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FOREWORD

Over recent decades epidemiologic thinking and methods have become central to
efforts to improve animal health and protect the human population from exposure to
animal pathogens.

The range of techniques used has grown enormously, and the level of understanding
of the merits and limitations of the various investigational methods has increased as
experience has been gained with their application. There has, however, been no single
source to which one could turn for an authoritative guide to the major methods of
epidemiological research, their application, and the issues which should be taken into
account in using them.

With the publication of this book, that important gap in the literature has been amply
filled. This is a comprehensive text for the discipline of veterinary epidemiology,
written by authors who have the standing to provide wise and insightful guidance
on epidemiological research methods for the novice and expert alike. They have
provided both a guide to the selection and application of the various investigational and
analytical techniques, and practical examples which will allow the reader to test new-
found knowledge by working through the example datasets to apply the procedures to
genuine case studies.

I am unaware of any other book in either veterinary or medical epidemiology which
provides such a solid reference source, backed up by the understanding and wide
experience of the authors. This book will become an essential reference for any
epidemiologist, regardless of whether they work with human health or animal health, to
be read for education and then checked on later occasions to make sure that a concept
is right, a method has been correctly interpreted, or a limitation of a technique has been
properly considered.

The chapters cover the fundamental principles of epidemiological research, the methods
by which studies can be undertaken, and the procedures for analyzing and interpreting
the data once it is gathered. The illustrative examples are real-world ones, which will
be relevant to the problems being investigated by readers of the book, and the link from
text examples to the teaching exercises will help users to move quickly from reading to
doing, first with the example datasets and then with their own data.

I compliment the authors on assembling such a powerful tool, which will help users
throughout the world to approach epidemiological investigations with enhanced
confidence that they are undertaking each part of the investigation in the best possible

way.
Professor Roger Morris MVSc, PhD, FAmerCE, FACVSc, FRSNZ, CNZM
Director, Massey University EpiCentre, Palmerston North, New Zealand



PREFACE

Over the past few decades, veterinary epidemiologic research has expanded both
in depth and breadth of topics. As educators, in order to help new epidemiologic
researchers gain the essential knowledge in the discipline, we have found a great need
for a graduate-level text on the principles and methods of veterinary epidemiologic
research. There are a number of excellent general veterinary epidemiology texts (eg
Thrushfield, 1995; Martin et al, 1987; Smith, 1995; Noordhuizen et al, 1997) however,
in our view, the material in these texts is insufficient for students learning how to
conduct epidemiologic research or as a general reference for current epidemiologic
investigators.

The primary motivation for this book came from the fact that over the years we, as
teachers of graduate-level courses in epidemiologic research methods, have found it
necessary to supplement available textbook material with extensive course notes in a
variety of areas. For many of the study design features and analytic methods that we
include in graduate courses, it has been our perspective that there are no textbooks that
covered the material in a sufficiently comprehensive, yet accessible manner. Specialty
textbooks on specific design or analytic methods are available, but are too detailed
for students learning the subject material. Even with directed reading of selected
journal papers and text material, most students needed a more concise reference for
the variety of ‘tools’ they want in their ‘tool-kit’. Although these diverse sources were
comprehensive, they did not present the material in a unified framework that would be
helpful both for students and researchers already in the discipline.

This text focuses on both design and analytic issues. Concerning issues of study
design, we have found that existing textbooks fell into two general groups. There are
a number of excellent texts, in addition to the veterinary texts mentioned above, that
present the material at a level intended for use by students and health practitioners who
are consumers of epidemiologic research results, but not at a level suitable for those
actively involved in the design and conduct of comprehensive studies (eg Fletcher et al,
1996; Sackett et al, 1991; Hulley et al, 2001). On the other hand, there are a few ‘high-
end’ reference texts that deal with the theoretical and applied bases of epidemiologic
research (Breslow and Day, 1980, 1987; Kleinbaum et al, 1982, Rothman and
Greenland, 1998). On the personal front, whereas we use these texts extensively, our
experience is that graduate students find these texts very challenging to digest as they
are learning the discipline. It is our hope that we have covered the major study design
issues in Chapters 2 through 13 and have done so in a way that is comprehensible to
students learning the discipline but sufficiently complete to serve as a useful reference
for experienced investigators.

With respect to helping students learn the multivariable statistical methods used in
epidemiology we found that, once again, the literature fell into two classes. A number
of general statistics texts provide good introductory information about the more
commonly used epidemiologic methods, but do not present the material with a view
to their use in epidemiologic research. On the other hand, more specialised texts cover
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the statistical material in great detail, but often at a level of complexity that is beyond
that which can be used by many investigators that come to the discipline from a health
profession background. It is our hope that in Chapters 14 through 24, we have covered
the important analytical methods in a manner that is comprehensible to first-time
graduate students in epidemiology and to seasoned epidemiologic investigators.

A final motivation for the preparation of this book was that the vast majority of graduate-
level reference material has been written for students in human epidemiology and we
felt there was a need for the material to be presented in a veterinary context. Although
important, this was only a minor motivating factor as the principles of epidemiologic
research are identical, regardless of whether our subjects have two legs or four (or none,
since we use a number of fish health examples in this text). In fact, it is our sincere hope
that students working in human epidemiology, public health research and other related
disciplines will also find this text useful, even though some of the diseases discussed in
the examples may not be familiar to them.

This book has grown as we have written it. While we have attempted to make it
comprehensive, we realise that there are many specific topics within the realm of
veterinary epidemiologic research that we have not covered (eg analysis of spatial data,
risk analysis methodology). While important in many research projects, we felt this
material fell outside what we considered to be the ‘core’ material required by veterinary
epidemiologists, and was therefore left out to keep the book at a manageable size.

Throughout the book, but particularly in Chapters 14 through 24, we have made extensive
use of examples. All of the datasets used in these examples are described in the text
(Chapter 27) and are available through the book’s website (http://www.upei.ca/ver).
Virtually all of the examples have been worked out using the statistical program Stata™
— a program which provides a unique combination of statistical and epidemiological
tools and which we use extensively in our teaching. A listing of the program files (called
-do- files by Stata) used in all of the examples is provided in Chapter 28 and these are
also provided on the website.

As noted above, the website is an important component of this text. Through it we
provide datasets, program files, solutions to sample problems and news items relevant
to the book. It is our hope that this will be a dynamic website to which we will add
additional material (eg more problems and solution sets). In fact, we would encourage
other investigators who have useful examples of sample problems to share them with
us and we will post them in the relevant section of the website (with appropriate
recognition of the contributor).

We hope that you find it useful in your studies and your research.
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INTRODUCTION AND CAUSAL CONCEPTS

OBJECTIVES

After reading this chapter, you should be able to:

1.

Explain the history of causal thinking about disease from an epidemiological
perspective.

Explain how observational studies and field experiments seek to estimate causal
effect coefficients and how these relate to counterfactual approaches.

Explain the basis of component-cause models and how this concept helps to explain
measures of disease association and the proportion of disease explained by a causal
factor.

Explain the basis of causal-web models of causation.

Construct a logical causal diagram based on your area of research interest as an aid
to guiding your study design and analyses.

Apply . a set of causal criteria to your own research and as an aid to interpreting
published literature.



2 INTRODUCTION AND CAUSAL CONCEPTS

1.1 INTRODUCTION

Epidemiology is largely concerned with disease prevention and therefore, with the
“succession of events which result in the exposure of specific types of individual to
specific types of environment” (ie exposures) (MacMahon and Pugh, 1970). Thus,
epidemiologists strive to identify these exposures and evaluate their associations with
various outcomes of interest (eg health, welfare, productivity) so as to improve the lives
of animals and their keepers. Hence, this book is about associations: associations which
are likely to be causal in nature and which, once identified, we can take advantage of
to improve the health, welfare and productivity of animals and the quality and safety of
foods derived from them.

Associations between exposures and outcomes exist as part of a complex web of
relationships involving animals and all aspects of their environment. Thus, in striving
to meet our objectives, we (epidemiologists) are constantly struggling to improve our
study designs and data analyses so that they best describe this complex web. It is only
by studying these associations under field conditions (ie in the ‘real world’) that we can
begin to understand this web of relationships. In this regard, Meek (1993), speaking on
the topic of epidemiologic research, stated:
It is essential that all groups periodically review their mandate, achievements
and direction in light of the changing needs of society . . . greater use of the
naturalistic paradigm in epidemiologic research is warranted, as the scientific
paradigm, while serving the ‘hard’ sciences well may have shortcomings
when it comes to understanding multifactorial issues.

As a starting place, we believe it is useful to review briefly the history of the concept(s)
of multiple interrelated causes (exposures). This will provide a sense of how we have
arrived at our current concepts of disease causation and where we might need to go
in the future. Because we want to identify associations which are likely to be causal,
it is appropriate to review the relevant areas of the philosophy of scientific inference
that relate to causal inference. Following these brief reviews, we will proceed with
overviews of the key components of veterinary epidemiologic studies and discuss
some current concepts of disease causation. Our objective is to provide a foundation on
which a deeper understanding of epidemiologic principles and methods can be built.

1.2 A BRIEF HISTORY OF MULTIPLE CAUSATION CONCEPTS

As noted, epidemiology is based on the idea that ‘causes’ (exposures) and ‘outcomes’
(health events) are part of a complex web of relationships. Consequently, epidemiologists
base their research on the idea that there are multiple causes for almost every outcome
and that a single cause can have multiple effects. This perspective is not universally
shared by all animal-health researchers. In this current era, when great advances are
being made in understanding the genetic components of some illnesses, a significant
proportion of medical and veterinary research is focused on the characteristics of only
direct causal agents and how they interact with the genetic makeup of the host of
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interest. As Diez-Roux (1998b) points out, while it is true that genetic abnormalities
are important precursors of many diseases, in terms of maintaining health, the real
questions relate to the extent that our current environmental exposures and lifestyles
(we could read this as animal management) lead to genetic defects as well as the extent
to which these exposures and lifestyles allow specific genetic patterns to complete
a sufficient cause of disease. (The concept of ‘components of sufficient cause’ is
discussed in section 1.7.)

From a historical perspective, it is evident that the acceptance of the concept(s) of
multiple interacting causes has ebbed and flowed, depending on the dominant causal
paradigm of the era. However, the roots of this concept can be traced back at least to
400 B.C. when the Greek physician Hippocrates wrote On Airs, Waters and Places.
He stated the environmental features that should be noted in order to understand the
health of populations (Buck et al, 1988). Based on this aspect of his writing, it is
clear that Hippocrates had a strong multicausal concept about exposure factors in the
environment being important ‘causes’ of disease occurrence. He carried on to discuss
the importance of the inhabitant’s lifestyle as a key determinant of health status, further
expanding the ‘web of causation.” Nonetheless, the concepts linking the state of the
environment and lifestyle to the occurrence of disease seem to have been short-lived as,
between 5 and 1750 A.D., humoral imbalances (events within the individual) became
the major paradigm of disease causation (Schwabe, 1982).

However, from 1750 to 1885, the multifactorial nature of disease causation returned
when man-created environmental filth became accepted as a central cause of disease,
and the prevalent causal paradigm was that disease was due to the effects of miasmas
(ie bad air). It was during the mid 1800s that John Snow conducted his studies on
contaminated water as the cause of cholera (Frerichs, 2003). Using a combination of
astute observations about the lack of spread of the disease among health workers, the
geographical distribution of cholera, a series of observational studies, including natural
as well as contrived (removal of the Broad Street pump handle) experiments, Snow
reached the correct conclusion about the transmission of cholera (ie that it was spread
by water contaminated by sewage effluent). It is noteworthy that he arrived at this
conclusion almost 30 years before the organism (Vibrio cholera) was discovered, thus
demonstrating an important principle: disease can be prevented without knowing the
proximal causal agent.

A few years later (ie in the 1880s-1890s), Daniel Salmon and Frederick Kilborne
determined that an insect vector (a tick: Boophilus annulatus) was associated with a
cattle disease called ‘Texas Fever’ even though the direct causal agent of the disease
(a parasite: Babesia bigemina) was not discovered until many years later (Schwabe,
1984). Their first associations were based on the similar geographical distributions
between the disease and the extent of the tick’s natural range; theirs was the first
demonstration of the spread mechanism of the causal agent of a vector being required
for the development and transmission of a parasite. Their work provided the basis
for disease control, again before knowing the actual agent of the disease. Thus, in
this period (mid-to-late 1800s), the study of the causes of specific disease problems
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focused on multiple factors in the environment, albeit somewhat more specifically than
Hippocrates had discussed earlier.

The multifactorial causal concept became submerged during the late 1800s to the
mid 1900s, when the search for specific etiological agents (usually microbiological)
dominated medical research. This ‘golden era’ of microbiology lead to a number of
successes including mass-testing, immunisation, specific treatment, as well as vector
control (eg the mosquito vector of malaria was now known) as methods of disease
control. Indeed, control of many specific infectious diseases meant that by the mid
1900s, chronic, non-infectious diseases were becoming relatively more important as
causes of morbidity and mortality in humans in developed countries. It was recognised
early on that single agents were not likely responsible for these chronic diseases and
large-scale, population-based studies examining the potential multiple causes of these
diseases were initiated. For example, the Framingham Heart Study pioneered long-
term surveillance and study of causes of human health beginning in 1949. Similarly,
large-scale, population-based studies of animal health were also undertaken. In 1957,
the British initiated a national survey of disease and wastage in the dairy industry — the
survey methods were later critiqued by their author (Leech, 1971). Thus, by the early
1960s, in both human and animal-health research, there was once again a growing
awareness of the complex web of causation.

By the 1970s, multiple interacting causes of diseases returned as a major paradigm of
disease causation. Building on the knowledge from the microbiological revolution, the
concept of the agent-host-environment causal triad appeared in an early epidemiology
text (MacMahon and Pugh, 1970). In this conceptual model, a number of component
causes were required to come together (either sequentially or simultaneously) in order
to produce disease; later, the complex of factors that was sufficient to produce disease
was known as a sufficient cause and it was assumed that most diseases had a number of
sufficient causes (Rothman, 1976). In addition to multiple causes, the component cause
model was not constrained to have all causal factors at the same level of organisation.
A traditional veterinary example used to portray some of these concepts is yellow
shanks in poultry (Martin et al, 1987). When poultry with the specific genetic defect
(an individual-level factor) are fed corn (ration is usually a herd/flock level factor) they
develop a discolouration of the skin and legs. If all poultry are fed corn, then the cause
of the disease would be a genetic defect; however, if all birds had the genetic defect,
then the cause of the disease would be deemed to be the feed. In reality, both factors
are required and the disease can be prevented by removing either the genetic defect, or
changing the feed, or both, depending on the specific context.

The 1970s actually appeared to be a period of peak interest in causation (Kaufman and
Poole, 2000). Susser’s text on causal thinking appeared in 1973 (unfortunately, it has
never been reprinted) and, three years later, the concepts of necessary and sufficient
causes were published by Rothman (1976), followed by a set of causal criteria by
Susser (1977). Large-scale monitoring of animal diseases began in this period (Ingram
et al, 1975). As an example, linking databases of veterinary schools across North
America in the Veterinary Medical Data Program was initiated based on the concept of
using animals as sentinels for the environment (Priester, 1975).
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The 1980s seemed to be a quiet time as no major new causal concepts were brought
forward. Hence (perhaps by omission), the aforementioned web of causation might
have become restricted to studying individual-level directly causal factors focusing on
biological malfunctioning (Krieger, 1994).

In 1990, epigenesis was proposed as a formal model of multivariable causation that
attempted to link, explicitly, causal structures to observed risks of disease (Koopman
and Weed, 1990). While this proved to be an interesting and exciting proposal, the
limitations of this approach were later realised (Thompson, 1991; Martin, 1996) and
the approach remained only a concept. Notwithstanding the blossoming of field-based
epidemiologic research that was taking place in the mid 1990s, a paper suggesting
that epidemiology had reached its limits was published in a well-known biological
journal (Taubes, 1995). This article led to considerable debate within and without
epidemiology and, over time, deficiencies in the arguments suggesting a limited future
for epidemiology were identified.

Since the mid nineties, there has been a lot of introspective writing by epidemiologists
working on human diseases with much concern over an excess focus on individuals as
the units of study and analysis. We shall not review these debates in detail as excellent
discussions on these topics are available elsewhere (Shy, 1997; Diez-Roux, 1998a,b;
McMichael, 1999). What is apparent is that depending on the context, elements of the
social, physical and biological features of the defined ecosystem should be included in
each study, while the unit of concern can range from the individual, to groups (litters,
pens, barns), farms/families, villages or communities, watersheds or larger ecosystems.
Thus, epidemiologic research remains deeply rooted in the concept of multiple
interrelated causal factors as a basis for disease and hence, for disease prevention. This
conceptual basis has been supported by substantial progress in the development of
epidemiologic research methodologies and these are the subject of this book.

1.3 A BRIEF HISTORY OF SCIENTIFIC INFERENCE

Epidemiology relies primarily on observational studies to identify associations between
exposures and outcomes. The reasons are entirely pragmatic. First, many health-related
problems cannot be studied under controlled laboratory conditions. This could be due
to limitations in our ability to create ‘disease’ problems in experimental animals, ethical
concerns about causing disease and suffering in experimental animals and the cost of
studying diseases in their natural hosts under laboratory conditions. Most importantly
though, if we want to understand the complex web of relationships that affects animals
in their natural state, then we must study them in that natural state. This requires the
use of observational studies, and inferences from these studies are based primarily on
inductive reasoning.

Philosophical discussion of causal inferences appears to be limited mainly to fields where
observation (in which we attempt to discern the cause) rather than experimentation (in
which we try to discern or demonstrate the effect) is the chief approach to research.
While the latter approach is very powerful, one cannot assume that the results of even
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the best-designed experiments are infallible. Thus, because epidemiologists rely on
observational studies for the majority of our research investigations, a brief review of
the basis for scientific inference is in order. We pursue this review in the context that
epidemiology is a pragmatic discipline, that our activities are tied to health promotion
and disease prevention and, that as Schwabe (1977) indicated, the key for disease
prevention is to identify causal factors that we can manipulate, regardless of the level
of organisation at which they act. We will briefly present the concepts of inductive and
deductive reasoning. More complete reviews on the philosophy of causal inference are
available elsewhere (Rothman and Greenland, 1998; White, 2001; Aiello, 2002; Weed
2002).

Inductive reasoning is the process of making generalised inferences about (in our
context) ‘causation’ based on repeated observations. Simply put, it is the process of
drawing conclusions about the state of nature from carefully recorded and analysed
observations. Francis Bacon (1620), first presented inductive reasoning as a method of
making generalisations from observations to general laws of nature. As two examples,
John Snow’s observations during the cholera outbreaks of the mid 1800s led to a
correct inference about the mechanism of the spread of the disease, while Edward
Jenner’s observations that milkmaids who developed cowpox didn’t get smallpox,
led to his conclusion that cowpox might prevent smallpox. This, in turn, led to the
development of a crude vaccine which was found to be effective when tested in humans
in 1796. These were both dramatic examples of the application of inductive reasoning
to important health problems. In 1843, John Stuart Mill proposed a set of canons (rules)
for inductive inference. Indeed, Mill’s canons might have originated our concepts about
the set of component causes that are necessary or sufficient to cause disease (White,
2000).

While it is easy to identify important advances in human and animal health that have
been based on inductive reasoning, proponents of deductive reasoning have been
critical of the philosophical basis (or lack thereof) of inductive logic. David Hume
(1740) stated that there is “no logical force to inductive reasoning.” He stated further
that “we cannot perceive a causal connection, only a series of events.” The fact that the
sun comes up every day after the rooster crows, should not result in a conclusion that
the rooster crowing causes the sun to rise. He noted further that many repetitions of
the two events might be consistent with a hypothesis about causation but do not prove
it true. Bertrand Russell (1872-1970) continued the discussion of the limitations of
inductive reasoning and referred to it as “the fallacy of affirming the consequent.” (In
this process, we might imply that if A is present, then B occurs; so if B occurs, A must
have been present.)

Deductive reasoning is the process of inferring that a general ‘law of nature’ exists
and has application in a specific, or local, instance. The process starts with a hypothesis
about a ‘law of nature’ and observations are then made in an attempt to either prove or
refute that assumption. The greatest change in our thinking about causal inferences in
the past century has been attributed to Karl Popper who stated that scientific hypotheses
can never be proven or evaluated as true, but evidence might suggest they are false.
This philosophy is referred to as refutationism. Based on Popper’s philosophy, a
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scientist should not collect data to try and prove a hypothesis (which Popper states is
impossible anyway), but that scientists should try to disprove the theory; this can be
accomplished with only one observation. Once a hypothesis has been disproven, the
information gained can be used to develop a revised hypothesis, which should once
again be subjected to rigorous attempts to disprove it. Popper argues that, only by
disproving hypotheses do we make any scientific progress. It is partially for this reason
that, when conducting statistical analyses, we usually form our hypothesis in the null (ie
that a factor is not associated with an outcome) and, if our data are inconsistent with that
hypothesis, we can accept the alternative that the factor is associated with the outcome.
Thus, the current paradigm in deductive reasoning is to conjecture and then attempt to
refute that conjecture.

A major benefit of using Popper’s approach is that it helps narrow the scope of
epidemiologic studies instead of using a data-mining ‘risk-factor’ identification
approach. It suggests that we carefully review what is already known and then
formulate a very specific hypothesis that is testable with a reasonable amount of data.
In the former approach, we often generate long, multipage questionnaires, whereas, in
the latter, the required information is much more constrained and highly focused on
refuting the hypothesis (Petitti, 1988).

As noted, epidemiology is primarily based on inductive reasoning, but the deductive
paradigm has played a large role in the development of the discipline. Epidemiologic
investigations which start with a clear hypothesis are inevitably more focused and
more likely to result in valid conclusions than those based on unfocused recording of
observations.

Two other important concepts that relate to scientific inference are worth noting.
Thomas Bayes, a Presbyterian minister and mathematician, stated that “all forms of
inference are based on the validity of their premises” and that “no inference can be
known with certainty” (1764). He noted that scientific observations do not exist in a
vacuum, and that the information we have prior to making a series of observations will
influence our interpretation of those observations. For example, numerous studies have
shown that routine teat-end disinfection (after milking) can reduce the incidence of new
intra-mammary infections in dairy cows. However, if a new study was conducted in
which a higher rate of infections was found in cows that received teat-end disinfection,
we would not automatically abandon our previous ideas about teat-end disinfection. His
work has given rise to a branch of statistics known as Bayesian analysis, some of which
will appear later in this book.

More recently, Thomas Kuhn (cited in Rothman and Greenland, 1998) reminds us that
although one observation can disprove a hypothesis, the particular observation might
have been anomalous and that the hypothesis could remain true in many situations.
Thus, often the scientific community will come to a decision about the usefulness, if
not the truth, of a particular theory. This is the role of concensus in scientific thinking.
While hard to justify on a philosophical basis, it plays a large role in shaping our current
thinking about causes of disease.
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Although philosophical debates on causal inference will undoubtedly continue (Robins,
2001; White, 2001), as a summary of this section we note that . . . “all of the fruits
of scientific work, in epidemiology or other disciplines, are at best only tentative
formulations of a description of nature. . . the tentativeness of our knowledge does not
prevent practical applications, but it should keep us skeptical and critical” (Rothman
and Greenland, 1998).

While keeping these historical and philosophical bases in mind, we will now proceed to
an outline of the key components of epidemiologic research.

1.4 KEY COMPONENTS OF EPIDEMIOLOGIC RESEARCH

Fig. 1.1 summarises key components of epidemiologic research. It is somewhat risky to
attempt to simplify such a complex discipline and present it in a single diagram, but we
believe it is beneficial for the reader to have an overview of the process of evaluating
associations between exposure and outcome as a guide to the rest of the book.

Fig. 1.1 Key cbmponents of epidemiologic research
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Our rationale for doing research is to identify potentially causal associations between
exposures and outcomes (the centre of the diagram). In many cases, the exposures
are risk factors and the outcome is a disease of interest. However, this is not the only
scenario; for example, our outcome of interest might be a measure of productivity or
food safety and the exposures might include certain diseases.

Ultimately, we aim to make causal inferences (bottom right of diagram) and Chapter
1 discusses some important concepts of causation as they relate to epidemiologic
research.

Any study starts with an overall study design and the main observational study
types are discussed in Chapters 7-10, with controlled trial designs being presented
in Chapter 11.

In any study, it is important to identify the target population and obtain a study
group from it in a manner that does not lead to selection bias. Sampling is discussed
in Chapter 2 and selection bias in Chapter 12.

Once we have identified our study subjects, it is necessary to obtain data on
exposure variables, extraneous variables and the outcome in a manner that does not
lead to information bias (Chapter 12). Two important tools that are used in that
process are questionnaires (Chapter 3) and diagnestic and screening tests
(Chapter 5).

In order to start the process of establishing an association between exposure and
outcome, we need to settle ona measure of disease frequency (Chapter4) and selecta
measure of association (Chapter 6) that fits the context. In many cases, the study
design will determine the measures that are appropriate.

Confounding bias is a major concern in observational studies, and the
identification of factors that should be controlled as confounders is featured in
Chapter 13.

With our data in hand, we are now able to begin to model relationships with the
intent of estimating causal effects of exposure (Chapter 13). Individual chapters
are dedicated to the analyses appropriate for outcomes that are continuous (Chapter
14), dichotomous (Chapter 16), nominal/ordinal (Chapter 17), count (Chapter 18)
and time-to-event data (Chapter 19). Chapter 15 presents some general guidelines
on model-building techniques that are applicable to all types of model.

In veterinary epidemiologic research, we often encounter clustered or correlated
data and these present major challenges in their analyses. Chapter 20 introduces these
while Chapters 21 and 22 focus on mixed (random effects) models for
continuous and discrete outcomes. Chapter 23 presents some alternative methods
of analysis for dealing with clustered data.

Structured reviews and assessments of the literature in the form of meta-analyses
are becoming increasingly important and are introduced in Chapter 24.

Not all studies allow us to collect data on exposures and outcomes at the individual
level and yet there is much that we can learn by studying disease in groups (eg
herds). Thus, ecologic studies are introduced in Chapter 25.

Finally, we complete the text with Chapter 26 which provides a ‘road map’ for
investigators starting into the analysis of a complex epidemiologic dataset.

With this background, it is time to delve deeper into this discipline called epidemiology.
And, at the outset it is important to stress that epidemiology is first and foremost a
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biological discipline, but one which relies heavily on quantitative (statistical) methods.
It is the integration of these two facets, with a clear understanding of epidemiologic
principles which makes for successful epidemiologic research. As Rothman and
Greenland (1998) point out:
Being either a physician (veterinarian) or a statistician, or even both is
neither a necessary nor sufficient qualification for being an epidemiologist.
What is necessary is an understanding of the principles of epidemiologic
research and the experience to apply them.
To help meet this goal, this book is divided roughly equally into chapters dealing with
epidemiologic principles and those dealing with quantitative methods.

1.5  SEEKING CAUSES

As already noted, a major goal for epidemiologic research is to identify factors that
can be manipulated to maximise health or prevent disease. In other words, we need to
identify causes of health and disease. That might seem like a simple enough task, but it
is, in fact, complex (that is why we wrote much of this text). Here we want to focus on
what a cause is and how we might best make decisions about whether a factor is a cause.
For our purposes, a cause is any factor that produces a change in the severity or
frequency of the outcome. Some prefer to separate biological causes (those operating
within individual animals) from population causes (those operating at or beyond the
level of the individual). For example, a specific microorganism could be viewed as
a biological cause of disease within individuals, whereas management, housing or
other factors that act at the herd (or group) level — or beyond (eg weather) — and affect
whether or not an individual is exposed to the microorganism, or affect the animal’s
susceptibility to the effects of exposure, would be deemed as population causes.

In searching for causes, we stress the holistic approach to health. The term holistic
might suggest that we try to identify and measure every suspected causal factor for
the outcome of interest. Yet, quite clearly, we cannot consider every possible factor in
a single study. Rather, we place limits on the portion of the ‘real world’ we study and,
within this, we constrain the list of factors we identify for investigation. Usually, extant
knowledge and current belief are the bases for selecting factors for study. Because of
this, having a concept of causation and a causal model in mind can help clarify the data
needed, the key measures of disease frequency and the interpretation of associations
between exposure and disease.

1.5.1 Counterfactual observations and causation

In field experiments and in observational studies, it is vital that the comparison group,
comprised of the non-treated (or non-exposed) subjects, is as similar as possible to
the treated (or exposed) groups with respect to factors that could affect the outcome.
In this regard, the perfect comparison group would be the same treated (or exposed)
individuals if they had not been treated (or exposed). This is called the counterfactual
group. By comparing the frequency of the outcome in these two perfectly similar
groups, we would obtain the ‘true’ causal effect of the treatment or exposure. Obviously,
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this counterfactual group does not exist so we use the best practical alternatives.
Randomisation helps achieve this in field experiments and statistical control and/or
study-design methods attempt to achieve this in observational studies. However,
neither is guaranteed to achieve the goal and so care must be taken when interpreting
the results of field trials and observational studies due to potential differences in the
groups that could bias the outcome.

1.5.2 Experimental versus observational evidence

Experimental evidence

Traditionally, the gold standard approach to identifying causal factors is to perform
an experiment. In the ideal experiment, we randomise some animals (or other units
of concern) to receive the factor and some to receive nothing, a placebo, or a standard
intervention (treatment). In this context, exposure X is a proven cause of outcome Y,
if in an ideal experiment X is changed and, as a result, the value or state of Y also
changes. In this ideal experiment, X explicitly precedes Y temporally and all variables
(known and unknown) that do not intervene between X and Y are made independent
of X through the process of randomisation (this means that extraneous variables do not
confound or bias the results we attribute to the exposure X). Factors that are positioned
temporally or causally between X and Y are not measured and are of no concern with
respect to answering the causal objective of the trial.

The measure of causation in this ideal trial is called the causal effect coefficient and
indicates the difference in the outcome between the ‘treated’ and ‘non-treated’ groups
(e those with different levels of factor X). For example, if the risk of the outcome in the
group receiving the treatment is denoted R; and the risk in the group not receiving the
treatment is Ry, then we might choose to measure the effect of treatment using either an
absolute measure (ie risk difference - RD) or a relative measure (ie risk ratio - RR) as
shown in Chapter 6. [f this difference is greater than what could be attributed to chance,
then we would say that we have proved that the factor is a cause of the outcome event. A
key point is that all causal-effect statements are based on contrasts of treatment levels;
the outcome in the treated group cannot be interpreted without knowing the outcome in
the untreated group. A second key feature is exchangeability; that is the same outcome
would be observed (except for sampling error) if the assignments of treatment to study
subjects had been reversed (ie if the treated group had been assigned to be untreated).
Randomisation provides the probabilistic basis for the validity of this assumption.

Observational evidence

In observational studies, we estimate the difference in values of Y between units that
happen to have different values of X. We do not control whether a subject is, or is not,
exposed. Variables related to both X and Y and which do not intervene between X and Y,
can be controlled analytically or through matching or restricted sampling (see Chapter
13). The appropriate measure of association (eg a risk ratio or regression coefficient)
reflecting the difference in the value of Y between the ‘exposed’ and ‘non-exposed’
groups can be used to obtain a reasonable estimate of the causal-effect coefficient that
would be obtained in the ideal experiment. The major differences between observational
studies and field experiments lie in the ability to prevent selection, misclassification
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and confounding bias, and dealing with the impact of unknown or unmeasured factors.
Thus, by themselves, observational studies produce measures of association but cannot
‘prove’ causation. Nonetheless, in the ideal observational study, with total control of
bias, the measure of association will estimate the causal-effect coefficient.

However, experimental evidence is deemed to provide more solid evidence of causality
as, in reality, “To find out what happens to a system when you interfere with it, you have
to interfere with it (not just passively observe it).”

(Attributed to Box, 1966, in Snedecor and Cochran, 1989)

Limits of experimental study evidence

Despite their advantages, performing perfect experiments is not easy even at the
best of times (see Chapter 11) and, in fact, many potential causal factors of interest
to epidemiologists would be difficult to study using a controlled trial format. For
example, it would be impossible to perform the perfect experiment to answer the
question of whether or not badgers that are infected with M. bovis cause tuberculosis
in cattle. Laboratory studies are useful to demonstrate what can happen when animals
are exposed to a specific exposure (eg that factor A can cause outcome B), but, if the
circumstances are too contrived (very large dose, challenge by an unnatural route,
limited range of cofactors), laboratory results might not be much help in deciding the
issue of causation under normal, everyday conditions. For example, we could conduct
an experiment in which cattle and infected badgers are maintained within a confined
enclosure and assess whether or not the cattle became infected. If they did, this would
demonstrate that infected badgers can cause infection in cattle, but not the extent of the
problem in the field.

In field trials that are subject to non-compliance, we often have to decide how to
manage the non-compliance in assessing the role of the treatment on the outcome
(Heitjan, 1999) and, although any given field trial might provide more valid evidence
for or against causation than any given observational study, it is not uncommon for
differences in results to exist among apparently similar field trials. Hence, the ability
to make perfect inferences based on field trials is illusionary and, in many instances,
it is impossible to carry out experiments under conditions that even remotely resemble
‘real-world’ conditions.

1.6 MODELS OF CAUSATION

Given our belief in multiple causes of an effect and multiple effects of a specific cause,
epidemiologists have sought to develop conceptual models of causation; we describe
the two major models in sections 1.7 and 1.8. Usually, however, the actual causal model
is unknown and the statistical measures of association we use reflect, but do not explain,
the number of ways in which the exposure might cause disease. Furthermore, although
our main interest in a particular study might focus on one exposure factor, we need
to take into account the effects of other causes of the outcome that are related to the
exposure (this process is usually referred to as control or controlling the effects) if we
are to learn the ‘truth’ about the potential causal effect of our exposure of interest. .
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Because our inferences about causation are based, at least in the main, on the observed
difference in outcome frequency or severity between exposed and unexposed subjects,
we will continue our discussion by examining the relationship between a postulated
causal model and the resultant, observed, outcome frequencies. The two major
conceptual models are the component-cause and the causal-web models of causation.

1.7 COMPONENT-CAUSE MODEL

The component-cause model is based on the concepts of necessary and sufficient causes
(Rothman, 1976). A necessary cause is one without which the disease cannot occur (ie
the factor will always be present if the disease occurs). In contrast, a sufficient cause
always produces the disease (ie if the factor is present, the disease invariably follows).
However, both experience and formal research have indicated that very few exposures
(factors) are sufficient in and of themselves, rather different groupings of factors can
combine and become sufficient causes. Thus, a commponent cause is one of a number of
factors that, in combination, constitute a sufficient cause. The factors might be present
concomitantly or they might follow one another in a chain of events. In turn, when there
are a number of chains with one or more factors in common, we can conceptualise the
web of causal chains (ie a causal web). This concept will be explained further under the
causal-web model (section 1.8).

As an example of component causes, in Table 1.1 we portray the causal relationships of
four risk factors for bovine respiratory disease (BRD). These include:

»  a bacterium, namely Mannheimia hemolytica (Mh)

*  avirus, namely the bovine respiratory syncytial virus (BRSV)

= a set of stressors such as weaning, transport, or inclement weather

= other bacteria such as Hemophilus somnus (Hs).

Table 1.1 Four hypothetical sufficient causes of bovine respiratory disease

Sufficient causes

Component causes | ] 1l v
Mh + +
BRSV + +
Stressors + + +
Other organisms (eg Hs) +

In this portrayal, there are four sufficient causes, each one containing two specific
components; we assume that the four different two-factor combinations each form a
sufficient cause. Hence, whenever these combinations occur in the same animal, clinical
respiratory disease occurs (as mentioned, one can conceive that these factors might
not need to be present concomitantly, they could be sequential exposures in a given
animal). Some animals could have more than two causal factors (eg Mh, BRSV, Hs) but
the presence of any of the two-factor combinations shown will be sufficient to produce
BRD. Note that we have indicated that only some specific two-factor combinations act
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as sufficient causes; Mh is a component of two of the sufficient causes, as is BRSV.
Because no factor is included in all sufficient causes, there is no necessary cause in our
model of BRD. Obviously, if you have not guessed by now, you should be aware that
the number of causal factors and their arrangement into sufficient causes are purely for
the pedagogical purposes of this example.

Now, against this backdrop of causal factors, we will assume that we plan to measure
only the Mh and BRSV components (ie obtain nasal swabs for culture and/or blood
samples for antibody titres). Nonetheless, we are aware that, although unmeasured,
the other components (stressors and/or Hs) might be operating as components of one
or more of the sufficient causes. In terms of the two measured factors, we observe that
some cattle with BRD will have both factors, some will have only Mh and some only
the BRSV components. Because of the causal effects of the other unmeasured factors
(stressors and Hs), there will be some animals with BRD that have neither of these two
measured factors (eg BRD due to sufficient cause IV).

One of the benefits of thinking about causation in this manner is that it helps us
understand how the prevalence of a cofactor can impact on the strength of association
between the exposure factor and the outcome of interest (Pearce, 1989). For example,
assume that we are interested principally in the strength of association between
infection with Mh and the occurrence of BRD (the various measures of association are
explained in Chapter 6). According to our example in Table 1.1, Mh produces disease
when present with BRSV, but also without BRSV when combined with ‘stressors’.
What might not be apparent however, is that changes in the prevalence of the virus, or
of the stressors, or Hs can change the strength of association between Mh and BRD.
These shared component causes that make up a sufficient cause are known as causal
complements. To demonstrate this point, note the two populations in Examples 1.1
and 1.2.

1.7.1  The effect of the causal complement prevalence on disease risk

This example is based on the component cause model shown in Table 1.1 using three
factors: Mh, BRSV and stressors. The frequency of each factor indicated above the
body of the tables in Examples 1.1 and 1.2 is the same (p(stressors)=0.4 and p(Mh)=0.6)
except that the frequency of BRSV is increased from 30% in Example 1.1 to 70% in
Example 1.2. All three factors are distributed independently of each other; this is not
likely true in the field, but it allows us to examine the effect of single factors without
concerning ourselves with the biasing effects of the other factors.

If infection with Mh is our exposure factor of interest, it would be apparent that some
but not all cattle with Mh develop BRD and that some cattle without Mh also develop
BRD. Thus, Mh infection by itself is neither a necessary nor sufficient cause of BRD.
Similarly for BRSV, some infected cattle develop BRD, some non-infected cattle also
develop BRD. In order to ascertain if the occurrence of BRD is associated with Mh
exposure, we need to measure and contrast the risk of BRD among the exposed (Mh+)
versus the non-exposed (Mh-). In Example 1.1, these frequencies are 58% and 12%,
and we can express the proportions relative to one another using a statistic called the
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Example 1.1 Causal complement prevalence and disease risk - Part 1

The number and risk of BRD cases by two measured and one unknown exposures assuming
joint exposure to any two factors is sufficient to cause the disease are shown below.
Mannheimia hemolytica (Mh) is the exposure of interest (total population size is 10,000;
p(stressors)=0.4; p(Mh)=0.6).

p(BRSV=0.3)
Measured factors

Unmeasured Population Number
stressors BRSV Mh number diseased

1 1 1 720 720

1 1 0 480 480

1 0 1 1680 1680

1 0 0 1120 0

0 1 1 1080 1080

0 1 0 720 0

0 0 1 2520 0

0 0 0 1680 0

Risk of disease among the Mh+  3480/6000=0.58
Risk of disease among the Mh- 480/4000=0.12
Risk difference if Mh+ 0.58-0.12=0.46

Risk ratio if Mh+ 0.58/0.12=4.83
e ————————

risk ratio which is 58/12=4.83. This means that the frequency of BRD is 4.83 times
higher in Mh+ cattle than in Mh- cattle. We could also measure the association between
Mh and BRD using a risk difference; in this instance, the RD is 0.46 or 46%. These
measures are consistent with Mh being a cause of BRD, but do not prove the causal
association. In Example 1.2, when the frequency of BRSV is increased, the relative
risk for Mh+ cattle is 2.93 and the RD is 0.54 or 54%. Thus, we might be tempted to
think that exposure to Mh+ in some sense acts differently from a causal perspective in
one example to another, yet the underlying causal relationship of Mh exposure to the
occurrence of BRD has not changed. The difference is due to a change in the frequency
of the other components of the sufficient causes, namely BRSV. The other components
that can form sufficient causes are called the causal complement to the exposure
factor. Here with sets of two factors being sufficient causes, the causal complements
of Mh are BRSV or stressors but not both (the latter cattle would have developed BRD
from being stressed and having BRSV).

In general, we might note that when the prevalence of causal complements is high,
measures of association between the factor of interest and the outcome that are based
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Example 1.2 Causal complement prevalence and disease risk - Part 2

The number and risk of BRD cases by two measured and one unknown exposures assuming
joint exposure ‘to any two factors is sufficient to cause the disease are shown below.
Mannheimia hemolytica (Mh) is the exposure of interest.

p(BRSV)=0.7 » ‘
Measured factors

Unmeasured : Population Number
stressors BRSV Mh number diseased

1 1 1 1680 1680

1 1 0 1120 1120

1 0 1 720 720

1 0 0 480 0

0 1 1 2520 2520

0 1 0 1680 0

0 0 1 1080 0

0 0 0 720 0

Risk of disease among the Mh+ = 4920/6000=0.82
Risk of disease among the Mh- 1120/4000=0.28
Risk difference if Mh+ 0.82-0.28=0.54
Risk ratio if Mh+ 0.82/0.28=2.93

on risk differences will be increased (especially when the prevalence of exposure is
low). Some, but not all, ratio or relative measures of association could have the opposite
relationship with the prevalence of causal complements. In any event, although the
causal mechanism remains constant, the strength of association will vary depending
on the distribution of the cofactors, many of which we do not know about or remain
unmeasured for practical reasons. As will be discussed, strength of association is one
criterion of causation but it is not a fixed measure and we need to bear the phenomenon
just discussed in mind when making causal inferences.

You might verify that the impact of BRSV on BRD as measured by the risk ratio
would be the same (RR=3.2) in both Examples 1.1 and 1.2 even though its prevalence
has changed. Although this is only one example, we could state the general rule that
the strength of association for a given factor depends on the frequency of the causal
complements but, providing the distribution of the other causal factors is fixed, changes
in the prevalence of the factor of interest do not alter its strength of association with
the outcome.
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If we could measure all the cofactors including stressors and the other causal component
factors, the picture would change considerably. For example, if the stressors were the
only other causes of BRD, it would be obvious that, in the non-stressed animals, BRD
occurred only when both Mh and BRSV were present together. This would be clear
evidence of biological synergism, a feature that is detected numerically as statistical
interaction (ie the joint effect of the two factors would be different than the sum of their
individual effects — in this instance, they would have no ‘individual’ effect, only a joint
effect). In stressed cattle, all animals exposed to Mh or BRSV would get BRD but there
would be no evidence of interaction because 100% of singly, as well as jointly, exposed
stressed cattle would develop BRD.

Because changes in the prevalence of the ‘unknown’ or ‘unmeasured’ factor(s) will
alter the magnitude of effect for the measured exposure, we need to think of measures
of association as ‘population specific.” Only after several studies have found a similar
magnitude of effect in different populations should we begin to think of the effect as
in some sense a biological constant. Further, even if the cases have arisen from an
assumed model that incorporates biological synergism, because of the distribution of
the unknown causal factors, interaction (indicating synergism) might not be evident in
the observed data.

1.7.2  The importance of causal factors

Using the concepts of necessary and sufficient causes, we also gain a better
understanding of how much disease in the population is attributable to that exposure (or
alternatively the proportion of disease that we could prevent by completely removing
the exposure factor).

As explained in Chapter 6, this is called the population attributable fraction (4F),).
For example, if we assume that the prevalence of each of the four sufficient causes from
Table 1.1 is as shown in Table 1.2, then, if we examine the amount of disease that can
be attributed to each of the component causes, we see that we can explain more than
100% of the disease. Of course, we really haven’t, it is simply because the components
are involved in more than one sufficient cause and we are double-counting the role that
each component cause plays as a cause of the disease.

Table 1.2 Hypothetical sufficient causes of bovine respiratory disease and their
relationship to population attributable fraction

Sufficient causes

Component causes | Il [} v AF, (%)
Mh + + - 75
BRSV + - + 60
Stressors - + + + 55
Hs + 10

Prevalence of
sufficient cause (%) 45 30 15 10
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Another important observation is that, when two or more factors are both essential
for disease occurrence, it is difficult to attribute a specific proportion of the disease
occurrence to any single causal factor. For example, in cattle that had all three factors
—Mh, BRSV and stressors — it would be impossible to decide the unique importance of
each factor. Our model indicates that once any two of the three were present, then BRD
would occur and the presence of the third factor is of no importance causally; thus, as
the saying goes ‘timing is everything’. Certainly, because the frequency of cofactors
can vary from subgroup to subgroup, as with relative risk measures, one should not
think of 4F), as being a ‘universal’ measure of importance.

1.8 CAUSAL-WEB MODEL

A second way of conceptualising how mulitiple factors can combine to cause disease
is through a causal web consisting of indirect and direct causes. This concept is
based on a series of interconnected causal chains or web structures; it takes the factors
portrayed in the sufficient-cause approach and links them temporally. For a direct
cause, there must be no known intervening variable between that factor and the disease
(diagrammatically, the exposure is adjacent to the outcome). Direct causes are often the
proximal causes emphasised in therapy, such as specific microorganisms or toxins. In
contrast, an indirect cause is one in which the effects of the exposure on the outcome
are mediated through one or more intervening variables. It is important to recognise
that, in terms of disease control, direct causes are no more valuable than indirect causes.
In fact, many large-scale control efforts are based on manipulating indirect rather than
direct causes. Historically, this was also true: whether it was John Snow’s work on
cholera control through improved water supply, or Frederick Kilborne’s efforts to
prevent Texas Fever in American cattle by focusing on tick control. In both instances,
disease control was possible before the actual direct causes (Vibrio cholerae and
Babesia bigemina) were known, and the control programme was not focused directly
on the proximal cause.

One possible web of causation of respiratory disease (BRD) based on the three factors
in Examples 1.1 and 1.2 might have the structure shown in Example 1.3. The causal-
web model complements the component-cause model but there is no direct equivalence
between them. As we show later, causal-web diagrams are very useful to guide our
analyses and interpretation of data.

The model indicates that stressors make the animal susceptible to Mh and BRSYV, that
BRSV increases the susceptibility to Mh and that BRSV can ‘cause’ BRD directly (this
might be known to be true, or it might reflect the lack of knowledge about the existence
of an intervening factor such as Hs which is missing from the causal model). Finally it
indicates that Mh is a direct cause of BRD. If this causal model is true, it suggests that
we could reduce BRD occurrence by removing an indirect cause such as stress, even
though it has no direct effect on BRD. We could also control BRD by preventing the
action of the direct causes Mh and BRSV (eg by vaccination, or prophylactic treatment
with antimicrobials — we are not suggesting that you do this!). As mentioned, this
model claims that stressors do not cause BRD without Mh or BRSV infection and thus
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Example 1.3 Causal web

A causal-web model of BRD based on component causes from Example 1.1.

Stressors
S~ Mh
/ S BRD
BRSV /

suggests a number of two- or three-factor groupings of component causes into sufficient
causes. However, it does not explicitly indicate whether some of the proximal causes
can produce disease in and of themselves (ie it is not apparent whether BRSV can
cause BRD by itself or if it needs an additional unmeasured factor). From the previous
examples, the outcome frequencies in BRSV-infected and non-infected cattle will
depend on the distribution of the other component causes and whether, in reality, it can
be a sufficient cause by itself. For now, we will discuss the relationship of the causal
structure to the results of our analyses.

With a number of possible causal variables, the cause-and-effect relationships are best
shown in a causal diagram (also called directed acyclic graphs, or modified path
models). To construct a causal diagram, we begin by imposing a plausible biological
causal structure on the set of variables we plan to investigate and translate this structure
into graphical form that explains our hypothesised and known relationships among the
variables. The causal-ordering assumption is usually based on known time-sequence
and/or plausibility considerations. For example, it might be known that one variable
precedes another temporally, or current knowledge and/or common sense might suggest
that it is possible for one factor to cause another but not vice-versa.

1.9  CONSTRUCTING A CAUSAL DIAGRAM

The easiest way to construct the causal diagram is to begin at the left with variables that
are pre-determined and progress to the right, listing the variables in their causal order.
The variation of these variables (those to the extreme left such as AGE in Example 1.4)
is considered to be due to factors outside of the model. The remaining variables are
placed in the diagram in their presumed causal order; variables to the left could ‘cause’
the state of variables to their right to change. If it is known or strongly believed that a
variable does not cause a change in one or more variables to its right, then no causal
arrow should be drawn between them. If the proposed model is correct, the analyses
will not only be more informative but also more powerful than analyses that ignore the
underlying structure. The only causal models to be described here are called recursive;
that is, there are no causal feedback loops (if these are believed to exist, they can be
formulated as a series of causal structures). A causal diagram of factors relating to
fertility in dairy cows is shown in Example 1.4.
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Example 1.4 A causal diagram of factors affecting fertility in cows

T

OVAR———p FERTILITY

AGE

RETPLA T
METRITIS

RETPLA = retained placenta
OVAR = cystic ovarian disease

Suppose the model is postulated to explain biological relationships among reproductive
diseases. AGE is assumed to be a direct cause of retained placenta (RETPLA),
cystic ovarian disease (OVAR) and FERTILITY but not METRITIS. RETPLA is
the exposure variable of interest. METRITIS and OVAR are intervening variables
between RETPLA and the outcome of interest FERTILITY. We will assume that our
objective is to estimate the causal effect of RETPLA on FERTILITY based on the
association between these two variables. Note 1t is the causal effect coefficient that we
are interested in estimating.

The model indicates that AGE can cause changes in FERTILITY directly but also
by a series of pathways involving one or more of the three reproductive diseases. It
also indicates that AGE is not a direct cause of metritis. In terms of understanding
relationships implied by the causal diagram, the easiest way to explain them is to think
of getting (perhaps driving?) from an exposure variable (eg RETPLA) to a subsequent
variable (eg FERTILITY). As we pass through other variables following the arrows,
we trace out a causal path. The rule for tracing out causal pathways is that you can start
backwards from any variable but once you start forward on the arrows you cannot back
up. Paths which start backwards from a variable are spurious causal paths and reflect
the impact of confounders. In displaying the relationships, if there are variables that we
believe are correlated because of an unknown or unmeasured common cause, we use
a line to indicate this, and you can travel in either direction between these variables. If
two variables are adjacent (connected by a single direct arrow), their causal relationship
is deemed to be directly causal. Paths which start forward from one variable and pass
through intervening variables are deemed to be indirect causal paths (eg RETPLA can
cause fertility changes through its effect on OVAR, but not directly). The combined
effects through indirect and direct paths represent the total effect of the variable.

Okay, so, how does this help us? Well, in order to estimate the causal-effect coefficient,
we must prevent any spurious effects, so the variables preceding an exposure factor
of interest (RETPLA) that have arrows pointing toward it (ie from AGE) and through
which FERTILITY (the outcome) can be reached on a path must be controlled. In this
instance, that variable is AGE. The model also asserts that we do not control intervening
variables so METRITIS and OVAR are not placed in the analytic model when estimating
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the causal effect. If we assume that there are no other confounders that are missing from
the model, our analyses will estimate the causal effect of RETPLA on FERTILITY.
(This also assumes the statistical model is correct, but that is another story.)

We should note that if we did control for METRITIS and OVAR in this model, we
would not obtain the correct estimate of causal effect. Rather, we would only obtain the
direct effect of RETPLA on FERTILITY if that direct effect existed. This feature will
be discussed again when regression models (eg Chapter 14) are described as this is a
major reason why we can inadvertently break down a causal web. In the causal diagram
used here, we explicitly assume there is no direct causal relationship between them
(so this would be an inappropriate analysis for this reason also). RETPLA can impact
on FERTILITY indirectly through the diseases METRITIS and/or OVAR; controlling
these variables blocks these indirect pathways. Thus, only by excluding METRITIS
and OVAR can we obtain the correct causal-effect estimate.

1.10 CAUSAL CRITERIA

Given that researchers will continue to make advances in identifying potential causes of
disease using observational study techniques, a number of workers have proposed a set
of causal guidelines (these seek to bring uniformity to decisions about causation (Evans,
1978)). Others suggest that we view these as a set of values and accept that different
individuals might view the same facts differently (Poole, 2001). Hill (1965) proposed
a list of criteria for making valid causal inferences (not all of which had to be fully met
in every instance). They include: time sequence, strength of association, dose-response,
plausibility, consistency, specificity, analogy and experimental evidence. Today, we
might add evidence from meta-analysis to this list. Over the years, the first four of these
have apparently dominated our inference-making efforts (Weed, 2000) and recently,
researchers have investigated how we use these and other criteria for making inferences
(Waldmann and Hagmayer, 2001). In one study, a group of 135 epidemiologists were
given a variety of realistic but contrived examples and varying amounts of information
about each scenario. At the end of the exercise, they had agreed on causal inferences
in only 66% of the examples. This stresses the individuality of interpreting the same
evidence. Because we believe a set of criteria for causal inferences is a useful aid to
decision-making, we will briefly comment on Hill’s list of items and give our view of
their role in causal inference (Holman et al, 2001).

At the outset, we must be clear about the context for inferring causation. As Rose
(1985) stated, it is important to ask whether we are trying to identify causes of
disease in individuals or causes of disease in populations. Indeed, with the expansion
of molecular studies, the appropriate level at which to make causal inferences, and
whether such inferences are valid across different levels of organisation remains open
to debate. However, clear decisions about the appropriate level to use (think back to
the objectives when choosing this) will guide the study design as well as our inferences
about causation.
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The following set of criteria for causation can be applied at any level of organisation.
The criteria are based on individual judgement, not a set of defined rules.

1.10.1 Study design and statistical issues

As will be evident after delving into study design (Chapters 7-10), some designs are
less open to bias than others. For example, case-control studies are often assumed to
be subject to more bias than cohort studies. However, much of this criticism is based
on case-control studies using hospital or registry databases. We think it important
that every study be assessed on its own merits and we need to be aware of selection,
misclassification and confounding bias in all study designs.

Most often we do not make inferences about causation unless there is a statistically
significant association between the exposure and the outcome (and one that is not likely
to be explained by one or more of the previous biases). Certainly, if the differences
observed in a well-designed study have P-values above 0.4, this would not provide
any support for a causal relationship. However, beyond extremes in large P-values,
statistical significance should not play a pivotal role in assessing causal relationships.
Like other researchers, we suggest an effect-estimation approach based on confidence
limits as opposed to a hypothesis-testing approach. Despite this, recent research
indicates that P-values continue to be used frequently to guide causal inferences:
P-values of 0.04 are assumed to be consistent with causal associations and P-values of
0.06 inconsistent. At the very least, this is an overemphasis of the role of assessing
sampling variability vis-a-vis a causal association and is not a recommended practice.

1.10.2 Time sequence

While a cause must precede its effect, demonstrating this fact provides only weak
support for causation. Further, the same factor could occur after disease in some
individuals and this would not disprove causation except in these specific instances.
Many times it is not clear which came first; for example, did the viral infection
precede or follow respiratory disease? This becomes a greater problem when we must
use surrogate measures of exposure (eg antibody titre to indicate recent exposure).
Nonetheless, we would like to be able to demonstrate that an exposure preceded the
effect or at least develop a rational argument for believing that it did — sometimes these
arguments are based largely on plausibility (ie which time sequence is more plausible)
rather than on demonstrable facts.

1.10.3 Strength of association

This is usually measured by ratio measures such as risk ratio or odds ratio but could
also be measured by risk or rate differences. The belief in larger (stronger) associations
being causal appears to relate to how likely it is that unknown or residual confounding
might have produced this effect. However, because the strength of the association also
depends on the distribution of other components of a sufficient cause, an association
should not be discounted merely because it is weak. Also, when studying diseases with



INTRODUCTION AND CAUSAL CONCEPTS 23

very high frequency, risk ratio measures of association will tend to be weaker than with
less common diseases.

1.10.4 Dose-response relationship

If we had a continuous, or ordinal, exposure variable and the risk of disease increased
directly with the level of exposure, then this evidence supports causation as it tends to
reduce the likelihood of confounding and is consistent with biological expectations.
However, in some instances, there might be a cutpoint of exposure such that nothing
happens until a threshold exposure is reached and there is no further increase in frequency
at higher levels of exposure. These circumstances require considerable knowledge
about the causal structures for valid inferences. Because certain physiological factors
can function to stimulate production of hormones or enzymes at low doses and yet
act to reduce production of these at higher levels, one should not be too dogmatic in
demanding monotonic relationships.

1.10.5 Coherence or plausibility

The essence of this criterion is that if an association is biologically sensible, it is more
likely causal than one that isn’t. However, be careful with this line of reasoning. A
number of fundamentally important causal inferences have proved to be valid although
initially they were dismissed because they did not fit with the current paradigm
of disease causation. As an example, when we found out that feedlot owners who
vaccinated their calves on arrival subsequently had more respiratory disease in their
calves than those who didn’t, we didn’t believe it — it didn’t make sense. However, after
more research and a thorough literature search in which we found the same relationship,
we were convinced it was true. The problem likely related to stressing already stressed
calves which made them more susceptible to a battery of infectious organisms.

Coherence requires that the observed association is explicable in terms of what we
know about disease mechanisms. However, our knowledge is a dynamic state and
ranges all the way from the observed association being assessed as ‘reasonable’
(without any biological supporting evidence) to requiring that ‘all the facts be known’
(a virtually nonexistent state currently). Postulating a biological mechanism to explain
an association after the fact is deemed to be insufficient for causal inferences unless
there is some additional evidence supporting the existence of that mechanism (Weed
and Hursting, 1998).

1.10.6 Consistency

If the same association is found in different studies by different workers, this gives
support to causality. This was a major factor in leading us to believe that the detrimental
effects of respiratory vaccines on arrival at feedlots were indeed causal. Not only were
our studies consistent but there were numerous examples in the literature indicating
(or suggesting) potential negative effects of the practice. Our beliefs were further
strengthened by publications from experimental work that indicated a plausible
explanation for the detrimental effects.
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Lack of consistency doesn’t mean that we should ignore the results of the first study on
a subject, but we should temper our interpretation of the results until they are repeated.
This would prevent a lot of false positive scares in both human and veterinary medicine.
The same approach might be applied to the results of field trials and, because there is
less concern over confounding, we might not need to be as strict. Recent research has
indicated that, in human medicine, once 12 studies have reached the same essential
conclusion, further studies reaching the same conclusion are given little additional
weight in making causal inferences (Holman et al, 2001).

Meta-analysis combines results from a number of studies on a specific exposure
factor in a rigorous, well-defined manner (Weed, 2000) and consequently helps with
the evolution of consistency. Evidence for or against a hypothesis can be obtained as
opposed to dichotomising study results into those that support a hypothesis and those
that do not. In addition, explanation of the methods used in meta-analysis tends to
provide a clearer picture of the reviewer’s criteria for causation than many qualitative
reviews (see Chapter 24).

1.10.7 Specificity of association

Based on rigid criteria for causation such as Henle-Koch’s postulates, it used to be
thought that, if a factor was associated with only one disease, it was more likely causal
than a factor that was associated with numerous disease outcomes. We do not believe
this now and specificity, or the lack thereof, has no valid role in assessing causation —
the numerous effects of smoking (heart, lungs, infant birth weight, infant intelligence)
and the numerous causes for each of these outcomes should be proof enough on this
point.

1.10.8 Analogy

This is not a very important criterion for assessing causation, although there are
examples of its being used to good purpose. This approach tends to be used to infer
relationships in cases of human diseases based on experimental results in other animal
species. Today, many of us have inventive minds and explanations can be developed for
almost any observation, so this criterion is not particularly useful to help differentiate
between causal and non-causal associations.

1.10.9 Experimental evidence

This criterion perhaps relates partly to biological plausibility and partly to the
additional control that is exerted in well-designed experiments. We tend to place more
importance on experimental evidence if the same target species is used and the routes
of challenge, or nature of the treatment are in line with what one might expect under
field conditions. Experimental evidence from other species in more contrived settings
is given less weight in our assessment of causation. Indeed, the experimental approach
is just another way to test the hypothesis, so this is not really a distinct criterion for
causation in its own right.
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SAMPLING

OBJECTIVES

After reading this chapter, you should be able to:

1.

Select a random, simple, systematic, stratified, cluster or multistage sample
— given the necessary elements.

Recognise the advantages and disadvantages of each sampling method.

Select the appropriate sampling strategy for a particular situation, taking into
account the requirements, advantages and disadvantages of each method.

List the elements that determine the sample size required to achieve a particular
objective and be able to explain the effect of each upon the sample-size
determination.

Compute required sample sizes for common analytic objectives.

Understand the implications of complex sampling plans on analytic procedures.

Select a sample appropriately to detect or rule out the presence of disease in a
group of animals.
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2.1 INTRODUCTION

2.1.1 Census vs sample

For the purposes of this chapter, we will assume that data are required for all individuals
(animals, herds efc), or a subset thereof, in a population. The process of obtaining the
data will be referred to as measurement.

In a census, every animal in the population is evaluated. In a sample, data are only
collected from a subset of the population. Taking measurements or collecting data
on a sample of the population is more convenient than collecting data on the entire
population. In a census, the only source of error is the measurement itself. However,
even a census can be viewed as a sample because it represents the state of the population
at one point in time and hence, is a sample of possible states of the population over time.
With a sample, you have both measurement and sampling error to contend with. A well-
planned sample, however, can provide virtually the same information as a census, at a
fraction of the cost.

2.1.2  Descriptive versus analytic studies

Samples are drawn to support both descriptive studies (often called surveys) and
analytic studies (often called observational studies).

A descriptive study (or survey) aims to describe population attributes (frequency of
disease, level of production). Surveys answer questions such as, ‘What proportion
of cows in the population has subclinical mastitis?” or, ‘What is the average milk
production of cows in Prince Edward Island (PEI)?’

An analytic study is done to test a hypothesis about an association between outcomes
and exposure factors in the population. Analytic studies contrast groups and seek
explanations for the differences among them. In epidemiology, they are used to identify
associations between risk factors and disease. An analytic study might ask a question
such as, ‘Is barn type associated with the prevalence of subclinical mastitis?’ or, ‘Is
subclinical mastitis associated with milk production?’ Establishing an association is the
first step to inferring causation, as was discussed in Chapter 1.

The distinction between descriptive and analytic studies is discussed further in Chapter 7.
2.1.3 Hierarchy of populations

There is considerable variation in the terminology used to describe various populations
in a study. In this text, we will consider three: the external population, the target
population and the study population. These will be discussed with reference to a study

designed to quantify post-surgical mortality in dogs.

The external population is the population to which it might be possible to extrapolate
results from a study. It is often not defined and might vary depending on the perspective
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of the individual interpreting the results of the study. For example, the investigators
conducting a post-surgical mortality study might have considered all dogs undergoing
surgery in Canadian veterinary clinics as the external population, while someone
reading the results of the study in the United States might evaluate the study assuming
the external population was all dogs undergoing surgery in North America. The
external validity relates to the capacity to extrapolate results from a study to the
external population (discussed further in Chapter 12).

The target population is the immediate population to which the study results will be
extrapolated. The animals included in the study would be derived (in some manner)
from the target population. For example, if the post-surgical mortality study was to be
conducted in PEI, dogs undergoing surgery in veterinary clinics/hospitals in PEI would
be the target population. The internal validity relates to the validity of the study results
for members of the target population (see Chapter 12).

The study population is the population of individuals (animals or groups of animals)
selected to participate in the study (regardless of whether or not they actually
participate). If three veterinary clinics were randomly selected as sites at which post-
surgical mortality would be recorded, dogs having surgery at those three clinics would
make up the study population.

One important consideration you must address when taking a sample is: does the study
population truly represent the target population? If you want to quantify post-surgical
mortality in dogs, you could do it at a veterinary teaching hospital; however, the types
of patient seen there are much different than those at general veterinary practices and
surgical management might also be different. This would make it difficult to generalise
the results from such a study. Overall, it is much more important that the study
population be representative of the target population if you are doing a descriptive
study. Results from an analytic study (eg an association between an exposure and a
disease) can often be extrapolated to a target population even if the study population has
some characteristics that make it different from the target population.

2.1.4 Sampling frame

The sampling frame is defined as the list of all the sampling units in the target
population. Sampling units are the basic elements of the population that is sampled
(eg herds, animals). A complete list of all sampling units is required in order to draw a
simple random sample, but it might not be necessary for some other sampling strategies.
The sampling frame is the information about the target population that enables you to
draw a sample.

2.1.5 Types of error

In a study based on a sample of observations, the variability of the outcome being
measured, measurement error, and sample-to-sample variability all affect the results we
obtain. Hence, when we make inferences based on the sample data, they are subject to
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error. Within the context of an analytic study, there are two types of error in statistics:
Type 1 (a) error: You conclude that the outcomes are different when in fact they
are not.
Type II (f) error: You conclude that the outcomes are not different when in fact
they are.

A study was carried out to determine if an exposure had an effect on the probability of
disease occurrence or not. The results shown in Table 2.1 are the possible outcomes.

Table 2.1 Types of error

True state of nature

Effect Effect
present absent
Effect present (reject Correct Type 1 (o) error
IIh hesi
Conclusion of null hypothesis)
statistical analysis No effect (acceptnull ~ T1YPe Il (B) error Correct

hypothesis)

Statistical test results reported in medical literature are aimed at disproving the null
hypothesis (ie that there is no difference among groups). If differences are found, they
are reported with a P-value which expresses the probability that the observed differences
could be due to chance, and not due to the presence of the factor being evaluated. P is
the probability of making a Type I (a) error. When P<0.05, we are ‘reasonably’ sure that
any effect detected is not due to chance.

Power is the probability that you will find a statistically significant difference when
it exists and is of a certain magnitude; (ie power=1-5). The probability of making a
Type 1I (f) error, or failing to detect a difference, is seldom stated because usually only
positive results are reported in the literature. So-called negative findings (failure to find
a difference) are seldom reported. There are a number of reasons why a study might find
no effect of the factor being investigated.

=  There truly was no effect.

= The study design was inappropriate.

=  The sample size was too small (low power).

=  Bad luck.

An evaluation of the power of the study will at least determine how likely you are to
commit this error for a given alternative hypothesis.
2.2  NON-PROBABILITY SAMPLING

Samples that are drawn without an explicit method for determining an individual’s
probability of selection are known as non-probability samples. Whenever a sample
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is drawn without a formal process for random selection, it should be considered a
non-probability sample, of which there are three types: judgement, convenience, and
purposive. Non-probability samples are inappropriate for descriptive studies except
in the instance of initial pilot studies (and even then, use of non-probability samples
might be misleading). However, non-probability sampling procedures are often used in
analytic studies.

2.2.1 Judgement sample

This type of sample is chosen because, in the judgement of the investigator, it is
‘representative’ of the target population. This is almost impossible to justify because
the criteria for inclusion and the process of selection are largely implicit, not explicit.

2.2.2 Convenience sample

A convenience sample is chosen because it is easy to obtain. For instance, nearby
herds, herds with good handling facilities, herds with records that are easily accessible,
volunteer herds efc might be selected for study. Convenience sampling is often used
in analytic studies where the need to have a study population that is representative
of the target population is less strict. For example, Chapter 17 will focus on the
relationship between ultrasound measurements taken in beef cattle at the start of the
finishing period and the final carcass grade of the animals. Even though the study was
from a convenience sample of herds, the results would probably be applicable to beef
cattle in general, provided they were fed and managed under reasonably comparable
conditions.

2.2.3  Purposive sample

The selection of this type of sample is based on the elements possessing one or more
attributes such as known exposure to a risk factor or a specific disease status. This
approach is often used in observational analytic studies. If a random sample is drawn
from all sampling units meeting the study criteria, then it becomes a probability sample
from the subset of the target population.

2.3  PROBABILITY SAMPLING

A probability sample is one in which every element in the population has a known nen-
zero probability of being included in the sample. This approach implies that a formal
process of random selection has been applied to the sampling frame. The following
sections will describe how to draw different types of probability sample. Procedures for
analysing data derived from the samples will be discussed in section 2.9.
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2.4  SIMPLE RANDOM SAMPLE

In a simple random sample, every element in the target population has an equal
probability of being included. A complete list of the target population is required and
a formal random process is used (random is net the same as haphazard). Random
sampling can be based on drawing numbers from a hat, using computer-generated
random numbers, using a random-numbers table, flipping a coin or throwing dice.

For example, suppose you wish to draw a sample of the 5,000 small animal patients in
a veterinary clinic to determine the proportion whose vaccinations are up to date. You
require a sample of 500. You could draw up a list of all 5,000 patients, number each
name on the list, and then randomly pick 500 numbers between 1 and 5,000. These
numbers would identify the animals whose records you would examine.

2.5  SYSTEMATIC RANDOM SAMPLE

In a systematic random sample, a complete list of the population to be sampled is
not required provided an estimate of the total number of animals is available and all
of the animals (or their records) are sequentially available (eg cattle being run through
a chute). The sampling interval () is computed as the study population size divided
by the required sample size. The first element is chosen randomly from among the first
Jj elements, then every /™ element after that is included in the sample. It is a practical
way to select a probability sample if the population is accessible in some order, but bias
might be introduced if the factor you are studying is related to the sampling interval.
Consequently, a simple random sample would be preferable, but might not be feasible.

Assume once again that you want a sample of 500 patients in a veterinary clinic. You
know how many you need to sample (500) and approximately how many patients
there are (5,000) but generating a list of those patients would be very time consuming.
However, all of their records are in a file cabinet. You need to sample every 10" patient.
To start, randomly pick a number between 1 and 10, then pull out every 10™ file after
that to obtain the data. Data from a systematic random sample are analysed as though
they were derived from a simple random sample.

2.6  STRATIFIED RANDOM SAMPLE

Prior to sampling, the population is divided into mutually exclusive strata based on
factors likely to affect the outcome. Then, within each stratum, a simple or systematic
random sample is chosen. The simplest form of stratified random sampling is called
proportional (the number sampled within each stratum is proportional to the total
number in the stratum). There are three advantages of stratified random sampling.
1. It ensures that all strata are represented in the sample.
2. The precision of overall estimates might be greater than those derived
from a simple random sample. The gain in precision results from the fact
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that the between-stratum variation is explicitly removed from the overall
estimate of variance.
3. It produces estimates of stratum-specific outcomes, although the precision

of these estimates will be lower than the precision of the overall estimate.
For example, assume you believe that cats are less likely to be up to date on vaccines
than dogs are. You would make up two lists — one of cats and one of dogs — and sample
from each list. If 40% of the patients are cats, then 500*0.4=200 cats would be selected,
and 300 dogs would be selected.

2.7 CLUSTER SAMPLING

A cluster is a natural or convenient collection of elements with one or more
characteristics in common. For example:

= alitter is a cluster of piglets,

® adairy herd is a cluster of cattle,

= apen in a feedlot is a cluster of cattle, and

= acounty is a cluster of farms.

In a cluster sample, the primary sampling unit (PSU) is larger than the unit of
concern. For example, if you wanted to estimate the average serum selenium level
of beef calves in PEL you could use a cluster sample in which you randomly selected
farms, even though the unit of concern is the calf. In a cluster sample, every element
within the cluster is included in the sample.

Cluster sampling is done because it might be easier to get a list of clusters (farms) than
it would be to get a list of individuals (calves), and it is often less expensive to sample a
smaller number of clusters than it is to travel around to collect information from many
different clusters.

In this example of cluster sampling, a survey to determine the average serum selenium
level of beef calves in PEI was conducted. Fifty herds were selected from a provincial
herd list and every calf in each of the 50 herds was bled at weaning. A cluster sample is
convenient because it is impossible to get a complete list of beef cattle in PEI, but it is
easy to get a list of the beef producers. It is also more practical to sample all cattle on 50
farms than it is to drive around to all ~300 beef farms in PEI and sample a few animals
on each farm. Of course, calves within a herd are probably more alike than calves from
different farms, so the sampling variation for a given number of individuals is greater
than if they had been chosen by simple random sampling.

When a group is not a cluster In cluster sampling, a group is a cluster of individuals.
A sample is a cluster sample if the group is the sampling unit and the elements within
the group are the unit of concern. When the group is both the sampling unit and the
unit of concern, then by definition, the sample is not a cluster sample. For example, the
following is not a cluster sample: a sample of herds to determine whether or not the
herds are infected with a particular disease agent (in this case, the herd is the unit of
concern, not the individual animals).
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2.8 MULTISTAGE SAMPLING

A cluster might contain too many elements to obtain a measurement on each, or it might
contain elements so nearly alike that measurement of only a few elements provides
information on the entire cluster. Multistage sampling is similar to cluster sampling
except that, after the PSUs (eg herds) have been chosen, then a sample of secondary
units (eg animals) is selected. Assume again that you are interested in the serum
selenium level of beef calves at weaning, and that within-farm variation is small. That
means that you don’t need to sample very many cattle on a particular farm to get a good
estimate of the serum selenium level of all the calves on that farm. Consequently, you
might only sample a small number of individuals on each farm.

If you want to ensure that all animals in the population have the same probability of
being selected, two approaches are possible. First, the PSUs chosen might be selected
with a probability proportional to their size. In other words, if the herd size is known
ahead of time, large herds should have a higher probability of being chosen than small
herds. After the number of herds is chosen, you select a fixed number of calves in each
herd to get serum samples from. If herd size is not known ahead of time, take a simple
random sample of the PSUs and then sample a constant proportion of the calves in each
herd. Either approach will ensure each animal has the same probability of selection. If
this is not the case, the probability of selection needs to be accounted for in the analysis
(see section 2.9.2).

How many herds and how many animals to sample within each herd depend upon
the relative variation (in the factor(s) being measured) between herds, compared
with within herds, and the relative cost of sampling herds compared with the cost of
sampling individuals within herds. In other words, when the between-herd variation is
large relative to the within-herd variation, you will have to sample many more herds to
get a precise estimate. Multistage sampling is very flexible where cost of sampling is
concerned. If you are like most researchers, you are working on a limited budget and,
when it is expensive to get to herds, you will want to sample as few as possible. On the
other hand, if the cost of processing samples from an individual animal is high relative
to the cost of getting to the farm, you will want to sample fewer animals per farm. It is
desirable to have the most precise estimate of the outcome for the lowest possible cost.
These two desires can be balanced by minimising the product of the variance and the
cost. Regardless of the total sample size for the study (#), the variance*cost product can
be minimised by selecting »; individuals per herd according to the following formula:

2
n, = Oy *C_I
r— 2
O, Cy Eq2.1

where 7, is the number of individuals to be sampled per herd, o7 and o7 are the

between- and within-herd variance estimates and c,, and ¢, are the costs of sampling
herds and individuals, respectively. The value for n; needs to be rounded to an integer
value and cannot be less than 1. Once the number of individuals per herd has been
determined, the number of herds to be sampled is then n,=n/n,.
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Keep in mind that cluster and multistage sampling almost always require more subjects
for the same precision than simple random sampling. Example 2.1 describes a stratified
multistage sampling approach. Multistage sampling, as the name suggests, can be
extended to more than the two levels discussed above.

Example 2.1 Multistage sampling

data=dairy_dis

A study was conducted in the three Maritime provinces of eastern Canada to determine the
prevalence of serologic reactions to three infectious diseases of dairy cattle: Johne’s disease
(Map), enzootic bovine leukemia virus and Neospora caninum. The dataset is described in
Chapter 27. The study had the following characteristics:

*  The external population was all dairy herds in the region.

=  The target population was all dairy herds in the region that participated in an
official milk-recording programme (approximately 70%).

= The sampling frame was a list of all herds in the target population (provided by the
milk-production testing programme).

= Sampling was stratified by province with 30 herds being randomly selected within
each province.

»  Sampling was carried out as multistage sampling with the herds being selected
first and then 30 cows randomly selected within each of the herds. The sampling
frame within each herd was the list of cows on the milk-recording programme:

=  The study population consisted of the animals selected for participation in the
study.

= All random sampling was performed using computer-generated, random
numbers.

These data will be used in Examples 2.2 through 2.4.
g R R e R

2.9 ANALYSIS OF SURVEY DATA

The nature of the sampling plan needs to be taken into account when analysing data
from any research project involving a complex sampling plan. (Note Although referred
to as ‘survey’ data, the concepts discussed in this chapter apply equally to the analysis
of data from analytic studies based on complex sampling plans.). There are three
important concepts that have been raised in the above discussion of various sampling
plans: stratification, sampling weights and clustering. In addition to these, the possibility
of adjusting estimates derived from finite populations must be considered.

2.9.1 Stratification

If the population sampled is divided into strata prior to sampling, then this needs to
be accounted for in the analysis. For example, in a study of the prevalence of Johne’s
disease in cattle herds, the herds might be divided into dairy and beef. The advantage
of such stratification is that it provides separate stratum-specific estimates of the
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outcome of interest. If the factor upon which the population is stratified is related to the
outcome (eg prevalence of Johne’s in the two strata), then the standard error (SE) of
the overall prevalence estimate might also be lower than if a non-stratified sample was
taken. Correct accounting for the stratified nature of the sample requires that the total
population size in each stratum be known in order to get the sampling weights correct
(section 2.9.2).

In Example 2.2, the Neospora data have been analysed ignoring the stratification by
province, and then by taking it into account.

Example 2.2 Analysis of stratified survey data
data=dairy: dis
Valid test values for Neospora caninum were obtained from 2,425 cows. A simple estimate

(treating the sample as a simple random sample) of the overall seroprevalence was 0.1905
(19.05%) and the SE of that estimate was 0.0080 (0.80%).

If the data are stratified by province, the seroprevalence estimates are as follows:

Seroprevalence
Number of
Province samples Prevalence SE (prevalence)
1 810 0.1012 0.0106
2 810 0.2111 0.0143
3 805 0.2596 0.0155
Overall 2425 0.1905 0.0080

There are considerable differences across the provinces in terms of the seroprevalence of
N. caninum. The SE of the overall estimate from the stratified sample is slightly smaller
than when the data were treated as a simple random sample, but the difference is minimal.
Stratification alone does not change the overall point estimate of the prevalence. Note This
analysis is provided for pedagogical purposes only. It would not be correct to ignore the
sampling weights (section 2.9.2) given that the non-proportional sampling was carried out
across strata.

S

2,92 Sampling weights

Although probability sampling requires that a formal random process be used to
select the sample, it does not imply that all units sampled have the same probability of
selection. If a sample of herds is selected from a target population and a sample of cows
is selected within each of those herds, then the probability of selection for any given
cow can be computed as:

p(selection) = % * % Eq2.2
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where 7 is the number of herds in the sample, N is the number of herds in the target

population, m is the number of cows that were selected from the sampled herd, and M

is the number of cows in that herd. For example, assume that 10 herds are selected out

of 100 in a region and that in each herd, 20 animals are sampled. If herd A is an 80-cow

herd, the probability that a cow in that herd will ultimately end up in the sample is:
10/100 * 20/80 = 0.025 (2.5%)

Similarly, if herd B is a 200-cow herd, the probability that a cow in that herd will be in
the sample is:
10/100 * 20/200 = 0.01 (1%)

These different probabilities of selection need to be taken into account in order to obtain
the correct point estimate of the parameter of interest.

The most common way of forming sampling weights is to make them equal to the
inverse of the probability of being sampled. This value reflects the number of animals
that each of the sampled individuals represent. For example, a cow in herd A would
actually represent 1/0.025=40 cows in total. A cow in herd B would have a sampling
weight of 1/0.01=100 because she had a much smaller probability of selection.

In Example 2.3, the overall prevalence of Neospora has been computed taking sampling
weights into consideration.

Example 2.3 Analysis of weighted survey data

data=dairy dis

Cows within the study population had different probabilities of being selected for the sample.
Two factors influenced this:

= the probability that the herd would be selected
= the probability that the cow would be selected within the herd.

Herd selection probability: Within each province the probability of a herd being selected was
30 divided by the total number of herds on the milk-recording programme ‘in the province.
For example, herd 2 was in province 3, in which there were 242 herds on milk recording.
Consequently, the probability of this herd being selected was 30/242=0.1240 (12.40%).

Cow selection probability: Within each herd, the probability of a cow being selected was the
total number of cows sampled within the herd divided by the total number of cows in the herd
on the day the herd list was generated. For example, 27 samples were obtained in herd 2, from
the 128 cows on the herd list. A cow in this herd (eg cow # 86) has a selection probability of
27/128=0.1875 (18.75%). '

Overall selection probability: The overall selection probability for cow 86 in herd 2 was the
product of the above two probabilities: 0.1240%0.1875=0.0232 (2.32%).

Sampling weights: The sampling weight applied to cow 86 in herd 2 was the inverse of the
overall selection probability: 1/0.0232=43.02. Effectively, the results from this cow were
considered to represent 43 cows in the population.

Taking the sampling weights into consideration, the overall estimate of the prevalence of N,
caninum was 0.2020 (20.20%), with an SE of 0.0095 (0.95%). Incorporating weights into the
analysis has changed the point estimate of the prevalence and has also increased the SE.

. -~~~
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2.9.3 Clustering

Cluster sampling and multistage sampling involve the sampling of animals within
groups. Animals within groups are usually more alike (with regard to the outcome
being measured) than animals chosen randomly from the population. From a statistical
perspective, this means that these observations are no longer independent and this lack
of independence must be taken into account in the analysis. Failure to do so will almost
always result in estimated SEs that are smaller than they should be.

Clustering occurs at multiple levels. For example, udder quarters are clustered within a
cow while the cows are clustered within a herd. In Chapters 20-22, we discuss techniques
for evaluating the amount of clustering at each of the possible levels. However, when
analysing survey data, one often wants to simply deal with the clustering as a nuisance
factor in order to obtain correct estimates of the SEs. The simplest approach to this is
to identify the PSU (eg herd) and adjust the estimate for all clustering effects at levels
below this (eg clustering within cows and within herds).

Computation of the appropriate variance estimates in the presence of clustering is not a
straightforward matter and requires software specifically designed for the process. One
approach to the computation is to use a ‘linearisation variance estimate’ based on a first-
order Taylor series linear approximation (Dargatz, 1996). That is the approach used in
Example 2.4, in which the overall prevalence of Neospora has been estimated taking
the within-herd clustering into account. Herds were the PSU and cows were sampled
within herds.

2.9.4 Finite population correction

In most epidemiologic studies, sampling is carried out without replacement. That
is, once an element has been sampled, it is not put back into the population and
potentially sampled again. If the proportion of the population sampled is relatively high
(eg >10%), then this could substantially increase the precision of the estimate over what
would be expected from an ‘infinite-sized’ population. Consequently, the estimated
variance of the parameter being estimated can be adjusted downward by a finite
population correction (FPC) factor of:

N-n
N-1 Eq2.3

FPC=

where N is the size of the population and # is the size of the sample.

Note An FPC should not be applied in cases where multistage sampling is carried out,
even if the number of PSUs sampled is >10% of the population.

2.9.5 Design effect

The overall effect of the nature of the sampling plan on the precision of the estimates
obtained can be expressed as the design effect (referred to as deff). The deff is the
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Example 2.4 Analysis of multistage survey data

data=dairy_dis

The dairy disease data were sampled in a multistage manner with herds being the primary
sampling unit. If the multistage nature of the sample was taken into account (in addition to
the stratification and sampling weights), the overall prevalence estimate remains at 0.2020
(20.20%) but the SE increases to 0.0192 (1.92%).

A summary of the estimates of the overall seroprevalence taking various features of the
sampling plan into account is shown below.

Seroprevalence

Type of analysis Estimate SE

Assuming it was a simple random sample 0.1905 0.0080
Taking stratification into account 0.1905 0.0079
Taking stratification and sampling weights into account 0.2020 0.0095

Taking stratification, sampling weights and clustering
into account 0.2020 0.0192

The last row contains the most appropriate estimates for the seroprevalence (and SE)
of Neospora caninum. The design effect from this analysis was 5.5 which indicates that
correctly taking the sampling plan into consideration produces an estimate of the variance of
the prevalence which is 5.5 times larger than the estimate would have been if a simple random
sample of the same size (n=2,425) had been drawn.

e Sl

ratio of variance obtained from the sampling plan used to the variance that would have
been obtained if a comparable-sized, simple random sample had been drawn from the
population. A deff >1 reflects the fact that the sampling plan is producing less precise
(larger variance) estimates than a simple random sample would have. (Of course, a
simple random sample is often impossible to obtain.) The deff of the sampling plan
computed in the Neospora study is also presented in Example 2.4.

2.10 SAMPLE-SIZE DETERMINATION

The choice of sample size involves both statistical and non-statistical considerations.
Non-statistical considerations include the availability of resources such as time, money,
sampling frames, and some consideration of the objectives of the study. Interestingly,
cost can be factored into sample-size calculations, and the greater the cost per sampled
element, the smaller the sample size when the budget is fixed.

Statistical considerations include the required precision of the estimate, the variance
expected in the data, the desired level of confidence that the estimate obtained from
sampling is close to the true population value (I-a) and, in analytic studies, the power
(I-p) of the study to detect real effects.
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2.10.1 Precision of the estimate

Whether you want to determine the proportion of cull cows at slaughter that test
positive for Johne’s disease or to estimate the average weight of beef calves at weaning,
you must determine how precise an estimate you want. The more precise you wish to
be, the larger the sample size you will require. If you want to know how many cull cows
are Johne’s positive within £5%, you will have to sample more cows than if you were
only interested in obtaining an estimate within +10%. Likewise, if you wanted your
estimate of the average weaning weight to be within 2 kg of the real population value,
you would need to weigh more calves than if you only needed to be within 5 kg of the
true population mean.

2.10.2 Expected variation in the data

The natural variation inherent in the data must be taken into account when calculating
sample size. The variance of a simple proportion is p*q, where p is the proportion of
interest and ¢ is (1-p). Consequently, to estimate the sample size necessary to determine
a proportion, then (paradoxical as it might seem) you must have a general idea of the
proportion that you expect to find.

The measure of variation used for the estimation of the required sample size of a
continuous variable such as weaning weight is the population variance (62). We often
don’t know what the standard deviation (o) is, so we have to estimate it. One way to do
this is to estimate the range that would encompass 95% of the values and then assume
that range is equal to 40. For example, if you think that 95% of calves would have
weaning weights between 150 kg and 250 kg, then a rough estimate of the ¢ would be
(250-150)/4=25 kg, and the variance would be 625 kg.

2.10.3 Level of confidence

In descriptive studies, we must decide how sure we want to be that the confidence interval
(CI) from your estimate will include the true population value. Similarly, in analytic
studies, we must decide on the certainty we want that any difference we observe between
two sampled groups is real and not due to chance. This is referred to as confidence and it
is most commonly set to 95% (Type I (a) error rate of 5%).

2.10.4 Power

The power of a study is the ability of it to find an effect (eg a difference between
two groups) when a real difference of a defined magnitude exists. For example, if the
real difference in weaning weights between male and female calves is 20 kg, then a
study with a power of 80% would detect a difference of this magnitude (and declare
it statistically significant) 80% of the time. To increase the power, it is necessary to
increase the sample size. The Type II (f) error rate is 1-power.

Precision and power have been presented as two separate issues although they arise
from the same conceptual basis. Sample sizes can be computed using either approach,
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although they will produce different estimates.
2.10.5 Sample-size formulae
The formulae for sample size required to estimate a single parameter (proportion

or mean), or to compare two proportions or means, are shown below the following
definitions:

Zy Z0.05=1.96 The value of Z, required for confidence=95%.

Note This is a 2-tailed test. ~ (Z, is the (1-a/2) percentile of a standard normal
distribution)

Zg Zy.80=-0.84 The value of Zg required for power=80%

Note This is a 1-tailed test.

L=the precision of the estimate (also called the ‘allowable error’ or ‘margin of
error’) equal to ¥ the confidence interval

p=a priori estimate of the proportion (p,, p, — estimates in the two groups in an
analytic study)

g=1-p
o%=a priori estimate of the population variance
u=a priori estimate of the population mean (u,, u, — estimates in two groups)

Estimating proportions or means
n=sample size

To estimate a sample proportion with a desired precision:

_Zipq

=T Eq24
To estimate a sample mean with a desired precision:
_Zo’
I? Eq25

n

Comparing proportions or means
n=sample size per group

To compare two proportions:

2
e 2.4CPa) - Z,v/Pai + P22 ]
(pi=p) Eq26
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To compare two means:

n= (Za _Zﬂ)zdz}
_2[ (/‘1 _,Uz)z

Eq2.7

Note The formulae shown above are approximations and most software will compute
sample sizes using more ‘exact’ formulae.

Sampling from a finite population
If you are sampling from a relatively small population, then the required sample size
(n") can be adjusted downward using the following FPC factor:

, i

n=—————
In+l/N Eq2.8

where n=the original estimate of the required sample size in an infinite population and
N=the size of the population.

It is useful to make this finite population adjustment when computing the sample size
for a simple or stratified random sample if the sampling fraction exceeds 10%. It is
only applied to descriptive studies, not to analytic studies or controlled trial sample size
calculations.

Example 2.5 shows the calculation of a sample size for a study comparing two
proportions.

Example 2.5 Sample size for comparing proportions

Assume that you want to determine if a vaccine (administered at the time of arrival) reduces
the risk of respiratory disease in feedlot steers. For the vaccine to be worth using, you would
want it to reduce the risk from the current level of 15% to 10% of animals affected. You want
to be 95% confident in your result and the study should have a power of 80% to detect the
5% reduction in risk.

p1=0.15 2,=0.10 »,=0125

q,=0.85 q,=0.90 4,=0.875
Zyos = 1.96 Zy50=—0.84

2
, [196v2*0.125%0.875 ~(~0.84)10.15%0.85+0.10*0.90 ]
(0.15-0.10)
=676

Consequently, you would require 1,352 (676*2) animals with 676 being vaccinated and the
rest not vaccinated. A sample size derived using exact formulae is 726 animals per group.
]
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2.10.6 Adjustment for clustering

In veterinary epidemiologic research, we often deal with clustered data (eg cows
clustered within herds) with units within the cluster (eg cows) being more similar to
each other with respect to the outcome than observations drawn randomly from the
population. If our study is taking place exclusively at the lower (cow) level, with the
factor of interest distributed at the cow level independent of the herd, and the outcome
measured at the cow level, this clustering does not present a problem when computing
the necessary sample size. Such a situation arises when conducting a controlled trial
of a treatment that is randomly assigned to cows within herds (ensuring that treatment
allocation is independent of herd) and the outcome is measured at the cow level (eg
days from calving to conception in dairy cows).

However, if the factor of interest is something that occurs at the herd level (eg barn
type: freestall vs tiestall), then the number of herds in the study becomes a more
critical concern than the number of cows (even though the outcome is measured at the
cow level). The total sample size will need to be increased with the magnitude of the
increase depending on:

1. the degree to which observations within a herd are similar (measured by a
parameter called the intra-cluster (or intra-class) correlation coefficient) (section
21.2.1) and,

2. the number of cows sampled per herd (having many cows sampled within a herd
is of little value if the cows within a herd are very similar). The formula for
adjusting the sample size is:

n’ =n(1+ p(m—1)) Eq2.9

where n” is the new sample size, 7 is the original sample size estimate, p is the intra-
cluster correlation coefficient and m is the number of cows sampled per herd. See
Chapter 20 for further discussion of this issue. In Example 2.6, the sample size estimate
from Example 2.5 is adjusted for a group-level study.

If the factor of interest is measured at the cow level (eg parity), but also clusters within
herds (ie some herds have older cows than other herds), then the required sample size
will lie somewhere between the simple estimate (ignoring clustering) and the much
more conservative estimate required for herd-level variables. Which of these two
extremes it lies closest to will depend on how highly ‘clustered’ the factor of interest is
within herds.

2.10.7 Adjustment of sample size in multivariable studies

If you want to consider confounding and interaction (Chapter 13) in your study, you
generally need to increase your sample size (Smith and Day, 1984). If the confounder
is not a strong confounder (odds ratio (OR) with disease and exposure between 0.5 and
2), then about a 15% increase is needed. If it is a stronger confounder, then a greater
increase in study size should be used. For continuous-scaled confounders, consider the
correlation of the confounder with the exposure variable p_.. The increase in sample
size is (1- p2)™" . For k covariates, the approximate increase is:
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1-p2 Eq2.10

, (1+(k=1)p2
e n( (k=1)pe. j
where p, is an average correlation between the confounder and the exposure variable
of interest. Thus, for five covariates with a p_, approximately equal to 0.3, the increase
in study size is 50%.

A similar approach was used by Hsieh et al (1998). They started with a simple approach
to estimating sample size for one covariate and then modified this for the multivariable
situation using the variance inflation factor (VIF).

n'=n*VIF Eq2.11

where VIF = 1/(1-p?  ,5__p)

Note that p?,, 5, is the squared multiple correlation coefficient (between covariate
1 and the remaining k-1 variables) or, the proportion of variance of factor 1 that is
explained when it is regressed on the other k-1 variables. In general, as p increases, then
the multiple correlation increases, as does the VIF. The approach to estimating the VIF
is the same for both continuous and binary covariates.

Example 2.6 - Sample size with clustering
data=none

If it is not possible to randomly assign the vaccine or placebo to steers within a pen and
then keep track of individuals through their feeding period, then you might want to conduct
the study by randomly assigning some pens to be vaccinated and other pens to receive the
placebo. Rates of respiratory disease tend to be highly clustered within pens and, from
previous work,: you know the intra-class correlation (p) for respiratory disease in pens in
feedlots is about 0.3

Assuming that there are about 50 steers in each pen, the revised sample size that you will
need will be:

n =n(l+ p(m-1))
 =676(1+0.3(50-1))
=10613

Consequently, you will need 10,613 steers per group or 10,613/50=212 pens allocated to
each group. This very large increase in sample size is'a function of the fact that the intra-
cluster correlation for respiratory disease is quite high and we are using a large number of
observations (50) in each pen.

]
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2.10.8 General approaches to sample-size estimation

As indicated in section 2.10.5, computing sample size for analytic studies (eg comparing
two means) can be done either by specifying the desired power of the study to detect
a difference of a defined magnitude, or by specifying the desired width of the CI for
the difference being estimated (ie a precision-based approach). In simple situations,
these calculations are relatively straightforward. Two approaches to generalising these -
calculations for more complex study designs are described below.

Precision-based sample-size computations
The general formula for the width of a confidence interval of a parameter is:

par = Z * SE(par) Eq2.12

where par is the parameter being estimated, Z is the desired percentile of the normal
distribution and SE(par) is the SE of the parameter estimate.

Note Z is being used as a large sample approximation for the #z-distribution, and for
simplicity’s sake will be used throughout these examples.

For linear regression models, the SE of any parameter can take the general form of:
SE(par) = o*c Eq2.13

where o is the estimated standard deviation from the model and ¢ is a value which
will depead on the design of the study. For example, for estimating a mean in a single
sample:

c=+ifn=1/Vn Eq2.14
where # is the sample size.

For a comparison of means from two samples:
c=4/2/n

where # is the sample size in each of the two groups.

The formulae for the CI can be inverted to solve for n. For example, to estimate the
difference between two means with the CI of the estimate being 2L units long (ie £L),
then:

L=Z*0‘*,}2/n Eq2.15

Based on this, the sample size required is:
27Z%c?
I? Eq2.16

n=

Eq 2.15 is the 2-sample analogue of Eq 2.5.
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Note Unlike in Eq 2.7, we have not specified a Zy nor have we specified hypothesised
‘true’ values for the two means. The sample size estimated is the one required to provide
a confidence interval (for the difference) with a desired width (2L), regardless of what
the actual difference is.

This approach can be generalised to any sort of sample-size estimation, provided that the
structure of ¢ can be determined. This is based on the design of the study. For example,
computing the sample size required to evaluate a two-way interaction between two
dichotomous variables is equivalent to evaluating mean values in each of four possible
groups (formed by the possible combinations of the two variables). Consequently:

c=+/4/n
and the sample size required will be:
42%c°

n= LZ

This leads to the useful guideline that a study in which you want to evaluate interactions
among dichotomous variables needs to be 4 times as large as is required to estimate
main effects.

Power calculation by simulation

An approach to power calculation that is applicable to almost any analytical situation
is one that is based on simulation. In general, you simulate a large number of datasets
that are representative of the type that you are going to analyse and then compute the
proportion of times that the main factor you are interested in has a P-value below
the level you have set for significance (eg 0.05). This approach can be applied to
multivariable regression-type models as well as simpler unconditional analyses.

There are two approaches to generating the simulated datasets. In the first (and
simplest) approach, you might want to evaluate the power of a study which you have
already conducted. For example, let’s assume that you have conducted a controlled trial
of pre-milking teat-dipping as a means of reducing the frequency of clinical mastitis
cases in dairy cows. You did the study in 600 cows (300 in the treatment group and 300
in a control group), with data from one full lactation for each cow. Your outcome (¥) is
the number of mastitis cases in each lactation and you are confident that this followed a
Poisson distribution. (See Chapter 18 for details of Poisson regression.) Although you
randomly assigned cows to the two treatment groups, you still want to control for parity
in your analysis so ultimately you fit a Poisson model of the following form:

In E(Y) = B, + B (parity) + 3, (treatment)

When you analysed the data, the coefficient for treatment was -0.23 (suggesting that
treatment reduced the frequency of mastitis), but it was not significant and you want
to determine what power the study had to detect an effect of the magnitude that you
found.
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The steps involved in determining the power by simulation are:

1. For each observation in the dataset, compute the predicted value based on the
coefficients from the model and the particular X values (parity and treatment) for
the observation.

2. Generate arandom value for the outcome from a Poisson distribution with a mean
at the predicted value. (In this case, you don’t need to worry about the variance of
the distribution because the mean and variance of a Poisson distribution are
equal.)

3. Reanalyse the data and note the P-value for the coefficient for the treatment (,)
effect.

4. Repeatsteps 1-3 many times (eg 1,000) and determine the proportion of datasets in
which the P-value for the treatment effect is <0.05. This is an estimate of the power
of the study to detect a true effect corresponding to 5,=-0.23.

Note This post-hoc power calculation has been presented because it is the simplest
example of the use of simulation methods for sample-size calculation. In general, post-
hoc power calculations are not useful (Smith and Bates, 1992).

If you want to compute sample sizes prior to conducting a study, the process is similar
except that you start by creating a hypothetical dataset based on an expected final
model. This means that you will need to specify the distributions of the X variables, the
size of the dataset, the hierarchical structure of the data (if it is hierarchical in nature;
see Chapters 20-22) and all of the relevant variance estimates. A paper outlining the
general procedure is available (Feivesen, 2002). An example of the determination of
the power of an already-completed study is shown in Example 2.7.

2.11 SAMPLING TO DETECT DISEASE

Sampling to detect the presence (or confirm the absence) of disease is fundamentally
different than sampling to estimate a parameter such as the prevalence of disease. If you
want to be absolutely certain that a disease is not present in a population, then the only
option is to test the entire population (and even this only works if the test you have is
perfect). As this is rarely feasible, we rely on the fact that most diseases, if present in
a population, will exist at or above some minimal prevalence. For example, we might
think that if a contagious disease was present in a population, it would be very unlikely
that less than 1% of the population would be infected. Based on this, you can compute
a sample size required to be reasonably confident that you would detect the disease if
the prevalence was 1% or higher.

If you are sampling from a finite population (eg <1,000 animals), then the formula to
determine the required sample size is:

n=(1-@o ) w25 Eq 207

where:
n = required sample size
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a = l—confidence level (usually a=0.05)

D = estimated minimum number of diseased animals in the group (population
size*minimum expected prevalence)

N = population size

Example 2.7 - - Power calculation by simulation

data=pig adg

You have carried out a study to evaluate the effects of internal parasites (ascarids) and
respiratory diseases on growth rates in swine. You carry out a regression analysis to evaluate
the effects of the presence of adult worms (observed in the intestinal tract at slaughter) on the
pig’s average daily gain (adg). In this regression analysis, you also adjust for the effects of the
sex of the pig and the farm of origin. The important results from that regression analysis are:

= the coefficient for the presence/absence of worms is -7.7 suggesting that pigs with
worms in the intestinal tract gained 7.7 gm/day less than pigs without worms.

» - the P-value for the coefficient was 0.25 so you have relatively little confidence that
the estimate was really different from 0.

= - the standard error of prediction for adg was 46.9 gms/day (this represents the
standard deviation of predicted results — see Chapter 14).

Your study was carried out in 341 pigs (114 with worms and 227 without) and you want to
know how much power such a study had to detect an effect IF the real effect of worms was to
reduce growth rates by 7.7 gm/day.

You generate 1,000 datasets with randomly generated adg values. For each pig in each dataset,
the adg value is drawn from a normal distribution with the following characteristics:

= . it has a mean value that corresponds to the predicted value from the real data that
you: started with (ie based on the pig’s worm status, sex and farm of origin)

= ithas a standard deviation of 46.9 gmday

You analyse each of these new datasets and determine the proportion that gave a P-value for
the worms’ coefficient that was <0.05. It turns out that the power was 0.218 (21.8%).

If the true effect of worms was -7.7 gmi/day, a study based on 114 positive pigs and 227
negative pigs only had a 21.8% chance of finding a significant effect of worms. This value
compares reasonably closely to a power estimate of 29.9% based on a simple comparison of
two groups (computations not shown).

S

If you are sampling from an infinite population, then the following approximate formula
can be used:

n=Ina/lng Eq2.18

where n=the required sample size, a is usually set to 0.05 or 0.01, g=(1-minimum
expected prevalence).

If you take the required sample and get no positive results (assuming that you set « to
0.05), then you can say that you are 95% confident that the prevalence of the disease in
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the population is below the minimal threshold which you specified about the disease
in question. Thus, you accept this as sufficient evidence of the absence of the disease.
Example 2.8 shows the calculation of the required sample size to determine freedom
from Mycoplasma in a sow herd.

Example 2.8 Sample size for freedom from disease

Assume that you want to document the absence of Mycoplasma from a 200-sow herd and
that, based on your experience and the literature, a minimum of 20% of sows would have
seroconverted if Mycoplasma were present in the herd.

n=200 @=005 D=40
re @) (-2
= (1 - (»05)}/40) (200 - 322:.1.)

=(0.072)(180.5)
=13.02213

If you test 13 sows and get all negative test results, you can state that you are 95% confident
that the prevalence of Mycoplasma in the herd is <20%. As you don’t believe that the disease
would exist at a prevalence <20%, you are confident that it is not present. Note This assumes
the test is 100% sensitive and specific. See Chapter 5 for a discussion of test characteristics.

. - -~ "
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SAMPLE PROBLEMS

1. Sampling strategies

The dataset smpltype contains data about the weight gain of 1,114 piglets raised in
a ‘batch-production system’ on six farms in Denmark. On these farms, sows were
‘batch farrowed’ and a group of piglets was then moved at about three weeks of age
from the farrowing barn to the weaner facility. They stayed in this facility until they
were approximately nine weeks old and then were moved to the finishing barn. This
dataset has data on their growth rates from birth up to their transfer to the finishing
barn. The data are a subset of the more complete dataset ap2 (which in turn are part
of a larger dataset collected by Dr Hakan Vigre of Denmark). A description of all of
the variables in the dataset is included in Chapter 27.

In addition to the original data, this dataset contains indicator variables that identify
pigs that were part of a simple random sample, a systematic random sample, a
stratified random sample, a cluster sample and a multistage sample.

a. First, compute the overall population mean for daily weight gain (and its
SE). Although these data are a ‘census’ of the whole study population, they
are a sample of all pigs going through these six farms, so it is legitimate to compute
an SE of the mean.

b. Simple random sample
A simple random sample of 100 pigs was selected using computer-generated
random numbers. This was only possible as we had the complete population
enumerated (ie in real life, this would not have been possible).

i.  What is the estimate (and its SE) of the daily weight gain of piglets up to the
time of transfer, based on the simple random sample?

c. Systematic random sample
The farms were visited in the following sequence: 3, 6, 1, 4, 2, 5 on the day that a
batch of pigs was being transferred from the weaner barn to the finishing barn. As
the pigs were run down the alleyway, the 7" pig was sampled and then every 11"
pig was sampled. (The order they ran down the alleyway is given in the variable
-barn_ord-.) This gave a sample of 101 pigs over the six farms so the last pig was
dropped from the sample to give a final sample size of 100 pigs.

i. What is the estimate (and its SE) of the daily weight gain of
piglets up to the time of transfer?

ii. Do you expect this estimate to be more or less precise than the one based on
the simple random sample?

iii. Is this a biased estimate? If so, why?

d. Stratified random sample
The population was divided into four strata based on the parity of the piglets’ dam.
The strata were parities 1, 2, 3-4, 5+. Within each stratum, a simple random
sample of 25 pigs was selected using computer-generated random numbers. Once
again, this was only possible because we had the complete population

enumerated.
i. What is the estimate (and its SE) of the daily weight gain of the
piglets?

1. First, compute this without paying attention to what the sampling
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probabilities were.
2. Second, incorporate sampling probabilities into your estimate.
Which of these two estimates is better? Why?
ii.  Isthis estimate more, or less precise than the one from the simple random
sample? Why?
ili. What is the main advantage of a stratified random sample over a simple
random sample in this instance?

e. Cluster sample

Two herds (# 2 and # 6) were randomly chosen. All pigs being transferred from the
weaner barn to the finishing barn were selected for the sample giving a total
sample size of 460 pigs.
i.  What is the estimate (and its SE) of the daily weight gain of the
piglets?
1. First, ignore the fact that herds were randomly selected before the
piglets were.
2. Second, take the sampling plan into account in the analysis. What
effect does this have on the precision of the estimate?
ii. Do you need to take sampling weights into account in this analysis?
Multistage sample
The same two herds (#2 and # 6) were selected, but within each herd, 50 pigs were
randomly selected, giving a sample size of 100 pigs.
i.  What is the estimate (and its SE) of the daily weight gain of the
piglets?
1. First, ignore the fact that herds were randomly selected before
the piglets were.
2. Second, take the sampling plan into account in the analysis. What
effect does this have on the precision of the estimate?
ii. Do you need to take sampling weights into account in this analysis?

2. Sample sizes — population means

You are interested in studying aggressive behaviour in dogs and evaluating whether
or not spaying (ovario-hysterectomy) has an influence on that behaviour. You have
developed an ‘aggression index’ which measures the level of aggressive tendencies
in a dog. The scale ranges from 0 (absolutely no aggression) to 10 (the proverbial
‘junk-yard dog’) and can take on non-integer values based on the values from a
series of observations. From previous work, you think that scores in intact (non-
spayed) bitches are approximately normally distributed with the mean score being
about 4.5 and with 95% of bitches scoring between 1 and 8.

a.

How large a sample do you need to take if you want to determine the mean
aggression index value for a new population that you are about to start working
with? Note You have not been given an estimate of the standard deviation of the
distribution, so you will have to use the available data to estimate one.

. If you think that spaying increases the mean aggression index by 0.5 units,

how large a sample will you need to take to be 80% certain of finding a significant
difference (if the true difference is 0.5 units) if you want 95% confidence in your
result? How much power would a study with 100 bitches in each group (spayed and
non-spayed) have to detect a difference of 0.5 units?
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3. Sample sizes — proportions

You are about to start a research project evaluating risk factors for Neospora caninum

infection in dairy herds. Previous work has suggested that the presence of a dog on

the farm might be a risk factor and that the prevalence of N. caninum antibodies in

dairy herds is approximately 10% in farms without a dog and 30% in farms with a

dog.

a. Assuming that approximately one-half of all farms have a dog (ie your best guess as
to the overall population prevalence is 20%), how many cows would you have to
test to get an estimate of the overall prevalence if you wanted to be 95% certain that
your estimate was within 5% of the true prevalence? (Assume you could take a
simple random sample from the study population.)

b. If you wanted to estimate the prevalence within a single 100-cow dairy herd that
had a dog, with an allowable error of 10%, how many cows would you need to
sample?

c. Ignoring the fact that the prevalence of N. caninum antibodies almost certainly
clusters within herds, how many cows would you need to include in your study if
you wanted to detect a difference of 10% versus 30% for cows exposed to a dog
compared with those not exposed? (Assume a power of 80%.)

d. You know that N. caninum antibodies cluster within herds and you guess
that the intra-cluster correlation coefficient is about 0.3. It is also important to note
that ‘presence of a dog’ is a herd-level variable. What impact does this have on your
sample size derived in ‘c.” if you assume that the average herd size is 50 cows?

e. While your main interest is in the effect of dogs as a risk factor for infection, you
are going to investigate a total of 10 possible risk factors in your study. Assuming
that a regression of dog ownership on the other nine factors produces an p*(e?) of
0.2. What effect does this have on your sample size estimate?

4. Sample sizes — detecting disease

A sheep research station that you work with undertook some procedures to eradicate

Maedi-Visna from their flock of about 1,000 ewes. Once they thought that they

were free of the condition, they decided to check if they really were. They would

be satisfied provided that they could be 95% certain that the prevalence in the flock
was <1%.

a. How many sheep do they have to bleed if you assume that a population of 1,000
is essentially ‘infinite’?

b. How does your estimate change if you treat the population as ‘finite’?
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QUESTIONNAIRE DESIGN

OBJECTIVES

After reading this chapter, you should be able to:

l.

2.

Plan a questionnaire with appropriate content.

Write well-crafted questions for that questionnaire.

Format the questionnaire for ease of administration and coding.
Pre-test the questionnaire to identify weak points.

Code data from the questionnaire as a precursor to data entry.
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3.1 INTRODUCTION

Questionnaires are one of the most commonly used tools for collecting data in
veterinary epidemiologic research. The terms questionnaire and survey are often used
interchangeably, but we will use them as follows.

Questionnaire: A data collection tool that can be used in a wide variety of clinical
and epidemiologic research settings.

Survey: An observational study designed to generate descriptive information about
an animal population. Surveys often use questionnaires as a data-gathering tool.

This chapter will focus on the design of questionnaires regardless of whether they are
to be used in a survey or other type of research study. Further discussion of surveys is
presented in Chapter 7.

The development of a questionnaire is a complex process involving consideration of
many aspects of its design. These are discussed below.

Every questionnaire must be handcrafted. It is not only that question-
naire writing must be ‘artful’; each questionnaire is also unique and
original. A designer must cut and try, see how it looks and sounds,
see how many people react to it, and then cut again, and try again.

(Converse and Presser, 1986)

3.1.1 Study objectives

In order for the questionnaire to be effective, it must be carefully planned with
consideration given to a number of design elements. First and foremost, it is essential
that the objectives and information requirements of the study be established. This
process could involve consultation with subject ‘experts’, and with the ultimate
‘users’ of the information (if the data are being collected for use by another group, eg
policymakers). Members of the population to be surveyed should also be consulted in
this phase of the planning process. If previous questionnaires covering the subject matter
of interest have been published, copies of these questionnaires should be obtained.
Previous questionnaires are particularly valuable if a formal validity assessment of
the questionnaire has been carried out, but unfortunately, this is not often the case in
animal-health studies.

3.1.2 Focus groups

Focus groups consisting of 6-12 people provide an opportunity for a structured form
of consultation with members of the intended study population, the end users (target
population) and/or the interviewers. An independent moderator can ensure that the focus
group stays on topic and the discussion is not dominated by one or two individuals.
Focus groups can offer insight into attitudes, opinions, concerns, experiences of the
various stakeholders and help to clarify objectives, data requirements, research issues to
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be addressed, salient definitions and concepts. To be sure the information is preserved
and to avoid ambiguity, the group discussion should be audio or video recorded.

3.1.3 Types of questionnaire

Questionnaires can be qualitative or quantitative. The former are sometimes referred
to as ‘explorative’ questionnaires and consist primarily of open questions (see section
3.3) designed to allow the participant to express freely their views and thoughts on
the subject matter. Qualitative questionnaires can be used in the hypothesis-generation
phase of research when it is necessary to identify all of the issues pertaining to the
research subject. These types of questionnaire are often administered through interviews
and could be taped (with permission) to allow for a detailed evaluation of the content of
the material discussed at a later time. Qualitative questionnaires will not be discussed
further in this chapter and the reader is referred to Creswell (1998) for more details and
Vaarst et al (2002) for a recent example .

Quantitative, or structured, questionnaires are designed to capture information about
animals, their environment, their management efc. They are more often used in
veterinary epidemiology than qualitative questionnaires. All examples used in this
chapter are derived from a structured questionnaire designed to capture information
about veterinary use of post-operative analgesics in dogs and cats (Dohoo and Dohoo,
1996a,b).

3.1.4 Methods of administration

Questionnaires can be administered through a face-to-face interview, a phone interview,
as a mailed questionnaire, or as an internet-based questionnaire. The advantages of a
face-to-face interview are that the purpose of the study can be fully explained, a high
participation rate can usually be obtained, and audio-visual aids can be used (eg photos
of medications when ascertaining what products have been used on a farm). Face-to-face
interviews also help to develop a rapport between the investigator and participant which
might be important if ongoing participation in the study is required. The disadvantages
of this approach are that they are time consuming, expensive, geographically limited to
areas close to interviewers and might be subject to interviewer bias. This last problem
can be avoided, at least in part, by careful training of interviewers.

Telephone interviews share many of the advantages of face-to-face interviews (eg
high response rate, opportunity to explain the study) but are less time consuming and
less expensive. They might be less susceptible to interviewer bias than face-to-face
interviews (eg no visual cues can be given) but are limited in terms of time that a
participant can be expected to spend on the questionnaire. There are also many issues
related to telephone communication which need to be considered (eg some potential
study participants might not have a phone or might have an unlisted number).

Mailed questionnaires are commonly used because they are inexpensive and, being
administered by the respondent, have no potential for interviewer bias. However,
they are more likely to suffer from low response rates, there is no ability to control
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who completes them and they are completely inappropriate if the respondents have
poor literacy. A mean response rate (actually a ‘risk’) of approximately 60% has been
reported from a survey of 236 mailed health-related surveys (Asch et al, 1997) although
there are many examples of 70%+ response rates. Selection bias is a serious concern if
the response rate is low (see Chapter 12), but being able to collect data relatively easily
from a widely dispersed study population makes this an attractive option for many
studies.

Internet questionnaires have become feasible recently and might even be less expensive
than mailed questionnaires. They have the additional advantage that responses can go
directly into an electronic database with no data coding and entry required. However,
they suffer from the same drawbacks as mailed questionnaires and, in addition, are
applicable only to respondents who have access to the internet. Care must also be
taken to prevent individuals from completing multiple copies of the questionnaire. A
text dealing with the design of internet surveys has recently been published (Dillman,
1999).

3.2 DESIGNING THE QUESTION

When drafting questions, you must keep in mind: who is responding, whether or not
the data are readily available, the response burden (ie the length and complexity of
the questionnaire), the complexity, confidentiality and sensitivity of the data being
collected, the reliability of the data (ie validity of question), whether the interviewer or
respondent might find any of the topics embarrassing, and ultimately how the data will
be processed (coding and computer entry).

Responding to a question usually involves four distinct processes: understanding the
question, retrieval of information (from memory or records), thinking and/or making a
judgement if the question is at all subjective, and communicating the answer (written
or verbal). All aspects must be considered for each question. Once a draft of a question
is prepared, ask yourself:

1. Will the respondent understand this question? (The question must be clearly
worded in a non-technical manner.)

2. If the question deals with factual information, will the respondent know the
answer to the question or have to seek out additional information to be able to
answer it? (If additional information is required, the respondent might skip the
question or fabricate an answer.)

3. Does answering the question involve a subjective decision? (If it does, is there
any way to make it less subjective?) If the question deals with opinions or
beliefs, it is bound to be subjective in nature. Special care will be required in the
design of these questions to ensure they elicit the desired information.

4. Are the possible responses clear with an appropriate method of recording the
response?

Questions can be classified as open (if there are no restrictions on the type of response
expected) or closed (if the response has to be selected from a pre-set list of answers).
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Both types are discussed below. Regardless of the format, questions can be regarded as
a diagnostic test and can be evaluated using the same methods discussed in Chapter 5.

3.3  OPEN QUESTION

In general, open questions (also referred to as open-ended questions) are more often
applicable to qualitative than quantitative research because they generate information
that might not be applicable for standard statistical analyses. By their nature, open
questions allow the respondent to express their opinion. Sometimes we might attach a
‘comments’ section on a closed question for this purpose.

One type of open question used in quantitative research, particularly for capturing
numerical data, is the ‘fill-in-the-blank’ question. If possible, it is preferable to capture
numerical data as a value (ie continuous variable) rather than as part of a range. For
example, knowing that a dog weighs 17 kg is preferable to simply knowing which of
the following ranges the weight falls in: (<10, 10-20, 20-30, >30 kg). Numerical data
can be categorised during analysis if need be.

However, in some circumstances, such as when seeking sensitive information (eg total
family income), a respondent might be more willing to indicate a category (range) than
to give a specific numerical value. When capturing numerical data, it is important to
specify the units being used (eg Ib, kg), and it is often desirable to give the respondent
a choice of measurement scale (eg inches or cm). Example 3.1 shows an open question
with an expected numerical response.

Example 3.1 Open question

3. Year of graduation from veterinary school:

Some categorical data are better captured using fill-in-the-blank questions if the range
of possible responses is not known before the questionnaire is administered (eg for
breed of cow: Angus or Angus cross-breed or Angus-Charolais-cross are all possible
valid answers).

3.4 CLOSED QUESTION

In designing closed questions (also called closed-ended questions), the researcher can
choose from a range of possible options. They include:

+  checklist questions (ie check all options that apply)

*  two-choice/multiple-choice questions

* rating scale questions (ie rate the response on a defined scale)
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» ranking questions (e rank the options in order of priority).
The advantages of closed questions are that they are generally easier for the respondent
to answer (while maintaining consistent responses) and it is easier to code the responses
(prior to data entry).

However, closed questions are difficult to design and there is always a risk that closed
questions might either oversimplify an issue or elicit answers where no knowledge or
previous opinion exists. Sometimes a closed question might request information in a
format that is different from what a respondent usually uses (eg you might ask for herd-
average milk production based on litres per cow per day while the producer assesses
milk production using average 305-day production values).

3.4.1 Checklist question

A checklist question is similar to a multiple-choice question except that the respondent
is asked to check all responses that apply (so they need not be mutually exclusive or
jointly exhaustive). They are equivalent to having a series of ‘yes/no’ questions for
each category. Consequently, each option on the list requires a separate variable in the
database.

3.4.2 Two-choice/multiple-choice question

In two-choice/multiple-choice questions it is important to have categories that are
mutually exclusive (ie no overlap) and jointly exhaustive (ie cover all possibilities).
The addition of a category of ‘other - please specify’ (semi-open question) as the last
choice can ensure that the options are jointly exhaustive. However, if the question
has been well designed, there should not be a lot of responders using this option. It
is recommended that the list of possible choices not exceed five in face-to-face or
telephone-interview questionnaires and 10 in mailed/internet questionnaires. There is
some evidence that respondents more frequently choose items at the top of a list. This
problem can be avoided by having multiple versions of the questionnaire with varying
orders to these questions. However, this adds complexity to the data-coding process.
Data derived from a two-choice/multiple-choice question can be stored as a single
variable in the database (see Example 3.2).

Example 3.2 Muitiple-choice question (questionnaire sent only to
veterinarians doing some companion animal practice)

6. Type of practice (check one only):
Mixed

Small animal exclusively
Feline exclusively

Referral (please specify type)
Other (please specify type)

_

PR N

ogooono
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3.43 Rating question

Rating questions require the respondent to assign a value based on some pre-defined
scale. Responses might be ordinal, such as a Likert scale in which the respondent states
their level of agreement with a statement (eg strongly agree, agree, neither agree nor
disagree, disagree and strongly disagree) or recorded on a more continuous numerical
scale (eg a scale of values from 1 to 10) as in Example 3.3. Continuous data can also
be captured using a visual analog scale in which the respondent puts a mark on a line
of a given length and the rating assigned is based on how far along the line the mark is
(Houe et al, 2002).

Example 3.3 Rating question

In your opinion, how severe would the pain be in dogs in the first 12 hours after each of the
following surgeries if no post-operative analgesics were given? Estimate the pain on a 10-
point scale where 1 equals no pain at all and 10 equals the worst pain imaginable (circle one
number).

11.  Major orthopedic surgery 123456789 10 don’tknow
12.  Repair of ruptured cruciate 123456789 10 don’tknow
13.  Abdominal surgery (non-OHE) 123456789 10 don’tknow
14.  Ovario-hysterectomy (OHE) 123456789 10 don’tknow
15.  Castration 1234567 89 10 don’tknow
16.  Dental surgery 1234567 89 10 don’tknow

There are several issues to be considered when developing rating questions. If there are
distinct categories, you must decide how many categories there should be and whether
or not there should be a middle ‘neutral’ category (eg neither agree nor disagree). It has
been suggested that the scale contain a minimum of 5 to 7 points in order to avoid a
serious loss of information resulting from translating an underlying continuous response
into a series of categories (Streiner and Norman, 1995). For data on a numerical scale,
respondents might be unwilling to select values at either end of the scale, particularly
if many values (eg 1 through 10) are available. It is also advisable to provide an option
for ‘don’t know/no opinion’ or ‘not applicable’ in order to differentiate these responses
from ones in which no answer was recorded (ie missing data). For practical purposes,
data obtained from a rating question with a minimum of five points are often treated as
continuously distributed (interval) data in subsequent analyses.

Some rating scales consist of a series of questions with two or more options for each
question. Results from this series of questions could be combined to create one or more
rating-scale variables. This combination process could be a simple summation of the
scores (provided all questions are answered), an average score (provided all questions
had the same scale) or could be based on more complex multivariable techniques such
as factor analysis (discussed briefly in Chapter 15).
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3.4.4 Ranking question

Ranking format questions ask the respondent to order all of the possible responses (or a
subset of responses) in some form of rank order (Example 3.4). They are often difficult
for respondents to complete, especially if the list of choices is long because all the
categories must be kept in their mind at once. In face-to-face interviews, cards with the
various responses on them can be prepared and provided to the respondent. This might
simplify the ranking process because the respondent only has to choose between a pair
of responses at one time (and repeat the process until the cards are in the appropriate
rank order).

Example 3.4 - Ranking question

Please rank the following as sources of your knowledge of recognition and control of post-
operative pain in dogs and cats (1= most important source, 6 = least important source).

37. . Undergraduate veterinary school

38. - Post-graduate training

39..  Journal articles

40, Continuing-education lectures/seminars

41. - Experience gained while in practice

42. - Discussion with other veterinary practitioners

Rank intervals are unknown to the respondent and might not be equal (ie the difference
between 2 and 3 is not the same as between 1 and 2). Respondents could frequently
assign ‘tied’ rankings (ie the respondent lists two items as one) if they have difficulty
choosing between two options. Decisions about how the data will be analysed
(including how tied ranks will be handled) should be made before the questionnaire is
administered. Computing average ranks for various options assumes that the ranks were
approximately equally spaced and this might not be the case. Averaging ranks is also a
problem if some possible categories have been omitted as these would influence how
the respondent might rank the options that were listed. Alternatively, the proportion of
respondents who rank an option highly (eg proportion who assign a rank of 1 or 2 to
each option) might be computed.

3.5 WORDING THE QUESTION

The wording used in questions has a major impact on the validity of the results from
those questions. Vaillancourt et al (1991) recommend that questions not exceed
20 words. It is important to avoid the use of abbreviations, jargon and complex or
technical terminology. At all times, bear in mind who the respondent is and what level
of technical knowledge they have. For example, ‘How many fatal cases of neonatal
diarrhea occurred during the time period?” is a poorly worded question if the respondent
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is a dairy producer. ‘How many calves died from scours during January?’ would be
more appropriate.

Make the question as specific as possible. For example, if asking for information about
annual milk production, specify the time frame (eg January 1, 2002 to December 31,
2002) and clearly define how milk production is to be measured (eg total weight of bulk
tank shipments).

Avoid double-barrelled questions. For example, asking Do you think BVD is an
important disease that producers should vaccinate for?’ is really asking two questions
(one about the importance of BVD and one about the utility of vaccination). These
issues should be separated into two questions.

Avoid ‘leading’ questions. Asking a question such as ‘Should dogs be allowed to suffer
in pain after castration without the benefit of analgesics?’ might very likely produce a
biased response compared with a more neutral question such as ‘Do you think dogs
should be given analgesics following castration?’

3.6 STRUCTURE OF QUESTIONNAIRE

Questionnaires should begin with an introduction explaining the rationale and the
importance of the questionnaire, and how the data will be used. In it, you should also
assure the respondent of the confidentiality of their answers. Telling the respondent
approximately how long it will take to complete the questionnaire will help to improve
response rate (provided the questionnaire has been kept to an acceptable length). In
mailed questionnaires, the introduction might be incorporated into the first page, but
it is usually desirable to have it as part of a separate cover letter that is sent with the
questionnaire. For interview format questionnaires, the information must be provided
verbally at the start of the interview.

After the introduction, it is a good idea to start with questions that build confidence in
the respondent. If it is necessary to give instructions to the respondent, make sure they
are clear and concise. Highlight them in some way (eg bold typeface) to draw attention
to them. Remember that people only read instructions if they think they need help.

Questions should be grouped either according to subject (housing, nutrition) or
chronologically (calving, breeding period, pregnancy diagnosis). Within a section,
questions might follow a ‘funnel” approach in which the subject matter is increasingly
specific and focused. Pairs of questions which capture essentially the same information
(‘date of installing a milking system’ and ‘age of milking system’) might be included at
different locations in the questionnaire either for verification of critical information or
as a general check on the validity of the questionnaire responses.

It is important that mailed (or internet) questionnaires be visually appealing and easy to
complete. Professional-looking questionnaires will enhance the respondents perspective
on the importance of the study (Salant and Dillman, 1994).
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When designing the form layout, consider ease of data coding and entry in order to
minimise mistakes and reduce the required effort. If at all possible, questions should
be pre-coded (ie the numerical codes assigned to possible responses are printed beside
the various options). It is advisable to leave space on the questionnaire (eg a column
down the right-hand edge of the page) to allow for the recording of all responses that
are to be entered into a computerised database. This will allow data-entry personnel to
simply read down a column of responses rather than having to jump around the page
(see Example 3.5).

Example 3.5 Coding questionnaires

The space at the right allows for direct
coding of responses on the questionnaire.

For office use only
1. Sex 1.Male 2.Female 1. ]

2. Age D years 20 ]

3. Year of graduation from veterinary school : 3.0 ]

3.7  PRE-TESTING QUESTIONNAIRES

All questionnaires need to be pre-tested before applying them to the study population.
Pre-testing allows the investigator to identify questions that are confusing, ambiguous
or misleading and to determine if there are any problems with the layout of, or
the instructions on, the questionnaire. When you pre-test a questionnaire, you can
determine if there are questions that respondents will be unable or unwilling to answer
or perhaps identify additional categories required for multiple-choice questions. It also
serves to estimate the time that would be required to complete it.

The first step in pre-testing the questionnaire is to have colleagues or experts in the field
evaluate it to ensure all important issues are identified and covered. A single pre-testing
on a small sample from the study population can be used to obtain feedback on the clarity
of questions. This might be done by having the respondent complete the questionnaire as
it will be done in the study and then discussing any problematic aspects. Alternatively,
a ‘think-aloud’ pre-test can be carried out in which the respondent explains all of their
thought processes as they work through the questionnaire. It is desirable to have a
second pre-test in which the questionnaire is readministered to the same test group of
respondents in order to assess the repeatability of questions. The time interval between
the two pre-tests needs to be long enough that the respondent does not recall how they
answered questions the first time, but short enough that the information being sought is
unlikely to have changed. A test-retest evaluation is only valid if the questionnaire is not
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changed much after the first pre-test. It will also require quite a few more respondents
if the repeatability of the questions is to be evaluated.

3.8 DATA CODING AND EDITING

Before administering any questionnaire, procedures for coding of responses and
computer data entry should be considered. When coding responses, it is wise to
have a single value to represent missing values. Do not simply leave these blank as,
subsequently, it will be impossible to differentiate items that were not answered on
the questionnaire from those that were missed in coding or data entry. A unique value
(eg -999) that could not be a legitimate answer to any of the questions should be used
for missing values. Consistency of coding is important and, because it is convenient to
analyse no/yes (dichotomous) variables coded as 0/1, it is advisable to use this coding
from the start.

Coding of responses is best accomplished directly on the paper forms (either mailed
questionnaires or data capture forms used in interviews). Do not attempt to combine
coding and data entry into a single step. It is a good idea to use a distinctive colour of
ink for recording all codes on the forms so it is easy to differentiate writing done by the
coder from that done by the respondent or interviewer.

Computer data entry can be done using specialised software or general purpose
programs such as spreadsheets and database managers. The advantage of specialised
software is that it allows you to set validation criteria easily (such as acceptable ranges
for values in a given variable) that preclude entry of illogical values. One useful
public domain program for data entry is EpiData (freeware http://www/epidata.dk).
Spreadsheets must be used with caution. While they are convenient and easy to set
up for data entry, the ability to sort individual columns in the spreadsheet makes it
possible to completely destroy the data (e responses from one individual will no longer
be on the same row). General-purpose database managers are useful and allow greater
manipulation of the data. However, because most data will ultimately be transferred
to a statistical package for verification and analysis, it is advisable to perform all data
manipulations in that statistical package, where it is easier to document and record all
procedures carried out. The process of data verification and processing is discussed
further in Chapter 25.
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MEASURES OF DISEASE FREQUENCY

OBJECTIVES

After reading this chapter, you should be able to:

1.

Explain the different ways of measuring disease frequency and differentiate
among counts, proportions, odds and rates.

Describe the difference between incidence and prevalence and when each
should be used.

Describe the difference between risk and rate as applied to measures of
incidence.

Elaborate upon the concepts of ‘cause-specific measures’, proportional morbidity/
mortality rates and case fatality rates.

Apply all of the above concepts and select the appropriate measures of disease
frequency to be used in specific circumstances.

Compute the appropriate measures when provided with the necessary data and
calculate exact and/or approximate confidence intervals.
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4.1 INTRODUCTION

Measurement of disease (or event) frequency is the basis for many epidemiological
activities. These include routine surveillance, observational research and outbreak
investigations, among others. In observational studies, measuring the frequency of a
disease and an exposure, and subsequently linking (or associating) the exposure and
the disease are the first steps to inferring causation. The hypothesis we test is described
qualitatively but the process involves quantification and begins with measurement of
events and exposures.

Morbidity and mortality are the two main categories of events for which frequency
measures are calculated. However, there are other events of interest such as culling (the
premature removal of animals from a herd or flock), survival to weaning, and pregnancy
(eg the probability of an animal becoming pregnant within a specified time period). The
format for calculating these is the same as it is for morbidity and mortality.

Because both morbidity and mortality are strongly associated with animal (or herd)
attributes, and different diseases have different impacts, we usually calculate these
measures for specific host attributes (eg age, sex, and breed) and for specific diseases
(ie outcomes of interest).

4.1.1 Some factors affecting the choice of frequency measure

Study period When selecting a measure of disease frequency for use in a study, it is
important to consider both the study period and the risk period. The study period is
the period of time over which the study is conducted. It is usually measured in terms
of calendar time, but sometimes the study period is a point in time. In either instance,
the study period could be specified in calendar time or by the event at which the data are
collected (eg at slaughter or at birth).

Risk period The risk period is the time during which the individual could develop the
disease of interest. Thus, an important question is: how long is the risk period? For
example, for diseases such as retained placenta in dairy cows, the risk period is short —a
day or two at most; whereas, for diseases such as lameness or foot problems, it could be
very long.

Both the risk and study period relate to whether the population is deemed to be closed
or open (see section 4.4.1). However, disregarding this, diseases with a short risk period
(relative to the study period) are good candidates for risk measures. Diseases with long
risk periods are likely candidates for rate-based measures. These two approaches to
measuring the incidence of disease are discussed in section 4.3.

4.2  COUNT, PROPORTION, ODDS AND RATE

Before discussing specific measures of disease frequency, it is necessary to review the
mathematical forms that these measures can take. These include counts, proportions,
odds and rates.
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Count This is a simple enumeration of the number of cases of disease or number of
animals affected with a condition in a given population. Because the size of
the population is not taken into consideration, counts of events are of very
limited use for epidemiologic research.

Proportion This is a ratio in which the numerator is a subset of the denominator. For
example, if 200 cows are tested for enzootic bovine leukosis (EBL) and 40 of them
are positive, the proportion positive is 40/200=0.2 (or 20%). Prevalence (section 4.7)
and risk (sections 4.3, 4.4) are both proportions. In the former, both the numerator and
denominator are measured at a point in time. In the latter, the numerator relates to the
number of new cases over a period of time so, although proportions have no units, the
time period must be specified for the proportion to make sense.

Odds This is a ratio in which the numerator is not a subset of the denominator. For
example, if there are three stillborn animals and 120 live births, the odds of stillbirth is
3:120=0.025:1 or 25 stillbirths to 1,000 live births. The odds of EBL (based on the data
given above) is 40/160=0.25 (or 1:4).

Rate A rate is a ratio in which the denominator is the number of animal-time units at
risk. For example, if there are 30 cases of kennel cough in a 100-dog kennel over a
three-month period, the incidence rate is 30/(100*3)=0.1 cases per dog-month. Note
the 300 dog-months in the denominator.

Note The term ‘rate’ is often used in a general sense to refer to all types of measures of
disease frequency. Strictly speaking though, it should only be used to refer to measures
based on the concept of animal-time units. Similarly, we often say that animals with a
high ‘chance’ of having or getting the disease have a ‘high risk’ although the underlying
measure of frequency might not be a risk.

4.3 INCIDENCE

Incidence relates to the number of new events (eg new cases of a disease) in a defined
population within a specific period. Because they deal with new cases of disease,
studies based on incident cases of disease are used to identify factors associated with
an animal becoming ill. Although incidence deals with ‘new cases’ of disease, it does
not necessarily imply just the ‘first case’ within an animal. For some diseases (eg
clinical mastitis in dairy cows), multiple cases are possible within an animal, either by
involving different quarters of the udder or recurring in the same quarter after a period
of absence from that quarter.

For reasons perhaps related to their unique susceptibility, or due to the effect of the first
disease occurrence in the animal, animals that develop one case of a disease are often
at a much higher risk of developing a subsequent case. Thus, it might be preferable
to count only the first case in terms of a disease frequency measure but to enumerate
separately the number of occurrences per animal in the study period.
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There are three ways of expressing incidence:
= incidence count
= incidence risk (R)
= incidence rate (/).

Incidence count is the simple count of the number of cases of disease observed in a
population. It is often used to describe the frequency of a disease in a population in
which the disease did not previously exist (eg country X has had 12 cases of bovine
spongiform encephalopathy (BSE)). It might also be used for some common diseases
(eg case counts of Salmonella in humans) but without data on the number of samples/
animals examined, there are limits to the inferences we can make from count data.
Incidence counts are rarely used in epidemiologic research unless they are combined
with information about the population at risk (eg Poisson regression, Chapter 18).

Incidence risk An incidence risk is the probability that an individual animal will
contract or develop a disease in a defined time period. Because risk is a probability,
it is dimensionless (that is, it has no units) and ranges from 0 to 1. Although risk is
dimensionless, the time period to which the risk applies must be specified. For example,
the risk of a cow having a case of clinical mastitis in the next year is very different (ie
much higher) than the risk of having a case in the next week. In addition, only the first
occurrence of a disease in the time period of interest is relevant because, once an animal
has had one case, it contributes to the numerator of the proportion and what happens to
it after that is irrelevant. Risk is used in studies in which making individual predictions
is the objective. For example, a study might determine that the probability that a seven-
year-old boxer will develop some form of detectable neoplasia over the next year is
14%. Incidence risk is sometimes referred to as cumulative incidence. In the context
of survival analysis, survival (S) is defined as: S=1-R.

Incidence rate An incidence rate is the number of new cases of disease in a population
per unit of animal-time during a given time period. It has units of 1/animal-time, and
is positive without an upper bound. If a cattery housing 50 cats has 72 cases of upper
respiratory disease over a period of a year, the incidence rate is 72/50, which is 1.44/cat-
year (or 0.12/cat-month). Incidence rates are used in studies designed to determine what
factors are related to diseases and what the effects of those diseases are. Incidence rates
are sometimes referred to as incidence density. A related concept is the hazard rate
which expresses the theoretical limit of 7 as the time period approaches zero. Hazard
rates are used in survival analysis.

4.4 CALCULATING RISK

Determining the number of new cases requires a clear case definition (ie what criteria
need to be met for a ‘case’ to be considered as such) and a surveillance programme
capable of identifying all such cases. Risk is most commonly computed at the animal
level (eg the probability of an eight-year-old dog developing lymphosarcoma within
the next year) but can be computed at other levels of aggregation (eg the probability of
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a dairy herd becoming infected with Strep. agalactia in a one-year period). The latter
requires a case definition of what constitutes an infected herd.

Risk (R) of disease is estimated as:
number of new cases of disease in a defined time period

the population at risk Eq4.1

4.4.1 Population at risk

While counting the new cases of disease presents some challenges, estimating the
population at risk can be even more difficuit. The population at risk might be considered
‘closed’ or ‘open’. Regardless of whether the population is closed or open, only animals
free of the disease at the start of the study period are considered to be at risk.

Closed population A closed population is one in which there are no additions to the
population for the duration of the study and few to no losses. The duration of the study
might be defined in terms of calendar time (eg a herd of dairy cows followed for the next
year) or in terms of some life event (eg all cows in a dairy herd followed for the first two
months of lactation — regardless of when the lactation starts — to determine the risk of
ketosis). Only disease-free animals in the population at the start of the study period are
considered to be at risk and are monitored for the outcome of interest. Animals which
are lost to follow-up during the study period are called withdrawals and the simplest
way of dealing with them is to subtract half of the number of withdrawals from the
population at risk when computing R (this assumes that, on average, the withdrawals
leave halfway through the study period). This correction for withdrawals is derived
from (or related to) actuarial life-table methods. Unless there are no withdrawals, the
risk estimate is biased. Nonetheless, provided the number of withdrawals is small
relative to the population size being studied, the bias is small.

Open population An open population is one in which animals are leaving and entering
the population throughout the study period. For example, if you wanted to determine
the frequency of lymphosarcoma over a one-year period in a population of dogs served
by a single veterinary clinic (assuming that all cases are diagnosed at the veterinary
clinic), the population at risk would be an open population of dogs that were served by
that clinic. An open population is considered to be stable if the rate of additions and
withdrawals and the distribution of host attributes are relatively constant over time.

It is not possible to compute risk directly from an open population but it can be
estimated from / (section 4.6). Risk can also be estimated in open populations using
methods for the analysis of ‘survival’ data (Chapter 19).

Sometimes we can define a follow-up period after a specified exposure/event in a
manner that converts an open population to a closed population. For example, dairy and
swine herds are inherently open in the sense that new animals enter the at-risk group
(this use of open is not the same as saying that a farmer does or does not purchase new
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‘outside’ animals). However, if we observe a set of animals, eg post-partum, for a full,
defined risk period, then the population becomes closed.
4.5  CALCULATING INCIDENCE RATES

Incident rates (/) are calculated as:

number of cases of disease in a defined time period

" number of animaktime units at risk during the time period Eq4.2

An animal-time unit is one animal for a defined period of time (eg a cow-month, a
dog-day (not to be confused with the ‘dog days’ in August)).

Incidence rates can be calculated using only the first occurrence of disease for any
given animal (and from then on they are not considered to be at risk), or using all
occurrences of disease. For example, a neoplastic disease would likely occur only once
in an animal’s lifetime but some infectious diseases such as mastitis can occur more
than once in a dairy cow. However, even for diseases that might occur multiple times,
we might only be interested in an animal’s first case of mastitis as risk factors for a first
case might be different from risk factors for recurrences.

Note The inverse of / (1/I) is an estimate of the average time to the occurrence of
the disease if the population is closed, or open and stable, providing the outcome is
inevitable (all animals achieve it if they live long enough).

As with calculating the number of animals at risk for R, there are several methods
for calculating animal-time units at risk for /. The exact method is always preferred,
but often the information is not available for you to use the exact method and an
approximation must be substituted.

Exact or approximate methods can be adapted for situations when animals are at risk
for multiple disease episodes, as opposed to only one disease episode per animal. The
important thing to remember is that if you are only interested in the first case of disease,
then, after the animal contracts the disease of interest, it is no longer at risk! It no
longer contributes to the pool of animal-time units at risk, even if it remains in the herd
or study.

Exact calculation An exact calculation requires that the exact amount of animal-time
contributed by each member of the study population be known. Example 4.1 presents
a simple exact calculation.

Approximate calculation If only one case of disease per animal is considered, then 7 is
calculated as:
cases

(start —1/2 sick — 1/2 wth +1/2 add)* time Eq4.3
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Example 4.1 Exact incidence rate calculation

Assume four previously healthy animals were observed for exactly one month (30 days). The
history for each individual was as follows:

1 animal not sick at all 1.00  animal-month at risk

1 animal sick on day 10 0.33  animal-months at risk
1 animal sick on day 20 0.67  animal-months at risk
1 animal sold on day 15 0.50  animal-months at risk

Total ‘population at risk’ 2.50  animal-months at risk

Total new cases of disease 2

it

1=2/25

0.80 cases/animal-month

where: cases = # of new cases
start = # at risk at start of study period
sick = # developing disease
wth = # withdrawn from the population
add = # added to the population
time length of study period (same for all animals).

If multiple cases of disease per animal are possible, then I is calculated as:
cases

I=
(start —1/2 wth +1/2 add) * time Eq44

Note For relatively rare diseases, the second formula might be used even if the investigator
is only interested in “first cases’ because the adjustment to the average population at risk by
removing those cases will be very small.

In general, if the risk period is much shorter than the study period, using risk as a measure
of disease is appropriate. If the risk period is longer than the study period, then 7 is a more
appropriate measure of disease incidence and the question of whether only one case, or all
cases of disease will be counted must be considered.

4.6  RELATIONSHIP BETWEEN RISK AND RATE
Another approach to estimating risk is to use the functional relationship between R and /.
If complete data are available for a closed population then:

R=A/N and I = A/(NAt)

$0
R=1IAt
where 4 = number of cases, N = population at risk and Az = length of study period.
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However, if only an average rate / is available for a population, then assuming that / is
constant over the time period:
R=1-¢0¢ Eq4.5

For example, Table 4.1 shows data obtained from 100 animals followed for a two-year
period and the estimation of the annual R based on the average annual /.

Table 4.1 Estimation of R from average |

Year Population at risk Cases Annual |
1 100 22 0.22
2 788 18 0.23

20nly 78 at risk because 22 had already had the disease.
Two-year R=22+18/100=0.4.

Average annual /=0.225 cases/animal-year.

Estimated annual R=/-e"0-225=0.20.

Note If /At is small (eg <0.1) then R=/At. For example, if /=0.01 cases/animal-year,
then the estimated annual R~=0.01.

4.7 PREVALENCE

Prevalence relates to cases of disease existing at a specific point in time rather than new
cases occurring over a period of time. Hence, the prevalence count is the number of
individuals in a population that have an attribute or disease at a particular time.

The prevalence proportion (P) (also referred to simply as prevalence) is calculated as:
cases
P=
par Eq 4.6

where cases = # of cases of disease in a population at a point in time
par = # of animals in the population at risk at the same point in time.

For example, if you bleed 75 horses from a large riding stable and test for equine
infectious anemia (swamp fever) and three test results are positive, P is:

3
P==—-=0.04=4°
75 0 %

Relationship between prevalence and incidence In a stable population in which 7 of a
disease remains constant (which it rarely does for contagious diseases), P (at any point
in time) and 7 and disease duration (D) are related as follows:
_I*D
[*D+1 Eq4.7
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For example, if the incidence rate of subclinical mastitis in a dairy herd is 0.3/cow-year
(ie 30 new infections/100 cows per year) and the mean duration of an infection is three
months (0.25 year), then we would expect P to be:

*
= _03%025 _o07-7%
0.3*%0.25+1
so on any given day throughout the year, we would expect 7% of cows to have
subclinical mastitis.

A series of prevalence studies is often used to determine / of diseases which are
not easily detected on the basis of clinical signs. This is particularly relevant for
determining the rate at which animals become infected with a certain pathogen. For
example, by bleeding a group of cats at regular intervals and testing for feline leukemia
virus, the rate at which cats are becoming infected can be estimated.

Note P is less useful than 7 for research into risk factors for diseases because factors
that contribute to either the occurrence of disease or its duration will both affect
prevalence.

Example 4.2 shows the calculation of various measures of P, R and 1.

4.8 MORTALITY STATISTICS

These statistics are calculated in exactly the same way as P, R and 7. The disease event
of interest in these statistics is, by definition, death. The term mortality rate, strictly
speaking, refers to the incidence rate of mortality. However, it is often misused to
describe the risk of mortality. You should be alert to this and interpret the literature
accordingly. Overall, the mortality rate describes the number of animals that die from
all causes in a defined time period and is analogous to / except that the outcome of
interest is death. Mortality rate is calculated in the same way as I.

The cause-specific mortality rate, as one would expect, describes the number of animals
that die from (or with) a specific disease during a defined time period. This is also
calculated the same as /.

Mortality statistics can describe the number of deaths due to a disease or the number of
deaths with a disease, but it is often difficult to determine the specific cause of death.
For example, if a recumbent cow regurgitates and contracts aspiration pneumonia and
then dies, did it die:

*  due to recumbency?

*  due to pneumonia?

*  with pneumonia?
Usually the ‘cause’ will be the factor which is deemed to be the proximate cause (ie
the straw that broke the back). As indicated above, that might be a difficult decision to
make.
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Example 4.2 ~ Calculation of risk and rate

You are interested in determining the frequency of new intramammary infections (IMI) with
Staph. aureus in dairy cattle so you identify five cows in a dairy herd, follow them for one
full lactation (10 months) -and culture milk samples at months 0 (calving), 2, 4, 6, 8 and 10
(dry-off). The results are presented in the table below. A cow is only considered to have a new

intra-mammary infection if it was negative on the preceding sample.

Sampling times

Total months at risk

X  =positive culture

0 =negative culture
—  =cow removed from herd
par = population at risk

a) risk of infection during first 2 months of
lactation
par = 4 cows
new IMI = 1 cow
2-month R = 1/4 = 0.25

¢) rate of IMI — considering first cases only
par = 20 cow-months
new IMI = 2 first cases
I=2/20 = 0.1 cases/cow-month
=1 case/cow-lactation

e) lactation risk estimated from lactation
rate (first cases only)
I=1 case/cow-lactation
R=1-e1=0.63

First
case All
Cow 0 2 4 6 8 10 only cases
A 0 i X ] 0 0 X X 2 6
B 0 0 0 - - - 4 4
c X 0 0 X X 0 4
D 0 0 0 0 0 0 10 10
E o o | x | o | x | x 4 6
where:

= positive culture that represents a new IMI

b) risk of infection during lactation
par =4 - 1/2 (1 withdrawal) = 3.5 cows
new IMI =2 cows
lactation R = 2/3.5=0.57

d) rate of IMI - considering all new IMI
par = 30 cow-months
(eg cow A at risk for months 0 to 2
and 4 to 8)
new IMI = 5 cases
I'=5/30=0.17 cases/cow-month
= 1.7 cases/cow-lactation

f) prevalence at dry-off
par =4 cows
existing IMI =3
P=3/4=0.75

Note We are using the sampling time as the time of occurrence (or withdrawal). Some might
prefer to use the midpoint between samplings; we have not done this to keep the calculations
simple.
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4.9 OTHER MEASURES OF DISEASE FREQUENCY

Virtually all disease frequency measures can be defined in terms of P, R and 7 provided
the outcome of interest, the population at risk and the study period are adequately
defined. However, a few specific terms that appear frequently in the literature warrant
some attention. Most of these are referred to as rates but are really measures of risk.

4.9.1 Attack rates

Attack rates are used to describe the frequency of disease in outbreak situations. They
are computed as the number of cases divided by the size of the population exposed.
Consequently, they are really a measure of risk. Attack rates (risk) are used in situations
such as outbreaks where the risk period is limited and all cases arising from the
exposure are likely to occur within that risk period.

4.9.2 Secondary attack rates

Secondary attack rates are used to describe the ‘infectiousness’ (or ease of spread) of
living agents. The assumption is that there is spread of an agent in the aggregate (eg
herd, family) and that not all cases are a result of a common-source exposure. When the
latent period is long, it is often difficult to distinguish between animal-to-animal spread
and that due to common exposure (eg BSE in cattle). Secondary attack rates are the
number of cases minus the initial case(s) divided by the population at risk.

4.9.3 Case fatality rates

The case fatality rate describes the proportion of animals with a specific disease that die
from it (within a specified time period). It is actually a ‘risk’ measure (ie a proportion)
instead of a ‘rate’ and is often used to describe the impact of epidemic-type diseases or
the severity of acute diseases for affected individuals.

4.9.4 Proportional morbidity/mortality rates

These rates are used when the appropriate denominator is unknown and they are
calculated by dividing the number of cases (or deaths) due to a specific disease by
the number of cases (or deaths) from all diseases diagnosed. Proportional morbidity/
mortality rates are often used for diagnostic laboratory data and are subject to variation
in the numerator or the denominator. Hence, they are less preferable than measures of
risk.

4.10 CONFIDENCE INTERVALS

Either approximate or exact confidence intervals (Cls) can be computed for proportions
(risk and prevalence) and rates.
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Approximate Cls are computed by determining the mean (1) and its standard error (SE)
of the parameter of interest. The lower and upper bounds of the CI are then:
u-2Z,*SE , u+Z*SE Eq 4.8

where Z_ is the (1-a/2) percentile of the standard normal distribution.

In small samples, or in situations where the frequency of disease is very low (or very
high), the approximate CIs might be misleading (and lower bounds might be negative).
In these cases, exact CIs based on probabilities derived from the binomial distribution
(for proportions) or the Poisson distribution (for rates) will be more appropriate.

Example 4.3 shows the calculation of approximate and exact Cls for a prevalence
proportion and exact Cls for some estimated incidence rates.

4.11 STANDARDISATION OF RISKS AND RATES
4.11.1 Accounting for differences in populations

Often our intent is to describe the occurrence of disease in a manner that allows valid
inferences to be made about factors which affect the frequency of specific diseases.
Frequently, host factors are confounders and bias the comparison of risks (rates)
whether they be from different geographical areas or have a different exposure history.
This confounding can be prevented by standardising the risks or rates. See Chapter 13
for a more complete discussion of confounding.

‘Technical’ aspects

A population might be divided into strata (denoted by the subscript ;), based on one or
more host characteristics (eg age, sex, geographical location). The overall frequency
of disease in the population is a function of the host factor distribution (denoted here
as H ) and the rates (1 ) or risks of disease (R ) in each of the strata. The H. for risks is
N,/ N (the proportion of the study group or populatlon in that stratum) and for rates the
H is T,/ T (the proportion of animal-time in that stratum). Specifically, the crude risk
(R) in a population is:

R=YH,R, Eq4.9
whereHj=Nj/N

And the crude rate (J) is:
1=2Hj1,. Eq4.10
where H;= Y;JT.

Note For simplicity, for the rest of this discussion, we will primarily refer to rates, but
the methods are equally applicable to risks.
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Example 4.3 Confidence intervals for proportion and rate
data=dairy_dis (herd 1)

Prevalence data for several infectious diseases were obtained from a sample of dairy herds.
See Example 2.1 or Chapter 27 (dairy_dis) for a more complete description of these data.

Approximate and exact Cls for the prevalence proportion of leukosis and Johne’s disease in
herd 1 (27 cows) in this dataset were computed.

Number
of positive
Disease type samples P 95%.Cl
Leukosis approximate 22 0.815 0.658 0.971
exact 0.619 0.937
Johne's approximate 3 0.1 -0.016 0.238
exact 0.024 0.292

This shows that approximate Cls might go beyond the theoretically possible boundaries of 0
and 1.

Note The approximate CIs shown were computed using a ¢-distribution, not the Z-distribution
shown in Eq 4.8, because of the small sample size.

Incidence rates were computed by assuming that:
= the age of each cow (in years) was her current lactation number plus 2.
= all infections arose immediately before the cow was tested (ie her period of risk was
equal to her age). (This is a very untenable assumption for these two diseases and has
been done only for the sake of this example.)

Exact CIs for the incidence of these two disease rates were then determined based on the
Poisson distribution.

Number
of positive Cow-years :
Disease samples at risk | 95% Cli
Leukosis 22 158 0.139 0.087 0.211
Johne's 3 158 0.019 0.004 0.056

Differences in disease rates (/) between populations of animals might be due to
different distributions of host characteristics (#)) or to actual differences in the stratum-
specific rates (/). We can remove the effect of differences in host characteristics by
‘standardising’ the risks or rates. We can carry out this standardisation by using a set of
standard rates (/;) from a referent population (called indirect standardisation) or by
using a set of ; from a standard population (called direct standardisation).
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4.11.2 Indirect standardisation of rates

One method to control the potential confounding effect of host characteristics when
comparing rates from different populations is to compute standardised morbidity/
mortality ratios (SMR). These are based on a set of stratum-specific rates from a
reference, or standard, population (Is;) together with the observed proportion of
animal-time in each of the strata in the study group. The process is called indirect
standardisation. It is very useful if the actual stratum-specific rates are not available for
the study population or if the estimates of those rates are based on small sample sizes.

The standard rates from the reference population will allow us to calculate the adjusted,
or expected rate (/,) as:

I,=) H,s, Eq4.11

The expected number of cases in the study population (denoted as if the reference
population rates apply) is:
E=T*I, Eq4.12

where T is the total time at risk.

If 4 is the observed number of cases in the area, the ratio A/E is the standardised
morbidity rate ratio (similarly //1,=SMR). To obtain the indirect standardised rate (/,,,),
we use the overall rate in the standard population (/s) multiplied by the SMR.

I, =1Is* SMR Eq4.13

The standard error (SE) of the log of the standardised rate ratio [InSMR] is:

SE[InSMR]= |
[InSMR] /JZ Eq4.15
and the confidence limits for the SMR can be calculated using:

olINSMRJ+Z, * SE Eq4.14

Example 4.4 demonstrates the indirect standardisation of rates.

4.11.3 Indirect standardisation of risks

We can use the same strategy for rates as described above for risks. The only difference
is that /. is based on the proportion of animals in each stratum instead of the proportion
of animal-time. The expected number of cases, if the reference population risks
apply to the study group’s distribution of animals, is E=N*Rs where Rs is the overall
risk in the standard population. The ratio of observed to expected cases, A/E, is the
standardised morbidity risk ratio. Again, the indirect standardised risk for the area is
Rs*SMR. The variability of an SMR based on risks is somewhat more complex than
one based on rates and, because most standardisation is done on rates, the formulae for
variance will not be given here.
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Example 44  Indirect standardisation of rates

Assume that you have data on the herd rate of tuberculosis (ie incidence rate of herds found
to be positive) from two geographical regions which you would like to compare. However,
the proportion of dairy and beef herds differ in the two regions and you know that.this factor
influences the rate of herd infections. You obtain a set of standard incidence rates based on data
from the whole country and they are:

* the rate in beef herds is 0.025 cases/herd-year,

* the rate in dairy herds is 0.085 cases/herd-year, and

« the overall rate is 0.06 cases/herd-year.

In Region A, you have data from 1,000 herds over one year and in Region B, data on 2,000 herds
for one year. The data are:

Number Numberof Observed ~ Herd-years ~ Standard

of herd-years rate distribution ‘rate
Type cases (M ) (T) (Is)
Region A
Beef 17 580 0.031 0.55 0.025
Dairy 41 450 0.091 0.45 0.085
Total 58 1000
Overall rate” 0.058 0.052

SMR = 0.058/0.052 = 1.12
Indirect standardised rate (I, ;) = 0.06 * 1.12 = 0.067

Region B
Beef 10 500 0.020 0.25 0.025
Dairy 120 1500 0.080 0.75 0.085
Total 130 2000
Overall rate” 0.065 0.07

SMR = 0.065/0.07 = 0.93
Indirect standardised rate = 0.06 * 0.93 = 0.056

* Overall rate is the sum of the stratum-specific rates times the Tj distribution (eg overall observed rate in
Region A=(0.031*0.55)+(0.091*0.45)=0.058 (except for slight rounding errors).

Although the stratum-specific rates in Region A are higher than in Region B, the crude overall rate
would suggest (incorrectly) a lower rate in Region A (0.058 vs 0.065) whereas the standardised

rates show (correctly) a higher rate in Region A (0.067 vs 0.056).
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4.11.4 Direct standardisation of rates

A second way of addressing the problem is through direct standardisation. Here we
use a standard distribution of the population time-at-risk in each level (stratum) of the
confounder (or combination of confounders) for the factor(s) of interest (ie the 75 ). The
direct standardised rate (/) is:

[dir=ZTstj Eq4.16

where T§; is the proportion of the total subject time-at-risk allotted to the jth stratum of
subjects.

A major drawback to the direct method is that there is no adjustment for the variance of
the stratum-specific rates, they all have equal weight even if they are based on a very
few animals. Example 4.5 presents the calculation of direct standardised rates.

Example 4.5 Direct standardisation of rates

Using the same data presented in Example 4.4, and a suitable reference population which had
a cattle type time-at-risk distribution (Ts) of:

= beef 40%

* = dairy 60%.

Direct standardised rates can be computed as:

Reference
Observed population
Cattle rate distribution Product
type (5 (Ts) (I* Ts)
Region A ‘
Beef 0.031 04 0.012
Dairy 0.091 0.6 0.055
Direct standardised rate (1) 0.067
Region B
Beef 0.02 04 0.008
Dairy 0.08 0.6 0.048
Direct standardised rate 0.056

Standardisation has once again revealed that the rate of tuberculosis is actually higher in
Region A.

_
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To express the variability of the direct standardised rate, the SE is:

SE(Idir)=\/Z(TS12'*Ij*Sj/Nj) Eq4.17

where S=1-1,

The confidence interval can be calculated using:
Ig £ Z, *SE(I4) Eq4.18

The direct standardisation of risks proceeds in an analogous manner to that of rates. The
actual proportion of animals (Hs;) in each category in the reference population is used
instead of the proportion of animal-time (75)) in each category.

4.12 APPLICATION

There are a number of areas where rate standardisation is really useful. It allows
us to compare a set of rates without being concerned about whether or not they are
confounded — provided we can measure the confounders. Rate standardisation works
best when the confounders are categorical in nature.

One example stems from work in Ireland on tuberculosis. There, one measure of
progress of the control programme is to monitor the annual risk (actually, prevalence)
of lesions in supposedly tuberculosis-free cattle at slaughter. A number of factors
affects the lesion risk. Two of the more important factors are slaughter plant (not all
plants do an equally good job at finding lesions) and class of animal slaughtered (cows
tend to have higher lesion prevalence than heifers, steers or bulls). Season also has an
effect. One might think that, on an annual basis, season would cancel out but, if the
slaughter distribution shifted seasonally, this would impact the lesion risk. Thus, with
approximately 18 major slaughter plants, four classes of animal and four seasons, we
would have 288 strata for each year. For each stratum, one needs the number slaughtered
and the number of tuberculous lesions found (from which the stratum-specific risks can
be computed). Then the number of cattle in that stratum is expressed as a proportion
of the total slaughtered (eg using national data from a 10-year period as the standard
population). We then have the H, and an R, for each stratum which are combined to
compute a direct standardised annual risk. In this manner, the annual lesion risks could
be compared without concern about the effects of season, animal class, or slaughter
plant biasing them.
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SAMPLE PROBLEMS

1.

You are interested in determining the frequency of feline leukemia virus
(FELV) infection and feline leukemia-related diseases (FLRD) in a cattery. The
cattery has the following number of cats on the 15th of each month during a
year:

Month # of cats Month  # of cats Month  # of cats
January 227 May 165 September 195
February 203 June 134 October 218
March 198 July 153 November 239
April 183 August 179 December 254

The total number of cat-months for the year would therefore be 2,348 with an
average monthly population of 195.7.
The following are relevant pieces of information about the cattery and its disease
situation.
= OnlJanuary 15, you bleed all of the cats and find that 63 are positive (antigen
test) for feline leukemia virus.
= During the year, 16 cats develop one of the feline leukemia-related diseases
(FLRD) and 12 of these cats die.
« Cases of FLRD last an average of three months before the cat dies or
recovers — cats that recover are at risk of developing another case of
FLRD.
= an additional 13 cats die of other causes.
Compute the following parameters:
I of FLRD
P of FELV infection on January 15
Estimated P of clinical cases of FLRD (at any time during the year)
The overall mortality rate
The FLRD specific mortality rate
The FLRD case fatality rate
g. The estimated risk of an individual cat developing FLRD.
A pig farmer has 125 sows and on March 10 Actinobacillus pleuropneumonia is first
diagnosed in his barn. Between then and July 12, a total of 68 pigs develop clinical
signs with 24 of them being treated twice. The condition responds well to antibiotic
therapy and only four pigs die, but the pigs are so unproductive after the outbreak
that the owner goes out of business and becomes a real estate salesman. What was
I and R of clinical disease during this outbreak?
A recently published survey of sheep diseases in Canada reported on losses
determined from a survey of producers as well as on findings reported from diagnostic
laboratories across the country. For diarrheal diseases, the laboratories reported the
following etiologies.

mo a6 o

E. Coli 294
Salmonella 33
Cryptosporidia 10

Enterotoxemia 51
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What is the proportional mortality due to Salmonella? Is this a good indication of
the importance of Salmonella as a cause of diarrhea in sheep? Why?

4. Assume that you want to measure the frequency of clinical mastitis in a dairy
herd. You have the resources to record data for a 10-week period in this herd
and because clinical mastitis is more common in early lactation than later, you decide
to follow only those cows which calve during that period. The data you collect are
shown below. Compute both R and [ of clinical mastitis.

You can assume that:
= all events occur at the beginning of the week in which they are registered.
= cows are not considered at risk for the week in which the case of mastitis
occurs and for one week afterward.
= for computing 7, multiple cases of mastitis are considered.

X
X
X
X
c
8 -9 10

week
¢ = calving
x = case of disease (mastitis)
o = cow culled or died (not mastitis)
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SCREENING AND DIAGNOSTIC TESTS

OBJECTIVES

After reading this chapter, you should be able to:

10.

11.

Define accuracy and precision as they relate to test characteristics.

Interpret three measures of precision for quantitative test results; calculate and
interpret kappa for categorical test results.

Define epidemiologic sensitivity and specificity, calculate their estimates and their
standard errors (or confidence intervals) based on all members or subsets of a
defined study population.

Define predictive values and explain the factors that influence them.

Know how to use and interpret multiple tests in series or parallel.

Define and explain the impact of correlated test results (ie tests that are not
conditionally independent).

Know how to choose appropriate cutpoints for declaring a test result positive (this
includes receiver operating characteristics curves and likelihood ratios).

Be able to use logistic regression to control the effects of extraneous variables and
produce stratum-specific estimates of sensitivity and specificity.

Estimate sensitivity and specificity when no gold standard exists.

Describe the main features influencing herd-level sensitivity and specificity based
on testing individual animals.

Describe the main features influencing herd-level sensitivity and specificity based
on using pooled specimens.
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5.1 INTRODUCTION

Most of us think of tests as specific laboratory test procedures (eg a liver enzyme, serum
creatinine, or blood urea nitrogen test). A test, more generally, is any device or process
designed to detect, or quantify a sign, substance, tissue change, or body response in
an animal. Tests can also be applied at the herd, or other level of aggregation. Thus,
for our purposes, in addition to the above examples of tests, we can consider clinical
signs (eg looking for a jugular pulse), questions posed in the history-taking of a case
work-up (eg how long since previous calving), findings on the general inspection
or routine examination of an animal or premises (eg a farm inspection for state of
hygiene), or findings at post-mortem examination of carcasses as tests. Indeed, tests
are used in virtually all problem-solving activities and therefore, the understanding of
the principles of test evaluation and interpretation are basic to many of our activities.
Several discussions of the application and interpretation of tests are available (Greiner
and Gardner 2000a,b; Linnet, 1988; Martin, 1984; Tyler, 1989; Seiler, 1979).

If tests are being considered for use in a decision-making context (clinic or field
disease detection), the selection of an appropriate test should be based on the test result
altering your assessment of the probability that a disease does or does not exist and that
guides what you will do next (further tests, surgery, treat with a specific antimicrobial,
quarantine the herd efc) (Connell and Koepsell, 1985). In the research context,
understanding the characteristics of tests is essential to knowing how they effect the
quality of data gathered for research purposes. The evaluation of tests might be the
stated goal of a research project or, this assessment might be an important precursor to
a larger research programme.

5.1.1 Screening vs diagnostic tests

A test can be applied at various stages in the disease process. Generally, in clinical
medicine, we assume that the earlier the intervention, the better the recovery or prognosis.
Tests can be used as screening tests in healthy animals (ie to detect seroprevalence of
diseases, disease agents or subclinical disease that might be impairing production).
Usually the animals or herds that test positive will be given a further in-depth diagnostic
work-up, but in other cases, such as in national disease-control programmes, the initial
test result is taken as the state of nature. For screening to be effective, early detection
of disease must offer benefits to the individual, or ‘programme’, relative to letting the
disease run its course and being detected when it becomes clinical. Diagnostic tests are
used to confirm or classify disease, guide treatment or aid in the prognosis of clinical
disease. In this setting, all animals are ‘abnormal’ and the challenge is to identify the
specific disease the animal in question has. Despite their different uses, the principles of
evaluation and interpretation are the same for both screening and diagnostic tests.

5.2 LABORATORY-BASED CONCEPTS

Throughout most of this chapter, the focus will be on determining how well tests are
able to correctly determine whether individuals (or groups of individuals) are diseased
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or not. However, before starting the discussion of the relationship between test results
and disease status, we should address some issues related to the ability of a test to
accurately reflect the amount of the substance (eg liver enzyme or serum antibody level)
being measured and how consistent the results of the test are if the test is repeated. These
concepts include analytic sensitivity and specificity, accuracy and precision.

5.2.1 Analytic sensitivity and specificity

The analytic sensitivity of an assay for detecting a certain chemical compound refers
to the lowest concentration the test can detect. In a laboratory setting, specificity refers
to the capacity of a test to react to only one chemical compound (eg a commonly used
test in the dairy industry to identify the presence of antibiotic (f-lactam) inhibitors
in milk). The analytic sensitivity of the test is 3 ppb for penicillin, meaning that the
test can detect levels of penicillin in milk as low as 3 ppb. The test reacts primarily to
P-lactam antibiotics but will also react with other families at higher concentrations,
such as tetracyclines. Thus, the test is not specific to just f-lactam antibiotics.
Epidemiologic sensitivity and specificity (discussed starting in section 5.3) depend (in
part) on laboratory sensitivity and specificity, but are distinctly different concepts (Saah
and Hoover, 1997). The epidemiologic sensitivity answers: Of all milk samples that
actually have penicillin residues, what proportion tests positive? The epidemiologic
specificity answers this question: Of all the milk samples that don’t have penicillin
residues, what proportion gives a negative result?

5.2.2  Accuracy and precision

The laboratory accuracy of a test relates to its ability to give a true measure of the
substance being measured (eg blood glucose, serum antibody level). To be accurate, a
test need not always be close to the true value, but if repeat tests are run, the average
of the results should be close to the true value. On average, an accurate test will not
overestimate or underestimate the true value.

The precision of a test relates to how consistent the results from the test are. If a test
always gives the same value for a sample (regardless of whether or not it is the correct
value), it is said to be precise. Fig. 5.1 shows the various combinations of accuracy and
precision.

Fig. 5.1 Laboratory accuracy and precision

accurate and precise XXXX

inaccurate and precise XXXX

accurate but not precise X X X X
inaccurate and not precise X X X X

range of values —»

true value
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Results from tests that are inaccurate can only be ‘corrected’ if a measure of the
inaccuracy is available and used to adjust the test results. Imprecision can be dealt with
by performing repeated tests and averaging the results. Correct calibration of equipment
and adherence to standard operating procedures are essential to good accuracy and
precision; however, the details are beyond the scope of this book.

5.2.3 Measuring accuracy

Assessing accuracy involves running the test on samples with a known quantity of the
substance present. These can be field samples for which the quantity of the substance
has been determined by a generally accepted reference procedure. For example, the
accuracy of an infrared method for determining milk urea nitrogen (MUN) level in
milk samples was recently determined by comparing those results with those obtained
from a ‘wet-chemistry” analysis (Arunvipas et al, 2002). Alternatively, the accuracy of
a test can be determined by testing samples to which a known quantity of a substance
has been added. The possibility of background levels in the original sample and the
representativeness of these ‘spiked’ samples make this approach less desirable for
evaluating tests designed for routine field use.

Variability among test results (ie an estimate of precision) might be due to variability
among results obtained from running the same sample within the same laboratory
(repeatability) or variability between laboratories (reproducibility). Regardless of
which is being measured, evaluating precision involves testing the same sample multiple
times within and/or among laboratories. Methods for quantifying the variability in test
results are discussed in the following two sections. A much more detailed description of
procedures for evaluating laboratory-based tests can be found in Jacobson (1998).

5.2.4 Measuring precision of tests with quantitative outcomes

Some commonly used techniques for quantifying variability, or for expressing results
of comparisons between pairs of test results are:

= coefficient of variation

» Pearson correlation coefficient

= concordance correlation coefficient (CCC)

» limits of agreement plots.

The coefficient of variation (CV) is computed as:

o
cv= u Eq5.1
where o is the standard deviation among test results on the same sample and y is the
average of the test results. It expresses the variability as a percentage of the mean. The
CV for a given sample can be computed based on any number of repeat runs of the
same test and then these values can be averaged to compute an overall estimate of the
CV (see Example 5.1).
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Example 5.1 Measuring agreement - quantitative test results
data=elisa_repeat

A set of 40 individual cow milk samples was tested for parasite antibodies six times using
an indirect microtitre ELISA based on a crude Ostertagia: ostertagi antigen. Both raw
and adjusted optical density (OD) values are recorded in the dataset (see Chapter 27 for
description of adjustment method). The results were used to evaluate the precision and
repeatability of the test,

The CV for each sample was computed based on the six replicate values and then averaged
across the 40 samples. The mean CV was 0.155 for the raw values and 0.126 for the adjusted
values suggesting that the adjustment process removed some of the plate-to-plate variability.

Pearson correlation was used to compare values from replicates 1 and 2. The correlation was
0.937 for the raw values and 0.890 for the adjusted values.

Comparing replicates 1 and 2, the CCC was 0.762 for the raw values and 0.858 for the
adjusted values, suggesting much better agreement between the two-sets of adjusted values
(than between the two sets of raw values). Fig, 5.2 shows a CCC plot.

Fig. 5.2 Concordance correlation plot

1.0+

0.5+

adjusted OD - sample 1

0 05 10
adjusted OD - sample 2

Note Data must overlay dashed line for perfect concordance.

There appears to be a greater level of disagreement between the two sets of values at high OD
readings compared with low OD readings.
(continued on next page)
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Example 5.1 (continued)
data=elisa_repeat

The limits of agreement plot for the same data is shown in Fig. 5.3. It indicates that most of
the differences between the replicates fell in the range of +0.18 and -0.30 units.

Fig. 5.3 Limits of agreement
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A Pearson correlation coefficient measures the degree to which one set of test results
(measured on a continuous scale) varies (linearly) with a second set. However, it does
not directly compare the values obtained (it ignores the scales of the two sets of results)
and for this reason, it is much less useful than a concordance correlation coefficient for
comparing two sets of test results (see Example 5.1). Both of these statistics are based
on the assumption that the data are normally distributed.

As with a Pearson correlation coefficient, a concordance correlation coefficient (Lin,
1989) can be used to compare two sets of test results (eg results from two laboratories),
and it better reflects the level of agreement between the two sets of results than the
Pearson correlation coefficient does. If two sets of continuous-scale test results agreed
perfectly, a plot of one set against the other would produce a straight line at a 45° angle
(the equality line). The CCC is computed from three parameters. The location-shift
parameter measures how far the data are (above or below) from the equality line. The
scale-shift parameter measures the difference between the slope for the sample data and
the equality line (slope=1). (The product of the location-shift and scale-shift parameters
is referred to as the accuracy parameter.) The usual Pearson correlation coefficient
measures how tightly clustered the sample data are around the line (slope). The CCC
is the product of the accuracy parameter and the Pearson correlation coefficient. A
value of 1 for the CCC indicates perfect agreement. Example 5.1 shows a concordance
correlation plot for two sets of ELISA results. The CCC has recently been generalised to
deal with >2 sets of test results and to work with categorical data (King and Chinchilli,
2001).
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Limits of agreement plots (also called Bland-Altman plots) (Bland and Altman, 1986)
show the difference between the pairs of test results relative to their mean value. Lines
that denote the upper and lower difference values that enclose 95% of the points are
added to the plot. They indicate the range of differences between the two sets of test
results. This method is also useful to determine if the level of disagreement between the
two sets of results varies with the mean value of the substance being measured and can
also be used to identify the presence of outlying observations. A limits of agreement
plot is presented in Fig. 5.3.

5.2.5 Measuring precision and agreement of tests with a qualitative outcome

All of the above procedures are useful if the quantity of interest is measured on a
continuous scale. If the test results are categorical (dichotomous or multiple categories),
a kappa (or weighted kappa) statistic can be used to measure the level of agreement
between two (or more) sets of test results. Obviously, the assessments must be carried
out independently of each other using the same set of outcome categories. The data
layout for assessing agreement is shown in Table 5.1 for a 2X2 table (larger ‘square’
tables are also used).

Table 5.1 Layout for comparing results from two qualitative (dichotomous) tests

Test 2 positive Test 2 negative Total
Test 1 positive Ny Ny, n,
Test 1 negative Ny Ny, n,
Total n, n,

In assessing how well the two tests agree, we are not seeking answers relative to a
gold standard (section 5.3.1) as this might not exist, but rather whether the results of
two tests agree with each other. Obviously, there will always be some agreement due
to chance, and this must be considered in the analysis. For example, if one test was
positive in 30% of subjects and the other test was positive in 40%, both would be
expected to be positive in 0.4*0.3=0.12 or 12% of subjects by chance alone. So, the
important question is: what is the level, or extent, of agreement beyond what would
have been expected by chance? This question is answered by a statistic called Cohen’s
kappa. We can calculate the essential elements of kappa very easily. They are:
observed agreement = (n,, + n,,)/n

expected agreement (chance) = [(r, * n,)/n + (n, * n,)/n)/n
actual agreement beyond chance = observed - expected
potential agreement beyond chance = (1 - expected)

kappa = actual agreement beyond chance/potential agreement beyond chance.
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A formula for calculating kappa directly is:
2(nyny —nyany )

kappa =
PP RSN (FY Eq 5.2

Formulae for the standard error and test of significance are available elsewhere (Bloch
and Kraemer, 1989; Kraemer and Bloch, 1994). Before assessing kappa, we should
assess whether there is test bias. This would be indicated by the proportion positive to
each test differing (ie p, # p,, where p, and p, represent the proportion positive to tests
1 and 2, respectively). Because the data are paired this can be assessed by McNemar’s
test or an exact binomial test for correlated proportions.

McNemar's y° = (n,, —n,, )2 /(nn +"21) Eq5.3

A non-significant test would indicate that the two proportions positive do not differ.
If significant this test suggests a serious disagreement between the tests and thus the
detailed assessment of agreement could be of little value.

The magnitude of kappa is influenced by the extent of the agreement as well as by the
prevalence (P) of the condition being tested for. When the latter is very high or very
low (outside of the range 0.2 to 0.8), the kappa statistic becomes unstable (ie difficult to
rely on and/or interpret). Common interpretations of kappa, when applied to a test that
is subjective in nature (eg identifying lesions on an X-ray), are as follows:

<0.2 slight agreement
02t004 fair agreement

0.4t0 0.6 moderate agreement
0.6t0 0.8 substantial agreement
>0.8 almost perfect agreement.

Example 5.2 shows the computation of kappa for assessing agreement between indirect
fluorescent antibody test (IFAT) results for infectious salmon anemia (ISA) when the
test was performed in two different laboratories.

For tests measured on an ordinal scale, computation of the usual kappa assumes that
any pair of test results which are not in perfect agreement are considered to be in
disagreement. However, if a test result is scored on a five-point scale, a pair of tests with
scores of 5 and 4 respectively, should be considered in ‘less disagreement’ than a pair of
scores of 5 and 1. Partial agreement can be taken into account using a weighted kappa
in which pairs of test results that are close are considered to be in partial agreement
(through a weight matrix which specifies how much agreement should be assigned
to them). Example 5.3 shows the data layout and the results of an unweighted and
weighted kappa for comparing two sets of IFAT results for the ISA virus in salmon.
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Example 5.2 Agreement among dichotomous test results
data=[SA_test

Kidney samples from 291 salmon were split with one-half being sent to each of two
laboratories where an IFAT test was run on the sample. IFAT results were expressed as 0
(negative) or 1+, 2+, 3+, or 4+, They were subsequently dichotomised so that all scores of 1+
and higher were considered positive. The data were:

IFAT 2 positive IFAT 2 negative Total
IFAT 1 positive 19 10 29
IFAT 1 negative 6 256 262
Total 25 266 ’ 291

The McNemar’s y* test had the value 1.00 (P=0.317; the binomial P-value was 0.45) indicating
that there is little evidence that the two laboratories found different proportions positive.

observed agreement = 0.945 expected agreement = 0,832
kappa = 0.674 SE(kappa)? = 0.0584
95% CI of kappa = 0.132 to 0.793 P <0.001

Thus the level of agreement appears substantial and is statistically significantly better than
that expected due to chance. However, the CI is wide, reflecting considerable uncertainty
about the estimate. :

2 There are a number of formulae for the SE; the one used here is attributed to Fleiss (1981).
|

5.3 THE ABILITY OF A TEST TO DETECT DISEASE OR HEALTH

The two key characteristics we estimate are the ability of a test to detect diseased
animals correctly (its sensitivity), and at the same time to give the correct answer if
the animal in question is not diseased (its specificity). For pedagogical purposes, we
will assume that animals are the units of interest (the principles apply to other levels of
aggregation). Further, we will assume that a specific ‘disease’ is the outcome although
other conditions such as pregnancy, premature herd removal (culling), having a
specified antibody titre, or infection status could be substituted in a particular instance.
To initiate this discussion, it is simplest to assume that the test we are evaluating gives
only dichotomous answers, positive or negative. This might be a bacterial culture in
which the organism is either present or absent, or a question about whether or not a
dairy farmer uses a milking machine with automatic take-offs. In reality, many test
results provide a continuum of responses and a certain level of response (colour, test
result relative to background signal, level of enzyme activity, endpoint titre efc) is
selected such that, at or beyond that level, the test result is deemed to be positive.

5.3.1 The gold standard

A gold standard is a test or procedure that is absolutely accurate. It diagnoses all of the
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Example 5.3 Agreement among ordinal test results
data=ISA_test

The data described in Example 5.2 were used except the original ordinal data were retained
(5-point scale).

IFAT 2
IFAT 1 Neg + ++ +4++ ++4+4+
Neg 256 5 0 1
+ 8 2 0 2 0
++ 2 1 0 4 0
+++ 0 0 2 2 0
+++t 0 0 0 3 3

Simple (unweighted) kappa=0.45 (assumes that all test results which were not identical as
being in disagreement).

A weighted kappa was computed (Fleiss, 1981) in which test results were:
. identical: weighted as complete agreement
= 1 level apart: weighted as 70% agreement
= 2 levels apart: weighted as 30% agreement
»  >2levels apart: weighted as complete disagreement.
(One should, of course, explain the motivation behind the weights used.)

Weighted kappa=0.693, SE(kappa)=0.046.

The weighted kappa still suggests only moderate agreement but is a better reflection of the

agreement between the two sets of tests than the unweighted test is.

specific disease that exists and misdiagnoses none. For example, if we had a definitive
test for feline leukemia virus infection that correctly identified all feline leukemia virus-
infected cats to be positive and gave negative results in all non-infected cats, the test
would be considered a gold standard. In reality, there are very few true gold standards.
Partly this is related to imperfections in the test itself, but a good portion of the error is
due to biological variability. Animals do not immediately become ‘diseased’, even sub-
clinically, when exposed to an infectious, toxic, physical or metabolic agent. Usually,
a period of time will pass before the animal responds in a manner that produces a
detectable or meaningful change. The time period for an animal’s response to cross the
threshold and be considered ‘diseased’ varies from animal to animal.

Traditionally, in order to assess a new test we need the gold standard. Often, however,
because of practical difficulties, we must use the accepted diagnostic method which
might be closer to a ‘bronze’, or in the worst case a ‘tin’ standard. This can produce
considerable difficulties in test evaluation, and thus, in recent years, we have begun to
use statistical approaches (eg maximum likelihood estimation methods) to help estimate
the two key test characteristics in the absence of a gold standard (see section 5.9).
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5.3.2 Sensitivity and specificity

The concepts of sensitivity and specificity are often easier to understand through the use
of a 2X2 table, displaying disease and test results in a sample of animals.

Table 5.2 Data layout for test evaluation

Test positive (T+) Test negative (T-) Total
Disease positive (D+) a (true positive) b (false negative) m,
Disease negative (D-) ¢ (false positive) d (true negative ) m,
Total n n n

1 0

The sensitivity of a test (Se) is the proportion of diseased animals that test positive. It
is described statistically as the conditional probability of testing positive given that the
animal is diseased [p(7+|D+)], and is measured by:

m Eq 5.4
The specificity of a test (Sp) is the proportion of non-diseased animals that test negative.
It is described statistically as the conditional probability of testing negative given that
the animal does not have the disease of interest [p(7-|D-)] and is measured by:

d
my Eq 5.5

For future purposes, we will denote the false positive fraction (FPF) as 1-Sp and the
false negative fraction (FNF) as 1-Se. From a practical perspective, if you want to
confirm a disease, you would use a test with a high Sp because there are few false
positives. Conversely, if you want to rule out a disease, you would use a test with a high
Se because there are few false negatives.

The estimation of Se and Sp of an indirect ELISA test for detecting bovine fetuses
persistently infected (PI) with the bovine virus diarrhea (BVD) virus is shown in
Example 5.4. A blood sample is taken from the cow in late lactation and tested for
antibodies to the virus. If they are present at a high level, the fetus is deemed to be
persistently infected with the BVD virus.

5.3.3 True and apparent prevalence

Two other terms are important descriptors of the tested subgroup. One denotes the
actual level of disease that is present. In screening-test jargon, this is called the true
prevalence (P); in clinical epidemiology, this is referred to as prior prevalence, or
pre-test prevalence. P is a useful piece of information to include in our discussion of
test evaluation because it will affect the interpretation of the test result. In Example 5.4,
P=p(D+)=m,/n=233/1673=0.139 or 13.9%.

In contrast to the ‘true’ state, unless our test is perfect, the test results will only
provide an estimate of the true prevalence and, in screening-test jargon, this is called
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the apparent prevalence (4P). In Example 5.4 AP=p(T+)=n,/n=800/1673=0.478 or
47.8%. In clinical epidemiology, this might be referred to as a post-test prevalence.
5.4  ESTIMATING TEST SENSITIVITY AND SPECIFICITY

5.4.1 Characteristics of the sampled population

Sensitivity and specificity represent average values of the test characteristics and as
such, we can expect their levels to vary from one subgroup of the population to another.

Example 5.4 Sensitivity, specificity and predictive values
data=bvd _test

The data used for this example came from a study done to evaluate an ELISA test for the
diagnosis of bovine fetuses persistently infected (PI) with BVD virus. See Chapter 27 for a
more complete description of this dataset. The test was designed to work on both milk and
blood samples, but the data used here relate only to the blood sample results. The mean optical
density was 0.92 units. Thus, for this example a fetus was deemed to be test positive if the
optical density of the blood test was greater than 0.92 units. (This is not an optimal cutpoint
for this test, but'is used for illustration.)

Test + Test -
P+ (D+) 178 55 233
Pl (0 622 818 1440
' 800 873 1673

For purposes of description, the 178 animals are called true positives, the 622 are false
positives, the 55 are false negatives and the 818 are true negatives. We will assume here that
the study subjects were obtained using a simple random sample.

In this example,
«  -Se=178/233 =76.4% 95% CI = (70.4% to 81.7%)
= Sp=818/1440=56.8% 95% CI=(54.2% to 59.4%)

= FNF=1-0.764 = 23.6%

*  FPF=1-0.568=432%

*  P=233/1673=13.9%

= AP=800/1673 =47.8%

«  PV+=178/800=22.3% 95% CI'=(19.4% to 25.3%)
= PV-=818/873=93.7% 95% CI=1(91.9% to 95.2%)

Note The confidence intervals are exact based on the binomial distribution.
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Consequently, when estimating Se and Sp, it is important that the study population
to which the gold standard diagnostic procedure is applied be representative of the
target population (ie those animals to whom the test will be applied in the future). This
representativeness refers to the attributes of the animals being tested including their
age, breed, sex efc as host and environmental factors might influence the ability of a
test to detect disease. In fact, often it is useful to stratify the results based on the more
important of these factors in order to obtain more valid stratum-specific estimates. In
addition, it is important that the study group contains an appropriate spectrum of disease
(eg severity, chronicity or stage of development). Certainly, the test characteristics
might differ in different stages of the disease process; for example, tests for Johne’s
disease work much better once the animal is clinically ill as opposed to only being
infected with the organism Mycobacterium avium subsp paratuberculosis (Map).

5.4.2  Study designs for determining sensitivity and specificity

In some settings, the two groups of D+ and D- animals (or samples from them) are
available and the new test can be evaluated on them. In other instances, a sample
of animals is obtained and the test and gold standard are applied to all the sampled
animals. In still other circumstances, only a sub-sample of test positive and negative
animals is submitted to the gold standard test.

If a pre-determined set of D+ and D- animals is used for Se and Sp estimation, then these
statistics can be treated as binomial parameters for purposes of calculating variances
and confidence limits. Common software will usually provide either asymptotic or
exact confidence limits. Predictive values (PVs) (section 5.5) have no meaning with
fixed m, and m,, sample sizes (ie when P is determined by the investigator).

If a cross-sectional sample of animals is used for the study population, with complete
verification of true health status on all study animals, then the same approach can be
used. Here, predictive values, true and apparent prevalence are all meaningful and
treating each of these as a binomial proportion allows calculation of variance and Cls.

In either case, it is advantageous to have a spectrum of host attributes and clustering
units (if any) present (ie animals from a number of different farms). The results should
be assessed for differences in Se or Sp by host attributes using logistic regression (see
section 5.8). Blind assessment and complete work-ups of all animals are useful aids to
prevent bias in the estimates. When Se and Sp are estimated based on samples obtained
from several animals within a number of farms, adjustment of the standard errors (SEs)
for the clustering effect should be made.

If a cross-sectional sample of animals is tested, but only a subset of the test positive
and negative animals are assessed for their true health status, this feature must be built
into the ensuing estimates of Se and Sp. Predictive values are unbiased. In addition, it is
vitally important that selection of animals for verification be independent of their true
health status. In this instance, if we denote the fraction (sf)of the test positives that are
verified as sfr,, and that of the test negatives as sf;., then the corrected estimate of Se
is:
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S . a/SfT+
eCOlT -~ s i
afsfr. +b/sf1_ Eq5.6
and the corrected estimate of Sp is:
SpCQﬂ' = d/SfT_
d/sfr_ +c/sfr. Eq5.7

(See Example 5.5.) If sf;,=sf;. no correction to Se or Sp is needed.

Example 5.5 Estimating Se and Sp using a validation subsample
data=none

Suppose that, at slaughter, we examine 10,000 cattle for the presence of lesions consistent
with bovine tuberculosis (TB). We find lesions in 242 cattle. A detailed follow-up is done on
100 of the animal specimens with lesions and on similar tissue specimens from 200 of the
‘clear’ animals. In the animals with lesions, 83 are confirmed as bovine tuberculosis, whereas
two of the 200 clear animals are found to have tuberculosis. The data are shown here.

Lesion+ Lesion-
TB+ (D+) 83 2
TB- (D-) 17 198
100 200

and

sfre =100/242 =0.413
sfy- = 200/9758 = 0.0205

From these we can calculate Se . and Sp, .

83/0.413 _ 2009

83/0.413+2/0.0205 ~ 298.5 =0.672

Seeon =

with approximate variance of (0.672%0.328)/85=0.003 and

P 198/0.0205 _ 9658.5
Peor = 0.9716/0.0205+17/0.413  9941.2

=0.9716

with approximate variance of (0.9716*0.0284)/215=0.00013

“

The variances of these ‘corrected’ proportions are calculated using only the number of
verified individuals in the variance formulae (ie the a+b verified animals for Se_and
the c+d verified animals for Sp_ . (Table 5.2).
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54.3 Precision of sensitivity and specificity estimates

When designing a study to estimate the Se and/or Sp of a test, we need to consider the
number of animals that is required to obtain a specified precision for each estimate.
These form the basis for estimating the 95% (or other specified level) CIs as shown in
Example 5.4. For Se, estimates within £5% might suffice, whereas for screening low-
risk populations, much larger sample sizes are needed as Sp estimates need to be within
at least £0.5% of the true value. In a diagnostic setting, Sp estimates within 3-5% of the
true value should suffice. See Chapter 2 for details on sample size.

5.5 PREDICTIVE VALUES

The Se and Sp are characteristics of the test. However, these terms do not tell us directly
how useful the test might be when applied to animals of unknown disease status. Once
we have decided to use a test, we want to know the probability that the animal has
or does not have the disease in question, depending on whether it tests positive or
negative. These probabilities are called predictive values and these change with
different populations of animals tested with the same test because they are driven by the
true prevalence of disease in the study population as well as by the test characteristics.
In this discussion, we assume the group of subjects being tested is homogeneous with
respect to the true prevalence of disease. If not, then the covariates that affect disease
risk should be identified and separate estimates made for each subpopulation.

5.5.1 Predictive value positive

With data as shown in Table 5.2, the predictive value of a positive test (PV+) is the
probability that given a positive test, the animal actually has the disease; this might be
represented as p(D+|T+) or a/n,. The predictive value of a positive test can be estimated
using the following formula:

PV p(D+)*Se

p(D+)*Se+p(D-)*(1-Sp) Eq5.8
This formula explicitly indicates that the true prevalence of disease in the tested group
affects the PV+.

5.5.2 Predictive value negative

In a similar manner, the PV of a negative test (PV-) is the probability that given a
negative test, the animal does not have the disease (ie p(D-|7-)). From Table 5.2 this
is PV-=d/n,. The predictive value of a negative test result can be estimated using the
following formula:
_ p(D—)*Sp
PV—=
p(D—)*Sp+p(D+)*(1- Se) Eq5.9

Estimates of PV+ and PV- are shown in Examples 5.4 and 5.6. Note These values
represent the predictive values given the P observed in the study population.
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Example 5.6 Effect of prevalence on predictive values
data=bvd_test

In order to examine the impact of a change in P on the outcome of a test, we will use the values
of Se and Sp from Example 5.4 and specify three scenarios where the true prevalence varied
from 50% to 5% and then to 1%. For pedagogical purposes, we demonstrate the calculations
for the 50% prevalence scenario in a 2X2 table. A simple way to proceed to obtain these
results is 1O construct a fictitious population of 1,000 animals with 500 being ‘diseased’ (ie
PI+) and 500 being PI- based on the true prevalence of 50%. Then, we calculate 76.4% (Se)
of 500 and fill in the 382 true positives. Finally, we calculate 56.8% (Sp) of 500, fill in the 284
true negatives, and complete the table.

Test + Test -
PI+ 382 118 500
Pl- 216 284 500
598 402 1000
From these data:
PV+-="382/598 "= 63.9% The probability that a cow testing positive will truly
have a PI+ caif is 63.9%

PV--=284/402 = 70.6%. The. probability that a cow testing negative will truly
have a PI- calf is 70.7%

Comparable values if the prevalence is 5% or 1% are:

Prevalence (%) PV+ (%) PV- (%)
5 8.5 97.9
1 1.8 99.6

As you can see, the PV+ drops off rapidly as P falls, but the PV- rises.
S

Because we are more often interested in the ‘disease’ side of the question, there is a
measure of the probability that an animal that tests negatively is actually diseased. It is
called the positive predictive value of a negative test or PPV-=b/n,, or 1-(PV-).

5.5.3 Increasing the predictive value of a positive test

One way to increase the predictive value of a positive test is to use the test on animals
where the P in the population being tested is relatively high. Thus, in a screening
programme designed to ascertain if a disease is present, we often might slant our testing
towards animals that are likely to have the disease in question. Hence, testing culled
animals, or animals with a particular history, is a useful way of increasing the pre-test
(prior) probability of disease.

A second way to increase PV+ is to use a more specific test (with the same or higher Se),
or change the cutpoint of the current test to increase the Sp (but this would decrease the
Se somewhat also). As Sp increases, PV+ increases because b approaches zero (fewer
false positives). A third, and very common way to increase P+ is to use more than one
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test. Here the result depends on the method of interpretation as well as the individual
test characteristics.

5.6  USING MULTIPLE TESTS
5.6.1 Parallel and series interpretation

Using two tests represents the simplest extension of more than one test although the
principles discussed below hold true for multiple tests. Suppose we have two different
tests for detecting a disease. In Example 5.7, we use the results from the IFAT test for
infectious salmon anemia (Se=0.784, Sp=0.951) and the polymerase chain reaction
(PCR) test for the same disease (Se=0.926, Sp=0.979). If both tests are carried out, the
results can be interpreted in one of two ways. With series interpretation, only animals
that test positive to both tests are considered test positive. With parallel interpretation,
animals that test positive to one test, the other test or both tests are considered test
positive. Series interpretation increases Sp but decreases Se; whereas parallel testing
increases Se and decreases Sp.

Example 3.7 Series versus parallel interpretation
data=ISA_test

The data in this example are from the ISA_test dataset. The tests we-are comparing are the
indirect fluorescent antibody test (IFAT) and the polymerase chain reaction (PCR) test, with
clinical disease status (see dataset description Chapter 27) used as the gold standard. The
observed joint distributions of test results and virus presence are shown below along with the
four possible test interpretation criteria.

Number of fish by test-result category Totals
IFAT result + + 0 0
PCR result + 0 + : 0
Diseased fish 134 4 29 9 176
Non-diseased fish 0 28 12 5§34 574
Series interpretation + 0 0 0
Parallel interpretation + + + 0
Se of IFAT only = 138/176 = 0.784 Sp of IFAT only = 546/574 = 0.951
Se of PCR only = 163/176 = 0.926 Sp of PCR only = 562/574 = 0.979

Se of series interpretation = 134/176 = 0.761
Se of parallel interpretation = (134-+4+29)/176 = (0.949
Sp of series interpretation = (28+12+534)/574 = 1.000

Sp of parallel interpretation = 534/574 = 0.930
“
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Note If tests are going to be interpreted in series, it often makes sense to first test all
animals with the test that is less expensive and/or more rapid, and then test all test
positives with the second test. This is referred to as sequential testing and it provides
the same results as simultaneous testing, but at lower cost, because only those subjects/
samples positive to the first test are followed-up with the second test.

5.6.2 Correlated test results

Given the previous discussion on parallel and series interpretation, one might think that
virtually 100% Se would be obtainable with two-to-three tests used in parallel or 100%
Sp with three-to-four tests used in series. However, Example 5.7 uses observed values,
not ones we might expect assuming conditional independence of tests. The expected
distributions of results, if the tests were independent, are shown in Table 5.3.

Table 5.3 Expected Se and Sp levels with combined tests for ISA assuming
conditional independence (Example 5.7)

Sensitivity Specificity
Interpretation Expected Observed Expected Observed
Parallel 0.784+0.926- 0.951*0.979=0.931 0.930
0.784*0.926 = 0.984 0.949
Series 0.784*0.926=0.726 0.761 0.951+0.979-
0.979%0.951=0.999 1.000

The expected Se for parallel interpretation is slightly higher than observed and slightly
lower than observed for series interpretation. The expected and observed values for
Sp are virtually identical. Note that conditional independence assumes that, in D+
animals, the probability of a positive test result to test 2 is the same in samples that test
negative to test 1 as it is in those that test positive to test 1. A similar assumption exists
in D- individuals. More likely, and as observed with these data, especially if the tests
are biologically related (eg both antibody tests), if test 1 is negative, the result on test
2 is more likely to be negative than if test 1 was positive. In this instance, we would
describe the test results as dependent, or correlated (Gardner et al, 2000).

The extent of the dependence can be calculated as shown below and in Example 5.8.
1. Denote the observed proportion of D+ animals with a positive test result to both
testsasp,,, (moregenerallyp, ., ;idenotingtest 1 result,jdenotingtest 2 result,and k
denoting disease status (1=diseased, O=non-diseased).
2. Inthe D+ group, and using the sample estimates of Se for tests 1 and 2 respectively,
(Se, and Se,), the covariance is:
covar(+) = p;;, - Se, * Se,
3. Similarly, in the D- group and using the sample estimates of Sp, and Sp,, the
covariance is:
covar(-) = pgoo - 5P, * Sp,
The usual circumstance would be that ihese covariances would be positive,
indicating dependence. In a more formal sense, if one calculates an odds ratio
(OR) on the data from the D+ group (OR+) and separately on the D- group
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Example 5.8 Estimating covariance between test results
data=ISA_test

Using the Se and Sp estimates obtained in Example 5.7, the covariance in the D+ and D-
groups are:

D+ group: covar(+) =p;; - Se; * Se, =0.761 - 0.726 = 0.035

D- group: covar(-) = Py - SP; * Sp, =0.930 - 0.931 =-0.001

There is a slight positive covariance in the D+ group, but it is sufficiently small that the
correction will not materially affect the results when the tests are used in combination. There
is virtually no covariance in the D- group.

(OR-), these ORs describe the above two covariances respectively, because, ifthe
tests were conditionally independent, the ORs would equal 1. Similarly, if the
testresults are conditionally independent, the kappa statistic in data from D+and D-
individuals would both equal 0.
4. Givendependence, the Se and Sp resulting from parallel interpretation of two tests
are:
Se,=1-pyo; =1-(1-S8e)*(1-Se,)-covar (+)

SPp = Pooo = Spy * Sp, + covar (-)

From series interpretation of two tests these are:
Se = p,;; = Se, * Se, + covar (+)

Sp,=1-pyp=1-(1-S8p)) *(1-S8p,) - covar(-)

Functionally, this means that the gains/losses from using either of these approaches are
not as great as predicted under conditional independence. It can also affect the choice
of tests to be used. For example, a more optimal outcome might arise from choosing
two independent tests with lower sensitivities than two dependent tests with higher
sensitivities.

5.6.3  Setting cutpoints for declaring a test result positive

For many tests, the substance being evaluated (eg urea in milk, serum calcium, liver
enzymes) is measured on a continuous scale or with semi-quantitative (ordinal) results.
These items need cutpoints (also called cut-offs or thresholds) to determine what level
of result indicates a positive test result. This is also true for many serologic titres. In
reality, there is often an overlap in the distribution of the substance being measured
between healthy and diseased animals and we usually select a cutpoint that optimises
the Se and Sp of the test. The dilemma is depicted in Fig. 5.4. As will be demonstrated
(section 5.6.5), it is often useful to use the actual result when assessing the health status
of the tested subject(s).
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Fig. 5.4 Overlap between healthy and diseased animals
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The distribution of OD in PI+ and PI- calves overlaps considerably. Thus, whatever
cutpoint we choose to denote a calf as test positive, there will be both false positive and
false negative calves as shown in Example 5.9. PI- calves with test results at or above a
given cutpoint are false positives and PI+ calves with test results below the cutpoint are
false negatives. If we raise the cutpoint, the Sp will increase (false positives decrease)
and the Se will decrease (more false negatives). Lowering the cutpoint has the opposite
effect. Thus, the choice of cutpoint to use will depend on the relative seriousness of
either a false negative or a false positive test result.

If one has to choose among multiple cutpoints, graphical procedures (see section 5.6.4)
might be used to help choose an optimal cutpoint. Alternatively, it is possible to use
the actual test result value by computing likelihood ratios (see section 5.6.5) and avoid
having to select a specific cutpoint.

5.6.4 Receiver operating characteristic curves

A receiver operating characteristic (ROC) curve is a plot of the Se of a test versus
the false positive rate (1-Sp) computed at a number of different cutpoints to select the
optimum cutpoint for distinguishing between diseased and non-diseased animals. The
45° line in Fig. 5.5 represents a test with discriminating ability that is no better than
chance alone. The closer the ROC curve gets to the top-left corner of the graph, the
better the ability of the test to discriminate between diseased and non-diseased animals.
(The very top-left corner represents a test with a Se of 100% and a Sp of 100%).

Use of an ROC curve has the advantage over a ‘one cutpoint value’ for determining
Se and Sp in that it describes the overall ability of the test to discriminate diseased
from non-diseased animals over a range of cutpoints. The area under the ROC curve
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Example 5.9 Impact of changing the cutpoint on Se and Sp
data=bvd_test

By varying the optical density (OD) cutpoints for the BVD test results; the following estimates
of Se, Sp and likelihood ratios were obtained (based on all samples, »=2162).

Optical Pl+ Sensitivity Pl- Specificity Sensitivity

density category cumulative category cumulative +

cutpoint percentage percentage® percentage percentage® - Specificity
20.0 6.76 100.00 16.91 0.00 100.00
20.5 463 93.24 17.44 16.91 110:15
20.7 13.17 88.61 21.64 34.34 122.95
20.9 16.01 75.44 18.29 55.08 131.42
21.1 23.13 59.43 13.29 74.27 133.70
21.3 18.51 36.30 6.75 87.56 123.86
21.5 7.83 17.79 3.62 94.31 112.10
21.7 3.56 9.96 1.01 97.93 107.89
21.9 6.05 6.41 0.85 98.94 105.35
22.1 3.60 ‘0.36 0.21 99.79 100:.15
>2.1 0.00 0.00 0.00 100.00 100.00

8 from highest to lowest OD category.
b from lowest to highest OD category.

Clearly, as the cutpoint for a test to be declared positive is increased, Se decreases and Sp
increases. If the ‘costs’ of errors (ie false negative versus false positive) are equal, then the
maximum separation of PI+ and PI- individuals is at a setting of >1.1 where the sum of Se

and Sp is maximum. I

(AUC) can be interpreted as the probability that a randomly selected D+ individual has
a greater test value (eg optical density) than a randomly selected D- individual (again
assuming the distribution of the test statistic in the D+ group is higher than that in the
D- group). If an estimate of the SE of the AUC is available, it is useful for sample-size
considerations when designing studies to evaluate tests (see Greiner et al, 2000).

Of course, depending on the seriousness of false negative versus false positive results,
one might want to emphasise test results in one particular region of the ROC curve (eg
an area that constrains Se (or Sp) within defined limits). Given equal costs to test result
errors, the optimal cutpoint is that with Se+Sp at a maximum, and this occurs where the
curve gets closest to the top left corner of the graph (or alternatively, the farthest away
from the 45° line).

Both parametric and non-parametric ROC curves can be generated. A non-parametric
curve simply plots the Se and (1-Sp) using each of the observed values of the test result
as a cutpoint. A parametric ROC curve provides a smoothed estimate by assuming
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that latent variables representing the Se and (1-Sp) at various cutpoints follow a
specified distribution (usually binormal). Example 5.10 shows both parametric and
non-parametric ROC curves for the bvd_test data. An alternative to ROC curves for
simultaneously evaluating how Se and Sp vary as the cutpoint is changed is to plot Se
and Sp against various cutpoints (see Fig. 5.6).

5.6.5 Likelihood ratios

A likelihood ratio (LR) for a positive test result (LR+) is the ratio of the post-test odds
of disease divided by the pre-test odds. Recall that, in general, an odds is P/(1-P) so
an LR of a positive test result is the odds of disease given the test result divided by the
pre-test odds:

_Pr+/l-PV+)  se
P/(1-P) 1-Sp Eq5.10

LR+

where P=prevalence or p(D+) in the group being tested. Consequently, LRs reflect how
our view changes of how likely disease is when we get the test result.

The value of the LR approach (not to be confused with likelihood ratio tests as used
in Chapter 16) is that it can be calculated for each cutpoint when the test result is a
continuous, or ordinal, variable. Thus, the LR, at a selected cutpoint (ie cutpoint-
specific LR approach) generalises to:

Se
1-8p, Eq5.11

cp

LR ,+=

where cp denotes the cutpoint at or above which the test is considered positive. In this
context, the LR+ can be viewed as the probability of a diseased individual having a
test result as high as observed compared with the probability of the same result in a
non-diseased subject. The LR for a negative test result (LR-) at a given cutpoint is the
ratio (1-Se)/Sp. It denotes the probability of the negative result from a diseased relative
to that of a non-diseased subject. Examples of LRs at various cutpoints are shown in
Example 5.11.

The LR makes use of the actual test result (as opposed to just being positive) and gives
a quantitative estimate of the increased probability of disease given the observed result.
For example, at the cutpoint >1.1, the LR+is 2.31, meaning that a cow that tests positive
at this cutpoint is 2.3 times more likely to have a PI+ calf than you thought it was prior
to testing. Note Technically, we should state that the odds, rather than the probability,
of the disease has gone up 2.6 times but if the disease is rare, then odds=~probability.
This approach makes use of the fact that in general the LR increases as the strength of
the response (test result) increases.

Often, researchers in a diagnostic setting prefer to calculate LRs based on the category-
specific result (LR_,) as opposed to the cumulative distributions (Giard and Hermans,
1996).
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Example 5.10 ROC curves
data=bvd_test

Fig. 5.5 shows both non-parametric (thick line) and parametric (thin line) ROC curves along
with 95% CI curves for the parametric ROC. ‘

Fig. 5.5 Parametric and non-parametric ROC curves
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Area under curve = 0.7038; SE (area) = 0.0166

Alternatively, a graph of the Se and Sp of a test can be plotted against various possible
cutpoints as is shown in Fig. 5.6.

Fig. 5.6 Se and Sp plotted against cutpoints
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As can be seen, obtaining an Se much greater than 70% entails accepting quite a low Sp (and
vice versa).
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Example 5.11  Likelihood ratios
data=bvd_test
Cutpoint-specific and category-specific likelihood ratios for the bvd_test data
' Category-
Optical Pl+ Cumulative . Positive Pi- Cumulative  Negative specific
density category. - sensitivity - likelihood category  specificity  likelthood likelihood
cutpoint (%) (%) ratio® (%) (%) ratio? ratio
20.0 6.76 100.00 1.00 16.91 0.00 0.40
20.5 : 4.63 93.24 112 17.44 16.91 0.40 0.27
20.7 1347 88.61 1.35 1 21.64 34.34 0.33 0.61
20.9 16:01 75.44 1.71 18.29 55.98 0.44 0.88
211 2313 59:43 2.3 13.29 74.27 0.55 174
21.3 18:5¢ . 36.30 292 6.75 87.56 0.73 274
21.5 7.83 17.79 3.13 3.62 94.31 0.87 2.16
21.7 3.56 9.96 4.81 1.01 97.93 0.92 3.52
21.9 6.05 641 6.02 0.85 98.94 0.95 7.12
22.1 3.60 0:36 1.67 0.21 99.79 1.00 17.14
>2.1 0.00 0.00 0.00 100.00 1.00
* Based on cumulative distributions (ie sensitivity and specificity)

Here the LR is:
P(result/D +)

LR, =
* " P(result/D-) Eq5.12

In either format the LR is useful because it combines information on both sensitivity
and specificity and it allows the determination of post-test from pre-test odds of disease
as shown:

post-test odds = LR * pre-test odds Eq5.13

When interpreting the post-test odds, we need to be aware of whether the LR, or LR,
is being used. The former gives the post-test odds for an animal testing positive at that
level or higher, whereas the latter gives the post-test odds for animals testing positive
in that specific category (or level) of test result. The process of computing the category-
specific post-test probability is as follows, assuming that, prior to testing, you thought
there was a 2% probability of the cow having a PI+ fetus and that the test OD was 1.97
(LR, =7.12):
1. convert the pre-test probability to pre-test odds
pre-test odds = 0.02 / 0.98 = 0.0204
2. multiply the pre-test odds by the likelihood ratio to get the post-test odds
post-test odds = 0.0204 * 7.12 = 0.145
3. convert the post-test odds to a post-test probability
post-test probability = 0.145 /(1 + 0.145) = 0.127
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After obtaining a test result of 1.97, your estimate of the probability that the cow is
carrying a PI+ fetus is 12.7%.

The variance of the lnLRcp is:

1-PV+ -
var(In LR, ) = (—Cp + I—EJ

(a+c)cp n Eq 5.14
and a (1-a)% Cl is:
+7 [var(inLRop )
LR, *e ’ Eq5.15

See Greiner and Gardner (2000a) for related discussion, and Greiner et al (2000) for the
relationship between LRs and the ROC.

5.7 ESTIMATING THE TRUE PREVALENCE OF DISEASE

If the Se and Sp of a test are known, the true prevalence of disease in a population is
estimated by:

AP —({1-S§ AP+ Sp—1
p(D+)= (1-5p) _ P
1-[(1-Sp)+(1-Se)]  Se+Sp-1 Eq5.16

where AP is the apparent prevalence of disease.

For example, if 4P=0.150 and Se=0.363, Sp=0.876, then our estimate of true prevalence
is 0.108 or 10.8%.

5.8 SENSITIVITY AND SPECIFICITY ESTIMATIONS USING LOGISTIC
REGRESSION

While the Se and Sp are often considered characteristics of a test, there is increasing
evidence that for many tests, the Se and Sp vary with the characteristics of the population
to which they are applied. For example, the specificity of serologic tests for Brucella
abortus is higher when the test is used in populations in which no calfhood vaccination
is used compared with vaccinated populations. Often it is important to know what
characteristics of a population affect the Se and Sp of a test (some might prefer to think
of factors relating to the occurrence of false negative or false positive results). If there
are few such factors to be considered, you can stratify on these and estimate the Se and
Sp in each stratum. However, when there are several factors to investigate, stratification
rapidly runs into problems of inadequate sample size and it is more convenient to use a
logistic regression approach (Coughlin et al, 1992; Lindberg et al, 1999; Lindberg et al,
2001). For details on logistic regression see Chapter 16.

We begin by creating a dichotomous variable representing the test outcome (positive or
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negative) at each selected cutpoint of the test result. Logistic regression (see Chapter
16) can then be used to model the test outcome at each cutpoint as a function of the true
health status variable (X)) as well as the factors that might affect the Se and Sp. This
can either be done by carrying out separate logistic regressions using the D+ and D-
animals (as shown in Example 5.12) or by including the true health status variable (X))
in the model. In the latter approach it might be necessary to include interaction terms
between X, and the other factors to allow for the fact that those factors might have
different effects in D+ and D- animals. Non-significant factors might be eliminated, but
the variable representing the true health status of the animal must remain in the model.
For a given set of factor values, the Se of the test at the selected cutpoint will be:
Se = e
1+e” Eq5.17

where ,u=ﬂ0+ﬁ1XtS+2ﬁij when X, =1 and the X, are the other factors in the model (or

alternatively y=ﬂ0+Z,B;Xj from a model based only on D+ animals).

Example 5.12 - Estimating Se and Sp with logistic regression models
data=bvd_test

Using the bvd_ test data, the effects of calving season, specimen type, breed, stage of gestation
and parity on the'Se of the ELISA were evaluated. The outcome shown here was the logistic
model based on the D+ animals (#=281) and the ELISA result dichotomised at the test result
1.0. Specimen type, breed and parity were removed from the model because they were not
statistically significant. The coefficients of interest are:

Coef SE b4 P 95% Cl
Month of gestation 0.697 0.097 7.20 0.000 0.507 0.887
season=spring 0.722 0.347 2.08 0.037 0.043 1.401
season=summer 0.673 0.538 1.25 0.212 -0.383 1.728
season=fall 0.468 0.508 0.92 0.357 -0.527 1.463
constant -4.013 0.636 -6.31 0.000 -5.260 -2.767

The sensitivity at cutpoint 1.0 for a calf at seven months’ gestation in the fall is
p=-4013 +7* 0.697 + 0.468
=1.334
Thus,

Se e 3796

= Tio® 2796 07

Similarly, the Sp was estimated using a model based only on D- animals and found to be
0.68.

The positive coefficient for month of gestation indicates that the sensitivity of the procedure
was higher later in the gestation period. Comparable assessments could be made for other
values of the factors of interest (eg comparing seasons). Similarly, other cutpoints could be
selected as the outcome to adjust the Se and Sp as deemed necessary.

]
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The specificity of the test is:
e

Sp=1-
P 1+e Eq5.18

where u=f,+Xf X, because X, =0 (or alternatively u=f,+Zp X, from a model based
only on D- animals).

One can use the same approach to estimate predictive values but in that case, the
outcome is the true disease status and the test result is one of the explanatory variables.
Examples of this are discussed elsewhere (Greiner and Gardner, 2000, pp 19-20).

5.9 ESTIMATING SE AND SP WITHOUT A GOLD STANDARD

So far, in this chapter, we have assumed that a gold standard procedure is available
that detects disease and the non-diseased state perfectly. Often such a procedure is
unavailable and we are unsure of the disease state values m, and m, (see Table 5.2).

5.9.1 Assuming disease-free status

A commonly used method to estimate Sp when disease is known to be infrequent
(say, less than 2%) is to assume that all of the test positive animals are false positives
(ie Sp=1-AP). If a portion of the test positives are found (or known) to be true positives,
then the AP can be adjusted accordingly. For example, in Ireland, about four animals
per 1,000 test positive to the skin test for bovine tuberculosis; hence, the Sp of this test
cannot be less than 1-0.004=0.996 (99.6%).

5.9.2 Standard test sensitivity and specificity available

If the Se and Sp of a reference test (Se, cand Sp, ., respectively) are known, then from
the data in a 2X2 table based on the new test results (but with disease status determined
by the reference test), we could estimate the Se ., and Sp, .. of the new test using the
syntax of Table 5.2 as follows (Staquet et al, 1981; Enoe et al, 2000):

Senew — nISpref —C
RSP e — Mg Eq5.19
nySe.. —b

Spnew = 0 rEf
nseref -m Eq 5.20

We could also estimate P using
_ n(Spref _1)+ m,
n(Se e +Sp s ~1) Eq5.21

Variance formulae are available (Gart and Buck, 2003). This procedure assumes that,
conditional on the true disease state, the new test and the reference test are independent.
In reality, this is not likely true, thus reducing the value of this approach.
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5.9.3 Maximum likelihood estimation

If no gold standard test is available, then it might be possible to estimate the Se and
Sp of two or more tests provided that sets of samples from at least two populations,
with different prevalences of disease, have been tested using both tests (Enoe et al,
2000). The minimum requirement is to have two sets of test results from each of two
populations. With these data, there are six unknown parameters to be estimated: the
two test sensitivities, the two test specificities, and the two population prevalences. The
data generate two (one for each population) 2X2 tables of combined test results so they
represent 6 degrees of freedom (df), once the sample size in each population is fixed.

An approach originally developed by Hui and Walter (1980), uses maximum likelihood
estimation procedures to determine the set of parameter estimates (for Se, Sp and P)
that make the observed data most likely. As six parameters are being estimated from
6 df, it is not possible to carry out any assessment of how well the derived estimates
fit the observed data. However, the procedure can be extended to more than two tests
and more than two populations, in which case some evaluation of the procedure is
possible (Enoe et al, 2000). Recently, an online computer program for carrying out the
maximum likelihood estimations (using either a Newton-Raphson algorithm or an EM
algorithm) has been made available (Pouillot et al, 2002).

The procedure is based on three critical assumptions.

1. The tests must be independent (ie no conditional dependency as described in
section 5.6.2).

2. The Se and Sp must be constant across all of the populations evaluated.

3. The prevalence of disease in the two populations must be different. (Provided
there is some difference in prevalence between the two populations, convergence
usually occurs. However, as the difference in prevalence gets smaller, the CI for
the estimates increases dramatically).

Violation of these assumptions invalidates the parameter estimates. However, if data
from more than two tests, or more than two populations are available, it is possible to
evaluate the validity of some of those assumptions.

Based on the data presented in Example 5.7, the maximum likelihood estimates (based
on the Newton-Raphson algorithm) of the Se and Sp of the IFAT and PCR and the two
population prevalence estimates are shown in Table 5.4. Because these diseased and
non-diseased populations were selected based on clinical signs, it is likely that the test
will perform better in these two populations than in other populations. Consequently,
the Se and Sp estimates in Table 5.4 are probably overestimates. Because P in the non-
diseased population has been estimated to be 0, the Sp estimates are exactly the same as
those shown in Example 5.7.
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Table 5.4 Maximum likelihood estimates of Se and Sp and population
prevalences from ISA test results database

Prevalence Sp Se
Non-
Diseased diseased IFAT PCR IFAT PCR
Estimate 0.950 0 0.951 0.979 0.823 0.974
Lower 95% CI 0.899 NA2 0.930 0.964 0.756 0.924
Upper 95% CI 0.976 NA 0.966 0.988 0.874 0.991

2 Not applicable
Note Data from Example 5.7.

5.9.4 Bayesian methods

Bayesian methods offer a more flexible approach to estimating Se and Sp in the
absence of a gold standard test. Bayesian estimates can incorporate prior (independent)
estimates of the Se and Sp of the tests into the process. They can also be used to relax
the requirement of having data from multiple populations, or to build in factors which
account for the conditional dependence among test results. However, discussion of
these procedures is beyond the scope of this book.

5.10 HERD-LEVEL TESTING

If a herd, or other aggregate of individuals, is the unit of concern, and a single test of
the group (eg a culture of a bulk-tank milk sample for Strep. agalactia in a dairy herd)
is taken to classify the group as test positive or test negative, the previously described
approach to test evaluation and interpretation applies directly. The group becomes the
unit of concern rather than the individual.

However, frequently, we are asked to certify the health status of a herd, or group of
animals based on test results compiled from a number of individuals. In this instance,
in addition to the Se and Sp of the test at the individual level, three factors interplay in
determining the Se and Sp at the group level — namely, the frequency of disease within
infected groups, the number of animals tested in the group, and the number of reactor
animals per group that will designate a positive or negative herd. Once the Se and Sp of
the procedure at the group level are known, the evaluation of the predictive values of
positive and negative herd results follows the same pattern as already described (Martin
et al, 1992; Christensen and Gardner, 2000).

As mentioned, herd sensitivity (HSe) and herd specificity (HSp) are influenced by the
individual level Se and Sp, within herd P, and the threshold number, or percentage, of
positive tests that denote the herd, or group, as test positive. For simplicity, we assume
only one test is used; however, multiple tests and repeat testing results can make up
the herd test and one need only establish their combined Se and Sp. The probability of
obtaining a positive test is:
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AP =p(T+) =P * Se + (1-P)(1-Sp) Eq5.22

If a herd is infected, then a positive test could arise correctly based on P*Se, or it could
arise correctly, but for incorrect reasons, because of the (1-P)(1-Sp) component.

The AP, if disease is present, is: APPOs =P *Se + (1-P)(1-Sp).
Note If the herd is not infected (diseased) then the 4P is: AP, ., = (1-Sp).

Now, if the critical number of animals testing positive to denote the herd as test positive
is k, we can use a suitable probability distribution for AP and solve for the probability
of >k animals testing positive when » animals are tested. If n/N is less than 0.2, then a
binomial distribution is acceptable for sampling of # animals from a total of N animals
in a herd; otherwise, the hypergeometric distribution, which provides more accurate
estimates, should be used. In the simplest setting, if &=1, the easiest approach is to solve
the binomial for £=0 and take 1 minus this probability to obtain the probability of one or
more test positive animals. Thus for k=1 and assuming the herd is infected:

HSe=1-(1-AP )" Eq5.23

pos

On the other hand, if the group is disease free, then
HSp = Sp”" Eq5.24

In the more general case, if more than & positives are required before a herd is declared
positive, the HSe can be estimated as:

pos

k
HSe=1-Y cr (4P, Y (-4apP )
€ ; k ( pos ) ( ) Eq 5.25

where C} is the number of combinations of & positives out of # animals tested.

The HSp will be:

k
HSp =) Ci(sp)'™* (1-sp)*
> Eq5.26

Both HSe and HSp are estimates of population parameters that apply to herds with the
underlying conditions and characteristics used to determine the estimates.

The general findings from studying herd test characteristics are:
1. If nis fixed, HSe increases with P and/or AP, providing Se>(1-Sp).
2. As n increases, HSe increases. Gains in HSe from increasing » are especially
large if AP <0.3.
3. With fixed n, HSe increases as Sp decreases (noted earlier).
4. HSp decreases as Sp decreases.

A program called Herdacc (©D Jordan, 1995) is available at http://epiweb.massey.ac.nz
to perform ‘what-if* calculations to see how changing the sample size, the number
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required to consider a herd positive or the statistical distribution (binomial or
hypergeometric) affects the results. An example of estimating HSe and HSp is shown
in Example 5.13.

5.10.1 Herd test characteristics based on pooled specimens

Often, to reduce cost, or when individual results are not needed or individual samples
are not available, specimens from a number of animals might be pooled and tested
as one sample. Such an approach is most efficient when P is low. If the laboratory is
limited in terms of mass or volume of sample, one needs to be aware of the effects of
sampling from the primary specimen (eg issues of homogeneity of mixing), as well as
the effects of dilution of the substance being tested for (perhaps to below the laboratory
Se), and the increased possibility of having extraneous cross-reacting substances added
to the pool because of the inclusion of material from more animals (the latter might or
might not be a ‘likely’ event).

If the number of animals in the pool () is moderately large, the Se of the test based on
the pooled sample (PiSe) is likely less than Se; pooled Sp is denoted PiSp.

Christensen and Gardner (2000) showed that HSe based on r pooled samples, each
containing material from m animals is:
HSe=1-[(1-(1-P)1-Se)+(1-Py"PiSp] Eq5.27

If the herd is D-, then the herd Sp based on the pooled sample (HSp) is (PISp)’, and if
no clustering occurs within pools, PISp=Sp™. Thus, if pooled testing is performed on a
number of assumed D- herds, then H4P=1-HSp=1-(PISp)” which allows one to solve
for the unknown PISp. Similarly because Sp=PISp'/™, increasing r or m increases the
HSe and decreases HSp in the same manner as increasing » when testing individuals
within a group. At present, the optimal choice of » and m should be investigated on a
- case-by-case basis. An example of estimating HSe and HSp based on pooled specimens
is shown in Example 5.14.
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Example 5.13 - Estimating herd Se and Sp

We will assume that we are testing herds with an average of 60 adult cattle for the presence
of Mycobacterium avium subsp paratuberculosis (Map) using the ELISA. This test has
an estimated Se of 0.391 and Sp of 0.964. We will assume that if Map is present, the true
prevalence at the time of testing is 12%. Thus the 4P in the herds with disease will be:

APy =p(T +)= P*Se+ (1= P)(1-5p)
=0.12%0.391+ (0.88)(1-0.964) = 0.0786
and the AP in the disease-free herds will be:

AP, =0.036

neg

Now, assume that the critical number of positive-testing animals to denote a herd as test
positive is k=2. For the purposes of this example, we will use the binomial probability
distribution to solve for the probability of >2 positive-testing animals when #=60 animals are
tested (assuming an infinite population). The probability of k22 is found by first solving for
the probability that k<2.

k
plk <2)= ZC;’AP" (1-4Py*
0

The probability that k=0 is:
pk = 0) = C *(0.079)° *(1-0.079)®

=1*1%0.921®° = 0.0072

The probability that k=1 is:
plk =1)= C®*(0.079)' *(1-0.079)”
= 60*0.079*0.921% =0.037

The sum of these two probabilities is 0.044. Hence, the probability of two or more animals
testing positive in a herd with P=0.12 is 1-0.044=0.956, which gives us the HSe estimate.

For HSp, we would assume the herds are disease free, thus the probability of 0 or 1 reactors
is the sum of these two probabilities,

Given a herd is disease free, the probability that =0 is:
plk =0)= ¢’ *(0.964Y°(1 - 0.964)
: _ =1*0.111*1=0.111
and the probability that k=1 is:
plk =1)=c *(0.964)* (1-0.964)
=60*0.115*0.036 = 0.248
Hence the HSp is 0.359.

With an HSe of 95%, we can be confident that we will declare the herd as infected if it is
infected: However, with the HSp of only 36%, we will declare 64% of Map-free herds as
infected, 'so the test needs to-be used with great care,

-
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Example 5.14 Estimating HSe and HSp from pooled specimens

We can suppose that we are going to test herds for Map using pooled fecal culture. Fecal
culture has an estimated Se of 0.647 and Sp of 0.981. Suppose we wish to pool fecal samples
from five cows together and we will use six pooled samples per herd: Hence m=>5 and r=6.

If the herd is D-, then the herd Sp based on the pooled éétnple (assuming homogenous
mixing) is:
(HSp) = (PISpy = (Sp™y = (0.9815)¢ =0.5624

If the herd is infected with a true prevalence of 12%, and assuming no dilution effect, then
HSe is:
HSe = 1-{(1-(0.88))(0.353) + (0.88)° * 0.909]6
1-10.311 + 0.48016
= 1-0.245=0.755

]

As with individual testing, the Se at the herd level is increased by testing more animals
through the use of pooled samples but the Sp at the herd:level is decreased. One could
compare the two approaches ignoring costs and then add the cost information to the final

decision-making process. -
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SAMPLE PROBLEMS

Exercise 1

1.

Using the dataset isa_test, let’s examine the agreement between tests.
First, repeat the kappa test on -ifat1- and -ifat2-—this is testing agreement between two
laboratories. At this point, we are using the original results of the two tests.
a. First, repeat the kappa.
b. This kappa assumes any disagreement is total disagreement, so let’s weight the
agreement as follows:
1 level apart 80% agreement
2 levels apart 50% agreement
3 levels apart 10% agreement
4 levels apart 0% agreement
What is the extent of agreement using this approach?
Okay, now examine the agreement of the PCR result with the dichotomised results
of -ifatl-.
a. First display the data in a 2X2 table, and test for equality of the number
positive using McNemar’s test.
b. Then, if this test is not significant examine kappa. Does this value make sense
given the data?
Repeat 2. comparing PCR with the dichotomised histologic results. Comment on
the results.

Exercise 2

1.

Using the dataset bvd test; examine the sensitivity and specificity of the ELISA .

test at the OD cutpoints of >0.8 and >1.7. The idea of this test

is to test the dam and see if the result was of value for predicting the infection status
of the fetus. Comment on the results.

Note We have already created the dichotomous variables from OD; they are labelled

co_5....co_1.7 so, you don’t need to generate new variables.

Is the OD associated with the specimen tested (ie milk versus blood)? Explain your

answer.

a. If you used the test on blood at the cutpoint of >0.8 to test 1,000 pregnant cattle
that had a true prevalence of 3% PIs, what would the positive and negative
predictive values be? (You need to do this manually.)

b. What if you used the test on blood at the cutpoint of >1.3 instead of >0.8?

Use the ROC approach to evaluate the sensitivity and specificity of the ELISA test

at various optical densities as well as the overall ability of the test to

differentiate diseased from non-diseased animals. Here we can leave OD as a

continuous variable.

a. First compute an overall ROC curve for the ELISA. What do you think of its
predictive ability?

b. Use the AUCs to compare the ELISA on milk versus the results of ELISA on
blood samples.

Divide the OD into categories by using cutpoints from 0.5 to 2.1 in units of 0.2.

Now compute the likelihood ratio for positive and negative tests at each of these

cutpoints. Interpret these results.
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6. a.
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Identify the impact of parity, breed and season of testing in six-to-eight-month
gestation females on the sensitivity and specificity of the ELISAtest foridentifying
PI+ calves using blood as the specimen. If, as an example, season affects the test
characteristics, should one adjust for season such that the characteristics are
maintained at a constant level across seasons, or just accept that the test
characteristics will fluctuate by season in a predictable manner?

Do these factors operate the same in cows with a PI+ calf as in cows with a PI-
calf?

Exercise 3
1. Use the program Herdacc to estimate the HSe and HSp under the following
situations:

a.

b.

= Sensitivity=0.8

»  Specificity=0.9

*  Sample size=10

= Population size=200

= Sample without replacement

= Within-herd prevalence estimates of 1%, 5%, 10%, 20% and 50%

»  Cutpoints (k) of 1, 2, or 3.

What cutpoint (k) would you choose if you were testing for a disease of very low
prevalence (<6%)?

What cutpoints would you use if you were testing for a disease with prevalence
above 19% when you wanted to limit the number of false positive herd results?

2. We are going to test herds of cattle for the presence of E. coli 0157. We will pool
the feces from 3 (k=3) animals and test 10 (+=10) pools per herd.

a.

b.

If the individual specimen-level sensitivity is 30% and the specificity is 95%,
what would you expect the herd sensitivity and specificity to be?

Do you have any suggestions about modifying the number of pools or the
number of samples per pool to increase the overall value of the test?



121

MEASURES OF ASSOCIATION

OBJECTIVES
After reading this chapter, you should be able to:

1. Calculate and interpret the following measures of association:
= risk ratio
= odds ratio
* incidence rate ratio
» risk difference (attributable risk)
= attributable fraction (exposed)
* population attributable risk
= attributable fraction (population).

2. Understand when to use each of the above measures of association.

3. Correctly use the concepts of strength of association and statistical significance
when presenting research results.

4. Understand the basis for the common methods of computing significance tests and
confidence intervals.
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6.1 INTRODUCTION

Measures of association are used to assess the magnitude of the relationship between
an exposure to a disease (eg a potential ‘cause’) and a disease. In contrast, measures
of statistical significance cannot be used to indicate the magnitude of the effect (ie the
strength of association) because they are heavily dependent on sample size.

In general, the material in this chapter will focus on comparing the frequency of disease
in exposed subjects with the frequency of disease in subjects not exposed. Depending
on study design, disease frequency can be expressed as:

* incidence risk (cohort study design)

» incidence rate (cohort study design)

= prevalence (cross-sectional study design)

* odds (cohort or cross-sectional study design).

Conversely, in case-control study designs, the objective is to compare the odds of
exposure in two groups, those with the disease under investigation (the cases) and those
without the disease under investigation (the controls).

If disease frequency has been measured as risk, the data for measuring the strength of
association between exposure and disease are summarised in Table 6.1.

Table 6.1 Presentation of incidence risk data

Exposure
Exposed Non-exposed
Diseased aq ag my
Non-diseased b, bo mg
ny No n

where:

a, = the number of exposed animals that have the disease

ay = the number of exposed animals that do not have the disease

b, = the number of non-exposed animals that have the disease

by = the number of non-exposed animals that do not have the disease.

If disease frequency has been measured as rates, the data for measuring the strength of
association between exposure and disease are summarised in Table 6.2.

Table 6.2 Presentation of incidence rate data

Exposure
Exposed Non-exposed

Number of cases a, ag my

Animal-time at risk t to t
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Note For simplicity, we will refer to the frequency of disease in animals, but these could
also be measured in groups of animals (eg number of herds affected). We will also refer
to associations as though we believe them to be causal. Criteria for inferring causation
are reviewed in Chapter 1.

6.2  MEASURES OF ASSOCIATION

The strength of an association between an exposure and a disease is usually expressed
using a ‘relative’ effect measure which is computed as a ratio of two estimates of
disease frequency. There are three common ratio measures of association: the risk ratio
(RR), the incidence rate ratio (/R) and the odds ratio (OR). The appropriate measure
of association depends on the study design and its corresponding measure of disease
frequency.

6.2.1 Risk ratio

RR is the ratio of the risk of disease in the exposed group to the risk (R) of disease in
the non-exposed group.

RR=p(D+|E+)/p(D+|E-)
= (al/”l)/(ao/no) Eq6.1

Risk ratio (also known as relative risk) can be computed in cohort studies and, in some
cases, cross-sectional studies. It cannot be used in case-control studies because the
p(D+) is an arbitrary value determined by the number of cases and controls included
in the study.

RR ranges from 0 to infinity. A value of 1 means there is no association between
exposure and disease:

RR <1 exposure is protective (eg vaccines)

RR =1 exposure has no effect (ie null value)

RR>1 exposure is positively associated with disease.

Risk ratio says nothing about how much disease is occurring in the population. The
actual frequency of the disease can be quite low, but the RR can be high. For example,
in Table 6.3, which summarises the records from a large (hypothetical) herd of Hereford
cattle over five years, the risk of ‘cancer eye’ in the herd is low: 40/6000=0.0067,
but the risk of cancer eye in cattle with white eyelids is 3.8 times that of cattle with
pigmented lids.
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Table 6.3 Data on ocular carcinoma and eyelid pigmentation from a hypothetical
longitudinal study of a large herd of Hereford cattle

Eyelids
Non-pigmented Pigmented
Ocular Present 38 2 40
carcinoma Absent 4962 998 5960
5000 1000 6000

RR =(38/5000)/(2/1000)=3.8

As noted, RR can be computed from cross-sectional studies. Cross-sectional studies
normally measure the prevalence of disease, but in certain situations (eg a short period
of risk of disease that has been completed for all animals) the prevalence might be a
valid estimate of the incidence risk. In this situation, RR can be used. In other situations,
the term prevalence ratio (PR) would be preferred. It is computed in the same way as
RR (and the term RR is sometimes used instead of PR).

6.2.2 Incidence rate ratio

The incidence rate ratio (IR) is the ratio of the disease frequency (measured as incidence
rate) in an exposed group to the incidence rate in a non-exposed group.

IR=(a, /t,)/(aq /1o) Eq6.2

IR can only be computed from studies in which an incidence rate can be calculated
(ie cohort studies). It is sometimes referred to as the incidence density ratio. /R ranges
from O to infinity. A value of 1 means there is no association between the exposure and
disease, with values <1 indicating protection and values >1 indicating an increased rate
of disease in the exposed group.

Table 6.4 presents some hypothetical data on teat pre-dipping and cases of clinical
mastitis in dairy herds.

Table 6.4 Data on cases of mastitis and pre-dipping in a hypothetical dairy herd

Not pre-dipped Pre-dipped
# of cases of mastitis 18 8 26
# of cow-months 250 236 486

IR = (18/250)/(8/236) = 2.12

In this example, the rate of mastitis is 2.1 times higher in cows whose teats are not pre-
dipped than in cows whose teats are pre-dipped prior to milking.



MEASURES OF ASSOCIATION 125

6.2.3 Odds ratio

The OR is the odds of the disease in the exposed group divided by the disease odds in
the non-exposed group.

OR = odds (D+|E +)/oddS(D+ |E -)
:(al/bl)/(aO/bO)
= (albo)/(aobl)

Alternatively, it can be calculated as the odds of exposure in the diseased group divided
by the odds of exposure in the non-diseased group.

Eq 6.3

OR = 0dds (E +|D +)/odds(E +|D -)

=("1/ao)/(b1/b0)
=(a,b0)/(a0bl)

Eq 6.4

Based on the data in Table 6.3, the 0R=(38/2)/(4962/998)=3.82.

Note The odds ratio is the only measure of association that exhibits this ‘symmetry’
which enables you to switch the exposure and the disease (outcome). Consequently,
OR is the only measure of strength of association applicable to case-control studies.
(Because disease frequency in the sample is artificially established in case-control
studies, the relative risk is not an appropriate measure of strength of association.)

The interpretation of OR is the same as RR and /R. An OR=1 indicates no effect
while values <1 and >1 are indicative of reduced risk (protection) and increased risk,
respectively.

6.2.4 Relationships among RR, IR and OR

In general, the relationships among RR, IR and OR is such that IRs are further from the
null value (1) than RRs, and the ORs are even further away as can be seen in Fig. 6.1.

Fig. 6.1 General relationship among RR, IR and OR
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because if the disease is rare, a; is very small and a, + b; approaches b, and ay is very
small so ay+ b, approaches by.

Similarly, if RR in a population is close to the null (ie RR=0) then RR and OR will
be very close. (If RR=1, then RR=OR). ORs are commonly used because they can be
derived easily from logistic regression analyses (Chapter 16). It is difficult to derive RR
from multivariable analyses, but two approaches to do this have been described (Zhang,
1998; Wacholder, 1986).

RR and IR

RR and IR will be close if the exposure has a negligible impact on the total time at risk in
the study population. This occurs if the disease is rare or if /R is close to the null value
(IR=1). (See Chapter 4 for details on role of time at risk in computation of incidence
rates.)

OR and IR

OR is a good estimator of /R under two conditions. If controls are selected in a case-
control study using ‘cumulative’ or risk-based sampling (ie controls selected from
all non-cases once all cases have occurred — see Chapter 9), then OR will be a good
estimate of /R only if the disease is rare. However, if controls are selected using
‘density’ sampling (ie a control selected from the non-cases each time a case occurs),
then OR is a direct estimate of IR, regardless of whether or not the disease is rare.

6.3 MEASURES OF EFFECT

The effect (or impact) of a risk factor on a disease is usually expressed using an
‘absolute’ effect measure which is computed as the difference between two measures
of disease frequency. The effect can be computed just for the exposed group or for the
whole population. Although we use the term ‘effect’, it is well to remember that we
are measuring associations. Thus, the ‘effect’ will only be the result of exposure if the
association is causal.

6.3.1 Measures of effect in the exposed group

Even when an exposure is very strongly associated with disease occurrence (eg
smoking and lung cancer in humans), typically some disease cases occur in the non-
exposed population (lung cancer does occur rarely in non-smokers). The incidence in
the non-exposed population can be viewed as the ‘baseline’ level of risk for individuals
if the exposure were completely absent from the population. To evaluate the effect of an
exposure on disease frequency in exposed subjects, we can consider both the absolute
difference in risk between the exposed and non-exposed groups (risk difference (RD))
and the proportion of disease in the exposed group that is attributable to the exposure
(attributable fraction (4F,)). Both these measures incorporate the baseline risk in the
non-exposed population, and assume that all other risk factors are common to both the
exposed and non-exposed groups (ie absence of confounding, see Chapter 13).
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Risk difference, incidence rate difference
RD is the risk of disease in the exposed group minus the risk of disease in the non-
exposed group. It is also referred to as the attributable risk.

RD=p(D+|E+)-p(D+|E-)
=(”1 /"1 )‘(“o/"o) . Eq 6.5

RD indicates the increase in the probability of disease in an exposed group, beyond the
baseline risk, that results from the exposure.

The incidence rate difference (/D) can similarly be calculated as the difference between
two incidence rates:

ID=(a,/t,)=(ag /ty) Eq 6.6

Difference measures are interpreted as follows:
RD or ID < 0 exposure is protective
RD or ID = 0 exposure has no effect
RD or ID > 1 exposure is positively associated with disease.

Attributable fraction (exposed)

The AF, expresses the proportion of disease in exposed individuals that is due to the
exposure, assuming that the relationship is causal. Alternatively, it can be viewed as the
proportion of disease in the exposed group that would be avoided if the exposure were
removed. AF, can be calculated from either incidence data in both exposed and non-
exposed groups, or directly from the RR.

AF, = RD/p(D+|E+)

= [(01 /i)~ (ao/”o )]/(al /m )
=(RR-1)/RR
= (OR-1)/OR (approximate 4AF,) Eq6.7

These calculations assume that exposure is positively associated with disease, and
values for attributable fraction range theoretically from 0 (where risk is equal regardless
of exposure; RR=1) to 1 (where there is no disease in the non-exposed group and all
disease is due to the exposure; RR=w). If exposures are negatively associated with
disease, attributable fraction can be calculated in the same manner by regarding ‘lack of
exposure’ to the protective factor as the factor that enhances risk. One example of this
approach is estimation of vaccine efficacy. In case-control studies when actual disease
frequencies in the exposed and non-exposed groups are unknown, attributable fraction
can be approximated by substituting the OR for RR (as shown in Eq 6.7).

Vaccine efficacy is one form of AF, with ‘not vaccinated’ equivalent to being “factor
positive’ (E+). For example, if 20% of non-vaccinated animals develop disease
[p(D+|E+)=0.20] and 5% of vaccinated animals develop disease [p(D+|E-)=0.05], the
following can be calculated:
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RD=0.20-0.05=0.15
AF,=0.15/0.20=0.75=75%

The vaccine has prevented 75% of the cases of disease that would have occurred in the
vaccinated group if the vaccine had not been used. This is known as vaccine efficacy.

6.3.2 Measures of effect in the population

Measures of effect are useful for deciding which exposures are important contributors
to the total disease experienced in a population, and which are trivial. For example,
there might be a strong association between neonatal beef-calf loss and the use of
prophylactic neomycin boluses at calving, but if the practice of giving neonatal calves
a neomycin bolus is infrequent, it does not contribute much to neonatal mortality in
beef calves. On the other hand, a relatively weak risk factor that is common might be a
more important determinant of neonatal mortality in the population as a whole. In terms
of national or regional disease-control programmes, information about the effect of a
factor in the total population is useful in allocating resources for health-promotion and
disease-control programmes.

Population attributable risk

PAR is analogous to RD, in that it indicates a simple difference in risk between two
groups. However, the focus of P4R is the increase in risk of disease in the entire
population that is attributable to the exposure. Therefore it is calculated as the overall
observed risk (combining exposed and non-exposed groups) in the population minus
the baseline risk (risk in the non-exposed). Clearly, PAR is determined by both the
strength of the association and the frequency of exposure to the risk factor.

PAR=p(D+)-p(D+|E~)

= (ml /”)_(ao /ng )
= RD*p(E +) Eq 6.8
Note PAR might also be called the risk difference (population), but generally isn’t.

Population attributable fraction

Population attributable fraction (4F),) is analogous to AF,,, but is focused on the disease
in the entire population rather than the exposed group. Assuming a causal relationship,
AFp indicates proportion of disease in the whole population that is attributable to the
exposure, and would be avoided if the exposure were removed from the population. It
is calculated as the ratio of PAR to overall risk p(D+) in the population, and again is a
function of the strength of the association and the prevalence of exposure.

AF, = PAR/p(D+)
__p(E+)RR-1)
p(E+)YRR-1)+1 Eq6.9
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The AF), can be estimated from unmatched data in a case-control study using:

AF, = 4F, (fl—]

m Eq6.10
Note When based on rates, the measures of effect in the exposed group or in the
population relate to proportional or absolute changes in the rates, but not necessarily to
the proportion or number of cases. This technical difference arises because the exposure
might affect the timing (ie when) of disease occurrence but not the actual number of
cases. Thus, the actual number of cases could be constant but the time at risk, and hence
the rate, would differ.

Example 6.1 shows sample calculations of all these parameters. Table 6.5 presents
a summary of the measures of association that can be computed from various study
designs.

Example 6.1 Measures of association

Assume that you want to determine if being over-conditioned (ie fat) at the time of calving
affects a cow’s risk of developing ketosis. A body condition score (BCS) of 4.0 or above
would be considered over-conditioned. You carry out a cohort study in a single large dairy
herd (your population of interest) and all cows are observed from the time of calving through
the first four months of lactation (the period at which they are at risk of developing ketosis).
In addition to recording the number of cows in each BCS group that developed and did not
develop ketosis, you record the number of cow-months at risk.‘Once a cow had a case of
ketosis, she stopped contributing to the number of cow-months at risk: This ‘occurred, on
average, at two months’ post-calving.

BCS
>4 <4
Ketosis + 60 157 217
Ketosis - 41 359 400
cows 101 516 617
cow-months 284 1750 2034

101 “fat’ cows contributed 284 cow-months at risk and had 60 cases of ketosis.

516 ‘normal’ cows contributed 1,750 cow-months at risk and had 157 cases of ketosis.
(continued on next page)
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Example 6.1 (continued)
Measures of disease frequency
R=p(D+)=217/617=0.352

Rg. = p(D+E-) = 157/516 = 0.304
R = p(DHEH) = 60/101 = 0.594
1=217/2034 =0.11

I.=157/1750 = 0.09

Iy = 60/284 =.0.21

Measures of association
RR = 0.594/0.304 = 1.95

IR = (60/284)/(157/1750) = 2.34
OR = (359%60)/(157*41) = 3.35
Measures of effect

RD =0.594-0.304 = 0.290
AF,=0.290/0.594 = 0.488

PAR =0.352-0.304 = 0.048

AFp= 0.048/0.352'=0.136

Practical interpretation
35% of all cows had ketosis
30% of normal cows had ketosis
59% of fat cows had ketosis

0.11 cases of ketosis per cow-month in whole population
0.09 cases of ketosis per cow-month in normal cows
0.21 cases of ketosis per cow-month in fat cows

Fat cows were 1.95 times as likely to develop ketosis as
normal cows

The rate of ketosis in fat cows was 2.34 times higher than
the rate in normal cows

The odds of ketosis in fat cows was 3.35 times higher than
the odds in normal cows

For every 100 fat cows, 29 had ketosis due to them being
fat (assuming a causal relationship)

49% of the ketosis occurring in fat cows was attributable
to them being fat

For any 100 cows in this population, five had ketosis that
was attributable to them being fat

14% of the ketosis in the population was attributable to
some cows being fat

Table 6.5 Summary of calculation of various measures of association by study type

Cross-sectional Cohort study Case-control

RR X X

IR X

OR X X X

RD X X
AF, X X Xb
PAR X x2
AF, X Xa Xe

a The PAR and AF), can be estimated from a cohort study provided that an independent estimate of the
p(D+) or the p(£+) in the source population is available.

b Estimated using OR as an approximation of RR.

¢ Estimated using OR as an approximation of RR and an independent estimate of p(£+|D+).
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6.4 HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

The material presented in previous sections has focused on the computation of
point estimates of parameters. Investigators usually want to evaluate the statistical
significance of parameters as well and there are three general approaches to doing this.

* A standard error (SE) of the parameter can be computed to provide a measure
of the precision of the point estimate (ie how much uncertainty there is in the
estimate).

* A significance (hypothesis) test can be carried out to determine if the point
estimate is significantly different from some value specified by the null
hypothesis test.

« A confidence interval (CI) for the estimate can be computed.

What follows is a non-technical introduction to hypothesis-testing and confidence
intervals in the context of unconditional (7e one exposure and one outcome) associations.
These procedures are based on a classical (sometimes denoted ‘frequentist’) approach
to statistics. An alternative approach, one based on Bayesian statistics, is less commonly
used (see Chapter 23).

Note Throughout this section, all references to parameters in the text and in the formulae
will refer to estimates derived from the data unless otherwise stated. ‘Population
parameters’ (ie true, unknown values) will be referred to as such in the text.

6.4.1 Standard error

For some of the parameters described in previous sections, estimates of the variance of the
parameter can be computed directly and the square root of this variance is the estimated
SE of the parameter. For example, based on the incidence rate data presented in Table 6.2,

SE of ID is:
SE(ID)= /“—21+a—§
It Eq6.11

For other population parameters, it is not possible to directly compute their variance
although methods for estimating the variance are discussed in section 6.4.3.

6.4.2 Significance (hypothesis) testing

Significance (hypothesis) testing is based on the specification of a null hypothesis about
the population parameter(s). The null hypothesis is usually that there is no association
between the factor and the outcome which means that measures of difference (eg ID)
will be 0 or that ratio measures (eg /R) will be 1.

An alternative hypothesis is stated and it can be of a one-tailed or two-tailed nature. For
example, if we have disease incidence rates in two groups (exposed and non-exposed),
the usual two-tailed hypothesis is that / in the exposed group is different than in the
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non-exposed group (ie it could be higher or lower). We are interested in finding out
if there is statistical evidence to support a difference in rates that could be in either
direction. A one-tailed hypothesis would be that / is higher in the exposed group than in
the non-exposed group. We either do not believe that it is possible that / could be lower
in the exposed group or we have no interest in this possible outcome. (An alternative
one-tailed hypothesis would be that the rate is lower, and we are not at all interested
in the possibility of the rate being higher.) In general, the use of one-tailed hypotheses
is much harder to justify than the use of two-tailed hypotheses, so they should be used
with caution.

The next step in the hypothesis-testing process is to compute a test-statistic (eg a
t-statistic, a Z-statistic or a y2-statistic). From the expected distribution of this test
statistic, a P-value is determined. The P-value is the probability that the test statistic
would be as large or larger (in absolute value) than the computed test statistic, if the null
hypothesis were true. A small P-value indicates that, if the null hypothesis were true,
it is unlikely (ie low probability) that you would obtain a test statistic as large or larger
than the one you have obtained. In this case, it is usual to reject the null hypothesis.

P-values, while conveying useful information, are limited in their ability to convey the
full picture about the relationship being evaluated. They are often dichotomised into
‘significant’ or ‘non-significant’ based on some arbitrary threshold (usually set at 0.05)
but this entails a huge loss of information about the parameter of interest. Knowing
that an effect was ‘significant’ provides neither indication of the actual probability of
observing the test statistic computed, nor information about the magnitude of the effect
observed. Reporting the actual P-value solves the first problem but not the second. The
second issue will be discussed under confidence intervals (see section 6.4.3).

Test statistics

There are four commonly used types of test statistic for evaluating associations between
exposure and disease: Pearson y2, exact test statistics, Wald tests and likelihood ratio
tests.

Pearson 2 is the most commonly used test statistic for the comparison of proportioils.
For data laid out as shown in Table 6.1, the equation for Pearson 2 is:

obs —exp)’
2'2:2( P)

all exp
cells Eq 6.12

where: obs = observed value in each cell of the table, and
exp = expected value for the cell=row total * column total/grand total.
(For example, the expected value for the cell with obs=q, is n;*m,/n).

The Pearson 2 has an approximate y2 distribution provided all expected cell values are
>1 and 80% (or 3 of 4 in a 2X2 table) are >5.

Note A closely related 2 statistic, the Mantel-Haenszel x2 differs from Pearson y2 only
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by a multiplier of n/(n-1) which is negligible for moderate to large values of #. The
Mantel-Haenszel x2 is used more commonly in the analysis of stratified data (Chapter
13).

In some cases, exact probabilities for test statistics can be computed based on the
distribution of the data. In these cases, the P-values are derived directly from the
permutations of the data rather than by relying on an assumed distribution (eg normal or
x2) for the test statistic. For example, an exact test statistic for a 2X2 table (eg testing the
significance of an RD or an RR) can be obtained from the hypergeometric distribution.
First, the hypergeometric probability of every possible table with the same row and
column totals as the observed data is computed. Fisher’s exact P-value is the sum of the
probabilities of all tables with smaller hypergeometric probabilities than the observed
table. In general, computation of exact statistics is computationally demanding so,
historically, they have been used most commonly for relatively small datasets where
approximations based on large numbers of observations are unsatisfactory.

Wald statistics are appropriate provided the sample size is moderate to large (see
guideline for Pearson y2 above). The general formula for a Wald statistic is computed
as:

g - 00
SE(@) Eq6.13

Wald =

where SE(8) is the estimated standard error of 8, and 6, is the value of € specified
in the null hypothesis (this is often zero). Under the null hypothesis, a Wald statistic
is assumed to have a normal distribution (or a y2 distribution for the square of the
statistic).

Likelihood ratio tests (LRT) are based on the likelihood of a parameter (6). The
likelihood of a parameter [L(6)] is the probability (density) of obtaining the observed
data, if 6 is the true value of the population parameter. A likelihood ratio (LR) compares
the likelihood of the estimated & with the likelihood of 8, (the value of 8 specified in
the null hypothesis). An LRT is computed as follows and, provided the sample size is
reasonably large, it has an approximate 2 distribution.

LRT =-2(In LR) = —2{ 1:’ I{“(fo))j

Eq6.14

Note In some cases it is possible to derive an exact probability for an LRT rather than
rely on the y2 approximation. In general, LRTs are superior to Wald tests. LRTs are
discussed further in Chapter 16.

6.4.3 Confidence intervals
Confidence intervals (Cls) reflect the level of uncertainty in point estimates and indicate

the expected range of values that a parameter might have. Although a CI covers a range
of possible values for an estimated parameter, values close to the centre of the range
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are much more likely than those at the ends of the range. While we use an estimated SE
and a specific percentile of a test statistic distribution to compute a CI, a CI generally
conveys more information than simply presenting a point estimate of a parameter
and its P-value because it clearly shows a range of likely values for the population
parameter. Specifically, a 95% CI means that if we were to repeat the study an infinite
number of times under the same conditions and create a CI for each study, 95% of these
CIs would contain the true parameter value.

If the 95% CI includes the null value (eg 1 for RR, IR or OR, 0 for RD, ID), it suggests
that the parameter is not statistically significant from the null at a P-value of 0.05.
However, this surrogate significance test is an ‘under-use’ of Cl because it doesn’t fully
use all the information contained in the CI.

Computing confidence intervals

As with hypothesis tests, CIs can be computed using either exact probability
distributions or large sample approximations. Exact CIs are based on the exact
probabilities of the distributions underlying the parameter (binomial for proportions,
Poisson for rates and hypergeometric for odds ratios). They are generally employed
when dealing with relatively small sample sizes although increasing computer power
has made the computation of exact Cls for most measures of association feasible for
moderate to large sample sizes. An approximation of an exact CI (although it seems
illogical that such an entity can exist) for OR is Cornfield’s approximation (Cornfield,
1956). Computation of this CI is an iterative process and it is used less now that it is
possible to directly compute exact confidence intervals.

Large sample approximations require an estimate of the variance of the parameter. As
indicated above, this can be computed directly for some parameters but needs to be
estimated for others. This approximation is most commonly done using a Taylor series
approximation. Alternatively, a test-based method (sometimes referred to as the delta
method) can be used (Kleinbaum et al, 1982) but it generally results in confidence
intervals that are too narrow and will not be discussed further.

The variance of RD can be computed directly as:

ﬂ(l_“_l) a_o(l_a_o)
var(Rp) =2 M/ Bor Mo

n, n, Eq6.15

This variance estimate can then be used to derive a CI for the risk difference (Eq
6.18).

For a ratio measure (eg IR), the parameter estimate and CI are computed on the log scale
(ie CI for Inf) and then exponentiated to obtain the CI on the original scale. However,
there is no simple expression for the var(Ind), so it must be estimated. One approach to
estimating the variance of a parameter is to use a first-order Taylor series approximation
in the estimation procedure. The formulae for Taylor series approximation estimates of
the var(InRR) and var(InOR) are:



MEASURES OF ASSOCIATION 135

var(In RR):—lw—iJr—l——L

a, m dy Ry Eq 6.16
1 1 1

1
var(ln OR) = —+ — + —+—
a ag b] bO Eq 6.17

Once an estimate of the variance has been obtained, the general formula for the
confidence interval of a difference measure (6) is:

6+Z,varl@ Eq6.18

For a ratio measure, the general formula is:
e*eila,/VaI Inég Eq 6.19

Note A CI for OR that is based on the Taylor series approximation of the variance is
sometimes referred to as Woolf’s approximation.

Example 6.2 presents a variety of point estimates and Cls for parameters computed in
Example 6.1.

Example 6.2 Confidence intervals for measures of association

The following table presents a variety of Cls computed for some of the measures of
association computed in Example 6.1

Ci

Measure of Point Type of Lower Upper
effect estimate Cl bound bound
ID . 0.122 direct 0.066 0.177
IR 2.354 exact 1.719 3.190
RD 0.290 exact 0.186 0.393
RR 1.952 exact 1.587 2.402
OR 3.346 exact 2.108 5.329
Woolf 's 2.157 5.192

(Taylor series)
Cornfield’s 2.161 5.181
Test based 2.188 5117

Direct or exact ClIs were computed for ID, IR, RD and RR. A variety of Cls were computed
for OR for comparison purposes. The exact Cls are the widest, followed by Woolf’s and
Cornfield’s approximations (which were similar). The test-based CI was the narrowest and
these are not recommended for general use.
-




136 MEASURES OF ASSOCIATION

SELECTED REFERENCES/SUGGESTED READING

1. Cornfield J. A statistical problem arising from retrospective studies. Berkeley CA:
Third Berkeley Symp, 1956.

2. Hammell KL, Dohoo IR. Mortality patterns in infectious salmon anemia virus
outbreaks in New Brunswick, Canada. Journal of Fish Diseases 2003; accepted.

3. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic research,
Chapters 8 and 9. Principles and quantitative methods. London: Lifetime Learning
Publications, 1982.

4. Rothman KJ, Greenland S. Modern epidemiology, Chapter 4. 2d ed. Philadelphia:
Lippincott-Raven, 1998.

5. Wacholder, S. Binomial regression in GLIM: estimating risk ratios and risk
differences. Am J of Epidemiol 1986; 123: 174-184.

6. Zhang, J. A method of correcting the odds ratio in cohort studies of common
outcomes. J Am Med Assoc, November 18, 1998, 280: 1690-1691.



MEASURES OF ASSOCIATION 137

SAMPLE PROBLEMS

The file fish_morts contains data about mortalities in salmon sea cages in the Bay of
Fundy. It is a small subset of data from an investigation of factors related to outbreaks
of Infectious Salmon Anemia (Hammell and Dohoo, 2003). In order to know how many
fish are dying in large sea cages containing anywhere from 5,000 to 20,000 fish, the
producer has a diver go down to the bottom of the cage periodically to collect all of the
dead fish. The data in this file are from one dive in each of 236 cages. The variables in
the dataset are as follows:

Variable Description

cage_id cage identifier numbered 1-236

days # of days since previous dive (ie # of days over which mortalities collected)
morts # of mortalities found on the dive

fish estimated # of fish in the pen

feed type of feed (1=dry feed, 0=wet feed)

1. Compute two new variables:
a. fishdays the number of fish-days since the previous dive in each cage.
b. mr the daily mortality rate for each cage (expressed in morts/100,000 fish-
days).

2. Compute the mean, standard deviation and median mortality rates.

3. Generate a histogram with ten ‘bars’ to evaluate the distribution of mortality
rates.

4. Create a 0/1 variable called hilow that classifies cages according to whether or not
they have a mortality rate above or below the median value. Add value labels to the
two categories.

5. What is the relative risk of being classified as a ‘high’ mortality cage if the cage
was fed dry feed compared with wet feed?

6. What proportion of the high mortality cages that were fed dry feed could have been
prevented from being high mortality cages if they had been fed wet feed?

7. What proportion of the high mortality cages in the whole population could have
been prevented from being high mortality cages if the whole population was fed
wet feed?

8. How do the ClIs for the above three estimates (questions 5, 6 and 7) change if you
compute test-based CIs?

9. What is the IR for mortalities in dry-feed cages compared with wet-feed cages.

10. Overall, what proportion of mortalities could have been prevented by feeding only
wet feed? Why is this value different from the value computed in question 7?
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INTRODUCTION TO
OBSERVATIONAL STUDIES

OBJECTIVES
After reading this chapter, you should be able to:
1. Differentiate between descriptive and explanatory studies.

2. Describe the general strength and weaknesses of experimental versus observational
study designs for the identification and evaluation of causal factors.

3. Design a cross-sectional study which takes into account the strengths and
weaknesses of this study type.

4. Identify circumstances in which a cross-sectional study is the most feasible
observational study design.
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7.1  INTRODUCTION

A general theme throughout this text is that a major preoccupation of epidemiologists
is to identify causal factors that can be manipulated to prevent disease, or minimise
its harmful effects. We continue that theme here and ask the question ‘how best to go
about the task?” The overall objectives of the research and the context in which the
study will be conducted will have a major impact on the choice of study type. Hence,
in this section, we provide an overview of the range of study types available for use by
animal-health researchers.

7.1.1 Descriptive versus analytic studies

Research studies can be classified into two large categories: descriptive and analytic
(see also Fig. 7.1). Descriptive studies are designed solely to describe animal-health-
related phenomena. In descriptive studies, no comparisons are made between study
groups (eg exposed versus non-exposed or treated versus not-treated) and consequently,
no conclusions about associations between exposures and outcomes can be made.
Descriptive studies include case-reports, case-series reports and surveys. These are
described in more detail in section 7.2.

Fig. 7.1 Schematic representation of study types

Descriptive Explanatory (analytic)
Case Case . .
report series Survey Observational Experimental
Cross- Case- . Controlled
sectional Cohort control Hybrid Laboratory trials

Analytic (or explanatory) study designs are ones in which the investigators set out
to make comparisons between groups of study subjects (animals, herds efc). These
comparisons allow the investigator to make inferences about relationships between
exposures of interest (eg risk factors, treatments efc) and outcomes of interest (eg
disease occurrence, productivity effects efc). Analytic studies can be subdivided into
experimental and observational studies.



INTRODUCTION TO OBSERVATIONAL STUDIES 141

7.1.2  Experimental versus observational studies

Experimental studies are those in which the investigator controls the allocation of the
study subjects to the study groups (eg treated versus not treated, exposed to a risk factor
versus non-exposed). In contrast, in observational studies, the investigators try not to
influence the natural course of events for the study subjects, but confine their activities
to making careful observations (which might include collection of a variety of samples)
about the study subjects with particular attention paid to the exposure and outcomes of
interest.

The choice between experimental and observational approaches might be evident
early on in the thought process; however, it is often valuable to consider the range of
study designs available rather than fixing on the study design too early and trying to fit
the investigation of the problem within the chosen design. Experiments often are the
preferred choice if the treatment is straightforward and easily controllable, such as a
vaccine trial or an evaluation of the efficacy of a specific therapeutic agent such as a
hormone or antibiotic. A major advantage of the experimental approach is the ability
to control potential confounders, both measured and unmeasured, through the process
of randomisation. Observational studies usually are the preferred study design if the
exposure(s) is more complex, and not easily controllable by the researcher either for
practical, ethical, or economic reasons. They have the advantages that a much wider
array of hypotheses can be tested, and in most instances the subjects will be exposed to
the risk factor whether the study is done or not (Table 7.1). Maclure (1991) suggested
some taxonomic axes or hierarchy for study design. He concluded that if a controlled
trial (experimental) of a specified intervention is ‘do-able’ then, this is the preferred
approach.

Experimental studies can be broadly classified as laboratory based or controlled trials.
The former are carried out under strictly controlled conditions (eg laboratory studies).
These have the advantage that the investigator has almost complete control over the
experimental conditions (eg type of animal used, environmental conditions, timing,
level and route of exposure, method of outcome assessment etc). Evidence of an
association between an exposure and a factor obtained from this type of study provides
the best evidence of causation, but given the very artificial environment in which they
are conducted, the relevance of the results to ‘real-world’ conditions is often much
more in doubt. Laboratory-based studies do not fall within the realm of epidemiologic
studies and will not be discussed further in this text. Controlled trials are ones in which
the investigator ‘controls’ the allocation of the subjects to the study groups, but which
are carried out under natural ‘real-world’ conditions. The design of these types of study
is discussed in Chapter 11.

Observational studies include cross-sectional (section 7.4), cohort (Chapter 8), case-
control (Chapter 9) and hybrid (Chapter 10) studies. Observational studies can often
take advantage of the fact that exposed subjects already exist and therefore with an
appropriate design the impact of these exposures can be investigated without having
to expose needlessly specifically selected study subjects to the exposure. It would be
a stretch to imply that these are ‘natural’ experiments but the fact that subjects are



142 INTRODUCTION TO OBSERVATIONAL STUDIES

Table 7.1 Characteristics of various study types

Strength
Level of of ‘proof’ Relevance to
Level of investigator of causal ‘real-world’

Type of study difficulty control association situations
Descriptive
Case report very easy very low na low to high
Case series easy very low na low to high
Survey moderate moderate na high
Explanatory - experimental
Laboratory moderate very high very high low
Controlled trial moderate high very high high
Explanatory - observational
Cross-sectional moderate low low moderate
Cohort difficult high high high
Case control moderate moderate moderate high

na = not applicable (associations cannot be evaluated in descriptive studies)

being exposed and the outcomes are happening, begs the question of why not seize the
opportunity to capture data that can help assess any association between the exposure
and the outcome. Kalsbeek and Heiss (2000) have noted that most empirical knowledge
has been based on observations of incomplete samples (ie selected subgroups) of
human (subject) experience. When it is impractical to study the entire population
sampling issues must be considered and indeed, these form the basis of the different
observational approaches introduced here and discussed in detail in Chapters 8-10.
Observational studies make up a substantial proportion of the research carried out by
veterinary epidemiologists.

7.2 DESCRIPTIVE STUDIES

As noted above, descriptive studies are not designed to evaluate any associations
between exposures and outcomes of interest. However, unusual observations noted in a
descriptive study often form the basis of a hypothesis which can be further investigated
in an analytic study. Three forms of descriptive studies are: case reports, case series
reports and surveys.

Case reports generally describe a rare condition or an unusual manifestation of a more
common disease. They might be based on only one or a very few cases. The very fact
that they are based on unusual cases might limit their relevance to typical ‘real-world’
conditions. However, these unusual observations might generate useful hypotheses to
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be investigated in analytic studies. In some case reports, the authors draw conclusions
about the cause or the outcome or the relative merit of the therapy used. These
hypotheses are purely the author’s conjecture as no data to support such a conclusion
are available directly from a case report.

A case series generally present a description of the usual clinical course of the condition
of interest. As such it might provide valuable information about the prognosis of the
condition, provided the cases described are representative of all cases in the population.
As noted, the features of the series might help the researcher posit hypotheses about
causal or prognostic factors for the outcome in question, but the case series usually has
no direct data on these factors.

Surveys are conducted to estimate, with some specified precision, the frequency and
distribution of selected outcomes in defined populations. In many cases, their principal
objective is to provide data about the frequency of occurrence of a disease of interest
in a specific population. The two main design issues which need to be considered in
designing a survey are the sampling protocol to be used (see Chapter 2) and the design
of the data-collection instrument (see Chapter 3). If a survey collects information about
both an outcome of interest and potential exposures of interest, it then becomes a cross-
sectional analytic study (section 7.4), not a descriptive study because it can be used to
evaluate associations between exposures and outcomes.

7.3  OBSERVATIONAL ANALYTIC (EXPLANATORY) STUDIES

Analytic, (also called explanatory) observational studies have an explicit formal contrast
as part of their design. All analytic studies differ from descriptive studies in that the
comparison of two (or more) groups is the foundation of their design. As noted above,
observational studies differ from experiments in that the researcher has no control over
the allocation of the study animals to the two (or more) groups being compared.

7.3.1 Prospective versus retrospective

Analytic studies can also be classified as prospective or retrospective. In prospective
studies, only the exposure might have happened at the time the study starts. The
design of prospective studies will include information-gathering techniques so that all
the necessary data are recorded as part of the study itself, or the study could build on
available data sources, supplementing these data as necessary. In retrospective studies,
both the exposure and the outcome will have occurred when the study begins and
typically these studies rely on pre-recorded data from one or more secondary sources.
The availability of these data is an advantage, but often the quality and scope of the data
are also limitations of the retrospective approach. Here again, selecting a suitable study
design can maximise the information gained from the data available.

The choices of observational analytic study design have traditionally been among one
of three approaches. In a cross-sectional study (section 7.4) a sample of study subjects
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is obtained and then the prevalence of both disease and exposure are determined. Such
studies are described as non-directional in contrast to prospective and retrospective.

In a cohort study (Chapter 8), a single sample of study subjects with heterogeneous
exposure, or two or more groups defined by known exposure status, is obtained, and
the incidence of the outcome in the follow-up study period determined. While these are
usually prospective in nature, in select cases, with sufficient information recorded in
routine databanks, they might be carried out retrospectively.

In a case-control study (Chapter 9), subjects with the outcome of interest are identified
and the exposure history of these cases contrasted with the exposure history of a sample
(often randomly selected from a defined source) of non-cases (also called the control
subjects). These studies could be carried out retrospectively using a databank of cases
that have already occurred or prospectively, in which cases are enrolled in the study
as they occur. Because subjects are selected based on their outcome status, they differ
from cohort studies, in which subjects are selected based on exposure status. Variations
on these themes are described under the heading of hybrid study designs in Chapter
10.

Cross-sectional studies are of lower rank than other observational studies because of
the inability to refute reverse-causation (ie determine which came first, the exposure
or the outcome — see section 7.4.2); hence, when possible, other study designs should
be investigated. Case-control and cohort studies are better for valid causal inferences
than cross-sectional studies because of the longitudinal nature of their designs and
their use of incidence data, both of which should allow refutation of reverse-causation,
cohort designs being superior to case-control studies in this regard. Non-randomised
intervention studies (sometimes called quasi-experiments) are ranked below case-
control and cohort designs but above cross-sectional studies for causal inference
purposes. The issue of random allocation of subjects to interventions is discussed in
section 4 of Chapter 11.

7.4  CROSS-SECTIONAL STUDIES

Due to their ease of implementation, cross-sectional studies are one of the most
frequently chosen study designs in veterinary epidemiology. Perhaps because the basic
design is straightforward, there is very little written concerning details of design, at
least relative to what is written regarding cohort and case-control studies. The basis of
the design is that a sample of subjects is obtained and their exposure and outcome status
at that point in time ascertained. Thus, the outcome frequency measure is inherently
prevalence. As pointed out in Example 7.4, researchers might design questions to
obtain ‘incidence-like’ data, but often problems remain in terms of making valid causal
inferences.

If the researcher wants to make inferences about the frequency of the outcome or
the prevalence of exposure in a target population, then the study subjects should be
obtained by a formal random sampling procedure. The exact random process selected
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can vary but could include stratified, cluster or multistage sampling as discussed in
Chapter 2. However, if the primary objective is to evaluate potential associations
between the exposure(s) and outcome(s) of interest, a non-random sample of study
subjects is often obtained purposively. Some authors decry this non-random approach
because the design is open to considerable selection bias. However, this selection bias
generally limits the external validity of the study (ability to extrapolate results to other
populations) rather than the internal validity. Biases that affect external validity are of
less concern than those that affect internal validity.

Although the study design can support the investigation of a variety of potential causal
factors and a number of outcomes, in practice one or two selected outcomes are chosen
and a set of potential causal factors are selected for investigation. A potential drawback
to this study design is that often the search for potential causes is not very focused
and thus, a lot of data-mining for significant factors is used in the analysis stage.
One also needs to decide if the association between exposure and outcome in the full
study population or in defined subgroups is the principal goal. In the latter instance,
researchers need to ensure that adequate numbers of study subjects in the defined
groups are available to provide reasonable power for assessing the hypotheses.

The two major limitations of a cross-sectional study design are related to the fact
that the outcome measure is prevalence (section 7.4.1) and that it is often difficult or
impossible to determine if exposure occurred before the outcome (problem of reverse-
causation — section 7.4.2).

7.4.1 Prevalence as an outcome

By its nature, a cross-sectional study measures prevalence of exposure and outcome.
Consequently, it is often difficult to disentangle factors associated with persistence of
the outcome (or persistence of study subjects with the outcome) and factors associated
with developing the outcome in the first instance (ie becoming a new case). Animals
with a factor which contributes to their survival once they have the disease of interest
will be included in a cross-sectional study more frequently than animals without the
factor (by virtue of the fact that the factor keeps them alive longer). Consequently, it
will appear that the factor is associated with the disease and the investigators might
incorrectly conclude that it is a ‘risk factor’ or cause of the disease.

7.4.2 The reverse-causation problem

Because both the exposure and outcome of interest are measured at the same time,
cross-sectional studies are best suited for time-invariant exposures such as breed, sex,
or permanent management factors. In these cases, the investigator can be certain that
the exposure preceded the outcome (one of the fundamental criteria for establishing
causation). When the exposure factors are not time-invariant, it is often very difficult
to differentiate cause and effect (or the so-called reverse-causation problem). For
example, if one is studying the relationship between a management factor (eg hoof
trimming) and the frequency of hoof disorders, if the association is positive, one cannot
differentiate between herds that initiated hoof-trimming in response to a problem



146 INTRODUCTION TO OBSERVATIONAL STUDIES

with hoof disorders and those that developed the disease because of the management
factor. The more changeable the exposure, the worse this issue becomes. If the factor
truly is preventive and often implemented when the disease has occurred, or reached
a threshold frequency, the positive and negative associations could cancel each other
leaving the factor appearing to be independent of the outcome.

7.4.3 Repeated cross-sectional studies versus a cohort study design

Sometimes it is necessary to follow a population over time and here one must consider
performing repeated cross-sectional samplings of the population versus a cohort
approach. Briefly, if the objective is to follow specific individuals over time then the
cohort approach is preferable. However, depending on the length of the study period,
the remaining individuals in the study will become increasingly different from the
existing population at that time (for example they will be much older and in many
instances represent a highly selected subgroup of those originally studied). If the
objective relates more to the events and associations within the population at different
periods of time, then a series of repeated cross-sectional studies might be the preferred
approach. In this design, depending on the sampling fraction, most of the study subjects
selected at different points in time will not have been included in prior samples.
However, with larger sampling fractions, sufficient subjects might be selected in two or
more samplings to allow within-study subject comparisons over time (see Diehr et al,
1995, for methods to help choose between these two approaches).

7.5 EXAMPLES OF CROSS-SECTIONAL STUDIES

In this section, we discuss four published cross-sectional studies that highlight some
of the strengths and weaknesses of this study design. Example 7.1 demonstrates the
value of random sampling in allowing for the analysis of data at multiple levels, and
the evaluation of both time variant and invariant exposures, and the use of information
about the potential duration of exposure to attempt to clarify the directionality of
possible causal associations.

In Example 7.2, the authors used a combination of non-random and random sampling
to achieve their objectives.

The study described in Example 7.3 used repeat visits to study farms over the period of
the year. As the population was dynamic, at the animal level, the study could be viewed
as a repeated cross-sectional census of the cattle on the study farms.

In the study described in Example 7.4, the authors attempt to obtain incidence data in a
one-time cross-sectional study. However, the outcome data might have been a mixture
of incident and prevalent cases and the reverse-causation issue between management
factors and the outcome was still a problem in the study.
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Example 7.1 Time variant and invariant factors in cross-sectional studies.

Atwill et al (1996), used a random sample of 3,000 of the 39,000 equine operations (based
on a 1988 census), in New York State in a cross-sectional study of risk factors for Ehrlichia
risticii (ER) . The study was conducted in 1991-93 and was designed to identify counties with
a high prevalence of ER as well as to identify host, management and environmental factors
consistent with an oral (helminth mediated) route of transmission. Data were obtained from
personal interviews with owners, blood samples from horses and resource maps for geographic
information. The use of a random, state-wide sample allowed for analyses to be carried out
at the county, farm and horse levels. If a purposive study had been done, it might very well
not have included sufficient counties or farms for analyses at those levels. A wide range of
both time invariant (eg breed of horse) and time variant (eg frequency of deworming) were
evaluated. Of particular interest was the evaluation of environmental characteristics (elevation
and proximity to large bodies of water) as risk factors that might relate to helminth mediated
transmission. While these factors are time invariant for the farm, they might be time variant
for the individual horse because they often moved between farms. The authors attempted to
clarify the directionality of these associations by carrying out three sets of analyses based on
the length of time that horses had been on the farm. Among the many results reported was an
association between county and risk of seropositivity. Given the geographic attributes of the
counties (low elevation level and proximity to large bodies of watet), the authors concluded
that this was consistent with helminth vector spread of the disease (others had found similar
geographic associations). However, at the farm level, the farms with the highest risk of
seropositivity had a low elevation but no proximity to standing or running water. This tended
to cast doubt on the helminth hypothesis.
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Example 7.2 Random and non-random sampling in cross-sectional studies

This study (McDermott et al, 1987a,b) was carried out to estimate the frequency of two
selected diseases and identify ‘associated factors’ as well as the impact of the two diseases
on production in a rural development project area in Sudan. Three of five (out of seven)
accessible areas were included in the study. Two cattle camps within each of the three areas
were selected on the basis of accessibility. Within each camp, individual family herds were
selected systematically; if that herd owner was absent, the adjacent herd was selected. Finally,
within each herd, 25 animals were selected in proportion to the sex and age structure of the
herd. Consequently, areas and camps were sampled purposively based on the investigators’
knowledge of the area and logisitic concerns, but herds and animals were sampled using
a form of random sampling (systematic sampling). The authors discussed random versus
non-random sampling strategies in this context and defended their non-random process
given the practical and logistical limitations (while stressing the need for a knowledge of the
populations being sampled). The systematic sampling of cattle by age and sex was designed
to obviate the problem of -owners presenting very healthy animals (or more likely, older
diseased animals) for the study.

Two research teams visited each location, one to sample the animals and one to conduct
the interview with the owners. A central laboratory tested the samples for brucellosis and
contagious bovine pleuropneumonia; Data analyses were performed at the individual animal
level. A specific hypothesis about a breed association was not confirmed, but the results was
confounded by differential missing information by breed. Although written records for past
events were not available, the knowledge of the owners was deemed satisfactory in this
context, In a subsequent paper based on the same study the authors discuss the extent to
which a cross-sectional study could provide useful data for livestock development plans.
Based on the fact that the associations detected in the study, and the impact of the diseases
were consistent with known effects in other areas, they concluded that the study design was
useful (and perhaps the only feasible approach).

Example 7.3 Repeated cross-sectional sampling

This example demonstrates the additional power and enhanced inference-making possible
by using repeated cross-sectional surveys (O’Callaghan et al, 1999). The study population
was small holder dairies in.the Kenyan highlands. Six of 15 dairy societies were selected
purposely and then 15 farms within each society were randomly selected giving a sample
of 90 farms. Each farm was visited monthly for 12 months. A comprehensive initial farm
survey was conducted on risk factors for Theileriosis. At each visit, a survey was conducted
of all-animals present on the day of visit and blood samples (for titres) obtained. At the farm
level, this study could be described as a single-cohort study. However, at the animal level, the
population was dynamic. Some animals were present at most farm visits while others entered
and left the study. Further, although formal farm surveys were not conducted at each visit, the
researchers wete able to ascertain the management practices actually used, as distinct from the
replies to the initial survey that tended to describe the management practices recommended
for that area. The monthly samplings also allowed the investigators to better demarcate when
new (or repeated) exposures to I. parva occurred, and hence obtain incidence data at the
animal level.
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Example 7.4 Attempts to obtain incidence data

These authors (Wells et al, 1999) used a cross-sectional sample of dairy herds with more than
30 cows to assess the incidence of papillomatous digital dermatitis (PDD) and investigate
herd-level risk factors. Incidence data were derived by asking the herd managers for the
number of cows that had ‘shown clinical signs’ of PDD in the previous 12 months (it is
not clear if these were new or continuing cases of PDD). Herds were later categorised into
those with >5% versus <5% of cows affected. Nonetheless, when making inferences about
potential causal associations, the possibility of factors being an effect of PDD, rather than a
cause (a reverse-causation between hoof-trimming and PDD level), was acknowledged by the
authors.

. _ |
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COHORT STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

1. Describe the major design features of risk-based and rate-based cohort studies.
2. Differentiate between open and closed study populations.

3. Identify hypotheses and population types that are consistent with risk-based
cohort studies.

4. Identify hypotheses and population types that are consistent with rate-based
cohort studies.

5. Elaborate the principles used to select and measure the exposure.

6. Design and implement a valid cohort study for studying a specific hypothesis.
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8.1 INTRODUCTION

The word cohort, from its Latin root, refers to a group of subjects that has a defined
characteristic in common. In epidemiologic study design, the characteristic of interest
is the exposure status. Usually, the selection of the study groups is based directly on
the exposure status (eg when we select a group of exposed and a group of non-exposed
individuals). However, we might select a single group of subjects that we believe will
be heterogeneous with respect to the exposure(s) of interest and then determine their
exposure status. We denote this design as a single cohort or longitudinal study. Once
selected, we ensure the study subjects do not have the outcome(s) of interest at the start
of the follow-up period, and then compare the incidence of the outcome in the groups
defined by exposure status during the specified follow-up time period. Note that the
study subjects could be individuals or aggregates of individuals, such as litters, pens
or herds. Comprehensive reviews of cohort study design and analysis are available
(Prentice, 1995; Samet and Munoz, 1998; Rothman and Greenland, 1998).

8.2 Basis

Each specific study presents its own unique challenges, but the starting point for all
studies is to clearly and concisely state the hypothesis to be tested. This includes
defining the exposure(s), outcome(s) and follow-up period in the study subjects (ie
animals, herds or other aggregates) and the setting (ie context) of interest. If sufficient
biological facts are known, such hypotheses should also indicate the amount of
exposure that is likely needed to trigger the effect, and how long after an exposure
threshold is reached before one might reasonably expect to see disease from that
exposure arise (e the induction period). Clarifying the study objectives often helps
us decide whether current or past exposure is relevant, whether lifetime exposure or
exposure in a narrower window of time is important, whether repeated measures of
exposures are required and if so, how to handle changes in exposure status.

Depending on the availability of suitable records, cohort studies could be performed
prospectively or retrospectively. Prospective studies imply that the outcome has
not occurred at the time the study starts. They often provide the opportunity for
more detailed information-gathering and attention to recording the details of interest
than retrospective studies. Retrospective cohort studies imply that the follow-up
period has ended when the study subjects are selected based on their exposure status.
Retrospective studies require suitable existing databases and are often of more limited
scope than prospective studies.

- When choosing two or more exposure groups, it is desirable that they be obtained from
the same identifiable population. Often, these exposure groups are chosen purposively,
not randomly. The study subjects in these exposure groups might not be equal with
respect to risk factors other than exposure, and this needs to be taken into account in the
study design in order to prevent confounding (see section 8.6).
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8.3  THE EXPOSURE

In cohort studies, our objective is to identify the consequences of a specific exposure
factor. The exposure refers to any potential cause of disease and might range from
infectious or noxious agents to housing, management or feed-related factors. Exposure
status can be measured on a dichotomous scale (exposed or non-exposed), an ordinal
scale (low, medium, or high dose), or a continuous scale (organisms per gm of feces,
ppm of a toxin in air or water, gm of colostrum ingested ezc). Exposure can be expressed
separately in terms of dosage and duration or as a combination of the two (ie perhaps
their product). The exposure might be a permanent factor or a factor that can change
over time.

8.3.1 Permanent exposures

These exposures include factors such as sex, breed or whether or not a calf received
sufficient colostrum within 12 hours of birth. Permanent and ‘one-time’ exposures
are relatively easy to measure, but even here a moment’s thought would suggest that
defining ‘sufficient’ or ‘inadequate’ with respect to colostrum intake in a calf might be
more complex than it first appears to be. In any event, for factors where the exposure is
based on a threshold or dosage, the amount of exposure necessary to deem an individual
as being ‘exposed’ needs to be clearly stated as exposed time at risk does not begin until
the criteria for completing the exposed state have been met. If the outcome event occurs
during the time period before exposure is completed, it should not be included in the
analysis; as exposure has not been completed, it could not have caused the outcome.
These issues are shown graphically in Fig. 8.1.

Fig. 8.1 Life experience with exposure, induction period and time at risk

Life experienceé ————wnw »

exposure at-risk

completed period begins
exposure I induction time
occurring period at risk

An example of a cohort study with a permanent exposure factor is presented in
Example 8.1.

8.3.2 Non-permanent exposures

When discussing exposures that can change during the study period, it is useful to recall
the criteria for completing ‘exposure’ as there might be time and/or dose components
necessary before the study individuals are deemed to be exposed. If one type of
exposure ends and another type of exposure begins, there might be a lag effect from the
first exposure. Diseases occurring within this period should be attributed to the former,
not the latter, exposure.
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Example 8.1 A cohort-study design with a permanent exposure factor

Suppose we want to investigate the association between congenital infection with Neospora
caninum and subsequent fertility. and abortion in dairy cattle (see Thurmond and Hietala
(1997) for an example). We will assume that we can obtain a sufficient number of cattle in
local herds and that we have sufficient time and money to complete a multiyear study. We
will further assume that we have a perfect test for Neospora infection and clear criteria for
“fertility’ and ‘abortion’. We might begin by testing at birth to identify infected calves, then
follow these through their breeding and the subsequent lactation. If we have no losses to our
study groups, we could compute and contrast the age at pregnancy, and the risk of abortion
in the congenitally infected and non-infected (at birth) groups. One might need to decide if
calves infected after birth need to be identified and excluded from the non-exposed group (see
Example 8.2).

For an exposure that can change over time (for example, the type of housing
experienced by a cow over two lactations), both the timing and the order of the
exposures might be important to measure and analyse. This adds further complexity
to the exposure factor. Sometimes a simple summary measure of exposure will suffice
(eg days spent on concrete versus dirt flooring), whereas in other studies more complex
measures of exposure are needed (eg the number of days spent housed in different stall
designs where the stall size and the flooring material also might need to be considered).
Neutering is often a factor of interest and here the age at neutering as well as the fact
of neutering could be important. Examples 8.2 and 8.3 are descriptions of studies with
exposures that change over time.

Example 8.2 A cohort-study design with a non-permanent exposure factor

In a follow-up example on Neospora caninum infection, we might develop a new hypothesis
concerning post-natal infections. Thus, we would monitor the study calves for the acquisition
of infection after birth by testing them at birth to ensure they were not congenitally infected
and then test at regular-(eg three-month) intervals thereafter. Abortion following first
conception might be the outcome of interest in this study. In addition, we might wish to
stratify the data based on the timing of infection (eg the actual age at infection or whether
the infection occurred before or during pregnancy). In either instance, this would be a closed
population and thus, a risk-based ‘analysis would be appropriate (see section 8.5).

.|

8.3.3 Determining exposure time

If the timing and nature of exposure are obvious, then exposure time continues to
accumulate until the event of interest occurs, or the study period ends or, if there are
losses to follow-up, until the last date exposure status is known (in this instance use the
midpoint of the last period if the precise time is unknown). If the measure of exposure
is a composite (eg ‘total hours confined” determined from the hours per day confined
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Example 8.3 A more complex cohort-study design with a non-permanent
exposure factor

As a second example, we might investigate the association between stall confinement and
stereotypical behaviour in horses. Here we have a much more complex exposure to assess.
Some of the axes of exposure could relate to the size and design of the stall (eg stall size,
construction, lighting and whether or not the horse can see other horses), the duration of
recent stall confinement, and the history of previous confinement. It is also possible for
exposure to stall confinement to be intermittent (eg a horse is confined during the colder
months but on pasture during the summer).

We would need to define the criteria for being exposed to stall confinement (eg how many
days in a stall is considered to be confined or exposed?). If a stereotypy occurs before the
‘exposure’ is completed, it would be excluded from the analysis. Once the criteria of being
exposed are met, the number of days the horse is confined is then accumulated for the
purposes of computing incidence rates. Subsequently, if a horse develops a stereotypy, its
exposure category at the time of that occurrence is used for the purpose of calculating the
incidence rate. If the animal’s housing is changed, then after considering any lag effects, the
number of days spent in each exposure category is accumulated in the overall denominator of
the rate for that category.
e

multiplied by the number of days confined), then it might be advantageous to study the
two components separately in the same model because their effects might differ (it might
be the number of days confined and not the hours of confinement per day that increases
the risk of a stereotypy; see Example 8.3).

If the exposure status can change during the study period, an individual can accumulate
animal-time in both exposed and non-exposed groups. In addition, if an induction
period is known, then technically, until that period is over, the experience of otherwise-
exposed individuals should be added to the non-exposed group. Some researchers prefer
to discard the experience during the induction period for exposed individuals because
of uncertainties about the duration of the induction period. In the face of uncertainty
about these effects, this is likely the best choice to make providing there is sufficient
time at risk in the non-exposed group to maintain precision. Similarly, if previously
exposed individuals become non-exposed, one would only add the non-exposure
time (of otherwise-exposed individuals) to the non-exposed cohort if there was strong
evidence that the period of risk for the outcome of interest was of limited duration. In
Example 8.3, if the horse ceases to be confined, it would only start to accumulate time
in the non-confined group if it was assumed that the effect of confinement on stereotypy
development ended as soon as confinement ended (ie there was no lag effect).

8.3.4 Measuring exposure on a continuous scale
Typically, individuals are classified as exposed or non-exposed (ie a dichotomous

exposure) or perhaps into an ordinal level of exposure category. The outcome frequency
will then be determined within each exposure category. Exposure might also be measured
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and classified on a continuous scale. As in other instances, maintaining the continuous
scale has advantages because the categorisation of a continuous exposure variable
usually results in loss of information. Thus, one might relate the outcome frequency (ie
risk or rate) to the continuous exposure scale using an appropriate regression model. If
categorisation of exposure is deemed to be sufficient, there should be some evidence
available to help decide the appropriate cutpoints for exposure categories. As before,
more than one axis of exposure measurement is useful. For example, we might assess
the risk of the outcome according to the maximum daily exposure, or the median daily
exposure (these would be the cutpoints for exposure categorisation). If lag effects are
minimal, when different exposure categories exist for the same individual, the exposure
category assigned to an individual is that level of exposure the individual was in at the
time the outcome event occurred. The prior exposure time at that level is accumulated
for that individual as well as any time at risk in the other levels of exposure for that
individual. The more information that can be collected on exposure, such as its level(s),
when it started, and when (if) it stopped adds credibility for causal relationships is more
useful for preventive action/management intervention, and enhances our biological
understanding of the problem.

8.4  SAMPLE-SIZE ASPECTS

Usually, sample-size determination assumes that we want an equal number of exposed
and non-exposed individuals. There is nothing magical about this assumption and, if
cost or other practicalities dictate different sample sizes in different exposure categories,
then this can be accounted for. The risk-based approach for sample size estimation, as
shown in Chapter 2, is often sufficient for planning purposes even if the population is
open and a rate-based study must be used.

8.5 THE NATURE OF THE EXPOSURE GROUPS

When selecting two or more exposure groups, it is best if the groups come from
one identifiable population that has numerous characteristics in common other than
exposure. The ‘population’ might be real, or it could be a virtual population as in the
‘group of dogs at a clinic’ or the ‘group of farms served by one veterinary practice.” If
exposure groups are defined at the start of the study and this does not change, it is called
a fixed cohort. If there are no additions and few or no losses, then the fixed cohort is
deemed to be closed (section 4.4.1). This allows the calculation of risks and average
survival times (times to endpoint).

In many cohort studies, the population is open in that some or all of the individuals in
the cohorts will change over time and hence, they will be observed for only a portion
of their at-risk period. Individuals might be lost from, or added to, the study and/or the
exposure status of each individual can change over time. In this situation, one needs to
accumulate the amount of exposure time and non-exposure time contributed by each
individual. Open populations require a rate-based approach to study design.
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8.5.1 Risk-based (cumulative incidence) designs

In a 2X2 table, the summary format for a closed-population cohort study is:

Exposed Non-exposed Total
Diseased aj a, m,
Non-diseased b, by my
Total n, No n

In this design, we select n, exposed and 7, non-exposed individuals from the N, exposed
and N, non-exposed individuals in the target population. Having ensured that none of
the study group has the outcome (a) at the start of follow-up, we follow or observe
all study subjects for the full period of risk. During the study, we observe a, exposed
subjects developing disease out of the 7, exposed subjects and a, non-exposed diseased
subjects out of the n, non-exposed subjects. Overall, we observe a total of m, diseased
and m, non-diseased subjects. The study population data are used to estimate the two
risks (R) of concern, namely:

R =a,/n and R, =agy/ng

8.5.2 Rate-based (incidence density) designs

In this design, the initially selected exposed and non-exposed subjects each contribute
an amount of ‘at-risk’ time to the denominator of the rates until they develop the
outcome, or are lost to the study or their observation ends (eg the study is terminated).
If new individuals are added to the study group, or if the exposure status of individuals
changes during the follow-up period, then the appropriate amount of time at risk is
added to either the exposed or non-exposed categories. As noted earlier, individuals do
not contribute exposed time at risk until they have qualified as ‘exposed’ and until the
induction or lag period are completed.

The summary format for an open-population cohort study is:

Exposed Non-exposed Total
Diseased a, ag m,
Animal-time at risk t to t

All subjects in the study group are followed for the duration of their risk within the
study period, and we observe a, exposed cases of disease out of ¢, animal-time units of
exposure and @, non-exposed cases out of #, non-exposed animal-time units. Here ¢, is
the sum of all of the exposed time at risk for each of the individuals that were ‘exposed’
for some time prior to, or during, follow-up. Similarly #/ is the summed time at risk in

the non-exposed category. The two rates (/) of interest we wish to estimate would be:
I, =a,/t, and I, =ay/t
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If the follow-up time is relatively short, the rates will be used to measure disease
frequency. If the follow-up time is so long that assumptions about a constant rate over
the entire study period are highly suspect, survival analysis methods should be used to
analyse the data (see Chapter 19).

8.6  ENSURING EXPOSED AND NON-EXPOSED GROUPS ARE COMPARABLE

If the study subjects in the exposure groups are not comparable with respect to factors
related to the outcome and exposure, a biased assessment of the exposure—outcome
association can result. In general, one or more of the following three approaches can
be used to help ensure that the exposed and non-exposed groups are comparable in all
relevant aspects other than their exposure status.

8.6.1  Exclusion/restricted sampling

Here we identify variables likely to be confounders (see Chapter 13 for a discussion of
confounding) and then select both exposed and non-exposed study subjects so that they
have only one level of these variables (eg use only one age, one breed, or one sex of
animal). In other circumstances, the criteria for study entry are restricted (eg only steers
in defined feedlots) and applied to both exposed and non-exposed groups. This serves
to reduce the background variability, or noise, and might help reduce confounding from
unknown factors.

8.6.2 Matching

Here we identify major confounding variables and then select the non-exposed subjects
so that they are the same as the exposed subjects with respect to these variables. One
method of selection is one-on-one matching (eg select the next listed, non-exposed
animal (if using existing records) provided they are of the same age, breed ezc). Another
method is group matching which ensures an overall balance. These two approaches
lead to different forms of analysis (see section 13.6). Matching can help achieve greater
study efficacy as well as confounding control in cohort studies.

8.6.3  Analytic control

Here we identify and measure the important confounders and then use analytic control
(eg ranging from Mantel-Haenszel-type stratification to multivariable regression
approaches) to adjust for these confounders (see Chapters 13 and 16), and hence obtain
unbiased measures of association. Information on other exposures/confounding factors
also should be as accurate as possible because misclassification of these confounders
seriously reduces our ability to control confounding.
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8.7 FoOLLOW-UP PERIOD AND PROCESSES

This is a very important aspect of study validity and the follow-up process must be
unbiased with respect to exposure status. This often requires some form of blinding
process as to exposure status. This can be implemented in both prospective and
retrospective studies (although the latter has more limited options). Unless the study
period is short, it is helpful to enumerate and characterise the population at risk at
specified times during the study. If passive surveillance for cases is used, then cases are
identified when reported. With active surveillance and regular evaluation, it is feasible
to get more accurate data on time of outcome occurrence. The date of event occurrence
should be as accurate as possible, because inaccurate recording increases the possibility
of serious measurement error. Collecting ancillary information is useful to manage
issues such as loss to follow-up because of culls/sales, and to assess if censorship
is unrelated to exposure. In a closed cohort, it is important to trace as many ‘losses’
as possible in order to ascertain their last known health and exposure status. If the
percentage of study subjects lost becomes large (some use >10% as a cutpoint), it will
begin to cast doubt on the validity of study findings.

8.8 MEASURING THE OUTCOME

Each study will need explicit protocols for determining the occurrence and timing of
outcome events. Clear definition(s) of diagnostic criteria are useful to ensure as few
diagnostic errors as possible (eg what constitutes stereotypical behaviour). Ensuring
blindness as part of the diagnostic process is helpful to equalise diagnostic errors but
this does not reduce them.

The outcome is measured as incidence in a cohort study. This requires at least two tests:
the first at the start of the period to ensure that the animals did not have the disease, and
the second to investigate whether or not the disease developed during the observation
period. If the study group is screened regularly for the outcome event, then the time of
occurrence of the outcome should be placed at the midpoint between examinations. If
clinical diagnostic data are used to indicate the outcome event, you must remember that
these are based on time of diagnosis not on time of occurrence of disease. For diseases
that might remain subclinical for months or years, ignoring this difference could lead
to inferential errors.

One of the advantages of a cohort study is that we can assess multiple outcomes.
However, if multiple outcomes are assessed, some might be significantly associated
with the exposure by chance alone. In this instance, it might be best to consider the
study as hypothesis-generating not hypothesis-testing, unless the outcomes were
specified a priori.
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8.9  ANALYSIS/INTERPRETATION
8.9.1 Risk-based cohort analysis

If the study population is closed, we can measure the average risk of disease(s) and
survival times during the follow-up period. Bivariable analyses are shown in Chapter
6, stratified analyses in Chapter 13 and multivariable logistic models in Chapter 16.
Retrospective single-cohort studies that were analysed using a risk-based approach are
presented in Examples 8.4 and 8.5.

8.9.2 Rate-based cohort analyses

If the study population is open, rates are used to measure disease frequency and a
Poisson regression model (Chapter 18) is appropriate for the analysis. The incidence of
disease is expressed relative to the amount of time at each level of exposure, not to the
number of exposed (or non-exposed) individuals. Example 8.6 contains an example of
a rate-based cohort study of colic in horses.

Example 8.4 Retrospective single-cohort study — closed population

Risk factors for metritis in Danish dairy cows (Bruun et al, 2002)

A retrospective single-cohort (longitudinal) study of factors affecting metritis occurrence in
the first 30 days of lactation was conducted in Denmark using data collected during 1993-
1994 (Bruun et al, 2002). Data on herd size, breed, parity and treatment of disease were
obtained from the Danish Cattle Database. Management and production-facility data were
collected using a questionnaire, conducted as a telephone interview in 1994, The study
included 2,144 herds from three regions in Denmark (102,060 cows). Herd-level exposure
variables included: herd size, housing, flooring, grazing, calving measures, and calving
supervision. Cow-level exposure variables were: parity, breed, calving season and whether
the cow had been treated by a veterinarian for dystocia or retained placenta, reproductive
disease, ketosis, milk fever or dry-cow mastitis.

This study population can be considered fixed in that the exposure status was considered
permanent within a lactation and all cows were observed for the full 30-day risk period - few
cows are culled during this stage of lactation, and no ‘new’ cows were added, so it was a
closed population.
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Example 8.5 Retrospective cohort study — closed population

Musculoskeletal injuries in Thoroughbred horses during races (Cohen et al, 1999)

This example allows the reader to compare different approaches (cohort and case-crossover
studies) to answer the same general question — in this instance, factors affecting leg injuries
in racehorses. See Example 10.2 for the comparison study.

This was a retrospective cohort design. The study population was selected from a larger
cohort of horses that raced on four tracks in Kentucky between January 1, 1996 and October
25, 1997. Prior to each race, each horse was examined by a Kentucky Racing Commission
veterinarian and a summary score indicative of increased injury risk was recorded. This score
was dichotomised by the researchers, and records for horses with an elevated risk and one
randomly selected horse deemed to be at no increased risk in that race were selected for study.
A major analytical feature was that, over the study period, horses could be included many
times and their injury risk status could change.

Any horse that raced on one of the four tracks was eligible for the study and, although the
horse population itself likely changed during the study period, all horses were observed for
the full risk period (ie the race) and hence, the study population was closed allowing a risk-
based analysis.

Example 8.6 Prospective cohort study — open population

Prospective study of equine colic incidence and mortality (Tinker et al, 1997)

Data from 31 farms with more than 20 horses each were maintained for one year. Descriptive
information on 1,427 horses were collected at the outset and updated every three months
allowing horse-time at risk to be determined for each horse. The crude I for colic was 10.6/
100 horse-years but this varied from 0 to 30/100 horse-years across farms. Fourteen horses
had more than one colic episode and the colic-specific mortality rate was 0.7/100 horse-years.
The rates of colic differed by breed, use and age but not by gender.
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CASE-CONTROL STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

1.

Describe the major design features of risk-based and rate-based case-control
studies.

Identify hypotheses and population types that are consistent with risk-based case-
control studies.

Identify hypotheses and population types that are consistent with rate-based case-
control studies.

Differentiate between open and closed primary-base and secondary-base case-
control studies.

Elaborate the principles to select and define the case series.

Implement the principle features to select controls in open and closed primary-base
case-control studies.

Implement the principle features to select controls in open secondary-base case-
control studies.

Design and implement a valid case-control study for studying a specific
hypothesis.
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9.1 INTRODUCTION

The essence of the case-control study design is to select a group of cases and a group of
non-cases (ie controls), and compare the frequency of the exposure factor in the cases
with that in the controls. The cases are the study subjects that have developed the disease
or outcome of interest, whereas the controls have not developed the disease or outcome
of interest at the time they are selected. It is important to stress that a case-control study
is not a comparison between a set of cases and a set of ‘healthy’ individuals, but between
a set of cases and a set of individuals whose exposure to the factor of interest reflects the
exposure in the population from which the cases were drawn. An overview of key design
issues is available elsewhere (Breslow and Day (1980); Rothman and Greenland (1998)).
Although the study designs are described as though an individual animal is the unit of
interest, the designs also apply to aggregates of individuals such as litters, pens, barns or
herds.

9.2 THE STUDY BASE

The study base is the population from which the cases and controls are obtained. If
the cases and controls come from a well-defined target population for which there
is, or could be, an explicit listing of sampling units (ie potential study subjects), this
population is denoted as the primary study base. If the cases and controls come from a
referral clinic, laboratory or central registry, these sources, which are one step removed
from the actual source population, are referred to as a secondary study base. Explicitly
defining the target or source population can be difficult when using a secondary base
but, in so far as is possible, the controls should be derived from the population that
gave rise to the cases in a manner such that they reflect the distribution of exposure in
that base. Often it is useful to identify the factors which would lead (or exclude) cases
to (from) the secondary-base registry. For example, there could be a large number of
animals in the source population that develop the disease of interest but which will not
be entered in the secondary base because of the animals’ lack of economic value, or the
owners’ attitudes towards secondary medical care (if the secondary base is a specialised
or referral hospital). In such an instance, we would attempt to select controls from non-
cases with other disease(s) that will likely have similar referral patterns to the cases.

9.2.1 Open versus closed study populations

Variations in the study design are necessary depending on whether one is conducting the
study in an open or closed population. As noted in section 4.4.1, a closed population has
no additions during the study period and few or no losses. Populations are more likely
to be closed if the risk period for the outcome is of limited duration (eg as in bovine
respiratory disease in feedlot calves). Open populations could have both additions and
losses during the risk period and are more likely to arise when the risk period for the
outcome of interest is long (eg a study of risk factors for lymphosarcoma in cattle, or
a study of risk factors for stereotypy in horses). Sometimes it is possible to convert an
open population to a closed population. For example, a study of risk factors for mastitis



CASE-CONTROL STUDIES 165

in dairy cows over one calendar year would likely have to contend with new cows
being added and original cows being lost part way through their lactation. However, if
the hypothesis is to identify risk factors for first occurrence of mastitis in the initial 60
days of lactation, by following a defined group of cows for the full 60 days after they
calve, we have created a closed population. Only cows that calve in the herd(s) and are
followed for the full 60-day period are included in the study. Closed populations can
support risk-based case-control designs; open populations require a rate-based design.

9.2.2 Nested case-control study designs

In describing the source population in a case-control study, the term nested usually
implies that the entire source population from which the cases are drawn has been
enumerated and followed such that the case series represents all of the cases, or a known
fraction thereof, from this population. When this is true, by knowing the sampling
fractions of cases and controls, we can estimate the frequency of disease by exposure
status, a feature that is absent in almost all other types of case-control studies. However,
whether or not the study is truly nested in an explicitly definable population, it is useful
to think of all case-control designs in this context even if the source population is not
explicitly listed (eg as in a secondary-base study, section 9.6.3).

9.2.3 Keeping the cases and controls comparable

Reducing the number of extraneous factors that can adversely affect the study, many of
which are unknown, is always a good strategy. Both exclusion and inclusion criteria
can be used for this purpose, and should apply to both cases and potential controls.
In addition, as with cohort studies, there are three general approaches to preventing
confounding by ‘known factors’. The first is exclusion or restricted sampling. For
example, if breed is a likely confounder, you might include only one breed in the study,
the dominant one in the source population. Hence, there could not be any confounding by
breed. What we would lose in this approach is the ability to generalise the results to other
breeds or to assess interactions with the exposure across breeds.

Matching on known confounders is a second strategy frequently used to prevent
confounding and, to a lesser extent, to increase efficiency (ie power of the study).
Unfortunately, matching often does not work well for either of these objectives in case-
control studies (section 13.6). However, if matching is used, then a conditional analysis
of the data is required (section 16.14). Third, we can use analytic control as a strategy
for the control of confounding. Here we measure the confounders and use multivariable
techniques to prevent confounding. This is our preferred choice, often working in
concert with restricted sampling (see Chapters 12 and 13 for more detail).

9.3  THE CASE SERIES
The key elements in selecting the case series include the definition of the disease (the

required diagnostic criteria for the outcome), the source of the cases, and whether to
include only incident or both incident and prevalent cases.
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9.3.1 Case definition

The actual diagnostic criteria will vary depending on the outcome, but they should
include specific, well-defined manifestational (e clinical) signs and, when possible,
documented diagnostic criteria so that they can be applied in a uniform manner. In
some instances, it might be desirable to subdivide the case series into one or more
subgroups based on ‘obvious’ differences in the disease manifestation, especially if
the causes of the different forms of the disease might differ. We need to be careful in
imposing detailed diagnostic criteria for the cases in the sense that the case series in
the study could become increasingly different from the majority of cases of that disease
if high levels of time commitment and money are required to complete the diagnostic
work-up. Thus, a case series of autoimmune disease in dogs obtained from a referral
hospital might differ from the majority of autoimmune cases seen in private practice.
Nonetheless, there is merit in a set of very specific diagnostic criteria for the cases as
preventing false positives will reduce any bias in the measure of association caused by
lack of sensitivity in the detection of cases (section 12.6.5).

9.3.2 Source of cases

A major decision is whether the cases will all (or most) be from a defined population
(a primary-base study), or if they will be obtained from a secondary source such as
clinic or registry records (a secondary-base study). Sampling directly from the source
population has the advantage that it avoids a number of potential selection biases, but
it is more costly than using secondary data. The challenge is to obtain as complete
coverage as possible with respect to case ascertainment. This design is moderately
common in veterinary medicine because farms with good records allow virtually
complete enumeration of animals and events (although one might have to choose
between ‘owner-diagnosed’ and ‘veterinary-diagnosed’ cases). As noted, depending
on the outcome, the study design might allow these populations to be considered as
closed thus allowing risk-based analyses. In secondary-base studies, the challenge is to
conceptualise the actual source population and design the study to obtain a valid sample
of non-cases to serve as controls.

9.3.3 Incident versus prevalent cases

The issue of selecting incident versus prevalent cases seems fairly clear; there is
virtually unanimous agreement that only incident cases be used for the study. There
could be specific circumstances in which the inclusion of prevalent cases can be
justified, but this would be the exception, not the rule. The problem with prevalent cases
is that it is difficult to separate the factors that relate to ‘getting’ the disease, from the
factors that relate to ‘having’ the disease (ie duration). Thus, a ‘beneficial’ factor that
increases survival in affected animals could appear to be a risk factor for the disease if
prevalent cases are included. Also, because we are uncertain about when a prevalent
case began, it is more difficult to focus the search temporarlly for causal factors than it
is for incident cases.
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9.3.4 Exposure and covariate assessment

When ascertaining exposure status and information on confounders, it is preferable
to obtain the greatest accuracy possible, even if that leads to different data-collection
processes between the cases and controls. Failing that, the process should have
comparable accuracy in both groups. Usually this approach is implemented by using
the same process for obtaining exposure and confounder data in cases and controls and,
where possible, having the data collectors blinded to case status.

Many times the exposures that are studied are not permanent and can change over time.
If a subject’s exposure history changes during the study period, the case’s exposure
status should be that which existed at the time of event occurrence. For controls, their
exposure status at the time of their selection as controls is required.

9.4  PRINCIPLES OF CONTROL SELECTION

The selection of appropriate controls is often one of the most difficult aspects of a
case-control design. The key guideline for valid control selection is that they should
be representative of the exposure experience in the source population. Controls are
subjects that would have been cases if the outcome had occurred. Hence, the more
explicitly the source population can be defined, the easier it is to design a valid method
for selection of controls (Wacholder et al, 1992a,b).

The major principles are:

=  Controls should come from the same study base (population) as the cases.

= Controls should be representative of the source population with respect to
exposure.

= In open populations, controls should mirror the exposure time of the non-case
subgroup in the population. '

*  The time during which a non-case is eligible for selection as a control is the
time period in which it is also eligible to become a case if the disease should
occur.

The implementation of these principles depends on the study design, so we shall begin
our discussion with the traditional risk-based design.

9.5 SELECTING CONTROLS IN RISK-BASED DESIGNS

The traditional approach to case-control studies in veterinary medicine has been a
risk-based (cumulative incidence) design. In this approach, the controls are selected
from among those animals that did not become cases up to the end of the risk period.
An individual can be selected as a control only once. This design is appropriate if the
population is closed and the risk period for the outcome in an individual has ended
before subject selection begins. It fits situations such as outbreaks from infectious or
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toxic agents where the risk period for the disease is short and essentially all cases that
will arise from that exposure will have occurred within the defined study period (eg a
point-source food-borne outbreak, or bovine respiratory disease occurrence post-arrival
in a feedlot — see Example 9.1). Because the risk period has (for practical purposes)
ended, the study cases represent virtually all of the cases that would arise from the
defined exposure even if the study period were extended. It should, however, be noted
that if the population is actually open, the use of this risk-based sampling strategy can
lead to significant bias.

Example 9.1 Prospective risk-based case-control study

This study investigated associations of viral and mycoplasmal antibody titres with respiratory
disease in calves in Ontario feedlots (Martin et al, 1999). Blood samples were taken from
calves in 32 different groups on arrival at the feedlot and again 28-35 days after arrival. The
high-risk period for bovine respiratory disease (BRD) in feedlot calves usually lasts less
than four weeks and on average about 30% of calves develop BRD. Because all calves were
observed for the full risk period, this study population was closed and a risk-based design with
controls being those calves not developing BRD within 28 days of arrival was appropriate, A
feature of the design is that, although all calves were bled at both times (arrival and 28-35 days
later), the researchers only determined serological titres on the cases and an equal number of
controls, thus reducing the number of serological analyses by 20-40% and converting the
study from a single-cohort study to a prospective case-control study in a defined population.

. |

9.5.1  Sampling issues in risk-based studies

The closed-source population can be categorised with respect to exposure and outcome
as shown below (upper-case letters denote the population, lower case the sample):

Exposed Non-exposed Total
Cases A, A, M,
Non-cases B, By M,
Total N, Ng N

The cases are those that arose during the study period, whereas the controls are those
that remained free of the outcome during the study period. The controls should be
selected such that there is an equal sampling fraction of exposed and non-exposed
controls (ie sampling is independent of exposure status).

Usually, all or most of the cases (M) are included in the study. There are B, exposed
non-cases and B, non-exposed non-cases in the source population from which we
select our study control subjects b, and 5. We want to select the controls such that the
sampling fractions (sf) in these two groups of non-cases are equal, ie:

number of exposed controls in the sam