck tibiotarsus 102, 106, 373
goat 92, 101, 265-6, 286, 303
horse 92, 94, 156-9, 303
human 92, 93, 102, 103, 1269, 156-9, 181-2, 196-7, 218-19, 240-2, 265-6, 285-6, 302-3, 315, 327, 339, 350, 360, 373, 387, 396, 404
large species scale differences 92
newborn human 102, 103, 129, 315, 327, 339, 350, 360, 373, 387, 396, 404
opossum 102, 110, 327
pig 92, 100, 240-2, 415-16, 418, 419
rabbit 102, 109, 350
raccoon 102, 107, 315
sheep 92, 99, 285-6, 303
small species scale differences 102
snapping turtle 404
tools from bones 426-7
turkey 102, 104, 360
tibiotarsals
chicken 102, 105, 387
duck 102, 106, 373
turkey 360
tools
butchery and bone working 3-6, 407-30
from bones 3-4, 407, 426-30 tubercles 119,147 , $173-4,191,210$,
$218,232,246,255$,
$276-7,296$
turkey $1-2,8-9,42,44,62,64,82$,
85, 102, 104, 355-65
carpometacarpus 365
clavicular air sack 356
coracoid 362
femur 82, 85, 359
fibula 361
furcula (wishbone) 362
humerus 42, 44, 356
innominate 363
metacarpals 365
pectoral girdle 362
pelvis 363
radius 62, 64, 357
scapula 362
synsacrum 364
tibia 102, 104, 360
tibiotarsus 360
ulna 62, 64, 358
turtle 401-6
see also snapping...

\mathbf{U}

ulnae $1,7,51-70,122,149-52$,
175, 192-4, 211, 214, 234-6,
260-1, 278-80, 299, 313, 325,
337, 348, 358, 371, 385, 395,
402, 412, 416
3-4-year-old child 395
adult human 52, 53, 121, 149-
$50,175,192-4,211,214$,
234-6, 260, 278-80, 299
bear 52, 56, 192-4
cat $62,66,337$
chicken $62,69,385$
cow 52, 55, 175
deer 52, 58, 211, 214, 234
$\operatorname{dog} 52,59,299$
duck 62, 67, 371
goat 52, 61, 234, 260-1
horse 52, 54, 149-52
human $52,53,62,63,122$, 149-50, 175, 192-4, 211, 214, 234-6, 260, 278-80, 299, 313, 325, 337, 348, 358, 371, 385, 395, 402
large species scale differences 52
newborn human 62, 63, 122, 313, 325, 337, 348, 358, 371, 385, 395, 402
opossum 62, 68, 325
pig 52, 57, 234-6, 412, 416
rabbit 62, 70, 348
raccoon $62,65,313$
sheep 52, 60, 234, 278-80
small species scale differences 62
snapping turtle 402
turkey 62, 64, 358
Ursus americanus see bear

V

valgus knee, human femur 123, 195, 300
venison see deer
vertebrae 139-40, 166-7, 203, 224, $247,308,318,331,343,353$,
378, 407-8, 412, 414, 417-18
see also atlas; caudal...;
cervical...; lumbar...; thoracic...
adult human 139, 166-7, 203, 224, 247, 308
bear 203
cat 343
cow $412,414,417,418$
deer 224
dog 308
horse 166-7
human 139-40, 166-7, 203,
224, 247, 308, 318, 331, 343, 353
newborn human 140, 318, 331, 353
opossum 331
pig 247
rabbit 353
raccoon 318
vertebral/neural arches, newborn human vertebrae 140
Virginia, Martin's Hundred site 422, 423
Vulpes vulpes see fox

W

West Bank, Salibiya I (11,000-yearold) site in the lower Jordan Valley, butchery and bone working 427-8
white-tailed deer $1-2,12,32,39$, 52, 58, 72, 78, 208, 209-10, 211-13, 215-17, 224, 225-6, 227, 426-7
see also deer
cranium 12, 208
femur 72, 78, 215-17
humerus $32,39,209-10$
metacarpals 225-6
metatarsals 225-6
radius $52,58,211-13$
talus 227
vertebrae 224

\mathbf{Z}

zooarchaeologists 5-6
see also archaeological context

