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FOREWORD 

Over recent decades epidemiologic thinking and methods have become central to 
efforts to improve animai health and protect the human population from exposure to 
animai pathogens. 

The range of techniques used has grown enormously, and the level of understanding 
of the merits and limitations of the various investigational methods has increased as 
experience has been gained with their application. There has, however, been no single 
source to which one could tum for an authoritative guide to the major methods of 
epidemiological research, their application, and the issues which should be taken into 
account in using them. 

Wi th the publication of this book, that important gap in the literature has been amply 
filled. This is a comprehensive text for the discipline of veterinary epidemiology, 
written by authors who have the standing to provide wise and insightful guidance 
on epidemiological research methods for the novice and expert alike. They have 
provided both a guide to the selection and application of the various investigational and 
analytical techniques, and practical examples which will allow the reader to test new­
found knowledge by working through the example datasets to apply the procedures to 
genuine case studi es. 

I am unaware of any other book in either veterinary or medical epidemiology which 
provides such a solid reference source, backed up by the understanding and wide 
experience of the authors. This book will become an essential reference for any 
epidemiologist, regardless ofwhether they work with human health or animai health, to 
be read for education and then checked on later occasions to make sure that a concept 
is right, a method has been correctly interpreted, or a limitation of a technique has been 
properly considered. 

The chapters cover the fundamental principles of epidemiological research, the methods 
by which studies can be undertaken, and the procedures for analyzing and interpreting 
the data once it is gathered. The illustrative examples are real-world ones, which will 
be relevant to the problems being investigated by readers ofthe book, and the link from 
text examples to the teaching exercises will help users to move quickly from reading to 
doing, first with the example datasets and then with their own data. 

I compliment the authors on assembling such a powerful tool, which will help users 
throughout the world to approach epidemiological investigations with enhanced 
confidence that they are undertaking each part of the investigation in the be st possible 
way. 

Professor Roger Morris MVSc, PhD, FAmerCE, FACVSc, FRSNZ, CNZM 
Director, Massey University EpiCentre, Palmerston North, New Zealand 



PREFACE 

Over the past few decades, veterinary epidemiologic research has expanded both 
in depth and breadth of topics. As educators, in order to help new epidemiologic 
researchers gain the essential knowledge in the discipline, we have found a great need 
for a graduate-level text on the principles and methods of veterinary epidemiologic 
research. There are a number of excellent general veterinary epidemiology texts (eg 
Thrushfield, 1995; Martin et al, 1987; Smith, 1995; Noordhuizen et al, 1997) however, 
in our view, the material in these texts is insufficient for students learning how to 
conduct epidemiologic research or as a general reference for current epidemiologic 
investigators. 

The primary motivation for this book carne from the fact that over the years we, as 
teachers of graduate-level courses in epidemiologic research methods, have found it 
necessary to supplement available textbook material with extensive course notes in a 
variety of areas. For many of the study design features and analytic methods that we 
include in graduate courses, it has been our perspective that there are no textbooks that 
covered the material in a sufficiently comprehensive, yet accessible manner. Specialty 
textbooks on specific design or analytic methods are available, but are too detailed 
for students learning the subject material. Even with directed reading of selected 
journal papers and text material, most students needed a more concise reference for 
the variety of 'tools' they want in their 'tool-kit'. Although these diverse sources were 
comprehensive, they did not present the material in a unified framework that would be 
helpfui both for students and researchers already in the discipline. 

This text focuses on both design and analytic issues. Concerning issues of study 
design, we have found that existing textbooks fell into two general groups. There are 
a number of excellent texts, in addition to the veterinary texts mentioned above, that 
present the material at a level intended for use by students and health practitioners who 
are consumers of epidemiologic research results, but not at a level suitable for those 
actively involved in the design and conduct of comprehensive studies (eg Fletcher et al, 
1996; Sackett et al, 1991; Hulley et al, 2001). On the other hand, there are a few 'high­
end' reference texts that deal with the theoretical and applied bases of epidemiologic 
research (Breslow and Day, 1980, 1987; Kleinbaum et al, 1982, Rothman and 
Greenland, 1998). On the personal front, whereas we use these texts extensively, our 
experience is that graduate students find these texts very challenging to digest as they 
are learning the discipline. It is our hope that we have covered the major study design 
issues in Chapters 2 through 13 and have done so in a way that is comprehensible to 
students learning the discipline but sufficiently complete to serve as a useful reference 
for experienced investigators. 

With respect to helping students learn the multivariable statistical methods used in 
epidemiology we found that, once again, the literature fell into two classes. A number 
of general statistics texts provide good introductory information about the more 
commonly used epidemiologic methods, but do not present the material with a view 
to their use in epidemiologic research. On the other hand, more specialised texts cover 
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the statistical material in great detail, but often at a level of complexity that is beyond 
that which can be used by many investigators that come to the discipline from a health 
profession background. It is Ouf hop e that in Chapters 14 through 24, we have covered 
the important analytical methods in a manner that is comprehensible to first-time 
graduate students in epidemiology and to seasoned epidemiologic investigators. 

A final motivation for the preparation ofthis book was that the vast majority of graduate­
level reference material has been written for students in human epidemiology and we 
felt there was a need for the material to be presented in a veterinary context. Although 
important, this was only a minor motivating factor as the principles of epidemiologic 
research are identical, regardless ofwhether Ouf subjects have two legs or fouT (or none, 
since we use a number of fish health examples in this text). In fact, it is our sincere hop e 
that students working in human epidemiology, public health research and other related 
disciplines will also find this text useful, even though some of the diseases discussed in 
the examples may not be familiar to them. 

This book has grown as we have written it. While we have attempted to make it 
comprehensive, we realise that there are many specific topics within the realm of 
veterinary epidemiologic research that we have not covered (eg analysis of spatial data, 
risk analysis methodology). While important in many research projects, we felt this 
material fell outside what we considered to be the 'core' material required by veterinary 
epidemiologists, and was therefore left out to keep the book at a manageable size. 

Throughout the book, but particularly in Chapters 14 through 24, we have made extensive 
use of examples. All of the datasets used in these examples are described in the text 
(Chapter 27) and are available through the book's website (http://www.upei.caJver). 
Virtually ali of the examples have been worked out us ing the statistical program StataTM 
- a program which provides a unique combination of statistical and epidemiological 
tools and which we use extensively in Ouf teaching. A listing of the program files (called 
-do- files by Stata) used in all of the examples is provided in Chapter 28 and these are 
also provided on the website. 

As noted above, the web site is an important component of this text. Through it we 
provide datasets, program files, solutions to sample problem s and news items relevant 
to the book. It is Ouf hope that this will be a dynamic website to which we will add 
additional material (eg more problems and solution sets). In fact, we would encoUfage 
other investigators who have useful examples of sample problem s to share them with 
us and we will post th em in the relevant section of the website (with appropriate 
recognition of the contributor). 

We hope that you find it us ef ul in your studies and yOuf research. 
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1 

INTRODUCTION AND CAUSAL CONCEPTS 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Explain the history of causal thinking about disease from an epidemiological 
perspective. 

2. Explain how observational studies and field experiments seek to estimate causal 
effect coefficients and how these relate to counterfactual approaches. 

3. Explain the basis of component-cause model s and how this concept helps to explain 
measures of disease association and the proportion of disease explained by a causal 
factor. 

4. Explain the basis of causal-web models of causation. 

5. Construct a logical causal diagram based on your area of research interest as an aid 
to guiding your study design and analyses. 

6. Apply.a set of causal criteria to your own research and as an aid to interpreting 
published literature. 



2 INTRODUCTION AND CAUSAL CONCEPTS 

1.1 INTRODUCTION 

Epidemiology is largely concemed with disease prevention and therefore, with the 
"succession of events which result in the exposure of specific types of individual to 
specific types of environment" (ie exposures) (MacMahon and Pugh, 1970). Thus, 
epidemiologists strive to identify these exposures and evaluate their associations with 
various outcomes ofinterest (eg health, welfare, productivity) so as to improve the live s 
of animals and their keepers. Hence, this book is about associations: associations which 
are likely to be causal in nature and which, once identified, we can take advantage of 
to improve the health, welfare and productivity ofanimals and the quality and safety of 
foods derived from them. 

Associations between exposures and outcomes exist as part of a complex web of 
relationships involving animals and ali aspects of their environment. Thus, in striving 
to meet our objectives, we (epidemioIogists) are constantly struggling to improve our 
study designs and data analyses so that they best describe this complex web. It is only 
by studying these associations under fieId conditions (ie in the 'real world') that we can 
begin to understand this web ofreIationships. In this regard, Meek (1993), speaking on 
the topic of epidemiologic research, stated: 

It is essential that ali groups periodically review their mandate, achievements 
and direction in light of the changing needs of society ... greater use of the 
naturalistic paradigm in epidemiologic research is warranted, as the scientific 
paradigm, while serving the 'hard' sciences weil may have shortcomings 
when it comes to understanding multifactorial issues. 

As astarting place, we believe it is useful to review briefly the history of the concept(s) 
of multiple interrelated causes (exposures). This will provide a sense of how we have 
arrived at our current concepts of disease causation and where we might need to go 
in the future. Because we want to identify associations which are likely to be causal, 
it is appropriate to review the relevant areas of the philosophy of scientific inference 
that relate to causaI inference. Following these brief reviews, we will proceed with 
overviews of the key components of veterinary epidemiologic studies and discuss 
some current concepts of disease causation. Our objective is to provide a foundation on 
which a deeper understanding of epidemiologic principles and methods can be built. 

1.2 A BRIEF HISTORY OF MULTIPLE CAUSA TION CONCEPTS 

As noted, epidemiology is based on the idea that 'causes' (exposures) and 'outcomes' 
(health events) are part of a complex web ofrelationships. Consequently, epidemiologists 
bas e their research on the idea that there are multiple causes for alm ost every outcome 
and that a single cause can have multiple effects. This perspective is not universally 
shared by ali animal-health researchers. In this current era, when great advances are 
being made in understanding the genetic components of some illnesses, a significant 
proportion of medical and veterinary research is focused on the characteristics of only 
direct causal agents and how they interact with the genetic makeup of the host of 
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interest. As Diez-Roux (1998b) point s out, while it is true that genetic abnonnalities 
are important precursors of many diseases, in tenns of maintaining health, the real 
questions relate to the extent that our current environmental exposures and lifestyles 
(we could read this as animaI management) lead to genetic defects as weIl as the extent 
to which these exposures and lifestyles allow specific genetic patterns to complete 
a sufficient cause of disease. (The concept of 'components of sufficient cause' is 
discussed in section 1.7.) 

From a historical perspective, it is evident that the acceptance of the concept(s) of 
multiple interacting causes has ebbed and ftowed, depending on the dominant causal 
paradigm of the era. However, the roots of this concept can be traced back at least to 
400 B.C. when the Greek physician Hippocrates wrote On Airs, Waters and Places. 
He stated the environmental features that should be noted in order to understand the 
he alth of populations (Buck et al, 1988). Based on this aspect of his writing, it is 
clear that Hippocrates had astrong multicausal concept about exposure factors in the 
environment being important 'causes' of disease occurrence. He carried on to discuss 
the importance of the inhabitant's lifestyle as a key detenninant ofhealth status, further 
expanding the 'web of causation.' Nonetheless, the concepts linking the state of the 
environment and lifestyle to the occurrence of disease seem to have been short-live d as, 
between 5 and 1750 A.D., humoral imbalances (events within the individual) became 
the major paradigm of disease causation (Schwabe, 1982). 

However, from 1750 to 1885, the multifactorial nature of disease causation returned 
when man-created environmental filth became accepted as a central cause of disease, 
and the prevalent causal paradigm was that disease was due to the effects of miasmas 
(ie bad air). It was during the mid 1800s that John Snow conducted his studies on 
contaminated water as the cause of cholera (Frerichs, 2003). Us ing a combination of 
astute observations about the lack of spread of the disease among health workers, the 
geographical distribution of cholera, a series of observational studies, including natural 
as weil as contrived (rernovaI of the Broad Street pump handle) experiments, Snow 
reached the correct conclusion about the transmission of cholera (ie that it was spread 
by water contaminated by sewage effiuent). It is noteworthy that he arrived at this 
conclusion almost 30 years before the organism (Vibria chalera) was discovered, thus 
demonstrating an important principle: disease can be prevented without knowing the 
proxi mal causal agent. 

A few years later (ie in the 1880s-1890s), Daniel Salmon and Frederick Kilborne 
determined that an insect vector (a tick: Boaphilus annulatus) was associated with a 
cattle disease call ed 'Texas Fever' even though the direct causal agent of the disease 
(a parasite: Babesia bigemina) was not discovered until many years later (Schwabe, 
1984). Their first associations were based on the similar geographical distributions 
between the disease and the extent of the tick's natural range; theirs was the first 
demonstration of the spread mechanism of the causal agent of a vector being required 
for the development and transmission of a parasite. Their work provided the basis 
for disease control, again before knowing the actual agent of the disease. Thus, in 
this period (mid-to-Iate 1800s), the study of the causes of specific disease problem s 
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focused on multiple factors in the environment, albeit somewhat more specificaIly than 
Hippocrates had discussed earlier. 

The multifactorial causal concept became submerged during the late 1800s to the 
mid 1900s, when the search for specific etiological agents (usuaIly microbiological) 
dominated medical research. This 'golden era' of microbiology lead to a number of 
successes including mass-testing, immunisation, specific treatment, as weIl as vector 
control (eg the mosquito vector of malaria was now known) as methods of disease 
control. Indeed, control of many specific infectious disease s meant that by the mid 
1900s, chronic, non-infectious diseases were becoming relative ly more important as 
causes of morbidity and mortality in humans in developed countries. It was recognised 
early on that single agents were not likely responsible for these chronic diseases and 
large-scale, population-based studies examining the potential multiple causes of these 
diseases were initiated. For example, the Framingham Heart Study pioneered long­
term surveillance and study of causes of human health beginning in 1949. Similarly, 
large-scale, population-based studies of animai health were also undertaken. In 1957, 
the British initiated a national survey of disease and wastage in the dairy industry - the 
survey methods were later critiqued by their author (Leech, 1971). Thus, by the early 
1960s, in both human and animal-health research, there was once again a growing 
awareness of the complex web of causation. 

By the 1970s, multiple interacting causes of diseases retumed as a major paradigm of 
disease causation. Building on the knowledge from the microbiological revolution, the 
concept of the agent-host-environment causal triad appeared in an early epidemiology 
text (MacMahon and Pugh, 1970). In this conceptual model, a number of component 
causes were required to come together (either sequentially or simultaneously) in order 
to produce disease; later, the complex of factors that was sufficient to produce disease 
was known as a sufficient cause and it was assumed that most disease s had a number of 
sufficient causes (Rothman, 1976). In addition to multiple causes, the component cause 
model was not constrained to have ali causal factors at the same level of organisation. 
A traditional veterinary example used to portray some of these concepts is yellow 
shanks in poultry (Martin et al, 1987). When poultry with the specific genetic defect 
(an individual-Ievel factor) are fed com (ration is usually a herd/flock level factor) they 
develop a discolouration of the skin and legs. If ali poultry are fed com, then the cause 
of the disease would be a genetic defect; however, if ali birds had the genetic defect, 
then the cause of the disease would be deemed to be the feed. In reality, both factors 
are required and the disease can be prevented by rem ov ing either the genetic defect, or 
changing the feed, or both, depending on the specific context. 

The 1970s actually appeared to be a period ofpeak interest in causation (Kaufman and 
Poole, 2000). Susser's text on causal thinking appeared in 1973 (unfortunately, it has 
never been reprinted) and, three years later, the concepts of necessary and sufficient 
causes were published by Rothman (1976), followed by a set of causal criteria by 
Susser (1977). Large-scale monitoring of animaI disease s began in this period (Ingram 
et al, 1975). As an example, linking databases of veterinary schools across North 
America in the Veterinary Medical Data Program was initiated based on the concept of 
using animals as sentinels for the environment (Priester, 1975). 
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The 1980s seemed to be a quiet time as no major new causal concepts were brought 
forward. Hence (perhaps by omission), the aforementioned web of causation might 
have become restricted to studying individual-level directly causal factors focusing on 
biological malfunctioning (Krieger, 1994). 

In 1990, epigenesis was proposed as a formai model of multivariable causation that 
attempted to link, explicitly, causal structure s to observed risks of disease (Koopman 
and Weed, 1990). While this proved to be an interesting and exciting proposal, the 
limitations of this approach were later realised (Thompson, 1991; Martin, 1996) and 
the approach remained only a concept. Notwithstanding the biossoming offield-based 
epidemiologic research that was taking place in the mid 1990s, apaper suggesting 
that epidemiology had reached its limits was published in a weIl-known biological 
journal (Taubes, 1995). This article led to considerable debate within and without 
epidemiology and, over time, deficiencies in the arguments suggesting a limited future 
for epidemiology were identified. 

Since the mid nineties, there has been a lot of introspective writing by epidemiologists 
working on human diseases with much concern over an excess focus on individuals as 
the units of study and analysis. We shaIl not review these debates in detail as excellent 
discussion s on these topics are available elsewhere (Shy, 1997; Diez-Roux, 1998a,b; 
McMichael, 1999). What is apparent is that depending on the context, elements of the 
social, physical and biological features of the defined eco system should be included in 
each study, while the unit of concern can range from the individual, to group s (litters, 
pens, barns), farms/families, viIlages or communities, watersheds or larger ecosystems. 
Thus, epidemiologic research remains deep ly rooted in the concept of multiple 
interrelated causal factors as a basis for disease and hence, for disease prevention. This 
conceptual basis has been supported by substantial progress in the development of 
epidemiologic research methodologies and these are the subject of this book. 

1.3 A BRIEF HISTORY OF SCIENTlFIC INFERENCE 

Epidemiology relies primarilyon observational studies to identify associations between 
exposures and outcomes. The reasons are entire ly pragmatic. First, many health-related 
problems cannot be studi ed under controlled laboratory conditions. This could be due 
to limitations in our ability to create 'disease' problems in experimental animals, ethical 
concerns about causing disease and suffering in experimental animals and the cost of 
studying diseases in their natural hosts under laboratory conditions. Most importantly 
though, ifwe want to understand the complex web ofrelationships that affects animals 
in their natural state, then we must study them in that natural state. This requires the 
use of observational studi es, and inferences from these studies are based primarilyon 
inductive reasoning. 

Philosophical discussion of causal inferences appears to be limited mainly to fields where 
observation (in which we attempt to discern the cause) rather than experimentation (in 
which we try to discern or demonstrate the effect) is the chief approach to research. 
While the latter approach is very powerful, one cannot assume that the results of even 
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the best-designed experiments are infallible. Thus, because epidemiologists rely on 
observational studies for the majority of our research investigations, a brief review of 
the basis for scientific inference is in order. We pursue this review in the context that 
epidemiology is a pragmatic discipline, that our activities are tied to health promotion 
and disease prevention and, that as Schwabe (1977) indicated, the key for disease 
prevention is to identify causal factors that we can manipulate, regardless of the level 
of organisation at which they act. We will briefly present the concepts of inductive and 
deductive reasoning. More complete reviews on the philosophy of causal inference are 
available elsewhere (Rothman and Greenland, 1998; White, 200 l; Aiello, 2002; Weed 
2002). 

Inductive reasoning is the process of making generalised inferences about (in our 
context) 'causation' based on repeated observations. Simply put, it is the process of 
drawing conclusions about the state of nature from carefully recorded and analysed 
observations. Francis Bacon (1620), first presented inductive reasoning as a method of 
making generalisations from observations to general laws of nature. As two examples, 
John Snow's observations during the cholera outbreaks of the mid l800s led to a 
correct inference about the mechanism of the spread of the disease, while Edward 
Jenner's observations that milkmaids who developed cowpox didn't get smallpox, 
led to his conclusion that cowpox might prevent smallpox. This, in tum, led to the 
development of a crude vaccine which was found to be effective when tested in humans 
in 1796. These were both dramatic examples of the application of inductive reasoning 
to important health problems. In 1843, John Stuart Mill proposed a set of canons (rules) 
for inductive inference. Indeed, Mill's canons might have originated our concepts about 
the set of component causes that are necessary or sufficient to cause disease (White, 
2000). 

While it is easy to identify important advances in human and animai health that have 
been based on inductive reasoning, proponents of deductive reasoning have been 
critical of the philosophical basis (or lack thereof) of inductive log ic. David Hume 
(1740) stated that there is "no logical force to inductive reasoning." He stated further 
that "we cannot perceive a causal connection, only a series of events." The fact that the 
sun comes up every day after the rooster crows, should not result in a conclusion that 
the rooster crowing causes the sun to rise. He noted further that many repetitions of 
the two events might be consistent with a hypothesi s about causation but do not prove 
it true. Bertrand Russell (1872-1970) continued the discussion of the limitations of 
inductive reasoning and referred to it as "the fallacy of affirming the consequent." (In 
this process, we might imply that if A is present, then B occurs; so if B occurs, A must 
have been present.) 

Deductive reasoning is the process of inferring that a general 'law of nature' exists 
and has application in a specific, or local, instance. The process starts with a hypothesis 
about a 'law of nature' and observations are then made in an attempt to either prove or 
refute that assumption. The greatest change in our thinking about causal in ferences in 
the past century has been attributed to Karl Popper who stated that scientific hypotheses 
can never be proven or evaluated as true, but evidence might suggest they are false. 
This philosophy is referred to as refutationism. Based on Popper's philosophy, a 
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scientist should not collect data to try and prove a hypothesi s (which Popper states is 
impossible anyway), but that scientists should try to disprove the theory; this can be 
accomplished with only one observation. Once a hypothesis has been disproven, the 
information gained can be used to develop a revised hypothesi s, which should once 
again be subjected to rigorous attempts to disprove it. Popper argues that, only by 
disproving hypotheses do we make any scientific progress. It is partially for this reason 
that, when conducting statistical analyses, we usually form our hypothesis in the null (ie 
that a factor is not associated with an outcome ) and, if our data are inconsistent with that 
hypothesis, we can accept the altemative that the factor is associated with the outcome. 
Thus, the current paradigm in deductive reasoning is to conjecture and then attempt to 
refute that conjecture. 

A major benefit of using Popper's approach is that it helps narrow the scope of 
epidemiologic studies instead of using a data-mining 'risk-factor' identification 
approach. It suggests that we carefully review what is already known and then 
formulate a very specific hypothesis that is testable with a reasonable amount of data. 
In the former approach, we often generate long, multipage questionnaires, whereas, in 
the latter, the required information is much more constrained and highly focused on 
refuting the hypothesis (Petitti, 1988). 

As noted, epidemiology is primarily based on inductive reasoning, but the deductive 
paradigm has played a large role in the development of the discipline. Epidemiologic 
investigations which start with a clear hypothesis are inevitably more focused and 
more likely to result in valid conclusions than those based on unfocused recording of 
observations. 

Two other important concepts that relate to scientific inference are worth noting. 
Thomas Bayes, a Presbyterian minister and mathematician, stated that "aH forms of 
inference are based on the validity of their premises" and that "no inference can be 
known with certainty" (1764). He noted that scientific observations do not exist in a 
vacuum, and that the information we have prior to making a series of observations will 
influence our interpretation ofthose observations. For example, numerous studies have 
shown that routine teat-end disinfection (after milking) can reduce the incidence of new 
intra-mammary infections in dairy cows. However, if a new study was conducted in 
which a higher rate of infections was found in cows that received teat-end disinfection, 
we would not automaticaIly abandon our previous ideas about teat-end disinfection. His 
work has given rise to a branch of statistics known as Bayesian analysis, some of which 
will appear later in this book. 

More recently, Thomas Kuhn (cited in Rothman and Greenland, 1998) reminds us that 
although one observation can disprove a hypothesis, the particular observation might 
have been anomalous and that the hypothesi s could rem ain true in many situations. 
Thus, often the scientific community will come to a decision about the usefulness, if 
not the truth, of a particular theory. This is the role of concensus in scientific thinking. 
While hard to justify on a philosophical basis, it plays a large role in shaping our current 
thinking about causes of disease. 
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Although philosophical debates on causal inference will undoubtedly continue (Robins, 
2001; White, 2001), as a summary of this section we note that ... "all of the fruits 
of scientific work, in epidemiology or other disciplines, are at be st only tentative 
formulations of a description of nature ... the tentativeness of our knowledge does not 
prevent practical applications, but it should keep us skeptical and critical" (Rothman 
and Greenland, 1998). 

While keeping these historical and philosophical bases in mind, we will now proceed to 
an outline of the key components of epidemiologic research. 

1.4 KEY COMPONENTS OF EPIDEMIOLOGIC RESEARCH 

Fig. 1.1 summarises key components of epidemiologic research. It is somewhat risky to 
attempt to simplify such acomplex discipline and present it in a single diagram, but we 
believe it is beneficial for the reader to have an overview of the process of evaluating 
associations between exposure and outcome as a guide to the rest of the book. 

Fig. 1.1 Key components of epidemiologic research 

OUTCOMES AND DATA ANALYSIS 

continuous /I dichotomous /I nominal /I count /I time to event 
ammas 

units of 

interest L:===e=r=s==~::,,­
areas c::::> causal inferences 
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Our rationale for doing research is to identify potentially causal associations between 
exposures and outcomes (the centre of the diagram). In many cases, the exposures 
are risk factors and the outcome is a disease of interest. However, this is not the only 
scenario; for example, our outcome of interest might be a measure of productivity or 
food safety and the exposures might include certain diseases. 

o Ultimately, we aim to make causal inferences (bottom right of diagram) and Chapter 
1 discusses some important concepts of causation as they relate to epidemiologic 
research. 

o Any study starts with an overall study design and the main observational study 
types are discussed in Chapters 7-10, with controlled tri al designs being presented 
in Chapter ll. 

o In any study, it is important to identify the target populatio n and obtain a study 
group from it in a manner that does not lead to selection bias. Sampling is discussed 
in Chapter 2 and selection bias in Chapter 12. 

o Once we have identified our study subjects, it is necessary to obtain data on 
exposure variables, extraneous variables and the outcome in a mannerthat does not 
lead to information bias (Chapter 12). Two important tools that are used in that 
process are questionnaires (Chapter 3) and diagnostic and screening tests 
(Chapter 5). 

o In order to start the process of establishing an association between exposure and 
outcome, we need to settle on a measure of disease frequency (Chapter 4) and select a 
measure of association (Chapter 6) that fits the context. In many cases, the study 
design will determine the measures that are appropriate. 

o Confounding bias is a major concern in observational studies, and the 
identification of factors that should be controlled as confounders is featured in 
Chapter 13. 

o With our data in hand, we are now able to begin to model relationships with the 
intent of estimating causal effects of exposure (Chapter 13). Individual chapters 
are dedicated to the analyses appropriate for outcomes that are continuous (Chapter 
14), dichotomous (Chapter 16), nominal/ordinal (Chapter 17), count (Chapter 18) 
and time-to-event data (Chapter 19). Chapter 15 presents some general guide lines 
on model-building techniques that are applicable to ali types of model. 

o In veterinary epidemiologic research, we often encounter clustered or correlated 
data and these present major challenges in their analyses. Chapter 20 introduces these 
while Chapters 21 and 22 focus on mixed (random effects) model s for 
continuous and discrete outcomes. Chapter 23 presents some alternative methods 
of analysis for dealing with clustered data. 

o Structured reviews and assessments of the literature in the form of meta-analyses 
are becoming increasingly important and are introduced in Chapter 24. 

o Not ali studies allow us to collect data on exposures and outcomes at the individual 
level and yet there is much that we can learn by studying disease in groups (eg 
herds). Thus, ecologic studies are introduced in Chapter 25. 

o Finally, we complete the text with Chapter 26 which provides a 'road map' for 
investigators starting into the analysis of acomplex epidemiologic dataset. 

With this background, it is time to delve deeper into this discipline called epidemiology. 
And, at the outset it is important to stress that epidemiology is first and foremost a 
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biological discipline, but one which relies heavily on quantitative (statistical) methods. 
It is the integration of these two facets, with a clear understanding of epidemiologic 
principles which makes for successful epidemiologic research. As Rothman and 
Greenland (1998) point out: 

Being either a physician (veterinarian) or a statistician, or ev en both is 
neither a necessary nor sufficient qualification for being an epidemiologist. 
What is necessary is an understanding of the principles of epidemiologic 
research and the experience to apply them. 

To help meet this goal, this book is divided roughly equally into chapters dealing with 
epidemiologic principles and those dealing with quantitative methods. 

1.5 SEEKING CAUSES 

As already noted, a major goal for epidemiologic research is to identify factors that 
can be manipulated to maximise he alth or prevent disease. In other words, we need to 
identify causes ofhealth and disease. That might se em Iike a simple enough task, but it 
is, in fact, complex (that is why we wrote much of this text). Here we want to focus on 
what a cause is and how we might best make decisions about whether a factor is a cause. 
For our purposes, a cause is any factor that produces a change in the severity or 
frequency ofthe outcome. Some prefer to separate biological causes (those operating 
within individual animals) from population causes (those operating at or beyond the 
level of the individual). For example, aspecific microorganism could be viewed as 
a biological cause of disease within individuals, whereas management, housing or 
other factors that act at the herd (or group) level - or beyond (eg weather) - and affect 
whether or not an individual is exposed to the microorganism, or affect the animai 's 
susceptibility to the effects of exposure, would be deemed as population causes. 

In searching for causes, we stress the holistic approach to health. The term holistic 
might suggest that we try to identify and measure every suspected causal factor for 
the outcome of interest. Yet, quite clearly, we cannot consider every possible factor in 
a single study. Rather, we place limits on the portion of the 'real world' we study and, 
within this, we constrain the list offactors we identify for investigation. Usually, extant 
knowledge and current belief are the bases for selecting factors for study. Because of 
this, hav ing a concept of causation and a causal model in mind can help clarify the data 
needed, the key measures of disease frequency and the interpretation of associations 
between exposure and disease. 

1.5.1 CounterfactuaI observations and causation 

In field experiments and in observational studies, it is vital that the comparison group, 
comprised of the non-treated (or non-exposed) subjects, is as similar as possible to 
the treated (or exposed) group s with respect to factors that could affect the outcome. 
In this regard, the perfect comparison group would be the sam e treated (or exposed) 
individuals if they had not been treated (or exposed). This is call ed the counterfactuaI 
group. By comparing the frequency of the outcome in these two perfectly similar 
groups, we would obtain the 'true' causal effect of the treatment or exposure. Obviously, 
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this counterfactual group does not exist so we use the be st practical alternatives. 
Randomisation helps achieve this in field experiments and statistical control and/or 
study-design methods attempt to achieve this in observational studies. However, 
neither is guaranteed to achieve the goal and so care must be taken when interpreting 
the results of field trials and observational studies due to potential differences in the 
groups that could bias the outcome. 

1.5.2 Experimental versus observational evidence 

Experimental evidence 
Traditionally, the gold standard approach to identifying causal factors is to perform 
an experiment. In the ideal experiment, we randomise some animals (or other units 
of concem) to receive the factor and some to receive nothing, a placebo, or a standard 
intervention (treatment). In this context, exposure X is a proven cause of outcome Y, 
if in an ideal experiment X is changed and, as a result, the value or state of Y also 
changes. ln this ideal experiment, X explicitly precedes Y temporally and an variables 
(known and unknown) that do not intervene between X and Y are made independent 
of X through the process ofrandomisation (this means that extraneous variables do not 
confound or bias the results we attribute to the exposure X). Factors that are positioned 
temporally or causally between X and Y are not measured and are of no concem with 
respect to answering the causal objective of the trial. 

The measure of causation in this ideal trial is called the causal effect coefficient and 
indicates the difference in the outcome between the 'treated' and 'non-treated' groups 
(ie those with different levels offactor X). For example, if the risk ofthe outcome in the 
group receiving the treatment is denoted R l and the risk in the group not receiving the 
treatment is Ro, then we might choose to measure the effect oftreatment using either an 
absolute measure (ie risk difference - RD) or a relative measure (ie risk ratio - RR) as 
shown in Chapter 6. If this difference is greater than what could be attributed to chance, 
then we would say that we have proved that the factor is a cause of the outcome event. A 
key point is that all causal-effect statements are based on contrasts oftreatment levels; 
the outcome in the treated group cannot be interpreted without knowing the outcome in 
the untreated group. A sec ond key feature is exchangeability; that is the same outcome 
would be observed (except for sampling error) if the assignments oftreatment to study 
subjects had been reverse d (ie if the treated group had been assigned to be untreated). 
Randomisation provides the probabilistic basis for the validity of this assumption. 

Observational evidence 
ln observational studies, we estimate the difference in values of Y between units that 
happen to have different values ofX. We do not control whether a subject is, or is not, 
exposed. Variables related to both X and Y and which do not intervene between X and Y, 
can be controlled analytically or through matching or restricted sampling (see Chapter 
13). The appropriate measure of association (eg a risk ratio or regression coefficient) 
reftecting the difference in the value of Y between the 'exposed' and 'non-exposed' 
groups can be used to obtain a reasonable estimate of the causal-effect coefficient that 
would be obtained in the ideal experiment. The major differences between observational 
studies and field experiments lie in the ability to prevent selection, misclassification 
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and confounding bias, and dealing with the impact of unknown or unmeasured factors. 
Thus, by themselves, observational studies produce measures of association but cannot 
'prove' causation. Nonetheless, in the ideal observational study, with total control of 
bias, the measure of association will estimate the causal-effect coefficient. 

However, experimental evidence is deemed to provide more solid evidence of causality 
as, in reality, 'To find out what happens to a system when you interfere with it, you have 
to interfere with it (not just passively observe it)." 

(Attributed to Box, 1966, in Snedecor and Cochran, 1989) 

Limits of experimental study evidence 
Despite their advantages, performing perfect experiments is not easy even at the 
best of times (see Chapter ll) and, in fact, many potential causal factors of interest 
to epidemiologists would be difficult to study us ing a controlled trial format. For 
example, it would be impossible to perform the perfect experiment to answer the 
question of whether or not badgers that are infected with M bovis cause tuberculosis 
in cattle. Laboratory studies are useful to demonstrate what can happen when animals 
are exposed to a specitic exposure (eg that factor A can cause outcome B), but, if the 
circumstances are too contrived (very large dose, challenge by an unnatural route, 
limited range of cofactors), laboratory results might not be much help in deci ding the 
issue of causation under normal, everyday conditions. For example, we could conduct 
an experiment in which cattle and infected badgers are maintained within a confined 
enclosure and assess whether or not the cattle became infected. If they did, this would 
demonstrate that infected badgers can cause infection in cattle, but not the extent of the 
problem in the tieid. 

In tieid tri als that are subject to non-compliance, we often have to decide how to 
manage the non-compliance in assessing the role of the treatment on the outcome 
(Heitjan, 1999) and, although any given tieid tri al might provide more valid evidence 
for or against causation than any given observational study, it is not uncommon for 
differences in results to exist among apparently similar field trials. Hence, the ability 
to make perfect inferences based on field trials is illusionary and, in many instances, 
it is impossible to carry out experiments under conditions that even remotely resemble 
'real-world' conditions. 

1.6 MODELS OF CAUSATION 

Given our belief in multiple causes of an effect and multiple effects of a spec ifi c cause, 
epidemiologists have sought to develop conceptual model s of causation; we describe 
the two major models in sections 1.7 and 1.8. Usually, however, the actual causal model 
is unknown and the statistical measures of association we use reffect, but do not explain, 
the number of ways in which the exposure might cause disease. Furthermore, although 
our main interest in a particular study might focus on one exposure factor, we need 
to take into account the effects of other causes of the outcome that are related to the 
exposure (this process is usually referred to as control or controlling the effects) ifwe 
are to learn the 'truth' about the potential causal effect of our exposure of interest. 
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Because our inferences about causation are based, at least in the main, on the observed 
difference in outcome frequency or severity between exposed and unexposed subjects, 
we will continue our discussion by examining the relationship between a postulated 
causal model and the resultant, ob serve d, outcome frequencies. The two major 
conceptual model s are the component-cause and the causal-web model s of causation. 

1. 7 COMPONENT-CAUSE MODEL 

The component-cause model is based on the concepts ofnecessary and sufficient causes 
(Rothman, 1976). A necessary cause is one without which the disease cannot occur (ie 
the factor will always be present if the disease occurs). In contrast, a sufficient cause 
always produces the disease (ie if the factor is present, the disease invariably follows). 
However, both experience and formai research have indicated that very few exposures 
(factors) are sufficient in and of themselves, rather different groupings of factors can 
combine and become sufficient causes. Thus, a component cause is one of a number of 
factors that, in combination, constitute a sufficient cause. The factors might be present 
concomitantly or they might follow one another in a chain of events. In tum, when there 
are a number of chains with one or more factors in common, we can conceptualise the 
web of causal chains (ie a causal web). This concept will be explained further under the 
causal-web model (section 1.8). 

As an example of component causes, in Table 1.1 we portray the causal relationships of 
four risk factors for bovine respiratory disease (BRD). These include: 

a bacterium, namely Mannheimia hemolytica (Mh) 
a virus, namely the bovine respiratory syncytial virus (BRSV) 
a set of stressors such as weaning, transport, or inclement weather 
other bacteria such as Hemophilus somnus (Hs). 

Table 1.1 Four hypothetical sufficient causes of bovine respiratory disease 

Component causes 

Mh 

BRSV 

Stressors 

Other organisms (eg Hs) 

+ 

+ 

Sufficient causes 

II III IV 

+ 

+ 

+ + + 

+ 

In this portrayal, there are four sufficient causes, each one containing two specific 
components; we assume that the four different two-factor combinations each form a 
sufficient cause. Hence, whenever these combinations occur in the same animai, clinical 
respiratory disease occurs (as mentioned, one can conceive that these factors might 
not need to be present concomitantly, they could be sequential exposures in agiven 
animai). Some animals could have more than two causal factors (eg Mh, BRSV, Hs) but 
the presence of any of the two-factor combinations shown will be sufficient to produce 
BRD. Note that we have indicated that only some specific two-factor combinations act 
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as sufficient causes; Mh is a component of two of the sufficient causes, as is BRSV. 
Because no factor is included in aH sufficient causes, there is no necessary cause in our 
model ofBRD. Obvious ly, if you have not guessed by now, you should be aware that 
the number of causal factors and their arrangement into sufficient causes are purely for 
the pedagogical purposes of this example. 

Now, against this backdrop of causal factors, we will assume that we plan to measure 
only the Mh and BRSV components (ie obtain nasal swabs for culture and/or blood 
samples for antibody titres). Nonetheless, we are aware that, aithough unmeasured, 
the other components (stressors and/or Hs) might be operating as components of one 
or more of the sufficient causes. In terms of the two measured factors, we ob serve that 
some cattle with BRD will have both factors, some will have only Mh and some only 
the BRSV components. Because of the causal effects of the other unmeasured factors 
(stressors and Hs), there will be some animals with BRD that have neither ofthese two 
measured factors (eg BRD due to sufficient cause IV). 

One of the benefits of thinking about causation in this manner is that it helps us 
understand how the prevalence of a cofactor can impact on the strength of association 
between the exposure factor and the outcome of interest (Pearce, 1989). For example, 
assume that we are interested principaHy in the strength of association between 
infection with Mh and the occurrence ofBRD (the various measures of association are 
explained in Chapter 6). According to our example in Table 1.1, Mh produces disease 
when present with BRSV, but also without BRSV when combined with 'stressors'. 
What might not be apparent however, is that changes in the prevalence of the virus, or 
of the stressors, or Hs can change the strength of association between Mh and BRD. 
These shared component causes that make up a sufficient cause are known as causal 
complements. To demonstrate this point, note the two populations in Examples 1.1 
and 1.2. 

1.7.1 The effect ofthe causal complement prevalence on disease risk 

This example is based on the component cause model shown in Table 1.1 using three 
factors: Mh, BRSV and stressors. The frequency of each factor indicated above the 
body of the tables in Examples 1.1 and 1.2 is the same (p(stressors)=O.4 and p(Mh)=0.6) 
except that the frequency of BRSV is increased from 30% in Example 1.1 to 70% in 
Example 1.2. All three factors are distributed independently of each other; this is not 
likely true in the field, but it allows us to examine the effect of single factors without 
conceming ourselves with the biasing effects of the other factors. 

If infection with Mh is our exposure factor of interest, it would be apparent that some 
but not all cattle with Mh develop BRD and that some cattle without Mh also develop 
BRD. Thus, Mh infection by itselfis neither a necessary nor sufficient cause ofBRD. 
Similarly for BRSV, some infected cattle develop BRD, some non-infected cattle als o 
develop BRD. In order to ascertain if the occurrence of BRD is associated with Mh 
exposure, we need to measure and contrast the risk of BRD among the exposed (Mh+) 
versus the non-exposed (Mh-). In Example 1.1, these frequencies are 58% and 12%, 
and we can express the proportions relative to one another us ing a statistic called the 
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Example 1.1 Causal complement prevalence and disease risk - Part l 

The number and risk of BRD cases by two measured and one unknown exposures assuming 
joint exposure to any two factors is sufficient to cause the disease are shown below. 
Mannheimia hemolytica (Mh) is the exposure of interest (total population size is lD,OOO; 
p(stressors)=O.4; p(Mh)=0.6). 

p(BRSV=0.3) 

Unmeasured 
stressors 

o 
O 

O 

O 

Measured factors 

BRSV 

o 
O 

1 

O 

O 

Mh 

1 

O 

1 

O 

o 
1 

O 

Risk of disease among the Mh+ 3480/6000=0.58 

Risk of disease among the Mh- 480/4000=0.12 

Risk difference if Mh+ 0.58-0.12=0.46 

Risk ratio if Mh+ 0.58/0.12=4.83 

Population Number 
number diseased 

720 720 

480 480 

1680 1680 

1120 O 

1080 1080 

720 O 

2520 O 

1680 O 

15 

risk ratio which is 58/12=4.83. This means that the frequency of BRD is 4.83 times 
higher in Mh+ cattle than in Mh- cattle. We could als o measure the association between 
Mh and BRD us ing a risk difference; in this instance, the RD is 0.46 or 46%. These 
measures are consistent with Mh being a cause of BRD, but do not prove the causal 
association. In Example 1.2, when the frequency of BRSV is increased, the relative 
risk for Mh+ cattle is 2.93 and the RD is 0.54 or 54%. Thus, we might be tempted to 
think that exposure to Mh+ in some sense acts differently from a causal perspective in 
one example to another, yet the underlying causal relationship of Mh exposure to the 
occurrence ofBRD has not changed. The difference is due to a change in the frequency 
of the other components of the sufficient causes, namely BRSV. The other components 
that can form sufficient causes are called the causal complement to the exposure 
factor. Here with sets of two factors being sufficient causes, the causal complements 
ofMh are BRSV or stressors but not both (the latter cattle would have developed BRD 
from being stressed and having BRSV). 

In general, we might note that when the prevalence of causal complements is high, 
measures of association between the factor of interest and the outcome that are based 
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Example 1.2 Causal complement prevalence and disease risk - Part 2 

The number and risk of BRD cases by two measured and one unknown exposures assuming 
joint exposure to any two factors is sufficient to cause the disease are shown below. 
Mannheimia hemolytica (Mh) is the exposure of interest. 

p(BRSV)=0.7 

Measured factors 

Unmeasured Population Number 
stressors BRSV Mh number diseased 

1 1680 1680 

O 1120 1120 

O 1 720 720 

O O 480 O 

O 1 2520 2520 

O O 1680 O 

O O 1080 O 

O O O 720 O 

Risk of disease among the Mh+ 4920/6000=0.82 

Risk of disease among the Mh- 1120/4000=0.28 

Risk difference if Mh+ 0.82-0.28=0.54 

Risk ratio if Mh+ 0.82/0.28=2.93 

on risk differences will be increased (especially when the prevalence of exposure is 
low). Some, but not alI, ratio or relative measures of association could have the opposite 
relationship with the prevalence of causal complements. In any event, although the 
causal mechanism remains constant, the strength of association will vary depending 
on the distribution of the cofactors, many of which we do not know about or remain 
unmeasured for practical reasons. As will be discussed, strength of association is one 
criterion of causation but it is not a fixed measure and we need to bear the phenomenon 
just discussed in mind when making causal inferences. 

You might verify that the impact of BRSV on BRD as measured by the risk ratio 
would be the same (RR=3.2) in both Examples 1.1 and 1.2 even though its prevalence 
has changed. Although this is only one example, we could state the general rule that 
the strength of association for a given factor depends on the frequency of the causal 
complements but, providing the distribution of the other causal factors is fixed, changes 
in the prevalence of the factor of interest do not alter its strength of association with 
the outcome. 
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lfwe could measure ali the cofactors inc1uding stressors and the other causal component 
factors, the picture would change considerably. For example, if the stressors were the 
only other causes of BRD, it would be obvious that, in the non-stressed animals, BRD 
occurred only when both Mh and BRSV were present together. This would be c1ear 
evidence of biological synergism, a feature that is detected numerically as statistical 
interaction (ie the joint effect ofthe two factors would be different than the sum oftheir 
individual effects - in this instance, they would have no 'individual' effect, only ajoint 
effect). In stressed cattle, ali animals exposed to Mh or BRSV would get BRD but there 
would be no evidence ofinteraction because 100% of singly, as weil as jointly, exposed 
stressed cattle would develop BRD. 

Because changes in the prevalence of the 'unknown' or 'unmeasured' factor(s) will 
alter the magnitude of effect for the measured exposure, we need to think of measures 
of association as 'population specific.' Only after several studies have found a similar 
magnitude of effect in different populations should we begin to think of the effect as 
in some sense a biological constant. Further, even if the cases have arisen from an 
assumed model that incorporates biological synergism, because of the distribution of 
the unknown causal factors, interaction (indicating synergism) might not be evident in 
the ob serve d data. 

1.7.2 The importance of causal factors 

Using the concepts of necessary and sufficient causes, we also gain a better 
understanding ofhow much disease in the population is attributable to that exposure (or 
altematively the proportion of disease that we could prevent by completely removing 
the exposure factor). 

As explained in Chapter 6, this is called the population attributable fraction (AFp). 
For example, ifwe assume that the prevalence of each ofthe four sufficient causes from 
Table 1.1 is as shown in Table 1.2, then, if we examine the amount of disease that can 
be attributed to each of the component causes, we see that we can explain more than 
100% of the disease. Of course, we really haven 't, it is simply because the components 
are involved in more than one sufficient cause and we are double-counting the role that 
each component cause plays as a cause of the disease. 

Table 1.2 Hypothetical sufficient causes of bovine respiratory disease and their 
relationship to population attributable fraction 

Sufficient causes 

Component causes II III IV AFp (%) 

Mh + + 75 

BRSV + + 60 

Stressors + + + 55 

Hs + 10 

Prevalence of 
sufficient cause (%) 45 30 15 10 
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Another important observation is that, when two or more factors are both essential 
for disease occurrence, it is difficult to attribute a specific proportion of the disease 
occurrence to any single causal factor. For example, in cattle that had all three factors 
- Mh, BRSV and stressors - it would be impossible to decide the unique importance of 
each factor. Our model indicates that once any two of the three were present, then BRD 
would occur and the presence of the third factor is of no importance causally; thus, as 
the saying goes 'timing is everything'. Certainly, because the frequency of cofactors 
can vary from subgroup to subgroup, as with relative risk measures, one should not 
think of AFp as being a 'universal ' measure of importance. 

1.8 CAUSAL-WEB MODEL 

A sec ond way of conceptualising how multiple factors can combine to cause disease 
is through a causal web consisting of indirect and direct causes. This concept is 
based on a series of interconnected causal chains or web structures; it takes the factors 
portrayed in the sufficient-cause approach and links them temporally. For a direct 
cause, there must be no known intervening variable between that factor and the disease 
(diagrammatically, the exposure is adjacent to the outcome). Direct causes are often the 
proximal causes emphasised in therapy, su ch as specific microorganisms or toxins. In 
contrast, an indirect cause is one in which the effects of the exposure on the outcome 
are mediated through one or more intervening variables. It is important to recognise 
that, in terms of disease control, direct causes are no more valuable than indirect causes. 
In fact, many large-scale control efforts are based on manipulating indirect rather than 
direct causes. Historically, this was also true: whether it was John Snow's work on 
cholera control through improved water supply, or Frederick Kilbome's efforts to 
prevent Texas Fever in American cattle by focusing on tick control. In both instances, 
disease control was possible before the actual direct causes (Vibrio cholerae and 
Babesia bigemina) were known, and the control programme was not focused directly 
on the proximal cause. 

One possible web of causation of respiratory disease (BRD) based on the three factors 
in Examples 1.1 and 1.2 might have the structure shown in Example 1.3. The causal­
web model complements the component-cause model but there is no direct equivalence 
between them. As we show later, causal-web diagrams are very useful to guide our 
analyses and interpretation of data. 

The model indicates that stressors make the animai susceptible to Mh and BRSV, that 
BRSV increases the susceptibility to Mh and that BRSV can 'cause' BRD directly (this 
might be known to be true, or it might reffect the lack of knowledge about the existence 
of an intervening factor such as Hs which is missing from the causal model). Finally it 
indicates that Mh is a direct cause ofBRD. If this causal model is true, it suggests that 
we could reduce BRD occurrence by rem ov ing an indirect cause such as stress, even 
though it has no direct effect on BRD. We could also control BRD by preventing the 
action of the direct causes Mh and BRSV (eg by vaccination, or prophylactic treatment 
with antimicrobials - we are not suggesting that you do this!). As mentioned, this 
model claims that stressors do not cause BRD without Mh or BRSV infection and thus 
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Example 1.3 Causal web 

A causal-web model of BRD based on component causes from Example 1.1. 

Stressors '-...... 

~ ~Mh 
~/~BRD 

BRSV/ 

suggests a number oftwo- or three-factor groupings of component causes into sufficient 
causes. However, it does not explicitly indicate whether some of the proximal causes 
can produce disease in and of themselves (ie it is not apparent whether BRSV can 
cause BRD by itself or if it needs an additional unmeasured factor). From the previous 
examples, the outcome frequencies in BRSV-infected and non-infected cattle will 
depend on the distribution of the other component causes and whether, in reality, it can 
be a sufficient cause by itself. For now, we will discuss the relationship of the causal 
structure to the results of our analyses. 

With a number of possible causal variables, the cause-and-effect relationship s are best 
shown in a causal diagram (also call ed directed acyclic graphs, or modified path 
models). To construct a causal diagram, we begin by imposing a plausible biological 
causal structure on the set ofvariables we plan to investigate and translate this structure 
into graphical form that explains Ouf hypothesi sed and known relationships among the 
variables. The causal-ordering assumption is usually based on known time-sequence 
and/or plausibility considerations. For example, it might be known that one variable 
precedes another temporally, or current knowledge and/or common sense might suggest 
that it is possible for one factor to cause another but not vice-versa. 

1.9 CONSTRUCTING A CAUSAL DIAGRAM 

The easiest way to construct the causal diagram is to begin at the left with variables that 
are pre-determined and progress to the right, listing the variables in their causalorder. 
The variation ofthese variables (those to the extreme left such as AGE in Example lA) 
is considered to be due to factors outside of the model. The remaining variables are 
placed in the diagram in their presumed causalorder; variables to the left could 'cause' 
the state of variables to their right to change. If it is known or strongly believed that a 
variable does not cause a change in one or more variables to its right, then no causal 
arrow should be drawn between them. If the proposed model is correct, the analyses 
will not only be more informative but also more powerful than analyses that ignore the 
underlying structure. The only causal model s to be described here are called recursive; 
that is, there are no causal feedback loops (if these are believed to exist, they can be 
formulated as a series of causal structures). A causal diagram of factors relating to 
fertility in dairy cows is shown in Example lA. 
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Example 1.4 A causal diagram of factors affecting fertility in cows 

AGE 

\~ FERTllITY 

RETP~i / 

~METRITIS 
RETPLA = retained placenta 
aVAR = cystic ovarian disease 

Suppose the model is postulated to explain biological relationships among reproductive 
diseases. AGE is assumed to be a direct cause of retained placenta (RETPLA), 
cystic ovarian disease (OVAR) and FERTILITY but not METRITIS. RETPLA is 
the exposure variable of interest. METRITIS and OV AR are intervening variables 
between RETPLA and the outcome of interest FERTILITY. We will assume that our 
objective is to estimate the causal effect of RETPLA on FERTILlTY based on the 
association between these two variables. Note It is the causal effect coefficient that we 
are interested in estimating. 

The model indicates that AGE can cause changes in FERTILlTY directly but also 
by a series of pathways involving one or more of the three reproductive diseases. It 
also indicates that AGE is not a direct cause of metritis. In terms of understanding 
relationships imp lied by the causal diagram, the easiest way to explain them is to think 
of getting (perhaps driving?) from an exposure variable (eg RETPLA) to a subsequent 
variable (eg FERTILITY). As we pass through other variables following the arrows, 
we trace out a causal path. The rule for tracing out causal pathways is that you can start 
backwards from any variable but once you start forward on the arrows you can not back 
up. Paths which start backwards from a variable are spurious causal paths and reffect 
the impact of confounders. In displaying the relationships, if there are variables that we 
believe are correlated because of an unknown or unmeasured common cause, we use 
a line to indicate this, and you can travel in either direction between these variables. If 
two variables are adjacent (connected by a single direct arrow), their causal relationship 
is deemed to be directly causal. Paths which start forward from one variable and pass 
through intervening variables are deemed to be indirect causal paths (eg RETPLA can 
cause fertility changes through its effect on OVAR, but not directly). The combined 
effects through indirect and direct paths represent the total effect of the variable. 

Okay, so, how does this help us? Well, in order to estimate the causal-effect coefficient, 
we must prevent any spurious effects, so the variables preceding an exposure factor 
of interest (RETPLA) that have arrows pointing toward it (ie from AGE) and through 
which FERTILITY (the outcome) can be reached on a path must be controlled. In this 
instance, that variable is AGE. The model also asserts that we do not control intervening 
variables so METRITIS and OV AR are not placed in the analytic model when.estimating 
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the causal effect. Ifwe assume that there are no other confounders that are missing from 
the model, our analyses will estimate the causal effect of RETPLA on FERTILITY. 
(This also assumes the statistical model is correct, but that is another story.) 

We should note that if we did control for METRITIS and OVAR in this model, we 
would not obtain the correct esti mate of causal effect. Rather, we would only obtain the 
direct effect of RETPLA on FERTILITY if that direct effect existed. This feature will 
be discussed again when regression models (eg Chapter 14) are described as this is a 
major reason why we can inadvertently break down a causal web. In the causal diagram 
used here, we explicitly assume there is no direct causal relationship between them 
(so this would be an inappropriate analysis for this reason also). RETPLA can impact 
on FERTILITY indirectly through the diseases METRITIS and/or OVAR; controlling 
these variables blocks these indirect pathways. Thus, only by excluding METRITIS 
and OV AR can we obtain the correct causal-effect estimate. 

1.10 CAUSAL CRITERIA 

Given that researchers will continue to make advances in identifying potential causes of 
disease using observational study techniques, a number of workers have proposed a set 
of causal guidelines (these seek to bring uniform it y to decisions about causation (Evans, 
1978)). Others suggest that we view these as a set of values and accept that different 
individuals might view the same facts differently (Poole, 2001). Hill (1965) proposed 
a list of criteria for making valid causal inferences (not ali of which had to be fully met 
in every instance). They include: time sequence, strength of association, dose-response, 
plausibility, consistency, specificity, analogy and experimental evidence. Today, we 
might add evidence from meta-analysis to this list. Over the years, the first fOUf ofthese 
have apparently dominated our inference-making efforts (Weed, 2000) and recently, 
researchers have investigated how we use these and other criteria for making inferences 
(Waldmann and Hagmayer, 2001). In one study, a group of 135 epidemiologists were 
given a variety ofrealistic but contrived examples and varying amounts of information 
about each scenario. At the end of the exercise, they had agreed on causal inferences 
in only 66% of the examples. This stresses the individuality of interpreting the same 
evidence. Because we believe a set of criteria for causal inferences is a useful aid to 
decision-making, we will briefly comment on Hill's list of items and give our view of 
their role in causal inference (Holman et al, 2001). 

At the outset, we must be clear about the context for inferring causation. As Rose 
(1985) stated, it is important to ask whether we are trying to identify causes of 
disease in individuals or causes of disease in populations. Indeed, with the expansion 
of molecular studies, the appropriate level at which to make causal inferences, and 
whether such inferences are valid across different levels of organisation remains open 
to debate. However, clear decisions about the appropriate level to use (think back to 
the objectives when choosing this) will guide the study design as well as our inferences 
about causation. 
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The following set of criteria for causation can be applied at any level of organisation. 
The criteria are based on individual judgement, not a set of defined rules. 

1.10.1 Study design and statistical issues 

As will be evident after delving into study design (Chapters 7-10), some designs are 
less open to bias than others. For example, case-control studies are often assumed to 
be subject to more bias than cohort studies. However, much of this criticism is based 
on case-control studies using hospital or registry databases. We think it important 
that every study be assessed on its own meríts and we need to be aware of selection, 
misc1assification and confounding bias in all study designs. 

Most often we do not make inferences about causation unless there is a statistically 
significant association between the exposure and the outcome (and one that is not likely 
to be explained by one or more of the previous biases). Certainly, if the differences 
observed in a well-designed study have P-values above OA, this would not provide 
any support for a causal relationship. However, beyond extremes in large P-values, 
statistical significance should not play a pivotal role in assessing causal relationships. 
Like other researchers, we suggest an effect-estimation approach based on confidence 
limits as opposed to a hypothesis-testing approach. Despite this, recent research 
indicates that P-values continue to be used frequently to guide causal inferences: 
P-values of 0.04 are assumed to be consistent with causal associations and P-values of 
0.06 inconsistent. At the very least, this is an overemphasis of the role of assessing 
sampling variability vis-a-vis a causal association and is not a recommended practice. 

1.10.2 Time sequence 

While a cause must precede its effect, demonstrating this fact provides only weak 
support for causation. Further, the same factor could occur after disease in some 
individuals and this would not disprove causation except in these specific instances. 
Many times it is not c1ear which carne first; for example, did the viral infection 
precede or follow respiratory disease? This becomes a greater problem when we must 
use surrogate measures of exposure (eg antibody titre to indicate rece nt exposure). 
Nonetheless, we would like to be able to demonstrate that an exposure preceded the 
effect or at least develop a rational argument for believing that it did - sometimes these 
arguments are based large ly on plausibility (ie which time sequence is more plausible) 
rather than on demonstrable facts. 

1.10.3 Strength of association 

This is usually measured by ratio measures such as risk ratio or odds ratio but could 
also be measured by risk or rate differences. The belief in larger (stronger) associations 
being causal appears to relate to how likely it is that unknown or residual confounding 
might have produced this effect. However, because the strength of the association also 
depends on the distribution of other components of a sufficient cause, an association 
should not be discounted merely because it is weak. Also, when studying diseases with 



INTRODUCTION AND CAUSAL CONCEPTS 23 

very high frequency, risk ratio measures of association will tend to be weaker than with 
less common diseases. 

1.10.4 Dose-response relationship 

If we had a continuous, or ord inal, exposure variable and the risk of disease increased 
directly with the level of exposure, then this evidence supports causation as it tends to 
reduce the likelihood of confounding and is consistent with biological expectations. 
However, in some instances, there might be a cutpoint of exposure such that nothing 
happens until a threshold exposure is reached and there is no further increase in frequency 
at higher levels of exposure. These circumstances require considerable knowledge 
about the causal structures for valid inferences. Because certain physiological factors 
can function to stimulate production of hormones or enzymes at low doses and yet 
act to reduce production of these at higher levels, one should not be too dogmatic in 
demanding monotonic relationships. 

1.10.5 Coherence or plausibility 

The essence of this criterion is that if an association is biologically sensible, it is more 
likely causal than one that isn't. However, be carefui with this line of reasoning. A 
number of fundamentally important causal inferences have proved to be valid although 
initially they were dismissed because they did not fit with the current paradigm 
of disease causation. As an example, when we found out that feedlot owners who 
vaccinated their calves on arrival subsequently had more respiratory disease in their 
calves than those who didn 't, we didn 't believe it - it didn 't make sense. However, after 
more research and a thorough literature search in which we found the same relationship, 
we were convinced it was true. The problem likely related to stressing already stressed 
calves which made them more susceptible to a battery of infectious organisms. 

Coherence requires that the observed association is explicable in terms of what we 
know about disease mechanisms. However, our knowledge is a dynamic state and 
ranges ali the way from the ob serve d association being assessed as 'reasonable' 
(without any biological supporting evidence) to requiring that 'ali the facts be known' 
(a virtually nonexistent state currently). Postulating a biological mechanism to explain 
an association after the fact is deemed to be insufficient for causal inferences unless 
there is some additional evidence supporting the existence of that mechanism (Weed 
and Hursting, 1998). 

1.10.6 Consistency 

If the same association is found in different studies by different workers, this gives 
support to causality. This was a major factor in leading us to believe that the detrimental 
effects ofrespiratory vaccines on arrival at feedlots were inde ed causa\. Not only were 
our studies consistent but there were numerous examples in the literature indicating 
(or suggesting) potential negative effects of the practice. Our beliefs were further 
strengthened by publications from experimental work that indicated a plausible 
explanation for the detrimental effects. 
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Lack of consistency doesn't mean that we should ignore the results of the first study on 
a subject, but we should temper oUf interpretation ofthe results until they are repeated. 
This would prevent a lot offalse positive scares in both human and veterinary medicine. 
The same approach might be applied to the results of field trials and, because there is 
less concem over confounding, we might not need to be as strict. Recent research has 
indicated that, in human medicine, once 12 studi es have reached the same essential 
conclusion, further studies reaching the same conclusion are given little additional 
weight in making causal inferences (Holman et al, 2001). 

Meta-analysis combines results from a number of studies on a spec ifi c exposure 
factor in a rigorous, weIl-defined manner (Weed, 2000) and consequently helps with 
the evolution of consistency. Evidence for or against a hypothesis can be obtained as 
opposed to dichotomising study results into those that support a hypothesis and those 
that do not. In addition, explanation of the methods used in meta-analysis tends to 
provide a clearer picture of the reviewer's criteria for causation than many qualitative 
reviews (se e Chapter 24). 

1.10.7 Specificity of association 

Based on rigid criteria for causation such as Henle-Koch's postulates, it used to be 
thought that, if a factor was associated with only one disease, it was more likely causal 
than a factor that was associated with numerous disease outcomes. We do not believe 
this now and specificity, or the lack thereof, has no valid role in assessing causation -
the numerous effects of smoking (heart, lungs, infant birth weight, infant intelligence) 
and the numerous causes for each of these outcomes should be proof enough on this 
point. 

1.10.8 Analogy 

This is not a very important criterion for assessing causation, although there are 
examples of its being used to good purpose. This approach tends to be used to infer 
relationships in cases of human diseases based on experimental results in other animaI 
species. Today, many ofus have inventive minds and explanations can be developed for 
alm ost any observation, so this criterion is not particularly useful to help differentiate 
between causal and non-causal associations. 

1.10.9 Experimental evidence 

This criterion perhaps relates partly to biological plausibility and partly to the 
additional control that is exerted in weIl-designed experiments. We tend to place more 
importance on experimental evidence if the same target species is used and the routes 
of challenge, or nature of the treatment are in line with what one might expect under 
field conditions. Experimental evidence from other species in more contrived settings 
is given less weight in oUf assessment of causation. Indeed, the experimental approach 
is just another way to test the hypothesis, so this is not reaIly a distinct criterion for 
causation in its own right. 
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2 

SAMPLING 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Select a random, simple, systematic, stratified, cluster or multistage sample 
- given the necessary elements. 

2. Recognise the advantages and disadvantages of each sampling method. 

3. Select the appropriate sampling strategy for a particular situation, taking into 
account the requirements, advantages and disadvantages of each method. 

4. List the elements that determine the sample size required to achieve a particular 
objective and be able to explain the effect of each upon the sample-size 
determination. 

5. Compute required sample sizes for common analytic objectives. 

6. Understand the implications of complex sampling plans on analytic procedures. 

7. Select a sample appropriately to detect or rule out the presence of disease in a 
group of animals. 
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2.1 INTRODUCTION 

2.1.1 Census vs sample 

For the purposes of this chapter, we will assume that data are required for alI individuals 
(animals, herds etc), or a subset thereof, in a population. The process of obtaining the 
data will be referred to as measurement. 

In a census, every animaI in the population is evaluated. In a sample, data are only 
collected from a sub set of the population. Taking measurements or collecting data 
on a sample of the population is more convenient than collecting data on the entire 
population. In a census, the only source of error is the measurement itself. However, 
even a census can be viewed as a sample because it represents the state ofthe population 
at one point in time and hence, is a sample of possible state s of the population over time. 
With a sample, you have both measurement and sampling error to contend with. A well­
planned sample, however, can provide virtually the same information as a census, at a 
fraction of the cost. 

2.1.2 Descriptive versus analytic studies 

Samples are drawn to support both descriptive studies (often called surveys) and 
analytic studies (often called observational studies). 

A descriptive study (or survey) aims to describe population attributes (frequency of 
disease, level of production). Surveys answer questions such as, 'What proportion 
of cows in the population has subclinical mastitis?' or, 'What is the average milk 
production of cows in Prince Edward Island (PEl)?' 

An analytic study is done to test a hypothesi s about an association between outcomes 
and exposure factors in the population. Analytic studies contrast group s and seek 
explanations for the differences among them. In epidemiology, they are used to identify 
associations between risk factors and disease. An analytic study might ask a question 
such as, 'Is barn type associated with the prevalence of subclinical mastitis?' or, 'Is 
subclinical mastitis associated with milk production?' Establishing an association is the 
first step to inferring causation, as was discussed in Chapter l. 

The distinction between descriptive and analytic studies is discussed further in Chapter 7. 

2.1.3 Hierarchy of populations 

There is considerable variation in the terminology used to describe various populations 
in a study. In this text, we will consider three: the external population, the target 
population and the study population. These will be discussed with reference to a study 
designed to quantify post-surgical mortality in dogs. 

The external population is the population to which it might be possible to extrapolate 
results from a study. It is often not defined and might vary depending on the perspective 
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of the individual interpreting the results of the study. For example, the investigators 
conducting a post-surgical mortality study might have considered alI dogs undergoing 
surgery in Canadian veterinary clinics as the external population, while someone 
reading the results of the study in the United States might evaluate the study assuming 
the external population was alI dogs undergoing surgery in North America. The 
external valid it y relates to the capacity to extrapolate results from a study to the 
external population (discussed further in Chapter 12). 

The target population is the immediate population to which the study results will be 
extrapolated. The animals included in the study would be derived (in some manner) 
from the target population. For example, if the post-surgical mortality study was to be 
conducted in PEl, dog s undergoing surgery in veterinary clinics/hospitals in PEl would 
be the target population. The internal validity relates to the validity of the study results 
for members of the target population (see Chapter 12). 

The study population is the population of individuals (animals or group s of animals ) 
selected to participate in the study (regardless of whether or not they actually 
participate ). If three veterinary clinics were random ly selected as sites at which post­
surgical mortality would be recorded, dog s having surgery at those three clinics would 
make up the study population. 

One important consideration you must address when taking a sample is: does the study 
population truly represent the target population? If you want to quantify post-surgical 
mortality in dogs, you could do it at a veterinary teaching hospital; however, the types 
of patient seen there are much different than those at general veterinary practices and 
surgical management might also be different. This would make it difficult to generalise 
the results from such a study. Overall, it is much more important that the study 
population be representative of the target population if you are doing a descriptive 
study. Results from an analytic study (eg an association between an exposure and a 
disease) can often be extrapolated to a target population even if the study population has 
some characteristics that make it different from the target population. 

2.1.4 Sampling frame 

The sampling frame is defined as the list of alI the sampling units in the target 
population. Sampling units are the basic elements of the population that is sampled 
(eg herds, animals ). A complete list of alI sampling units is required in order to draw a 
simple random sample, but it might not be necessary for some other sampling strategies. 
The sampling frame is the information about the target population that enables you to 
draw a sample. 

2.1.5 Types of error 

In a study based on a sample of observations, the variability of the outcome being 
measured, measurement error, and sample-to-sample variability all affect the results we 
obtain. Hence, when we make inferences based on the sample data, they are subject to 



30 SAMPLlNG 

error. Within the context of an analytic study, there are two types of error in statistics: 
Type I (a) error: You conclude that the outcomes are different when in fact they 
are not. 
Type II (jJ) error: You conclude that the outcomes are not different when in fact 
theyare. 

A study was carried out to determine if an exposure had an effect on the probability of 
disease occurrence or not. The results shown in Table 2.1 are the possible outcomes. 

Table 2.1 Types of error 

True state of nature 

Conclusion of 
statistical analysis 

Effect present (reject 
null hypothesis) 

No effect (accept null 
hypothesis) 

Effect 
present 

Correct 

Type II (~) error 

Effect 
absent 

Type I (a) error 

Correct 

Statistical test results reported in medical literature are aimed at disproving the null 
hypothesis (ie that there is no difference among groups). If differences are found, they 
are reported with a P-value which expresses the probability that the observed differences 
could be due to chance, and not due to the presence of the factor being evaluated. P is 
the probability ofmaking a Type I (a) error. When P<O.05, we are 'reasonably' sure that 
any effect detected is not due to chance. 

Power is the probability that you will find a statistically significant difference when 
it exists and is of a certain magnitude; (ie power=l-,B). The probability of making a 
Type II (jJ) error, or failing to detect a difference, is sel dom stated because usually only 
positive results are reported in the literature. So-called negative findings (failure to find 
a difference) are seldom reported. There are a number of reasons why a study might find 
no effect of the factor being investigated. 

There truly was no effect. 
The study design was inappropriate. 
The sample size was too small (low power). 
Bad luck. 

An evaluation of the power of the study will at least determine how Iikely you are to 
commit this error for agiven altemative hypothesis. 

2.2 NON-PROBABILITY SAMPLING 

Samples that are drawn without an explicit method for determining an individual's 
probability of selection are known as non-probability samples. Whenever a sample 
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is drawn without a formaI process for random selection, it should be considered a 
non-probability sample, of which there are three types: judgement, convenience, and 
purposive. Non-probability samples are inappropriate for descriptive studies except 
in the instance of initial pilot studies (and even then, use of non-probability samples 
might be misleading). However, non-probability sampling procedures are often used in 
analytic studies. 

2.2.1 Judgement sample 

This type of sample is chosen because, in the judgement of the investigator, it is 
'representative' of the target population. This is almost impossible to justify because 
the criteria for inclusion and the process of selection are largely implicit, not explicit. 

2.2.2 Convenience sample 

A convenience sample is chosen because it is easy to obtain. For instance, nearby 
herds, herds with good handling facilities, herds with records that are easily accessible, 
volunteer herds etc might be selected for study. Convenience sampling is often used 
in analytic studies where the need to have a study population that is representative 
of the target population is less strict. For example, Chapter 17 will focus on the 
relationship between ultrasound measurements taken in beef cattle at the start of the 
finishing period and the final carcass grade of the animals. Even though the study was 
from a convenience sample of herds, the results would probably be applicable to beef 
cattle in general, provided they were fed and managed under reasonably comparable 
conditions. 

2.2.3 Purposive sample 

The selection of this type of sample is based on the elements possessing one or more 
attributes su ch as known exposure to a risk factor or a specific disease status. This 
approach is often used in observational analytic studies. If a random sample is drawn 
from ali sampling units meeting the study criteria, then it becomes a probability sample 
from the subset of the target population. 

2.3 PROBABILITY SAMPLING 

A probability sample is one in which every element in the population has a known mm­
zero probability of being included in the sample. This approach implies that a formaI 
process of random selection has been applied to the sampling frame. The following 
sections will describe how to draw different types of probability sample. Procedures for 
analysing data derived from the samples will be discussed in section 2.9. 
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2.4 SIMPLE RANDOM SAMPLE 

In a simple random sample, every element in the target population has an equal 
probability of being included. A complete list of the target population is required and 
a formai random process is used (random is not the same as haphazard). Random 
sampling can be based on drawing numbers from a hat, using computer-generated 
random numbers, using a random-numbers table, flipping a coin or throwing dice. 

For example, suppose you wish to draw a sample of the 5,000 sma11 animai patients in 
a veterinary clinic to determine the proportion whose vaccinations are up to date. You 
require a sample of 500. You could draw up a list of a11 5,000 patients, number each 
name on the list, and then random ly pick 500 numbers between l and 5,000. These 
numbers would identify the animals who se records you would examine. 

2.5 SYSTEMATIC RANDOM SAMPLE 

In a systematic random sample, a complete list of the population to be sampled is 
not required provided an estimate of the total number of animals is available and a11 
of the animai s (or their records) are sequentially available (eg cattle being run through 
a chute). The sampling interval (j) is computed as the study population size divided 
by the required sample size. The first element is chosen random ly from among the first 
j elements, then every J1I1 element after that is included in the sample. It is a practical 
way to select a probability sample if the population is accessible in some order, but bias 
might be introduced if the factor you are studying is related to the sampling interval. 
Consequently, a simple random sample would be preferable, but might not be feasible. 

Assume once again that you want a sample of 500 patients in a veterinary clinic. You 
know how many you need to sample (500) and approximately how many patients 
there are (5,000) but generating a list ofthose patients would be very time consuming. 
However, ali oftheir records are in a file cabinet. You need to sample every 10th patient. 
To start, randomly pick a number between l and 10, then puli out every 10th file after 
that to obtain the data. Data from a systematic random sample are analysed as though 
they were derived from a simple random sample. 

2.6 STRATIFlED RANDOM SAMPLE 

Prior to sampling, the population is divided into mutua11y exclusive strata based on 
factors likely to affect the outcome. Then, within each stratum, a simple or systematic 
random sample is chosen. The simplest form of stratified random sampling is ca11ed 
proportional (the number sampled within each stratum is proportional to the total 
number in the stratum). There are three advantages of stratified random sampling. 

l. It ensures that ali strata are represented in the sample. 
2. The precision of overall estimates might be greater than those derived 

from a simple random sample. The gain in precision results from the fact 
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that the between-stratum variation is explicitly removed from the overall 
estimate ofvariance. 

3. It produces estimates of stratum-specific outcomes, although the precision 
ofthese estimates will be lower than the precision of the overall estimate. 

For example, assume you believe that cats are less likely to be up to date on vaccines 
than dogs are. You would make up two lists - one of cats and one of dogs - and sample 
from each list. If 40% ofthe patients are cats, then 500*0.4=200 cats would be selected, 
and 300 dogs would be selected. 

2.7 CLUSTER SAMPLING 

A cluster is a natural or convenient collection of elements with one or more 
characteristics in common. For example: 

a litter is a cluster ofpiglets, 
• a dairy herd is a cluster of cattle, 
• a pen in a feedlot is a cluster of cattle, and 
• a county is a cluster of farms. 

ln a cluster sample, the primary sampling unit (PSU) is larger than the unit of 
concem. For example, if you wanted to estimate the average serum selenium level 
ofbeef calves in PEl, you could use a cluster sample in which you randomly selected 
farms, even though the unit of concem is the calf. In a cluster sample, every element 
within the cluster is included in the sample. 

Cluster sampling is done because it might be easier to get a list of c1usters (farms) than 
it would be to get a list of individuals (calves), and it is often less expensive to sample a 
smaller number of c1usters than it is to travel around to coIIect information from many 
different clusters. 

ln this example of cluster sampling, a survey to determine the average serum selenium 
level ofbeef cal ves in PEl was conducted. Fifty herds were selected from a provinciai 
herd list and every calf in each ofthe 50 herds was bled at weaning. A cluster sample is 
convenient because it is impossible to get a complete list of beef cattle in PEl, but it is 
easy to get a list of the beef producers. It is also more practical to sample ali cattle on 50 
farms than it is to drive around to ali-300 beeffarms in PEl and sample a fewanimals 
on each farm. Of course, calves within a herd are probably more alike than calves from 
different farms, so the sampling variation for a given number of individuals is greater 
than if they had been chosen by simple random sampling. 

When a group is not a cluster In cluster sampling, a group is a cluster of individuals. 
A sample is a cluster sample if the group is the sampling unit and the elements within 
the group are the unit of concem. When the group is both the sampling unit and the 
unit of concem, then by definition, the sample is not a cluster sample. For example, the 
foIIowing is not a cluster sample: a sample of herds to determine whether or not the 
herds are infected with a particular disease agent (in this case, the herd is the unit of 
concem, not the individual animals ). 
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2.8 MULTISTAGE SAMPLING 

A cluster might contain too many elements to obtain a measurement on each, or it might 
contain elements so nearly alike that measurement of only a fewelements provides 
information on the entire cluster. Multistage sampling is similar to cluster sampling 
except that, after the PSUs (eg herds) have been chosen, then a sample of secondary 
units (eg animals ) is selected. Assume again that you are interested in the serum 
selenium level ofbeef calves at weaning, and that within-farm variation is smal\. That 
means that you don't need to sample very many cattle on a particular farm to get a good 
estimate of the serum selenium level of alI the cal ves on that farm. Consequently, you 
might only sample a smalI number of individuals on each farm. 

If you want to ensure that alI animals in the population have the same probability of 
being selected, two approaches are possible. First, the PSUs chosen might be selected 
with a probability proportional to their size. In other words, if the herd size is known 
ahead of time, large herds should have a higher probability of being chosen than smalI 
herds. After the number ofherds is chosen, you select a fixed number of calves in each 
herd to get serum samples from. Ifherd size is not known ahead of time, take a simple 
random sample of the PSUs and then sample a constant proportion of the calves in each 
herd. Either approach will ensure each animaI has the same probability of selection. If 
this is not the case, the probability of selection needs to be accounted for in the analysis 
(see section 2.9.2). 

How many herds and how many animals to sample within each herd depend upon 
the relative variation (in the factor(s) being measured) between herds, compared 
with within herds, and the relative cost of sampling herds compared with the cost of 
sampling individuals within herds. In other words, when the between-herd variation is 
large relative to the within-herd variation, you will have to sample many more herds to 
get a precise estimate. Multistage sampling is very flexible where cost of sampling is 
concemed. If you are like most researchers, you are working on a limited budget and, 
when it is expensive to get to herds, you will want to sample as few as possible. On the 
other hand, if the cost ofprocessing samples from an individual animaI is high relative 
to the cost of getting to the farm, you will want to sample fewer animals per farm. It is 
desirable to have the most precise estimate of the outcome for the lowest possible cost. 
These two desires can be balaneed by minimi sing the product of the variance and the 
cost. Regardless ofthe total sample size for the study (n), the variance*cost product can 
be minimised by selecting nl individuals per herd according to the folIowing formula: 

Eq2.1 

where nl is the number of individuals to be sampled per herd, a}{ and a} are the 

between- and within-herd variance estimates and CH and c
J 

are the costs of sampling 
herds and individuals, respectively. The value for nl needs to be rounded to an integer 
value and cannot be less than l. Once the number of individuals per herd has been 
determined, the number ofherds to be sampled is then n~n/nI' 
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Keep in mind that cluster and multistage sampling almost always require more subjects 
for the same precision than simple random sampling. Example 2.1 describes a stratified 
multistage sam pl ing approach. Multistage sampling, as the name suggests, can be 
extended to more than the two levels discussed above. 

Example 2.1 
data=dairy _dis 

Multistage sampling 

A study was conducted in the three Maritime provinces of eastern Canada to determine the 
prevalence of serologic reactions to three infectious diseases of dairy cattle: Johne's disease 
(Map),enzootic bovine leukemia virus and Neospora caninum. The dataset is described in 
Chapter 27. The study had the foUowing characteristics: 

The external population was aU dairy herds in the region. 

The target population was aU dairy herds in the region that participated in an 
official milk-recording programme (approximately 70%). 

The sampling frame was a list of aU herds in the target population (provide d by the 
milk-production testing programme). 

Sampling was stratified by province with 30 herds being randomly selected within 
each province. 

Sampling was carried out as multistage sampling with the herds being selected 
first and then 30 cows randomly selected within each of the herds. The sampling 
frame within each herd was the list of cows on the milk-recording programme. 

The study population consisted of the animals selected for participation in the 
study. 

AU random sampling was performed using computer-generated, random 
numbers. 

These data will be used in Examples 2.2 through 2.4. 

2.9 ANALYSIS OF SURVEY DATA 

The nature of the sampling plan needs to be taken into account when analysing data 
from any research project involving acomplex sampling plan. (Note Although referred 
to as 'survey' data, the concepts discussed in this chapter apply equally to the analysis 
of data from analytic studies based on complex sampling plans.). There are three 
important concepts that have been raised in the above discussion of vari ou s sampling 
plans: stratification, sampling weights and clustering. In addition to these, the possibility 
of adjusting estimates derived from finite populations must be considered. 

2.9.1 Stratification 

If the population sampled is divided into strata prior to sampling, then this needs to 
be accounted for in the analysis. For example, in a study of the prevalence of Johne's 
disease in cattle herds, the herds might be divided into dairy and beef. The advantage 
of such stratification is that it provide s separate stratum-specific estimates of the 
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outcome ofinterest. If the factor upon which the population is stratified is related to the 
outcome (eg prevalence of Johne's in the two strata), then the standard error (SE) of 
the overall prevalence estimate might also be lower than if a non-stratified sample was 
taken. Correct accounting for the stratified nature of the sample requires that the total 
population size in each stratum be known in order to get the sampling weights correct 
(section 2.9.2). 

In Example 2.2, the Neospora data have been analysed ignoring the stratification by 
province, and then by taking it into account. 

Example2.2 
data=dairL dis 

Analysis of stratified survey data 

Valid test values for Neospora caninum were obtained from 2,425 cows. A simple estimate 
(treating the sample as a simple random sample) of the overall seroprevalence was 0.1905 
(19.05%) and the SE of that estimate was 0.0080 (0.80%). 

If the data are stratified by province, the seroprevalence estimates are as follows: 

Seroprevalence 

Number of 
Province samples Prevalence SE (prevalence) 

810 0.1012 0.0106 

2 810 0.2111 0.0143 

3 805 0.2596 0.0155 

Overall 2425 0.1905 0.0080 

There are considerable differences across the provinces in terms of the seroprevalence of 
N. caninum. The SE of the overall estimate from the stratified sample is slightly smaller 
than when the data were treated as a simple random sample, but the difference is minima!. 
Stratification alone does not change the overall point estimate of the prevalence. N ote This 
analysis is provided for pedagogical purposes only. It would not be correct to ignore the 
sampling weights (section 2.9.2) given that the non-proportional sampling was carried out 
across strata. 

2.9.2 Sampling weights 

Although probability sampling requires that a formai random process be used to 
select the sample, it does not imply that all units sampled have the same probability of 
selection. If a sample ofherds is selected from a target population and a sample of cows 
is selected within each of those herds, then the probability of selection for any given 
cow can be computed as: 

p(selection) = ~ * ;; Eq2.2 
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where n is the number of herds in the sample, N is the number of herds in the target 
population, m is the number of eows that were seleeted from the sampled herd, and M 
is the number of eows in that herd. For example, assume that 10 herds are seleeted out 
of 100 in a region and that in eae h herd, 20 animals are sampled. Ifherd A is an 80-eow 
herd, the probability that a eow in that herd will ultimately end up in the sample is: 

10/100 * 20/80 = 0.025 (2.5%) 

Similarly, ifherd B is a 200-eow herd, the probability that a eow in that herd will be in 
the sample is: 

10/100 * 20/200 = 0.01 (1 %) 

These ditferent probabilities of selection need to be taken into aeeount in order to obtain 
the eorreet point estimate of the parameter of interest. 

The most common way of forming sampling weights is to make them equal to the 
inverse of the probability of being sampled. This value reffects the number of animals 
that eaeh of the sampled individuals represent. For example, a eow in herd A would 
aetually represent 1/0.025=40 eows in total. A cow in herd B would have a sampling 
weight of 1/0.0 l = 1 00 beeause she had a mueh smaller probability of selection. 

In Example 2.3, the overall prevalence of Neospora has been eomputed taking sampling 
weights into consideration. 

Example 2.3 
data=dairL dis 

Analysis of weighted survey data 

Cows within the study population had different probabilities of being selected for the sample. 
Two factors infiuenced this: 

the probability that the herd would be selected 

the probability that the cow would be selected within the herd. 

Herd selection probability: Within each province the probability of a herd being selected was 
30 divided by the total number of herds on the milk-recording programme in the province. 
For example, herd 2 was in province 3, in which there were 242 herds on milk recording. 
Consequently, the probability of this herd being selected was 30/242=0.1240 (12.40%). 

Cow selection probability: Within each herd, the probability of a cow being selected was the 
total number of cows sampled within the herd divided by the total number of cows in the herd 
on the day the herd list was generated. For example, 27 samples were obtained in herd 2, from 
the 128 cows on the herd list. A cow in this herd (eg cow # 86) has a selection probability of 
27/128=0.1875 (18.75%). 

Overall selection probability: The overall selection probability for cow 86 in herd 2 was the 
product of the above two probabilities: 0.1240*0.1875=0.0232 (2.32%). 

Sampling weights: The sampling weight applied to cow 86 in herd 2 was the inverse of the 
overall selection probability: 1/0.0232=43.02. Effectively, the results from this cow were 
considered to represent 43 cows in the population. 

Taking the sampling weights into consideration, the overall estimate of the prevalence of N. 
caninum was 0.2020 (20.20%), with an SE of 0.0095 (0.95%). Incorporating weights into the 
analysis has changed the point estimate of the prevalence and has also íncreased the SE. 
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2.9.3 Clustering 

Cluster sampling and multistage sampling involve the sampling of animals within 
groups. Animals within groups are usually more alike (with regard to the outcome 
being measured) than animals chosen randomly from the population. From a statistical 
perspective, this means that these observations are no longer independent and this lack 
ofindependence must be taken into account in the analysis. Failure to do so will almost 
always result in estimated SEs that are smaller than they should be. 

Clustering occurs at multiple levels. For example, udder quarters are clustered within a 
cow while the cows are clustered within a herd. In Chapters 20-22, we discuss techniques 
for evaluating the amount of clustering at each of the possible levels. However, when 
analysing survey data, one often wants to simply deal with the clustering as a nuisance 
factor in order to obtain correct estimates of the SEs. The simplest approach to this is 
to identify the PSU (eg herd) and adjust the estimate for all clustering effects at levels 
below this (eg clustering within cows and within herds). 

Computation of the appropriate variance estimates in the presence of clustering is not a 
straightforward matter and requires software specifically designed for the process. One 
approach to the computation is to use a 'linearisation variance estimate' based on a first­
order Taylor series linear approximation (Dargatz, 1996). That is the approach used in 
Example 2.4, in which the overall prevalence of Neospora has been estimated taking 
the within-herd clustering into account. Herds were the PSU and cows were sampled 
within herds. 

2.9.4 Finite population correction 

In most epidemiologic studi es, sampling is carried out without replacement. That 
is, once an element has been sampled, it is not put back into the population and 
potentially sampled again. If the proportion of the population sampled is relatively high 
(eg> l 0%), then this could substantially increase the precision ofthe estimate over what 
would be expected from an 'infinite-sized' population. Consequently, the estimated 
variance of the parameter being estimated can be adjusted downward by a finite 
populatio n correction (FPC) factor of: 

FPC= N -n 
N-l 

where N is the size of the population and n is the size of the sample. 

Eq2.3 

Note An FPC should not be applied in cases where multistage sampling is carried out, 
even if the number of PSU s sampled is > 1 0% of the population. 

2.9.5 Design effect 

The overall effect of the nature of the sampling plan on the precision of the estimates 
obtained can be expressed as the design effect (referred to as deff). The deff is the 
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Example2.4 
data=dairy _dis 
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Analysis of multistage survey data 

The dairy disease data were sampled in a multistage manner with herds being the primary 
sampling unit. If the multistage nature of the sample was taken into account (in addition to 
the stratification and sampling weights), the overall prevalence estimate remains at 0.2020 
(20.20%) but the SE increases to 0.0192 (1.92%). 

A summary of the estimates of the overall seroprevalence taking various features of the 
sampling plan into account is shown below. 

Seroprevalence 

Type of analysis Estimate SE 

Assuming it was a simple random sample 0.1905 0.0080 

Taking stratification into account 0.1905 0.0079 

Taking stratification and sa'mpling weights inte account 0.2020 0.0095 

Taking stratification, sampling weights and clustering 
into account 0.2020 0.0192 

The last row contains the most appropriate estimates for the seroprevalence (and SE) 
of Neospora caninum. The design effect from this analysis was 5.5 which indicates that 
correctly taking the sampling plan into consideration produces an estimate of the variance of 
the prevalence which is 5.5 times larger than the estimate would have been if a simple random 
sample of the same size (n=2,425) had been drawn. 

ratio ofvariance obtained from the sampling plan used to the variance that would have 
been obtained if a comparable-sized, simple random sample had been drawn from the 
population. A deff > I reffects the fact that the sampling plan is producing less preci se 
(Iarger variance) estimates than a simple random sample would have. (Of course, a 
simple random sample is of ten impossible to obtain.) The deff of the sampling plan 
computed in the Neospora study is also presented in Example 2.4. 

2.10 SAM PL E-SIZE DETERMINATION 

The choice of sampIe size involves both statistical and non-statistical considerations. 
Non-statistical considerations include the availa1:Jility of resources such as time, money, 
sampling frames, and some consideration of the objectives of the study. Interestingly, 
cost can be factored into sample-size calculations, and the greater the cost per sampled 
element, the smaller the sample size when the budget is fixed. 

Statistical considerations inc1ude the required precision of the estimate, the variance 
expected in the data, the desired level of confidence that the estimate obtained from 
sampling is close to the true population value (l-a) and, in analytic studies, the power 
(l-{3) of the study to detect real effects. 



40 SAMPLING 

2.10.1 Precision of the estimate 

Whether you want to determine the proportion of cull cows at slaughter that test 
positive for Johne's disease or to estimate the average weight ofbeef calves at weaning, 
you must determine how precise an estimate you want. The more precise you wish to 
be, the larger the sample size you will require. If you want to know how many cull cows 
are Johne's positive within ±5%, you will have to sample more cows than if you were 
only interested in obtaining an estimate within ± 1 0%. Likewise, if you wanted your 
estimate of the average weaning weight to be within 2 kg of the real population value, 
you would need to weigh more cal ves than if you only needed to be within 5 kg of the 
true population mean. 

2.10.2 Expected variation in the data 

The natural variation inherent in the data must be taken into account when calculating 
sample size. The variance of a simple proportion is p*q, where p is the proportion of 
interest and q is (I-p). Consequently, to estimate the sample size necessary to determine 
a proportion, then (paradoxical as it might seem) you must have a general idea of the 
proportion that you expect to find. 

The measure of variation used for the estimation of the required sample size of a 
continuous variable such as weaning weight is the population variance (02). We often 
don't know what the standard deviation (a) is, so we have to esti mate it. One way to do 
this is to estimate the range that would encompass 95% of the values and then assume 
that range is equal to 4a. For example, if you think that 95% of calves would have 
weaning weights between 150 kg and 250 kg, then a rough estimate of the a would be 
(250-150)/4=25 kg, and the variance would be 625 kg. 

2.10.3 Level of confidence 

In descriptive studies, we must decide how sure we want to be that the confidence interval 
(CI) from your estimate will include the true population value. Similarly, in analytic 
studi es, we must decide on the certainty we want that any difference we observe between 
two sampled groups is real and not due to chance. This is referred to as confidence and it 
is most commonly set to 95% (Type I (a) error rate of 5%). 

2.10.4 Power 

The power of a study is the ability of it to find an effect (eg a difference between 
two groups) when a real difference ofa defined magnitude exists. For example, if the 
real difference in weaning weights between male and female calves is 20 kg, then a 
study with a power of 80% would detect a difference of this magnitude (and declare 
it statistically significant) 80% of the time. To increase the power, it is necessary to 
increase the sample size. The Type II (jJ) error rate is I-power. 

Precision and power have been presented as two separate issues although they arise 
from the same conceptual basis. Sample sizes can be computed using either approach, 
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although they will produce different estimates. 

2.10.5 Sample-size formulae 

The formulae for sample size required to estimate a single parameter (proportion 
or mean), or to compare two proportions or means, are shown below the following 
definitions: 

Za ZO.05= 1.96 The value of Za required for confidence=95%. 
Note This is a 2-tailed test. (Za is the (l-a/2) percentile of a standard normal 

distribution) 

Zp ZO.80=-0.84 The value of Zp required for power=80% 
Note This is a l-tailed test. 

L=the precision of the estimate (also called the 'allowable error' or 'margin of 
error') equal to \Iz the confidence interval 

p=a priori estimate of the proportion (p]. P2 - estimates in the two groups in an 
analytic study) 

q=l-p 

(J2=a priori estimate of the population variance 

/1=a priori esti mate of the population mean (fl], /12 - estimates in two group s) 

Estimating proportions or means 
n=sample size 

To estimate a sample proportion with a desired precision: 

Z;pq 
n==--

L2 

To estimate a sample mean with a desired precision: 

Comparing proportions or means 
n=sample size per group 

To compare two proportions: 

Z2(72 
n==_a_ 

L2 

n 
[ZaJ(2pq) - Z jJJ Plql + P2q2 t 

(Pl - P2)2 

Eq2.4 

Eq2.5 

Eq2.6 
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To compare two means: 

Eq2.7 

Note The formulae shown above are approximations and most software will compute 
sample sizes using more 'exact' formulae. 

Sampling from a finite populatio n 
If you are sampling from a relatively small population, then the required sample size 
(n ') can be adjusted downward using the following FPC factor: 

l n' 
l/n+l/N Eq2.8 

where n=the original estimate of the required sample size in an infinite population and 
N=the size of the population. 

It is useful to make this finite population adjustment when computing the sample size 
for a simple or stratified random sample if the sampling fraction exceeds 10%. It is 
only applied to descriptive studies, not to analytic studies or controlled trial sample size 
calculations. 

Example 2.5 shows the calculation of a sample sIze for a study comparing two 
proportions. 

Example2.5 Sample size for comparing proportions 

Assume that you want to determine if a vaccine (administered at the time of arrival) reduces 
the risk ofrespiratory disease in feedlot steers. For the vaccine to be worth using, you would 
want it to reduce the risk from the current level of 15% to 10% ofanimals affected. You want 
to be 95% confident in your result and the study should have a power of 80% to detect the 
5% reduction in risk. 

Pl = 0.15 

ql = 0.85 

20.05 = 1.96 

ql = 0.90 

20.80 = -0.84 

P2 = 0.125 

q2 = 0.875 

n 
[1. 96.J 2 * 0.125 * 0.875 - ( - 0.84 }Jr"0 .-15-*"-0-. 8--5-+-:"0-.1""'0 >1<-:-0-. 9:--0 ]2 

(0.15-0.10)2 

=676 

Consequently, you would require 1,352 (676)1<2) animai s with 676 being vaccinated and the 
rest not vaccinated. A sample size derived using exact formulae is 726 animals per group. 
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2.10.6 Adjustment for clustering 

In veterinary epidemiologic research, we often deal with clustered data (eg cows 
clustered within herds) with units within the cluster (eg cows) being more similar to 
each other with respect to the outcome than observations drawn randomly from the 
population. If our study is taking place exclusively at the lower (cow) level, with the 
factor of interest distributed at the cow level independent of the herd, and the outcome 
measured at the cow level, this clustering does not present a problem when computing 
the necessary sample size. Such a situation arises when conducting a controlled trial 
of a treatment that is randomly assigned to cows within herds (ensuring that treatment 
allocation is independent of herd) and the outcome is measured at the cow level (eg 
days from calving to conception in dairy cows). 

However, if the factor of interest is something that occurs at the herd level (eg barn 
type: freestall vs tiestall), then the number of herds in the study becomes a more 
critical concem than the number of cows (even though the outcome is measured at the 
cow level). The total sample size will need to be increased with the magnitude of the 
increase depending on: 

l. the degree to which observations within a herd are similar (measured by a 
parameter call ed the intra-cluster (or intra-class) correlation coefficient) (section 
21.2.1) and, 

2. the number of cows sampled per herd (having many cows sampled within a herd 
is of little value if the cows within a herd are very similar). The formula for 
adjusting the sample size is: 

n' = n(1 + p(m -1)) Eq 2.9 

where n' is the new sample size, n is the original sample size estimate, p is the intra­
cluster correlation coefficient and m is the number of cows sampled per herd. See 
Chapter 20 for further discussion ofthis issue. In Example 2.6, the sample size estimate 
from Example 2.5 is adjusted for a group-level study. 

If the factor of interest is measured at the cow level (eg parity), but also clusters within 
herds (ie some herds have older cows than other herds), then the required sample size 
will he somewhere between the simple estimate (ignoring clustering) and the much 
more conservative esti mate required for herd-level variables. Which of these two 
extremes it lies closest to will depend on how highly 'clustered' the factor of interest is 
within herds. 

2.10.7 Adjustment Qfsample size in multivariable studies 

If you want to consider confounding and interaction (Chapter 13) in your study, you 
generally need to increase your sample size (Smith and Day, 1984). If the confounder 
is not astrong confounder (odds ratio (OR) with disease and exposure between 0.5 and 
2), then about a 15% increase is needed. If it is astronger confounder, then a greater 
increase in study size should be used. For continuous-scaled confounders, consider the 
correlation of the confounder with the exposure variable Pce' The increase in sample 
size is (1- P;er1 

• For k covariates, the approximate increase is: 
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n' = n(l+(k-llP~e J 
1- Pce Eq 2.10 

where Pce is an average correlation between the confounder and the exposure variable 
of interest. Thus, for five covariates with a Pce approximately equal to 0.3, the increase 
in study size is 50%. 

A similar approach was used by Hsieh et al (1998). They started with a simple approach 
to estimating sample size for one covariate and then modified this for the multi variable 
situation using the variance inflation factor (VIF). 

n'= n*VIF Eq 2.11 

where VIF = V( l-p2
),2,3, ... ,k)' 

Note that p2 ) 2 3 k is the squared multiple correlation coefficient (between covariate 
l and the re~~i~ing k-l variables) or, the proportion of variance of factor 1 that is 
explained when it is regressed on the other k-l variables. In general, as p increases, then 
the multiple correlation increases, as does the VIF. The approach to estimating the VIF 
is the same for both continuous and binary covariates. 

Example2.6 
data=none 

Sample size witb elusteriug 

If it is not possible to randomly assign the vaccine or placebo to steers within a pen and 
then keep track of individuals through their feeding period, then you might want to conduct 
the study by randomly assigning some pens to be vaccinated and .other pens to receive the 
placebo. Rates of respiratory disease tend to be highly clustered within pens and, from 
previous work, you know the intra-class correlation (P) for respiratory disease in pens in 
feedlots is about 0.3 

Assuming that there are about 50 steers in each pen, the revised sample size that you will 
need will be: 

n' = n(1 + p(m -1)) 
= 676(1 + 0.3(50 -1)) 

=10613 

Consequently, you will need 10,613 steers per group or 10,613/50=212 pens allocated to 
each group. This very large increase in sample size is a function of the fact that the intra­
cluster correlation for respiratory disease is quite high and we are using a large number of 
observations (50) in each pen. 
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2.10.8 General approaches to sample-size estimation 

As indicated in section 2.10.5, computing sample size for analytic studies (eg comparing 
two means) can be done either by specifying the desired power of the study to detect 
a difference of a defined magnitude, or by specifying the desired width of the CI for 
the difference being estimated (ie a precision-based approach). In simple situations, 
these calculations are relatively straightforward. Two approaches to generalising these 
calculations for more complex study designs are described below. 

Precision-based sample-size computations 
The general formula for the width of a confidence interval of a parameter is: 

par ± Z * SE(par) Eq 2.12 

where par is the parameter being estimated, Z is the desired percentile of the normal 
distribution and SE(par) is the SE of the parameter estimate. 

Note Z is being used as a large sample approximation for the t-distribution, and for 
simplicity's sake will be used throughout these examples. 

For linear regression models, the SE of any parameter can take the general form of: 
SE(par) = a*c Eq 2.13 

where a is the estimated standard deviation from the model and c is a value which 
will dept-,ld on the design of the study. For example, for estimating a mean in a single 
sample: 

c = ffn = 1/ ..Jn Eq2.J4 

where n is the sample size. 

For acomparison of means from two samples: 

c = ~2/n 

where n is the sample size in each of the two groups. 

The formulae for the CI can be inverted to solve for n. For example, to estimate the 
difference between two means with the Cl of the estimate being 2L units long (ie ±L), 
then: 

L = Z * (}" * ~ 2/ n 

Based on this, the sample size required is: 

n 
2Z 2(}"2 

L2 

Eq 2.15 is the 2-sample analogue ofEq 2.5. 

Eq2.15 

Eq2.16 
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Note Unlike in Eq 2.7, we have not spec ifi ed a Zp. nor have we specified hypothesised 
'true' values for the two means. The sample size estimated is the one required to provide 
a confidence interval (for the difference) with a desired width (2L), regardless ofwhat 
the actual difference is. 

This approach can be generalised to any sort of sample-size estimation, provided that the 
structure of c can be determined. This is based on the design of the study. For example, 
computing the sample size required to evaluate a two-way interaction between two 
dichotomous variables is equivalent to evaluating mean values in each of four possible 
groups (formed by the possible combinations of the two variables). Consequently: 

c = -J4/n 
and the sample size required will be: 

n 

This leads to the useful guide line that a study in which you want to evaluate interactions 
among dichotomous variables needs to be 4 times as large as is required to estimate 
main effects. 

Power calculation by simulation 
An approach to power calculation that is applicable to almost any analytical situation 
is one that is based on simulation. In general, you simulate a large number of datasets 
that are representative of the type that you are going to analyse and then compute the 
proportion of times that the main factor you are interested in has a P-value below 
the level you have set for significance (eg 0.05). This approach can be applied to 
multivariable regression-type models as well as simpier unconditional analyses. 

There are two approaches to generating the simulated datasets. In the first (and 
simplest) approach, you might want to evaluate the power of a study which you have 
already conducted. For example, let's assume that you have conducted a controlled trial 
of pre-milking teat-dipping as a means of reducing the frequency of clinical mastitis 
cases in dairy cows. You did the study in 600 cows (300 in the treatment group and 300 
in a control group), with data from one fulllactation for each cow. Your outcome (y) is 
the number ofmastitis cases in each lactation and you are confident that this followed a 
Poisson distribution. (See Chapter 18 for details of Poisson regression. ) Although you 
randomly assigned cows to the two treatment groups, you still want to control for parity 
in your analysis so ultimately you fit a Poisson model of the following form: 

ln E(Y) = Po + Pl (parity) + P2 (treatment) 

When you analysed the data, the coefficient for treatment was -0.23 (suggesting that 
treatment reduced the frequency of mastitis), but it was not significant and you want 
to determine what power the study had to detect an effect of the magnitude that you 
found. 
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The steps involved in determining the power by simulation are: 
l. For each observation in the dataset, compute the predicted value based on the 

coefficients from the model and the particular X values (parity and treatment) for 
the observation. 

2. Generate a random value for the outcome from a Poisson distribution with a mean 
at the predicted value. (In this case, you don 't need to worry about the variance of 
the distribution because the mean and variance of a Poisson distribution are 
equal.) 

3. Reanalyse the data and note the P-value for the coefficient for the treatment (fJ2) 
effect. 

4. Repeat steps l-3 many times ( eg l ,OOO) and determine the proportion of datasets in 
which the P-value for the treatment effect is <0.05. This is anestimate ofthepower 
of the study to detect a true effect corresponding to fJ2=-0.23. 

Note This post-hoc power ca1culation has been presented because it is the simplest 
example of the use of simulation methods for sample-size ca1culation. In general, post­
hoc power ca1culations are not useful (Smith and Bates, 1992). 

If you want to compute sample sizes prior to conducting a study, the process is similar 
except that you start by creating a hypothetical dataset based on an expected final 
model. This means that you will need to specify the distributions ofthe X variables, the 
size of the dataset, the hierarchical structure of the data (if it is hierarchical in nature; 
see Chapters 20-22) and all of the relevant variance estimates. Apaper outlining the 
general procedure is available (Feivesen, 2002). An example of the determination of 
the power of an already-completed study is shown in Example 2.7. 

2.11 SAMPLING TO DETECT DISEASE 

Sampling to detect the presence (or confirm the absence) of disease is fundamentally 
different than sampling to estimate a parameter such as the prevalence of disease. If you 
want to be absolutely certain that a disease is not present in a population, then the only 
option is to test the entire population (and even this only works if the test you have is 
perfect). As this is rarely feasible, we rely on the fact that most diseases, ifpresent in 
a population, will exist at or above some minimal prevalence. For example, we might 
think that if a contagious disease was present in a population, it would be very unlikely 
that less than 1% of the population would be infected. Based on this, you can compute 
a sample size required to be reasonably confident that you would detect the disease if 
the prevalence was l % or higher. 

If you are sampling from a finite population (eg <1,000 animals), then the formula to 
determine the required sample size is: 

Eq2.17 

where: 
n = required sample size 
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a l-confidence level (usually a=0.05) 
D estimated minimum number of diseased animals in the group (population 

size*minimum expected prevalence ) 
N population size 

Example2.7 
data=pig_adg 

Power calculation by simulation 

You have carned out a study to evaluate the effects of internal parasites (ascarids) and 
respiratory diseases on growth rates in swine. You carry out a regression analysis to evaluate 
the effects of the presence of adult wonns (observed in the intestinal tract at slaughter) on the 
pig's average daily gain (adg). In this regression analysis, you also adjust for the effects of the 
sex of the pig and the farm of origin. The important results from that regression analysis are: 

the coefficient for the presence/absence of wonns is -7.7 suggesting that pigs with 
wonns in the intestinal tract gained 7.7 gmlday less than pigs without wonns. 

the P-value for the coefficient was 0.25 so you have relatively little confidence that 
the estimate was really different from O. 

the standard error of prediction for adg was 46.9 gms/day (this represents the 
standard deviation ofpredicted results - see Chapter 14). 

Your study was carried out in 341 pigs (114 with wonns and 227 without) and you want to 
know how much power such a study had to detect an effect IF the real effect of wonns was to 
reduce growth rates by 7.7 gmlday. 

You generate 1,000 datasets with randomly generated adg values. For each pig in each dataset, 
the adg value is drawn from a nonnal distribution with the following characteristics: 

it has a mean value that corresponds to the predicted value from the real data that 
you started with (ie based on the pig's wonn status, sex and farm of origin) 

it has a standard deviation of 46.9 gmday 

You analyse each ofthese new datasets and detennine the proportion that gave a P-value for 
the wonns' coefficient that was ~0.05. It turns out that the power was 0.218 (21.8%). 

If the true effect of wonns was -7.7 gmlday, a study based on 114 positive pigs and 227 
negative pigs only had a 21.8% chance offinding a significant effect ofwonns. This value 
compares reasonably closely to a power estimate of29.9% based on a simple comparison of 
two groups (computations not shown). 

If you are sampling from an infinite population, then the following approximate formula 
can be used: 

n = Ina/ln q Eq 2.18 

where n=the required sample size, a is usually set to 0.05 or 0.01, q=(l-minimum 
expected prevalence ). 

If you take the required sample and get no positive results (assuming that you set a to 
0.05), then you can say that you are 95% confident that the prevalence of the disease in 



SAMPLING 49 

the population is below the minimal threshold which you specified about the disease 
in question. Thus, you accept this as sufficient evidence of the absence of the disease. 
Example 2.8 shows the calculation of the required sample size to determine freedom 
from Mycoplasma in a sow herd. 

Example 2.8 Sample size for freedom from disease 

Assume that you want to document the absence of Mycoplasma from a 200-sow herd and 
that, based on your experience and the Iiterature, a minimum of 20% of sows would have 
seroconverted if Mycoplasma were present in the herd. 

n = 200 a = 0.05 D = 40 

n=(I-(afn)(n- D;l) 
= (1- (.05{4O ) ( 200 - 40

2
-l) 

= (0.072)(180.5) 

=13.02:::13 

If you test 13 sows and get all negative test resuIts, you can state that you are 95% confident 
that the prevalence of Mycoplasma in the herd is <20%. As you don't believe that the disease 
would exist at a prevalence <20%, you are confident that it is not present. Note This assumes 
the test is 100% sensitive and specific. See Chapter 5 for a discussion of test characteristics. 
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SAMPLE PROBLEMS 

l. Sampling strategies 
The dataset smpltype contains data about the weight gain of 1,114 piglets raised in 
a 'batch-production system' on six farms in Denmark. On these farms, sows were 
'batch farrowed' and a group of piglets was then moved at about three weeks of age 
from the farrowing barn to the weaner faci li ty. They stayed in this facility unti l they 
were approximately nine weeks old and then were moved to the finishing barn. This 
dataset has data on their growth rates from birth up to their transfer to the finishing 
barn. The data are a subset of the more complete dataset ap2 (which in tum are part 
of a larger dataset collected by Dr HAkan Vigre of Denmark). A description of ali of 
the variables in the dataset is included in Chapter 27. 

In addition to the original data, this dataset contains indicator variables that identify 
pigs that were part of a simple random sample, a systematic random sample, a 
stratified random sample, a cluster sample and a multistage sample. 
a. First, compute the overall population mean for daily weight gain (and its 

SE). Although these data are a 'census' of the whole study population, they 
are a sample of all pigs going through these six farms, so it is legitimate to compute 
an SE of the mean. 

b. Simple random sample 
A simple random sample of 100 pigs was selected using computer-generated 
random numbers. This was only possible as we had the complete population 
enumerated (ie in real life, this would not have been possibie). 
i. What is the estimate (and its SE) of the daily weight gain ofpiglets up to the 

time of transfer, based on the simple random sample? 
c. Systematic random sample 

The farms were visited in the following sequence: 3, 6, 1,4,2, 5 on the day that a 
batch ofpigs was being transferred from the weaner barn to the finishing barn. As 
the pigs were run down the alleyway, the 7th pig was sampled and then every 11 th 

pig was sampled. (The order they ran down the alleyway is given in the variable 
-barn _ ord-.) This gave a sample of 101 pigs over the six farms so the last pig was 
dropped from the sample to give a final sample size of 100 pigs. 
i. What is the estimate (and its SE) of the daily weight gain of 

piglets up to the time of transfer? 
ii. Do you expect this estimate to be more or less preci se than the one based on 

the simple random sample? 
!ll. Is this abiased estimate? If so, why? 

d. Stratified random sample 
The population was divided into four strata based on the parity of the piglets' dam. 
The strata were parities l, 2, 3-4, 5+. Within each stratum, a simple random 
sample of25 pigs was selected using computer-generated random numbers. Once 
again, this was only possible because we had the complete population 
enumerated. 
I. What is the estimate (and its SE) of the daily weight gain of the 

piglets? 
l. First, compute this without paying attention to what the sampling 
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probabilities were. 
2. Second, incorporate sampling probabilities into your estimate. 

Which ofthese two estimates is better? Why? 
ii. Is this estimate more, or less precise than the one from the simple random 

sample? Why? 
iii. What is the main advantage of a stratified random sample over a simple 

random sample in this instance? 
e. Cluster sample 

Two herds (# 2 and # 6) were randomly chosen. AlI pigs being transferred from the 
weaner barn to the finishing barn were selected for the sample giving a total 
sample size of 460 pigs. 

l. What is the estimate (and its SE) of the daily weight gain of the 
piglets? 
l. First, ignore the fact that herds were randomly selected before the 

piglets were. 
2. Second, take the sampling plan into account in the analysis. What 

effect does this have on the precision of the estimate? 
ii. Do you need to take sampling weights into account in this analysis? 

f. Multistage sample 
The same two herds (#2 and # 6) were selected, but within each herd, 50 pigs were 
randomly selected, giving a sample size of 100 pigs. 

l. What is the estimate (and its SE) of the daily weight gain of the 
piglets? 
l. First, ignore the fact that herds were randomly selected before 

the piglets were. 
2. Second, take the sampling plan into account in the analysis. What 

effect does this have on the precision of the estimate? 
ii. Do you need to take sampling weights into account in this analysis? 

2. Sample sizes - population means 
You are interested in studying aggressive behaviour in dogs and evaluating whether 
or not spaying (ovario-hysterectomy) has an influence on that behaviour. You have 
developed an 'aggression index' which measures the level of aggressive tendencies 
in a dog. The scale ranges from O (absolutely no aggression) to 10 (the proverbiaI 
'junk-yard dog') and can take on non-integer values based on the values from a 
series of observations. From previous work, you think that scores in intact (non­
spayed) bitches are approximately norrnally distributed with the mean score being 
about 4.5 and with 95% ofbitches scoring between l and 8. 
a. How large a sample do you need to take if you want to deterrnine the mean 

aggression index value for a new population that you are about to start working 
with? Note You have not been given an estimate of the standard deviation of the 
distribution, so you will have to use the available data to estimate one. 

b. If you think that spaying increases the mean aggression index by 0.5 units, 
how large a samp\e will you need to take to be 80% certain offinding a significant 
difference (if the true difference is 0.5 units) if you want 95% confidence in your 
result? How much power would a study with 100 bitches in each group (spayed and 
non-spayed) have to detect a difference of 0.5 units? 
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3. Sample sizes - proportions 
You are about to start a research project evaluating risk factors for Neospora caninum 
infection in dairy herds. Previous work has suggested that the presence of a dog on 
the farm might be a risk factor and that the prevalence of N. caninum antibodies in 
dairy herds is approximately 10% in farms without a dog and 30% in farms with a 
dog. 
a. Assuming that approximately one-half of alI farms have a dog (ie your be st guess as 

to the overall population prevalence is 20%), how many cows would you have to 
test to get an estimate ofthe overall prevalence if you wanted to be 95% certain that 
your estimate was within 5% of the true prevalence? (Assume you could take a 
simple random sample from the study population.) 

b. If you wanted to estimate the prevalence within a single 100-cow dairy herd that 
had a dog, with an allowable error of 10%, how many cows would you need to 
sample? 

c. Ignoring the fact that the prevalence of N. caninum antibodies almost certainly 
clusters within herds, how many cows would you need to include in your study if 
you wanted to detect a difference of 10% versus 30% for cows exposed to a dog 
compared with those not exposed? (Assume a power of80%.) 

d. You know that N. caninum antibodies cluster within herds and you guess 
that the intra-cluster correlation coefficient is about 0.3. It is also important to note 
that 'presence of a dog' is a herd-Ievel variable. What impact does this have on your 
sample size derived in 'c.' if you assume that the average herd size is 50 cows? 

e. While your main interest is in the effect of dogs as a risk factor for infection, you 
are going to investigate a total of 10 possible risk factors in your study. Assuming 
that a regression of dog ownership on the other nine factors produces an p2( e2) of 
0.2. What effect does this have on your sample size estimate? 

4. Sample sizes - detecting disease 
A sheep research station that you work with undertook some procedures to eradicate 
Maedi-Visna from their flock of about 1,000 ewes. Once they thought that they 
were free of the condition, they decided to check if they really were. They would 
be satisfied provided that they could be 95% certain that the prevalence in the flock 
was<l%. 
a. How many sheep do they have to bleed if you assume that a population of 1,000 

is essentially 'infinite'? 
b. How does your estimate change if you treat the population as 'finite'? 
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QUESTIONNAIRE DESIGN 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Plan a questionnaire with appropriate content. 

2. Write well-crafted questions for that questionnaire. 

3. Format the questionnaire for ease ofadministration and coding. 

4. Pre-test the questionnaire to identify weak points. 

5. Code data from the questionnaire as a precursor to data entry. 

53 



54 QUESTIONNAIRE DESIGN 

3.1 INTRODUCTION 

Questionnaires are one of the most commonly used tool s for collecting data in 
veterinary epidemiologic research. The term s questionnaire and survey are often used 
interchangeably, but we will use them as follows. 

Questionnaire: A data collection tool that can be used in a wide vari et y of clinical 
and epidemiologic research settings. 

Survey: An observational study designed to generate descriptive information about 
an animaI population. Surveys often use questionnaires as a data-gathering tool. 

This chapter will focus on the design of questionnaires regardless of whether they are 
to be used in a survey or other type of research study. Further discussion of surveys is 
presented in Chapter 7. 

The development of a questionnaire is a complex process involving consideration of 
many aspects of its design. These are discussed below. 

Every questionnaire must be handcrafted. It is not only that question­
naire writing must be 'artfui'; each questionnaire is also unique and 
original. A designer must cut and try, see how it looks and sounds, 
see how many people react to it, and then cut again, and try again. 

(Converse and Presser, 1986) 

3.1.1 Study objectives 

In order for the questionnaire to be effective, it must be carefully planned with 
consideration given to a number of design elements. First and foremost, it is essential 
that the objectives and information requirements of the study be established. This 
process could involve consultation with subject 'experts', and with the ultimate 
'users' of the information (if the data are being collected for use by another group, eg 
policymakers). Members of the population to be surveyed should also be consulted in 
this phase of the planning process. Ifprevious questionnaires covering the subject matter 
of interest have been published, copies of these questionnaires should be obtained. 
Previous questionnaires are particularly valuable if a formaI validity assessment of 
the questionnaire has been carried out, but unfortunately, this is not often the case in 
animal-health studies. 

3.1.2 Focus groups 

Focus group s consisting of 6-12 people provide an opportunity for a structured form 
of consultation with members of the intended study population, the end users (target 
population) and/or the interviewers. An independent moderator can ensure that the focus 
group stays on topic and the discussion is not dominated by one or two individuals. 
Focus groups can offer insight into attitudes, opinions, concems, experiences of the 
various stakeholders and help to clarify objectives, data requirements, research issues to 
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be addressed, salient definitions and concepts. To be sure the information is preserved 
and to avoid ambiguity, the group discussion should be audio or video recorded. 

3.1.3 Types of questionnaire 

Questionnaires can be qualitative or quantitative. The former are sometimes referred 
to as 'explorative' questionnaires and consist primarily of open questions (see section 
3.3) designed to allow the participant to express freely their views and thoughts on 
the subject matter. Qualitative questionnaires can be used in the hypothesis-generation 
phase of research when it is necessary to identify all of the issues pertaining to the 
research subject. These types of questionnaire are often administered through interviews 
and could be taped (with permission) to allow for a detailed evaluation ofthe content of 
the material discussed at a later time. Qualitative questionnaires will not be discussed 
further in this chapter and the reader is referred to Creswell (1998) for more details and 
Vaarst et al (2002) for a recent example . 

Quantitative, or structured, questionnaires are designed to capture information about 
animals, their environment, their management etc. They are more often used in 
veterinary epidemiology than qualitative questionnaires. All examples used in this 
chapter are derived from a structured questionnaire designed to capture information 
about veterinary use of post-operative anaigesies in dogs and cats (Doho o and Dohoo, 
l 996a,b). 

3.1.4 Methods of administration 

Questionnaires can be administered through a face-to-face interview, a phone interview, 
as a mailed questionnaire, or as an internet-based questionnaire. The advantages of a 
face-to-face interview are that the purpose of the study can be fully explained, a high 
participation rate can usually be obtained, and audio-visual aids can be used (eg photo s 
of medications when ascertaining what products have been used on a farm). Face-to-face 
interviews also help to develop a rapport between the investigator and participant which 
might be important if ongoing participation in the study is required. The disadvantages 
of this approach are that they are time consuming, expensive, geographically limited to 
areas close to interviewers and might be subject to interviewer bias. This las t problem 
can be avoided, at !east in part, by carefui training of interviewers. 

Telephone interviews share many of the advantages of face-to-face interviews (eg 
high response rate, opportunity to explain the study) but are less time consuming and 
less expensive. They might be less susceptible to interviewer bias than face-to-face 
interviews (eg no visual cues can be given) but are limited in terms of time that a 
participant can be expected to sp end on the questionnaire. There are also many issues 
related to telephone communication which need to be considered (eg some potential 
study participants might not have a phone or might have an unlisted number). 

Mailed questionnaires are commonly used because they are inexpensive and, being 
administered by the respondent, have no potential for interviewer bias. However, 
they are more likely to suffer from low response rates, there is no ability to control 
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who completes them and they are completely inappropriate if the respondents have 
poor literacy. A mean response rate (actually a 'risk') of approximately 60% has been 
reported from a survey of236 mailed health-related surveys (Asch et al, 1997) although 
there are many examples of70%+ response rates. Selection bias is a serious concern if 
the response rate is low (see Chapter 12), but being able to collect data relatively easily 
from a widely dispersed study population makes this an attractive option for many 
studies. 

Internet questionnaires have become feasible recently and might even be less expensive 
than mailed questionnaires. They have the additional advantage that responses can go 
directly into an electronic database with no data coding and entry required. However, 
they suffer from the same drawbacks as mailed questionnaires and, in addition, are 
applicable only to respondents who have access to the internet. Care must also be 
taken to prevent individuals from completing multiple copies of the questionnaire. A 
text dealing with the design of internet surveys has recently been published (Dillman, 
1999). 

3.2 DESIGNING THE QUESTION 

When drafting questions, you must keep in mind: who is responding, whether or not 
the data are readily available, the response burden (ie the length and complexity of 
the questionnaire), the complexity, confidentiality and sens iti vit y of the data being 
collected, the reliability of the data (ie validity of question), whether the interviewer or 
respondent might find any of the topics embarrassing, and ultimately how the data will 
be processed (coding and computer entry). 

Responding to a question usually involves four distinct processes: understanding the 
question, retrieval of information (from memory or records), thinking and/or making a 
judgement if the question is at all subjective, and communicating the answer (written 
or verbal). All aspects must be considered for each question. Once a draft of a question 
is prepared, ask yourself: 

1. Will the respondent understand this question? (The question must be clearly 
worded in a non-technical manner.) 

2. If the question deals with factual information, will the respondent know the 
answer to the question or have to seek out additional information to be able to 
answer it? (If additional information is required, the respondent might skip the 
question or fabricate an answer.) 

3. Does answering the question involve a subjective deci sion? (If it does, is there 
any way to make it less subjective?) If the question deals with opinions or 
beliefs, it is bound to be subjective in nature. Special care will be required in the 
design of these questions to ensure theyelicit the desired information. 

4. Are the possible responses clear with an appropriate method of recording the 
response? 

Questions can be classified as open (if there are no restrictions on the type of response 
expected) or closed (if the response has to be selected from a pre-set list of answers). 
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Both types are discussed below. Regardless of the format, questions can be regarded as 
a diagnostic test and can be evaluated us ing the same methods discussed in Chapter 5. 

3.3 OPEN QUESTION 

In general, open questions (also referred to as open-ended questions) are more often 
applicable to qualitative than quantitative research because they generate information 
that might not be applicable for standard statistical analyses. By their nature, open 
questions allow the respondent to express their opinion. Sometimes we might attach a 
'comments' section on a closed question for this purpose. 

One type of open question used in quantitative research, particularly for capturing 
numerical data, is the 'fill-in-the-blank' question. If possible, it is preferable to capture 
numerical data as a value (ie continuous variable) rather than as part of a range. For 
example, knowing that a dog weighs 17 kg is preferable to simply knowing which of 
the following range s the weight falls in: «10, 10-20,20-30, >30 kg). Numerical data 
can be categorised during analysis if need be. 

However, in some circumstances, such as when seeking sensitive information (eg total 
family income), a respondent might be more willing to indicate a category (range) than 
to give aspecific numerical value. When capturing numerical data, it is important to 
specify the units being used (eg lb, kg), and it is often desirable to give the respondent 
a choice ofmeasurement scale (eg inches or cm). Example 3.1 shows an open question 
with an expected numerical response. 

Example3.1 Open question 

3. Year of graduation from veterinary school: 

Some categorical data are better captured using fill-in-the-blank questions if the range 
of possible responses is not known before the questionnaire is administered (eg for 
breed of cow: Angus or Angus cross-breed or Angus-Charolais-cross are all possible 
valid answers). 

3.4 CLOSED QUESTION 

In designing closed questions (also call ed closed-ended questions), the researcher can 
choose from a range of possible options. They include: 

checkIlst questions (ie check all options that apply) 
two-choice/multiple-choice questions 
rating scale questions (ie rate the response on a defined scale) 
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ranking questions (ie rank the options in order of priority). 
The advantages of closed questions are that they are generaIly easier for the respondent 
to answer (while maintaining consistent responses) and it is easier to code the responses 
(prior to data entry). 

However, closed questions are difficult to design and there is always a risk that closed 
questions might either oversimplify an issue or elicit answers where no knowledge or 
previous opinion exists. Sometimes a closed question might request information in a 
format that is different from what a respondent usuaIly uses (eg you might ask for herd­
average milk production based on litres per cow per day while the producer assesses 
milk production using average 305-day production values). 

3.4.1 Checklist question 

A checklist question is similar to a multiple-choice question except that the respondent 
is asked to check alI responses that apply (so they need not be mutualIy exclusive or 
jointly exhaustive). They are equivalent to having a series of 'yes/no' questions for 
each category. Consequently, each option on the list requires a separate variable in the 
database. 

3.4.2 Two-choice/multiple-choice question 

In two-choice/multiple-choice questions it is important to have categories that are 
mutually exclusive (ie no overlap) and jointly exhaustive (ie cover aIl possibilities). 
The addition of a category of 'other - please specify' (semi-open question) as the last 
choice can ensure that the options are jointly exhaustive. However, if the question 
has been weIl designed, there should not be a lot of responders using this option. It 
is recommended that the list of possible choices not exceed five in face-to-face or 
telephone-interview questionnaires and 10 in mailed/intemet questionnaires. There is 
some evidence that respondents more frequently choose items at the top of a list. This 
problem can be avoided by having multiple versions of the questionnaire with varying 
orders to these questions. However, this adds complexity to the data-coding process. 
Data derived from a two-choice/multiple-choice question can be stored as a single 
variable in the database (see Example 3.2). 

Example 3.2 Multiple-choice question (questionnaire sent only to 
veterinarians doing some companion animaI praetice) 

6. Type of practice (check one only): 
l. Mixed CJ 
2. Small animaI exclusively CJ 
3. Feline exclusively CJ 
4. Referral (please specify type) CJ 
5. Other (please specify type) CJ 
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3.4.3 Rating question 

Rating questions require the respondent to assign a value based on some pre-defined 
scale. Responses might be ordinal, such as aLikert scale in which the respondent states 
their level of agreement with a statement (eg strongly agree, agree, neither agree nor 
disagree, disagree and strongly disagree) or recorded on a more continuous numerical 
scale (eg a scale of values from 1 to 10) as in Example 3.3. Continuous data can also 
be captured using a visual analog scale in which the respondent puts a mark on a line 
of a given length and the rating assigned is based on how far along the line the mark is 
(Houe et al, 2002). 

Example 3.3 Rating question 

In your opinion, how severe would the pain be in dogs in the first 12 hours after each of the 
following surgeries if no post-operative anaigesies were given? Estimate the pain on a 10-
point scale where l equals no pain at alI and 10 equals the worst pain imaginable (eirele one 
number). 

ll. Major orthopedic surgery 
12. Repair ofruptured cruciate 
13. Abdominal surgery (non-OHE) 
14. Ovario-hystereetomy (OHE) 
15. Castration 
16. DentaI surgery 

l 2 3 4 5 6 7 8 910 don 't know 
l 2 3 4 5 6 7 8 910 don 't know 
1 2 3 4 5 6 7 8 9 10 don't know 
l 2 3 4 5 6 7 8 9 10 don't know 
l 2 3 4 5 6 7 8 910 don 't know 
I 2 3 4 5 6 7 8 910 don 't know 

There are several issues to be considered when developing rating questions. 1fthere are 
distinct categories, you must decide how many categories there should be and whether 
or not there should be amiddle 'neutral' eategory (eg neither agree nor disagree). It has 
been suggested that the scale contain a minimum of 5 to 7 points in order to avoid a 
serious loss of information resulting from translating an underlying continuous response 
into a series of categories (Streiner and Norman, 1995). For data on a numerical scale, 
respondents might be unwilling to select values at either end of the scale, particularly 
ifmany values (eg l through 10) are available. It is also advisable to provide an option 
for 'don't know/no opinion' or 'not applicable' in order to differentiate these responses 
from one s in which no answer was recorded (ie missing data). For practical purposes, 
data obtained from a rating question with a minimum offive points are often treated as 
continuously distributed (interval) data in subsequent analyses. 

Some rating scales consist of a series of questions with two or more options for each 
question. Results from this series of questions could be combined to create one or more 
rating-scale variables. This combination process could be a simple summation of the 
scores (provide d ali questions are answered), an average score (provided alI questions 
had the same scale) or could be based on more complex multivariable techniques such 
as factor analysis (discussed briefly in Chapter 15). 



60 QUESTIONNAIRE DESIGN 

3.4.4 Ranking question 

Ranking format questions ask the respondent to order aU ofthe possible responses (or a 
subset ofresponses) in some form ofrank order (Example 3.4). They are often difficult 
for respondents to complete, especiaUy if the list of choices is long because aU the 
categories must be kept in their mind at once. In face-to-face interviews, cards with the 
various responses on them can be prepared and provided to the respondent. This might 
simplify the ranking process because the respondent only has to choose between a pair 
of responses at one time (and repeat the process until the cards are in the appropriate 
rank order). 

Example3.4 Ranking question 

Please rank the following as sources of your knowledge of recognition and control of post­
operative pain in dogs and cats (1 = most important source, 6 = least important source). 

37. Undergraduate veterinary school 
38. Post-graduate training 
39. Journal articles 
40. Continuing-education lectureslseminars 
41. Experience gained white in practice 
42. Discussion with other veterinary practitioners 

Rank intervals are unknown to the respondent and might not be equal (ie the difference 
between 2 and 3 is not the same as between I and 2). Respondents could frequently 
assign 'tied' rankings (ie the respondent lists two items as one) if they have difficulty 
choosing between two options. Decisions about how the data will be analysed 
(inc1uding how tied ranks will be handled) should be made before the questionnaire is 
administered. Computing average ranks for various options assumes that the ranks were 
approximately equaUy spaced and this might not be the case. Averaging ranks is also a 
problem if some possible categories have been omitted as these would influence how 
the respondent might rank the options that were listed. Altematively, the proportion of 
respondents who rank an option highly (eg proportion who assign a rank of 1 or 2 to 
each option) might be computed. 

3.5 WORDING THE QUESTION 

The wording used in questions has a major impact on the validity of the results from 
those questions. Vaillancourt et al (1991) recommend that questions not exceed 
20 words. It is important to avoid the use of abbreviations, jargon and complex or 
technical terminology. At aU times, bear in mind who the respondent is and what level 
of technical knowledge they have. For example, 'How many fatal cases of neonatal 
diarrhea occurred during the time period?' is a poorly worded question ifthe respondent 
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is a dairy producer. 'How many calves died from scours during January?' would be 
more appropriate. 

Make the question as specific as possible. For example, ifasking for information about 
annual milk production, specify the time frame (eg January l, 2002 to December 31, 
2002) and clearly define how milk production is to be measured (eg total weight ofbulk 
tank shipments). 

Avoid double-barrelled questions. For example, asking 'Do you think BVD is an 
important disease that producers should vaccinate for?' is really asking two questions 
(one about the importance of BVD and one about the utility of vaccination). These 
issues should be separated into two questions. 

Avoid 'leading' questions. Asking a question such as 'Should dogs be allowed to suffer 
in pain after castration without the benefit of analgesics?' might very likely produce a 
biased response compared with a more neutral question such as 'Do you think dog s 
should be given analgesics following castration?' 

3.6 STRUCTURE OF QUESTlONNAlRE 

Questionnaires should begin with an introduction explaining the rationale and the 
importance of the questionnaire, and how the data will be used. In it, you should also 
assure the respondent of the confidentiality of their answers. Telling the respondent 
approximately how long it will take to complete the questionnaire will help to improve 
response rate (provided the questionnaire has been kept to an acceptable length). In 
mailed questionnaires, the introduction might be incorporated into the first page, but 
it is usually desirable to have it as part of a separate cover letter that is sent with the 
questionnaire. For interview format questionnaires, the information must be provided 
verbally at the start of the interview. 

After the introduction, it is a good idea to start with questions that build confidence in 
the respondent. If it is necessary to give instructions to the respondent, make sure they 
are clear and concise. Highlight them in some way (eg bold typeface) to draw attention 
to them. Remember that people only read instructions if they think they need help. 

Questions should be grouped either according to subject (housing, nutrition) or 
chronologically (calving, breeding period, pregnancy diagnosis). Within a section, 
questions might follow a Tunnel' approach in which the subject matter is increasingly 
specific and focused. Pairs of questions which capture essentially the same information 
('date of install ing a milking system' and 'age ofmilking system') might be included at 
different locations in the questionnaire either for verification of critical information or 
as a general check on the valid it y of the questionnaire responses. 

It is important that mailed (or internet) questionnaires be visually appealing and easy to 
complete. Professional-Iooking questionnaires will enhance the respondents perspective 
on the importance of the study (Salant and Dillman, 1994). 
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When designing the form layout, consider eas e of data coding and entry in order to 
minimise mistakes and reduce the required effort. If at all possible, questions should 
be pre-coded (ie the numerical codes assigned to possible responses are printed beside 
the various options). It is advisable to leave space on the questionnaire (eg a column 
down the right-hand edge of the page) to allow for the recording of all responses that 
are to be entered into a computerised database. This will allow data-entry personnel to 
simply read down a column of responses rather than having to jump around the page 
(see Example 3.5). 

Example 3.5 Coding questionnaires 

The space at the right allows for direct 
coding ofresponses on the questionnaire. 

l. Sex 1. Male 2. Female 

2. Age '--_____ I years 

3. Year of graduation from veterinary school 

3.7 PRE-TESTING QUESTIONNAIRES 

For office use only 

1.[ 

2. [ 

3. [ 

All questionnaires need to be pre-tested before applying them to the study population. 
Pre-testing allows the investigator to identify questions that are confusing, ambiguous 
or misleading and to determine if there are any problems with the layout of, or 
the instructions on, the questionnaire. When you pre-test a questionnaire, you can 
determine if there are questions that respondents will be unable or unwilling to answer 
or perhaps identify additional categories required for multiple-choice questions. It also 
serves to estimate the time that would be required to complete it. 

The first step in pre-testing the questionnaire is to have colleagues or experts in the field 
evaluate it to ensure all important issues are identified and covered. A single pre-testing 
on a small sample from the study population can be used to obtain feedback on the clarity 
of questions. This might be done by having the respondent complete the questionnaire as 
it will be done in the study and then discussing any problematic aspects. Alternatively, 
a 'think-aloud' pre-test can be carried out in which the respondent explains all of their 
thought processes as they work through the questionnaire. It is desirable to have a 
second pre-test in which the questionnaire is readministered to the same test group of 
respondents in order to assess the repeatability of questions. The time interval between 
the two pre-tests needs to be long enough that the respondent does not recall how they 
answered questions the first time, but short enough that the information being sought is 
unlikely to have changed. A test-retest evaluation is only valid if the questionnaire is not 
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changed much after the first pre-test. It will also require quite a few more respondents 
if the repeatability of the questions is to be evaluated. 

3.8 DATA CODING AND EDITING 

Before administering any questionnaire, procedures for coding of responses and 
computer data entry should be considered. When coding responses, it is wise to 
have a single value to represent missing values. Do not simply leave these blank as, 
subsequently, it will be impossible to differentiate items that were not answered on 
the questionnaire from those that were missed in coding or data entry. A unique value 
(eg -999) that could not be a legitimate answer to any of the questions should be used 
for miss ing values. Consistency of coding is important and, because it is convenient to 
analyse no/yes (dichotomous) variables coded as 0/1, it is advisable to use this coding 
from the start. 

Coding of responses is be st accomplished directly on the paper forms (either maii ed 
questionnaires or data capture forms used in interviews). Do not attempt to combine 
coding and data entry into a single step. It is a good idea to use a distinctive colour of 
ink for recording ali codes on the forms so it is easy to differentiate writing done by the 
coder from that done by the respondent or interviewer. 

Computer data entry can be done using specialised software or general purpose 
programs such as spreadsheets and database managers. The advantage of specialised 
software is that it allows you to set validation criteria easily (such as acceptable ranges 
for values in a given variable) that preclude entry of illogical values. One useful 
public domain program for data entry is EpiData (freeware http://www/epidata.dk). 
Spreadsheets must be used with caution. While they are convenient and easy to set 
up for data entry, the ability to sort individual columns in the spreadsheet makes it 
possible to completely destroy the data (ie responses from one individual will no longer 
be on the same row). General-purpose database managers are useful and allow greater 
manipulation of the data. However, because most data will ultimately be transferred 
to a statistical package for verification and analysis, it is advisable to perform ali data 
manipulations in that statistical package, where it is easier to document and record ali 
procedures carried out. The process of data verification and processing is discussed 
further in Chapter 25. 
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4 

MEASURES OF DISEASE FREQUENCY 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Explain the different ways of measuring disease frequency and differentiate 
among counts, proportions, odds and rates. 

2. Describe the difference between incidence and prevalence and when each 
should be used. 

3. Describe the difference between risk and rate as applied to measures of 
incidence. 

4. Elaborate upon the concepts of 'cause-specific measures' , proportional morbidity/ 
mortality rates and case fatality rates. 

5. Apply all of the above concepts and select the appropriate measures of disease 
frequency to be used in specific circumstances. 

6. Compute the appropriate measures when provide d with the necessary data and 
calculate exact and/or approximate confidence intervals. 
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4.1 INTRODUCTION 

Measurement of disease (or event) frequency is the basis for many epidemiological 
activities. These include routine surveillance, observational research and outbreak 
investigations, among others. In observational studi es, measuring the frequency of a 
disease and an exposure, and subsequently linking (or associating) the exposure and 
the disease are the first steps to inferring causation. The hypothesis we test is described 
qualitatively but the process involves quantification and begins with measurement of 
events and exposures. 

Morbidity and mortality are the two main categories of events for which frequency 
measures are calculated. However, there are other events ofinterest such as culling (the 
prernature removal of animals from a herd or flock), survival to weaning, and pregnancy 
(eg the probability of an animai becoming pregnant within a specified time period). The 
format for calculating these is the same as it is for morbidity and mortality. 

Because both morbidity and mortality are strongly associated with animai (or herd) 
attributes, and different diseases have different impacts, we usually calculate these 
measures for specific host attributes (eg age, sex, and breed) and for specific diseases 
(ie outcomes of interest). 

4.1.1 Some factors affecting the choice of frequency measure 

Study period When selecting a measure of disease frequency for use in a study, it is 
important to consider both the study period and the risk period. The study period is 
the period of time over which the study is conducted. It is usually measured in terms 
of calendar time, but sometimes the study period is a point in time. In either instance, 
the study period could be specified in calendar time or by the event at which the data are 
collected (eg at slaughter or at birth). 

Risk period The risk period is the time during which the individual could develop the 
disease of interest. Thus, an important question is: how long is the risk period? For 
example, for diseases such as retained placenta in dairy cows, the risk period is short - a 
day or two at most; whereas, for diseases such as lameness or foot problems, it could be 
very long. 

Both the risk and study period relate to whether the population is deemed to be closed 
or open (see section 4.4.1). However, disregarding this, diseases with a short risk period 
(relative to the study period) are good candidates for risk measures. Diseases with long 
risk periods are likely candidates for rate-based measures. These two approaches to 
measuring the incidence of disease are discussed in section 4.3. 

4.2 COUNT, PROPORTlON, ODDS AND RATE 

Before discussing specific measures of disease frequency, it is necessary to review the 
mathematical forms that these measures can take. These include counts, proportions, 
odds and rates. 
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Count This is a simple enumeration of the number of cases of disease or number of 
animals affected with a condition in agiven population. Because the size of 
the population is not taken into consideration, counts of events are of very 
limited use for epidemiologic research. 

Proportion This is a ratio in which the numerator is a sub set of the denominator. For 
example, if 200 cows are tested for enzootic bovine leukosis (EB L) and 40 of them 
are positive, the proportion positive is 40/200=0.2 (or 20%). Prevalence (section 4.7) 
and risk (sections 4.3, 4.4) are both proportions. In the former, both the numerator and 
denominator are measured at a point in time. In the latter, the numerator relates to the 
number of new cases over a period of time so, although proportions have no units, the 
time period must be spec ifi ed for the proportion to make sense. 

Odds This is a ratio in which the numerator is not a subset of the denominator. For 
example, ifthere are three stillbom animai s and 120 live births, the odds ofstillbirth is 
3: 120=0.025: 1 or 25 stillbirths to 1,000 live births. The odds ofEBL (based on the data 
given above) is 40/160=0.25 (or 1:4). 

Rate A rate is a ratio in which the denominator is the number of animai-time units at 
risk. For example, if there are 30 cases of kennel cough in a 100-dog kennel over a 
three-month period, the incidence rate is 30/(100*3)=0.1 cases per dog-month. Note 
the 300 dog-months in the denominator. 

Note The term 'rate' is often used in a general sense to refer to an types ofmeasures of 
disease frequency. Strictly speaking though, it should only be used to refer to measures 
based on the concept of animai-time units. Similarly, we often say that animals with a 
high 'chance' ofhaving or getting the disease have a 'high risk' although the underlying 
measure of frequency might not be a risk. 

4.3 INCIDENCE 

Incidence relates to the number of new events (eg new cases of a disease) in a defined 
population within aspecific period. Because they deal with new cases of disease, 
studies based on incident cases of disease are used to identity factors associated with 
an animai becoming ill. Although incidence deals with 'new cases' of disease, it does 
not necessarily imply just the 'first case' within an animaI. For some diseases (eg 
clinical mastitis in dairy cows), multiple cases are possible within an animai, either by 
involving different quarters of the udder or recurring in the same quarter after a period 
of absence from that quarter. 

For reasons perhaps related to their unique susceptibility, or due to the effect ofthe first 
disease occurrence in the animai, animals that develop one case of a disease are often 
at a mu ch higher risk of developing a subsequent case. Thus, it might be preferable 
to count only the first case in terms of a disease frequency measure but to enumerate 
separately the number of occurrences per animai in the study period. 
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There are three ways of expressing incidence: 
• incidence count 
• incidence risk (R) 
• incidence rate (/). 

Incidence count is the simple count of the number of cases of disease observed in a 
population. It is often used to describe the frequency of a disease in a population in 
which the disease did not previously exist (eg country X has had 12 cases of bovine 
spongiform encephalopathy (BSE)). It might also be used for some common diseases 
(eg case counts of Salmone/la in humans) but without data on the number of samples/ 
animals examined, there are limits to the inferences we can make from count data. 
Incidence counts are rarely used in epidemiologic research unless they are combined 
with information about the population at risk (eg Poisson regression, Chapter 18). 

Incidence risk An incidence risk is the probability that an individual animaI will 
contract or develop a disease in a defined time period. Because risk is a probability, 
it is dimensionless (that is, it has no units) and ranges from O to 1. Although risk is 
dimensionless, the time period to which the risk applies must be specified. For example, 
the risk of a cow having a case of clinical mastitis in the next year is very different (ie 
much higher) than the risk ofhaving a case in the next week. In addition, only the first 
occurrence of a disease in the time period of interest is relevant because, once an animaI 
has had one case, it contributes to the numerator of the proportion and what happens to 
it after that is irrelevant. Risk is used in studies in which making individual predictions 
is the objective. For example, a study might determine that the probability that a seven­
year-old boxer will develop some form of detectable neoplasia over the next year is 
14%. Incidence risk is sometimes referred to as cumulative incidence. In the context 
of survival analysis, survival (S) is defined as: S= l-R. 

Incidence rate An incidence rate is the number of new cases of disease in a population 
per unit of animai-time during a given time period. It has units of l/animal-time, and 
is positive without an upper bound. If a cattery housing 50 cats has 72 cases of upper 
respiratory disease over a period of a year, the incidence rate is 72/50, which is 1.44/cat­
year (or 0.12/cat-month). Incidence rate s are used in studies designed to determine what 
factors are related to disease s and what the effects ofthose diseases are. Incidence rates 
are sometimes referred to as incidence density. A related concept is the hazard rate 
which expresses the theoretical limit of I as the time period approaches zero. Hazard 
rates are used in survival analysis. 

4.4 CALCULATING RISK 

Determining the number of new cases requires a clear case definition (ie what criteria 
need to be met for a 'case' to be considered as such) and a surveillance programme 
capable of identitYing ali such cases. Risk is most commonly computed at the animai 
level (eg the probability of an eight-year-old dog developing lymphosarcoma within 
the next year) but can be computed at other levels of aggregation (eg the probability of 
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a dairy herd becoming infected with Strep. aga/aetia in a one-year period). The latter 
requires a case definition of what constitutes an infected herd. 

Risk (R) of disease is estimated as: 

R 
number of new cases of disease in a defined time period 

the population at risk 

4.4.1 Populatio n at risk 

Eq4.1 

While counting the new cases of disease presents some challenges, estimating the 
population at risk can be even more difficult. The population at risk might be considered 
'closed' or 'open'. Regardless of whether the population is closed or open, onlyanimals 
free of the disease at the start of the study period are considered to be at risk. 

Closed population A closed population is one in which there are no additions to the 
population for the duration of the study and few to no losses. The duration of the study 
might be defined in terms of calendar time (eg a herd of dairy cows followed for the next 
year) or in term s of some life event (eg alI cows in a dairy herd followed for the first two 
months of lactation - regardless of when the lactation starts - to determine the risk of 
ketosis). Only disease-free animals in the population at the start of the study period are 
considered to be at risk and are monitored for the outcome of interest. Animals which 
are lost to follow-up during the study period are calI ed withdrawals and the simplest 
way of dealing with them is to subtract half of the number of withdrawals from the 
population at risk when computing R (this assumes that, on average, the withdrawals 
leave halfway through the study period). This correction for withdrawals is derived 
from (or related to) actuariallife-table methods. Unless there are no withdrawals, the 
risk estimate is biased. Nonetheless, provided the number of withdrawals is small 
relative to the population size being studi ed, the bias is small. 

Open population An open population is one in which animals are leaving and entering 
the population throughout the study period. For example, if you wanted to determine 
the frequency of lymphosarcoma over a one-year period in a population of dogs served 
by a single veterinary clinic (assuming that alI cases are diagnosed at the veterinary 
clinic), the population at risk would be an open population of dogs that were served by 
that clinic. An open population is considered to be stable if the rate of additions and 
withdrawals and the distribution of host attributes are relatively constant over time. 

It is not possible to compute risk directly from an open population but it can be 
estimated from I (section 4.6). Risk can also be estimated in open populations using 
methods for the analysis of 'survival ' data (Chapter 19). 

Sometimes we can define a follow-up period after a specified exposure/event in a 
manner that converts an open population to a closed population. For example, dairy and 
swine herds are inherently open in the sens e that newanimals enter the at-risk group 
(this use of open is not the same as saying that a farmer does or does not purchase new 
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'outside' animals). However, ifwe ob serve a set of animals, eg post-partum, for a full, 
defined risk period, then the population becomes closed. 

4.5 CALCULATING INCIDENCE RATES 

Incident rate s (l) are calculated as: 

number of cases of disease in a defined time period 
I 

number of animal-time units at risk during the time period Eq4.2 

An animai-time unit is one animaI for a defined period of time (eg a cow-month, a 
dog-day (not to be confused with the 'dog days' in August)). 

Incidence rate s can be calculated us ing only the first occurrence of disease for any 
given animai (and from then on they are not considered to be at risk), or using all 
occurrences of disease. For example, a neoplastic disease would likely occur only once 
in an animal's lifetime but some infectious diseases such as mastitis can oc cur more 
than once in a dairy cow. However, even for disease s that might occur multiple times, 
we might only be interested in an animal's first case ofmastitis as risk factors for a first 
case might be different from risk factors for recurrences. 

Note The inverse of I (l/l) is an estimate of the average time to the occurrence of 
the disease if the population is closed, or open and stable, providing the outcome is 
inevitable (all animals achieve it if they live long enough). 

As with calculating the number of animals at risk for R, there are several methods 
for calculating animaI-time units at risk for 1. The exact method is always preferred, 
but often the information is not available for you to use the exact method and an 
approximation must be substituted. 

Exact or approximate methods can be adapted for situations when animals are at risk 
for multiple disease episodes, as opposed to only one disease episode per animal. The 
important thing to remember is that if you are only interested in the first case of disease, 
then, after the animaI contracts the disease of interest, it is no longer at risk! It no 
longer contributes to the pool of animaI-time units at risk, even if it remains in the herd 
or study. 

Exact calculation An exact calculation requires that the exact amount of animaI-time 
contributed by each member of the study population be known. Example 4.1 presents 
a simple exact calculation. 

Approximate calculation If only one case of disease per animai is considered, then I is 
calculated as: 

cases 
I 

(start -1/2 sick -1/2 wth + 1/2 add) * time Eq4.3 
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Example 4.1 Exact incidence rate calculation 

Assume four previously healthy animals were observed for exactly one month (30 days). The 
history for each individual was as follows: 

1 animai not sick at all 1.00 animai-month at risk 
l animai sick on day 10 0.33 animal-months at risk 
l animai sick on day 20 0.67 animal-months at risk 
l animai sold on day 15 0.50 animal-months at risk 

Total 'population at risk' 2.50 animal-months at risk 

Total new case s of disease 2 

1= 2/2.5 0.80 case s/animai-month 

# of new cases where: cases 
start 
sick 
wth 
add 
time 

# at risk at start of study period 
# developing disease 
# withdrawn from the population 
# added to the population 
length ofstudy period (same for al! animals). 

If multiple cases of disease per animai are possible, then I is calculated as: 

cases 

71 

I = '(s-ta-rt---I:-7/2=-w---'-th-+-I-:-;/-=-2 -ad-=-d") -,--* -:-tim-e Eq4.4 

Note For relatively rare diseases, the second formula might be used even if the investigator 
is only interested in 'first cases' because the adjustment to the average population at risk by 
removing those cases will be very small. 

In general, if the risk period is much shorter than the study period, using risk as a measure 
of disease is appropriate. If the risk period is longer than the study period, then I is a more 
appropriate measure of disease incidence and the question of whether only one case, or ali 
cases of disease will be counted must be considered. 

4.6 RELATIONSHIP BETWEEN RISK AND RATE 

Another approach to estimating risk is to use the functional relationship between R and I. 
If complete data are available for a c10sed population then: 

R = A/ N and I = A/(NM) 

so 
R = Ij),! 

where A = number of cases, N = population at risk and j),! = length of study period. 



72 MEASURES OF DISEASE FREQUENCY 

Rowever, if only an average rate I is available for a population, then assuming that I is 
constant over the time period: 

R = l_e-I/',.t Eq4.5 

For example, Table 4.1 shows data obtained from 100 animaI s followed for a two-year 
period and the estimation of the annual R based on the average annual I. 

Table 4.1 Estimation of R from average I 

Year 

1 

2 

Population at risk 

100 

78a 

Cases 

22 

18 

aOnly 78 at risk because 22 had already had the disease. 
Two-year R=22+ 18/1 00=0.4. 
Average annual 1=0.225 cases/animal-year. 
Estimated annual R=I-e-o.225=0.20. 

Annuall 

0.22 

0.23 

Note If Illt is small (eg <0.1) then R;::;;Illt. For example, if 1=0.01 cases/animal-year, 
then the estimated annual R;::;;O.O l. 

4. 7 PREVALENCE 

Prevalence relates to cases of disease existing at a specific point in time rather than new 
cases occurring over a period of time. Rence, the prevalence count is the number of 
individuals in a population that have an attribute or disease at a particular time. 

The prevalence proportion (P) (also referred to simply as prevalence) is calculated as: 

P = cases 
par 

where cases = # of cases of disease in a population at a point in time 

Eq4.6 

par # of animals in the population at risk at the same point in time. 

For example, if you bleed 75 horses from a large ri ding stable and test for equine 
infectious anemia (swamp fever) and three test results are positive, P is: 

3 
P=-=0.04=4% 

75 

Relationship between prevalence and incidence In a stable population in which I of a 
disease remains constant (which it rarely does for contagious diseases), P (at any point 
in time) and I and disease duration (D) are related as follows: 

P 
1* D 

1* D+l Eq4.7 
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For example, if the incidence rate ofsubclinical mastitis in a dairy herd is O.3/cow-year 
(ie 30 new infections/l 00 cows per year) and the mean duration of an infection is three 
months (0.25 year), then we would expect P to be: 

p 0.3 * 0.25 
0.07=7% 

0.3 * 0.25 + 1 

so on any given day throughout the year, we would expect 7% of cows to have 
subclinical mastitis. 

A series of prevalence studies is often used to determine I of diseases which are 
not easily detected on the basis of clinical signs. This is particularly relevant for 
determining the rate at which animals become infected with a certain pathogen. For 
example, by bleeding a group of cats at regular intervals and testing for feline leukemia 
virus, the rate at which cats are becoming infected can be estimated. 

Note P is less useful than I for research into risk factors for disease s because factors 
that contribute to either the occurrence of disease or its duration will both affect 
prevalence. 

Example 4.2 shows the calculation ofvarious measures of P, R and 1. 

4.8 MORT ALlTY STATISTICS 

These statistics are calculated in exactly the same way as P, R and I. The disease event 
of interest in these statistics is, by definition, death. The term mortality rate, strictly 
speaking, refers to the incidence rate of mortality. However, it is often misused to 
describe the risk of mortality. You should be al ert to this and interpret the literature 
accordingly. Overall, the mortality rate describes the number of animals that die from 
all causes in a defined time period and is analogous to I except that the outcome of 
interest is death. Mortality rate is calculated in the same way as 1. 

The cause-specific mortality rate, as one would expect, describes the number of animals 
that die from (or with) a specific disease during a defined time period. This is also 
calculated the same as I. 

Mortality statistics can describe the number of deaths due to a disease or the number of 
deaths with a disease, but it is often difficult to determine the specific cause of death. 
For example, if a recumbent cow regurgitates and contracts aspiration pneumonia and 
then dies, did it die: 

due to recumbency? 
due to pneumonia? 
with pneumonia? 

Usually the 'cause' will be the factor which is deemed to be the proximate cause (ie 
the straw that broke the back). As indicated above, that might be a difficult decision to 
make. 
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Example 4.2 Calculation of risk and rate 

You are interested in determining the frequency ofnew intramammary infections (IMI) with 
Staph. aureus ín dairy cattle so you identify five cows in a daíry herd, follow them for one 
fulllactation (10 months) and culture milk samples at months O (calving), 2, 4, 6, 8 and 10 
(dry-off). The results are presented in the table below. A cow is only considered to have a new 
intra-mammary infection if it was negative on the preceding sample. 

Sampling times Total month s at risk 

First 
case Ali 

Cow O 2 4 6 8 10 only cases 

A O X O O X X 2 6 

B O O O 4 4 

C X O O 0 X X O 4 

D O O O O O O 10 10 

E O O X O X X 4 6 

where: 
X = positive culture o = positive culture that represents a new IMI 

O = negative culture 
= cow removed from herd 

par = population at risk 

a) risk ofinfection during first 2 months of 
lactation 

par=4 cows 
new IMI = l cow 
2-month R = 1/4 = 0.25 

c) rate of IMI - considering first cases only 
par = 20 cow-months 
new IMI = 2 first cases 
1= 2/20 = 0.1 cases/cow-month 

= 1 case/cow-lactation 

e) lactation risk estimated from lactation 
rate (first cases only) 

1= 1 case/cow-lactation 
R = l_eo! = 0.63 

b) risk of infection during lactation 
par = 4 - 1/2 (l withdrawal) = 3.5 cows 
new IMI = 2 cows 
lactation R = 2/3.5 = 0.57 

d) rate ofIMI - considering ali new IMI 
par = 30 cow-months 

(eg cow A at risk for months O to 2 
and 4 to 8) 

new IMI = 5 cases 
1= 5/30 = 0.17 cases/cow-month 

= 1.7 cases/cow-lactation 

f) prevalence at dry-off 
par = 4 cows 
existing IMI = 3 
p= 3/4 =0.75 

Note We are using the sampling time as the time of occurrence (or withdrawal). Some might 
prefer to use the midpoint between samplings; we have not done this to keep the calculations 
simple. 
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4.9 OTHER MEASURES OF DISEASE FREQUENCY 

Virtually ali disease frequency measures can be defined in terms of P, R and l provided 
the outcome of interest, the population at risk and the study period are adequately 
defined. However, a few spec ifi c terms that appear frequently in the literature warrant 
some attention. Most of these are referred to as rate s but are really measures of risk. 

4.9.1 Attack rates 

Attack rate s are used to describe the frequency of disease in outbreak situations. They 
are computed as the number of cases divided by the size of the population exposed. 
Consequently, they are really a measure of risk. Attack rates (risk) are used in situations 
such as outbreaks where the risk period is limited and all cases arising from the 
exposure are likely to occur within that risk period. 

4.9.2 Secondary attack rates 

Secondary attack rates are used to describe the 'infectiousness' (or ease of spread) of 
living agents. The assumption is that there is spread of an agent in the aggregate (eg 
herd, family) and that not all cases are a result of a common-source exposure. When the 
latent period is long, it is often difficult to distinguish between animal-to-animal spread 
and that due to common exposure (eg BSE in cattle). Secondary attack rates are the 
number of cases minus the initial case(s) divided by the population at risk. 

4.9.3 Case fatality rates 

The case fatality rate describes the proportion of animals with a specific disease that die 
from it (within a spec ifi ed time period). It is actuallya 'risk' measure (ie a proportion) 
instead of a 'rate' and is of ten used to describe the impact of epidemic-type diseases or 
the severity of acute diseases for affected individuals. 

4.9.4 Proportional morbidity/mortality rates 

These rate s are used when the appropriate denominator is unknown and they are 
calculated by divi ding the number of cases (or deaths) due to a specific disease by 
the number of cases (or deaths) from all disease s diagnosed. Proportional morbidity/ 
mortality rates are often used for diagnostic laboratory data and are subject to variation 
in the numerator or the denominator. Hence, they are less preferable than measures of 
risk. 

4.10 CONFIDENCE INTERVALS 

Either approximate or exact confidence intervals (CIs) can be computed for proportions 
(risk and prevalence) and rates. 
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Approximate CIs are computed by determining the mean (J1) and its standard error (SE) 
of the parameter ofinterest. The lower and upper bounds of the CI are then: 

J1 - Za *SE J1 + Za *SE Eq 4.8 

where Za is the (l-a/2) percentile of the standard normal distribution. 

In small samples, or in situations where the frequency of disease is very low (or very 
high), the approximate CIs might be misleading (and lower bounds might be negative). 
In these cases, exact CIs based on probabilities derived from the binomial distribution 
(for proportions) or the Poisson distribution (for rates) will be more appropriate. 

Example 4.3 shows the ca1culation of approximate and exact CIs for a prevalence 
proportion and exact CIs for some estimated incidence rates. 

4.11 STANDARDISATION OF RISKS AND RATES 

4.11.1 Accounting for differences in populations 

Of ten our intent is to describe the occurrence of disease in a manner that allows valid 
inferences to be made ab out factors which affect the frequency of specific diseases. 
Frequently, host factors are confounders and bias the comparison of risks (rate s) 
whether they be from different geographical areas or have a different exposure history. 
This confounding can be prevented by standardising the risks or rates. See Chapter 13 
for a more complete discussion of confounding. 

'Technical' aspects 
A population might be divided into strata (denoted by the sub script j), based on one or 
more host characteristics (eg age, sex, geographicallocation). The overall frequency 
of disease in the population is a function of the host factor distribution (denoted here 
as H) and the rates (/) or risks of disease (R) in each of the strata. The ~ for risks is 
1Y;/ N (the proportion of the study group or population in that stratum) and for rate s the 
~ is lj/ T (the proportion of animaI-time in that stratum). Specifically, the crude risk 
(R) in a population is: 

Eq4.9 

where~=~./ N 

And the crude rate (I) is: 

Eq4.1O 

where ~ = lj/T. 

Note For simplicity, for the rest of this discussion, we will primarily refer to rates, but 
the methods are equally applicable to risks. 
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Example 4.3 Confidence intervals for proportion and rate 
data=dairy _dis (herd 1) 

Prevalence data for several infectious diseases were obtained from a sample of dairy herds. 
See Example 2.1 or Chapter 27 (dairLdis) for a more complete description ofthese data. 

Approximate and exact CIs for the prevalence proportion of leukosis and Johne's disease in 
herd 1 (27 cows) in this dataset were computed. 

Number 
of positive 

Disease type samples P 95% CI 

Leukosis approximate 22 0.815 0.658 0.971 

exact 0.619 0.937 

Johne's approximate 3 0.111 -0.016 0.238 

exact 0.024 0.292 

This shows that approximate CIs might go beyond the theoretically possible boundarles of O 
andI. 

N ote The approximate CIs shown were computed using a t-distribution, not the Z-distribution 
shown in Eq 4.8, because of the smalt sample size. 

Incidence rates were computed by assuming that: 
o the age of each cow (in years) was her current lactation number plus 2. 
o aU infections arose immediately before the cow was tested (ie her period of risk was 

equal to her age). (This is a very untenable assumptíon for these two diseases and has 
been done only for the sake of this example.) 

Exact CIs for the incidence of these two disease rates were then determined based on the 
Poisson distribution. 

Number 
of positive Cow-years 

Disease samples at risk 95% CI 

Leukosis 22 158 0.139 0.087 0.211 

Johne's 3 158 0.019 0.004 0.056 

Differences in disease rate s (I) between populations of animals might be due to 
different distributions of host characteristics (H) or to actual differences in the stratum­
specific rate s (1). We can remove the effect of differences in host characteristics by 
'standardising' the risks or rates. We can carry out this standardisation by us ing a set of 
standard rates (l) from a referent population (called indirect standardisation) or by 
using a set of Hj from a standard population (called direct standardisation). 
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4.11.2 Indirect standardisation of rates 

One method to control the potential confounding effect of host characteristics when 
comparing rates from different populations is to compute standardised morbidity/ 
mortality ratios (SMR). These are based on a set of stratum-specific rate s from a 
reference, or standard, population (Is) together with the observed proportion of 
animai-time in each of the strata in the study group. The process is called indirect 
standardisation. It is very useful if the actual stratum-specific rate s are not available for 
the study population or if the estimates of those rate s are based on small sample sizes. 

The standard rates from the reference population will allow us to calculate the adjusted, 
or expected rate (Ie) as: 

Eq 4.11 

The expected number of cases in the study population (denoted as if the re ference 
population rates apply) is: 

Eq4.12 

where T is the total time at risk. 

If A is the observed number of cases in the area, the ratio A/E is the standardised 
morbidity rate ratio (similarly I/Ie=SMR). To obtain the indirect standardised rate (Iind), 
we use the overall rate in the standard population (Is) multiplied by the SMR. 

I ind = Is * SMR 

The standard error (SE) of the log of the standardised rate ratio [lnSMR] is: 

SE [lnSMR] = YJA 
and the confidence limits for the SMR can be calculated using: 

dlnSMR]±Za * SE 

Example 4.4 demonstrates the indirect standardisation ofrates. 

4.11.3 Indirect standardisation of risks 

Eq 4.13 

Eq4.J5 

Eq4.14 

We can use the same strategy for rates as described above for risks. The only difference 
is that~ is based on the proportion ofanimals in each stratum instead of the proportion 
of animai-time. The expected number of cases, if the reference population risks 
apply to the study group's distribution of animals, is E=N*Rs where Rs is the overall 
risk in the standard population. The ratio of observed to expected cases, A/E, is the 
standardised morbidity risk ratio. Again, the indirect standardised risk for the area is 
Rs*SMR. The variability of an SMR based on risks is somewhat more complex than 
one based on rates and, because most standardisation is done on rates, the formulae for 
variance will not be given here. 
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Example 4.4 Indirect standardisation of rates 

Assume that you have data on the herd rate of tuberculosis (ie incidence rate of herds found 
to be positive) from two geographical regions which you would like to compare. However, 
the proportion of dairy and beef herds differ in the two regions and you know that this factor 
influences the rate of herd infections. You obtain a set of standard incidence rates based on data 
from the whole country and they are: 

the rate in beefherds is 0.025 cases/herd-year, 
the rate in dairy herds is 0.085 cases/herd-year, and 
the overall rate is 0.06 cases/herd-year. 

In Region A, you have data from 1,000 herds over one year and in Region B, data on 2,000 herds 
for one year. The data are: 

Number Number of Observed Herd-years Standard 
of herd-years rate distribution rate 

Type cases (T) (lj) (Tj) (Isj) 

RegionA 

Beef 17 550 0.031 0.55 0.025 

Dairy 41 450 0.091 0.45 0.085 

Total 58 1000 

Overall rate 
. 0.058 0.052 

SMR = 0.058/0.052 = 1.12 

Indirect standardised rate (I ind) = 0.06 • 1.12 = 0.067 

Region B 

Beef 10 500 0.020 0.25 0.025 

Dairy 120 1500 0.080 0.75 0.085 

Total 130 2000 

Overall rate 
. 0.065 0.07 

SMR = 0.065/0.07 = 0.93 

Indirect standardised rate = 0.06 • 0.93 = 0.056 

* Overall rate is the sum of the stratum-specific rates times the Tj distribution (eg overall observed rate in 
Region A=(0.031 *0.55)+(0.091 *0,45)=0.058 (except for slight rounding errors). 

Although the stratum-specific rates in Region A are higher than in Region B, the crude overall rate 
would suggest (incorrectly) a lower rate in Region A (0.058 vs 0.065) whereas the standardised 
rates show (correctly) a higher rate in Region A (0.067 vs 0.056). 
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4.11.4 Direct standardisation of rates 

A sec ond way of addressing the problem is through direct standardisation. Here we 
use a standard distribution of the population time-at-risk in each level (stratum) of the 
confounder (or combination of confounders) for the factor(s) ofinterest (ie the Ts). The 
direct standardised rate (ldir) is: 

Eq4.16 

where Ts} is the proportion of the total subject time-at-risk allotted to the fh stratum of 
subjects. 

A major drawback to the direct method is that there is no adjustment for the variance of 
the stratum-specific rates, they all have equal weight even if they are based on a very 
fewanimals. Example 4.5 presents the calculation of direct standardised rates. 

Example 4.5 Direct standardisation of rates 

Using the same data presented in Example 4.4, and a suitable reference population which had 
a cattle type time-at-risk distribution (Ts) of: 

• beef40% 
• dairy 60%. 

Direct standarrused rates can be computed as: 

RegionA 

Beef 

Dairy 

Cattle 
type 

Direct standardised rate (Idir> 

Region B 

Beef 

Dairy 

Direct standardised rate 

Observed 
rate 
(lj) 

0.031 

0.091 

0.02 

0.08 

Reference 
population 
distribution 

(Ts
j
) 

0.4 

0.6 

0.4 

0.6 

Product 
(It Tsj) 

0.012 

0.055 

0.067 

0.008 

0.048 

0.056 

Standardisation has once again revealed that the rate of tuberculosis is actually higher in 
RegionA. 
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To express the variability of the direct standardised rate, the SE is: 

SE(Idir )=~LJTS~ * lj * Sj/NJ Eq4.17 

The confidence interval can be calculated using: 

ldir iZa *SE(Idir) Eq4.18 

The direct standardisation of risks pro ce eds in an analogous manner to that of rates. The 
actual proportion of animals (Hsj ) in each category in the reference population is used 
instead of the proportion ofanimal-time (Tsj ) in each category. 

4.12 ApPLICATION 

There are a number of areas where rate standardisation is really useful. It allows 
us to compare a set of rates without being concemed about whether or not they are 
confounded - provided we can measure the confounders. Rate standardisation works 
be st when the confounders are categorical in nature. 

One example stems from work in Ireland on tuberculosis. There, one measure of 
progress of the control programme is to monitor the annual risk (actually, prevalence) 
of lesions in supposedly tuberculosis-free cattle at slaughter. A number of factors 
affects the lesion risk. Two of the more important factors are slaughter plant (not all 
plants do an equally good job at finding lesions) and class of animaI slaughtered (cows 
tend to have higher lesion prevalence than heifers, steers or bull s ). Season also has an 
effect. One might think that, on an annual basis, season would cancel out but, if the 
slaughter distribution shifted seasonally, this would impact the lesion risk. Thus, with 
approximately 18 major slaughter plants, four classe s of animaI and four seasons, we 
would have 288 strata for each year. For each stratum, one needs the number slaughtered 
and the number oftuberculous lesions found (from which the stratum-specific risks can 
be computed). Then the number of cattle in that stratum is expressed as a proportion 
of the total slaughtered (eg us ing national data from a lO-year period as the standard 
population). We then have the H. and an R. for each stratum which are combined to 
compute a direct standardised anriual risk. I~ this manner, the annuallesion risks could 
be compared without concem about the effects of season, animai class, or slaughter 
plant biasing them. 
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SAMPLE PROBLEMS 

l. You are interested in determining the frequency of feline leukemia virus 
(FELV) infection and feline leukemia-related diseases (FLRD) in a cattery. The 
cattery has the following number of cats on the 15th of each month during a 
year: 

Month # of cats Month # of cats Month # of cats 

January 227 May 165 September 195 

February 203 June 134 October 218 

March 198 July 153 November 239 

April 183 August 179 December 254 

The total number of cat-months for the year would therefore be 2,348 with an 
average monthly population of 195.7. 
The following are relevant pieces of information about the cattery and its disease 
situation. 

On January 15, you bleed all ofthe cats and find that 63 are pos iti ve (antigen 
test) for feline leukemia virus. 
During the year, 16 cats develop one of the feline leukemia-related disease s 
(FLRD) and 12 ofthese cats die. 
Cases of FLRD last an average of three months before the cat dies or 
recovers - cats that recover are at risk of developing another case of 
FLRD. 
an additional 13 cats die of other causes. 

Compute the following parameters: 
a. lofFLRD 
b. p ofFELV infection on January 15 
c. Estimated P of clinical cases ofFLRD (at any time during the year) 
d. The overall mortality rate 
e. The FLRD specific mortality rate 
f. The FLRD case fatality rate 
g. The estimated risk of an individual cat developing FLRD. 

2. A pig farmer has 125 sows and on March 10 Actinobacillus pleuropneumonia is first 
diagnosed in his bam. Between then and July 12, a total of68 pigs develop clinical 
signs with 240fthem being treated twice. The condition responds weIl to antibiotic 
therapy and only four pigs die, but the pigs are so unproductive after the outbreak 
that the owner goes out of business and becomes a real estate salesman. What was 
l and R of clinical disease during this outbreak? 

3. A recently published survey of sheep diseases in Canada reported on losses 
determined from a survey of producers as weIl as on findings reported from diagnostic 
laboratories across the country. For diarrheal diseases, the laboratories reported the 
following etiologies. 

E. Coli 294 
Salmonella 33 
Cryptosporidia 10 
Enterotoxemia 51 
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What is the proportional mortality due to Salmonella? Is this a good indication of 
the importance of Salmonella as a cause of diarrhea in sheep? Why? 

4. Assume that you want to measure the frequency of clinical mastitis in a dairy 
herd. You have the resources to record data for a lO-week period in this herd 
and because clinical mastitis is more common in early lactation than later, you deci de 
to follow only those cows which calve during that period. The data you collect are 
shown below. Compute both R and I of clinical mastitis. 
You can assume that: 

all events occur at the beginning of the week in which they are registered. 
cows are not considered at risk for the week in which the case of mastitis 
occurs and for one week afterward. 
for computing I, multiple cases of mastitis are considered. 

A CC X le 

B c 

C c x le 

O c 
E c o 

F c x x o 

G c 
H· :x ex O 

c le 

J c 

1 2 3 4 5 6 7 8 9 10 

week 

c = calving 

x = case of disease (mastitis) 

0= cow culled or died (not mastitis) 
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5 

SCREENING AND DIAGNOSTIC TESTS 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Define accuracy and precision as they relate to test characteristics. 

2. Interpret three measures of precision for quantitative test results; calculate and 
interpret kappa for categorical test results. 

3. Define epidemiologic sensitivity and specificity, calculate their estimates and their 
standard errors (or confidence intervals ) based on alI members or subsets of a 
defined study population. 

4. Define predictive values and explain the factors that influence them. 

5. Know how to use and interpret multiple tests in series or parallel. 

6. Define and explain the impact of correlated test results (ie tests that are not 
conditionally independent). 

7. Know how to choose appropriate cutpoints for dec1aring a test result positive (this 
inc1udes receiver operating characteristics curves and likelihood ratios). 

8. Be able to use logistic regression to control the effects of extraneous variables and 
produce stratum-specific estimates of sensitivity and specificity. 

9. Estimate sensitivity and specificity when no gold standard exists. 

10. Describe the main features influencing herd-Ievel sensitivity and specificity based 
on testing individual animals. 

ll. Describe the main features influencing herd-level sensitivity and specificity based 
on using pooled specimens. 
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5.1 INTRODUCTION 

Most of us think of tests as specific laboratory test procedures (eg a liver enzyme, serum 
creatinine, or blood urea nitrogen test). A test, more generally, is any device or process 
designed to detect, or quantify a sign, substance, tissue change, or body response in 
an animaI. Tests can also be applied at the herd, or other level of aggregation. Thus, 
for our purposes, in addition to the above examples of tests, we can consider clinical 
signs (eg looking for a jugular pulse), questions posed in the history-taking of a case 
work-up (eg how long since previous calving), findings on the general inspection 
or routine examination of an animai or premises (eg a farm inspection for state of 
hygiene), or findings at post-mortem examination of carcasses as tests. Indeed, tests 
are used in virtually all problem-solving activities and therefore, the understanding of 
the principles of test evaluation and interpretation are basic to many of our activities. 
SeveraI discussions of the application and interpretation oftests are available (Greiner 
and Gardner 2000a,b; Linnet, 1988; Martin, 1984; Tyler, 1989; Seiler, 1979). 

If tests are being considered for use in a decision-making context (clinic or field 
disease detection), the selection of an appropriate test should be based on the test result 
altering your assessment of the probability that a disease does or does not exist and that 
guides what you will do next (further tests, surgery, treat with aspecific antimicrobial, 
quarantine the herd etc) (Connell and Koepsell, 1985). In the research context, 
understanding the characteristics of tests is essential to knowing how they effect the 
quality of data gathered for research purposes. The evaluation of tests might be the 
state d goal of a research project or, this assessment might be an important precursor to 
a larger research programme. 

5.1.1 Screen ing vs diagnostic tests 

A test can be applied at various stages in the disease process. Generally, in clinical 
medicine, we assume that the earlier the intervention, the better the recovery or prognosis. 
Tests can be used as screening tests in healthy animals (ie to detect seroprevalence of 
diseases, disease agents or subclinical disease that might be impairing production). 
Usually the animals or herds that test positive will be given a further in-depth diagnostic 
work-up, but in other cases, such as in national disease-control programmes, the initial 
test result is taken as the state of nature. For screening to be effective, early detection 
of disease must offer benefits to the individual, or 'programme', relative to letting the 
disease run its course and being detected when it becomes clinical. Diagnostic tests are 
used to confirm or classify disease, guide treatment or aid in the prognosis of clinical 
disease. In this setting, all animals are 'abnormal ' and the challenge is to identify the 
specific disease the animai in question has. Despite their different uses, the principles of 
evaluation and interpretation are the same for both screening and diagnostic tests. 

5.2 LABORATORY-BASED CONCEPTS 

Throughout most of this chapter, the focus will be on determining how weH tests are 
able to correctly determine whether individuals (or groups ofindividuals) are diseased 
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or not. However, before starting the discussion of the relationship between test results 
and disease status, we should address some issues related to the ability of a test to 
accurately reflect the amount of the substance (eg liver enzyme or serum antibody level) 
being measured and how consistent the results of the test are ifthe test is repeated. These 
concepts inc1ude analytic sensitivity and specificity, accuracy and precision. 

5.2.1 Analytic sensitivity and specificity 

The analytic sensitivity of an assay for detecting a certain chemical compound refers 
to the lowest concentration the test can detect. In a laboratory setting, specificity refers 
to the capacity of a test to react to only one chemical compound (eg a commonly used 
test in the dairy industry to identify the presence of antibiotic (B-lactam) inhibitors 
in milk). The analytic sensitivity of the test is 3 ppb for penicillin, meaning that the 
test can detect level s of penicillin in milk as low as 3 ppb. The test reacts primarily to 
p-lactam antibiotics but will also react with other families at higher concentrations, 
such as tetracyclines. Thus, the test is not specific to just p-lactam antibiotics. 
Epidemiologic sensitivity and specificity (discussed starting in section 5.3) depend (in 
part) on laboratory sensitivity and specificity, but are distinctly different concepts (Saah 
and Hoover, 1997). The epidemiologic sensitivity answers: Of alI milk samples that 
actually have penicillin residues, what proportion tests positive? The epidemiologic 
spec ifi city answers this question: Of alI the milk samples that don't have penicillin 
residues, what proportion gives a negative result? 

5.2.2 Accuracy and precision 

The laboratory accuracy of a test relates to its abi lit y to give a true measure of the 
substance being measured (eg blood glucose, serum antibody level). To be accurate, a 
test need not always be c10se to the true value, but if repeat tests are run, the average 
of the resuIts should be c10se to the true value. On average, an accurate test will not 
overestimate or underestimate the true value. 

The precision of a test relates to how consistent the resuIts from the test are. If a test 
always gives the same value for a sample (regardless ofwhether or not it is the correct 
value), it is said to be precise. Fig. 5.1 shows the various combinations ofaccuracy and 
precision. 

Fig. 5.1 Laboratory accuracy and precision 

accurate and precise 

inaccurate and precise 

accurate but not precise 

inaccurate and not precise x 
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Results from tests that are inaccurate can only be 'corrected' if a measure of the 
inaccuracy is available and used to adjust the test results. Imprecision can be dealt with 
by performing repeated tests and averaging the results. Correct calibration of equipment 
and adherence to standard operating procedures are essential to good accuracy and 
precision; however, the details are beyond the scope of this book. 

5.2.3 Measuring accuracy 

Assessing accuracy involves running the test on samples with a known quantity of the 
substance present. These can be tieId samples for which the quantity of the substance 
has been determined by ageneraIly accepted reference procedure. For example, the 
accuracy of an infrared method for determining milk urea nitrogen (MUN) level in 
milk samples was recently determined by comparing those results with those obtained 
from a 'wet-chemistry' analysis (Arunvipas et al, 2002). Altematively, the accuracy of 
a test can be determined by testing samples to which a known quantity of a substance 
has been added. The possibility of background levels in the original sample and the 
representativeness of these 'spiked' samples make this approach less desirable for 
evaluating tests designed for routine tieId use. 

Variability among test results (ie an estimate of preci sion) might be due to variability 
among results obtained from running the same sample within the same laboratory 
(repeatability) or variability between laboratories (reproducibility). Regardless of 
which is being measured, evaluating precision involves testing the same sample multiple 
times within and/or among laboratories. Methods for quantifying the variability in test 
results are discussed in the following two sections. A much more detailed description of 
procedures for evaluating laboratory-based tests can be found in Jacobson (1998). 

5.2.4 Measuring precision of tests with quantitative outcomes 

Some commonly used techniques for quantifying variability, or for expressing results 
of comparisons between pairs of test results are: 

coefficient of variation 
Pearson correlation coefficient 
concordance correlation coefficient (CCC) 
limits of agreement plots. 

The coefficient ofvariation (CV) is computed as: 

CV=O" 
f..L Eq5.1 

where (J is the standard deviation among test results on the same sample and f.1 is the 
average of the test results. It expresses the variability as a percentage of the mean. The 
CV for agiven sample can be computed based on any number of repeat runs of the 
same test and then these values can be averaged to compute an overall esti mate of the 
CV (see Example 5.1). 
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Example 5.1 Measuring agreement - quantitative test results 
data=elisa Jepeat 

A set of 40 individual cow milk samples was tested for parasite antibodies six times using 
an indirect microtitre ELISA based on a crude Ostertagia ostertagi antigen. Both raw 
and adjusted optical density (OD) values are recorded in the dataset (see Chapter 27 for 
description of adjustment method). The results were used to evaluate the precision and 
repeatability of the test. 

The CV for each sample was computed based on the six replicate values and then averaged 
across the 40 samples. The mean CV was 0.155 for the raw values and 0.126 for the adjusted 
values suggesting that the adjustment process removed some of the plate-to-plate variability. 

Pearson correlation was used to compare values from replicates l and 2. The correlation was 
0.937 for the raw values and 0.890 for the adjusted values. 

Comparlng replicates l and 2, the eee was 0.762 for the raw values and 0.858 for the 
adjusted values, suggesting much bett~r agreement between the two sets of adjusted values 
(than between the two sets ofraw values). Fig. 5.2 shows a eec plot. 

Fig. 5.2 Concordance correlation plot 
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readings compared with low OD readings. 

(continued on next page) 



90 

Example 5.1 (continued) 
data=elisa Jepeat 

SCREENING AND DIAGNOSTIC TESTS 

The limits of agreement plot for the same data is shown in Fig. 5.3. It indicates that most of 
the differences between the replicates fell in the range of+0.18 and -0.30 units. 

Fig. 5.3 Limits of agreement 
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A Pearson correlation coefficient measures the degree to which one set of test results 
(measured on a continuous scale) varies (linearly) with a second set. However, it does 
not directly compare the values obtained (it ignores the scales ofthe two sets ofresults) 
and for this reason, it is much less useful than a concordance correlation coefficient for 
comparing two sets of test results (see Example 5.1). Both of these statistics are based 
on the assumption that the data are normally distributed. 

As with a Pearson correlation coefficient, a concordance correlation coefficient (Lin, 
1989) can be used to compare two sets oftest results (eg results from two laboratories), 
and it better reflects the level of agreement between the two sets of results than the 
Pearson correlation coefficient does. If two sets of continuous-scale test results agreed 
perfectly, a plot of one set against the other would produce a straight line at a 45° angle 
(the equality line). The CCC is computed from three parameters. The location-shift 
parameter measureS how far the data are (above or below) from the equal it y line. The 
scale-shift parameter measures the difference between the slope for the sample data and 
the equality line (slope= 1). (The product ofthe location-shift and scale-shift parameters 
is referred to as the accuracy parameter.) The usual Pearson correlation coefficient 
measures how tightly clustered the sample data are around the line (slope). The CCC 
is the product of the accuracy parameter and the Pearson correlation coefficient. A 
value of l for the CCC indicates perfect agreement. Example 5.1 shows a concordance 
correlation plot for two sets of ELISA results. The CCC has recently been generalised to 
deal with >2 sets of test results and to work with categorical data (King and Chinchilli, 
2001). 
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Limits of agreement pio ts (also called Bland-Altman plots) (Bland and Altman, 1986) 
show the difference between the pairs of test results relative to their mean value. Lines 
that denote the upper and lower difference values that enc10se 95% of the points are 
added to the plot. They indicate the range of differences between the two sets of test 
results. This method is also useful to determine if the level of disagreement between the 
two sets ofresults varies with the mean value of the substance being measured and can 
also be used to identify the presence of outlying observations. A limits of agreement 
plot is presented in Fig. 5.3. 

5.2.5 Measuring precision and agreement of tests with a qualitative outcome 

Ali of the above procedures are useful if the quantity of interest is measured on a 
continuous scale. lfthe test results are categorical (dichotomous or multiple categories), 
a kappa (or weighted kappa) statistic can be used to measure the level of agreement 
between two (or more) sets of test results. Obviously, the assessments must be carried 
out independently of each other using the same set of outcome categories. The data 
layout for assessing agreement is shown in Table 5.1 for a 2X2 table (larger 'square' 
tables are also used). 

Table 5.1 Layout for comparing results from two qualitative (dichotomous) tests 

Test 2 positive Test 2 negative Total 

Test 1 positive n11 n12 n1. 

Test 1 negative n21 n22 n2. 

Total n 1 n 2 

In assessing how weil the two tests agree, we are not seeking answers relative to a 
gold standard (section 5.3.1) as this might not ex ist, but rather whether the results of 
two tests agree with each other. Obviously, there will always be some agreement due 
to chance, and this must be considered in the analysis. For example, if one test was 
positive in 30% of subjects and the other test was positive in 40%, both would be 
expected to be positive in 0.4*0.3=0.12 or 12% of subjects by chance alone. So, the 
important question is: what is the level, or extent, of agreement beyond what would 
have been expected by chance? This question is answered by a statistic called Cohen's 
kappa. We can calculate the essential elements of kappa very easily. They are: 

observed agreement = (n]] + n22)/n 

expected agreement (chance) = [(n]* n])/n + (n2* n 2)/n]/n 

actual agreement beyond chance = observed - expected 

potential agreement beyond chance = (l - expected) 

kappa = actual agreement beyond chance/potential agreement beyond chance. 
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A formula for calculating kappa directly is: 

k 
2(nlln22 -n]2 n2]) 

appa= 
n]n2. +n2n] Eq5.2 

Formulae for the standard error and test of significance are available elsewhere (Bloch 
and Kraemer, 1989; Kraemer and Bloch, 1994). Before assessing kappa, we should 
assess whether there is test bias. This would be indicated by the proportion positive to 
each test differing (ie PI *- P2' where PI and P2 represent the proportion positive to tests 
l and 2, respectively). Because the data are paired this can be assessed by McNemar's 
test or an exact binomial test for correlated proportions. 

Eq5.3 

A non-significant test would indicate that the two proportions positive do not differ. 
If significant this test suggests a serious disagreement between the tests and thus the 
detailed assessment of agreement could be of little value. 

The magnitude of kappa is influenced by the extent of the agreement as weIl as by the 
prevalence (P) of the condition being tested for. When the latter is very high or very 
low (outside of the range 0.2 to 0.8), the kappa statistic becomes unstable (ie difficult to 
rely on and/or interpret). Common interpretations of kappa, when applied to a test that 
is subjective in nature (eg identifying lesions on an X-ray), are as follows: 

<0.2 slight agreement 
0.2 to OA fair agreement 
OA to 0.6 moderate agreement 
0.6 to 0.8 substantial agreement 
>0.8 almost perfect agreement. 

Example 5.2 shows the computation ofkappa for assessing agreement between indirect 
fluorescent antibody test (IFAT) results for infectious salmon anemia (ISA) when the 
test was performed in two different laboratories. 

For tests measured on an ordinal scale, computation of the usual kappa assumes that 
any pair of test results which are not in perfect agreement are considered to be in 
disagreement. However, if a test result is scored on a five-point scale, a pair of tests with 
scores of 5 and 4 respectively, should be considered in 'less disagreement' than a pair of 
scores of 5 and l. Partial agreement can be taken into account us ing a weighted kappa 
in which pairs of test results that are dose are considered to be in parti al agreement 
(through a weight matrix which specifies how much agreement should be assigned 
to them). Example 5.3 shows the data layout and the results of an unweighted and 
weighted kappa for comparing two sets of IF AT results for the ISA viru s in salmon. 
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Example 5.2 
data=ISA _test 

Agreement amon g dichotomous test results 
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Kidney samples from 291 salmon were split with one-half being sent to each of two 
laboratories where an IFAT test was run on the sample. IFAT results were expressed as O 
(negative) or 1+,2+,3+, or 4+. They were subsequently dichotomised so that an scores of 1 + 
and higher were considered positive. The data were: 

IFAT 2 positive IFAT 2 negative Total 

IFAT 1 positive 

IFAT 1 negative 

Total 

19 

6 

25 

10 

256 

266 

29 

262 

291 

The McNemar's i test had the value 1.00 (P=0.317; the binomial P-value was 0.45) indicating 
that there is little evidence that the two laboratories found diff"erent proportions positive. 

observed agreement = 0.945 
kappa = 0.674 
95% CI ofkappa = 0.132 to 0.793 

expected agreement = 0.832 
SE(kappa)a = 0.0584 
P< 0.001 

Thus the level of agreement appears substantial and is statistically significantly better than 
that expected due to chance. However, the CI is wide, reflecting considerable uncertainty 
about the estimate. 

a There are a number of formulae for the SE; the one used here is attributed to Fleiss (1981). 

5.3 THE ABILITY OF A TEST TO DETECT DISEASE OR HEALTH 

The two key characteristics we esti mate are the ability of a test to detect diseased 
animai s correctly (its sensitivity), and at the same time to give the correct answer if 
the animaI in question is not diseased (its specificity). For pedagogical purposes, we 
will assume that animals are the units of interest (the principles apply to other level s of 
aggregation). Further, we will assume that a specific 'disease' is the outcome although 
other condition s such as pregnancy, premature herd removal (culling), having a 
specified anti body titre, or infection status could be substituted in a particular instance. 
To initiate this discussion, it is simple st to assume that the test we are evaluating gives 
only dichotomous answers, positive or negative. This might be a bacterial culture in 
which the organism is either present or absent, or a question about whether or not a 
dairy farmer uses a milking machine with automatic take-offs. In reality, many test 
results provide a continuum of responses and a certain level of response (colour, test 
result relative to background signal, level of enzyme activity, endpoint titre etc) is 
selected such that, at or beyond that level, the test result is deemed to be positive. 

5.3.1 The gold standard 

A gold standard is a test or procedure that is absolutely accurate. It diagnoses all of the 
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Example 5.3 
data=ISA _test 

Agreement among ordinal test results 

The data described in Example 5.2 were used except the original ordinal data were retained 
(5-point scale). 

IFAT2 

IFAT 1 Neg + ++ +++ ++++ 

Neg 256 5 O O 

+ 8 2 O 2 O 

++ 2 1 O 4 O 

+++ O O 2 2 O 

++++ O O O 3 3 

Simple (unweighted) kappa=0.45 (assumes that ali test results which were not identical as 
being in disagreement). 

A weighted kappa was computed (Fleiss, 1981) in which test results were: 
identical: weighted as complete agreement 
l level apart: weighted as 70% agreement 
2 levels apart: weighted as 30% agreement 
>2 levels apart: weighted as complete disagreement. 

(One should, of course, explain the motivation behind the weights used.) 

Weighted kappa=0.693, SE(kappa)=O.046. 

The weighted kappa still suggests only moderate agreement but is a better reflection of the 
agreement between the two sets of tests than the unweighted test is. 

specific disease that exists and misdiagnoses none. For example, ifwe had a definitive 
test for feline leukemia viru s infection that correctly identified aII feline leukemia virus­
infected cats to be positive and gave negative results in aII non-infected cats, the test 
would be considered a gold standard. In reality, there are very few true gold standards. 
Partly this is related to imperfections in the test itself, but a good portion of the error is 
due to biological variability. Animals do not immediately become 'diseased' , ev en sub­
c1inicaIIy, when exposed to an infectious, toxic, physical or metabolic agent. UsuaIIy, 
a period of time wiII pass before the animai responds in a manner that produces a 
detectable or meaningfui change. The time period for an animal's response to cross the 
threshold and be considered 'diseased' varies from animai to animaI. 

TraditionaIIy, in order to assess a new test we need the gold standard. Of ten, however, 
because of practical difficulties, we must use the accepted diagnostic method which 
might be c10ser to a 'bronze', or in the worst case a 'tin' standard. This can produce 
considerable difficulties in test evaluation, and thus, in recent years, we have begun to 
use statistical approaches (eg maximum likelihood estimation methods) to help estimate 
the two key test characteristics in the absence of a gold standard (see section 5.9). 
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5.3.2 Sensitivity and specificity 

The concepts of sens iti vit y and specificity are often easier to understand through the use 
of a 2X2 table, displaying disease and test results in a sample of animals. 

Table 5.2 Data layout for test evaluation 

Test pos iti ve (T +) Test negative (T-) Total 

Disease positive (D+) a (true positive) b (false negative) m1 

Disease negative (D-) c (false positive) d (true negative ) mo 

Total n1 no n 

The sensitivity of a test (Se) is the proportion of diseased animals that test positive. It 
is described statistically as the conditional probability oftesting positive given that the 
animai is diseased [p(T+ID+)], and is measured by: 

Se=~ 
Eq5.4 

The specificity of a test (Sp) is the proportion of non-diseased animals that test negative. 
It is described statistically as the conditional probability of testing negative given that 
the animai does not have the disease ofinterest [p(T-ID-)] and is measured by: 

d 
Sp=-

mo Eq5.5 

For future purposes, we will denote the false positive fraction (FPF) as l-Sp and the 
false negative fraction (FNF) as l-Se. From a practical perspective, if you want to 
confirm a disease, you would use a test with a high Sp because there are few false 
positives. Conversely, if you want to rule out a disease, you would use a test with a high 
Se because there are few false negatives. 

The estimation of Se and Sp of an indirect ELISA test for detecting bovine fetuses 
persistently infected (PI) with the bovine virus diarrhea (BVD) viru s is shown in 
Example 5.4. A blood sample is taken from the cow in late lactation and tested for 
antibodies to the virus. If they are present at a high level, the fetus is deemed to be 
persistently infected with the BVD virus. 

5.3.3 True and apparent prevalence 

Two other terms are important descriptors of the tested subgroup. One denotes the 
actual level of disease that is present. In screening-test jargon, this is called the true 
prevalence (P); in clinical epidemiology, this is referred to as prior prevalence, or 
pre-test prevalence. P is a useful piece of information to include in our discussion of 
test evaluation because it will affect the interpretation of the test result. In Example 5.4, 
P=p(D+)=m/n=233!1673=0.139 or 13.9%. 

In contra st to the 'true' state, unless our test is perfect, the test results will only 
provide an estimate of the true prevalence and, in screening-test jargon, this is called 
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the apparent prevalence (AP). In Example 5.4 AP=p(T+)=n/n=80011673=0.478 or 
47.8%. In clinical epidemiology, this might be referred to as a post-test prevalence. 

5.4 ESTIMATING TEST SENSITIVITY AND SPECIFICITY 

5.4.1 Characteristics of the sampled population 

Sensitivity and specificity represent average values of the test characteristics and as 
such, we can expect their levels to vary from one subgroup of the population to another. 

Example 5.4 
data=bvd _test 

Sensitivity, specificity and predictive values 

The data used for this example came from a study done to evaIuate an ELISA test for the 
diagnosis of bovine fetuses persistently infected (PI) with BVD virus. See Chapter 27 for a 
more complete description of this dataset. The test was designed to work on both milk and 
blood samples, but the data used here relate only to the blood sample results. The mean optical 
density was 0.92 units. Thus, for this example a fetus was deemed to be test positive if the 
optical density of the blood test was greater than 0.92 units. (This is not an optimal cutpoint 
for this test, but is used for illustration. ) 

PI+ 

PI-

(D+) 

(D-) 

Test + Test-

178 

622 

800 

55 

818 

873 

233 

1440 

1673 

For purposes of description, the 178 animaI s are called true positives, the 622 are false 
positives, the 55 are false negatives and the 818 are true negatives. We will assume here that 
the study subjects were obtained using a simple random sample. 

In this example, 
Se = 178/233 = 76.4% 

Sp = 818/1440 = 56.8% 

FNF= 1-0.764 = 23.6% 

FPF= 1-0.568 =43.2% 

p"" 233/1673 = 13.9% 

AP"" 800/1673 = 47.8% 

Pv+ = 178/800 = 22.3% 

pv- = 818/873 = 93.7% 

95% CI = (70.4% to 81.7%) 

95% CI = (54.2% to 59.4%) 

95% CI = (19.4% to 25.3%) 

95% CI = (91.9% to 95.2%) 

Note The confidence intervals are exact based on the binomial distribution. 
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Consequently, when estimating Se and Sp, it is important that the study population 
to which the gold standard diagnostic procedure is applied be representative of the 
target population (ie those animals to whom the test will be applied in the future). This 
representativeness refers to the attributes of the animals being tested including their 
age, breed, sex etc as host and environmental factors might influence the ability of a 
test to detect disease. In fact, often it is useful to stratify the results based on the more 
important of these factors in order to obtain more valid stratum-specific estimates. In 
addition, it is important that the study group contains an appropriate spectrum of disease 
(eg severity, chronic it y or stage of development). Certainly, the test characteristics 
might differ in different stages of the disease process; for example, tests for Johne's 
disease work much better once the animaI is clinically ill as opposed to only being 
infected with the organism Mycobacterium avium subsp paratuberculosis (Map). 

5.4.2 Study designs for determining sensitivity and specificity 

In some settings, the two group s of D+ and D- animals (or samples from them) are 
available and the new test can be evaluated on them. In other instances, a sample 
of animaI s is obtained and the test and gold standard are applied to alI the sampled 
animals. In still other circumstances, only a sub-sample of test positive and negative 
animals is submitted to the gold standard test. 

If a pre-determined set of D+ and D- animals is used for Se and Sp estimation, then these 
statistics can be treated as binomial parameters for purposes of calculating variances 
and confidence limits. Common software will usually provide either asymptotic or 
exact confidence limits. Predictive values (PVs) (section 5.5) have no meaning with 
fixed ml and mo sample sizes (ie when P is determined by the investigator). 

If a cross-sectional sample of animals is used for the study population, with complete 
verification of true health status on alI study animals, then the same approach can be 
used. Here, predictive values, true and apparent prevalence are alI meaningfuI and 
treating each of these as a binomial proportion allows calculation of variance and CIs. 

In either case, it is advantageous to have a spectrum of host attributes and clustering 
units (if any) present (ie animals from a number of different farms). The results should 
be assessed for differences in Se or Sp by host attributes using logistic regression (see 
section 5.8). Blind assessment and complete work-ups of alI animals are useful aids to 
prevent bias in the estimates. When Se and Sp are estimated based on samples obtained 
from several animals within a number offarms, adjustment of the standard errors (SEs) 
for the clustering effect should be made. 

If a cross-sectional sample of animals is tested, but only a subset of the test positive 
and negative animals are assessed for their true health status, this feature must be built 
into the ensuing estimates of Se and Sp. Predictive values are unbiased. In addition, it is 
vitally important that selection of animals for verification be independent of their true 
health status. In this instance, if we denote the fraction (s.nof the test positives that are 
verified as sfr+, and that of the test negatives as sfr., then the corrected estimate of Se 
is: 
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a/sfr+ 

a/sfr+ +b/sfr-

and the corrected estimate of Sp is: 

SPeorr 
d/sfr_ 

d/sfr- +c/sfr+ 

(See Example 5.5.) If sfT+ =sA_ no correction to Se or Sp is needed. 

Example 5.5 
data=none 

Estimating Se and Sp using avalidation subsample 

Eq5.6 

Eq5.7 

Suppose that, at slaughter, we exarnine 10,000 cattle for the presence of Iesions consistent 
with bovine tuberculosis (TB). We find lesions in 242 cattle. A detailed follow-up is done on 
100 of the animaI specimens with Iesions and on similar tissue specimens from 200 of the 
'clear' animals.1n the animals with lesions, 83 are confirmed as bovine tuberculosis, whereas 
two ofthe 200 clear animals are found to have tuberculosis. The data are shown here. 

and 

TB+ 

TB-

(0+) 

(0-) 

Lesion+ 

83 

17 

100 

sin = 100/242 = 0.413 

slr_ = 200;9758 = 0.0205 

Lesion-

2 

198 

200 

From these we can calculate Secorr and SPeorr 

83/0.413 200.9 = O 672 
298.5 . 83/0.413 + 2/0.0205 

with approximate variance of (0.672*0.328)/85=0.003 and 

198/0.0205 9658.5 = O 9716 
9941.2 . 0.9716/0.0205+ 17/0.413 

with approximate variance of(0.9716*0.0284)/215=0.00013 

The variances ofthese 'corrected' proportions are calculated using only the number of 
verified individuals in the variance formulae (ie the a+b verified animals for Secorr and 
the c+d verified animals for SPeorr (TabIe 5.2). 
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5.4.3 Precision of sensitivity and specificity estimates 

When designing a study to estimate the Se and/or Sp of a test, we need to consider the 
number of animals that is required to obtain a specified precision for each estimate. 
These form the basis for estimating the 95% (or other specified level) CIs as shown in 
Example 5.4. For Se, estimates within ±5% might suffice, whereas for screening low­
risk populations, much larger sample sizes are needed as Sp estimates need to be within 
at least ±O.5% of the true value. In a diagnostic setting, Sp estimates within 3-5% of the 
true value should suffice. See Chapter 2 for details on sample size. 

5.5 PREDlCTIVE VAL VES 

The Se and Sp are characteristics of the test. However, these terms do not tell us directly 
how useful the test might be when applied to animals ofunknown disease status. Once 
we have decided to use a test, we want to know the probability that the animaI has 
or does not have the disease in question, depending on whether it tests positive or 
negative. These probabilities are call ed predictive values and these change with 
different populations of animals tested with the same test because they are driven by the 
true prevalence of disease in the study population as weil as by the test characteristics. 
In this discussion, we assume the group of subjects being tested is homogeneous with 
respect to the true prevalence of disease. If not, then the covariates that affect disease 
risk should be identified and separate estimates made for each subpopulation. 

5.5.1 Predictive value positive 

With data as shown in Table 5.2, the predictive value of a positive test (PV+) is the 
probability that given a pos iti ve test, the animaI actually has the disease; this might be 
represented as p(D+IT+) or a/nj. The predictive value ofa positive test can be estimated 
using the following formula: 

PV+= p(D+)*Se 
p(D+)* Se+ p(D-)*(1-Sp) Eq 5.8 

This formula explicitly indicates that the true prevalence of disease in the tested group 
affects the PV+. 

5.5.2 Predictive value negative 

In a similar manner, the PV of a negative test (PV-) is the probability that given a 
negative test, the animaI does not have the disease (ie p(D-IT-)). From Table 5.2 this 
is PV-=dlno. The predictive value of a negative test result can be estimated using the 
following formula: 

PV 
p(D-)*Sp 

p(D -)* Sp +p(D +)* (1- Se) Eq5.9 

Estimates of PV+ and PV- are shown in Examples 5.4 and 5.6. Note These values 
represent the predictive values given the P observed in the study population. 
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Example 5.6 
data=bvd_test 

Effect of prevalence on predictive values 

In order to examine the impact of a change in P on the outcome of a test, we will use the values 
of Se and Sp from Example 5.4 and specify three scenarios where the true prevalence varied 
from 50% to 5% and then to l %. For pedagogical purposes, we demonstrate the calculations 
for the 50% prevalence scenario in a 2X2 table. A simple way to proceed to obtain these 
results is to construct a fictitious population of 1,000 animals with 500 being 'diseased' (ie 
PI+) and 500 being PI- based on the true prevalence of 50%. Then, we calculate 76.4% (Se) 
of 500 and fill in the 382 true positives. Finally, we calculate 56.8% (Sp) of 500, fill in the 284 
true negatives, and complete the table. 

Test + Test-

PI+ 382 118 

PI- 216 284 

598 402 

From these data: 
PV+ = 382/598 = 63.9% The probability that a cow testing 

have a Pl+ calfis 63.9% 
PV- = 284/402 = 70.6%. The probability that a cow testing 

have a PI- calfis 70.7% 

Comparable values ifthe prevalence is 5% or 1% are: 

Prevalence (%) PV+ (%) 

5 a5 
1.8 

As you can see, the PV+ drops offrapidly as P faUs, but the PV- rises. 

500 

500 

1000 

positive 

negative 

PV- (%) 

97.9 

99.6 

will 

will 

truly 

truly 

Because we are more often interested in the 'disease' side of the question, there is a 
measure of the probability that an animaI that tests negatively is actually diseased. It is 
called the positive predictive value of a negative test or PPV-=b/no or l-(PV-). 

5.5.3 Increasing the predictive value of a positive test 

One way to increase the predictive value of a positive test is to use the test on animals 
where the P in the population being tested is relatively high. Thus, in a screen ing 
programme designed to ascertain if a disease is present, we often might slant our testing 
towards animals that are likely to have the disease in question. Hence, testing culled 
animals, or animals with a particular history, is a useful way of increasing the pre-test 
(prior) probability of disease. 

A sec ond way to increase PV+ is to use a more specific test (with the same or higher Se), 
or change the cutpoint of the current test to increase the Sp (but this would decrease the 
se somewhat also). As Sp increases, PV+ increases because b approaches zero (fewer 
false positives). A third, and very common way to increase PV+ is to use more than one 
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test. Here the result depends on the method of interpretation as well as the individual 
test characteristics. 

5.6 USING MULTIPLE TESTS 

5.6.1 Parallel and series interpretation 

Using two tests represents the simplest extension of more than one test although the 
principles discussed below hold true for multiple tests. Suppose we have two different 
tests for detecting a disease. In Example 5.7, we use the results from the IFAT test for 
infectious salmon anemia (Se=O.784, Sp=O.951) and the polymerase chain reaction 
(peR) test for the same disease (Se=O.926, Sp=O.979). If both tests are carried out, the 
resuIts can be interpreted in one of two ways. With series interpretation, onlyanimals 
that test positive to both tests are considered test positive. With parallel interpretation, 
animals that test positive to one test, the other test or both tests are considered test 
positive. Series interpretation increases Sp but decreases Se; whereas parallel testing 
increases Se and decreases Sp. 

Example 5.7 
data=ISA_test 

Series versus parallel interpretation 

The data in this example are from the ISA_test dataset. The tests we are comparing are the 
indirect fluorescent antibody test (IFAT) and the polymerase chain reaction (PCR) test, with 
clinical disease status (see dataset description Chapter 27) used as the gold standard. The 
observedjoint distributions of test results and vírus presence are shown below along with the 
fOUf possible test interpretation criteria. 

Number of fish by test-result category Totals 

IFAT result + 

peR result + 

Diseased fish 134 

Non-diseased fish O 

Series interpretation + 

Parallel interpretation + 

Se ofIFATonly = 138/176 = 0.784 

Se ofPCR only = 163/176 = 0.926 

+ 

O 

4 
28 

O 

+ 

Se of series interpretation = 134/176 = 0.761 

se ofparalle1 interpretation = (134+4+29)/176 = 0.949 

Sp of series interpretation = (28+12+534)/574 = 1.000 

Sp of parallel interpretation = 534/574 = 0.930 

O O 

+ O 

29 9 176 
12 534 574 

O O 

+ O 

Sp ofIFAT only == 546/574 == 0.951 

Sp ofPCR only = 562/574 == 0.979 
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Note If tests are going to be interpreted in series, it often m"kes sense to first test all 
animai s with the test that is less expensive and/or more rapid, and then test all test 
positives with the sec ond test. This is referred to as sequential testing and it provides 
the same results as simultaneous testing, but at lower cost, because only those subjects/ 
samples positive to the first test are followed-up with the second test. 

5.6.2 Correlated test results 

Given the previous discussion on parallel and series interpretation, one might think that 
virtually 100% Se would be obtainable with two-to-three tests used in parallel or 100% 
Sp with three-to-four tests used in series. However, Example 5.7 uses observed values, 
not one s we might expect assuming conditional independence of tests. The expected 
distributions of results, if the tests were independent, are shown in Table 5.3. 

Table 5.3 Expected Se and Sp levels wi th combined tests for ISA assuming 
conditional independence (Example 5.7) 

Sensitivity Specificity 

I nterpretation Expected Observed Expected Observed 

Parallel 0.784+0.926-
0.784*0.926 = 0.984 

0.951 *0.979=0.931 0.930 

Series 0.784*0.926=0.726 

0.949 

0.761 0.951 +0.979-
0.979*0.951 =0.999 1.000 

The expected Se for parallel interpretation is slightly higher than observed and slightly 
lower than observed for series interpretation. The expected and observed values for 
Sp are virtually identical. Note that conditional independence assumes that, in D+ 
animals, the probability of a positive test result to test 2 is the same in samples that test 
negative to test 1 as it is in those that test positive to test l. A similar assumption exists 
in D- individuals. More likely, and as observed with these data, especially if the tests 
are biologically related (eg both antibody tests), if test l is negative, the result on test 
2 is more likely to be negative than if test 1 was positive. ln this instance, we would 
describe the test results as dependent, or correlated (Gardner et al, 2000). 

The extent of the dependence can be calculated as shown below and in Example 5.8. 
1. Denote the observed proportion of D+ animals with a positive test result to both 

tests as Pili (more generallYPijk; i denotingtest 1 result,j denotingtest2 result, andk 
denoting disease status (l =dlseased, O=non-diseased). 

2. In theD+ group, and using the sample estimates of Se fortests l and 2 respectively, 
(Sel and Se2), the covariance is: 

covar(+) = Plll - Sel * Se2 
3. Similarly, in the D- group and us ing the sample estimates of SPI and SP2' the 

covariance is: 

covar( -) = Pooo - SPI * SP2 
The usual circumstance would be that these covariances would be positive, 
indicating dependence. In a more formai sense, if one calculates an odds ratio 
(OR) on the data from the D+ group (OR+) and separatelyon the D- group 
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Example 5.8 
data=ISA _test 

Estimating covariance between test results 
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Using the Se and Sp estimates obtained in Example 5.7, the covariance in the D+ and D­
groups are: 
D+ group: 
D- group: 

covar(+) = PllI - Sel * Se2 = 0.761 - 0.726 = 0.035 
covar(-) = Pooo - SPI * SP2 = 0.930 - 0.931 = -0.001 

There is a slight positive covariance in the D+ group, but it is sufficientIy small that the 
correction will not materially affect the results when the tests are used in combination. There 
is virtually no covariance in the D- group. 

(OR-), these ORs describe the above two covariances respectively, because, ifthe 
tests were conditionally independent, the ORs would equal 1. Similarly, if the 
test results are conditionally independent, the kappa statistic in data from D+ and D­
individuals would both equal O. 

4. Given dependence, the Se and Sp resulting from parallel interpretation oftwo tests 
are: 

Sep = 1 - POOI = 1 - (1 - Sel) * (1 - Se2) - covar (+) 

SPp = Pooo = SPI * SP2 + covar (-) 

From series interpretation oftwo tests these are: 
Ses = Plll = Sel * Se2 + covar (+) 

Functionally, this means that the gains/losses from using either ofthese approaches are 
not as great as predicted under conditional independence. It can also affect the choice 
of tests to be used. For example, a more optimal outcome might ari se from choosing 
two independent tests with lower sensitivities than two dependent tests with higher 
sensitivities. 

5.6.3 Setting cutpoints for declaring a test result positive 

For many tests, the substance being evaluated (eg urea in milk, serum calcium, liver 
enzyme s ) is measured on a continuous scale or with semi-quantitative (ordinal) results. 
These items need cutpoints (also called cut-offs or thresholds) to determine what level 
of result indicates a positive test result. This is also true for many serologic titres. In 
reality, there is of ten an overlap in the distribution of the substance being measured 
between healthy and diseased animai s and we usually select a cutpoint that optimises 
the Se and Sp of the test. The dilemma is depicted in Fig. 5.4. As will be demonstrated 
(section 5.6.5), it is often useful to use the actual result when assessing the health status 
of the tested subject(s). 
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Fig. 5.4 Overlap between healthy and diseased animals 

0.145 

c: 
o 
~ 
~ 

O 
O 0.5 1.0 1.5 2.0 2.5 

0.149 

c: 
o 
ti 
~ 

O 
O 0.5 1.0 1.5 2.0 2.5 

optical density 

The distribution of OD in PH and PI- calves overlaps considerably. Thus, whatever 
cutpoint we choose to denote a calf as test positive, there will be both false positive and 
false negative calves as shown in Example 5.9. PI- calves with test results at or above a 
given cutpoint are false positives and PH calves with test results below the cutpoint are 
false negatives. Ifwe raise the cutpoint, the Sp will increase (false positives decrease) 
and the Se will decrease (more false negatives). Lowering the cutpoint has the opposite 
effect. Thus, the choice of cutpoint to use will depend on the relative seriousness of 
either a false negative or a false positive test result. 

If one has to choose among multiple cutpoints, graphical procedures (see section 5.6.4) 
might be used to help choose an optimal cutpoint. Alternatively, it is possible to use 
the actual test result value by computing likelihood ratios (see section 5.6.5) and avoid 
having to select aspecific cutpoint. 

5.6.4 Receiver opera ting characteristic curves 

A receiver operating characteristic (ROC) curve is a plot of the Se of a test versus 
the false positive rate (l-Sp) computed at a number of different cutpoints to select the 
optimum cutpoint for distinguishing between diseased and non-diseased animals. The 
45° line in Fig. 5.5 represents a test with discriminating ability that is no better than 
chance alone. The closer the ROC curve gets to the top-left corner of the graph, the 
better the ability of the test to discriminate between diseased and non-diseased animals. 
(The very top-left corner represents a test with a Se of 100% and a Sp of 100%). 

Use of an ROC curve has the advantage over a 'one cutpoint value' for determining 
Se and Sp in that it describes the overall ability of the test to discriminate diseased 
from non-diseased animals over a range of cutpoints. The area under the ROC curve 
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Example 5.9 
data=bvd _test 

Impact of changing the cutpoint on Se and Sp 
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By varying the optical density (OD) cutpoints for the BVD test results, the following estimates 
of Se, Sp and likelihood ratios were obtained (based on ali samples, n=2162). 

Optical PI+ Sensitivity PI- Specificity Sensitivity 
density category cumulative category cumulative + 
cutpoint percentage percentagea percentage percentageb Specificity 

<!:O.O 6.76 100.00 16.91 0.00 100.00 

<!:0.5 4.63 93.24 17.44 16.91 110.15 

<!:0.7 13.17 88.61 21.64 34.34 122.95 

<!:0.9 16.01 75.44 18.29 55.98 131.42 

<!:1.1 23.13 59.43 13.29 74.27 133.70 

<!:1.3 18.51 36.30 6.75 87.56 123.86 

<!:1.5 7.83 17.79 3.62 94.31 112.10 

<!:1.7 3.56 9.96 1.01 97.93 107.89 

<!:1.9 6.05 6.41 0.85 98.94 105.35 

<!:2.1 3.60 ·0.36 0.21 99.79 100.15 

>2.1 0.00 0.00 0.00 100.00 100.00 
• from highest to lowest OD category. 

b from lowest to highest OD category. 

Clearly, as the cutpoint for a test to be declared positive is increased, Se decreases and Sp 
increases. If the 'costs' of errors (ie false negative versus false positive) are equal, then the 
maximum separation ofPI+ and PI- individuals is at a setting of >1.1 where the sum of Se 
and Sp is maximum. 

(AUC) can be interpreted as the probability that a randomly selected D+ individual has 
a greater test value (eg optical density) than a randomly selected D- individual (again 
assuming the distribution of the test statistic in the D+ group is higher than that in the 
D- group). If an estimate of the SE of the AUC is available, it is useful for sample-size 
considerations when design ing studies to evaluate tests (see Greiner et al, 2000). 

Of course, depending on the seriousness of false negative versus false positive results, 
one might want to emphasise test results in one particular region of the ROC curve (eg 
an area that constrains Se (or Sp) within defined limits). Given equal costs to test result 
errors, the optimal cutpoint is that with Se+Sp at a maximum, and this occurs where the 
curve gets closest to the top left comer of the graph (or alternatively, the farthest away 
from the 45° line). 

Both parametric and non-parametric ROC curves can be generated. A non-parametric 
curve simply plots the Se and (l-Sp) using each ofthe observed values of the test result 
as a cutpoint. A parametric ROC curve provides a smoothed estimate by assuming 



106 SCREENING AND DIAGNOSTIC TESTS 

that latent variables representing the Se and (l-Sp) at various cutpoints follow a 
specified distribution (usually binormal). Example 5.10 shows both parametric and 
non-parametric ROC curves for the bvd_test data. An alternative to ROC curves for 
simultaneously evaluating how Se and Sp vary as the cutpoint is changed is to plot Se 
and Sp against various cutpoints (see Fig. 5.6). 

5.6.5 Likelihood ratios 

A likelihood ratio (LR) for a positive test result (LR+) is the ratio of the post-test odds 
of disease divided by the pre-test odds. Recall that, in general, an odds is PI(l-P) so 
an LR of a positive test result is the odds of disease given the test result divided by the 
pre-test odds: 

LR+ 
PV+/(l- PV+) 

P/(l-P) 

Se 
l-Sp Eq 5.10 

where P=prevalence or p(D+) in the group being tested. Consequently, LRs reflect how 
our view changes of how likely disease is when we get the test result. 

The value of the LR approach (not to be confused with likelihood ratio tests as used 
in Chapter 16) is that it can be calculated for each cutpoint when the test result is a 
continuous, or ordinal, variable. Thus, the LRcp at a selected cutpoint (ie cutpoint­
specific LR approach) generalises to: 

LRcp+ 
Se ep 

I-SPep Eq 5.11 

where cp denotes the cutpoint at or above which the test is considered positive. In this 
context, the LR+ can be viewed as the probability of a diseased individual having a 
test result as high as observed compared with the probability of the sam e result in a 
non-diseased subject. The LR for a negative test result (LR-) at agiven cutpoint is the 
ratio (l-Se)/Sp. It denotes the probability of the negative result from a diseased relative 
to that of a non-diseased subject. Examples of LRs at various cutpoints are shown in 
Example 5.11. 

The LR makes use of the actual test result (as opposed to just being pos iti ve) and gives 
a quantitative estimate ofthe increased probability of disease given the observed result. 
For example, at the cutpoint > 1.1, the LR+ is 2.31, meaning that a cow that tests positive 
at this cutpoint is 2.3 times more likely to have a PI+ calfthan you thought it was prior 
to testing. Note Technically, we should state that the odds, rather than the probability, 
of the disease has gone up 2.6 times but if the disease is rare, then odds~probability. 
This approach makes use of the fact that in general the LR increases as the strength of 
the response (test result) increases. 

Often, researchers in a diagnostic setting prefer to calculate LRs based on the category­
specific result (LRcat) as opposed to the cumulative distributions (Giard and Hermans, 
1996). 
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Example 5.10 ROC curves 
data=bvd _test 
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Fig. 5.5 shows both non-parametric (thick line) and parametric (thin line) ROC curves along 
with 95% CI curves for the parametric ROC. 

Fig. 5.5 Parametric and non-parametric ROC curves 
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Area under curve = 0.7038; SE (area) = 0.0166 

Alternatively, a graph of the Se and Sp of a test can be plotted against various possible 
cutpoints as is shown in Fig. 5.6. 

Fig. 5.6 Se and Sp plotted against cutpoints 
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As can be seen, obtaining an Se much greater than 70% entails accepting quite a low Sp (and 
vice versa). 
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Example 5.11 Likelihood ratlos 
data=bvd_test 

Cutpoint-specific and category-specific likelihood ratios for the bvd_test data 

Optical PI+ Cumulatlve Positive PI- Cumulative 
density category sensitivity likelihood calegory specificity 
cutpoint (%) ("!o) ratio· (%) (%) 

<!O.O 6.76 100.00 1.00 16.91 0.00 

<!0.5 4.63 93.24 1.12 17.44 16.91 

<!0.7 13.17 88.61 1.35 21.64 34.34 

<!0.9 16.01 75.44 1.71 18.29 55.98 

<!1.1 23.13 59.43 2.31 13.29 74.27 

~1.3 18.51 36.30 2.92 6.75 87.56 

<!1.5 7.83 17.79 3.13 3.62 94.31 

<!1.7 3.56 9.96 4.81 1.01 97.93 

~1.9 6.05 6.41 6.02 0.85 98.94 

<!2.1 3.60 0.36 1.67 0.21 99.79 

>2.1 0.00 0.00 0.00 100.00 

a Based on cumulative distributions (ie sensitivity and specificity) 

Here the LR is: 

LR = P(resultj D +) 
cat P (re sultj D _ ) 

Category-
Negative specific 
likellhood likelihood 

ratio· ratio 

0.40 

0.40 0.27 

0.33 0.61 

0.44 0.88 

0.55 1.74 

0.73 2.74 

0.87 2.16 

0.92 3.52 

0.95 7.12 

1.00 17.14 

1.00 

Eq5.12 

In either format the LR is useful because it combines information on both sens iti vit y 
and specificity and it allows the determination of post-test from pre-test odds of disease 
as shown: 

post-test odds = LR * pre-test odds Eq 5.13 

When interpreting the post-test odds, we need to be aware ofwhether the LRcp or LRcat 
is being used. The former gives the post-test odds for an animaI testing positive at that 
level or higher, whereas the latter gives the post-test odds for animals testing positive 
in that specific category (or level) of test result. The process of computing the category­
specific post-test probability is as follows, assuming that, prior to testing, you thought 
there was a 2% probability of the cow having a PH fetus and that the test OD was 1.97 
(LRcat=7.12): 

l. convert the pre-test probability to pre-test odds 
pre-test odds = 0.02 / 0.98 = 0.0204 

2. multiply the pre-test odds by the likelihood ratio to get the post-test odds 
post-test odds = 0.0204 * 7.12 = 0.145 

3. convert the post-test odds to a post-test probability 
post-test probability = 0.145 / (l + 0.145) = 0.127 
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After obtaining a test result of 1.97, your estimate of the probability that the cow is 
carrying a PI+ fetus is 12.7%. 

The variance of the InLRcp is: 

( ) (
l-PV+cp l-P) 

var InLRcp = ( ) +--
a+c ep n 

and a (l-a)% CI is: 

LR * ±ZaJvar(lnLR,p) 
ep e 

Eq 5.14 

Eq5.15 

See Greiner and Gardner (2000a) for related discussion, and Greiner et al (2000) for the 
relationship between LRs and the ROC. 

5.7 ESTIMATING THE TRUE PREVALENCE OF DISEASE 

If the Se and Sp of a test are known, the true prevalence of disease in a population is 
estimated by: 

p(D+) 
AP-(l-Sp) 

l-[(l-Sp)+(l-Se)] 

where AP is the apparent prevalence of disease. 

AP+Sp-l 

Se+Sp-l Eq 5.16 

For example, if AP=0.150 and Se=0.363, Sp=0.876, then our estimate of true prevalence 
is 0.108 or 10.8%. 

5.8 SENSITIVITY AND SPECIFICITY ESTIMATIONS USING LOGISTIC 

REGRESSION 

While the Se and Sp are often considered characteristics of a test, there is increasing 
evidence that for many tests, the Se and Sp vary with the characteristics ofthe population 
to which they are applied. For example, the specificity of serologic tests for Brucella 
abortus is higher when the test is used in populations in which no calfhood vaccination 
is used compared with vaccinated populations. Often it is important to know what 
characteristics of a population affect the Se and Sp of a test (some might prefer to think 
of factors relating to the occurrence of false negative or false positive results). If there 
are few such factors to be considered, you can stratify on these and estimate the Se and 
Sp in each stratum. However, when there are several factors to investigate, stratification 
rapidly runs into problems of inadequate sample size and it is more convenient to use a 
logistic regression approach (Coughlin et al, 1992; Lindberg et al, 1999; Lindberg et al, 
2001). For details on logistic regression see Chapter 16. 

We begin by creating a dichotomous variable representing the test outcome (positive or 
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negative) at each selected cutpoint of the test result. Logistic regression (see Chapter 
16) can then be used to model the test outcome at each cutpoint as a function of the true 
health status variable (X;s) as well as the factors that might affect the Se and Sp. This 
can either be done by carrying out separate logistic regressions using the D+ and D­
animals (as shown in Example 5.12) or by inc1uding the true health status variable (X;) 
in the model. In the latter approach it might be necessary to inc1ude interaction terms 
between X;s and the other factors to allow for the fact that those factors might have 
different effects in D+ and D- animals. Non-significant factors might be eliminated, but 
the variable representing the true health status of the animaI must remain in the model. 
For a given set of factor values, the Se of the test at the selected cutpoint will be: 

ell 
Se=-­

l+e ll Eq 5.17 

where p=/30+/31X;s +L/3/S when X;s=l and the JS are the other factors in the model (or 

altematively p =/30 + L/3jJS from a model based only on D+ animals ). 

Example 5.12 Estimating Se and Sp with logistic regression models 
data=bvd _test 

Using the bvd _test data, the effects of calving season, specimen type, breed, stage of gestation 
and parity on the Se of the ELISA were evaluated. The outcome shown here was the logistic 
model based on the D+ animals (n=28 I ) and the ELISA result dichotomised at the test result 
1.0. Specimen type, breed and parity were removed from the model because they were not 
statistically significant. The coefficients of interest are: 

Coef SE Z P 95% CI 

Month of gestation 0.697 0.097 7.20 0.000 0.507 

season=spring 0.722 0.347 2.08 0.037 0.043 

season=summer 0.673 0.538 1.25 0.212 -0.383 

season=fall 0.468 0.508 0.92 0.357 -0.527 

constant -4.013 0.636 -6.31 0.000 -5.260 

The sensitivity at cutpoint 1.0 for a calf at seven months ' gestation in the fali is 
!J. = -4.013 + 7 * 0.697 + 0.468 

=: 1.334 
Thus, 

Se 
e1.334 3.796 

1+ el.334 - 4.796 = 0.79 

0.887 

1.401 

1.728 

1.463 

-2.767 

Similarly, the Sp was estimated using a model based only on D- animals and found to be 
0.68. 

The positive coefficient for month of gestation indicates that the sensitivity of the procedure 
was higher later in the gestation period. Comparable assessments could be made· for other 
values of the factors of interest (eg comparing seasons). Similarly, other cutpoints could be 
selected as the outcome to adjust the Se and Sp as deemed necessary. 
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The specificity of the test is: 
efJ 

Sp=l---
l+e fJ 
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Eq 5.18 

where f1=fJo+"i.fJ/S because ~s=O (or altematively f1=fJo+"i.fJj yS from a model based 
only on D- animals). 

One can use the same approach to estimate predictive values but in that case, the 
outcome is the true disease status and the test result is one of the explanatory variables. 
Examples of this are discussed elsewhere (Greiner and Gardner, 2000, pp 19-20). 

5.9 ESTIMATING SE AND SP WITHOUT A GOLD STANDARD 

So far, in this chapter, we have assumed that a gold standard procedure is available 
that detects disease and the non-diseased state perfectly. Often such a procedure is 
unavailable and we are unsure ofthe disease state values ml and mo (see Table 5.2). 

5.9.1 Assuming disease-free status 

A commonly used method to esti mate Sp when disease is known to be infrequent 
(say, less than 2%) is to assume that ali of the test positive animals are false positives 
(ie Sp= l-AP). If a portion of the test positives are found (or known) to be true positives, 
then the AP can be adjusted accordingly. For example, in Ireland, about four animals 
per 1,000 test positive to the skin test for bovine tuberculosis; hence, the Sp of this test 
cannot be less than 1-0.004=0.996 (99.6%). 

5.9.2 Standard test sensitivity and specificity available 

If the Se and Sp of a reference test (Seref and SPref' respectively) are known, then from 
the data in a 2X2 table based on the new test results (but with disease status determined 
by the reference test), we could estimate the Senew and SPnew of the new test using the 
syntax ofTable 5.2 as follows (Staquet et al, 1981; Enoe et al, 2000): 

We could also estimate P using 

S 
- nlSPref -c 

enew -
nSpref -mo 

P= n(SPref- 1)+m l 
n(Seref + Spref -1) 

Eq 5.19 

Eq 5.20 

Eq 5.21 

Variance formulae are available (Gart and Buck, 2003). This procedure assumes that, 
conditional on the true disease state, the new test and the reference test are independent. 
In reality, this is not Iikely true, thus reducing the value of this approach. 
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5.9.3 Maximum likelihood estimation 

If no gold standard test is available, then it might be possible to estimate the Se and 
Sp of two or more tests provided that sets of samples from at least two populations, 
with different prevalences of disease, have been tested us ing both tests (Enoe et al, 
2000). The minimum requirement is to have two sets of test results from each of two 
populations. With these data, there are six unknown parameters to be estimated: the 
two test sensitivities, the two test specificities, and the two population prevalences. The 
data generate two (one for each population) 2X2 tables of combined test results so they 
represent 6 degrees offreedom (di), once the sample size in each population is fixed. 

An approach originally developed by Hui and Walter (1980), uses maximum likelihood 
estimation procedures to determine the set of parameter estimates (for Se, Sp and P) 
that make the observed data most likely. As six parameters are being estimated from 
6 df, it is not possible to carry out any assessment of how weil the derived estimates 
fit the observed data. However, the procedure can be extended to more than two tests 
and more than two populations, in which case some evaluation of the procedure is 
possible (Enoe et al, 2000). Recently, an online computer program for carrying out the 
maximum likelihood estimations (using either a Newton-Raphson algorithm or an EM 
algorithm) has been made available (Pouillot et al, 2002). 

The procedure is based on three critical assumptions. 
l. The tests must be independent (ie no conditional dependency as described in 

section 5.6.2). 
2. The Se and Sp must be constant across all of the populations evaluated. 
3. The prevalence of disease in the two populations must be different. (Provided 

there is some difference in prevalence between the two populations, convergence 
usually occurs. However, as the difference in prevalence gets smaller, the CI for 
the estimates increases dramatically). 

Violation of these assumptions invalidates the parameter estimates. However, if data 
from more than two tests, or more than two populations are available, it is possible to 
evaluate the validity of some of those assumptions. 

Based on the data presented in Example 5.7, the maximum likelihood estimates (based 
on the Newton-Raphson algorithm) of the Se and Sp of the IFAT and PCR and the two 
population prevalence estimates are shown in Table 5.4. Because these diseased and 
non-diseased populations were selected based on clinical signs, it is likely that the test 
will perform better in these two populations than in other populations. Consequently, 
the Se and Sp estimates in Table 5.4 are probably overestimates. Because P in the non­
diseased population has been estimated to be O, the Sp estimates are exactly the same as 
those shown in Example 5.7. 
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Table 5.4 Maximum likelihood estimates of Se and Sp and population 
prevalences from ISA test results database 

Prevalence Sp Se 

Non-
Diseased diseased IFAT PCR IFAT 

Estimate 0.950 O 0.951 0.979 0.823 

Lower 95% CI 0.899 NN 0.930 0.964 0.756 

Upper 95% CI 0.976 NA 0.966 0.988 0.874 
a Not applicable 
Note Data from Example 5.7. 

5.9.4 Bayesian methods 
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PCR 

0.974 

0.924 

0.991 

Bayesian methods offer a more ftexible approach to estimating Se and Sp in the 
absence of a gold standard test. Bayesian estimates can incorporate prior (independent) 
estimates of the Se and Sp of the tests into the process. They can also be used to relax 
the requirement of having data from multiple populations, or to build in factors which 
account for the conditional dependence among test results. However, discussion of 
these procedures is beyond the scope of this book. 

5.10 HERD-LEVEL TESTING 

If a herd, or other aggregate of individuals, is the unit of concem, and a single test of 
the group (eg a culture of a bulk-tank milk sample for Strep. aga/actia in a dairy herd) 
is taken to classify the group as test positive or test negative, the previously described 
approach to test evaluation and interpretation applies directly. The group becomes the 
unit of concem rather than the individual. 

However, frequently, we are asked to certify the health status of a herd, or group of 
animals based on test results compiled from a number of individuals. In this instance, 
in addition to the Se and Sp of the test at the individuallevel, three factors interplay in 
determining the Se and Sp at the group level - namely, the frequency of disease within 
infected groups, the number of animals tested in the group, and the number of reactor 
animals per group that will designate a positive or negative herd. Once the Se and Sp of 
the procedure at the group level are known, the evaluation of the predictive values of 
positive and negative herd results follows the same pattem as already described (Martin 
et al, 1992; Christensen and Gardner, 2000). 

As mentioned, herd sensitivity (HSe) and herd specificity (HSp) are inftuenced by the 
individual level Se and Sp, within herd P, and the threshold number, or percentage, of 
positive tests that denote the herd, or group, as test positive. For simplicity, we assume 
only one test is used; however, multiple tests and repeat testing results can make up 
the herd test and one need only establish their combined Se and Sp. The probability of 
obtaining a positive test is: 
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AP= p(T+) =P * Se + (l-P)(I-Sp) Eq5.22 

If a herd is infected, then a positive test could arise correctly based on P*Se, or it could 
arise correctly, but for incorrect reasons, because of the (l-P)(I-Sp) component. 

The AP, if disease is present, is: APpas = p * Se + (l-P)(l-Sp). 

Note If the herd is not infected (diseased) then the AP is: APneg = (l-Sp). 

Now, if the critical number ofanimals testing positive to denote the herd as test positive 
is k, we can use a suitable probability distribution for AP and solve for the probability 
of ~k animals testing positive when n animals are tested. If n/N is less than 0.2, then a 
binomial distribution is acceptable for sampIing of n animals from a total of N animals 
in a herd; otherwise, the hypergeometric distribution, which provides more accurate 
estimates, should be used. ln the simple st setting, if k= I, the easiest approach is to solve 
the binomial for k=0 and take 1 minus this probability to obtain the probability of one or 
more test positive animals. Thus for k=1 and assuming the herd is infected: 

HSe = l - (l-APpa)n Eq 5.23 

On the other hand, if the group is disease free, then 
HSp=Spn Eq5.24 

In the more general case, if more than k positives are required before a herd is declared 
positive, the HSe can be estimated as: 

k 

HSe = 1-I c; (APpas)k (1- APpos )"-k 
o Eq5.25 

where c; is the number of combinations of k positives out of n animals tested. 

The HSp will be: 
k 

HSp = I c; (Spt-k (I-Sp)k 
o Eq5.26 

Both HSe and HSp are estimates of population parameters that apply to herds with the 
underlying condi ti on s and characteristics used to deterrnine the estimates. 

The general findings from studying herd test characteristics are: 
l. lfn is fixed, HSe increases with P and/or AP, providing Se>(l-Sp). 
2. As n increases, HSe increases. Gains in HSe from increasing n are especialIy 

large if AP <0.3. 
3. With fixed n, HSe increases as Sp decreases (noted earlier). 
4. HSp decreases as Sp decreases. 

A program calIed Herdacc (©D Jordan, 1995) is available at http://epiweb.massey.ac.nz 
to perforrn 'what-if' caIculations to see how changing the sampIe size, the number 
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required to consider a herd positive or the statistical distribution (binomial or 
hypergeometric) affects the results. An example of estimating HSe and HSp is shown 
in Example 5.13. 

5.10.1 Herd test characteristics based on pooled specimen s 

Often, to reduce cost, or when individual results are not needed or individual samples 
are not available, specimens from a number of animals might be pooled and tested 
as one sample. Such an approach is most efficient when P is low. If the laboratory is 
limited in term s of mass or volume of sample, one needs to be aware of the effects of 
sampling from the primary specimen (eg issues ofhomogeneity ofmixing), as weil as 
the effects of dilution of the substance being tested for (perhaps to below the laboratory 
Se), and the increased possibility of hav ing extraneous cross-reacting substances added 
to the po ol because of the inclusion ofmaterial from more animai s (the latter might or 
might not be a 'likely' event). 

If the number of animals in the pool (m) is moderately large, the Se of the test based on 
the pooled sample (PlSe) is likely less than Se; pooled Sp is denoted PlSp. 

Christensen and Gardner (2000) showed that HSe based on r pooled samples, each 
containing material from m animals is: 

HSe = l - [(1 - (1 - P»(1 - Se) + (1 - p)m PlSp)' Eq 5.27 

If the herd is D-, then the herd Sp based on the pooled sample (HSp) is (PlSp)', and if 
no c\ustering occurs within pools, PlSp=Spm. Thus, ifpooled testing is performed on a 
number of assumed D- herds, then HAP=l-HSp=l-(PlSp)' which allows one to solve 
for the unknown PlSp. Similarly because Sp=PlSpl/m, increasing r or m increases the 
HSe and decreases HSp in the same manner as increasing n when testing individuals 
within a group. At present, the optimal choice of r and m should be investigated on a 
case-by-case basis. An example of estimating HSe and HSp based on pooled specimens 
is shown in Example 5.14. 
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Example 5.13 Estimating herd Se and Sp 

We will assume that we are testing herds with an average of 60 adult cattle for the presence 
of Mycobacterium avium subsp paratuberculosis (Map) using the ELISA. This test has 
an estimated Se of 0.391 and Sp of 0.964. We will assume that if Map is present, the true 
prevalence at the time oftesting is 12%. Thus the AP in the herds with disease will be: 

A;;'os = peT +) = p* Se+ (I - P)(I -Sp) 

= 0.12 * 0.391 + (0.88)(1- 0.964) = 0.0786 

and the AP in the disease-free herds will be: 

APneg = 0.036 

Now, assume that the critical number of positive-testing animals to denote a herd as test 
positive is k=2. For the purposes of this example, we will use the binomial probability 
distribution to solve for the probability of ~2 positive-testing animals when n=60 animals are 
tested (assuming an infinite population). The probability of h2 is found by first solving for 
the probability that k<2. 

The probability that k=0 is: 

The probability that k=l is: 

k 

p(k < 2)= 'LC;Apk(l-APr-k 
o 

p(k = O) = cgo * (0.079)0 * (I - 0.079)60 

=1*1*0.92160 =0.0072 

p(k = 1) = Cr * (0.079i * (1- 0.079i9 

=60*0.079*0.92159 =0.037 

The sum of these two probabilities is 0.044. Rence, the probability of two or more animals 
testing positive in a herd with P=O.12 is 1-0.044=0.956, which gives us the HSe estimate. 

For HSp, we would assume the herds are disease free, thus the probability of O or l reactors 
is the sum ofthese two probabilities. 

Given a herd is disease free, the probability that k=0 is: 

p(k = O) = cgo 
... (0.964rO(I-0.964f 

=1*0.111*1=0.111 
and the probability that k= l is: 

Rence the HSp is 0.359. 

p(k = 1)= c:O *(0.964)59(1-0.964)1 

= 60*0.115 *0.036 = 0.248 

With an HSe of 95%, we can be confident that we will declare the herd as infected if it is 
infected. Rowever, with the HSp of only 36%, we will declare 64% of Map-free herds as 
infected, so the test needs to be used with great care. 
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Example 5.14 Estimating HSe and HSp from pooled specimens 

We can suppose that we are going to test herds for Map using pooled fecal culture. Fecal 
culture has an estimated Se of 0.647 and Sp of 0.981. Suppose we wish to pool fecal samples 
from five cows together and we will use six pooled samples per herd. Hence m=5 and t=6. 

If the herd is D-, then the herd Sp based on the pooled sample (assuming homogenous 
mixing) is: 

(HSp) = (P1Sp y = (Spmy = (0.9815)6 = 0.5624 

If the herd is infected with a true prevalence of 12%, and assuming no dilution effect, then 
HSeis: 

HSe = l - [(1 - (0.88))(0.353) + (0.88)5 * 0.909]6 
l - [0.311 + 0.480]6 

= 1- 0.245 = 0.755 

As with individual testing, the Se at the herd level is increased by testing more animals 
through the use of pooled samples but the Sp at the herd level is decreased. One could 
compare the two approaches ignoring costs and then add the cost information to the final 
decision-making process. 
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SAMPLE PROBLEM S 

Exercise 1 
1. Using the dataset isa_test, let's examine the agreement between tests. 

First, repeatthe kappa test on -ifat 1- and -ifat2--this is testing agreement between two 
laboratories. At this point, we are us ing the original results of the two tests. 
a. First, repeat the kappa. 
b. This kappa assumes any disagreement is total disagreement, so let's weight the 

agreement as follows: 
l level apart 80% agreement 
2 levels apart 50% agreement 
3 levels apart 10% agreement 
4 levels apart 0% agreement 

What is the extent of agreement us ing this approach? 
2. Okay, now examine the agreement of the PCR result with the dichotomised results 

of -ifatl-. 
a. First display the data in a 2X2 table, and test for equality of the number 

positive using McNemar's test. 
b. Then, if this test is not significant examine kappa. Does this value make sense 

given the data? 
3. Repeat 2. comparing PCR with the dichotomised histologie results. Comment on 

the resuIts. 

Exercise 2 
1. Using the dataset bvd_test; examine the sensitivity and specificity of the ELISA 

test at the OD cutpoints of ~0.8 and ~1.7. The idea of this test 
is to test the dam and see if the result was ofvalue for predicting the infection status 
of the fetus. Comment on the results. 
Note We have already created the dichotomous variables from OD; they are labelled 
co_5 .... co_1.7 so, you don't need to generate new variables. 

2. Is the OD associated with the specimen tested (ie milk versus blood)? Explain your 
answer. 

3. a. If you used the test on blood at the cutpoint of~0.8 to test 1,000 pregnant cattle 
that had a true prevalence of 3% PIs, what would the positive and negative 
predictive values be? (You need to do this manually.) 

b. What if you used the test on blood at the cutpoint of~1.3 instead of~0.8? 
4. Use the ROC approach to evaluate the sensitivity and specificity of the ELISA test 

at various optical densities as weil as the overall ability of the test to 
differentiate diseased from non-diseased animals. Here we can leave OD as a 
continuous variable. 
a. First compute an overall ROC curve for the ELISA. What do you think of its 

predictive ability? 
b. Use the AUCs to compare the ELISA on milk versus the results of ELISA on 

blood samples. 
5. Divide the OD into categories by us ing cutpoints from 0.5 to 2.1 in units of 0.2. 

Now compute the likelihood ratio for positive and negative tests at each of these 
cutpoints. Interpret these results. 
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6. a. Identify the impact of parity, breed and season oftesting in six-to-eight-month 
gestation female s on the sensitivity and specificity ofthe ELISA test for identifying 
PH calves us ing blood as the specimen. If, as an example, season affects the test 
characteristics, should one adjust for season such that the characteristics are 
maintained at a constant level across seasons, or just accept that the test 
characteristics will fluctuate by season in a predictable manner? 

b. Do these factors operate the same in cows with a PH calfas in cows with a PI­
calf? 

Exercise 3 
1. Use the program Herdacc to estimate the HSe and HSp under the following 

situations: 
Sensitivity=0.8 
Specificity=0.9 
Sample size= 10 
Population size=200 
Sample without replacement 
Within-herd prevalence estimates of 1%, 5%, 10%, 20% and 50% 
Cutpoints (k) of l, 2, or 3. 

a. What cutpoint (k) would you choose if you were testing for a disease ofvery low 
prevalence «6%)? 

b. What cutpoints would you use if you were testing for a disease with prevalence 
above 19% when you wanted to limit the number of false positive herd results? 

2. We are going to test herds of cattle for the presence of E. coli 0157. We will pool 
the feces from 3 (k=3) animals and test 10 (r=1O) pools per herd. 
a. If the individual specimen-level sensitivity is 30% and the specificity is 95%, 

what would you expect the herd sens iti vit y and specificity to be? 
b. Do you have any suggestions about modifying the number of pools or the 

number of samples per pool to increase the overall value of the test? 
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6 

MEASURES OF ASSOCIATION 

OBJECTIVES 

After reading this chapter, you shou1d be ab1e to: 

l. Calcu1ate and interpret the following measures of association: 
• risk ratio 
• odds ratio 
• incidence rate ratio 
• risk difference (attributab1e risk) 
• attributab1e fraction (exposed) 
• popu1ation attributab1e risk 
• attributab1e fraction (population). 

2. Understand when to use each of the above measures of association. 

3. Correctly use the concepts of strength of association and statistical significance 
when pre sen ting research results. 

4. Understand the basis for the common methods of computing significance tests and 
confidence intervals. 
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6.1 INTRODUCTION 

Measures of association are used to assess the magnitude of the relationship between 
an exposure to a disease (eg a potential 'cause') and a disease. In contrast, measures 
of statistical significance cannot be used to indicate the magnitude of the effect (ie the 
strength of association) because they are heavily dependent on sample size. 

In general, the material in this chapter will focus on comparing the frequency of disease 
in exposed subjects with the frequency of disease in subjects not exposed. Depending 
on study design, disease frequency can be expressed as: 

• incidence risk (cohort study design) 
• incidence rate (cohort study design) 
• prevalence (cross-sectional study design) 
• odds (cohort or cross-sectional study design). 

Conversely, in case-control study designs, the objective is to compare the odds of 
exposure in two groups, those with the disease under investigation (the cases) and those 
without the disease under investigation (the controls). 

If disease frequency has been measured as risk, the data for measuring the strength of 
association between exposure and disease are summarised in Table 6.1. 

Table 6.1 Presentation of incidence risk data 

Diseased 

Non-diseased 

where: 

Exposure 

Exposed Non-exposed 

bo 

a] = the number of exposed animals that have the disease 
ao = the number of exposed animals that do not have the disease 
b] = the number ofnon-exposed animals that have the disease 
bo = the number of non-exposed animals that do not have the disease. 

n 

If disease frequency has been measured as rates, the data for measuring the strength of 
association between exposure and disease are summarised in Table 6.2. 

Table 6.2 Presentation of incidence rate data 

Exposure 

Exposed Non-exposed 

Number of cases 

Animai-time at risk 
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Note For simplicity, we will refer to the frequency of disease in animals, but these could 
also be measured in groups ofanimals (eg number ofherds affected). We will also refer 
to associations as though we believe them to be causa\. Criteria for inferring causation 
are reviewed in Chapter I. 

6.2 MEASURES OF ASSOCIATION 

The strength of an association between an exposure and a disease is usually expressed 
using a 'relative' effect measure which is computed as a ratio of two estimates of 
disease frequency. There are three common ratio measures of association: the risk ratio 
(RR), the incidence rate ratio (IR) and the odds ratio (OR). The appropriate measure 
of association depends on the study design and its corresponding measure of disease 
frequency. 

6.2.1 Risk ratio 

RR is the ratio of the risk of disease in the exposed group to the risk (R) of disease in 
the non-exposed group. 

RR = p(D+ IE +)/p(D+IE-) 

= (al/nl)/(ao/no) Eq6.1 

Risk ratio (also known as relative risk) can be computed in cohort studies and, in some 
cases, cross-sectional studies. It cannot be used in case-control studies because the 
p(D+) is an arbitrary value determined by the number of cases and controls included 
in the study. 

RR ranges from O to infinity. A value of l means there is no association between 
exposure and disease: 

RR < l exposure is protective (eg vaccines) 
RR = l exposure has no effect (ie null value) 
RR > I exposure is positively associated with disease. 

Risk ratio says nothing about how much disease is occurring in the population. The 
actual frequency of the disease can be quite low, but the RR can be high. For example, 
in Table 6.3, which summarises the records from a large (hypothetical) herd ofHereford 
cattle over five years, the risk of 'cancer eye' in the herd is low: 40/6000=0.0067, 
but the risk of cancer eye in cattle with white eyelids is 3.8 times that of cattle with 
pigmented lids. 
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Table 6.3 Data on ocular carcinoma and eyelid pigmentation from a hypothetical 
longitudinal study of a large herd of Hereford cattle 

Eyelids 

Non-pigmented Pigmented 

Ocular Present 38 2 40 
carcinoma Absent 4962 998 5960 

5000 1000 6000 

RR = (38/5000 );(2/1000) = 3.8 

As noted, RR can be computed from cross-sectional studi es. Cross-sectional studi es 
normally measure the prevalence of disease, but in certain situations (eg a short period 
of risk of disease that has been completed for aU animals ) the prevalence might be a 
valid estimate ofthe incidence risk. In this situation, RR can be used. In other situations, 
the term prevalence ratio (PR) would be preferred. It is computed in the same way as 
RR (and the term RR is sometimes used instead of PR). 

6.2.2 Incidence rate ratio 

The incidence rate ratio (IR) is the ratio ofthe disease frequency (measured as incidence 
rate) in an exposed group to the incidence rate in a non-exposed group. 

Eq6.2 

IR can only be computed from studies in which an incidence rate can be calculated 
(ie cohort studies). It is sometimes referred to as the incidence density ratio. IR ranges 
from O to infinity. A value of 1 means there is no association between the exposure and 
disease, with values <1 indicating protection and values > 1 indicating an increased rate 
of disease in the exposed group. 

Table 6.4 presents some hypothetical data on teat pre-dipping and cases of clinical 
mastitis in dairy herds. 

Table 6.4 Data on cases of mastitis and pre-dipping in a hypothetical dairy herd 

Not pre-dipped Pre-dipped 

# of cases of mastitis 

# of cow-months 

IR = (18/250 );(8/236) = 2.12 

18 

250 

8 

236 

26 

486 

In this example, the rate ofmastitis is 2.1 times higher in cows whose teats are not pre­
dipped than in cows whose teats are pre-dipped prior to milking. 



MEASURES OF ASSOCIATION 125 

6.2.3 Odds ratio 

The OR is the odds of the disease in the exposed group divided by the disease odds in 
the non-exposed group. 

OR = odds ~D+IE + )jodds~D+IE-) 

= (a] lb] )/(ao Ibo) 

= (a] bo )j(aob]) Eq6.3 

Alternatively, it can be calculated as the odds of exposure in the diseased group divided 
by the odds of exposure in the non-disease d group. 

OR = odds~E+ID+)jodds~E +ID-) 

= (a] lao )j(b] Ibo) 

= (albo )j(aob]) 

Based on the data in Table 6.3, the OR=(38/2)j(4962/998)=3.82. 

Eq6.4 

Note The odds ratio is the only measure of association that exhibits this 'symmetry' 
which enables you to switch the exposure and the disease (outcome ). Consequently, 
OR is the only measure of strength of association applicable to case-control studies. 
(Because disease frequency in the sample is artificially established in case-control 
studies, the relative risk is not an appropriate measure ofstrength of association.) 

The interpretation of OR is the same as RR and IR. An OR=1 indicates no effect 
while values <l and> l are indicative of reduced risk (protection) and increased risk, 
respectively. 

6.2.4 Relationships amon g RR, IR and OR 

In general, the relationships among RR, IR and OR is such that IRs are further from the 
null value (l) than RRs, and the ORs are even further away as can be seen in Fig. 6.1. 

Fig. 6.1 General relationship among RR, IR and OR 

I 

ORIRRR 

I I I I 
o 

RR and OR 

RR IROR 
I I I 

o() 

If the disease occurs infrequently in the underlying population (prevalence 
or incidence risk <5%), OR is approximately equal to RR. In this situation, 

a] al 

RR 
a] +b] b] 

=OR 
ao ao 

ao +bo bo 
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because if the disease is rare, al is very small and al + b l approaches b l and ao is very 
small so ao + bo approaches bo. 

Similarly, if RR in a population is c10se to the null (ie RR-::::;O) then RR and OR will 
be very c1ose. (If RR=I, then RR=OR). aRs are common ly used bec aus e they can be 
derived eas ily from logistic regression analyses (Chapter 16). It is difficult to derive RR 
from multivariable analyses, but two approaches to do this have been described (Zhang, 
1998; Wacholder, 1986). 

RRandIR 
RR and IR will be c10se ifthe exposure has a negligible impact on the total time at risk in 
the study population. This occurs if the disease is rare or if IR is close to the null value 
(JR= I). (See Chapter 4 for details on role of time at risk in computation of incidence 
rates.) 

ORandIR 
OR is a good estimator of IR under two conditions. If control s are selected in a case­
control study us ing 'cumulative' or risk-based sampling (ie control s selected from 
all non-case s once all cases have occurred - see Chapter 9), then OR will be a good 
estimate of IR only if the disease is rare. However, if controls are selected using 
'density' sampling (ie a control selected from the non-case s each time a case occurs), 
then OR is a direct estimate of IR, regardless ofwhether or not the disease is rare. 

6.3 MEASURES OF EFFECT 

The effect (or impact) of a risk factor on a disease is usually expressed using an 
'absolute' effect measure which is computed as the difference between two measures 
of disease frequency. The effect can be computed just for the exposed group or for the 
whole population. Although we use the term 'effect', it is well to remember that we 
are measuring associations. Thus, the 'effect' will only be the result of exposure if the 
association is causa!. 

6.3.1 Measures of effect in the exposed group 

Even when an exposure is very strongly associated with disease occurrence (eg 
smoking and lung cancer in humans), typically some disease cases occur in the non­
exposed population (Iung cancer does occur rarely in non-smokers). The incidence in 
the non-exposed population can be viewed as the 'baseline' level of risk for individuals 
if the exposure were completely absent from the population. To evaluate the effect of an 
exposure on disease frequency in exposed subjects, we can consider both the absolute 
difference in risk between the exposed and non-exposed group s (risk difference (RD» 
and the proportion of disease in the exposed group that is attributable to the exposure 
(attributable fraction (AFe». Both these measures incorporate the baseline risk in the 
non-exposed population, and assume that a11 other risk factors are common to both the 
exposed and non-exposed group s (ie absence of confounding, see Chapter 13). 
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Risk difference, incidence rate difference 
RD is the risk of disease in the exposed group minus the risk of disease in the non­
exposed group. It is also referred to as the attributable risk. 

RD = p(D+IE+)-p(D+IE-) 

=(aJ/nJ)-(ao/no) Eq6.5 

RD indicates the increase in the probability of disease in an exposed group, beyond the 
baseline risk, that results from the exposure. 

The incidence rate difference (ID) can similarly be calculated as the difference between 
two incidence rates: 

Difference measures are interpreted as follows: 
RD or ID < O exposure is protective 
RD or ID = O exposure has no effect 
RD or ID > l exposure is positively associated with disease. 

Attributable fraction (exposed) 

Eq6.6 

The AFe expresses the proportion of disease in exposed individuals that is due to the 
exposure, assuming that the relationship is causa!. Altematively, it can be viewed as the 
proportion of disease in the exposed group that would be avoided if the exposure were 
removed. AFe can be calculated from either incidence data in both exposed and non­
exposed groups, or directly from the RR. 

AFe =RD/p{D+IE+) 

= [(al I nl)- (ao I no )]j(al InI) 
= (RR-I)jRR 

== (OR -I)jOR (approximate AFe) Eq6.7 

These calculations assume that exposure is positively associated with disease, and 
values for attributable fraction range theoretically from O (where risk is equal regardless 
of exposure; RR=I) to l (where there is no disease in the non-exposed group and aH 
disease is due to the exposure; RR=oo). If exposures are negatively associated with 
disease, attributable fraction can be calculated in the same manner by regarding 'lack of 
exposure' to the protective factor as the factor that enhances risk. One example of this 
approach is estimation of vaccine efficacy. In case-control studies when actual disease 
frequencies in the exposed and non-exposed group s are unknown, attributable fraction 
can be approximated by substituting the OR for RR (as shown in Eq 6.7). 

Vaccine efficacy is one form of AFe with 'not vaccinated' equivalent to being 'factor 
positive' (E+). For example, if 20% of non-vaccinated animals develop disease 
[p(D+IE+)=0.20] and 5% ofvaccinated animals develop disease [p(D+IE-)=0.05], the 
following can be calculated: 
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RD = 0.20 - 0.05 = 0.15 
AFe = 0.l5/0.20 = 0.75 = 75% 

The vaccine has prevented 75% of the cases of disease that would have occurred in the 
vaccinated group if the vaccine had not been used. This is known as vaccine efficacy. 

6.3.2 Measures of effect in the populatio n 

Measures of effect are useful for deciding which exposures are important contributors 
to the total disease experienced in a population, and which are trivial. For example, 
there might be a strong association between neonatal beef-calf loss and the use of 
prophylactic neomycin boluses at calving, but if the practice of giving neonatal cal ves 
a neomycin bolus is infrequent, it does not contribute much to neonatal mortality in 
beef calves. On the other hand, a relatively weak risk factor that is common might be a 
more important determinant of neonatal mortality in the population as a whole. In terms 
of national or regional disease-control programmes, information about the effect of a 
factor in the total population is useful in aIlocating resources for heaIth-promotion and 
disease-control programmes. 

Population attributable risk 
PAR is analogous to RD, in that it indicates a simple difference in risk between two 
groups. However, the focus of PAR is the increase in risk of disease in the entire 
population that is attributable to the exposure. Therefore it is calculated as the overall 
observed risk (combining exposed and non-exposed group s) in the population minus 
the baseline risk (risk in the non-exposed). Clearly, PAR is determined by both the 
strength of the association and the frequency of exposure to the risk factor. 

PAR = p{D+)-p(D+IE-) 

= (m\/n)-{ao/no) 
= RD*p{E+) Eq 6.8 

Note PAR might also be caIled the risk difference (population), but generally isn't. 

Population aUributable fraction 
Population aUributable fraction (AFp) is analogous to AFe, but is focused on the disease 
in the entire population rather than the exposed group. Assuming a causal relationship, 
AFp indicates proportion of disease in the whole population that is attributable to the 
exposure, and would be avoided if the exposure were removed from the population. It 
is calculated as the ratio of PAR to overall risk p(D+) in the population, and again is a 
function of the strength of the association and the prevalence of exposure. 

AFp = PAR/p{D+) 

p{E+XRR-l) 

p{E+XRR-l)+l Eq6.9 



MEASURES OF ASSOCIATION 129 

The AFp can be estimated from unmatched data in a case-control study using: 

AFp = A Fe(:J 
Eq 6.10 

Note When based on rates, the measures of effect in the exposed group or in the 
population relate to proportional or absolute changes in the rates, but not necessarily to 
the proportion or number of cases. This technical difference arises because the exposure 
might affect the timing (ie when) of disease occurrence but not the actual number of 
cases. Thus, the actual number of cases could be constant but the time at risk, and hence 
the rate, would differ. 

Example 6.1 show s sample calculations of alI these parameters. Table 6.5 presents 
a summary of the measures of association that can be computed from various study 
designs. 

Example 6.1 Measures of association 

Assume that you want to determine if being over-conditioned (ie fat) at the time of calving 
affects a cow's risk of developing ketosis. A body condition score (BCS) of 4.0 or above 
would be considered over-conditioned. You carry out a cohort study in a single large dairy 
herd (your population of interest ) and aU Cows are ohserved from the time of calving through 
the first four months of lactation (the period at which they are at risk of developing ketosis). 
In addition to recording the number of cows in each BCS group that developed and did not 
develop ketosis, you record the number of cow-months at risk. Once a cow had a case of 
ketosis, she stopped contributing to the number of cow-months at risk. This occurred, on 
average, at two months' post-calving. 

BCS 

,,4 <4 

Ketosis + 60 157 217 

Ketosis - 41 359 400 

cows 101 516 617 

cow-months 284 1750 2034 

101 'fat' cows contrihuted 284 cow-months at risk and had 60 cases ofketosis. 

516 'normal' cows contributed 1,750 cow-months at risk and had 157 cases ofketosis. 
(continued on next page) 
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Example 6.1 (continued) 

Measures of disease frequency 
R = p(D+) = 217/617 = 0.352 
RE. = p(D+IE-) = 157/516 = 0.304 
RE+ = p(D+IE+) = 60/101 = 0.594 

I = 217/2034 = 0.11 
h.= 157/1750=0.09 
I E+ = 60/284 = 0.21 

Measures of association 
RR = 0.594/0.304 = 1.95 

IR = (60/284)/(157/1750) = 2.34 

OR = (359*60)/(157*41) = 3.35 

Measures of effect 
RD = 0.594-0.304 = 0.290 

AFe = 0.290/0.594 = 0.488 

PAR = 0.352-0.304 = 0.048 

AFp = 0.048/0.352 = 0.136 

MEASURES OF ASSOCIATION 

Practical interpretation 
35% of ali cows had ketosis 
30% ofnonna1 cows had ketosis 
59% offat cows had ketosis 

0.11 cases of ketosis per cow-month in who1e popu1ation 
0.09 cases ofketosis per cow-month in nonna1 cows 
0.21 cases ofketosis per cow-month in fat cows 

Fat cows were 1.95 times as 1ike1y to deve10p ketosis as 
nonnalcows 
The rate ofketosis in fat cows was 2.34 times higher than 
the rate in nonnal cows 
The odds ofketosis in fat cows was 3.35 times higher than 
the odds in nonnal cows 

For every 100 fat cows, 29 had ketosis due to them being 
fat (assuming a causal relationship) 
49% of the ketosis occurring in fat cows was attributable 
to them being fat 

For any 100 cows in this population, five had ketosis that 
was attributable to them being fat 
14% of the ketosis in the population was attributable to 
some cows being fat 

Table 6.5 Summary of calculation of various measures of association by study type 

Cross-sectional Cohort study Case-control 

RR X X 

IR 

OR 

RD 

AFe 

PAR 

AFp 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Xa 

Xa 

X 

a The PAR and AFp can be estimated from a cohort study provided that an independent estimate of the 

p(D+) or the p(E+) in the source population is available. 

b Estimated us ing OR as an approximation of RR. 

e Estimated using OR as an approximation of RR and an independent esti mate ofp(E+ID+). 
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6.4 HVPOTHESIS TESTING AND CONFIDENCE INTERVALS 

The material presented in previous sections has focused on the computation of 
point estimates of parameters. Investigators usually want to evaluate the statistical 
significance of parameters as weil and there are three general approaches to doing this. 

A standard error (SE) of the parameter can be computed to provide a measure 
of the precision of the point estimate (ie how much uncertainty there is in the 
estimate). 
A significance (hypothesi s) test can be carried out to determine if the point 
estimate is significantly different from some value specified by the null 
hypothesi s test. 
A confidence interval (CI) for the estimate can be computed. 

What follows is a non-technical introduction to hypothesis-testing and confidence 
intervals in the context of unconditional (ie one exposure and one outcome ) associations. 
These procedures are based on a c1assical (sometimes denoted 'frequentist') approach 
to statistics. An alternative approach, one based on Bayesian statistics, is less common ly 
used (see Chapter 23). 

N ote Throughout this section, ali references to parameters in the text and in the formulae 
will refer to estimates derived from the data unless otherwise stated. 'Population 
parameters' (ie true, unknown values) will be referred to as such in the text. 

6.4.1 Standard error 

For some ofthe parameters described in previous sections, estimates ofthe variance ofthe 
parameter can be computed directly and the square root of this variance is the estimated 
SE ofthe parameter. For example, based on the incidence rate data presented in Table 6.2, 
SE of ID is: 

SE(ID) = 
Eq 6.11 

For other population parameters, it is not possible to directly compute their variance 
although methods for estimating the variance are discussed in section 6.4.3. 

6.4.2 Significance (hypothesis) testing 

Significance (hypothesis ) testing is based on the specification of a null hypothesis about 
the population parameter(s). The null hypothesis is usually that there is no association 
between the factor and the outcome which means that measures of difference (eg ID) 
will be O or that ratio measures (eg IR) will be l. 

An alternative hypothesis is stated and it can be of a one-tailed or two-tailed nature. For 
example, ifwe have disease incidence rates in two group s (exposed and non-exposed), 
the usual two-tailed hypothesis is that I in the exposed group is different than in the 
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non-exposed group (ie it could be higher or lower). We are interested in finding out 
if there is statistical evidence to support a difference in rate s that could be in either 
direction. A one-tailed hypothesi s would be that I is higher in the exposed group than in 
the non-exposed group. We either do not believe that it is possible that I could be lower 
in the exposed group or we have no interest in this possible outcome. (An altemative 
one-tailed hypothesi s would be that the rate is lower, and we are not at all interested 
in the possibility of the rate being higher. ) In general, the use of one-tailed hypotheses 
is much harder to justify than the use oftwo-tailed hypotheses, so they should be used 
with caution. 

The next step in the hypothesis-testing process is to compute a test-statistic (eg a 
t-statistic, a Z-statistic or a x2-statistic). From the expected distribution of this test 
statistic, a P-value is determined. The P-value is the probability that the test statistic 
would be as large or larger (in absolute value) than the computed test statistic, if the null 
hypothesis were true. A small P-value indicates that, if the null hypothesis were true, 
it is unlikely (ie low probability) that you would obtain a test statistic as large or larger 
than the one you have obtained. In this case, it is usual to reject the null hypothesis. 

P-values, while conveying useful information, are limited in their abi lit y to convey the 
full picture about the relationship being evaluated. They are often dichotomised into 
'significant' or 'non-significant' based on some arbitrary threshold (usually set at 0.05) 
but this entails a huge loss of information about the parameter of interest. Knowing 
that an effect was 'significant' provides neither indication of the actual probability of 
observing the test statistic computed, nor information about the magnitude of the effect 
observed. Reporting the actual P-value solves the first problem but not the second. The 
second issue will be discussed under confidence intervals (see section 6.4.3). 

Test statistics 
There are four commonly used types oftest statistic for evaluating associations between 
exposure and disease: Pearson X2, exact test statistics, Wald tests and likelihood ratio 
tests. 

Pearson X2 is the most commonly used test statistic for the comparison of proportions. 
For data laid out as shown in Table 6.1, the equation for Pearson X2 is: 

2 ,,(obs-exp)2 
X=L..J 

ali exp 
~ ~~n 

where: obs = observed value in each cell of the table, and 
exp = expected value for the cell=row total * column total/grand total. 
(For example, the expected value for the cell with obs=a] is n/mi/n). 

The Pearson X2 has an approximate X2 distribution provided all expected cell values are 
> 1 and 80% (or 3 of 4 in a 2X2 table) are >5. 

N ote A closely related X2 statistic, the Mantel-Haenszel X2 differs from Pearson X2 only 
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by a multiplier of n/Cn-l) which is negligible for moderate to large values of n. The 
Mantel-Haenszel X2 is used more common ly in the analysis of stratified data (Chapter 
13). 

In some cases, exact probabilities for test statistics can be computed based on the 
distribution of the data. In these cases, the P-values are derived directly from the 
permutations of the data rather than by relying on an assumed distribution (eg normalor 
X2) for the test statistic. For example, an exact test statistic for a 2X2 table (eg testing the 
significance of an RD or an RR) can be obtained from the hypergeometric distribution. 
First, the hypergeometric probability of every possible table with the same row and 
column total s as the observed data is computed. Fisher's exact P-value is the sum of the 
probabilities of all tables with smaller hypergeometric probabilities than the observed 
table. In general, computation of exact statistics is computationally demanding so, 
historically, they have been used most common ly for relatively small datasets where 
approximations based on large numbers of observations are unsatisfactory. 

Wal d statistics are appropriate provided the sample size is moderate to large (see 
guide line for Pearson X2 above). The general formula for a Wald statistic is computed 
as: 

z = 8-80 
Wald SE(8) Eq 6.13 

where SEC B) is the estimated standard error of B, and Bo is the value of B specified 
in the null hypothesis (this is often zero). Under the null hypothesis, a Wald statistic 
is assumed to have a normal distribution (or a X2 distribution for the square of the 
statistic ). 

Likelihood ratio tests (LRD are based on the likelihood of a parameter (B). The 
likelihood of a parameter [L(B)] is the probability (den sit y) of obtaining the observed 
data, if B is the true value of the population parameter. A likelihood ratio (LR) compares 
the likelihood of the estimated B with the likelihood of Bo (the value of B specified in 
the null hypothesis). An LRT is computed as follows and, provided the sample size is 
reasonably large, it has an approximate X2 distribution. 

LRT=-2(InLR)=-llnL(O)] lln L(Oo ) Eq 6.14 

Note In some cases it is possible to derive an exact probability for an LRT rather than 
rely on the X2 approximation. In general, LRTs are superior to Wald tests. LRTs are 
discussed further in Chapter 16. 

6.4.3 Confidence intervals 

Confidence intervals (CIs) reffect the level of uncertainty in point estimates and indicate 
the expected range ofvalues that a parameter might have. Although a CI covers a range 
of possible values for an estimated parameter, values close to the centre of the range 
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are much more likely than those at the end s of the range. While we use an estimated SE 
and a specific percentile of a test statistic distribution to compute a CI, a CI generally 
conveys more information than simply pre sen ting a point estimate of a parameter 
and its P-value because it clearly shows a range of likely values for the population 
parameter. Specifically, a 95% CI means that ifwe were to repeat the study an infinite 
number of times under the same condition s and create a CI for each study, 95% ofthese 
CIs would contain the true parameter value. 

If the 95% CI includes the null value (eg 1 for RR, IR or OR, O for RD, ID), it suggests 
that the parameter is not statistically significant from the null at a P-value of 0.05. 
However, this surrogate significance test is an 'under-use' of CI because it doesn't fully 
use aH the information contained in the CI. 

Computing confidence intervals 
As with hypothesis tests, CIs can be computed using either exact probability 
distributions or large sample approximations. Exact CIs are based on the ex act 
probabilities of the distributions underlying the parameter (binomial for proportions, 
Poisson for rates and hypergeometric for odds ratios). They are generally employed 
when dealing with relatively small sample sizes although increasing computer power 
has made the computation of exact CIs for most measures of association feasible for 
moderate to large sample sizes. An approximation of an exact CI (although it seems 
illogical that such an entity can exist) for OR is Comfield's approximation (Comfield, 
1956). Computation of this CI is an iterative process and it is used less now that it is 
possible to directly compute exact confidence intervals. 

Large sample approximations require an estimate of the variance of the parameter. As 
indicated above, this can be computed directly for some parameters but needs to be 
estimated for others. This approximation is most common ly done using a Taylor series 
approximation. Alternatively, a test-based method (sometimes referred to as the delta 
method) can be used (Kleinbaum et al, 1982) but it generally results in confidence 
intervals that are too narrow and will not be discussed further. 

The variance of RD can be computed directly as: 

var(RD) 
~(1-~) ~(I-~) 
nl nl + no no 

nl no Eq 6.15 

This variance estimate can then be used to derive a CI for the risk difference (Eq 
6.18). 

F or a ratio measure (eg IR), the parameter estimate and CI are computed on the log scale 
(ie CI for lnO) and then exponentiated to obtain the Clon the original scale. However, 
there is no simple expression for the var(lnO), so it must be estimated. One approach to 
estimating the variance of a parameter is to use a first-order Taylor series approximation 
in the estimation procedure. The formulae for Taylor series approximation estimates of 
the var(lnRR) and var(lnOR) are: 
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l l l l var(in RR) = - - - + - --
al nl ao no 

l l l l 
var(lnOR)=-+-+-+-

al ao bl bo 
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Eq 6.16 

Eq 6.17 

Once an estimate of the variance has been obtained, the general formula for the 
confidence interval of a difference measure (e) is: 

e±Za.Jvar(e) Eq 6.18 

For a ratio measure, the general formula is: 
e * e±ZaJvar(lnlJ) Eq 6.19 

Note A CI for OR that is based on the Taylor series approximation of the variance is 
sometimes referred to as Woolf's approximation. 

Example 6.2 presents a variety of point estimates and CIs for parameters computed in 
Example 6.1. 

Example 6.2 Confidence intervals for measures of association 

The following table presents a vari et y of CIs computed for some of the measures of 
association computed in Example 6.1 

CI 

Measure of Point Type of Lower Upper 
effect esti mate CI bound bound 

ID 0.122 direct 0.066 0.177 

IR 2.354 exact 1.719 3.190 

RD 0.290 exact 0.186 0.393 

RR 1.952 exact 1.587 2.402 

OR 3.346 exact 2.108 5.329 

Woolf 's 2.157 5.192 
(Taylor series) 

Cornfield's 2.161 5.181 

Test based 2.188 5.117 

Direct or exact CIs were computed for ID, IR, RD and RR. A variety of CIs were computed 
for OR for comparison purposes. The exact CIs are the widest, followed by Woolf's and 
Comfield's approximations (which were similar). The test-based CI was the narrowest and 
these are not recommended for general use. 
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SAMPLE PROBLEMS 

The file fish _morts contains data about mortalities in salmon sea cages in the Bay of 
Fundy. It is a small subset of data from an investigation of factors related to outbreaks 
ofInfectious Salmon Anemia (Hammell and Dohoo, 2003). In order to know how many 
fish are dying in large sea cages containing anywhere from 5,000 to 20,000 fish, the 
producer has a diver go down to the bottom of the cage periodically to collect alI of the 
dead fish. The data in this file are from one dive in each of 236 cages. The variables in 
the dataset are as follows: 

Variable Description 

cageJd cage identifier numbered 1-236 

days # of days since previous dive (ie # of days over which mortalities collected) 

morts # of mortalities found on the dive 

fish estimated # of fish in the pen 

feed type of feed (1 =dry feed, O=wet feed) 

l. Compute two new variables: 
a. fishdays the number of fish-days since the previous dive in each cage. 
b. mr the daily mortality rate for each cage (expressed in morts/l00,000 fish­

days). 
2. Compute the mean, standard deviation and median mortality rates. 
3. Generate a histogram with ten 'bars' to evaluate the distribution of mortality 

rates. 
4. Create a O/l variable called hilow that c1assifies cages according to whether or not 

they have a mortality rate above or below the median value. Add value labels to the 
two categories. 

5. What is the relative risk of being c1assified as a 'high' mortality cage if the cage 
was fed dry feed compared with wet feed? 

6. What proportion of the high mortality cages that were fed dry feed could have been 
prevented from being high mortality cages if they had been fed wet feed? 

7. What proportion of the high mortality cages in the whole population could have 
been prevented from being high mortality cages if the whole population was fed 
wet feed? 

8. How do the CIs for the above three estimates (questions 5, 6 and 7) change if you 
compute test-based CIs? 

9. What is the IR for mortalities in dry-feed cages compared with wet-feed cages. 
10. Overall, what proportion ofmortalities could have been prevented by feeding only 

wet feed? Why is this value different from the value computed in question 7? 
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7 

INTRODUCTION TO 
OBSERVATIONAL STUDIES 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Differentiate between descriptive and explanatory studies. 

139 

2. Describe the general strength and weaknesses of experimental versus observational 
study designs for the identification and evaluation of causal factors. 

3. Design a cross-sectional study which take s into account the strengths and 
weaknesses of this study type. 

4. Identify circumstances in which a cross-sectional study is the most feasible 
observational study design. 



140 INTRODUCTION TO OBSERVATIONAL STUDlES 

7.1 INTRODUCTION 

A general theme throughout this text is that a major preoccupation of epidemiologists 
is to identify causal factors that can be manipulated to prevent disease, or minimise 
its harmful effects. We continue that theme here and ask the question 'how best to go 
about the task?' The overall objectives of the research and the context in which the 
study will be conducted will have a major impact on the choice of study type. Hence, 
in this section, we provide an overview of the range of study types available for use by 
animal-health researchers. 

7.1.1 Descriptive versus analytic studies 

Research studi es can be classified into two large categories: descriptive and analytic 
(se e also Fig. 7.1). Descriptive studies are designed solely to describe animal-health­
related phenomena. In descriptive studi es, no comparisons are made between study 
group s (eg exposed versus non-exposed or treated versus not-treated) and consequently, 
no conclusions about associations between exposures and outcomes can be made. 
Descriptive studies include case-reports, case-series reports and surveys. These are 
described in more detail in section 7.2. 

Fig. 7.1 Schematic representation of study types 

Case 
report 
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sectional 

Descriptive 

I 

Case 
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Cohort 

Survey 

Case­
control 
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Explanatory (analytic) 

~ 
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Analytic (or explanatory) study designs are one s in which the investigators set out 
to make comparisons between groups of study subjects (animaI s, herds etc). These 
comparisons allow the investigator to make inferences about relationships between 
exposures of interest (eg risk factors, treatments etc) and outcomes of interest (eg 
disease occurrence, productivity effects etc). Analytic studies can be subdivided into 
experimental and observational studi es. 
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7.1.2 Experimental versus observational studies 

Experimental studies are those in which the investigator controls the allocation of the 
study subjects to the study group s (eg treated versus not treated, exposed to a risk factor 
versus non-exposed). In contrast, in observational studies, the investigators try not to 
influence the natural course of events for the study subjects, but confine their activities 
to making carefui observations (which might include collection ofa variety ofsamples) 
about the study subjects with particular attention paid to the exposure and outcomes of 
interest. 

The choice between experimental and observational approaches might be evident 
early on in the thought process; however, it is often valuable to consider the range of 
study designs available rather than fixing on the study design too early and trying to fit 
the investigation of the problem within the chosen design. Experiments often are the 
preferred choice if the treatment is straightforward and easily controllable, such as a 
vaccine trial or an evaluation of the efficacy of a spec ifi c therapeutic agent such as a 
honnone or antibiotic. A major advantage of the experimental approach is the ability 
to control potential confounders, both measured and unmeasured, through the process 
of randomisation. Observational studi es usually are the preferred study design if the 
exposure(s) is more complex, and not easily controllable by the researcher either for 
practical, ethical, or economic reasons. They have the advantages that a much wider 
array ofhypotheses can be tested, and in most instances the subjects will be exposed to 
the risk factor whether the study is done or not (Table 7.1). Maclure (1991) suggested 
some taxonomic axes or hierarchy for study design. He concluded that if a controlled 
trial (experimental) of a specified intervention is 'do-able' then, this is the preferred 
approach. 

Experimental studies can be broadly classified as laboratory based or controlled trials. 
The fonner are carried out under strictly controlled conditions (eg laboratory studies). 
These have the advantage that the investigator has almost complete control over the 
experimental condition s (eg type of animai used, environmental conditions, timing, 
level and route of exposure, method of outcome assessment etc). Evidence of an 
association between an exposure and a factor obtained from this type of study provides 
the be st evidence of causation, but given the very artificial environment in which they 
are conducted, the relevance of the results to 'real-world' conditions is often much 
more in doubt. Laboratory-based studies do not fall within the realm of epidemiologic 
studies and will not be discussed further in this text. Controlled trials are ones in which 
the investigator 'controls' the allocation of the subjects to the study groups, but which 
are carried out under natural 'real-world' conditions. The design ofthese types of study 
is discussed in Chapter 11. 

Observational studies include cross-sectional (section 7.4), cohort (Chapter 8), case­
control (Chapter 9) and hybrid (Chapter 10) studies. Observational studi es can often 
take advantage of the fact that exposed subjects already exist and therefore with an 
appropriate design the impact of these exposures can be investigated without having 
to expose needlessly specifically selected study subjects to the exposure. It would be 
a stretch to imply that these are 'natural' experiments but the fact that subjects are 
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Table 7.1 Characteristics of various study types 

Strength 
Level of of 'proof' Relevance to 

Level of investigator of causal 'real-world' 
Type of study difficulty control association situations 

Descriptive 

Case report very easy very low na low to high 

Case series easy very low na low to high 

Survey moderate moderate na high 

Explanatory - experimental 

Laboratory moderate very high very high low 

Controlled trial moderate high very hig h high 

Explanatory - observational 

Cross-sectional moderate low low moderate 

Co hort difficult high high high 

Case control moderate moderate moderate high 

na = not applicable (associations cannot be evaluated in descriptive studies) 

being exposed and the outcomes are happening, begs the question of why not seize the 
opportunity to capture data that can help assess any association between the exposure 
and the outcome. Kalsbeek and Heiss (2000) have noted that most empirical knowledge 
has been based on observations of incomplete samples (ie selected subgroups) of 
human (subject) experience. When it is impractical to study the entire population 
sampling issues must be considered and indeed, these form the basis of the different 
observational approaches introduced here and discussed in detail in Chapters 8-10. 
Observational studies make up a substantial proportion of the research carried out by 
veterinary epidemiologists. 

7.2 DESCRIPTIVE STUDlES 

As noted above, descriptive studies are not designed to evaluate any assocla1Ions 
between exposures and outcomes of interest. However, unusual observations noted in a 
descriptive study often form the basis of a hypothesis which can be further investigated 
in an analytic study. Three forms of descriptive studies are: case reports, case series 
reports and surveys. 

Case reports generally describe a rare condition or an unusual manifestation of a more 
common disease. They might be based on only one or a very few cases. The very fact 
that they are based on unusual cases might limit their relevance to typical 'real-world' 
conditions. However, these unusual observations might generate useful hypotheses to 
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be investigated in analytic studies. In some case reports, the authors draw conclusions 
about the cause or the outcome or the relative merit of the therapy used. These 
hypotheses are pure ly the author's conjecture as no data to support such a conclusion 
are available directly from a case report. 

A case series generally present a description of the usual clinical course ofthe condition 
of interest. As such it might provide valuable information about the prognosis of the 
condition, provided the cases described are representative of ali cases in the population. 
As noted, the features of the series might help the researcher posit hypotheses about 
causalor prognostic factors for the outcome in question, but the case series usually has 
no direct data on these factors. 

Surveys are conducted to estimate, with some specified precision, the frequency and 
distribution of selected outcomes in defined populations. In many cases, their principal 
objective is to provide data about the frequency of occurrence of a disease of interest 
in aspecific population. The two main design issues which need to be considered in 
designing a survey are the sampling protocol to be used (see Chapter 2) and the design 
of the data-collection instrument (see Chapter 3). If a survey collects information about 
both an outcome of interest and poten ti al exposures of interest, it then becomes a cross­
sectional analytic study (section 7.4), not a descriptive study because it can be used to 
evaluate associations between exposures and outcomes. 

7.3 OBSERVATIONAL ANALYTIC (EXPLANATORY) STUDlES 

Analytic, (also call ed explanatory) observational studies have an explicit formai contrast 
as part of their design. Ali analytic studies differ from descriptive studies in that the 
comparison of two (or more) groups is the foundation of their design. As noted above, 
observational studies differ from experiments in that the researcher has no control over 
the allocation of the study animals to the two (or more) groups being compared. 

7.3.1 Prospective versus retrospective 

Analytic studies can also be classified as prospective or retrospective. In prospective 
studies, only the exposure might have happened at the time the study starts. The 
design of prospective studies will include information-gathering techniques so that ali 
the necessary data are recorded as part of the study itself, or the study could build on 
available data sources, supplementing these data as necessary. In retrospective studies, 
both the exposure and the outcome will have occurred when the study begins and 
typicaIly these studies rely on pre-recorded data from one or more secondary sources. 
The availability ofthese data is an advantage, but often the quality and scope ofthe data 
are also limitations of the retrospective approach. Here again, selecting a suitable study 
design can maximise the information gained from the data available. 

The choices of observational analytic study design have traditionally been among one 
ofthree approaches. In a cross-sectional study (section 7.4) a sample of study subjects 
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is obtained and then the prevalence ofboth disease and exposure are determined. Such 
studies are described as non-directional in contrast to prospective and retrospective. 

In a cohort study (Chapter 8), a single sample of study subjects with heterogeneous 
exposure, or two or more group s defined by known exposure status, is obtained, and 
the incidence of the outcome in the follow-up study period determined. While these are 
usually prospective in nature, in select cases, with sufficient information recorded in 
routine databanks, they might be carried out retrospectively. 

In a case-control study (Chapter 9), subjects with the outcome of interest are identified 
and the exposure history ofthese cases contrasted with the exposure history of a sample 
(often randomly selected from a defined source) of non-cases (also call ed the control 
subjects). These studies could be carried out retrospectively using a databank of cases 
that have already occurred or prospectively, in which cases are enrolled in the study 
as they occur. Because subjects are selected based on their outcome status, they differ 
from cohort studies, in which subjects are selected based on exposure status. Variations 
on these themes are described under the heading of hybrid study designs in Chapter 
10. 

Cross-sectional studies are of lower rank than other observational studies because of 
the inability to refute reverse-causation (ie determine which carne first, the exposure 
or the outcome - see section 7.4.2); hence, when possible, other study designs should 
be investigated. Case-control and cohort studies are better for valid causal inferences 
than cross-sectional studies because of the longitudinal nature of their designs and 
their use of incidence data, both of which should allow refutation of reverse-causation, 
cohort designs being superior to case-control studies in this regard. Non-randomised 
intervention studies (sometimes call ed quasi-experiments) are ranked below case­
control and cohort designs but above cross-sectional studies for causal inference 
purposes. The issue of random allocation of subjects to interventions is discussed in 
section 4 of Chapter ll. 

7.4 CROSS-SECTIONAL STUDlES 

Due to their eas e of implementation, cross-sectional studies are one of the most 
frequently chosen study designs in veterinary epidemiology. Perhaps because the basic 
design is straightforward, there is very little written conceming details of design, at 
least relative to what is written regarding cohort and case-control studies. The basis of 
the design is that a sample of subjects is obtained and their exposure and outcome status 
at that point in time ascertained. Thus, the outcome frequency measure is inherently 
prevalence. As pointed out in Example 7.4, researchers might design questions to 
obtain 'incidence-like' data, but often problems remain in terms ofmaking valid causal 
inferences. 

If the researcher wants to make inferences about the frequency of the outcome or 
the prevalence of exposure in a target population, then the study subjects should be 
obtained by a formai random sampling procedure. The exact random process selected 
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can vary but could include stratified, cluster or multistage sampling as discussed in 
Chapter 2. However, if the primary objective is to evaluate potential associations 
between the exposure(s) and outcome(s) of interest, a non-random sample of study 
subjects is often obtained purposively. Some authors decry this non-random approach 
because the design is open to considerable selection bias. However, this selection bias 
generally limits the external validity of the study (ability to extrapolate results to other 
populations) rather than the internal validity. Biases that affect external validity are of 
less concern than those that affect internal validity. 

Although the study design can support the investigation of a variety of potential causal 
factors and a number of outcomes, in practice one or two selected outcomes are chosen 
and a set of poten ti al causal factors are selected for investigation. A potential drawback 
to this study design is that often the search for potential causes is not very focused 
and thus, a lot of data-mining for significant factors is used in the analysis stage. 
One also needs to decide if the association between exposure and outcome in the full 
study population or in defined subgroups is the principal goa!. In the latter instance, 
researchers need to ensure that adequate numbers of study subjects in the defined 
groups are available to provide reasonable power for assessing the hypotheses. 

The two major limitations of a cross-sectional study design are related to the fact 
that the outcome measure is prevalence (section 7.4.1) and that it is often difficult or 
impossible to determine if exposure occurred before the outcome (problem of reverse­
causation - section 7.4.2). 

7.4.1 Prevalence as an outcome 

By its nature, a cross-sectional study measures prevalence of exposure and outcome. 
Consequently, it is often difficult to disentangle factors associated with persistence of 
the outcome (or persistence of study subjects with the outcome ) and factors associated 
with developing the outcome in the first instance (ie becoming a new case). Animals 
with a factor which contributes to their survival once they have the disease of interest 
will be included in a cross-sectional study more frequently than animals without the 
factor (by virtue of the fact that the factor keeps them alive longer). Consequently, it 
will appear that the factor is associated with the disease and the investigators might 
incorrectly conclude that it is a 'risk factor' or cause of the disease. 

7.4.2 The reverse-causation problem 

Because both the exposure and outcome of interest are measured at the same time, 
cross-sectional studies are best suited for time-invariant exposures such as breed, sex, 
or permanent management factors. In these cases, the investigator can be certain that 
the exposure preceded the outcome (one of the fundamental criteria for establishing 
causation). When the exposure factors are not time-invariant, it is often very difficult 
to differentiate cause and effect (or the so-called reverse-causation problem). For 
example, if one is studying the relationship between a management factor (eg hoof 
trimming) and the frequency ofhoof disorders, ifthe association is positive, one cannot 
differentiate between herds that initiated hoof-trimming in response to a problem 
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with hoof disorders and those that developed the disease because of the management 
factor. The more changeable the exposure, the worse this issue becomes. If the factor 
truly is preventive and often implemented when the disease has occurred, or reached 
a threshold frequency, the positive and negative associations could cancel each other 
leaving the factor appearing to be independent of the outcome. 

7.4.3 Repeated cross-sectionaI studies versus a cohort study design 

Sometimes it is necessary to follow a population over time and here one must consider 
performing repeated cross-sectional samplings of the population versus a cohort 
approach. Briefly, if the objective is to follow specific individuals over time then the 
cohort approach is preferable. However, depending on the length of the study period, 
the remaining individuals in the study will become increasingly different from the 
existing population at that time (for example they will be mu ch older and in many 
instances represent a highly selected sub group of those originally studied). If the 
objective relates more to the events and associations within the population at different 
periods of time, then a series of repeated cross-sectional studies might be the preferred 
approach. In this design, depending on the sampling fraction, most of the study subjects 
selected at different points in time will not have been inc1uded in prior samples. 
However, with larger sampling fractions, sufficient subjects might be selected in two or 
more samplings to allow within-study subject comparisons over time (see Diehr et al, 
1995, for methods to help choose between these two approaches). 

7.5 EXAMPLES OF CROSS-SECTIONAL STUDlES 

In this section, we discuss four published cross-sectional studies that highlight some 
of the strengths and weaknesses of this study design. Example 7.1 demonstrates the 
value of random sampling in allowing for the analysis of data at multiple levels, and 
the evaluation of both time variant and invariant exposures, and the use of information 
about the potential duration of exposure to attempt to c1arify the directionality of 
possible causal associations. 

In Example 7.2, the authors used a combination of non-random and random sampling 
to achieve their objectives. 

The study described in Example 7.3 used repeat visits to study farms over the period of 
the year. As the population was dynamic, at the animai level, the study could be viewed 
as a repeated cross-sectional census of the cattle on the study farms. 

In the study described in Example 7.4, the authors attempt to obtain incidence data in a 
one-time cross-sectional study. However, the outcome data might have been a mixture 
of incident and prevalent cases and the reverse-causation issue between management 
factors and the outcome was still a problem in the study. 
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Example 7.1 Time variant and invariant factors in cross-sectional studies. 

Atwill et al (1996), used a random sample of 3,000 of the 39,000 equine operations (based 
on a 1988 census), in New York State in a cross-sectional study of risk factors for Ehrlíchia 
risticii (ER) . The study was conducted in 1991-93 and was designed to identify counties with 
a high prevalence of ER as weil as to identify host, management and environmental factors 
consistent with an oral (heirninth mediated) route of transmission. Data were obtained from 
personal interviews with owners, blood samples from horses and resource maps for geographic 
information. The use of a random, state-wide sample allowed for analyses to be earried out 
at the county, farm and horse levels. If a purposive study had been done, it might very weIl 
not have inc1uded sufficient counties or farms for analyses at those levels. A wide range of 
both time invariant (eg breed of horse) and time variant (eg frequency of deworming) were 
evaluated. Of particular interest was the evaluation of environmental eharacteristics (elevation 
and proximity to large bodies of water) as risk factors that míght relate to heirninth mediated 
transmission. While these factors are time invariant for the farm. they might be time variant 
for the individual horse because they often moved between farms. The authors attempted to 
c1arify the directionality of these associations by carrying out three sets of analyses based on 
the length of time that horses had been on the farm. Among the many results reported was an 
association between county and risk of seropositivity. Given the geographic attributes of the 
counties (low elevation level and proximity to large bodies of water), the authors conc1uded 
that this was consistent with heirninth vector spread of the disease (others had found similar 
geographic associations). However, at the farm level, the farms with the highest risk of 
seropositivity had a low elevation but no proximity to standing or running water. This tended 
to cast doubt on the heirninth hypothesis. 
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Example 7.2 Random and non-random sampling in cross-sectional studies 

This study (McDermott et al, 1987a,b) was carried out to estimate the frequency of two 
selected diseases and identify 'associated factors' as weIl as the impact of the two diseases 
on production in a rural development project area in Sudan. Three of five (out of seven) 
accessible areas were inc1uded in the study. Two cattle camps within each of the three areas 
were selected on the basis of accessibility. Within each camp, individual family herds were 
selected systematicalIy; if that herd owner was absent, the adjacent herd was selected. Finally, 
within each herd, 25 animals were selected in proportion to the sex and age structure of the 
herd. Consequently, areas and camps were sampled purposively based on the investigators' 
knowledge of the area and logisitic concems, but herds and animals were sampled using 
a form of random sampling (systematic sampling). The authors discussed random versus 
non-random sampling strategies in this context and defended their non-random process 
given the practical and logisticallimitations (while stressing the need for a knowledge ofthe 
populations being sampled). The systematic sampling of cattle by age and sex was designed 
to obviate the problem of owners presenting very healthy animals (or more likely, older 
diseased animals) for the study. 

Two research teams visited each location, one to sample the animals and one to conduct 
the interview with the owners. A central laboratory tested the samples for brucellosis and 
contagious bovine pleuropneumonia. Data analyses were performed at the individual animai 
level. Aspecific hypothesis about a breed association was not confirmed, but the results was 
confounded by differential missing information by breed. Although written records for past 
events were not available, the knowledge of the owners was deemed satisfactory in this 
context. In a subsequent paper based on the same study the authors discuss the extent to 
which a cross-sectional study could provide useful data for livestock development plans. 
Based on the fact that the associations detected in the study, and the impact of the diseases 
were consistent with known effects in other areas, they conc1uded that the study design was 
useful (and perhaps the only feasible approach). 

Example 7.3 Repeated cross-sectional sampling 

This example demonstrates the additional power and enhanced inference-making possible 
by using repeated cross-sectional surveys (O'CaIlaghan et al, 1999). The study population 
was smalI holder dairies in the Kenyan highlands. Six of IS dairy societies were selected 
purposely and then 15 farms within each society were randomly selected giving a sample 
of 90 farms. Each farm was visited monthly for 12 months. A comprehensive initial farm 
survey was conducted on risk factors for Theileriosis. At each visit, a survey was conducted 
of alI animals present on the day ofvisit and blood samples (for titres) obtained. At the farm 
level, this study could be described as a single-cohort study. However, at the animai level, the 
population was dynamic. Some animals were present at most farm visits while others entered 
and left the study. Further, although formai farm surveys were not conducted at each visit, the 
researchers were able to ascertain the management practices actually used, as distinct from the 
replies to the initial survey that tended to describe the management practices recommended 
for that area. The monthly samplings also allowed the investigators to better demarcate when 
new (or repeated) exposures to T. parva occurred, and hence obtain incidence data at the 
animai level. 
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Example 7.4 Attempts to obtain incidence data 

These authors (Wells et al, 1999) used a cross-sectional sarnple of dairy berds with more than 
30 cows to assess tbe incidence of papillomatous digital dennatitis (POD) and investigate 
herd-Ievel risk factors. Incidence data were derived by asking the herd managerS for the 
number of cows that had 'shown clinical signs' of POD in the previous 12 months (it is 
not clear if the se were new or continuing cases of POD). Herds were later categorised into 
those with >5% versus <5% of cows affected. Nonetheless, wben making inferences about 
potential causal associations, the possibility of factors being an effect of POD, rather tban a 
cause (a reverse-causation between hoof-trimming and POD level), was acknowledged by the 
authors. 
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8 

COHORT STUDIES 

OBJECTIVE S 

After reading this chapter, you should be able to: 

l. Describe the major design features of risk-based and rate-based cohort studies. 

2. Differentiate between open and closed study populations. 

3. Identify hypotheses and population types that are consistent with risk-based 
cohort studi es. 

4. Identify hypotheses and population types that are consistent with rate-based 
cohort studi es. 

5. Elaborate the principles used to select and measure the exposure. 

6. Design and imp lement a valid cohort study for studying aspecific hypothesis. 
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8.1 INTRODUCTION 

The word cohort, from its Latin root, refers to a group of subjects that has a defined 
characteristic in common. In epidemiologic study design, the characteristic of interest 
is the exposure status. Usually, the selection of the study group s is based directly on 
the exposure status (eg when we select a group of exposed and a group of non-exposed 
individuals ). However, we might select a single group of subjects that we believe will 
be heterogeneous with respect to the exposure(s) of interest and then determine their 
exposure status. We denote this design as a single cohort or longitudinal study. Once 
selected, we ensure the study subjects do not have the outcome(s) ofinterest at the start 
of the follow-up period, and then compare the incidence of the outcome in the groups 
defined by exposure status during the specified follow-up time period. Note that the 
study subjects could be individuals or aggregates of individuals, such as litters, pens 
or herds. Comprehensive reviews of cohort study design and analysis are available 
(Prentice, 1995; Samet and Munoz, 1998; Rothman and Greenland, 1998). 

8.2 BASIS 

Each specific study presents its own unique challenges, but the starting point for ali 
studies is to clearly and concisely state the hypothesis to be tested. This includes 
defining the exposure(s), outcome(s) and follow-up period in the study subjects (ie 
animals, herds or other aggregates) and the setting (ie context) ofinterest. lfsufficient 
biological facts are known, such hypotheses should also indicate the amount of 
exposure that is likely needed to trigger the effect, and how long after an exposure 
threshold is reached before one might reasonably expect to see disease from that 
exposure arise (ie the induction period). Clarifying the study objectives of ten helps 
us decide whether current or past exposure is relevant, whether lifetime exposure or 
exposure in a narrower window of time is important, whether repeated measures of 
exposures are required and if so, how to handie changes in exposure status. 

Depending on the availability of suitable records, cohort studies could be performed 
prospectively or retrospectively. Prospective studies imply that the outcome has 
not occurred at the time the study starts. They often provide the opportunity for 
more detailed information-gathering and attention to recording the details of interest 
than retrospective studies. Retrospective cohort studies imp ly that the follow-up 
period has ended when the study subjects are selected based on their exposure status. 
Retrospective studies require suitable existing databases and are often of more limited 
scope than prospective studies. 

When choosing two or more exposure groups, it is desirable that they be obtained from 
the same identifiable population. Often, these exposure group s are chosen purposively, 
not randomly. The study subjects in these exposure groups might not be equal with 
respect to risk factors other than exposure, and this needs to be taken into account in the 
study design in order to prevent confounding (see section 8.6). 
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8.3 THE EXPOSURE 

In cohort studies, our objective is to identify the consequences of aspecific exposure 
factor. The exposure refers to any potential cause of disease and might range from 
infectious or noxious agents to housing, management or feed-related factors. Exposure 
status can be measured on a dichotomous scale (exposed or non-exposed), an ordinal 
scale (low, medium, or high dose), or a continuous scale (organisms per gm of feces, 
ppm of a toxin in air or water, gm of colostrum ingested etc). Exposure can be expressed 
separately in term s of dosage and duration or as a combination of the two (ie perhaps 
their product). The exposure might be a permanent factor or a factor that can change 
over time. 

8.3.1 Permanent exposures 

These exposures include factors such as sex, breed or whether or not a calf received 
sufficient colostrum within 12 hours of birth. Permanent and 'one-time' exposures 
are relatively easy to measure, but even here a moment's thought would suggest that 
defining 'sufficient' or 'inadequate' with respect to colostrum intake in a calfmight be 
more complex than it first appears to be. In any event, for factors where the exposure is 
based on a threshold or dosage, the amount of exposure necessary to deem an individual 
as being' exposed' needs to be clearly stated as exposed time at risk does not begin until 
the criteria for completing the exposed state have been met. If the outcome event occurs 
during the time period before exposure is completed, it should not be included in the 
analysis; as exposure has not been completed, it could not have caused the outcome. 
These issues are shown graphically in Fig. 8.1. 

Fig.8.1 Life experience wi th exposure, induction period and time at risk 

Life experience 

/-I • exposure 
occurring 

exposure 
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An example of a cohort study with a permanent exposure factor is presented in 
Example 8.1. 

8.3.2 N on-permanent exposures 

When discussing exposures that can change during the study period, it is useful to recall 
the criteria for completing 'exposure' as there might be time and/or dose components 
necessary before the study individuals are deemed to be exposed. If one type of 
exposure ends and another type of exposure begins, there might be a lag effect from the 
first exposure. Diseases occurring within this period should be attributed to the former, 
not the latter, exposure. 
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Example 8.1 A cohort-study design with a permanent exposure factor 

Suppose we want to investigate the association between congenital infection with Neospora 
caninum and subsequent fertility and abortion in dairy cattle (see Thurmond and Hietala 
(1997) for an example). We will assume that we can obtain a sufficient number of cattle in 
local herds and that we have sufficient time and money to complete a multiyear study. We 
will further assume that we have a perfect test for Neospora infection and elear criteria for 
'fertility' and' abortion'. We might begin by testing at birth to identify infected calves, then 
follow these through their breeding and the subsequent lactation. If we have no losses to our 
study groups, we could compute and contrast the age at pregnancy, and the risk of abortion 
in the congenitally infected and non-infected (at birth) groups. One might need to decide if 
calves infected after birth need to be identified and exeluded from the non-exposed group (see 
Example 8.2). 

For an exposure that can change over time (for example, the type of housing 
experienced by a cow over two lactations), both the tim ing and the order of the 
exposures might be important to measure and analyse. This adds further complexity 
to the exposure factor. Sometimes a simple summary measure of exposure will suffice 
(eg days spent on concrete versus dirt flooring), whereas in other studi es more complex 
measures of exposure are needed (eg the number of days spent housed in different stall 
designs where the stall size and the flooring material also might need to be considered). 
Neutering is often a factor of interest and here the age at neutering as well as the fact 
of neutering could be important. Examples 8.2 and 8.3 are descriptions of studies with 
exposures that change over time. 

Example8.2 A cohort-study design with a non-permanent exposure factor 

In a follow-up example on Neospora caninum infection, we might develop a new hypothesi s 
conceming post-natal infections. Thus, we would monitor the study cal ves for the acquisition 
of infection after birth by testing them at birth to ensure they were not congenitally infected 
and then test at regular (eg three-month) intervals thereafter. Abortion following first 
conception might be the outcome of interest in this study. In addition, we might wish to 
stratify the data based on the timing of infection (eg the actual age at infection or whether 
the infection occurred before or during pregnancy). In either instance, this would be a closed 
population and thus, a risk-based analysis would be appropriate (see section 8.5). 

8.3.3 Determining exposure time 

If the timing and nature of exposure are obvious, then exposure time continues to 
accumulate unti! the event of interest occurs, or the study period ends or, if there are 
losses to follow-up, until the last date exposure status is known (in this instance use the 
midpoint of the last period if the precise time is unknown). If the measure of exposure 
is a composite (eg 'total hours confined' determined from the hours per day confined 
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Example 8.3 A more complex cohort-study design with a non-permanent 
exposure factor 

As a second example, we might investigate the association between stall confinement and 
stereotypical behaviour in horses. Here we have a much more complex exposure to assess. 
Some of the axes of exposure could relate to the size and design of the stall (eg stall size, 
construction, lighting and whether or not the horse can see other horses), the duration of 
recent stall confinement, and the history of previous confinement. It is also possible for 
exposure to stall confinement to be intermittent (eg a horse is confined during the colder 
months but on pasture during the summer). 

We would need to define the criteria for being exposed to stall confinement (eg how many 
days in a stall is considered to be confined or exposed?). If a stereotypy occurs before the 
'exposure' is completed, it would be excluded from the analysis. Once the criteria of being 
exposed are met, the number of days the horse is confined is then accumulated for the 
purposes of computing incidence rates. Subsequently, if a horse develops a stereotypy, its 
exposure category at the time of that occurrence is used for the purpose of calculating the 
incidence rate. If the animal's housing is changed, then after considering any lag effects, the 
number of days spent in each exposure category is accumulated in the overall denominator of 
the rate for that category. 

multiplied by the number of days confined), then it might be advantageous to study the 
two components separately in the same model because their effects might differ (it might 
be the number of days confined and not the hours of confinement per day that increases 
the risk ofa stereotypy; see Example 8.3). 

If the exposure status can change during the study period, an individual can accumulate 
animai-time in both exposed and non-exposed groups. In addition, if an induction 
period is known, then technically, until that period is over, the experience of otherwise­
exposed individuals should be added to the non-exposed group. Some researchers prefer 
to discard the experience during the induction period for exposed individuals because 
of uncertainties about the duration of the induction period. In the face of uncertainty 
about these effects, this is likely the be st choice to make providing there is sufficient 
time at risk in the non-exposed group to maintain preci sion. SimilarIy, if previously 
exposed individuals become non-exposed, one would only add the non-exposure 
time (of otherwise-exposed individuals ) to the non-exposed cohort if there was strong 
ev iden ce that the period of risk for the outcome of interest was of limited duration. In 
Example 8.3, if the horse ceases to be confined, it would only start to accumulate time 
in the non-confined group if it was assumed that the effect of confinement on stereotypy 
development ended as soon as confinement ended (ie there was no lag effect). 

8.3.4 Measuring exposure on a continuous scale 

Typically, individuals are classified as exposed or non-exposed (ie a dichotomous 
exposure) or perhaps into an ordinallevel of exposure category. The outcome frequency 
will then be determined within each exposure category. Exposure might also be measured 
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and class ifi ed on a continuous scale. As in other instances, maintaining the continuous 
scale has advantages because the categorisation of a continuous exposure variable 
usually results in los s of information. Thus, one might relate the outcome frequency (ie 
risk or rate) to the continuous exposure scale us ing an appropriate regression model. If 
categorisation of exposure is deemed to be sufficient, there should be some evidence 
available to help decide the appropriate cutpoints for exposure categories. As before, 
more than one axis of exposure measurement is useful. For example, we might assess 
the risk of the outcome according to the maximum daily exposure, or the median daily 
exposure (the se would be the cutpoints for exposure categorisation). If lag effects are 
minimal, when different exposure categories exist for the same individual, the exposure 
category ass igne d to an individual is that level of exposure the individual was in at the 
time the outcome event occurred. The prior exposure time at that level is accumulated 
for that individual as weIl as any time at risk in the other levels of exposure for that 
individual. The more information that can be coIlected on exposure, such as its level(s), 
when it started, and when (it) it stopped adds credibility for causal relationships is more 
useful for preventive action/management intervention, and enhances our biological 
understanding of the problem. 

8.4 SAMPLE-SIZE ASPECTS 

UsuaIly, sample-size determination assumes that we want an equal number of exposed 
and non-exposed individuals. There is nothing magica! about this assumption and, if 
cost or other practicalities dictate different sample sizes in different exposure categories, 
then this can be accounted for. The risk-based approach for sample size estimation, as 
shown in Chapter 2, is often sufficient for planning purposes even if the population is 
open and a rate-based study must be used. 

8.5 THE NATURE OF THE EXPOSURE GROUPS 

When selecting two or more exposure group s , it is be st if the groups come from 
one identifiable population that has numerous characteristics in common other than 
exposure. The 'population' might be real, or it could be a virtual population as in the 
'group of dogs at a clinic' or the' group of farms served by one veterinary practice.' If 
exposure group s are defined at the start ofthe study and this does not change, it is called 
a fixed cohort. If there are no additions and few or no losses, then the fixed cohort is 
deemed to be closed (section 4.4.1). This allows the calculation of risks and average 
survival times (times to endpoint). 

In many cohort studies, the population is open in that some or ali of the individuals in 
the cohorts will change over time and hence, they will be observed for only a portion 
of their at-risk period. Individuals might be lost from, or added to, the study and/or the 
exposure status of each individual can change over time. In this situation, one needs to 
accumulate the amount of exposure time and non-exposure time contributed by each 
individual. Open populations require a rate-based approach to study design. 
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8.5.1 Risk-based (cumulative incidence) design s 

ln a 2X2 table, the summary fonnat for a closed-population cohort study is: 

Exposed Non-exposed Total 

Diseased 

Non-diseased 

Total n 
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ln this design, we select nl exposed and no non-exposed individuals from the Nl exposed 
and No non-exposed individuals in the target popuIation. Having ensured that none of 
the study group has the outcome (a) at the start of follow-up, we follow or ob serve 
alI study subjects for the full period of risk. During the study, we observe al exposed 
subjects developing disease out of the nl exposed subjects and ao non-exposed disease d 
subjects out of the no non-exposed subjects. Overall, we ob serve a total ofm

l 
diseased 

and mo non-diseased subjects. The study population data are used to estimate the two 
risks (R) of concem, namely: 

R] =a]/n] and Ro =ao/no 

8.5.2 Rate-based (incidence density) designs 

In this design, the initially selected exposed and non-exposed subjects each contribute 
an amount of 'at-risk' time to the denominator of the rates untiI they deveIop the 
outcome, or are lost to the study or their observation end s (eg the study is tenninated). 
If new individuals are added to the study group, or if the exposure status of individuals 
changes during the follow-up period, then the appropriate amount of time at risk is 
added to either the exposed or non-exposed categories. As noted earlier, individuals do 
not contribute exposed time at risk unti I they have qualified as 'exposed' and untiI the 
induction or lag period are completed. 

The summary fonnat for an open-popuIation cohort study is: 

Diseased 

Animai-time at risk 

Exposed Non-exposed Total 

AlI subjects in the study group are followed for the duration of their risk within the 
study period, and we observe al exposed cases of disease out of tI animaI-time units of 
exposure and ao non-exposed cases out of to non-exposed animaI-time units. Here tI is 
the sum of alI of the exposed time at risk for each of the individuals that were 'exposed' 
for some time prior to, or during, follow-up. SimiIarly to is the summed time at risk in 
the non-exposed category. The two rate s (I) of interest we wish to estimate would be: 

I] = al/t] and 10 = ao/to 
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If the follow-up time is relatively short, the rate s will be used to measure disease 
frequency. If the follow-up time is so long that assumptions about a constant rate over 
the entire study period are highly suspect, survival analysis methods should be used to 
analyse the data (see Chapter 19). 

8.6 ENSURING EXPOSED AND NON-EXPOSED GROUP S ARE COMPARABLE 

If the study subjects in the exposure group s are not comparable with respect to factors 
related to the outcome and exposure, abiased assessment of the exposure-outcome 
association can result. In general, one or more of the following three approaches can 
be used to help ensure that the exposed and non-exposed group s are comparable in all 
relevant aspects other than their exposure status. 

8.6.1 Exclusion/restricted sampling 

Here we identify variables likely to be confounders (see Chapter 13 for a discussion of 
confounding) and then select both exposed and non-exposed study subjects so that they 
have only one level of these variables (eg use only one age, one breed, or one sex of 
animai). In other circumstances, the criteria for study entry are restricted (eg only steers 
in defined feedlots) and applied to both exposed and non-exposed groups. This serves 
to reduce the background variability, or noise, and might help reduce confounding from 
unknown factors. 

8.6.2 Matching 

Here we identify major confounding variables and then select the non-exposed subjects 
so that they are the same as the exposed subjects with respect to these variables. One 
method of selection is one-on-one matching (eg select the next listed, non-exposed 
animai (ifusing existing records) provided they are of the same age, breed etc). Another 
method is group matching which ensures an overall balance. These two approaches 
lead to different forms of analysis (see section 13.6). Matching can help achieve greater 
study efficacy as weil as confounding control in cohort studies. 

8.6.3 Analytic control 

Here we identify and measure the important confounders and then use analytic control 
(eg ranging from Mantel-Haenszel-type stratification to multivariable regression 
approaches) to adjust for these confounders (see Chapters 13 and 16), and hence obtain 
unbiased measures of association. Information on other exposures/confounding factors 
also should be as accurate as possible because misclassification of these confounders 
seriously reduces our ability to control confounding. 



COHORT STUDlES 159 

8.7 FOLLOW-UP PERIOD AND PROCESSES 

This is a very important aspect of study validity and the follow-up process must be 
unbiased with respect to exposure status. This often requires some form of blinding 
process as to exposure status. This can be implemented in both prospective and 
retrospective studies (although the latter has more limited options). Unless the study 
period is short, it is helpfui to enumerate and characterise the population at risk at 
specified times during the study. Ifpassive surveillance for cases is used, then cases are 
identified when reported. With active surveillance and regular evaluation, it is feasible 
to get more accurate data on time of outcome occurrence. The date of event occurrence 
should be as accurate as possible, because inaccurate recording increases the possibility 
of serious measurement error. Collecting ancillary information is useful to manage 
issues such as loss to follow-up because of culls/sales, and to assess if censorship 
is unrelated to exposure. In a closed cohort, it is important to trace as many 'losses' 
as possible in order to ascertain their last known health and exposure status. If the 
percentage of study subjects lost becomes large (some use > 10% as a cutpoint), it will 
begin to cast doubt on the validity of study findings. 

8.8 MEASURING THE OUTCOME 

Each study will need explicit protocols for determining the occurrence and timing of 
outcome events. Clear definition(s) of diagnostic criteria are useful to ensure as few 
diagnostic errors as possible (eg what constitutes stereotypical behaviour). Ensuring 
blindness as part of the diagnostic process is helpfui to equalise diagnostic errors but 
this does not reduce them. 

The outcome is measured as incidence in a cohort study. This requires at least two tests: 
the first at the start of the period to ensure that the animaI s did not have the disease, and 
the sec ond to investigate whether or not the disease developed during the observation 
period. If the study group is screened regularly for the outcome event, then the time of 
occurrence of the outcome should be placed at the midpoint between examinations. If 
clinical diagnostic data are used to indicate the outcome event, you must remember that 
these are based on time of diagnosis not on time of occurrence of disease. For diseases 
that might remain subclinical for months or years, ignoring this difference could lead 
to inferential errors. 

One of the advantages of a cohort study is that we can assess multiple outcomes. 
However, if multiple outcomes are assessed, some might be significantly associated 
with the exposure by chance alone. In this instance, it might be best to consider the 
study as hypothesis-generating not hypothesis-testing, unless the outcomes were 
specified a priori. 
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8.9 ANALYSISIINTERPRETATION 

8.9.1 Risk-based cohort analysis 

If the study population is closed, we can measure the average risk of disease(s) and 
survival times during the follow-up period. Bivariable analyses are shown in Chapter 
6, stratified analyses in Chapter 13 and muItivariable logistic model s in Chapter 16. 
Retrospective single-cohort studies that were analysed using a risk-based approach are 
presented in Examples 8.4 and 8.5. 

8.9.2 Rate-based cohort analyses 

If the study population is open, rates are used to measure disease frequency and a 
Poisson regression model (Chapter 18) is appropriate for the analysis. The incidence of 
disease is expressed relative to the amount of time at each level of exposure, not to the 
number of exposed (or non-exposed) individuals. Example 8.6 contains an example of 
a rate-based cohort study of colic in horses. 

Example 8.4 Retrospective single-eohort study - closed population 

Risk factars for metritis in Danisb dairy cows (Bruun et al, 2002) 
A retrospective single-cohort (longitudinal) study of factors affecting metritis occurrence in 
the first 30 days of lactation was conducted in Denmark using data collected during 1993· 
1994 (Bruun et al, 2002). Data on herd size, breed, parity and treatment of disease were 
obtained from the Danish Cattle Database. Management and production-facility data were 
collected using a questionnaire, conducted as a telephone interview in 1994. The study 
inc1uded 2,144 herds from three regions in Denmark (102,060 cows). Herd-level exposure 
variables inc1uded: herd size, housing, flooring, grazing, calving measures, and calving 
supervision. Cow-Ievel exposure variables were: parity, breed, calving season and whether 
the cow had been treated by a veterinarian for dystocia or retained placenta, reproductive 
disease, ketosis, milk fever or dry-cow mastitis. 

This study population can be considered fixed in that the exposure status was considered 
permanent within a lactation and aU cows were observed for the full 30-day risk period - few 
cows are culled during this stage of lactation, and no 'new' cows were added, so it was a 
c10sed population. 
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Example 8.5 Retrospective cohort study - closed population 

Musculoskeletal injuries in Thoroughbred horses during races (Coben et al, 1999) 
This example allows the reader to compare different approaches (cohort and case-crossover 
studies) to answer the same general question - in this instance, factors affecting leg injuries 
in racehorses. See Example 10.2 for the comparison study. 

This was a retrospective cohort design. The study population was selected from a larger 
cohort of horses that raced on four tracks in Kentucky between January l, 1996 and October 
25, 1997. Prior to each race, each horse was examined by a Kentucky Racing Commission 
veterinarian and a summary score indicative of increased injury risk was recorded. This score 
was dichotomised by the researchers, and records for horses with an elevated risk and one 
randomly selected horse deemed to be at no increased risk in that race were selected for study. 
A major analytical feature was that, over the study period, horses could be included many 
times and their injury risk status could change. 

Any horse that raced on one of the four tracks was eligible for the study and, although the 
horse population itself likely changed during the study period, alI horses were observed for 
the full risk period (ie the race) and hence, the study population was closed allowing a risk­
based analysis. 

Example 8.6 Prospective co hort study - open population 

Prospective study of equine colic incidence and mortality (Tinker et al, 1997) 
Data from 31 farms with more than 20 horses each were maintained for one year. Descriptive 
information on 1,427 horses were collected at the outset and updated every three months 
allowing horse-time at risk to be determined for each horse. The crude 1 for colic was 10.6/ 
100 horse-years but this varied from O to 30/100 horse-years across farms. Fourteen horses 
had more than one colic episode and the co1ic-specific mortality rate was 0.7/100 horse-years. 
The rate s of colic differed by breed, use and age but not by gender. 
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9 

CASE-CONTROL STUDIES 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Describe the major design features of risk-based and rate-based case-control 
studies. 

2. Identify hypotheses and population types that are consistent with risk-based case­
control studies. 

3. Identify hypotheses and population types that are consistent with rate-based case­
control studies. 

4. Differentiate between open and closed primary-base and secondary-base case­
control studies. 

5. Elaborate the principles to select and define the case series. 

6. Implement the principle features to select controls in open and closed primary-base 
case-control studies. 

7. Implement the principle features to select controls in open secondary-base case­
control studi es. 

8. Design and implement a valid case-control study for studying aspecific 
hypothesis. 
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9.1 INTRODUCTION 

The essence of the case-control study design is to select a group of cases and a group of 
non-cases (ie controls), and compare the frequency of the exposure factor in the cases 
with that in the controls. The cases are the study subjects that have developed the disease 
or outcome of interest, whereas the controls have not developed the disease or outcome 
of interest at the time they are selected. It is important to stress that a case-control study 
is not acomparison between a set of cases and a set of 'healthy' individuals, but between 
a set of cases and a set of individuals whose exposure to the factor of interest reflects the 
exposure in the population from which the cases were drawn. An overview ofkey design 
issues is available elsewhere (Breslow and Day (1980); Rothman and Greenland (1998)). 
Although the study designs are described as though an individual animaI is the unit of 
interest, the designs also apply to aggregates of individuals such as litters, pens, barns or 
herds. 

9.2 THE STUDY BASE 

The study base is the population from which the cases and control s are obtained. If 
the cases and control s come from a well-defined target population for which there 
is, or could be, an explicit listing of sampling units (ie potential study subjects), this 
population is denoted as the primary study base. If the cases and controls come from a 
referral clinic, laboratory or central registry, these sources, which are one step removed 
from the actual source population, are referred to as a secondary study base. Explicitly 
defining the target or source population can be difficult when using a secondary base 
but, in so far as is possible, the controls should be derived from the population that 
gave rise to the cases in a manner such that they reflect the distribution of exposure in 
that base. Often it is useful to identify the factors which would lead (or exclude) cases 
to (from) the secondary-base registry. For example, there could be a large number of 
animaI s in the source population that develop the disease of interest but which will not 
be entered in the secondary base because of the animals' lack of economic value, or the 
owners' attitudes towards secondary medical care (ifthe secondary bas e is a specialised 
or referral hospital). In such an instance, we would attempt to select controls from non­
cases with other disease(s) that willlikely have similar referral patterns to the cases. 

9.2.1 Open versus c10sed study populations 

Variations in the study design are necessary depending on whether one is conducting the 
study in an open or closed population. As noted in section 4.4.1, a c10sed population has 
no additions during the study period and few or no losses. Populations are more likely 
to be c10sed if the risk period for the outcome is of limited duration (eg as in bovine 
respiratory disease in feedlot calves). Open populations could have both additions and 
losses during the risk period and are more likely to arise when the risk period for the 
outcome of interest is long (eg a study of risk factors for lymphosarcoma in cattle, or 
a study of risk factors for stereotypy in horses). Sometimes it is possible to convert an 
open population to a c10sed population. For example, a study ofrisk factors for mastitis 
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in dairy cows over one calendar year would likely have to contend with new cows 
being adde d and original cows being lost part way through their lactation. However, if 
the hypothesi s is to identify risk factors for first occurrence of mastitis in the initial 60 
days of lactation, by following a defined group of cows for the full 60 days after they 
calve, we have created a closed population. Only cows that calve in the herd(s) and are 
followed for the full 60-day period are included in the study. Closed populations can 
support risk-based case-control designs; open populations require a rate-based design. 

9.2.2 Nested case-control study designs 

In describing the source population in a case-control study, the term nested usually 
implies that the entire source population from which the cases are drawn has been 
enumerated and followed such that the case series represents ali ofthe cases, or a known 
fraction thereof, from this population. When this is true, by knowing the sampling 
fractions of cases and controls, we can estimate the frequency of disease by exposure 
status, a feature that is absent in almost ali other types of case-control studi es. However, 
whether or not the study is truly nested in an explicitly definable population, it is useful 
to think of ali case-control designs in this context even if the source population is not 
explicitly listed (eg as in a secondary-base study, section 9.6.3). 

9.2.3 Keeping the cases and controls comparable 

Reducing the number of extraneous factors that can adversely affect the study, many of 
which are unknown, is always a good strategy. Both exclusion and inclusion criteria 
can be used for this purpose, and should apply to both cases and potential controls. 
In addition, as with cohort studies, there are three general approaches to preventing 
confounding by 'known factors'. The first is exclusion or restricted sampling. For 
example, ifbreed is a likely confounder, you might include only one breed in the study, 
the dominant one in the source population. Hence, there could not be any confounding by 
breed. What we would lose in this approach is the ability to generalise the results to other 
breeds or to assess interactions with the exposure across breeds. 

Matching on known confounders is a second strategy frequently used to prevent 
confounding and, to a lesser extent, to increase efficiency (ie power of the study). 
Unfortunately, matching often does not work weil for either ofthese objectives in case­
control studies (section 13.6). However, ifmatching is used, then a conditional analysis 
of the data is required (section 16.14). Third, we can use analytic control as astrategy 
for the control of confounding. Here we measure the confounders and use multivariable 
techniques to prevent confounding. This is our preferred choice, often working in 
concert with restricted sampling (see Chapters 12 and 13 for more detail). 

9.3 THE CASE SERIES 

The keyelements in selecting the case series include the definition of the disease (the 
required diagnostic criteria for the outcome ), the source of the cases, and whether to 
include only incident or both incident and prevalent cases. 
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9.3.1 Case definition 

The actual diagnostic criteria will vary depending on the outcome, but they should 
include specific, well-defined manifestational (ie clinical) signs and, when possible, 
documented diagnostic criteria so that they can be applied in a uniform manner. In 
some instances, it might be desirable to subdivide the case series into one or more 
sub group s based on 'obvious' differences in the disease manifestation, especially if 
the causes of the different forms of the disease might differ. We need to be carefuI in 
imposing detailed diagnostic criteria for the cases in the sense that the case series in 
the study could become increasingly different from the majority of cases ofthat disease 
if high level s of time commitment and money are required to complete the diagnostic 
work-up. Thus, a case series of autoimmune disease in dogs obtained from a referral 
hospital might differ from the majority of autoimmune cases seen in private practice. 
Nonetheless, there is merit in a set of very specific diagnostic criteria for the cases as 
preventing false positives will reduce any bias in the measure of association caused by 
lack of sensitivity in the detection of cases (section 12.6.5). 

9.3.2 Souree of eases 

A major decision is whether the cases will alI (or most) be from a defined population 
(a primary-base study), or if they will be obtained from a secondary source such as 
clinic or registry records (a secondary-base study). Sampling directly from the source 
population has the advantage that it avoids a number of potential selection biases, but 
it is more costly than using secondary data. The challenge is to obtain as complete 
coverage as possible with respect to case ascertainment. This design is modenitely 
common in veterinary medicine because farms with good records allow virtually 
complete enumeration of animals and events (although one might have to choose 
between 'owner-diagnosed' and 'veterinary-diagnosed' cases). As noted, depending 
on the outcome, the study design might allow these populations to be considered as 
closed thus allowing risk-based analyses. In secondary-base studies, the challenge is to 
conceptualise the actual source population and design the study to obtain a valid sample 
of non-cases to serve as controls. 

9.3.3 Ineident versus prevalent eas es 

The issue of selecting incident versus prevalent cases se ems fairly clear; there is 
virtually unanimous agreement that only incident cases be used for the study. There 
could be specific circumstances in which the inclusion of prevalent cases can be 
justified, but this would be the exception, not the rule. The problem with prevalent cases 
is that it is difficult to separate the factors that relate to 'getting' the disease, from the 
factors that relate to 'having' the disease (ie duration). Thus, a 'beneficial' factor that 
increases survival in affected animals could appear to be a risk factor for the disease if 
prevalent cases are included. Also, because we are uncertain about when a prevalent 
case began, it is more difficult to focus the search temporarily for causal factors than it 
is for incident cases. 
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9.3.4 Exposure and covariate ass ess ment 

When ascertaining exposure status and information on confounders, it is preferable 
to obtain the greatest accuracy possible, even if that leads to different data-collection 
processes between the cases and controls. Failing that, the process should have 
comparable accuracy in both groups. Usually this approach is implemented by using 
the same process for obtaining exposure and confounder data in cases and control s and, 
where possible, having the data collectors blinded to case status. 

Many times the exposures that are studied are not permanent and can change over time. 
If a subject's exposure history changes during the study period, the case's exposure 
status should be that which existed at the time of event occurrence. For controls, their 
exposure status at the time of their selection as controls is required. 

9.4 PRINCIPLES OF CONTROL SELECTION 

The selection of appropriate controls is often one of the most difficult aspects of a 
case-control design. The key guide line for valid control selection is that they should 
be representative of the exposure experience in the source population. Controls are 
subjects that would have been cases if the outcome had occurred. Hence, the more 
explicitly the source population can be defined, the easier it is to design a valid method 
for selection of controls (Wacholder et al, 1992a,b). 

The major principles are: 
Controls should come from the same study base (population) as the cases. 
Controls should be representative of the source population with respect to 
exposure. 
In open populations, controls should mirror the exposure time of the non-case 
subgroup in the population. 
The time during which a non-case is eligible for selection as a control is the 
time period in which it is also eligible to become a case if the disease should 
occur. 

The implementation ofthese principles depends on the study design, so we shall begin 
our discussion with the traditional risk-based design. 

9.5 SELECTING CONTROLS IN RISK-BASED DESIGN S 

The traditional approach to case-control studies in veterinary medicine has been a 
risk-based (cumulative incidence) design. In this approach, the controls are selected 
from among those animals that did not become cases up to the end of the risk period. 
An individual can be selected as a control only once. This design is appropriate if the 
population is closed and the risk period for the outcome in an individual has ended 
before subject selection begins. It fits situations such as outbreaks from infectious or 
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toxic agents where the risk period for the disease is short and essentially ali cases that 
will arise from that exposure will have occurred within the defined study period (eg a 
point-source food-bome outbreak, or bovine respiratory disease occurrence post-arrival 
in a feedlot - see Example 9.1). Because the risk period has (for practical purposes) 
ended, the study cases represent virtually all of the cases that would arise from the 
defined exposure even if the study period were extended. It should, however, be noted 
that if the population is actually open, the use of this risk-based sampling strategy can 
lead to significant bias. 

Example 9.1 Prospective risk-based case-control study 

This study investigated associations of viral and mycoplasmal antibody titres with respiratory 
disease in calves in Ontario feedlots (Martin et al, 1999). Blood samples were taken from 
calves in 32 different group s on arrival at the feedlot and again 28-35 days after arrival. The 
high-risk period for bovine respiratory disease (BRD) in feedlot calves usually lasts less 
than four weeks and on average about 30% of calves deve10p BRD. Because ali cal ves were 
observed for the full risk period, this study population was c10sed and a risk-based design with 
controls being those calves not developing BRD within 28 days of arrival was appropriate. A 
feature of the design is that, althoughall calves were bled at both times (arrival and 28-35 days 
later), the researchers only deterrnined serological titres on the cases and an equal number of 
controls, thus reducing the number of serological analyses by 20-40% and converting the 
study from a single-cohort study to a prospective case-control study in a defined population. 

9.5.1 Sampling issues in risk-based studies 

The closed-source population can be categorised with respect to exposure and outcome 
as shown below (upper-case letters denote the population, lower case the sample): 

Non-cases 

Total 

Exposed Non-exposed Total 

N 

The cases are those that arose during the study period, whereas the controls are those 
that remained free of the outcome during the study period. The control s should be 
selected such that there is an equal sampling fraction of exposed and non-exposed 
controls (ie sampling is independent of exposure status). 

Usually, all or most of the cases (M1) are included in the study. There are BJ exposed 
non-cases and Bo non-exposed non-cases in the source population from which we 
select our study control subjects b

J 
and bO' We want to select the control s such that the 

sampling fractions (sj) in these two groups of non-case s are equal, ie: 
number of exposed controls in the sample is bJ=sf(BJ), and 
number ofnon-exposed controls in the sample is bo=sf(Bo)' 
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In a primary-base study, an equal sampling fraction would be obtained by random 
selection from the non-case population (ie from the group that remains free of the 
disease at the end of the study period). In a secondary-base study, it could be achieved 
by selecting control s randomly from the other non-cases in the registry. There is one 
caveat in selecting control s in a secondary-base study, however - in order to keep 
the sampling fractions equal, one should sample from sets of diagnostic categories 
of non-cases that are not associated with the exposure(s) of interest. As we point out 
subsequently, most secondary study bases are open and hence a rate-based design 
should be used to select controls. 

If censoring of study subjects is not independent of exposure, a rate-based sampling 
approach (see section 9.6), coupled with the usual unmatched risk (odds ratio) 
calculations, will provide a more consistent estimator of the risk ratio than sampling 
from the non-case group at the end of the risk period. Non-independent censoring 
might, for example, be common in studi es of risk factors for diseases in many food­
animaI species where 'rernovai' of study subjects is under the owner's control. 

In risk-based studies, the measure of association is the odds ratio (OR) which is a valid 
measure of association in its own right, and also estimates the ratio of risks (RR) if the 
outcome is relatively infrequent (eg <5%) in the source population (see Chapter 6). 

9.6 SELECTING CONTROLS IN RATE-BASED DESIGNS 

Because the populations we study are often open, the case-control designs for these 
populations should use a rate-based approach (incidence rate (l)) which seeks to 
ensure that the time at risk is taken into account when the controls are selected. 

9.6.1 Sampling issues in rate-based studies 

We can visualise the classification of the open-source population with respect to the 
number of cases and the time at risk in each of the exposure levels in the population as 
shown below (upper-case letters denote the population, lower case the sample): 

Exposed Non-exposed Total 

Cases A1 Ao M 1 

Animai-time at risk T 1 To T 

To help understand incidence rate designs, it is useful to think about how the two key 
frequencies would be measured, and what animals would be inc1uded in a cohort study 
of the population. Recall that, in a cohort study, if we wanted to study the relationship 
of exposure to the rate of outcome, the two rates of interest would be: 

lj = AdT] and 10 = Ao/To 

where A represents the number of incident cases and T represents the animaI-time at 
risk in each exposure group. The drawback to the cohort approach is that all animals 
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in the study population must be followed. In a case-control study, the control series is 
used to ref\ect the animaI-time exposure experience without the full enumeration of 
the population or the time at risk. Thus, the cases are those subjects that experience 
the outcome in the hypothetical cohort study. The controls are selected from non-cases 
such that the denominators T

j 
and To can be estimated validly. Recall that we estimated 

Bj and Bo in the risk-based design. 

The main goal of a rate-based study is to select controls with an exposure distribution 
that matches that in the source population. This information allows us to estimate the 
ratio of the rate s in exposed and non-exposed animals without knowing TI and To' 
Hence, we select control s such that the sampling rate (sr) is equal in the exposed and 
non-exposed populations. That is, the ratio of the number of exposed controls (b

l
) in our 

sample divided by animal-exposure-time equals the number of non-exposed controls 
(bo) in our sample divided by the non-exposed animaI-time. Thus, in our sample, 

b j bo b l TI 
-"'- or -"'-
Tj To bo To Eq 9.1 

Ifwe achieve the equal it y in Eq 9.1, then: 

aj /b j '" Aj /Tj 

ao/bo Ao/To Eq 9.2 

That is, the ratio of the exposed cases to exposed control s divided by the ratio of 
the non-exposed cases to non-exposed control s in the study population estimates the 
ratio of the incidence rates (IR) in exposed and non-exposed individuals in the source 
population. This ratio can also be viewed as the odds of exposure in the cases compared 
with the odds of exposure in the controls and is called the cross-product ratio or odds 
ratio (OR). In this design, the OR estimates the IR and no assumption about rarity of 
outcome is necessary for a valid estimate. The penalty for the efficiency of this process 
is that the statistical precision is lower than if the hypothetical cohort study had been 
done. 

9.6.2 Sampling primary-base open-population controls 

The easiest way to ensure valid selection of controls in this instance is to random ly 
select controls from the source popu1ation. In the unmatched selection procedure, the 
probability of selecting each control shou1d be proportional to the time at risk, as it is 
the amount of time at risk in the exposed and non-exposed groups that we should mirror 
in our controls. Iftime-at-risk data are available, controls can be selected at the end of 
the study period using the time at risk as the basis (probability) for their selection. The 
time at risk would be known in well-defined populations such as herds or flocks with 
complete records for all animals. For examp1e, in a case-control study ofrisk factors for 
bovine leukosis, ifherds on milk-recording systems were used for the study, it would be 
possible to obtain time-at-risk data for each cow and hence, sample accordingly. 

If the time at risk is not known, controls can be selected at defined points throughout the 
study period from the risk set (those non-cases eligible to become cases at that point in 
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time). The number of control s per period can vary and need not have a constant ratio to 
cases. If the exposure and covariate characteristics of the population don 't change over 
the study period (ie they are stable), the sample OR estimates the IR. 

Another method of obtaining control s is by selecting a specified number of non-cases 
from the risk set matched, time-wi se, to the occurrence of each case. This is called 
incidence density sampling. The controls are randomly selected at the time the case 
arises from those non-cases eligible to become cases at that point in time. The number 
of control s per case can vary and need not have a constant ratio. If the level of exposure 
might be related to calendar time, then the matched design needs to be analysed as such, 
otherwise the data can be analysed by unmatched procedures. In this design, the OR 
estimates the IR whether or not the population is stable. 

Regardless of the selection process, animals initially identified as control s can 
subsequently become cases. Their data are treated as independent in the analysis (ie if 
this happens, their control data reffect their exposure and covariate status at the time 
they were selected as a control, and when they are a case, their exposure and covariate 
status reffect the situation at that time). Because we are sampling directly from the 
source population, there should be no exclusion s of potential controls because of 
exposure status. 

9.6.3 Sampling secondary-base population controls 

When a clinic, laboratory or other registry is the source of the cases, we have a 
secondary-base study. In su ch studies, selecting non-cases from the same registry is 
preferable to obtaining them from different sources. The basic tenet is that the controls 
should reffect the exposure patterns in the population of potential cases that would 
have entered that registry had they developed the disease or outcome of interest. The 
problem is knowing whether having the exposure of interest would lead non-cases to 
the registry and hence, the controls would have an excess of exposure (eg exposure 
increases the chance of being in the registry by increasing the risk of being admitted 
for non-case subjects). To avoid bias with respect to the distribution of exposure in 
controls, exposure should not be related to admission of non-case s to the registry; 
hence, we should select control s from diagnostic categories that are not associated 
with exposure. For the same reason, subjects with disease events that are intermediate 
between the exposure and the outcome are not eligible as controls. 

Diagnostic category exclusions for controls should only relate to admissions during the 
study period time frame, and not to previous admissions (ifthe individual was admitted 
for a condition related to exposure before the study period, that individual should still 
be eligible as a control in the study period provided its reason for entry into the registry 
at this time is independent of exposure). Some recommend that controls should only be 
selected from those diagnostic categories for which data exist to show that they are not 
related to the exposure of interest. Most researchers have tended to use less stringent 
exclusion criteria for independence and select controls from diagnostic categories that 
are not known to be associated with exposure. Regardless, it is usually preferable to 
select control s from a variety of non-case diagnostic categories. 
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Often we obtain the controls random ly from all the non-case admissions listed up to the 
end of the study period, having excluded those non-case categories that are associated 
with the specified exposure(s). This might seem like a risk-based sampling strategy but 
the non-case subjects can be listed in the registry numerous times because of admission 
for the same, or different, non-case diseases. This essentialIy reflects their exposure time 
at risk. It is also possible to select controls randomly from the non-case s in the registry 
at regular intervals throughout the study period. Thus, if a three-year study period was 
used and 300 controls were to be selected, 8 or 9 individuals would be selected each 
month, from alI the non-cases in the registry up to that point. The period of time in 
which an animaI is eligible to be a control should be the same as that in which it is 
eligible to be a case should the event occur; hence, controls can become cases in both 
selection processes. If the outcome rate or exposure level in the source population( s) 
varies with calendar time, then one should stratify on time in the analysis to prevent 
bias. If the population is stable, the sample OR estimates the IR. 

Alternatively, as in primary-base studies, one might match for 'time at risk' by 
selecting a specified number of controls listed in the registry after a case occurrence. 
If the exposure level is constant over the study period, an unmatched analysis can be 
performed (if there is no matching for other reasons), otherwise a matched analysis 
should be pursued. Bear in mind that the process of selecting controls in open 
populations means that the same animai can be selected more than once - in this 
instance depending on how many times it was admitted to the registry. If only first 
incident cases are included in the study, these animals cannot be selected as controls 
after they have developed the disease of interest. 

Example 9.2 shows a secondary-base case-control study. 

9.7 OTHER SOURCES OF CONTROLS 

The following two procedures can be used in either primary- or secondary-base 
studies. 

9.7.1 Neighbourhood controls 

When random sampling is not possible in a primary-base study, choosing neighbours 
of cases might suffice. This means that a matched analysis should be conducted if 
neighbourhood is related to exposure. In a secondary-base study, neighbours can also 
be selected as controls but their suitability needs to be established according to the study 
context. Selecting neighbours could introduce a bias and might cause overmatching in 
some studies. For example, in a primary-base study of factors related to Salmonella 
spp in bulk milk tanks on dairy farms, the closest farm was used as a control. However, 
often these farms were owned by relatives of the case farm owner and many times 
farm implements and food items were shared between case and non-case farms. Thus, 
overmatching was likely present (West et al, 1988). Non-cases housed next to cases 
within a barn might be suitable, spatially matched, controls in some studies. 
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Example 9.2 Secondary-base case-control study 

This study concems environmental tobacco smoke (ETS) as a risk factor for malignant 
lymphoma in pet cats (Bertone et al, 2002). Feline leukemia (FL) could serve as a model 
for non-Hodgkin's lymphoma in humans. The study population was obtained from a large 
veterinary teaching hospital in Massachusetts and consisted of 80 FL positive cats and 
114 controls drawn from cats with renal disease. Cats with renaI disease were selected as 
Iikely being more representative of the source population for the cases and because there 
was no known association of renal disease with ETS. ETS exposure history and covariate 
infonnation were obtained by a mailed questionnaire and related to the two-year period 
before the diagnosis of the FL or renal disease. Approximately equal response rates (65%) 
were achieved in the case and control groups. ETS exposure classification included: ever 
versus never exposed, years of exposure, number of smokers in the household, number of 
cigarettes smoked per day and cumulative variables such as those that resulted from years of 
exposure*average number of cigarettes smoked per day. 

In this secondary-base study, the implied source population was deemed to be open. Non-cases 
were obtained from only one diagnostic category (not a generally recommended practice) 
although the authors of this study defended this due to a known lack of association with ETS, 
plus the fact that cats with renal failure would have undergone extensive laboratory tests 
- similar to the extent of testing in the cases. AU cats with renal disease were selected for the 
study -likely none of them had been adroitted for FL but, in theory, they could have heen. 

9.7.2 Random-digit dialing 

This approach can be used to obtain controls ifhuman subjects are being studied. For 
example, the telephone number of controls might be matched to cases by area code and 
the first three digits. There are numerous hidden problems with this approach including 
time of calI ing, business versus home phone etc. Ifused, then the 'matching' should be 
accounted for in the analysis if there is any chance that it is related to the exposure. 

9.8 THE ISSUE OF 'REPRESENTATIVENESS' 

Is it important that the cases be representative of alI the cases and that the controls be 
representative ofall the non-cases? No! The cases and control s can be restricted in any 
logical manner the investigator chooses. This might restrict extrapolation of results but 
will not affect validity. However, the restriction defines the source population and it is 
this source population that the controls should be representative of. This might be more 
understandable if we recall that cohort studies can be conducted in subgroups of the 
population that have a non-representative attribute or exposure status. 
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9.9 MORE THAN ONE CONTROL GROUP 

Some have attempted to balance a percei ved bias with a specific control group by 
using more than one control group. However, if this is done, it needs to be very c\early 
defined as to what biases are likely to be present in each control group and how one will 
interpret the results - especially if they differ dramatically from one control group to 
another. The use of more than one control group also add s complexity to the analyses. 
If we choose more than one control group, the different control groups should be 
compared with respect to exposure. If they do not differ significantly, it ensures that, if 
a bias is present, the control groups have the same net bias. If they differ however, we 
often are not sure which is the correct group to use. The general experience is that the 
value of more than one control group is very limited. 

9.10 MORE THAN ONE CONTROL PER CASE 

There is nothing magical about having just one control per case. In fact, if the 
information on the covariates and exposure is already recorded (ie in a sense, free), one 
might use ali of the qualifying non-case s in the registry as control s to avoid issues of 
sampling. In addition, when the number of cases is small, the preci sion of estimates can 
be improved by selecting more than one control per case. There are formai approaches 
for deciding on the optimal number, but usually the benefit of increasing the number 
of controls per case is small; of ten 3-4 controls per case is the practical maximum 
(Breslow and Day, 1987). 

9.11 ANALYSIS OF CASE-CONTROL DATA 

The analysis of risk-based and rate-based case-control sampling designs proceeds in 
a similar manner. For displaying the data, we will assume that we observe al exposed 
cases and b

l 
exposed controls, and ao non-exposed cases and bo non-exposed controls. 

There is a total of ml cases and mo controls. Remember that we cannot esti mate disease 
frequency by exposure level directly because the mJmo ratio was fixed by sampling 
design. In a 2X2 table the format is: 

Cases 

Controls 

Exposed Non-exposed Total 

Chapter 6 outlines the analysis of these data inc\uding hypothesis-testing, estimating 
the odds ratio, and developing confidence intervals for the odds ratio. 

If matching was used to select controls, then a conditional analysis should be performed 
- see section 16.14 for a discussion and examples. 
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10 

HYBRID STUDY DESIGNS 

OBJECTIVE S 

After reading this chapter, you should be able to: 

l. Describe the key features of each of three hybrid study designs (case-cohort, case­
crossover, case only). 

2. Be able to identify exposures, outcomes and contexts for which these designs are 
appropriate. 

3. Identify contexts in which a two-stage study is appropriate and design the basic 
sampling strategy. 
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10.1 INTRODUCTION 

In this chapter we describe three variants of observational study design and a two­
stage design that can be used in conjunction with traditional cross-sectional, cohort 
and case-control studies. Each design has its own uni que advantages and disadvantages 
and, although still relatively infrequently used, researchers should be aware of the 
poten ti al of these study designs. The case-cohort design incorporates the strengths of 
the cohort approach with the efficiency of a case-control design. The case-crossover is 
an elaboration on the cross over experimental design that allows the researcher to use 
only cases in the study. Similarly, the case-only study design allows for inferences to be 
made from studies in which only data from cases are available. Two-stage designs are 
useful as validation studi es and also to enhance the cost-effectiveness of a traditional 
study design. 

10.2 CASE-COHORT STUDlES 

10.2.1 Basis 

This study design requires the listing of all subjects in a defined cohort. Then a 
subsample ofthe fully enumerated cohort is taken to serve as the comparison or control 
group. Initial exposure and covariate information is obtained on this subsample as per 
a single-cohort study. Cases (ie those developing the diseases of interest) are derived 
from this subsample and from the full cohort. 

A major advantage of the case-cohort approach is that the one control group can provide 
the basis of comparison for a series of outcomes, thus allowing the investigation of 
associations among more than one disease and a defined exposure (as in a regular 
cohort study), but without having to follow the entire population at risk. 

10.2.2 Design issues 

If the original cohort is c10sed (section 8.5), then a risk-based design, which is 
particularly suited to studying permanent risk factors, can be used. In this design, 
the subsample is selected from the full cohort at the start of the study using random 
sampling and the subjects in the subsample that did not become cases during the study 
period serve as the control series. Information about covariates and exposure status is 
obtained from cases arising outside of the subsample at the time they become cases. In 
planning this study design, because a proportion of the subjects in the subsample will 
become cases, the number initially sampled should be adjusted upward to compensate 
for this. For valid inferences, if losses to follow-up are present, one must assume that 
the reasons for loss, or the occurrence of competing risks, are not related to the risk of 
developing the outcome(s) of interest. 

If the original cohort is open, or if exposure status can change during the study period, 
the exposure status of the case is the exposure category that the individual is in when 
the outcome occurred. In this design, ali or a portion ofthe original subsample that had 
not developed the disease by the time each case occurred serve as the 'control' for that 
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case, and their exposure status is obtained at this time. Unfortunately, when the timing 
of control selection is matched to the time the case occurred, only one outcome can be 
studied. 

10.2.3 Analysis 

At the end ofthe study period, there will be records ofthe number of cases ari sing from 
the subcohort, the number of cases arising outside the subsample and the remaining 
number of non-cases in the subsample - as in a risk-based cohort study. If a risk-based 
design is appropriate, one can combine (ie add) the two types of case together, and the 
data can be analysed in a 2X2 table using a case-control format with an odds ratio (OR) 
as the measure of association. If direct estimates of risk are required, then the two types 
of case need to be differentiated (Rothman and Greenland, 1998). The analysis is more 
complex ifmatching of the exposure of cases and controls to the time the case occurred 
IS used (Thomas, 1998). The data can also be analysed using survival methods (Barlow 
et al, 1999) and program s for these analyses are available in a number of common 
commercial packages. In Example 10.1, we describe a case-cohort study. 

Example 10.1 Case-eohort study 

This is an example of a case-cohort study that was used to investigate the role of agricultural 
pestieide applications on fetal death in humans (Bell et al, 2001). The cohort was the total 
recorded number ofbirths in 10 counties in California and ali cases offetal death carne from 
this source. A sub co hort consisting of a stratified random sample of non-cases was obtained 
from this cohort. Exposure was measured by noting applications of pesticíde within a l-sq­
miJe (narrow definition) or a 9-sq-mile area (broad definitíon) of the mothers' homes. The 
time ofpregnancy and the time offetal death were also noted. 

Now, you might say that this looks like a risk-based case-control study - and so far it is. 
Although they did not sample in the prescribed case-eohort approach, the authors of the study 
used the known sampling fraction of controls (sf=O.Ol) to estimate and identify the likely 
number of cases that would have ari sen in the subcohort had it been sampled in that manner. 
This allowed the authors to adjust for gestationallength and introduce pesticíde exposure as a 
tíme-varying exposure. The risk-based design would not support these features. 

A multivariable proportional-hazard model was used to analyse the time-dependent pestieide 
exposures and control for the covariates. The analysis contrasted the exposure experience of 
the case with the exposure experience of the non-case infants, yet unborn, in the population 
at the time. 

No examples of case-cohort studi es were found in the veterinary literature. 
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10.2.4 Suggested applications 

If you are interested in studying a number of infrequent outcomes from a specific 
exposure, think about using the case-co hort design. It has the advantage of the case­
control design for studying rare events and the advantage of the cohort design for 
studying multiple outcomes. One current example from human medicine is the study of 
adverse post-vaccinal reactions. 

10.3 CASE-CROSSOVER STUDlES 

10.3.1 Basis 

This is the observational study analogue to the crossover experiment. It is suitable for 
the situation where the exposure is abrupt (short-lived and well-defined) and the effect 
is almost immediate (ie the outcome will happen temporally close to the exposure, if 
the exposure was the cause of the outcome). For validity, the design needs to meet the 
same assumptions about lag effects (none or time limited) and duration of disease (short 
duration) as in crossover experiments or cross over clinical trials. 

The case-crossover design alleviates many of the problems associated with choosing 
controls in a case-control study. The exposure status of the case at the time of the event 
occurrence is compared with the exposure status of the same individual at other times. 
Only subjects that develop the outcome need to be followed; hence, all time-invariant 
host-related confounders are controlled by this design. This design is only applicable to 
situations where the exposure status of individuals can change over time, and where the 
exposure will produce its effects in a short time period. Effect estimates are based on 
comparing exposure levels just prior to case development with exposure level s at other 
(control) times (Navidi and Weinhandl, 2002). 

10.3.2 Design issues 

For validity, we must ensure that the average exposure level has not changed over time 
and that the distribution of non-host confounders is also stable over time. This has been 
the major focus of controversy over the use of this design. In the initial protocols, the 
control times were always earlier than the case times for purposes of obtaining exposure 
levels. This is an acceptable approach if the first outcome might affect subsequent 
exposures (eg if one is studying the impact of atraining schedu\e on an outcome such 
as a leg injury). Rowever, it is subject to bias from temporal changes' in the level of 
exposure. Rence, bidirectional designs were used later especially when environmental 
exposures were studied. In this revised protocol, pre-specified control times are selected 
both before and after the case-event time. Later, the design for control-period selection 
was kept symmetrical around the failure time by selecting a control both before and after 
the case occurrence time (usually equally spaced) in the hope that, if exposure level s 
were changing over time, the higher and lower exposure values at these times would 
cancel each other out. These periods could also be matched to the sam e day of the week 
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as the case occurrence to avoid any 'day-of-the-week' bias. The current recommended 
design which gives the best protection against bias from a trend in exposure follows. 

We can suppose that a case might occur at any time (tk) in the period from the first day 
of follow-up (k= l) to the last study day (k=N). To identify the control period for each 
case we: 

l. Choose a short lag time, (L); can be a multiple of 7 (eg 21 days) to 
adjust for day-of-the-week effects. 

2. Let tk be the failure time for the lh case. 
3. If tk:S L, choose tk+L as the control time. 
4. If tk> (N-L), choose tk_L as the control time. 
5. For all other values of t", randomly choose half of the control periods from before 

the case time (tk_L) and halffrom after (tk+L). 
6. Repeat steps 2 to 5 for each case. 

10.3.3 Analysis 

Data should be analysed as a matched case-control study. Equivalently, one could view 
the sampling times as producing a set of control exposures for each failure time (case 
occurrence) or as an independent count of cases out of a total of the number of case­
exposure and control-exposure periods. Thus, the case count on each sampled day could 
be modelled as a Poisson random variable whose mean is a function of the exposure 
level on that day (Navidi and Weinhandl, 2002). Example 10.2 describes two case­
crossover studi es. 

10.3.4 Suggested applications 

The case-crossover design should prove useful in situations where the exposure is 
expected to produce its effect very shortly after exposure occurs. Examples of the use 
of this design include studying death risk after vigorous exercise, hospital admission 
risk following exposure to high pollution levels, the role of cellular-phone usage in 
car accidents, and rac ing as a cause of injury in horse-racing. The exposure during the 
period preceding the case is compared with the exposure at the designated 'control' 
time(s). Decisions about appropriate lag time etc are decided on a context, and disease­
specific basis (see Example 10.2). 

10.4 CASE-ONLY STUDIES 

In some instances, such as genetic studi es, the exposure status of the controls can be 
predicted without hav ing an explicit control group: the distribution of exposure in the 
controls is derived from theoretical grounds (eg blood-type distribution). Underlying 
the design, which is highly efficient relative to case-control designs, lies astrong 
assumption about independence between the gene frequency and other environmental 
factors. A recent article discusses the limitations of the study design ifindependence is 
not, in fact, present (Albert et al, 2001). The interesting feature is that the assessment 



182 HYBRlD STUDY DESIGN S 

Example 10.2 Case-crossover study 

This is a study of intensive racing or training as risk factors for musculoskeletal injury in 
horses (Estberg et al, 1998). The exposure factor was intensive rac ing or training, and the 
outcome was catastrophic musculoskeletal injury (CMl). The case s carne from diagnostic 
laboratory records on alJ horses dying on 14 racetracks in Califomia during a period in 1991 
and 1992. 

The exercise and racing histories of these horses were obtained from a computerised 
commercial information service. Exposure (íntensive training) was determined by assessing 
distance, speed and frequency oftraining over sliding 60-day periods. If the level oftraining 
exceeded a defined threshold, the horses were considered to be in an 'at-risk' period for the 
30 days after the end of the period evaluated. If a CMl occurred during one of these 'at­
risk' periods, it was considered to have occurred in an exposed (E+) horse. Ali other CMl 
were considered to have occurred in non-exposed (E-) horses. Data were analysed using the 
Mantel-Haenszel pooled estimator for a common incidence rate ratio. This procedure alJows 
control of categorical covariates. 

Similarly, Carrier et al (1998) investigated associations between long periods without high­
speed workouts and the risk ofhumeral or pelvic fracture in Thoroughbred racehorses. Their 
exposure was a lay-up period of two or more months, and the at-risk (hazard) period was 
either 10 or 21 days after retuming to racing. A fracture in these periods was deemed to be 
exposed to the risk factor, lay-up, whereas a fracture at other times was deemed non-exposed. 
See Example 8.5 for a cohort study approach to racehorse injuries. 

of the interaction term in the usuallogistic regression, assuming data from controls are 
present, can be performed by regressing the probability of the genetic abnormality on 
the environmental exposure using the data from cases only. It is this aspect that altows 
for the gain in efficiency because no controls are necessary. Despite its theoretical 
advantages, no examples of the use of this study design were found in the veterinary 
literature, and no immediate applications are evident. 

10.5 TWO-STAGE SAMPLING DESIGNS 

A two-stage sampling design can be applied to the traditional cohort, case-control or 
cross-sectional study designs. Information on the exposure and outcome of co ne ern 
is gathered on an appropriate number of subjects (ie based on sample-size estimates). 
Then, a sample of the study subjects is selected for a second-stage study in which 
information on covariates is collected. This approach is very efficient if the cost for 
obtaining the data on covariates is expensive. The design also fits the situation where 
a valid measure of the exposure of interest is very expensive, but an inexpensive 
surrogate measure is available. The surrogate measure is applied to alt study subjects, 
then a more detailed work-up is performed on a subsample of the study subjects to 
more accurately determine the true exposure status. The approach can also be used 
to obtain data on variables for which there are numerous missing values. Instead of 
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assuming that the data are missing at random, the study subjects with missing data can 
be the subject of a second-stage data collection effort. As discussed in section 12.9, the 
two-stage approach is the basis ofvalidation substudies. 

A key question is: what sample size should be used for the second stage? There are a 
number of approaches. In cohort studies, we can take a fixed number of exposed and 
non-exposed subjects. In a case-control study, we could take a fixed number of cases 
and controls. However, for efficiency, it is better to stratify on the four exposure and 
disease categories (present in a 2X2 table) and take an equal number of subjects from 
each of the four categories. This might involve taking all of the subjects in certain 
exposure-disease categories and a sample of subjects in others. More elaborate 
sampling regimes are discussed by Schaubel et al (1997) and Reilly (1996). Cain and 
Breslow (1988) developed the methodology to analyse two-stage data us ing logistic 
regression. One obtains the crude measure of association from the first-stage data, and 
then adjusts this based on the sampling fractions used in the sec ond stage in a similar 
manner to the approach used to correct for selection bias using sampling fractions (see 
section 12.4.1). Here the sampling fractions relate to the ratio between the number 
of subjects in the second- and first-stage samples. The approach to obtaining correct 
variance estimates is somewhat more complex, but relatively simple to imp lement if 
the data are all dichotomous. Techniques for use if the predictors are continuous are 
available (Schaubel et al, 1997). 

Thus, two-stage sampling designs are an efficient way to study exposure-disease 
associations and correct for confounders, or adjust for information bias, without 
measuring all variables on ali study subjects. 
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CONTROLLED TRIALS 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Design a controlled tri al which will produce a valid evaluation of an intervention 
being investigated, paying special attention to: 
a. the statement of objectives of the trial 
b. the definition of the study subjects 
c. the allocation of subjects to the interventions 
d. the identification and definition of appropriate outcome variables 
e. ethical considerations in the design and implementation of the trial. 

2. Conduct a controlled tri al efficiently, while paying special attention to: 
a. masking as a procedure to reduce bias 
b. following alI intervention group s adequately and equally 
c. development of appropriate data-collection methods and instruments 
d. proper assessment of the outcomes being measured 
e. correct analysis and interpretation of the results. 
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11.1 INTRODUCTION 

A controlled trial is a planned experiment carried out on subjects maintained in their 
normal (ie usual) environment. Particular care must be taken in the design and execution 
ofthese studies for two reasons. First, they of ten involve client-owned animals. Second, 
the size and scope of many of these studies make it very difficult to replicate them for 
the purpose ofvalidating the findings. 

Controlled trials can be carried out to evaluate therapeutic or prophylactic products, 
diagnostic procedures and animal-health programmes. Most trials are conducted to 
assess one specific intervention and, indeed, this is their forte. The outcomes might 
include specific heaIth parameters (eg clinical disease) or measures of productivity, 
performance or longevity. The groups can be based on assigning individual animals, 
herds or other groups to the interventions being compared. 

Note The term clinical trial is often used synonymously for controlled trial. However, 
some authors restrict its use to trials of therapeutic products and/or trials carried out 
in a clinical setting. We will use the term controlled trials to refer to trials that míght 
evaluate a wide range of products or procedures, and which might be carried out in a 
wide range of settings, including herds and community-based trials. Because controlled 
trials can be used to investigate a wide range of products/programmes, we will refer 
to the factor being investigated (eg treatment) as the intervention, and to the effect of 
interest as the outcome. Animals, or groups of animals participating in the tri al will 
be referred to as subjects (regardless of whether they are individual animals, herds or 
other populations of animals ), and their owners as participants. 

Controlled trials are, by far, the be st way for evaluating animal-health interventions 
because they allow much better control of potential confounders than observational 
studies, as weil as reducing bias due to selection and misinformation . 

... the randomised controlled trial is at present the unchallenged source of the 
highest standard of evidence used to guide clinical decision-making. 

(Lavori and Kelsey, 2002) 

There is simply no serious scientific altemative to the generation oflarge-scale 
randomised evidence. 

(Peto et al quoted in Green (2002)). 

In the absence of evidence as to the efficacy and safety of animal-health products 
and procedures derived from controlled trials, practitioners are left in the unenviable 
pos iti on of making decisions about their use based on extrapolation of data from 
studies carried out under artificial (laboratory) conditions or on their own limited and 
uncontrolled experience. 

11.1.1 Phases of clinical research 

While controlled trials are valuable for assessing a wide range of factors affecting 
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animai health and productivity (eg management practices, nutrition, environmental 
changes), one of their most common uses is to evaluate pharmacological products 
(therapeutic and preventive). Consequently, a brief review of the phases of research 
into the development and evaluation ofthese products is warranted. 

Clinical pharmaceutical research can be divided into fOUf phases. Phase I tria\s 
(sometimes referred to as formulation tri als) are studi es carried out in healthy animals 
primarily to evaluate safety ofthe drug (eg to determine safe dosage ranges, to identify 
adverse reactions etc). 

Phase II trials are the first evaluation of the drug in a small number of animai s from the 
target population (eg sick animals). They are used to document the activity of the drug. 
These studies might invo\ve before/after comparisons because there is often no control 
group. 

Phase III trials are large-scale experimental studies to determine the efficacy of a drug 
in a normal clinical population, to monitor side effects and to compare the drug with 
other available treatments. These studies should be based on randomised controlled 
trials. While generally required to be carried out before the registration of products for 
human us e, they are not necessarily required for registration of animal-health products 
in ali countries. 

Studies carried out for the purpose of registration of animai products (Phase III trials ) 
need to be carried out according to good clinical practice (GCP) standards. GCP 
is a standard for the design, conduct, monitoring, recording, auditing, analysis and 
reporting of clinical studies. A set of these standards, developed under the International 
Cooperation on Harmonization of Technical Requirements for Registration of 
Veterinary Medicinal Products can be found at 
http://www.aphis.usda.gov/vs/cvb/vich/goodclinicalpractice6-2000.pdf 

Phase IV trials are post-registration trials designed to evaluate the most effective way 
of using a product. They should also be carried out as randomised controlled trials, 
although they require less documentation than studies used in the product registration 
process. In the absence of randomised controlled trials carried out prior to registration, 
they provide the most reliable information about the efficacy of a product in the content 
of everyday real-world activities. 

11.1.2 Key design elements 

An important feature in the design of a controlled trial is the development of a detailed 
study protocol which covers all elements of the study design and execution. Important 
elements to be considered include: 

stating the objectives 
defining the study population 
allocation of subjects 
specifying the intervention 
masking (blinding) 
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follow-up and compliance 
specifying and measuring the outcome 
analysis of trial results 
ethical considerations. 

CONTROLLED TRIALS 

Each of these will be considered below. General references for controlled-trial design 
include Meinert (1986), Piantadosi (1997) and an issue of Epidemiologic Reviews 
(Lavori and Kelsey, eds. 2002), from which a number of specific articles are referenced 
below. Three published studies which will be referred to throughout this chapter are 
introduced in Example 11.1. 

Example 11.1 ConíroUed trial examples 

Throughout the examples in is chapter, reference will be made to three recently published 
controlled trials to document how various aspects of trial design were implemented. 

Eprinomectin trial 
Arandomised controUed trial was conducted to evaluate the effect oftreatment at calving with 
the anthelminthic eprinomectin (Ivomec® Eprinex® - Merial Inc.) in dairy herds which had 
some exposure to pasture. Eprinomectin is a broad-spectrum endectocide that is registered 
for use in dairy cattle, with no milk-withdrawal period required. Cows from 28 herds in two 
sites (Prince Edward Island and Quebec, Canada) were randomly allocated to be treated 
at calving with eprinomectin or a visually identical placebo. The primary outcomes from 
the trial were milk production and reproductive performance during the first six months of 
lactation. Secondary outcomes included a variety ofhealth parameters (N0dtvedt et al, 2002; 
Sanchez et al, 2002). 

Teftubenzuron trial 
A duster randomised controUed trial was conducted to evaluate the effect of adding 
teflubenzuron to the feed of Atlantic salmon on sea-lice numbers on salmon in sea-cage 
sites. Teflubenzuron is a chitin-synthesis inhibitor that stops the sea lice from forming proper 
exoskeletons during moults. This was a Phase III trial conducted to good clinical practice 
standards with the results to be used as part of the registration application. Forty sea cages 
from three sites were pair-matched based on site, cage size and pre-treatment lice burden and 
then randomly allocated to be fed treated feed or non-medicated feed. The primary outcome 
was sea-lice burdens at one and two weeks post-treatment. A secondary outcome was weight 
gain over the same period (Campbell, 2002a). 

Hoof-trimming trial 
Arandomised controUed trial of autumn hoof-trimming was carried out in 3,444 cows in 77 
Swedish dairy herds over two winter periods. Interventions were trimming or no-trimming. 
Thus, no placebo intervention was possible. Hoof measurements and the presence/absence of 
lesions at the time oftreatment (autumn) were recorded. The primary outcomes of the study 
were the incidence of lameness in the two group s over the winter period, and the presencel 
absence of lesions at a spring evaluation of aU hooves. While ali hooves on ali four legs were 
evaluated and trimmed (or not) in both the fall and spring, the analysis focused on lesions in 
the hind-leg hooves. 
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11.2 STATING THE OBJECTlVES 

The objectives of the trial must be stated clearly and succinctly. This statement should 
include reference to the intervention being investigated and the primary outcome to 
be measured. The importance of the latter component can be se en by considering a 
controlled trial of a vaccine for use in a food-producing species. The design of the trial 
will vary substantially depending on whether the goal of the vaccination programme is 
to: 

prevent infections in individuals 
prevent clinical disease or death in individuals 
prevent introduction of the infectious agent into a population (eg herd) 
reduce the level of clinical disease/death in a population 
prevent catastrophic outbreaks of disease in the population (while perhaps 
permitting an endemic disease situation). 

A study should have a limited number of objectives: one or two primary objectives 
and a small number of secondary ones. Increasing the number of objectives will 
unnecessarily complicate the protocol and might jeopardise compliance. A trial with 
a very simple design might be able to afford a much larger sample size within agiven 
bud get, thus enhancing the power of the study. 

This chapter will focus on controlled trials which compare two group s (sometimes 
referred to as two-arm studi es), although the principles also apply to studies with 
more than two 'arms'. The two groups might be a comparison of an intervention with 
a placebo, or a new intervention versus a standard treatment, or one of many other 
possible evaluations (comparison of doses, combinations of interventions, timing of 
interventions etc). In general however, when evaluating a new therapy, it should be 
compared with an existing standard therapy, if one with a documented level of efficacy 
exists. It is unethical to inc\ude a no-treatment group if it will result in undue suffering 
in animals assigned to that group that they wouldn't experience under appropriate 
management (ie an existing product or procedure exists to reduce or prevent that 
suffering). 

The decision as to whether to use a positive control (existing therapy) or negative 
control (placebo) might have pro found effects on the animals available for inclusion 
in a tri al and the results of that trial. For example, recent trials of tilmicosin for the 
treatment of intra-mammary infections during the dry period in dairy cows obtained 
very different results depending on whether the trial contained a positive or negative 
control group. In the trial with positive controls (c\oxacillin-treated cows) (DingweIl 
et al, 2003), the cure rates for both groups were reasonable (>60%) but the tilmicosin­
treated group had a statistically significantly higher cure rate. In the negative control 
trial, cure rates were much lower «30%) (Reeve-Johnson, 2001). One possible 
explanation of the difference is that farmers, knowing that there was a 50% chance that 
any cows they put on the latter trial would receive no antibiotic treatment, were only 
will ing to submit cows with chronic or serious Staph. aureus infections and which they 
were already planning on culling. Certainly the nature ofthe Staph. aureus infections in 
the latter trial was substantially different than in the former. 
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Studies with more than two arms require justification for each of the interventions 
being investigated and a larger sample size, although some efficiency in this area can 
be obtained through the use of factorial designs. A 2X2 factorial design would be one 
in which a subject is randomly assigned to one of the four intervention groups defined 
by the combination of two dichotomous interventions. It is a statistically efficient way 
of evaluating both interventions and the interaction between them. 

11.3 THE STUDY POPULATION 

The study population is the collection of subjects in which the trial will be carried out. It 
should be representative ofthe reference (or target) population - the population to which 
you want the results ofthe trial to apply (see Chapter 2 for more discussion of study and 
reference populations). The choice ofreference population might be important in phase 
III clinical trials in which the geographic location could play a role in the acceptability 
of the trial for use in the registration process. Usually, the study population is obtained 
by seeking volunteer participants either by contacting them directly (eg via letter or the 
media) or by asking veterinarians to nominate some oftheir clients whose subjects meet 
the eligibility criteria. While the use ofvolunteer participants is unavoidable, how weil 
the study population (participants) represent the target and extemal populations (see 
section 2.1.3) must be taken under consideration when extrapolating the study resuIts. 

11.3.1 Unit of concern 

When defining the study population, the first issue is to specify the level at which the 
intervention is applied (Example 11.2). If an intervention can only be applied at a group 
level (eg to a litter, pen or herd) then the study population consists of ali el igible groups 
(eg all sea cages on the study farms in the teftubenzuron trial). The outcome in such a 
study might be measured at the group level (a group-level study) or at the individual 
level (a cluster randomised study - discussed in 11.4.2). If the intervention is applied 

Example 11.2 Levels of intervention and outcome measurement 

Eprinomectin tri al 
The treatment was randomly assigned at the individual cow level and the outcome consisted 
ofrepeated measures (monthly milk production values) at the same level. 

Teflubenzuron trial 
The treatment could only be administered at the sea-cage level because it was added to the 
feed. The outcome (lice counts) was measured at the individual fish level. Consequently, this 
was a c\uster randomised trial. 

Hoof-trimming trial 
The treatment (trimming) was randomly assigned to cows, but the outcome was assessed at the 
hooflevel. These hoof-Ievel measurements were then aggregated to cow-Ievel outcomes. 
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at an individuallevel (eg ali cows in the study herds in the eprinomectin tri al), then the 
outcome must also be measured at that level. In this case, the study population consists 
of ali e1igible individuals. 

It is important to remember, that controlled trials are based on volunteers (or at least 
a participant has volunteered thern). Participants must volunteer to have their subjects 
receive either of the interventions as determined by the allocation process. Once a 
subject has been enrolled, the allocation should be carried out close to the time at which 
their participation in the study is scheduled to start. In some cases (eg controlled trials in 
livestock), the owner volunteers to participate but then his/her animai s can be random ly 
assigned to the various treatment groups. 

11.3.2 Eligibility criteria 

Once it has been determined whether individuals or group s will be recruited for the 
study, eligibility criteria need to be considered with some, or all, of the following 
factors being considered. 

Animal-handling facilities and personnel must be in place to allow for the 
necessary sampling during the trial. 
Adequate records must be available to document the subject's past history and to 
provide outcome measures (ifrelevant). 
For trials of therapeutic agents, clear case definitions for the disease being 
treated must be developed to determine which cases are e1igible for inclusion. 
For trials of prophylactic agents, healthy subjects are required and procedures 
for documenting their health status at the start of the trial might be required. 
Subjects in a trial need to be capable of benefiting from the intervention. As 
much as possible, avoid the 'ceiling effect' (the maximum possible 
improvement). For example, the start of the teflubenzuron trial was delayed by 
a month because the general level of sea lice in the Bay of Fundy was 
slow to build during the summer the trial was carried out. There was no point 
evaluating the intervention when there were few lice for it to work on. SimilarIy, 
the pos iti ve-control tiirnicosin trial referred to in section 11.2 obtained better 
response rates by using a design which encouraged the inclusion of subjects 
capable of responding. On the other hand, restriction of a trial to subjects that are 
most likely to respond to (benefit from) the intervention will increase the po wer 
of the tri al but might limit the generalisability of the results. 
Avoid subjects with high risks for adverse effects. 

In some cases, if the participants do not meet these criteria at the time of recruitment 
(eg not hav ing adequate records), it might be acceptable to have them agree to meet the 
standards during the period of the trial. 

A narrow set of eligibility criteria will result in a more homogenous response to the 
intervention and this might increase the statistical power of the study, but reduce the 
generalisability of the results. A broad set of eligibility criteria will result in a much 
larger pool of potential applicants. Balancing these two considerations must be done on 
a case-by-case basis, while adhering to the objectives of the study. 



192 CONTROLLED TRIALS 

11.3.3 Sample size 

The size of the study needs to be determined through appropriate sample size 
ca1culations, with attention being paid to both Type I and Type II errors. When 
computing the power of the study, the magnitude of the effect to be detected should 
be one which is clinically (and in some cases, economically) meaningfuI. It is not 
unusual to increase the required power from 80% to 90% in controlled trials. The 
basic formulae for sample-size ca1culation were presented in Chapter 2 and a more 
complete description has recently been published (Wittes, 2002). Here we discuss a few 
important issues that impact on sample-size considerations. 

Time-to-event data 
As was noted previously, the sample size required for qualitative (eg dichotomous) 
outcomes is often much larger than that required for outcomes measured on a continuous 
scale. Obviously, the choice of outcome(s) and its measurement should reflect the study 
objectives. A particular consideration in many controlled trials is the need to compute 
a sample size for a study based on time-to-event data. A discussion of these methods 
is beyond the scope of this text and the reader is referred to Peduzzi et al (2002) for 
a discussion of some of the important issues. A description of one software program 
for computing sample sizes for time-to-event outcomes has recently been published 
(Royston and Babiker, 2002). 

Time for recruitment 
In controlled trials, one issue to be faced is the length of time it will take to recruit 
the required number of study subjects. This is a particularly serious problem for 
studies on therapies for relatively rare conditions. If an adequate number of subjects 
is not available at a single site, a multisite trial might have to be planned. Although 
multicentre trials complicate the protocol and the implementation of the trial, it can 
enhance the generalisability of the results and also increase the opportunity to identify 
interaction effects. Two other specific issues related to time for recruitment deserve 
consideration. First, if recruitment on a study farm lasts longer than one production 
cycle (eg intercalving interval in dairy herds), then an intervention that is related to the 
production cycle might be reapplied to cows that have already been treated. This might 
or might not be acceptable (depending on the nature ofthe intervention), but at the very 
least will require special consideration in the analyses. Second, if season oftreatment is 
likely to influence the results, then the recruitment period should span at least one full 
calendar year. 

Loss from the study 
Loss of subjects from the study might happen for a variety of reasons. Some subjects 
might be lost to follow up (eg move d away or identification tag lost) while others 
might be non-compliers (participants who do not comply with the protocol). Finally, 
some subjects might be lost due to competing risks (eg die from other diseases while 
still on the trial). Ofthese, non-compliance is ofparticular concem. The effect of non­
compliance is greater than simple reduction of the available sample size because non­
compliance is not usually a random event. Consequently, it likely affects the esti mate 
of the intervention effect (generally biase d towards the null) which further reduces the 
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power of the study. Once a sample size has been estimated, it is wise to compute the 
expected power of the study based on different estimates of the potential losses to the 
study. 

Other issues 
Three other issues that impact on sample size are discussed TIuther in section 11.9 but 
should be mentioned here. First, the sample size needs to be increased if you want to 
carry out meaningfui investigations of the effect of the intervention in sub group s of 
the study population. Second, if interim analyses of the data are planned (sequential 
designs), the sample-size calculation will have to take this into account. Finally, if a tri al 
has several primary objectives, sample sizes for each objective should be computed and 
the large st estimate used. 

11.4 ÁLLOCA TION OF PARTIClP ANTS 

It is clear that a formai randomisation process is the best method for allocating subjects 
to study groups. Using clinical judgement in the selection of interventions will build 
bias into any non-randomised trial (clinicaljudgement applied in selection oftherapies 
will ensure that confounders are unevenly distributed across study group s and hence, 
bias the trial). It would be virtually impossible to control this bias analytically. However, 
before discussing formai randomisation procedures we will discuss some altematives. 

11.4.1 Alternatives to randomisation 

Historical control trials are ones in which the outcome after an intervention is 
compared with the level of the outcome before the trial (before/after comparison). For 
example, a vaccine for neonatal diarrhea might be introduced into a dairy herd and the 
incidence of diarrhea in the year after vaccination compared with the incidence in the 
year before. Historical control trials are generally unacceptable. For a historical control 
trial to have any validity, four criteria must be met. 

The outcome being measured must be predictable (eg constant incidence of 
neonatal diarrhea from year to year). 
There must be complete and accurate databases on the disease of interest. 
There must be constant and specific diagnostic criteria for the outcome. 
There must be no changes in the environment or management of the subjects in 
the study. 

Rarely are any, let alone all, of these criteria met for animal-health problems. An 
additional limitation of historical control trials is that it is impossible to use blinding 
techniques. However, a historical control trial of teflubenzuron was carried out as a 
comparison to the randomised control trial described in the examples in this chapter 
(Campbell, 2002b). Given the very short duration of the trial and the investigator 
control over all pre- and post-treatment data, it was considered to be an acceptable 
trial for evaluating changes in lice numbers following treatment of an entire site (see 
Example 11.3). 
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Example 11.3 Assignment of interventions 

Eprinomectin trial 
Cows were randomly assigned to the two treatment groups within herds using a stratified and 
blocked randomisation approach. First, cows were stratified by herd. Subsequently, within 
each 10 successive calvings in a herd (the block), five cows were assigned to each group. The 
main purpose of this was to remove any effect of seasonal variation in parasite burdens as 
a potential confounder. Computer-generated random numbers were used for the assignment 
prior to the cows calving. 

Teflubenzuron trial 
This was a cluster randomised trial with sea cages assigned to the treatment group s (because 
the treatment could only be administered at the cage level). Matched pairs of cages were 
identified (matched on site, and average lice burden) and one cage from each pair was 
randomiy assigned to the treatment group. The outcome (sea-lice counts) was monitored 
using repeated cross-sectional samplings of each cage. 

Even though cages were the unit of allocation, there was still evidence of contamination 
between subjects. Reduction of the number of lice in half of the cages within a site (ie the 
treated cages) appeared to reduce the level ofrecruitment ofyoung (free-swimming) sea lice 
in control cages. Consequently, the percentage reduction from the randomised trial was less 
than that observed in ahistorical trial where ali cages at a site were treated (and lice counts 
before and after treatment compared). Note Given the very short time frame of the historical 
control study «3 weeks), the fact that collection of both pre- and post-treatment data was 
under the control of the investigator, and the objective nature of the outcome (lice counts) 
most, or ali, of the criteria for a historicai control to be valid were met. 

Hoof-trimming trial 
Cows were blocked by breed (three groups), parity (three groups), and calving date by 
generating a list of cows sorted by these three criteria. Following a coin-toss to deci de the 
allocation of the first animai, cows were systematically assigned to the two interventions 
(every second cow into agiven treatment group). Cows that were assigned to the no­
trimming intervention but which required therapeutic trimming at the autumn visit were 
excluded from the tria!. 

Systematic assignment ofindividuals to treatment groups (eg alternating assignment) 
is a reasonable alternative to formai randomisation. Systematic assignment might be 
based on the use of pre-existing animai identification numbers with odd and even 
numbers forming the basis of the group assignment. Systematic assignment might 
make it harder to keep participants and study personnel blind as to the intervention 
identity, but aside from this, is often just as effective as random allocation (provided 
outcome assessment is done blindly). Ifhalfthe subjects are to be allocated to receive 
the treatment, the initial subject allocation should be random and thereafter every 
sec ond subject receives the initial allocated intervention. Do not apply the intervention 
to the first (or last) half of the subjects and the comparison treatment to the remainder. 

Outcome adaptive allocation procedures are ones which are designed to ensure that 
the majority of subjects get the benefit of the be st therapy available. The allocation of 
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subjects is influenced by the experience ofprevious subjects in the trial. One example is 
'play the winner' allocation in which subjects continue to be allocated to an intervention 
level as long as that treatment is producing beneficial results. As soon as it fai ls, the 
allocation switches to the other treatment. These procedures are only suitable if the 
result of the intervention is c1early identifiable in a very short period after the treatment 
is administered. They have not been used commonly in animal-health studies. 

11.4.2 Random allocation 

As indicated, formaI randomisation is the preferred method of allocation. It must 
be noted that random allocation does not mean 'haphazard' allocation and a formaI 
process for generating random intervention assignments (eg computer-based random 
number generator) must be employed. Random allocation should be carried out as 
c10se as possible to the start of the study to reduce the possibility of withdrawals after 
allocation. 

Simple randomisation involves each subject being ass igne d to an intervention level 
through a simple random process without any further considerations. Stratified 
randomisation (eg randomisation within age categories) helps ensure that a potential 
confounder (age) is equally distributed across study groups. One specific form of 
stratified randomisation is random al!ocation of animals within herds (Example 11.3). 
This ensures that all herd factors that might influence the outcome are balanced across 
study groups. Blocked randomisation requires the random al!ocation of subjects 
within blocks of subjects as they enter the trial (Example 11.3). Blocked randomisation 
can enhance statistical efficiency (ensuring equal numbers of subjects in each study 
group) and also remove any temporal effects from the study. 

Cross-over studies 
In a cross-over study, each subject gets both of the interventions (in sequence). 
However, the first intervention administered is stil! assigned random ly. This process is 
only suitable for the evaluation of therapies for chronic conditions where the duration 
ofthe intervention effect is relatively short-lived. A 'wash-out' period might be required 
between interventions. It has the advantage that it increases the power of the study 
because it permits a more powerful 'paired' analysis of the data. A cross-over trial to 
study the effect of ionophore treatment (evaluating the effect of monensin) on fecal 
shedding of Map has been designed and is under way at the time of writing this text 
(Leslie, KE, personal communication, 2003). This study is based on the finding that 
shedding of organisms were significantly reduced in chronic cases with ionophore 
treatment (Brumbaugh et al, 2000). ChronicaIly infected cows are being treated with 
either ionophore or a placebo for three month s followed by a wash-out period (one 
month), after which the cows are switched to the other treatment. 

Factorial designs 
This design is particularly well-suited to trials investigating two or more interventions, 
especially if the interventions might produce synergism or antagonism. Here the 
various combinations of the treatments (eg neither, treatment l only, treatment 2 only, 
both) are assigned to the study subjects. Because the design is usually balanced, the 
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treatment effects are not confounded (ie they are unrelated or orthogonal) and the 
analyses straightforward. Normally, one should not attempt to assess more than 2-3 
interventions as the possible interactions become difficult to interpret. 

Cluster randomisation 
There are a number ofreasons why a cluster ofanimals (eg a herd) should be allocated 
to an intervention group rather than individual animals. In some instances, it might be 
the only feasible method. For example, if the intervention is one which is always given 
at the group level (eg medication in the drinking water), then there is no choice. Even 
if the intervention could be administered at the individuallevel, it might be impossible 
to keep track of individuals within the group so assignment of the whole group to 
one intervention would be appropriate. Cluster randomisation is also appropriate if 
there is potential for physical spread of a treatment to the control group (eg pour-on 
endectocides when applied to halfthe cattle in a herd (Barber, 2003)). 

In some cases, cluster randomisation might be desirable to prevent contamination 
between intervention groups. For example, a live virus vaccine administered to some 
animals in a herd might spread to other animals. For this reason, the role ofherd immunity 
has long been a concem in individual randomised controlled tri als of vaccines. If one­
half of a herd is vaccinated, it might sufficiently reduce the number of susceptibles in 
the herd to effectively protect the non-vaccinated animals through herd immunity. On 
the other hand, it has been argued that leaving half of a herd non-vaccinated might 
allow a sufficient build-up ofinfectious organisms such that the vaccinated animals are 
overwhelmed. Both scenarios would result in estimates of vaccine efficacy that were 
biased towards the null. Whereas this effect was known to be present in early trials of 
the polio vaccine in humans, one veterinary study which investigated it was unable to 
document an effect in that trial (Waltner-Toews et al, 1985). The role ofherd immunity 
would be less important for diseases with widespread, simultaneous exposure to the 
agent versus within-herd transmission. 

Cluster randomised trials are much less statistically efficient than trials with random 
allocation of individuals and the clustering of individual subjects within the groups 
needs to be taken into account in analysis (see Chapters 20-23). In a cluster randomised 
trial, the best scenario for follow-up is if all individuals can be monitored for the 
duration of the study. If this is not possible, following a randomly selected cohort will 
be the most statistically powerful approach. If it is not possible to follow individuals, 
the investigator will have to carry out repeated cross-sectional samplings throughout 
the follow-up period. 

Split-plot designs 
A final elaboration of allocation discussed here is a split-plot. This design is useful if 
there are two or more interventions, one of which needs to be applied at the group level 
and the other(s) can be assigned to individuals. The analysis must take account of the 
different degrees of freedom to assess intervention effects at the different levels (ie 
group versus individual). 
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11.5 SPECIFYING THE INTERVENTION 

The nature of the intervention must be clearly defined, but that does not mean that 
it cannot have a degree of flexibility built into it. A fixed intervention (one with no 
f1exibility) must be rigorously defined in the protocol, and is appropriate for assessing 
new products (particularly in phase III trials). A more ftexible protocol might be 
appropriate for products that have been in use for some time and for which a body of 
clinical application information exists. For example, feedlot cattle might be assigned 
to one of two antibiotics for the treatment of respiratory disease but the timing of a 
decision to change antibiotics (ie a treatment failure) or stop treatment (ie a treatment 
success) might be left up to the person responsible for the animals provided it fell within 
a range defined in the protocol (eg between three and five days). The initial treatment 
assignment should still be masked so that clinical decisions are not influenced by 
knowledge of group allocation. 

Clear instructions about how the intervention needs to be carried out are essential, 
particularly ifparticipants are going to be responsible for some or all of the treatments. 
In addition, the system of ensuring that the correct treatment goes to the right animai 
must be kept as simple as possible. Finally, some method of monitoring the intervention 
administration process should be put in place. Example 11.4 describes a few features of 
the interventions in the three example studi es. 

Example 11.4 The intervention 

Eprinomectin trial 
In this trial, the producer was responsible for administering alI treatments to cows at calving. 
To verify the timing of the administration, the producer was asked to record both the treatment 
date and the calving date of the cow. Only treatments administered between five days before 
and 59 days after calving were included in the analysis. The validity of the data recording was 
evaluated by comparing the recorded calving date with the data obtained from the production­
recording programme that each farm was enrolled on. 

Teftubenzuron trial 
To ensure that the correct feed went to each sea cage, every cage was labelIed with a large sign 
with a letter identifying the cage. AlI feed bags going to the site were individually labelIed 
with the cage letter. Even with these efforts, there was a very smalI number ofbags offeed that 
ended up being given to the wrong cages. 

Hoof-trimming trial 
Autumn trimmings were carried out between September/October and January of each of 
the two winter periods. 92% of the trimmings were performed by a single trained research 
technician. Claws were trimmed to meet a specified set of conformation criteria (see original 
publication for description). 
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11.6 MASKING (BLINDING) 

A key component in the effort to prevent bias in controlled trials is the use of masking 
(or blinding). In a single-bUnd study, the participant is unaware of the identity of 
the intervention going to the study subjects. This feature should help ensure equal 
follow-up and management of subjects in the various intervention levels. In a double­
bUnd study, both the participant and the study team (ie people administering the 
interventions and assessing the outcomes) are unaware ofintervention assignment. This 
feature helps ensure equal assessment of the subjects in different intervention levels. In 
a triple-blind study, the investigators analysing the data are also unaware as to which 
group received which treatment. This feature is designed to ensure that the analysis is 
conducted in an unbiased mann er. 

In many cases it is necessary to use a placebo to ensure that the relevant individuals 
remain blind. A placebo is a product that is indistinguishable from the product being 
evaluated and which is administered to animals in the group s designated to receive the 
comparison treatment. In many drug trials, the placebo is simply the vehicle used for 
the drug, but without any active ingredient. This was the nature of the placebo in the 
eprinomectin trial and both treatment and placebo were dispensed in identical bottles 
labeled only with a bottle number. 

In some cases, even us ing a placebo might not be adequate to ensure blinding. For 
example, in trials of recombinant somatotropin in dairy cattle, it has been argued that 
a placebo is irrelevant because the drug produces such a noticeable change in milk 
production, anyone working with the cows on a regular basis would know which cows 
received the treatment. 

For controlled trials comparing two drugs or treatment regimes, it might not be possible 
to make them physically indistinguishable. In this case, double placebos might be 
used, one to match each product, and each study subject appears to be receiving both 
treatments although only one would contain the active ingredient. One concem with 
the use of a placebo is that, even though it might not contain the active ingredient being 
investigated, it could still have either a positive or negative effect on the study subjects. 
For example, a placebo vaccine that does not contain the antigen of interest might 
still induce some immunity as a result of adjuvant in the placebo. On the other hand, 
vaccination of the control group with a placebo could result in stress in that group that 
would not be present if no vaccine was given. 

11.7 FOLLOW-UP/COMPLIANCE 

It is essential that ali groups in a controlled trial be followed rigorously and equally 
(Example 11.5). This is a simpier process if the observation period following the 
intervention is short, but this time period must be long enough to ensure that ali 
outcomes of interest have been observed and recorded. Regardless of the effort 
expended on follow-up, it is inevitable that some individuals will be lost to the study 
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Example 11.5 Follow-up/compliance 

Eprinomectin trial 
ln this trial, fOllow-uP was relatively straightforward for the primary outcome (milk 
production) because it was routinely recorded for all cows in the participating herds by a 
milk-production recording agency. However, despite monthly visits, the recording of ali 
reproductive data for all cows was only deemed to be sufficiently complete for reliable 
analysis, in 20 of the 28 herds. 

Teftubenzuron tri al 
Follow-up was also relatively straightforward in this trial because the observation period was 
short and the protocol specified exact sampling dates. Lice numbers in two cages at one study 
site necessitated early withdrawal from the study (and treatment with another product). The 
protocol stipulated 24 hours' notice to be given before withdrawal and this provided time for 
the study team to perform one final sampling. Once removed, the assignment of the cages 
was revealed (they were control cages) and their pair-matched treatment cages were als o 
removed. 

Hoof-trimming triaI 
Recording of lameness treatments between the autumn and spring visits was encouraged by 
offering reduced cost treatments to the participating producers. At the spring examination, the 
proportion of cows initially assigned to the treatment groups that was available for follow-up 
examination was 79% and 87% in the first and second year of the study, respectively. Most 
losses were due to culling of cows from the study herds. 

through drop-out or lack of compliance, and the sample size needs to be adequate to 
allow for this (see section 11.3.3). 

Most important in minimising losses from the study is regular communication with 
ali participants. Incentives to remain in the study might also be provided. These might 
include financial incentives, provision of information which they might not otherwise 
have (eg detailed udder-health evaluation of a dairy herd provided to participants in 
a controlled trial of a new dry-cow antibiotic product), or public recognition of their 
efforts (provided confidentiality concems have been addressed). For those participants 
that do drop out, information about study subjects might still be available through 
routine databases (eg milk-production recording programmes) if the participant is 
willing to provide access. This can be used to either provide some follow-up information 
or to compare general characteristics of the study subjects withdrawn from the study 
with those that remained in the study. Nonetheless, because participants in a trial should 
always have the opportunity to withdraw their animal(s) from a trial, procedures for 
evaluating those withdrawals should be put in place. This should include methods 
of documenting the reason for the withdrawal and, potentially, procedures to collect 
samples from ali subjects being withdrawn before their departure. 

In addition to maximising retention in a study, effort needs to be expended to determine 
if study subjects are complying with the protocol. This might be evaluated through 
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interviews at periodic visits or through collection of samples to test for levels of a 
drug being investigated. Indirect assessment might be carried out by methods such as 
collecting aH empty containers from products used in a tri al. The amount of product (or 
placebo) used should be appropriate for the number of subjects in the study. 

11.8 MEASURING THE OUTCOME 

As indicated above, a controlled trial should be limited to one or two primary outcomes 
(eg disease occurrence in a tri al of a prophylactic agent) and a smaIl number (1-3) of 
secondary outcomes (eg productivity, longevity). Having too many outcomes leads to 
a serious problem of 'multiple comparisons' in the analysis (see section 11.9.1). When 
selecting outcomes to be measured, those that can be assessed objectively are preferred 
to subjective outcomes, but the latter cannot always be avoided (eg occurrence of 
clinical disease). 

In general, outcomes should be clinically relevant. Intermediate outcomes, (eg antibody 
titres in a vaccine trial) might be useful in determining why an intervention might not 
produce the desired outcome, but should not be a replacement for aprimary, clinically 
relevant, outcome related to the objectives of the study (eg occurrence of clinical 
disease). Clinically relevant outcomes include the following: 

diagnosis of a particular disease - requires a clear case definition 
mortality - objective but still requires criteria to determine cause of death 
(and not always relevant) 
clinical signs scores for assessing the severity of disease - difficult to develop 
reliable scales 
objective measures of clinical disease - (eg rectal temperature for assessing 
severity of respiratory disease in feedlot cattle) 
measures of subclinical disease - (eg somatic cell counts as indicators of 
subclinical mastitis) 
objective measures of productivity/performance - (eg milk production, 
measures of reproductive performance) 
global measures ofhealth - combine scores or occurrences of several diseases. 

Outcomes might be measured on a continuous scale, or as categorical data (often 
dichotomous), or time-to-event measurements (eg time to the occurrence of a disease). 
Studies based on time-to-event data might have greater power than a study based on 
simple occurrence, or not, of an event in a defined time period. Outcomes might also 
be measured at a single point in time, or assessed multiple times for each subject 
(longitudinal data). 

11.9 ANALYSIS 

Analyses can be carried out either on an intent-to-treat basis or a per-protocol basis. 
In an intent-to-treat analysis, data from all subjects assigned to aspecific intervention 
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are included in that intervention regardless of whether or not they completed the study, 
or whether or not they complied with the protocol. Such an analysis will provide a 
conservative estimate of the effect of the intervention but might reffect the expected 
response when the intervention is used in another population with characteristics 
similar to the study population. In a per-protocol analysis, only subjects which 
completed the study as outlined in the protocol are included in the analysis. This 
approach might provide a good measure of response given that the intervention is used 
as intended but willlikely produce a biase d estimate of the intervention effect in future 
use because non-compliance is not likely a random event. Consequently, non-compliers 
are probably not representative of all participants assigned to that intervention. 

An analysis usually starts with a baseline comparison of the groups as a check on the 
adequacy of the randomisation procedures. This should not be based on an assessment 
of the statistical significance of the difference among groups, but rather an assessment of 
their comparability. Differences among the groups, even if not statistically significant, 
should be noted and taken into consideration in the analyses. 

The specific procedures for analysing data from controlled trials will not be covered in 
this chapter because they are discussed in more detail elsewhere in the book. However, 
a few specific issues will be touched on. 

While randomisation is designed to equally distribute potentially confounding factors 
across the intervention groups, it might not remove all potential confounding. Whether 
or not to present adjusted (ie results adjusted for potential confounders) or unadjusted 
results is a subject of active debate. Adjusted results might be less biased estimates if 
the adjustment procedure has removed any residual confounding (particularly a concem 
in small trials ), but could be more confusing to present to users of the trial results. In 
some cases, control of other factors might substantially improve the preci sion of the 
estimate of the intervention effect by substantially reducing the unexplained variance. 
For example, in the eprinomectin trial, control for factors such as parity and stage of 
lactation, which have a considerable effect on level of milk production, substantially 
reduced the unexplained variation in the regression model, hence, increasing the power 
of the study. 

Because many controlled trials involve repeated assessments of subjects throughout 
the study period, the problem of some missing observations is common. A detailed 
discussion ofhow to manage this issue can be found in Peduzzi et al (2002). Analysis of 
longitudinal data presents some uni que challenges. For a starting point the investigator 
needs to determine if they are most interested in an average effect following 
intervention, a change in the effect over time or a total effect. Methods of dealing with 
repeated measures data are covered in Chapters 21 to 23. 

If study subjects are maintained in groups, it is important to account for the effects of 
those groups. This is particularly important in cluster randomised trials, but might also 
be important in trials in which randomisation occurred within the group. Procedures for 
analysing data from groups are presented in Chapters 20-24. Analytical issues from the 
three example studies are presented in Example 11.6. 
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Example 11.6 Analysis 

Eprinomectin trial 
In this trial, a linear mixed model with random effects for herds and cows (observations were 
repeated measures within cows) was used to account for the 'clustering' of observations 
within cows and herds when analysing milk production. A Cox proportional hazards model 
was used to evaluate the effect of the intervention on reproductive performance. 

Teftubenzuron trial 
In this trial, a mixed linear model with random effects for sea cage was used to account for 
the clustering of lice counts within cage. No formaI adjustment was made for the fact that 
multiple comparisons were made because separate analyses were carried out for each stage in 
the life cycle of the sea lice and two post-treatment measurements were made. However, most 
P-values were <0.005. 

Hoof-trimming trial 
A generalised linear mixed model (random effects logistic regression) with herd-year 
groupings as the random effect was used to evaluate the effects oftreatment on the outcomes. 
Other predictors included in the model were factors such as breed, parity, housing type, 
season, stage of lactation. First-order interactions between treatment and other predictors 
were evaluated and a backward elimination model-building procedure was used to identify 
statisticaIly significant predictors. 

11.9.1 Multiple comparisons 

Controlled trials often give rise to analyses in which 'multiple comparisons' are often 
made. These can arise from: 

multiple outcome measures being evaluated 
multiple intervention groups within the trial 
the analysis of data from multiple subgroups within the trial 
periodic interim analyses being performed during the trial. 

The problem with multiple comparisons is that the experiment-wise error rate is 
often much larger than the error rate applied to each single analysis (usually 5%). 
This can result in the declaration of spurious effects as significant. There are many 
procedures for adjusting the analyses to account for these multiple analyses. One of the 
simplest, a Bonferroni adjustment, requires that each analysis be carried out using an 
a/k Type I error rate, where a is the normal error rate (often 0.05) and k is the number 
of comparisons made. However, this results in a very conservative estimate of the 
statistical significance of each evaluation. Other, less conservative, procedures can be 
found in standard statistical texts. 

The problem of subgroup analyses deserves special attention. While it is tempting to 
evaluate a wide range of subgroups within a tri al to determine where an intervention 
has its greatest effect and where that effect is statistically significant, only analyses 
planned a priori, should be carried out. Otherwise, there is serious danger of identifying 
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spurious associations. The sample size ofthe study also needs to take into consideration 
the need to carry out these subgroup analyses or the sample size might have insufficient 
power to detect meaningfui effects. 

Sequential design studies (also called 'monitored' studies) are those in which periodic 
analyses of the data are carried out through out the triaI. These analyses are carried out 
so the trial can be stopped ifthere is: 

clear (and statistically significant) evidence ofthe superiority of one intervention 
over another 
convincing evidence of harm arising from an intervention (regardless of 
the statistical significance of that finding) 
!ittle !ikelihood that the trial will produce evidence of an effect, even if 
carried to completion. (This concem is not relevant if the goaI of a triaI is to 
demonstrate that a new productlprocedure has the same efficacy as an existing 
standard therapy.) 

Methods for these interim analyses and for adjusting the sample size to accommodate 
the procedures are beyond the scope of this text but are reviewed in Friedman et al 
(1998). One such example in human medicine was the recently halted trial of hormone­
placement therapy for post-menopausaI women (Women's Health Initiative, 2002). 
The trial was stopped after an average follow-up period of 5.2 years instead of being 
allowed to run the planned length of8.5 years because there was statistically significant 
evidence of increased risk of breast cancer in individuals receiving the therapy. 

11.10 ETHICAL CONSIDERATIONS 

There are two components to the ethical considerations for controlled trials of animaI­
health products and procedures. The first is an ethics review by a board whose focus is 
the ethical treatment of the participants, and the second is a review by an animaI-welfare 
committee whose focus is the weil-being of the animaI subjects. Specific regulations 
and guide lines will vary from country to country, but in general the following issues 
must be considered. 

Is the investigation justifiable? That is, is it likely to produce mean ing fui 
results which will ultimately benefit animai health? Has the design of the 
study been adequately planned to ensure that valid results will be 
obtained? 
Is the sample size appropriate? In this case, the needs of an adequate 
sample size to ensure sufficient power for the study will have to be 
balanced by a desire to minimise the sample size in order to reduce the 
number of subjects who might receive the less desirable intervention. 
Are procedures in place to minimi se the risk and maximise the benefits for 
participants and subjects in the study? This consideration, and the 
preceding one might necessitate interim analyses of results, if feasible. 
Are ali participants in the triaI participating on the basis of informed consent? 
The provision of informed consent implies that not only have they had 
the details of the trial provided to them, but this has been done in a manner 
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that ensures that they understand both the risks and benefits of 
participating. 
Participants must also have the option to withdraw from the study if they 
so choose. 
Has adequate provision been made to protect alI data to ensure their 
confidentiality and protect the privacy of the participants? 
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12 

VALIDITY IN OBSERVATIONAL STUDIES 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Identify the different types of selection bias and assess whether or not a particular 
study is likely to suffer from excess selection bias. 

2. Determine the likely direction and magnitude of a selection bias through the use of 
estimates of sampling fractions or sampling odds. 

3. Apply the principles ofbias prevention in the design of a study; for example, how 
to avoid detection bias in secondary-base studies. 

4. Explain the differences between non-differential and differential misc1assification 
bias in terms of sensitivity and specificity. 

5. Correct 2X2 table data for misc1assification of exposure, disease or both. 

6. Explain why one cannot use the population sensitivity and specificity estimates to 
correct for disease status misc1assification in case-control studies. 

7. Understand the basis of correcting for measurement bias. 
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12.1 INTRODUCTION 

The key features of study design implementation and analysis reflect our efforts to help 
ensure that we obtain valid results from our research efforts. The term validity relates to 
the absence of a systematic bias in results; that is, a valid measure of association in the 
study population will have the same value as the true measure in the target population 
(except for variation due to sampling error). To the extent that the study population and 
the target population measures differ, the result is said to be biased. There are three 
major types ofbias: 

selection bias: due to factors affecting the selection of study subjects, or to other 
factors that relate to the willingness to participate in a research project 
information bias: due to factors relating to obtaining accurate information on 
the exposure, outcome and covariates of interest, and 
confounding bias: due to the effects of factors other than the exposure of interest 
on the observed measure of association. 

In this chapter, we discuss the nature, impact and prevention of selection and 
information bias; confounding is discussed in Chapter 13. 

The actual population in which the study is conducted is called the study population 
(see section 2.1.3). Because most analytic studies are conducted on non-randomly 
sampled study populations, there is always some uncertainty about how well the 
atlributes and the associations in the study population reflect the attributes and 
associations in the largertarget population. Once the study group(s) is selected, we must 
be able to accurately measure the exposure, extraneous factors and outcome of interest 
if we want to make valid conclusions. In this context, an internally valid study will 
allow us, based on the study data, to make unbiased inferences about the association(s) 
of interest in the target population. External validity relates to the ability to make 
correct inferences to populations beyond the target population. In this regard, while it 
is certainly desirable that the study and target populations be 'representative' of a larger 
population beyond the target, one should not sacrifice internal validity in order to gain 
external validity. In the extreme, there is no value in being able to extrapolate incorrect 
results. Nonetheless, the best studies have findings which lead to scientific theories that 
can be general is ed to broadly defined populations. 

12.2 SELECTION BlAS 

As described in Chapter 1, the ideal comparison group for causal inferences is the 
counterfactual group. For example, in a cohort study, the ideal counterfactual group 
for the exposed group would be the exact same subjects if they had not been exposed. 
However, as this ideal group is non-existent, we strive to ensure that the study groups, 
based on exposure status, are totally comparable with respect to all factors that might 
bias the measure of association. 

If it occurs, selection bias happens before the study begins and it results from 
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the procedures used to obtain study subjects or from factors that influence study 
participation. The responsible factors influence being in the study in such a way that the 
composition of the study group(s) differs from that in the target population in a manner 
that biases the association observed between the exposure(s) and the outcome(s) of 
interest. 

Assume the target and study populations have the structure shown in Table 12.1 (upper­
case letters represent the target population, lower case the study population). How can 
we select the study population to avoid selection bias? 

Table 12.1 A representation of the structure of the target and study populations 

Target population structure Study population structure 

E+ E- E+ E-
D+ A1 Ao M1 D+ a1 ao m1 

D- B1 Bo Mo D- b1 bo mo 

N1 No N n1 no n 

12.2.1 Sampling fractions and sampling odds 

The study population is a sample of the target population. Regardless of whether the 
study population is a random sample from the target population or not, we can visualise 
the sampling fractions (sf) in each of the four categories of exposure and disease. These 
are: 

sJil=a/A l 

sJi2=ao/Ao 
sj21=b1/B1 

Sh2=bo/Bo Eq 12.1 

where the subscripts refer to the row-cell combination in the 2X2 table structure (row 1, 
column 1 is the upper left cell: exposed and diseased etc). If all four sampling fractions 
are equal, there is no selection bias. Moreover, if the odds ratio (OR) ofthese sampling 
fractions (ORsr) equals 1, there is no bias to the odds ratio as a measure of association, 
even if the four sampling fractions are not equal. Under this latter condition, there is 
also no bias to the risk ratio (RR) if disease is infrequent. See Example 12.1 for an 
application of this sampling fraction odds ratio. In reality, we rarely know the values 
of the sj so this limits the uti lit Y of this approach. However, this approach provide s a 
theoretical basis for understanding the conditions under which bias will or will not 
occur. 

In a risk-based cohort, or longitudinal study, one could also express the sampling odds 
of disease (sao) among exposed subjects versus the sampling odds of disease in the 
non-exposed subjects as: 

SOOIE+ =sJil/shl 
saO I E.=sJi zlsh2 Eq 12.2 
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Example 12.1 Response bias 

In order to demonstrate that non-response can bias an association measure, we first give an 
example where the non-response is related only to exposure and not to the outcome. In this 
situation, one would not expect the non-response to bias the measure of association. For this 
example, we will initially assume the following scenario: 

That in the exposed subjects in the target population, 30% are non-responders (nr) and 
that the risk of the outcome in the non-responders is the same as that in the 
responders (r) at 25%. 

That in the non-exposed subjects in the target population, 10% are non-responders 
and these subjects have the same risk ofthe outcome as the responders at 12%. 

Consistent with these assumptions, suppose the target population structure is: 

Exposedr Exposednr Non-exposedr Non-exposednr 
D+ 175 75 972 108 

D-

Risk 

525 

700 

0.25 

225 

300 

0.25 

7128 

8100 

0.12 

792 

900 

0.12 

Given our assumtpions, ifwe initially contact 100 exposed and 100 non-exposed individuals, 
the study group will have the following structure: 

D+ 

D-

Exposed 

18 

52 

70 

Non-exposed 

11 

79 

90 

Apart from rounding error, the ratio ofrisks (RR) in the study population (RR=2.04) matches 
the risk ratio in the target population (RR=2.00). There is no bias. 

Now, given exactly the same response risks, we will assume the risk of the outcome is twice 
as high in non-responders as in responders in both the exposed and non-exposed groups (non­
response is now related to both exposure and outcome ). 

(continued on next page) 
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Example 12.1 (continued) 

Under this scenario, the population structure would be: 

Exposedr Exposednr 

D+ 133 114 

D-

Risk 

567 

700 

0.19 

286 

300 

0.38 

Non-exposedr 
891 

7209 

8100 

0.11 

The ratio of the risks in this population is 0.247/0.121=2.04 

Non-exposednr 

198 

702 

900 

0.22 

211 

As before, if we initially contact 100 exposed and 100 non-exposed individuals, the study 
group will have the following structure (apart from sampling error): 

D+ 

D-

Exposed 

13 

57 

70 

Non-exposed 

10 

80 

90 

Now the study group risk ratio is 0.19/0.11=1.73, which is abiased estimate of the true 
association. To link this bias to the sampling fractions, the sampling fractions are: 

sJil=13/247 = 0.053 

sJi2=57/853 = 0.067 

s./21=1011089 = 0.009 

s./22=80/7911 = omo 
and the odds ratio of the sampling fracti.ons is: 

OR
sf 

0.053 * 0.01 == 0.88 
0.67*0.009 

Thus based on the odds ratio of the sampling fractions, the bias would be expected to be 
towards the null. We should note that 2*0.88"'1.76. Relatively speaking, because of the 
non-response, we have over-sampled the non-exposed cases, or conversely we have under­
sampled the exposed cases. For example, the sampling odds for disease among the exposed is 
5.89 (0.053/0.009), and among the non-exposed, it is 6.7 giving a ratio of 0.88. 
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If these selection odds are equal, there is no selection bias. This is the goal of selection 
strategies in cohort studies. Similarly, in a case-control study, the sampling odds of 
exposure (SOE) in cases and controls are: 

sOEID+ =sfi 1/ sfi 2 
SOEID_=sfzl/sf22 Eq 12.3 

If these selection odds are equal, there is no selection bias. If the ratio of the sampling 
odds is greater than l, then the bias is away from the null; if the sampling odds ratio 
is less than l the bias is towards the null. In practice, these sampling odds might be 
easier to visualise than the individual sampling fractions. Thus, for example, in a case­
control study, we need to ensure that we are no more likely to select for exposure among 
cases than among non-cases to prevent selection bias. Methods to help achieve this are 
discussed in section 12.3. The conditions for no bias are somewhat more complex in 
density cohort studies where animaI-time affects the sampling probabilities, but the 
principles are the same. 

12.3 EXAMPLES OF SELECTION BlAS 

12.3.1 Choice of comparison groups 

In cohort studies it is important that the non-exposed group be comparable with the 
exposed group with respect to other risk factors for the outcome that are related to 
the exposure. This is more of an issue with the usual two-group (ie exposed and 
non-exposed) cohort design, than with a single-cohort study design. For example, a 
recent study has documented how the design of a surveillance system can bias the 
risk of disease by breed type (Ducrot et al, 2003). Similarly, in a case-control study, it 
is important that the control group reffects either prevalence of exposure in the 'non­
case' members of the target population (risk-based study) or the proportion of exposed 
animaI-time at risk for the non-case group in the target population (rate-based study). 
Comparability is be st achieved by random sampling from the entire non-exposed (non­
case) population; however, this latter population might be difficult to enumerate in 
order to con struct a sampling frame. In the absence of random sampling, the decisions 
about how to select the comparison group must include knowledge about the study 
design and the biology of the problem being investigated as weIl as the structure and 
dynamics of the target population. However, a general principle is that the study group s 
should be selected from the same source within the target population. 

12.3.2 Non-response 

Non-response bias can be a major problem in both descriptive and analytic studies 
and its level is often understated (SandIer, 2002). Non-response leads to bias if the 
association between exposure and the outcome in the responders differs from that in 
non-responders (hence, the association in the study group differs from that in the target 
population). Although non-response behaves as a confounding variable, it cannot be 
directly controlled in the same manner. The stronger the association between exposure 
and disease and the greater the proportion of non-responders, the greater the potential 
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bias. In veterinary research, non-response on behalf of the owner could be a surrogate 
indicator for management, housing, or feeding differences of the owner's animals that 
could relate to both the outcome and the exposure factor. In studies where humans 
are the units of concem, willingness to enrol in a study might be related to both the 
exposure and the outcome, hence the study group produces abiased response. 

One way to assess the possible effects of response bias, or if non-response exceeds 
20-30%, is to ascertain if the extent ofnon-response within each group (ie the exposure 
cohorts, or the case and control group s ) is approximately equal. If it is not, it creates 
some doubt about the lack of bias. In addition, it is informative to compare responders 
and non-responders using whatever information you have, recognising that because 
the owner won't respond (or collaborate), the data might be limited. This might give 
additional insight into the comparability of the groups. Minimising non-response is an 
important step in reducing any possible bias. Example 12.1 shows non-response bias. 

Missing data can create a bias similar to non-response, because the researcher must 
either impute the missing value, drop the variable(s) with missing values (and possibly 
leave a confounding bias), or drop the observation (and hence, effectively produce a 
non-response). Thus, minimising missing data and assessing whether the extent of 
miss ing data is equivalent in the groups being compared are recommended features of 
study design. 

12.3.3 Loss to follow-up or follow-up bias 

Similar to non-response bias, if there is a differentialloss to follow-up that is related 
to the exposure status and the outcome, then bias will result. Thus, the design and 
implementation of the study protocol should try to minimi se los se s from the study, 
and failing that we should try to ensure that both group s are followed as completely 
as possible and with equal rigour (the latter equalises, but does not reduce, the losses). 
Unfortunately, the larger the losses, the more difficult it becomes to ensure equality of 
losses across the study groups. Analytic approaches for assessing the impact of losses 
from the study are available (Cheung, 2001). 

A type of bias that can result from activities during the study period relates to 
differential management of exposed and non-exposed subjects that develops during the 
study. More generally, behavioural changes in study subjects as a result of being studied 
are referred to as the Hawthome effect (Mangione-Smith et al, 2002). In experimental 
studies we would use single- or double-blind techniques to help ensure equal follow-up 
of all study subjects. In an observational study, the role of the researcher is to observe, 
not alter, the normal (ie usual) events experienced by the study subject. However, it is 
often difficUlt to 'hide' the reason for the study and the act of enquiring into specific 
managementlhousing factors could lead the animai owner to modify his/her protocols in 
ways that are not obvious to the researcher. This could lead to differential management 
by exposure status, or at the very least, exposure status changes during the study period. 
Being aware of this possibility and implementing the study in a manner designed to 
minimi se this bias might be the best prevention. An example of this potential bias is 
described by Ducrot et al (1998). 
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12.3.4 Selective entry or survival bias 

Sometimes the group s we study are highly selected in that only subjects that possess 
certain desirable attributes are selected for membership. The analogous problem in 
studies ofhumans is called the 'healthy worker' effect, and is a major issue especially 
in occupational-health studies. In veterinary research, adult food-producing animals 
(sows, cows etc) are highly selected for herd membership on entry (eg they might need 
to meet specific growth rate and fertility criteria) and once admitted to the herd, these 
animals must maintain certain production standards (eg number of piglets produced 
per year) to remain in the herd. Similarly, horses that are currently racing are abiased 
subset of all horses that tried to enter the race circuit, and they are very likely to be 
healthier than all horse s that have raced one or more times. As one example of this bias, 
if we wanted to assess the impact of disease or a new treatment programme on fertility 
in dairy cows, and we only chose the calving-to-conception interval as an outcome 
measure, we could get a biased view of the disease or treatment effects. Animals that 
did not get pregnant would be excluded from the outcome measure. Hence, because 
these cows did not pass the entry criterion of becoming pregnant, they are excluded 
from the study yet this failing is a crucial component of assessing the fertility status of 
the herd. 

Entry bias can create problem s in study design. For example, in Examples 8.1 and 
8.2, we posited studi es on the effect of Neospora caninum on future abortion and 
fertility. We suggested identifying a set of congenitally infected calves and a set of non­
congenitally infected calves and following them through their first lactation - which 
would not end unti I approximately three years of age. If Neospora had other negative 
effects, for example on growth rate, many ofthe congenitally infected cal ves might not 
be selected for breeding as heifers and subsequent herd entry. Thus, if one followed and 
recorded events only for heifers that achieved pregnancy and herd-entry, the observed 
impacts of Neospora could be seriously biased. Ensuring that our study design selects 
subjects with outcomes that encompass the full set of important outcome events is 
important to prevent bias. 

With respect to selective survival, if the exposure and disease being studied affect 
whether or not a food animai remains in the herd (or whether or not a horse is still 
rac ing) then a study group drawn from only 'existing' (eg racing) animals might give 
abiased measure of association between the exposure and disease. The prernature 
removal of animals from the original group might be highly correlated with the 
exposure factor and the outcome, thus leaving the study group as abiased subgroup 
from the target population. Whenever selective survival is likely to be an issue, the 
study group(s) should be drawn from animals 'ever' in the herd (or ever raced) during 
a specified time period, not just from animai s that are in the herd (or are rac ing) at the 
start of the current study period. 

As another example, survival bias can be very common if prevalent cases are used in a 
case-control or cross-sectional study. If the duration of survival after the disease occurs 
differs by exposure status, then there will be bias in a cross-sectional study design. 
Partly for this reason, case-control studies should include only incident not prevalent 
cases. 
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Unintentional selection bias from factors affecting entry or survival (ie isolation 
of bacteria) might be at play in many temporal studies of antimicrobial resistance 
patterns. In this instance, the selection bias arises from using data based on isolates 
obtained from c1inically ill subjects. Because many of the isolates would have been 
exposed to antimicrobials prior to culturing of tissue specimens, the number and type 
of bacterial isolates, and their level of antimicrobial resistance (or minimal inhibitory 
concentrations) might be more a function of what antimicrobials are used and how 
effective they are at reaching and killing susceptible organisms in the tissue samples 
that get cultured than of the range of pathogenic organisms or their level of antimicrobial 
resistance. As the objective of the study is largely descriptive, only samples obtained 
prior to treatment from randomly selected subjects can provide valid insight into the 
extent of antimicrobial resistance in the target population. The impact of antimicrobial 
use on the level of resistance in treated and non-treated subjects could be studied in 
purposively chosen subjects. 

12.3.5 Detection bias 

In cohort studi es, detection bias is best viewed as a misc1assification or confounding 
bias. It can arise if those assessing the outcome know the exposure status of the study 
subject and if they alter their assessment of the outcome because of that knowledge. In 
case-control studies, the central issue in detection bias is one of selection in that animals 
that have the disease of interest might be misc1assified as not having that disease because 
they were less likely (or never) to be examined for the disease (se e section 12.6). 

This potential bias is of concern when a large percentage of the cases in a case-control 
study would be found (and therefore be identified as potential study subjects) only after 
examination in a screening or diagnostic process where participation is infIuenced by 
exposure status (ie the act ofbeing assessed is influenced by the exposure status). Given 
this scenario, the issue is how be st to select controls. A frequently suggested guide line 
is that the controls should be non-cases that have undergone the same screening, but 
the nature of the exposure, disease and the context of diagnostic testing need to be 
considered. We give three examples related to detection bias. 

Detection bias was at the root of protracted discussions about the appropriate control 
group for a series ofuterine cancer cases in a cancer registry (a secondary-study base). 
Uterine cancer often leads to bleeding and this bleeding would lead women to request 
a gynecological examination. Women on estrogen also tended to evidence bleeding and 
therefore would be examined more frequently than women not on estrogen. Hence, the 
possibility of detection bias was raised. One set of researchers argued that the controls 
should be restricted to those women who had been examined because of bleeding and 
found negative for cancer. The other set of investigators argued that the cancer registry 
used for the study eventually would contain all of the uterine cancer cases whether they 
were found subsequent to the examination or not and that the controls should be derived 
from all women in the registry that had other gynecological cancers. The latter turned 
out to be the correct approach. The major reason was that many cases ofuterine cancer 
listed in the registry were diagnosed outside of the screening programme and almost 
all cases did end up being recorded in the registry. The lesson we can learn from this 
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example is that we should not enforce the general principle that controls should have 
undergone the same testing regime as the cases unless only a small percentage of cases 
with the outcome of interest would be diagnosed outside of the testing programme. 

As a related example, hip dysplasia in dogs is a condition that is rarely diagnosed 
without radiographic evidence. Thus, having a radiograph is usually a prerequisite 
for the diagnosis. In early studies of the association between breed and hip dysplasia, 
aU dog s without recorded hip dysplasia in secondary-base registries were included as 
controls whether or not they had been radiographed. Ifthe act ofbeing radiographed was 
related to breed and the presence of dysplasia, then some breeds would be radiographed 
more frequently leading to more diagnoses ofhip dysplasia and over-representation of 
those breeds in the case-series of the study. This stimulated one group of researchers 
to perform a case-control study in which the potential control dogs had to have been 
radiographed in a manner that would lead to a diagnosis of hip dysplasia being 
recorded if it were present. This included dog s that had been radiographed subsequent 
to accidental injury. Although this might not have been a totally unbiased control group, 
the effect of increased probability of detection as a result of being radiographed would 
be equal in the case and control series. Given that few cases ofhip dysplasia would be 
diagnosed without radiographs, restricting the study population to this group would be 
the appropriate study design (Martin et al, 1980). 

A third example of concem over detection bias that was related to misclassification 
of the outcome was investigated by Singer et al (2001). These workers were selecting 
birds with avian cellulitis in the slaughter plant using the presence of certain gross 
lesions as indicators that the birds had the disease, and then culturing these birds for 
specific strains of Escherichia coli. Their concem was that if certain strains of E. coli 
only produced lesion(s) that were not being detected visually, then these birds would 
not be selected. Rence, onlyabiased subset of the E. coli-caused lesions would be 
detected. These workers developed a method to assess possible selection bias based on 
comparing the findings in the birds that they detected with findings in birds detected 
independently by the USDA inspectors. In general, it is desirable to have a sensitive 
and specific set of inclusion criteria when selecting study subjects. 

12.3.6 Admission risk bias 

Admission risk bias has haunted the validity of secondary-base case-control. studies, 
and is the basis of Berkson's faUacy. In this instance, the probability of admission 
to the registry (secondary-study base) is related to both the disease and the exposure. 
Thus, the controls might not reflect the actual exposure status of the population from 
which the cases arose, and there might be an excess (or deficit) of exposure in the 
controls selected from the registry relative to the target population. While we are aware 
that this bias has perplexed and continues to perplex the designers of case-control 
studies, it is important to try and obtain quantitative estimates of the likely degree of 
bias that different comparison groups might produce. Breslow and Day (1980) note 
that it is nearly impossible to assess selection bias in any given secondary-base study. 
This necessarily constrains the inferences that should be drawn based on any given 
secondary-base case-control study but it does not invalidate the approach. Because we 
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are rarely fully aware ofpotential relationships between the exposure and other diseases 
(ie non-cases) that might serve as controls, individual researchers must do their best to 
counteract the potential bias. In addition, consistency offindings in dift'erent secondary­
base case-control studies is crucial to good causal inferences. 

The major reason for developing Example 12.2 is to demonstrate the impact on 
associations when exposure impacts on admission to a clinic or registry. Subsequently, 
we develop guide lines for selecting cases and controls in a manner to minimi se the 
magnitude ofbias. In designing case-control studies, we try to counteract this potential 
bias when specifying the groups that are eligible to serve as sources of controls by 
excluding all groups ofnon-cases thought to have an association with exposure. In terms 
of the direction of bias, as the example will demonstrate, if the risk of hospitalisation 
(ie being in the registry) is greater for the disease of interest than the average risk for 
the potential controls, the sample odds ratio will be less than the population odds ratio. 
Thus, if the study data leads to a statistically significant odds ratio, the true association 
in the source population would be even stronger. 

12.4 REDUCING SELECTION BlAS 

Most of the specific recommendations for preventing selection bias are contained in 
the study design chapters and will not be repeated here. However, being aware of the 
potential pitfalls in selecting study subjects, and conceptualising how these pitfaUs 
might apply to selection of study subjects from the proposed target population is the first 
step in prevention. In any event, from a selection bias point-of-view, the comparison 
group in observational studies need not be similar to the exposed (or case) group in aU 
respects except for the exposure (disease) of interest, but rather just with respect to the 
factors related to the outcome (exposure) that might lead to being included in the study. 
In a case-control study, if the cases are more likely to be included if exposed, then the 
controls should have the same extent of bias in the selection procedure (albeit this is 
hard to implement precisely). In cohort studies where explicit exposed and non-exposed 
group s are selected, care needs to be taken when selecting the comparison group, and 
due consideration should be given to minimi sing loss-to-follow-up, or non-response 
bias. In case-control studies the principle for control selection is that they should 
represent the proportion exposed, or the exposure time, in the source population. This 
is chiefty a problem in secondary-base studies and to circumvent it, we imp lement the 
guideline of not selecting controls from non-case diagnostic categories that might be 
associated with the exposure. In addition, case-control studies should rely on only 
incident cases, and controls should come from the same source population as the cases. 
Even with all these precautions, care must be taken in making broad inferences from a 
single case-control study us ing secondary databases. 

12.4.1 Correcting selectio n bias 

For valid and effective control of selection bias one of two condition s needs to be met: 
the factors associated with selection must be antecedents of both exposure and disease, 
or the distributions of exposure and disease must be known in the source population. 
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Example 12.2 Selection bias in a secondary-base study 

The population structure 

Suppose you are investigating whether vaccination in dogs within two months of admission to 
the hospital is associated with autoimmune disease (AID). We will denote vaccination within 
two months of admission as E+. We denote autoimmune disease as Dl and the group of 
control dogs (in this case, we will use dogs with acute injuries) as Do. The latter group would 
normally be composed of dogs having one or more of a combination of many diseases not 
associated with vaccination, but not dogs with AID. 

We will assume that the structure of the target population with respect to E, Dl and Do is 
known and is based on the following frequencies: 

10% of dogs are vaccinated within the last two months; p(E+ )=0.1 

l % of dogs develop AID per year independent of E status; p(DI)=O.O l 

3% of dogs get acute injury per year, independent of E status; p(Do)=0.03 

there are 100,000 dogs in the target population. 

Under this scenario, the population structure is shown below: 

AID, acute inJury and exposure status of the target canine population 

E+ E-

100 

300 

900 

2700 

The OR in this population=(l 00*2700Y(300"'900)= l, as expected because the Dl and Do risks 
were independent of E status. 

Now, assume that the probabilities of an ill dog from the target population being admitted to 
the hospital in a risk-based case-control study are as follows: 

p(H1DI+E+)=O.80 

p(H1Do+E+)=OAO 

p(H1DI+E-)=0.60 

p(H1Do+E-)=0.20 

These admission risks lead to the registry population structure shown below. 

(continued on next page) 
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Example 12.2 (continued) 

Observed data on AID, acute inJury and vaccination history in the hospital records 

E+ E-

0 1 80 540 620 

Do 120 540 660 

The OR in the study (or registry) population is 80*540/120*540=0.67. This bias is reflected 
in the ORsf and the sampling odds. Had we not known the admission risks, we might have 
concluded that vaccination was preventive for AID. To cast the se data in terms of OUf sampling 
fractions from the original target population - in this instance, these are admission risks: 

sfi, = 80/100 = 0.8 

sfiz = 540/900 = 0.6 

sh, = 1201300 = 0.4 

Sh2 = 540/2700 = 0.2 

and the OR of the sampling fractions is 0.67. Note that the sampling odds for disease within 
the exposed and non-exposed are: 

and 

SODoIE+ =0.6/0.2=3 

leading to the ratio of so=2/3=0.67 reflecting the amount of bias in the measure of 
association. 

Under the first condition, the bias can be controlled in a manner similar to confounding; 
for example if owner income might cause selection bias in a secondary base case­
control study it can be measured and controlled in the analysis. Under the second 
condition, the bias can be removed by using the reciprocal of the sampling fraction 
odds ratio. However, ifthe covariate is an intermediate variable, or an effect of disease, 
and associated with selection, it should not be controlled as if it were a confounder as 
this actually would increase the bias. Despite our be st efforts to use these approaches, 
as we often have only vague ideas about the magnitude of the sampling fractions, or 
sampling odds, quantitative adjustments to the data to correct selection bias usually are 
not possible. 

12.5 INFORMATION BlAS 

The previous discussion was concemed with whether the study subjects have the same 
exposure-disease association as that which exists in the target population. It assumed that 
disease and exposure were correctly classified. We now move on to discuss the effects 
ofincorrectly classifying, or measuring, the study subjects' exposure, extraneous factors 
and/or outcome status. If we are concemed with incorrect classification of categorical 
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variables, the resultant bias is referred to as misclassification bias. If the variables of 
interest are continuous, then we term the erroneous result as measurement error or 
bias. Information bias is a major problem in epidemiological studies as it can produce 
errors in our estimates of association, the magnitude and direction of which might not 
be intuitive. AIso, the errors in classification, or measurement, can affect different 
measures of association differently (ie risk ratio versus risk difference). Hence, for our 
purposes, we will focus only on the effects of information bias on relative measures of 
association (risk ratios and odds ratios). In the discussion that follows, the study subject 
could be an individualor a group of individuals, such as a herd. 

Several methods to assess and/or correct for misclassification and measurement error 
have been described, but (apparently) few researchers have applied them. We will 
discuss them subsequently, but first we review the basics of misclassification - the 
most studied of information biases. 

12.6 BlAS FROM MISCLASSIFICATION 

Misclassification bias results from a rearrangement of the study individuals into the 
incorrect categories because of errors in classifying exposure or outcome or both. 
Non-compliance with an assigned treatment in a clinical tri al can also produce 
misclassification bias, because the subject was not actually receiving the treatment 
spec ifi ed. With categorical measures of exposure, outcome, or other covariates, 
especially dichotomous measures (ie exposed or not, diseased or not), the errors of 
classification can be described in terms of sensitivity and specificity as shown in Chapter 
5. Here, sensitivity (Se) for a given condition is the probability that an individual with 
the condition will be classified as having the condition. The complement of Se is the 
false negative fraction (FNF). Specificity (Sp) is the probability that an individual 
without the condition will be classified as being without the condition. The complement 
of Sp is the false positive fraction (FPF). 

12.6.1 Non-differential misclassification of exposure 

The tabular data layout is the same as show n in Table 12.1. The true cell values are 
represented by aj, bj, ao, and bo, with ml diseased and mo non-diseased, nl and no 
exposed and non-exposed subjects, respectively. The observed cell values will be 
denoted with ' (ie the prime symbol): al', b l', ao', and bo'. 

Ifmisclassification ofthe exposure and outcome are independent (ie errors in classifying 
exposure are the same in disease d and non-diseased animals and vice-versa when 
classifying disease in exposed and non-exposed subjects) then the misclassification is 
called non-differential. With non-differential (non-systematic) misclassification, for 
disease classification, we have 

SeOIE+ =SeOIE_ =Seo and/or SPOIE+ =SPOIE_ =SPo 

where SeD is the sens iti vit y of disease classification and Spo is the specificity of disease 
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classification. For exposure classification we have 
SeEID+ =SeE1D_ =SeE and/or SPEID+ =SPEID_ =SPE 

where SeE is the sensitivity of exposure classification and SPE is the specificity of 
exposure classification. 

How do these errors relate to our observed data? Weil, using error frequencies for 
exposure misclassification denoted as SeE and SPE and assuming SeD+=SPD_=lOO%, we 
would have the observed data shown in Table 12.2 and Example 12.3. 

Table 12.2 Relationship between the number of correctly and incorrectly 
classified subjects by exposure status 

True number Observed number 

a1'=SeE *a1+(1-SPE)*aO 

ao'=( 1-SeE)*a1 +SPE *ao 

b1'=SeE *b1 +( 1-SPE)*bo 

bo'=( 1-SeE)*b1 +SPE *bo 

Example 12.3 Impact of non-differential misclassification of exposure 

We first assume that there is no misclassification, hence the true study population structure in 
this example is: 

Exposed Non-exposed Total 

Diseased 90 70 160 

Non-diseased 210 630 840 

Total 300 700 1000 

The true OR is 3.86. If we now assumed an exposure sensitivity of 80% and an assumed 
exposure specificity of 90%, we would expect to have the following ohserved cell numbers 
(calculations shown): 

Exposed Non-exposed Total 

Diseased 90*0.8+0.1 *70=79 70*0.9+90·0.2=81 160 

Non-diseased 210·0.8+630·0.1 =231 630·0.9+210·0.2=609 840 

Total 300· 0.8+700·0.1 =31 O 700·0.9+300·0.2=690 1000 

Note Exposure misclassification does not affect the disease status totals, only the exposure 
category totals. As predicted, with non-differential errors the odds ratio has been reduced 
from 3.86 to 2.57. 
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For dichotomous exposures and outcomes, non-differential errors always bias the 
measures of association towards the null (given that the minimum of Se+Sp > l) 
as shown in Example 12.3. In most studies, researchers assume that any errors of 
classification are non-differential. However, in case-control studi es, the assumption of 
non-differential errors is often open to question. Recall bias in case-control studi es is 
one illustration of (like1y) differential errors in that 'affected' subjects (ie cases) might 
have an increased sensitivity, and perhaps a lower specificity than non-affected subjects 
in recalling previous exposures. The effect of differential errors on the observed 
measure of association is difficult to predict. 

The frequency of both types of error can be reduced by us ing clear and explicit 
guidelines and 'double-checking' the exposure status whenever possible (eg seeking 
laboratory confirmation, or other confirmatory records, for exposure status). Because 
the results of non-differential misclassification are predictable, we often recommend 
'blind' techniques to help ensure that the errors are equalised. However, our first 
preference should be to reduce the frequency of errors rather than depend on blindness 
to balance the frequency of errors. 

12.6.2 Differential misclassification of exposure or outcome 

If the errors in exposure classification are related to the status of the outcome under 
study, the errors are called differential. Here, the Seo and Spo of classifying disease 
status differs over exposure levels, and/or the SeE and SPE differ by disease status: 

SeOIE+7"SeoIE_ and/or SPOIE+:;tSpoIE-
and for exposure classification 

SeEIO+:;tSeE1o- and/or SPEIO+:;tSPElo-

The resulting bias in the measure of association might be in any direction (eg an effect 
might either be exaggerated or underestimated). A few minutes with a spreadsheet 
playing 'what-if' will help convince you of this. As noted, recall bias is often cited as 
an example of differential misclassification. 

12.6.3 Correcting for non-differential exposure misclassification 

If the error frequencies in exposure classification are known, we can correct the observed 
classifications. In most circumstances however, we would require avalidation study 
with a gold standard procedure to measure exposure in order to estimate sensitivity 
and specificity. In the absence of such a validation process, one can use a sensitivity 
analysis - a 'what-if-the-errors-were-known' process - to investigate the likely range 
ofbias. 

Assuming non-differential errors, we can use the following approach to reclassify the 
study population. As b\'+bo'=bj+bo=mo, we can solve for b j as: 

bl '-FPFE * mo 
(SeE + SPE -1) Eq 12.4 
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where FPFE=(l-SPE)' Similarly, we can solve for aj as: 

al '-FPFE * ml 
a l = 

(SeE + SPE -1) 

223 

Eq 12.5 

with bo and ao determined by bo=mo-b j and ao=mj-aj (Rothman and Greenland, 1998). 
Applying these corrections to our data in Example 12.3, we have: 

79-0.1*160 90 and b 231-0.1*840 210 
al (0.8+0.9-1) l (0.8+0.9-1) 

which can then be used to complete the 2X2 table and compute the true value of the OR 
(ie 3.86). This process can be used to correct for differential errors in exposure status 
by repeating the process separately in each of the case and control group s us ing the 
appropriate estimates of SeE and SPE' 

This approach to making corrections for exposure misclassification can be applied to 
data from all study types with the reminder that in a rate-based cohort study, we replace 
the bs with ts (animaI-time at risk). However, the sobering lesson about classification 
errors is that small changes in the estimated sensitivity and specificity can produce 
large changes in the observed data; hence the variability in the data arising from these 
small changes can be much more dramatic than changes that would be expected from 
sampling variation. Often when attempting to correct for these errors the sensitivity and 
specificity estimates could produce 'impossible' results. This means that the values used 
are not consistent with the data, so the actual error risks must differ from the estimated 
values being used for the corrections. 

Another observation about exposure classification errors is that when exposure 
prevalence is low, lack of specificity produces more errors than lack of sensitivity. The 
good news in this instance is that even if exposure is selectively recalled among cases 
(ie recall bias giving a higher SeE and/or a lower SPE in cases in comparison to the 
controls), the observed measures of association usually will be biased towards the null. 
Thus, in the presence of recall bias, if an association is found in the study population, it 
is likely to be even stronger in the target population. 

12.6.4 Non-differential misclassification of disease-co hort studies 

Here the same concepts of classificatjon errors arise as with exposure misclassification 
except that we now focus on errors in classifying he alth status in cohort studies. 
Example 12.4 shows the impact of non-differential disease misclassification. As with 
exposure misclassification, disease misclassification in a cohort study can be corrected. 
Given that Seo, Spo, FNFD=l-Seo and FPFo=l-SpD are the health status classification 
probabilities we can solve for aj as: 

al '-FPFD * nl 

(SeD + SPD + 1) 
and 

Eq 12.6 
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Example 12.4 Impact of non-differential misclassification of disease 

We assume the same target population structure as in Example 12.3. With a disease­
classification system having an assumed sensitivity of 80% and an assumed specificity of 
90% we would, in expectation, observe the following cell numbers: 

Exposed Non-exposed Total 

Diseased 90·0.8+0.1*210=93 70*0.8+630*0.1=119 212 

Non-diseased 210·0.9+0.2*90=207 630*0.9+70*0.2=581 788 

Total 300 700 1000 

Note that disease misclassification does not affect the exposure status totals. Also note that the 
effect of the error has been to reduce the odds ratio from its true value of 3.86 in the source 
population to 2.19 in the study group. Even though the error risks used here are the same as 
those used for exposure misclassification (see Example 12.3), the impact on the odds ratio 
differs because the prevalence of disease differed from the prevalence of exposure. Thus, the 
impact of errors depends both on the error frequencies and the prevalence of the event (ie 
exposure or outcome ) being misclassified. 

As we assume a risk-based cohort study in this example, we can correct for disease 
misclassification. This procedure should not be applied to correcting case-control data for 
diagnostic errors (see section 12.6.5). 

For al and ao' we have 

93-0.1 *300 
al - (0.8+0.9-1) 63/0.7=90 and ao 

119-0.1 * 700 49/0.7 = 70 
(0.8+0.9-1) 

We can now complete the 2X2 table and estimate the true population odds ratio. This process 
can be used to correct for differential errors by separately performing ihe caIculations in the 
exposed and non-exposed groups with appropriate estimates of SeD and Spo. 

Now, bl and bo can be obtained by subtraction from the marginal exposure totals (nl 
and no, respectively). As they stand, these forrnulae can be applied to risk-based cohort 
study subjects. They also apply to rate-based cohorts ifwe substitute tI and to for the nl 
and no values and use the concept of false positive rate instead of FPF (Rothman and 
Greenland, 1998). 

12.6.5 Non-differential misclassification of disease case-control studies 

Because of the often unknown sampling fractions in case-control studies, the previous 
forrnulae do not apply to this design unless Spo= 1.00. In that instance, imperfect disease 
sensitivity does not bias the RR or IR, and only biases the OR if disease frequency is 
common. The key here is that it pays to verify the diagnoses of the cases so that there 
are no false positive cases, as the association measures will not be biased even if the 
diagnostic Seo is less than 100%. 
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Example 12.5 Correcting c1assification errors in case-control studies 

Suppose we conduct a case-control study on the misclassified population used in Example 
12.4. We will assume the same Seo=0.8 and Spo=0.9 as before, hence the observed population 
structure will be: 

Exposed Non-exposed Total 

207 581 788 

Diseased 

Non-diseased 

Total 
I 

93 119 212 

'--------300 700 1000 

Now, for our study, we assume that we take all the apparent cases (sfD+=1.0) and 20% 
(sfo.=0.2) of the apparent non-cases as controls. Disregarding sampling error, our misclassrned 
study population will have the structure shown below (the numbers are given to l decima! 
place to avoid rounding errors -you might think ofthese as 'expected' observed values). 

Exposed Non-exposed Total 

Diseased 72 TP+21 FP=93.0 56 TP+63 FP=119.0 212.0 

Non-diseased 

Total 

37.8 TN+3.6 FN=41.4 

134.4 

113.4 TN+2.8 FN=116.2 157.6 

235.2 369.6 

TP and TN relate to true disease positives and true disease negatives, respectively. Similarly, 
FN and FP relate to false negative and false positive cases, respectively. The odds ratio is, as 
before, 2.19. However, in order to 'back-correct' the observed values we would need to use 
the actual sensitivity and specificity based on the case-control data, not the original levels of 
Seo=0.8 and Spo=O·9. 

The actual sensitivity for these data is 
(72+56)/(72+56+3.6+2.8)=128/134.4=0.95 

and the actual specificity for these data is 
(37.8+ 113.4)/(37.8+ 113.4+21 +63)=0.64 

These classification probabílities could be found directly using the formulae in section 12.6.5. 
For the case-control sensitivity we have 

Secc =0.8/(0.8+0.2 *0.2)=0.8/0.84=0.95 
and the case-control specificity will be 

SPec =0.2*0.9/(0.1 +0.2*0.91=0.18/0.28=0.64 

As indicated earlier, these values are not even close to the population Se and Sp values. 
Typica!ly as seen here, sensitivity is increased and specificity is decreased relative to the 
levels in the source population. 
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When SPD <l then, in a case-control study, the source population is misclassified. If 
we take alI the apparent cases for our study, we will be including SeD * Ml of the true 
cases and FPFD * Mo false positives as cases. Usually we take only some (sj) of the 
non-cases as controls, hence ultimately, we will include only a very small number 
of false negative cases (sf* FNF D * Ml) and a much larger number of true non-cases 
(sf* SPD * Mo). Thus, in the study group the case-control sensitivity will be 

Secc=SeD/(SeD+sf*FNFD) Eq 12.7 
and the case-control specificity will be 

SPcc=sf*SPD/(FPFD+sf*SPD) Eq 12.8 

As shown in Example 12.5, both ofthese could be very far from the true population 
values of sensitivity and specificity (see Rothman and Greenland, 1998, p. 352). Thus 
extemal estimates of Se and Sp cannot be used to correct misclassification in case­
control studies. Also, estimates of diagnostic Se and Sp obtained from case-control 
study subjects cannot be used to estimate the population Se and Sp values. 

12.6.6 Misclassification of both exposure and disease 

So far we have examined misclassification of either exposure or disease but not both 
simultaneously. For purposes of demonstration of joint misclassification, we will 
assume independence of errors, by which we mean: 

probability of joint misclassification = product of individual misclassification 
probabilities 

A 'pedestrian' way of understanding joint misclassification is to consider each of the 
four possible cross-classifications of exposure and disease in tum (ie individuals in each 
correctly classified cell of the 2X2 table can be mis class ifi ed into up to three incorrect 
cells). For example, the actually exposed and diseased individuals in the population 
(A 1) will be classified into the four cells of a 2X2 table with the frequencies shown in 
the first column ofTable 12.3. Similarly, the classification of the Ao, Bl and Bo subjects, 
in terms of B 1', Ao', and Bo', follows the partem shown in the next three columns. 

Table 12.3 The probability of being classified into each exposure-disease 
category (eg A1') according to the true exposure-disease statea (eg A1) 

Number 
classified by 
exposure­

health status 

A' 
1 

A' o 
B' 1 

B ' o 

Number of subjects by true exposure-health status 

A1 Ao B1 Bo 
(E+ and D+) (E- and D+) (E+ and D-) (E- and D-) 

I seEID+ *SeDIE+ FPFEID+*SeDIE_ SeE1D_ *FPF DIE+ FPFEID_*FPFDIE_ 

FNFE1D+ *SeDIE+ SPEID+*SeD1E_ FNFEID_*FPFDIE+ SPEID_*FPFD1E_ 

SeEID+ *FNFD1E+ FPFE1D+ *FNFD1E_ SeE1D_ *SPDIE+ FPFE1D_*SPDIE_ 

FNFE1D+ *FNFD1E+ SPEID+ *FNFD1E_ FNFE1D_*SPDIE+ SPEID_ *SPDIE_ I 
a If errors are non-dlfferentlal then, for example SeEID+=SeEID_ =SeE as ln sectIon 12.6.1. 

Similarly, we can examine the observed cell quantities (Cn in terms of the classification 
errors that could contribute to them. For example, if we examine the observed value 
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Aj', as expected, it is the sum of the error frequencies (shown in row 1 in Table 12.3) 
after each is multiplied by the respective true number of subjects in that category. We 
can repeat this for ali four cells (exposure-outcome combinations) and summarise the 
observed classification for each cell as: 

C;' = L:=/~j C j Eq 12.9 

where P lj is the probability of being classified into cell i when the true classification is 
cell}. The Cj multipliers are the counts of individuals in each correctly categorised cell 
of the 2X2 table. Summing these products across the co1umns (ie}) gives the observed 
cell values for the row (ie i). In matrix form, we could write this as C=PC and hence, 
the corrected classification is C=P -j *C. For more details, see Table 12.3 in Kleinbaum 
et al (1982) p 231, and Rothman and Greenland (1998) p 353. 

As noted earlier, if one works through many examples using realistic error rates, then 
it becomes clear that misclassification bias can create much more uncertainty in our 
measures of association than sampling variation. Thus, we need to pay a great de al 
of attention to reducing these errors whenever possible. Again, the latter approach to 
correcting classification errors cannot be used for case-control studies; it is valid for 
risk-based cohort, but not rate-based cohort studies. 

12.6.7 Misclassification of extraneous variables 

I f a con found er is measured with error, it is impossible to fully control for its confounding 
effect (Marshall and Hastrup, 1996). Thus, measurement error in the confounder can 
produce bias in the exposure effect estimates. The bias can be large if the true effect of 
the exposure is weak and the confounder is strongly related to exposure and the outcome. 
For example, with very strong confounding, a 10% misclassification of the confounder 
can reduce the true association measure by almost 50%. Surprisingly, measurement 
error in the exposure variable mitigates some of the effects ofmeasurement error in the 
confounder (largely because it often reduces the correlation between the confounder and 
the exposure). However, in the face of misclassification of the confounder it becomes 
difficult to know whether or not one should control for the confounder (see Chapter 
13). A general recommendation is that the impact of controlling an extraneous variable 
should only be investigated when no misclassification is present or after adjustments 
for the errors have been made. In reality, because of the practical difficulties, this 
recommendation has been followed only infrequently. 

Misclassification of a non-confounder can make it appear to be a confounder. For 
example, ass um ing the exposure has an effect on the outcome, that the extraneous 
variable is associated only with the exposure, and that misclassification error of the 
extraneous variable sums to less than l (ie FNF+FPF <1 - ali reasonable assumptions), 
then there is more bias in the 'corrected' odds ratio than in the crude odds ratio. The 
same is true if the extraneous variable is related only to disease. The general rule for 
treating a variable as a confounder is, if misclassification is non-differential within each 
stratum of the extraneous variable but varies across strata, then treating the variable as 
a confounder will usually reduce bias. In some instances the bias might increase, but it 
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will be towards the null. Clearly, one must focus on reducing measurement error in all 
variables, not just confounders, if valid analyses and inferences are to be made. 

12.7 MISCLASSIFICATION OF MULTINOMlAL EXPOSURE OR DISEASE 

CATEGORIES 

With severallevels of exposure, the effects of classification errors are less predictable 
than with dichotomous variables (Veierod and Laake, 2001). Non-differential 
misclassification might bias measures of association in intermediate exposure levels 
away from the null, and might even reverse the direction of the odds ratios for these 
levels. This becomes an important issue when we use regression model s because these 
models allow for error in the measurement of the outcome but assume no error of 
measurement of the predictor variables. Non-differential underestimation of exposure 
at high levels might cause a threshold effect of exposure to appear as a dose-response 
relationship. Likewise, non-differential misclassification of both E and D status when 
the errors are not independent might lead to bias away from the null, particularly when 
the prevalence ofboth exposure and disease are low. 

12.8 VALIDATION STUDlES TO CORRECT MISCLASSIFICATION 

Sometimes it is feasible, and often advisable, to select a subsample of study subjects 
and verify their exposure and/or disease status. Recall that, for direct estimates of 
sensitivity and specificity, we are determining the probability of the ob serve d state 
(D'), given that we know the true state of the individual (D). That is: 

p(D'=lID=l) 
whereas when correcting for misclassification, we are attempting to determine the 
probability of the true state, given knowledge of the observed state: 

p(D= llD'= l) 
Thus, when validating the subsample, we attempt to determine the true status of the 
individuals given their observed classification. In the content of screen ing tests, the 
latter is called a predictive value (se e Chapter 5). In general, we can write: 

qy=probability of being in the correct ith cell when classified into thejth cell. 

Thus, given that the subject is classified into cell hl', we can determine the probability 
that the subject is really in cell al (for example), us ing our validation study. To 
implement this, we can think of a 4X4 matrix of predictive values with the rows 
being the observed status and the columns the true status, as we did previously with 
sensitivity and specificity (Table 12.3). We can then write: 

C. = ,,4 q .. C.' 
l L..Jj=l lj J Eq 12.10 

as the formula for establishing the true cell values. Here the % are predictive values 
obtained from avalidation study (not the Se and Sp values shown in Table 12.3). Once 
these are obtained, no matrix inversion is necessary to obtain the corrected values so 
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this approach is easier to use than the formaI approach based on knowing Se and Sp. 
However, because this is a predictive value approach and predictive values might vary 
with true prevalence (of disease, exposure, or both) one should stratify the validation 
results across major confounders or risk factors. 

As noted previously, the major problem with post-hoc adjustments ofmisclassification 
is that they are very sensitive to changes in the estimates of the error rates to be used in 
the correction process. Thus, unless there is an extremely thorough validation procedure, 
the estimates of error might vary sufficiently such that very different 'corrected' results 
could arise from applying a range of sensible choices of the correction factor. A few 
minutes trying 'what-if' adjustments should convince you of this. 

Validating the test or survey instrument prior to its widespread use is certainly preferable 
to trying to correct for misclassification error or measurement error after the fact. An 
example of this is available in veterinary research (Nespeca et al, 1997). 

12.9 MEASUREMENT ERROR 

Errors in measuring quantitative factors can lead to biased measures of association also. 
This bias can arise either because the variable is not measured accurately (ie a systematic 
bias), or due to a lack ofprecision (see section 5.2.2). In tum, lack ofprecision might 
arise from either variability in the test per se, or because the substance being measured 
vari es within an individual (for physiological reasons) and consequently, repeated 
measures are needed to provide a valid overall indicator of the status of the individual 
(eg a mean oftwo or more samples). 

Recent work has shed considerable 'new light' on the issue of measurement error, and 
the general approach to correcting measurement bias is as follows. Suppose we have 
two quantitative exposure factors and we wish to estimate their association with a 
binary or continuous outcome. Allowing that the y variable could represent the logistic 
transform of a binary outcome, or a continuous outcome variable, we could express the 
uncorrected 'naive' model as: 

Eq 12.11 

where the subscript 'u' indicates that the coefficients are biased because the predictor 
variables, here denoted asA", are measured with error. One approach for 'correcting' the 
model results is to perform avalidation study on a random subset of the study subjects, 
and use only the data from this subset in the analysis; we will call this avalidation 
subset estimate (VSE) approach. This seems (and is) very wasteful of a lot of data 
(data on the subjects not in the validation subsample) and might lead to small sample 
bias (the overestimate of the magnitude of effect), because only large associations will 
be deemed significant in small sample size studies. As another approach, Rosner et al 
(1990) developed a procedure called the regression calibration estimate (RCE). In 
this method, we obtain a random subset of the study subjects and perform avalidation 
study so that the true values for Xl andX2 are obtained. Now, assuming non-differential 
measurement errors, we regress each true X variable on the set of observed predictor 
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variables. That is: 
Eq 12.12 

and 
Eq 12.13 

One then 'corrects' the biased coefficients (Eiu) using the matrix of correction factors 
(As) multiplied by the biase d coefficients as shown in Eq 12.14. 

Eq 12.14 

The regression models chosen for the X variables depend on the assumed distribution of 
the X variables (ie continuous or binary), and the validity of the approach to correcting 
measurement errors, in part, depends on the fit of the above models. Spiegelman et al, 
1997 have discussed using this approach with an 'alloyed' gold standard. 

More recently, Robins et al (1995) developed a semi-parametric estimate (SPE) 
approach for correcting measurement error. It is similar to the RCE approach except 
that no assumptions are made about the distribution of the Xs. In general, if one is aware 
of the distributions for the true X variables, the RCE approach is more efficient, but the 
SPE does not depend on knowing these and hence, fits a wider set of applications. 

Sturmer et al (2002) have assessed the performance of these three procedures for 
correcting measurement error in case-control studies. We are not aware of similar 
studies for cohort designs but will assume that similar findings might apply. The 
additional factors studied inc1uded: the effects of an imperfect gold standard for 
validation, correlation of errors, magnitude of true effect, and amount of 'error' in 
measurement. We summarise the findings below. 

Naive model 
very sensitive to magnitude of error - moderate errors produce strong attenuation 
of effect 
the bias increases with the magnitude of the true effect 
the bias in one coefficient depends on the amount of error in the other variable 
correlated errors could cause bias away from the null for one of the variables 
in the presence of differential errors, the direction of the bias is unpredictable. 

VSE models 
standard errors of estimate are large, but most biases are reduced 
not sensitive to correlated or differential errors, nor the true effect size 
hampered by the presence of an imperfect gold standard, and 
suffers from a relative lack of power, and the standard error of estimates are 
large due to the reduced number of study subjects. 
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RCE models 
of ten the bias was similar to, but less than, in naive models 
very sensitive to differential errors and to large error variances and should not 
be used in these situations. 

SPE models 
similar to RCE in correcting the biases 
not sensitive to the magnitude of the error variance 
insensitive to differential errors 
easily accommodates correlated errors, but 
user-friendly software is needed because of the complexity of implementing 
this approach. 

The two most influential factors are the error magnitude and the presence of 
differential errors. RCE is the easiest approach and uses ali of the data, but is limited 
in its applicability. With the exception of when the gold standard is flawed, the VSE 
approach performed surprisingly weil. Based on this, Chatterjee and Wacholder (2002) 
have suggested that the VSE approach with equal numbers of cases and controls in the 
validation sample is a viable method for maximising the precision of estimates with a 
fixed cost. Very large validation sample sizes are needed to obtain precise estimates of 
effect in this approach. 

As a more generalised approach, Chatterjee and Wacholder suggest the use oftwo-stage 
designs where data on inexpensive variables are coUected on aU study participants and 
data on more expensive variables coUected on a random subset. This approach is outlined 
in Chapter 10. The be st strategy for most studies is to ensure that ali measurements are 
made as accurate ly and precisely as possible in the first instance. If the measurement 
error is small relative to the range of the X-variable values in the model, then concem 
over measurement error is decreased considerably. When this is not feasible, researchers 
should investigate the possibility of an expanded VSE approach, ensure that there are 
accurate data on a subset, and/or use one of the two-phase study designs. 

12.10 MEASUREMENT ERROR IN SURROGATE MEASURES OF EXPOSURE 

Often, epidemiologists focus on the effects ofcomplex exposure factor(s). For example, 
in studies of the impact of air poUution from oil and gas processing emissions on 
cattle or wildlife health, what is the appropriate measure of air pollution? Another 
example is what is the appropriate measure of 'housing' as a risk factor for stereotypy 
in horses? ln these and other examples, the exposure might be acomplex mixture of 
agents (or factors), doses and duration, and it will take considerable thought as to what 
components of exposure to measure and which to ignore. For example, which of the 
hundreds of compounds in air poUution does one measure? The most abundant, the 
least expensive to monitor, or the most toxic? If a number of agents are measured, how 
will they be modelled? The answers to these questions (yes, there undoubtedly will be 
more than one correct answer) willlargely involve know ing context-specific biological 
background information. 
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The decisions about surrogate measures must then be translated into what will be 
measured, and how the various axes of exposure will be analysed in order to achieve 
the study objectives. For example, will the exposure be measured and analysed on a 
continuous scale (the preferred option) or will it be categorised into a dichotomous or 
ordinal exposure variable? If level s of specific agents are highly correlated, which one 
should be analysed, or should a composite variable be created? Although categorising 
continuous data is not the preferred choice, it might reffect the reality of the exposure 
measurements better than the more refined measures. For example, if most levels of 
exposure are at or near the laboratory sensitivity of the test procedure, it might be best 
to dichotomise into non-exposed (for most of the data) and exposed for the limited 
number of measurements that are clearly above accepted levels of exposure. Of course 
the measured factors, being surrogates, might still fail to reffect the actual exposure. 
Thus, even ifthe variables measured are, in fact, measured without error, we need to be 
aware that because the variables are surrogates, we could still be left with measurement 
error in respect of the true exposure. 

One solution might be to change the questions asked. Instead of asking about the effects 
of 'air pollution', ask about the effects of only one measurable component (eg sulphur 
dioxide, then factors such as H2S or particulates would be extraneous variables), 
and instead of asking about 'housing' (a general portemanteau variable), ask about 
hours per week spent indoors in astalI. These more focused questions still require 
the measurement and control of other factors that might confound or interact with the 
exposure but the more focused answers might allow better progress towards solving 
the issue(s). 

12.11 MISCLASSIFICATION AND MEASUREMENT ERRORS - IMPACT ON 

SAMPLE SIZE 

It is apparent that classification and measurement errors can have a serious impact 
on the measures of association. With non-differential misclassification of categorical 
variables, the measures are biased towards the null. And, under classical measurement 
error models, the same is true for continuous variables. This has led some to conclude 
that in planning a study, the projected loss of power due to these errors should be 
considered and the sample size increased accordingly (Devine and Smith, 1998). 
However, if we are using the observed outcome levels from previous studi es, these 
might be biased (towards the null) and hence, sample-size estimates based on these 
would be too large if the factors can be measured without error. In addition, given 
that the effects of differential measurement error are difficult to predict, and often the 
coefficients for measures of association are biased away from the null, the observed p­
value will be too small. Hence, there is no con sensu s on adjusting sample sizes at this 
time. In praetice, the optimal strategy is to ensure that we have minimised all sources 
of error in our studies. 
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CONFOUNDER BlAS: ANALYTIC 
CONTROL AND MATCHING 

OBJECTIVES 

After reading this chapter, you should be able to: 

235 

l. Apply a working set of criteria to identify potential confounders in an observational 
study. 

2. Use restricted sampling to prevent confounding. 

3. Determine appropriate variables for control of confounding using matching and 
implement the matching process in a cohort study. 

4. Determine appropriate variables for control of confounding us ing matching and 
implement the matching process in a case-control study. 

5. Implement a valid plan for the control of confounding using analytic procedures. 

6. Use a causal diagram to identify factors (confounders) needing control. 

7. Apply a stratified analysis to a set of categorical variables to evaluate the presence 
of interaction and assess the extent of confounding. 

8. Interpret the likely effect of 'controlling' extraneous factors having specified causal 
associations with the outcome and exposure. 

9. Evaluate the potential of a non-measured confounder to bias the outcome 
measure. 
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13.1 INTRODUCTION 

Confounding has been described as the mixing together of the effects of two or 
more factors. Thus, when confounding is present we might think we are measuring 
the association of an exposure factor with an outcome, but the association measure 
also includes the effects of one or more extraneous factors. Rence, our measure of 
association is biased, or confounded. For the purposes of explaining confounding, 
we will assume that we have identified one factor as the exposure of interest. One or 
more other factors that are of interest chiefly because they might distort the association 
measure of interest will be called extraneous factors. Sometimes these extraneous 
factors are measured; sometimes they are not. Our concem arises from the knowledge 
that, ifthese factors have an association with both the exposure and outcome of interest, 
failing to 'control' or 'adjust for' these relationships (see section 13.5) might lead us 
to inappropriate conclusions about the association between the exposure factor and 
the outcome. The extraneous factors that produce the bias are called confounders or 
confounding factors. 

13.2 CONFOUNDING AND CAUSATION 

It has been argued that confounding relates to disease causation and can be explained 
in terrns of the counterfactual observations necessary to demonstrate causation (see 
section 1.5.1; Greenland and Morgenstem, 2001). Recall that ifwe are interested in 
'exposure' to a specific agent as a potential cause of a disease, we might observe the 
risk of the disease in individuals who are exposed (RI)' But to demonstrate causation, 
and measure its strength, we would need to know what the risk would have been if 
these same individuals had not been exposed (Ro). This is the counterfactual state - it 
does not ex ist, but if it did it would allow us to estimate the true causal effect using a 
measure of association such as a risk ratio (RR) or odds ratio (OR). 

Although the counterfactual state is not observable, the 'ideal experiment' is judged 
to be the c10sest practical approximation to the counterfactual state chiefly because 
the use of randomisation provides a probabilistic approach to the balancing of factors, 
known and unknown, between the treated and non-treated groups. This experiment 
would allow us to contrast the frequency of outcome in the exposed (REl) and non­
exposed (REo) subjects and closely approximate the true causal effect in an unbiased 
manner. Rowever, in observational studi es, the be st we can hope to achieve is to 
obtain a non-exposed group of individuals that we assess to be as similar as possible 
to the exposed individuals with respect to factors that would affect the outcome, and 
observe their risk of the disease (Ro'). Recall this was the basis of John Snow's famous 
comparison of water supply to individual house s on the same streets in London during 
cholera outbreaks (http://www.ph.ucla.edulepi/snow.html). In this so-called natural 
experiment, most residents did not know where their water supply carne from. 
Nonetheless, because the non-exposed individuals might not be exactly the same as the 
exposed subjects, except for exposure, they might differ from the ideal counterfactual 
group in such a way that Ro '" Ro'. Rence, our observational measure of association will 
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be biased (see Example 13.1). This is the essence ofconfounding in terms of the lack 
of a true counterfactual observation. Put another way, the study groups being compared 
differ in the frequency of the outcome for reasons other than the exposure of interest. 
Our challenge is to identify the factors that 'cause' this difference and prevent them 
from producing abiased result by us ing one or more mechanism(s) to control their 
effects (see section 13.5). 

13.3 WHAT EXTRANEOUS FACTORS ARE CONFOUNDERS? 

Confounders might be defined based on their having distributional differences between 
study groups. This is a necessary but insufficient criterion of confounding. In addition, 
it is difficult to implement because we rarely know the true state, and the data from 
our study populations that we use to establish the distributions could themselves be 
confounded. Nonetheless, based on a working set of criteria, we could conclude that a 
factor is a confounder if: 

l. it is a cause of the disease, or a surrogate for a cause, and 
2. it is associated with the exposure in the source population. In a cohort study, 

this means that the confounding factor must be associated with the exposure at 
the start of the study. In a case-control study, it means that the confounding 

Example 13.1 A demonstration of confounding 

We will begin by using a fictitious example with Mannheimia hemolytica (Mh) as the 
exposure of interest and bovine respiratory syncytial virus (BRSV) as the extraneous factor 
that we wish to control. The outcome is bovine respiratory disease (BRD), and the context is 
respiratory disease in feedlots. We will assume the factor (BRSV) whose distribution we plan 
to 'control' is a confounder in the population. BRSV fulfills the criteria ofbeing a confounder 
variable as it is related to the exposure and the outcome, it is not intermediate between Mh 
and BRD on a causal pathway, and it is not an effect ofBRD. Our summary (fictitious) of the 
population structure, ignoring BRSV status, is shown below: 

BRD+ 

BRD­

Total 

Risk (%) 

Mh+ Mh- Totals Od ds ratio 

240 

6260 

6500 
3.6 

40 

3460 

3500 
1.1 

280 
9720 

10000 

3.3 

Based on observing the risk ofBRD by Mh status and ignoring sampling variation, it appears 
that individuals with an active Mh infection have 3.3 times higher odds (think of this as 'risk') 
of contracting BRD than Mh- individuals (this assumes that 1.1 % of the Mh+ individuals 
would have developed BRD in the absence of Mh - an assumed counterfactual argument). 
But what about the effect(s) of BRSV? If BRSV is a confounder, then some of the crude 
association attributed to Mh might be due to BRSV. 

(continued on next page) 
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Example 13.1 (continued) 

One way that we stress in this chapter for 'controlling' confounding is to stratify the data 
according to the level s of the confounding variable(s), or their combinations. Assuming 
that there are no other confounders, when the data are stratified on BRSV status, the 'true' 
association between Mh and BRD becomes apparent within strata, as shown below (note that 
we are denoting the presence of the agent or the outcome with l and their absence with O as 
this is a very common practice in computerised datasets): 

Population 
structure 

BRSV BRD 

o 
O 

1 

O 

Risks 

1 

O 

Risks 

Mh 

1 O 

I 220 10 

5280 490 

5500 500 

0.04 0.02 

20 30 

980 2970 

1000 3000 

0.02 0.01 

Stratum- Crude 
specific odds 

odds ratios ratio 

230 2 

5770 

6000 

3.3 

50 2 

3950 

4000 

Note Ignoring the non-collapsibility of odds ratios (see section 13.7.2), the crude odds ratio 
differs from the stratum-specific odds ratios, indicating confounding is present so we need to 
use the stratum-specific odds ratios to estimate the causal association ofMh with BRD. 

factor must be associated with exposure in the popu!ation from whence the 
cases carne (ie it must be associated with the exposure status in the control 
group), and 

3. the factor's distribution across exposure levels cannot be total1y determined 
by the exposure (ie it is not an intervening factor) or the disease (ie it is not 
a result of the disease). This criterion is met if the confounding factor precedes, 
temporally, the exposure. An intervening or intermediate factor should 
not be treated as a confounding factor, whether it is total1y determined by the 
exposure or not, because this would modify (bias) the association between the 
exposure and the disease such that the true causa! effect is not obtained. 
Similarly, if the disease produces an outcome (eg another disease or change in 
production), that outcome should not be deemed to be a confounding factor. 

It is useful to differentiate between a populatio n confounder and a sample (ie study 
group) confounder. For example, if the factor is known to be a confounder in the 
population, it should be treated as such in the sample (ie control1ed) regardless of 
whether it appears to be a confounder in the samp!e or not. Conversely, if it is known 
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not to be a population confounding factor, then it should not be controlled in the sample, 
even though it appears to be a confounder in the study subjects. Unfortunately, because 
we often do not know the true state of nature, we must use the data from the study 
population to make inferences about whether or not a factor is a confounder. 

13.4 CRITERIA FOR CONFOUNDlNG 

As menti one d, the statistical approach to defining confounding variable s is based on the 
difference(s) in the distribution ofthe factor(s) between the groups being studied. More 
precisely, if we have an exposure factor E, an outcome Y, and an extraneous factor Z 
(that is not an intervening variable or an effect ofthe outcome), factor Z is a confounder 
in a cohort study if: 

• Z and E are associated unconditionally, and 
• Z and Y are associated in exposure negative animals. 

ln a case-control study, factor Z is a confounder if: 
• Z and E are associated in the controls (not just unconditionally), and 
• Z and Y are associated in exposure negative animals. 

Although these statistical criteria help us understand the necessary basis for 
confounding, these statistical criteria are insufficient to determine confounding without 
some additional assumptions about the lack of other confounders. Hence, we do not use 
statistical criteria to determine if a factor is a confounder or not. Confounding is said to 
be present when our measure of association differs from the true value. As the true value 
is usually unknown, the measure of association obtained after control of all identifiable 
confounders is deemed to be the true causal association. Because the identification 
and control of confounders is rarely perfect, some confounding is invariably present, 
and the important issue is how large the confounding effect is, not whether or not it is 
present. This becomes amatter ofjudgement (see section 13.7). 

13.5 CONTROL OF CON FO UN DING 

As noted here and in the chapters on observational study design, we can prevent or 
control confounding by using one or more of three procedures: exclusion (restricted 
sampling), matching, or analytic control. 

13.5.1 Exclusion (restricted sampling) 

Because confounding is the result of a differential distribution of an extraneous factor 
between the two (or more) group s being compared, we can prevent confounding 
by selecting only one level of the extraneous factors for our study. This is called 
exclusion or restricted sampling, and because every study subject has the same level 
of the potential confounder, no bias is present. Some restricted sampling is natural; 
for example, we would only select females for a study of mastitis. In other instance s 
we might deliberately want to restrict our study population to a single breed of study 
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subjects, or farms that use a specific production-recording scheme. The former would 
prevent confounding by breed whereas the latter could prevent confounding (from 
differences in herd characteristics across recording schemes) as weil as ensure that 
specific data required for the study would be easily available. Similarly, we could 
restrict our study population to those possessing a limited range of production or being 
between specified ages etc. For example, Manske et al (2002), prior to a field trial of the 
effects ofhoof-trimming on claw health in dairy cattle, restricted their study population 
ofherds to selected herd sizes, breed compositions, and membership in an official milk­
recording scheme. 

When considering restricted sampling based on dichotomous extraneous variables 
we would usually prefer to admit the low-risk group to the study. Admitting subjects 
in the high-risk group into the study could make data interpretation more difficult if 
interaction between the exposure and potential confounder were present. 

13.6 MATCHING 

Matching is the process whereby we make the distribution of the 'matched' factor the 
same in the groups being compared. By making the distributions of the se factors the 
same in both groups, we would prevent confounding and we could increase the power 
of the study. In randomised trials, matching on selected variables is used to reduce the 
residual variance and thus give the study more power per study subject. It is not used 
for prevention ofbias, although in small experiments, it might help achieve this because 
randomisation is not likely to balance all the extraneous variables when the sample size 
is limited. As an example, in a field trial of hoof-trimming and c\aw health in dairy 
cows, Manske et al (2002) 'blocked' (ie matched) on breed, parity and stage oflactation 
before allocating, randomly, the treatment (hoof-trimming) to each cow. 

In cohort studies, matching on one or more confounding variables can prevent 
confounding bias and also result in increased power/precision of the study. Matching 
on host characteristics such as age, breed and sex is used frequently. For example, 
Walker et al (1996) in a study of lymphocyte subsets in cats with and without feline 
immunodeficiency virus, matched on stage of disease (ie from asymptomatic to 
severely ill clinically). Matching was preferred to analytic control because the size of 
the study group s was limited. An example of the effects of matching in a cohort study 
is shown in Example 13.2. 

Although some gains in precision can result from matching, in observational studi es, 
any gains in statistical efficiency come at a substantial cost. Most importantly, 

• it is not possible to estimate the effect of the matched factor(s) on the outcome 
because its distribution has been forced to be iden tic al in the exposure (co hort 
study) or outcome (case-control) group s for cases and controls. We can, 
however, still investigate whether the matching factor acts as an effect modifier 
(ie if it produces interaction with the exposure of interest - see section 13.9) . 

• matching by some surrogate factors, such as farm, might 'match out' other 
potentially important exposures in hypothesis-generating studies. 
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In our 'pretend' cohort study, we will sample 500 exposed (Mh+) and 500 non-exposed (Mh-) 
individuals with frequency matching of the Mh- group for the distribution of the confounder 
(BRSV) in the exposed study group. Based on the population structure in Example 13.1, 
among the 500 Mh+ subjects, 85% (ie 5500/6500) ofthe Mh+ group will be BRSV+, and their 
risk of disease will be 0.04. So, ignoring sampling variation, 17 of the 425 Mh+ and BRSV+ 
individuals in our study will develop BRD. Of the 75 Mh+ individuals without BRSV, 2% or 
2 will develop BRD (expected numbers have been rounded to the nearest whole number). 

Now, we need to select the Mh- subjects to match their distribution of BRSV to that in the 
Mh+ group. Normally, 14% (500/3500) of the 500 Mh- subjects would be BRSV+, but we 
need to have 85% (425) ofthem BRSV+. Ofthese 425 BRSV+ Mh- subjects, 2% develop 
BRD. Of the 75 Mh- subjects who are BRSV-, 1% or 1 develops the disease. 

Note The observed stratum-specific odds ratios are equal to 2 (except for rounding errors), the 
same as in the source population (Example 13.1), as is the overall odds ratio. No control ofthe 
matched confounder is necessary in the analysis, and there is no bias present in the summary 
tab le. However, matched cohort data should be analysed using a stratified approach to ensure 
that the variance estimates are correct. 

Observed association between Mh and BRD in a cohort study following matching for 
BRSV 

Stratum-
specific Crude 

odds odds 
Mh ratios ratio 

BRSV BRD O 

1 17 9 26 2 

O 408 416 824 

425 425 850 2 

O 2 3 2 

O O 73 74 147 

75 75 150 

In contrast, we later pretend to conduct a case-control study using ali 280 cases and 280 
controls frequency matched by the confounder BRSV (see Example 13.3). 

• if matching is to be conducted on several factors, it can be quite difficult to find 
controls that have the same distribution ofmatching factors. 

Matching is used frequently in case-control studies to increase the validity and efficiency 
of the study. For example, Alford et al (2001), in a multi centre case-control study of 
risk factors for equine laminitis matched on centre, clinician and season of admission. 
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Veling et al (2002), in a case-control study of risk factors for clinical salmonellosis on 
dairy farms, matched the control farms to the cases based on region. 

However, matching in case-control studies is not without its disadvantages. For 
example, matching will actually introduce a selection bias into the data. The stronger 
the exposure-confounder association in the source population, the greater the bias that 
is introduced. This bias is generally in the direction of the null effect, regardless of the 
direction of the exposure-confounder association, but is controllable by stratifying on 
the 'matched' factors in a conditional (ie matched data) analysis. 

Why does matching have different effects in case-control studies than in cohort studies? 
In a cohort study, matching makes the exposure independent of the matched extraneous 
variable so there can be no confounding. Further, because the outcome (eg disease) 
has not happened at the time of matching, the matching process is independent of the 
outcome. However, in case-control studies, the disease has already occurred when the 
matching takes place. Hence, if the exposure is related to the matched variable (as it 
would be if the extraneous variable is a confounder), and ifwe make the distribution of 
the matched variable(s) the same in cases and control s, we will alter the distribution of 
exposure in the controls so that their exposure level is more like that in the cases. An 
example of this selection bias in a case-control study is presented in Example 13.3. This 
example also shows that we can prevent the selection bias caused by matching in a case­
control study by stratifying on the matched variable(s) in the analysis. 

13.6.1 General guidelines for matching 

The following guide lines should be considered when contemplating the use ofmatching 
(Rothman and Greenland, 1998). First, do not match unless you are certain that the 
variable is a confounder. This is particularly important in case-control studies if the 
extraneous variable and exposure are strongly associated. Matching in this situation 
leads to overmatching, because it gives the distribution of the exposure in the cases and 
control s greater similarity than the corresponding distributions in the bas e population. 
This can occur even if the extraneous variable is only related to the exposure and 
therefore not a confounder in the source population. In addition, with pair-matching 
(see section l3.6.2), information will be lost because cases and controls with the same 
value for exposure do not contribute useful data to the analysis (see below), hence 
effectively reducing the sample size and decreasing precision. 

In some situations, however, matching will increase the efficiency of an analysis. For 
example: 

matching ensures that the dataset contains a control for every case when the 
matched factor is rare, or if it is a nominal variable with many categories (eg 
farm, sire etc). Random sampling in this instance might lead to marginal zeros 
and the data from such tables is ofno value in analysis. 
matching might optim is e the amount of information obtained per subject, if 
exposure information is expensive to obtain. 
matching might be the easiest way to identify controls in a study using a secondary 
base (eg by selecting the next non-case admitted, or listed in the registry). This 
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In our case-control study, we will include a1l280 cases from the target population in Example 
13.1 as study subjects. This group will have the same exposure and confounder distribution 
as in the source population. Now, we need to select the control s to match the distribution of 
BRSV in the cases. Note that 82% (ie 230/280) of the cases will be BRSV+, so 230 of the 
controls will need to be BRSV+. Of the se 230,91.5% (5280/5770) will be Mh+ (n=210). Of 
the 50 BRSV- control s, 24.8% (980/3950) will be Mh+ (n=12). 

Observed association between Mh and BRD in a case control study following matching 
for BRSV 

Stratum- Crude 
Case-control specific odds 

structure Mh odds ratio ratio 

BRSV BRD O 

220 10 

1

230 2.1 

O 210 20 230 

1.6 

O 20 30 

1 :~ 2.1 

O O 12 38 

Note The stratum-specific odds ratios are equal to 2 (except for rounding error) but the 
crude odds ratio is 1.6. The bias induced by matching in a case-control study is a form 
of selection bias. For example, in the population p(Mh+IBRD+)=86% (240/280) and 
p(Mh+IBRD-)=64% (6260/9720). In our study population, p(Mh+IBRD+)=86%, as it should, 
but p(Mh+IBRD-)=79%. The control s no longer represent the level of exposure in the target 
population. Clearly, analytical control (eg stratified analysis) of the matched confounder is 
necessary to prevent this selection bias in the overall measure of association. 

is one of the most common uses of matching and if used only for this 
purpose, and the frequency of exposure is constant through out the study period, 
this matching is often ignored and unmatched analyses performed. 

If matching is not needed for one of these reasons, only consider matching in a case­
control study if you anticipate a strong association in the population between the 
outcome and the confounder and a relatively weak association between the exposure 
and the confounder. In case-control studies, any gains in efficiency from matching are 
likely to be modest at best. 

13.6.2 Frequency and pair matching 

In frequency-matching on categorical variables, the overall frequency of the potential 
confounder(s) is made the sam e in the two outcome (case control) or exposure (cohort) 
groups. In pair- or individual-matching, one or more (eg m) control is individually 
matched to each case. Relative to frequency-matching, pair-matching requires a more 
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complex analysis, is generally less efficient (statistically), and makes it difficult to 
assess interaction between the exposure and confounder. However, pair-matching 
might be the onlyalternative when categories are very refined. Generally, we select 
between one-to-foUf controls matched to each case. There is minimal gain in efficiency 
if the matched control-to-case ratio exceeds 4: 1. Although not necessary, it is simplest 
to use a fixed control-to-case ratio. 

13.6.3 Caliper-matching 

If the variable to be matched on is continuous, one must specify how close, on the 
continuous scale, the subject must be in order to be considered matched (called caliper­
matehing). Caliper-matching often produces a problem for analysis in that, ifthe match 
must be within, two years of age, for example, then two case (exposed) subjects of the 
same age could be matched with controls (non-exposed) whose ages differ by almost 
foUf years. In this instance, we either have to live with the 'wider' match and chance 
residual confounding or decide to use strata in Ouf analyses that are no wider than the 
'matching' criteria even if that shifts the 'matched' subjects into different strata. 

13.6.4 Analysing matched data 

In general, frequency-matched data should be analysed using a stratified method 
to account for the matching. If pair-matching is used, but there are not very many 
categories of the confounder, and many pairs are present within each category, the data 
could be analysed by creating a group identifier for the matched set of subjects and 
analysing the data as for a frequency-matched dataset us ing the group identifier to form 
the strata. Interaction between the confounder and exposure should be evaluated in the 
usual manner. 

If the matching is conducted us ing pair-matching, and there are many categories of 
the confounder and very few pairs within each category, the data must be analysed 
using a matched-pair analysis. For these analyses, we use the frequencies of matched 
sets with every possible exposure and outcome pattern to estimate the odds ratio. In 
a case-control study, if there is only one control matched to each case, there are foUf 
possible exposure patterns: both the case and its matched control were expósed; both 
non-exposed; case exposed and control non-exposed; case non-exposed and control 
exposed. The data layout is shown in Table 13.1. 

Table 13.1 Data layout for matched-pair case-control analyses 

Control pair Case totals 

Exposed Non-exposed 

Exposed t u t+u = a1 
Case 

Non-exposed v+w = ao 
pair 

v w 

Control totals t+v = b1 u+w = bo 

The crude odds ratio is OR = a)bO . Note These numbers are available from the 
aOb) 



CONFOUNDER BlAS: ANALYTlC 
CONTROL AND MATCHING 

245 

marginal total s of the 'paired' 2X2 table. The Mantel-Haenszel OR uses only the data in 
the discordant cells and is ORMH=u/v. 

The Mantel-Haenszel X2 test (which in the case of 1:1 matching equals McNemar's 
test), could be used for hypothesis testing. The formula is: 

( )
2 

u-v 
McNemar's X2 = ---

u+v Eq 13.1 

For multivariable analysis, a conditionallogistic regression analysis must be used (see 
section 16.14). 

We now move on to describe control of confounding using analytic methods and 
describe three main ways of implementing that control. The first (which we do not 
recommend) is to use a statistical criterion, the second is a 'change-in-measure' 
approach and the third is to supplement the change-in-measure approach through the 
use of causal diagrams. 

13.7 ANALYTIC CONTROL OF CONFOUNDING 

This approach is widely used and, given sufficient study subjects, might be considered 
the preferred approach to control confounding (often in conjunction with restricted 
sampling for control of other confounders). To implement this approach, we need to 
define and measure the important confounders and then analyse the data appropriately. 
We will describe the latter methods under stratified analysis (section 13.8) and in 
more detail based on regression model s (see Chapters 14-19). Before discussing 
stratified analysis, we will review the three general approaches to analytical control of 
confounding. 

13.7.1 Statistical control of confounding 

In this approach, we use a statistical algorithm to either select (ie forward selection) or 
eliminate (ie backward elimination) variables from a regression model based on their 
statistical significance. This approach has been used frequently (especially with the 
advancement ofpowerful statistical routines to select variables when building models), 
but it has rapidly lost favour in recent years. The assumptions are that most confounders 
will be selected as 'significant' by this process thereby preventing confounding. The 
major problem is that, in using this approach, we cannot (or do not) distinguish between 
intervening and other types of extraneous variable. Furthermore, the process flies in the 
face of statements that the extent of confounding bias is a matter of judgement, not a 
matter of statistical significance. Thus, we do not recommend using this approach for 
anything other than initial pilot studies of a particular problem, or preliminary analyses 
of datasets. 

Having said that, we need to recognise that when we search for more than one risk 
factor simultaneously, we will (in fact, we must) break a number of 'rules' about 
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what variables to control as confounders. With multiple factors under study, the 
causally prior factor that might need controlling to obtain valid effect estimates of one 
exposUfe factor could be an intervening variable for another exposure factor. Hence, 
the 'adjusted' measures of association we obtain from multivariable models are direct 
effects only, not total causal effects. Thus, for estimating the causal association, we 
will have 'over-controlled' for intervening variables (and perhaps effects of causes). 
One conservative approach to managing more than one exposure variable in adataset 
is to take the set of 'significant' variables and then conduct a separate analysis for 
each factor as the exposure of interest and use this measure of association as the be st 
estimate of the causal association. 

13.7.2 Change in measure of association as an indication of confounding 

Suppose we begin Ouf analysis of the study data with an unconditional (crude) 
association between Ouf exposure and outcome variables and ob serve a crude odds 
ratio, ORc. We then stratify the data based on a potential confounder, or a set of 
potential confounders. After having ensured that the stratum-specific odds ratios are 
deemed to be approximately 'equal' to each other, we obtain the adjusted odds ratio 
ORa. Almost always ORa differs somewhat from ORC' but ifwe deem the difference to 
be 'large' (in some practical sense), we say that some or all of the factors we stratified 
on (or controlled) were confounders. Thus, for example, we use the change in odds 
ratio between the crude and adjusted values to determine if confounding is present. 
We need to specify a difference (eg >20-30% change in the odds ratio) that would be 
deemed important given the context of the study. Ifthis difference is exceeded, then we 
say confounding is present and the adjusted measure is preferred. Conversely, ifthere is 
virtually no difference between the crude odds ratio and the adjusted odds ratio, we say 
that confounding was not present and the crude measure suffices. In part this inference 
and the 'change-in-estimate' approach to identifying confounders are based on the fact 
that without confounding, if the stratum-specific measures are equal to X, then when 
the data are collapsed over that confounder, the crude measure will also be X. If the data 
meet this criterion, they are called collapsible. 

Non-collapsibility of odds ratios 
The measure of association used can affect our interpretation of confounding. In 
particular, the odds ratio, which is our most frequently used measure, suffers from 
the problem that it is not always collapsible. If we are using risk difference or risk 
ratio measures of association, the crude measure will always be a weighted average 
of the stratum-specific measures. And, as a result, in the absence of interaction, if no 
confounding is present, the data can be collapsed (ie summed over the levels of the 
confounder) and the stratum-specific risk ratios will be the same as the crude risk ratio. 
However, this is not true when the odds ratio is the measure of association. In this 
instance, the crude odds ratio can be closer to the null than the stratum-specific odds 
ratios; this is called non-collapsibility. This problem usually shows up if the outcome 
is very common in one or more strata as shown in Example 13.4. Thus, because the 
crude and adjusted measures differ, it might look as if confounding is present when it 
really isn't. Be aware of this situation. Despite the problem of non-collapsibility, the 
change in odds ratio (or other measure of association) has become the standard method 
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An example of non-collapsibility of odds ratios between exposure (E) and disease (D) in the 
presence of a non-confounding extraneous variable (2)'. Disease risk=O.55 

Z+ Z- Totals 

E+ E- E+ E- E+ E-
D+ 870 690 430 200 1300 890 

D- 130 310 570 800 700 1110 

Totals 1000 1000 1000 1000 2000 2000 

Risk 0.87 0.69 0.43 0.20 0.65 0.45 

Risk ratio 1.26 2.15 1.44 

Risk difference 0.18 0.23 0.20 

Odds ratio 3 3 2.3 

a Example based on Greenland and Morgenstern, 2001 

Note that variable Z is not a confounder because it is not associated with exposure; it is 
however associated with the outcome D. Because the stratum-specific odds ratios are equal to 
each other, and hence to the ORMH• but differ from the crude odds ratio, we might be tempted 
to conclude that confounding by Z is present. However, the difference in these odds ratios 
relates to the use of'odds' as a measure of outcome frequency; there really is no confounding 
present in this example. Note Both the RD and RR are collapsible in that the crude measure 
will always lie between the two stratum-specific measures. 

Non-collapsibility is a greater problem for interpretation when the outcome frequency is high 
(55% in this example). In the table below the average risk is 8.3% and the data are 'virtually' 
collapsible. 

An example of near-collapsibility of odds ratios between exposure (E) and disease (D) in the 
presence of a non-confounding extraneous variable (Z)". Disease risk=O.083 

Z+ Z- Total 

E+ E- E+ E- E+ E-
D+ 211 82 29 10 240 92 

D- 789 918 971 990 1760 1908 

Totals 1000 1000 1000 1000 2000 2000 

Risk 0.21 0.08 0.03 0.01 0.12 0.05 

Odds ratio 3 3 2.8 

As this example indicates, in practical terms, non-collapsibility is only a problem when the 
outcome frequency is high. 
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of identifying confounding. A key to using this approach successfully is to ensure that 
intervening variables or variables that are affected by the outcome are not included in 
the model. 

13.7.3 Using causal diagram s to identify potential confounding variables 

The change in estimate approach is used once the factors to be controlled are selected. 
In Chapter l we introduced the use of causal diagrams. Here we extend this approach 
to the assessment of potential confounders as a way of determining whether or not a 
variable should be controlled. First, of course, we need to draw the causal diagram 
(sometimes referred to as a directed acyclic graph; Greenland et al, 1999; Heman et 
al, 2002) using the principles explained in Chapter l. We then identify the exposure 
factor and the outcome of interest, as specified in the major objective of the study. 
Now, any factor causally prior to the exposure factor and on a pathway connecting the 
exposure and outcome is a likely candidate for control as a confounder. Factors that are 
causally after the exposure variable should not be controlled nor should variables that 
are causally after the outcome. We formalise the process as follows: 

l. Draw the diagram using the guidelines outlined in Chapter l. Then eliminate all 
arrows emanating (ie leading away) from the exposure factor of interest on the 
graph. 

2. If there are any paths that still connect the exposure and outcome, then the 
causally prior factors and other non-intervening variables in these paths should 
be controlled, otherwise these factors will bias the measure of association. In 
causal terminology, these factors produce spurious causal effects. 

3. There is a final twist that is needed to complete this process. Suppose that there 
are two or more factors that 'cause' a third factor that is prior to the exposure 
factor and that the initial assumption was that these two (or more) factors were 
unrelated, causally, to each other (ie these factors would be marginally 
independent statistically). AGE and BREED have this structure in Example 
13.5 as they both cause RETPLA, but are independent of each other. However, 
when we control for a factor they cause, this act makes these factors 
conditionally associated, and we will need to control for at least one of them to 
prevent bias. To ascertain this, we need to connect all marginally independent 
factors with a one-headed line. In tracing out pathways between the exposure 
and outcome we can go either way on this line. In order to 'close' this pathway, 
we will need to control for one (or more) of these factors in our modell ing 
process. Thus, knowledge of the likely causal structure becomes very important 
in selecting factors for control, as control of one factor might necessitate control 
of others. 

Now that we have the tools to identify factors need ing control, we will explain 
a process for implementing control - name ly, stratified analysis. More e\aborate 
mechanisms of control are explained in the chapters on model-building and regression 
model s (Chapters 14-23). 
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We can use the causal diagram from Chapter 1 to demonstrate the application of the criteria 
for identifying confounders. Recall the example concemed studying the potential impact of 
selected diseases on infertility in dairy cows. We will add another variable to the diagram, 
BREED, and we assume that breed effects are transmitted through RETPLA and METRlTIS. 
The causal diagram is: 

AGE 

\~FERTllITY 
RETPLA I / 

/ ~METRITIS 
BREED-----

where RETPLA is retained placenta, OVAR is cystic ovarian disease. 

If we were interested in estimating the causal association between METRlTIS and 
FERTILITY: 

omit the arrows leading forward from METRlTIS to OVAR and FERTILITY 

this leaves causal paths to FERTILITY from OVAR and AGE 

the spurious causal path from METRlTIS back to RETPLA through OVAR means 
that RETPLA needs to be controlled 

we now connect AGE and BREED with an imaginary non-headed line 

because we can also go backward on the path from RETPLA toAGE and then forward 
to FERTILITY either directly or via OVAR, AGE as a causaIly prior variable would 
also need to be controlled 

once we control for RETPLA we need to control for either or both of AGE and 
BREED. Although the diagram shows them to be independent, controlling for 
RETPLA make s them conditionally related 

at this point it appears that BREED should be controlled because it becomes 
conditionally related to AGE once RETPLA is controlled 

however, as BREED effects go only through RETPLA, we do not need to control for 
BREED if AGE is controlled. Controlling BREED would not be incorrect but is 
unnecessary 

note that OVAR is not controlled in the analysis. 

Of course, there are more complex causal diagrams (see Reman et al, 2002) but this example 
should convey the basics. 
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13.8 STRATIFIED ANALYSIS TO CONTROL CONFOUNDING 

The most widely used stratified analytic approach for dichotomous categorical data is 
the Mantel-Haenszel procedure. The stratification procedure is straightforward, easy 
to use, and its use can help inform the researcher of details of the data that otherwise 
might be missed. Indeed, we advise researchers to use this approach in initial analyses 
even when using more complex analyses such as logistic regression. This method 
relies on physically stratifying the data according to the combinations of level s of the 
confounding variables, examining the stratum-specific measures of association (odds 
ratios for now) and, if these are deemed to be equal (apart from sampling variation), 
creating a pooled 'weighted' or 'adjusted' estimate of the association. The equal it y 
of the stratum-specific measures can be evaluated visually, or statistically using a 
test for homogeneity. Demonstrating this equal it y is a prerequisite to calculating an 
overall measure of association because, if the measure differs across strata, it indicates 
that interaction is present (see section 13.9). Recall from Chapter I the discussion of 
interaction arising because of the factors being components of the same sufficient cause. 
Based on this, in Examples 1.1 and 1.2, we demonstrated the relationship between an 
assumed underlying causal model and the observed risks of disease. In those causal 
models, our assumption was that two or more causal factors were jointly necessary to 
complete a sufficient cause. Thus, biological synergism was present. However, whether 
or not statistical interaction was evident depended on the distribution and frequency of 
the other sufficient causes and their components. 

As stated earlier, from a practical point-of-view, if the adjusted (pooled) measure 
differs from the crude measure of association (by an amount deemed to be important 
- a judgement call), then confounding is said to be present. If confounding is deemed to 
be present, the adjusted measure of association is always preferred to the crude (biased) 
measure. 

In order to describe the Mantel-Haenszel procedure, we will assume that we have 
dichotomous exposure, outcome variables and a confounder with J levels. Thus, we 
will have one 2X2 table (ie one stratum) for each of the J level s of the confounder, (or 
each combination of the levels of confounders if there was more than one confounder) 
(see Table 13.2). We shall assume there are J strata in total; here we denote aspecific 
stratum number by the sub script 'j'): 

Table 13.2 Data layout for stratified analyses 

Exposed Non-exposed Total 

Cases a1j aOj m1j 

Non-cases b1j bOj mOj 

Total n1j nOj nj 

Recall that the nj or mj might not have a population interpretation depending on the 
study design (eg n is not an estimate of population denominators in a case-control 
study). Nonetheless, the values in the cells might be used for purposes of calculating the 
measure of association or its variance. 
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Eqs 13.2 to 13.5 show the necessary formulae for analysing binary data (ie risk, not 
rate, data). 

We begin by stratifying the data as shown above and ca1culating the stratum-specific 
odds ratio. The odds ratio for thejth stratum is: 

OR) = alj*bo/ao/blj Eq 13.2 
We also need the expected values and the variance of the exposed-diseased cell. The 
expected number of exposed cases in the jth stratum is: 

Ej = mlj*nljln) Eq 13.3 
and the variance of Ej is: 

var(E) = vi = mlj*mo/nlj*no/ni*(nrl) Eq 13.4 

The 'adjusted' or Mantel-Haenszel odds ratio is a weighted average across strata: 

I(a1j *boj InJ 

ORMH 
"( ) L. aOj * blj I nj Eq 13.5 

from which we can obtain InORMH for use in testing homogeneity (Eq 13.6). 

Before interpreting the adjusted odds ratio as a valid summary measure of association, 
we should examine the stratum-specific odds ratios and see if they are 'approximately' 
equal. Otherwise the adjusted odds ratio oversimplifies the association. Inequality of 
stratum-specific odds ratios is an indicator of the possible presence of interaction - we 
say possible presence because confounding by an unknown factor can produce effects 
that resemble interaction. There is a Wal d-type X2 test for interaction. This test has low 
power and so we might benefit from relaxing the P-value for significance to the 10-15% 
level. The Wald X2 test for homogeneity with (J-I) df is: 

2 ,,( [lnORj -lnORMH ]2 J 
X homo L. var[lnOR

j
] 

I I I I 
where varlnOR. =-+-+-+-

I ali b l ) aOi bo 

Eq 13.6 

Whether or not interaction is deemed to be present depends in part on the scale of 
measurement of association. Here we present only odds ratios but we could use risk 
difference, relative risk, or rate ratio as measures. The finding of interaction in one scale 
does not necessarily translate into the presence of interaction in an other. 

An overall test statistic, with l df, for the significance of the summary odds ratio is: 

2 
X MH 

Eq 13.7 

An example of the use of this approach is given in Examples 13.6 and 13.7. Formulae 
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Example 13.6 Stratified analysis of respiratory agents and bovine 
respiratory disease: no confounding 
data=feedlot 

In this dataset, there are data on the titres to a variety of putative respiratory pathogens in 
feedlot calves and on the occurrence of bovine respiratory disease (BRD). Experimentally, 
an interaction has been demonstrated between infectious bovine rhinotracheitis (lBR) virus 
and Mannheimia hemolytíca (Mh), and as we have data on these, we can summarise the 
relationship of each of these agents, alone and together, on the occurrence of BRD. The 
exposure ofinterest is Mh, and our proposed causal model is: 

Mh~ 

/ ~BRD 
IBR-----

We include adirect causal arrow from IBR to BRD because of our belief that IBR could 
enhance the respiratory pathogenicity of other unrneasured agents, besides Mh, and hence 
cause BRD. Thus, to ascertain the causal association ofMh with BRD, we need to control for 
IBR. The relationship ofMh by itselfwith BRD is: 

BRD+ 

BRD­

Total 

Mh+ 

167 

300 

467 

Mh-

30 

91 

121 

Total 

197 

391 

588 

The OR is 1.69 and the X2 test is 5.19 with a P-value of 0.023. Rence, when we ignore the 
effects ofIBR, seroconversion to Mh is associated with an increased risk ofBRD of about 1.7 
times. The joint distribution ofMh and IBR is shown below: 

Stratiftcation of BRD by Mh and IBR, prior to Mantel-Haenszel analysis 

IBR BRD Mh+ Mh- Total 

Total 

O 

O 

Total 

1 83 18 101 

O 85 48 133 

1 

O 

168 

84 

215 

299 

66 

12 

43 

55 

96 
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The layout of the essential caléulations for the Mantel-Raenszel procedure are: 

Odds 
Stratum rabo InOR var(lnOR) aj Ej var(Ej) a1(bQj/n j ao(b1j/n j 

2.6 0.96 0.10 83 72.51 11.67 17.03 6.54 

2 1.4 0.34 0.12 84 81.08 9.21 10.20 7.29 

Totals 167 153.60 20.88 27.23 13.83 

(continued on next page) 
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Example 13.6 (continued) 

The 'adjusted' or Mantel-Haenszel odds ratio is: 
27.23 

ORMH = 13.83 = 1.97 

253 

Based on these calculations, it appears that the strength of the association is slíghtly increased 
in the presence of IBR virus but perhaps not to the extent of being declared different from 
the effect when IBR virus is absent. However, we willperform a formai test of equality (or 
homogeneity) of the stratum-specific ORs. 

The Wald test for homogeneity is: 

2 = ",,( (0.96 - 0.678)2 (0.34 - 0.678)2) = O 808 O 946 = l 747 
% homo k.J 0.100 + 0.120 . +. . 

where 0.678 is the ln1.97. 

This test result is reasonably non-significant (P=O.l89); thus, we can act as if the stratum­
specific ORs (ie 2.60 and 1.40) do not differ statistically. 

An overall test statistic of the null hypothesis that ORMJt=l is: 

2 (167 -153.6)2 
% MH 20.88 8.6 

with IdfP~.003 so we can accept that ORMH >1. 

Based on this test, because P",0.003, we can reject the null hypothesi s and conclude that there 
is good evidence that seroconversion to Mh increases the risk of BRD, after controlling the 
effects of IBR. 

Compared with the crude odds ratio of 1.69, the increase in size ofORMH is only about 17% so 
with our guideline of a change greater than 30%, we might say that serious confounding was 
not present and we might choose to use the crude OR to describe the causal association. 

for stratified analyses of risk and rate data from cohort studies are available elsewhere 
(Rothman and Greenland, 1998, pp79-91). 

13.9 STRATIFlED ANALYSIS WHEN INTERACTION IS PRESENT 

In Chapter 1 we demonstrated how two or more factors that were members of the same 
sufficient cause exhibited biological synergism which, in tum, could lead to differences 
in risk depending on the presence or absence of other component causes. In the section 
just completed on stratified analysis to control confounding, we indicated that the 
exposure ofinterest had to have the same association across alllevels of the confounder 
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Example 13.7 Stratified analysis when confounding is present 
data=feedlot 

Here we use the same dataset but control for Province (this is a surrogate for location of 
feedlot, partly for source of calves, and weight of calves on arrival). Our causal diagram is: 

Mh 

/ ------.. BRD 

ProVince~ 

The data summary is: 

Stratification of BRD by Mh and Province prior to Mantel-Haenszel analysis 

Province BRD Mh+ Mh- Odds ratio 

2 

2 

1 

O 

o 

84 

80 

83 

220 

21 

55 

9 

36 

2.75 

1.51 

The test ofhomogeneity of the stratum ORs had aX2 (l dt)=1.47 (P=0.23), so it is legitimate 
to calculate and interpret a weighted average OR as a summary measure. The crude OR is 
1.69, and the ORMH is 2.19. This is a 30% change in the coefficient and certainly suggestive 
of moderate confounding by Province being present. The test that the ORMH=l had a 
X2 (l dt)= 11.20 with a P-value of <0.00 l so we conc1ude that Mh and BRD are associated (or 
that ORMH > l) after controlling for Province. 

Thus, based on the crude odds ratio, we might suggest that seroconversion to Mh was 
associated with an increased risk ofBRD. After controlling for province where the feedlot was 
located, the relationship gets considerably stronger; thus, we would say that confounding by 
Province was present and the larger ORMH (2.2) is the better indicator of causal association. 

in order to support the use of a single summary measure. A test of the equality of the 
stratum-specific measures of association served to assess this feature. If the stratum­
specific measures were declared different, this was an indication that interaction was 
present and that the stratum-specific measures should not be averaged into a single 
overall measure (technically, unmeasured confounders can produce differences that 
mimic interaction also) such as the ORMH . 

Interaction is a somewhat confusing term. lts presence could provide clues about 
biological mechanisms or pathways of action, but whether it is deemed to be present 
or not depends on the statistical model and the scale of measurement. However, 
regardless of the scale or measure of association, interaction is said to be present when 
the combined effect of two variables differs from the sum of the individual effects in 
that scale. For current purposes there are three types of joint effect that two or more 
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exposure factors can produce: additive, synergistic (if the combined effect is greater 
than the sum of the individual effects) and antagonistic (if the combined effect is less 
than the sum of the individual effects). 

In order to explain interaction, it will be helpfui to retum to some basic measures of 
single and joint exposure factor risks. For this discussion, we will assume that we use 
the risk of disease as the outcome. Risk will be denoted as 

• R II when both exposure factors l and 2 are present; as 
• R 10 when only exposure l is present; as 
• ROl when only exposure 2 is present; and, as 
• Roo when neither exposure factor is present. 

Now, the effect of each variable can be measured by either a difference such as 
the risk difference (ie RDIO=RIO-Roo) or a relative measure such as the risk ratio 
(ie RRIO=RIO/Roo)· With these as the basis, we can examine the joint effects of two 
variables. 

13.9.1 Additive scale of association 

Using risk difference as the measure of association, additive interaction would be 
present if 

Eq 13.8 

Generally, if the effects are measured as RD, and the effects are additive, this might 
be taken to indicate that the two factors operate through different biological pathways 
or mechanisms (ie they are not members of the same sufficient causes). However, this 
'causal interpretation' might be going beyond what the data can tell us (see section 
1.2 and Thompson (1991)). Nonetheless, the risk difference is a common model for 
assessing the public-health significance of multiple variables as it re\ates directly to the 
excess number of cases that an exposure might cause. 

13.9.2 MuItiplicative scale of association 

Using a ratio measure of association, multiplicative interaction would be said to be 
present if: 

Eq 13.9 

As this involves multiplying the relative measures, it is known as the multiplicative 
model or scale. Note Ifwe take logarithms ofEq 13.9, we have InRRlO+lnRRoJ';tlnRRll 
show ing that additive effects on the logarithmic scale are equivalent to multiplicative 
effects (ie interaction) on the original scale. However, as we will point out shortly, 
the risks of disease in jointly exposed individuals that are consistent with an additive 
arithmetic-scale model differ greatly from those that are inconsistent with an additive 
multiplicative-scale model. 

When the multiplicative-scale model hold s, it can be shown that the RR for the primary 
exposure of interest will be the same in ali strata of the extraneous variable( s). Thus, 
the equality of stratum-specific RRs, provides a convenient test for interaction in 



256 CONFOUNDER BlAS: ANALYTlC 
CONTROL AND MATCHlNG 

the multiplicative scale. This is also the basis of the test of homogeneity of aRs in 
the Mantel-Haenszel procedure (Eq 13.6). A significant test result indicates that the 
stratum-specific ratios are not equal, or equivalently, that the joint effect of the two 
factors is not what would be predicted based on the singular effects of the two variables 
(ie the effect of one exposure factor depends on the level of the other exposure). This 
phenomenon is referred to as interaction or effect modification (Susser, 1973) in the 
multiplicative scale. 

It was noted earlier that whether or not interaction is present depends on the scale of 
measurement. As noted in Example 13.4, when the stratum-specific odds ratios are 
equal, the RR and RD measures will not be, and conversely if the RD measures were 
equal, then RR and OR would not be. Thus, in large sample-size studi es, if the data are 
consistent with the additive model in one scale, they will be consistent with interaction 
in another scale. The risks shown in Example 13.4 are consistent with no interaction 
(ie an additive model in the log scale) when the OR is the measure of association 
but, based on these risks, both RD and RR measures of association show evidence of 
interaction. Another example, using fictitious data, is shown in Example 13.8. Three 
different scenarios based on the risk of disease in the jointly exposed subjects are used 
to indicate the observed risks that would be consistent with a 'no interaction ' state in an 
additive (scenario 'a') versus a multiplicative (scenario 'c') model. The multiplicative 
model is widely used for assessing associations between dichotom ou s outcomes and 
exposures. It is applicable in a variety of contexts and study designs and appears to 'fit' 
observed data weil. 

Example 13.8 An example of identifying interaction between exposure 
factors for BRD dependent on measurement scale 

Note the individual effects (hottom half of table) and then the three scenarios for joint effects 
(top half oftable). 

BRD 
(cases 

Mh BRSV per 1000) Risk RD 

Additive Multiplicative 
scale scale 

interaction RR interaction 

Three possible scenarios (ie levels of combined risk) for joint effects 

a + + 100 0.100 0.099 synergy 100 antagonism 

b + + 29 0.029 0.028 none 29 antagonism 

c++ 200 0.200 0.199 synergy 200 none 

Effects of individual factors by scale of measurement 

+ 10 0.010 0.009 10 

+ 20 0.020 0.019 20 

0.001 

Note Any joint risk above 29/1000 is considered as indicative of interaction on the additive scale 
(scenarios a and c) whereas a joint risk of 200/1000 indicates no interaction on the multiplicative 
(ie log) scale (scenario c). 
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Example 13.9 indicates the result when stratification is used to control confounding in 
the presence of interaction. 

Example 13.9 Controlling for confounding wben interaction is present 
data=nocardia 

The data for this example are from a case-control study of dairy farms with and without 
Nocardia of mastitis. The exposúre of interest was neomycin-containing dry-cow treatrnents. 
However, it was believed important to exarníne other dry-cow treatments also, both as 
possible risk factors and as potential confounders. Our causal model is: 

NeOmYcln~ 

I Case herd 
Cloxacillin ---'"" 

We use a non-headed line between the two types of dry-cow treatrnent to indicate a non-causa! 
correlation, likely because of a third common-cause factor such as management style. Even 
though the association is unlikely causal, using the rules set out in section 13.7.3 we need to 
control for cloxaciUin to determine the causal effect ofneomycin-containing treatrnents. 

Stratification of case/control herds by neomycin and cloxacillin 

Cloxacillin 

o 
O 

Nocardia 
mastitis 

1 

'0 

1 

O 

Neomycin+ Neomycin-

5 3 

10 9 

44 2 

15 20 

Stratum-specific 
od ds ratioa 

1.5 

29.3 

In the herds not using cloxaciUin, the OR between neomycin use and case status was 29.3, 
whereas, in those herds using cloxaciUin, the OR was 1.5. The test of homogeneity had a X2 
of 6.44 (l df) with a P-value ofO.Oll. This is considerable evidence ofa difference in OR and 
is consistent with the presence ofinteraction. Rence, controlling for confounding is mute; we 
should not compute an adjusted odds ratio because the association between neomycin use and 
case-control status (Nocardia mastitis) depends on the presence or absence of cloxacillin use 
on the farm. Thus, when interaction is present we should not interpret the sununary measure 
because it depends on the level of other extraneous variables. 

13.9.3 Causal structures and interaction 

Early on in our examples we demonstrated c1ear evidence of interaction arising from 
the sufficient cause model (Chapter l). The sufficient cause model implies synergism 
which show s up statistically as interaction. However, we also demonstrated that with 
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the presence ofunknown or unmeasured extraneous variables, interaction is not always 
detectable (even though the occurrence of synergism is the basis for the causal model). 
We also know that confounding can produce data that looks as if interaction is present, 
or conversely hide it. Thus, it is important to control confounding from other factors 
while trying to identify if interaction is present between two factors of interest. 

A biological example of known synergism is the combined effect of viral exposure of 
the respiratory tract of calves 4-6 days prior to exposure with Mh. Experimentally this 
is a useful 'model' for reproducing the disease us ing aerosol challenges (Yates, 1982). 
Notwithstanding this, when the disease is observed in feedlots, even when a large 
number of organisms are measured and included in the model, it has not been possible 
to detect interaction (see Example 13.6). 

In this chapter we have been interested in the effect of an extraneous variable given that 
we know the underlying causal structure. This has hopefully been of use for purposes of 
understanding the relationship between causal structures and the data we obtain in our 
studies. We do need to be carefui however if, based on our analyses, we try to predict 
the causal structure. Although a number of researchers have tried to develop a general 
process for doing this successfully, regrettably, except in limited situations, our ability 
to infer causal structure s from observed data is very limited, largely because we might 
be missing one or more important extraneous factors in our model (Thom ps on, 1991). 

13.10 EXTERNAL ADJUSTMENT OF ODDS RATIOS FOR UNMEASURED 

CONFOUNDERS 

Sometimes we might have conducted a study without measuring or otherwise 
controlling the effects of one or more potentially important extraneous variables. We 
might have ca1culated a crude odds ratio between our exposure (E) and disease (D) but 
wonder what value it would have had if we had measured and controlled a particular 
confounder (Z). Can we gain some insight into how much bias this unmeasured 
confounder might produce. The short answer is yes, but we would need to know three 
things, only one of which can be gleaned from the available data. 

1. the prevalence of the exposure variable, E (we can get an estimate of this from 
the control group in a case-control study) 

2. the association between the confounding variable (Z) and disease having 
adjusted for the exposure (ORZDIE; sometimes we can obtain this value from 
other studies) and, 

3. the prevalence of the confounding variable among the exposed (P 1Z) and 
non-exposed (Poz) groups. We know these have to differ from each other, or else 
the factor would not be a confounder, and we might obtain these estimates from 
other studies, or be able to make educated guesses about their values. 

The approach is as follows: first, we will assume the confounding variable is 
dichotomous, and thus, if we stratify on it, there will be two tables. These tables have 
the usual risk-based 2X2 structure, the first representing the data when the confounder 
is absent, and the second the data when the confounder is present. Now if the prevalence 
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of the confounder is PIZ among the exposed and Poz among the non-exposed, then 
within the exposed group, our predicted number of non-cases with the confounder Z 
will be bll'=Plzbl' Within the non-exposed the predicted number of non-case subjects 
with Z is bOI'=Pozbo(see Example 13.10). 

If it is reasonable to assume a common disease-confounding variable odds ratio 
(ORoz), we can use the se estimates of the number ofnon-cases to solve for all and aOI 

(ie the number of exposed and non-exposed cases with the confounder). The formulae 
(see Rothman and Greenland (1998) for details) are: 

ORDZalbll ' 

Eq 13.10 

and 

Eq 13.11 

With these two cell numbers we have complete information for the 2X2 table of 
subjects with the confounder. The table values for the subjects without the confounder 
can be obtained by subtracting the values for the subjects with the confounder from 
the original observed cell values. By substituting a reasonable range of prevalences 
and confounding-disease odds ratios, we can investigate the likely impact of this 
unmeasured confounding variable on the exposure-disease association. We recommend 
programming a spreadsheet to develop these 'what-if' scenarios. One 'what-if' example 
is shown in Example 13.10. 

13.11 MULTIVARIABLE CAUSATlON AND DATA ANALYSES 

In the discussion that follows, we focus on causal structures and their impact on 
the disease frequencies that we observe. In reality, there are a number of ways in 
which factors can combine to produce disease and it is rare that we identifY aU of the 
component factors of particular sufficient causes. Thus, if we measure two potentiaUy 
causal exposures, they might be members of the same or different sufficient causes or 
they might tum out not to be causes at aU. Sometimes, because of the arrangement of 
some of the underlying causes, we might find spurious relationships (ie statistical 
associations when no causal relationship exists). Here we show some of the ways 
of detecting and understanding these relationships. Not aH the relationships we 
demonstrate relate to confounding factors; however, they are intended to demonstrate 
the impact that extraneous factors can have on the association between the exposure 
and outcome of interest. Because of their central value prior to and during analysis, we 
continue the discussion on causal diagrams that we began in Chapter l and elaborated 
on in section 13.7.3. 

13.11.1 Graphical aids to understanding multivariable systems 

As a simple biological example we will continue to focus on identifying factors 
that might be of causal importance for bovine respiratory disease (BRD). We will 
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Example 13.10 Effects of unmeasured confounders 

Suppose we had observed the following data on BRD and Mh in calves. Our interest was to 
ascertain if calves with Mh were at increased risk ofBRD; however, we had not controlled for 
an important confounder such as BRSV. Our summary 2X2 table data would be: 

Mh+ Mh· Totals 

BRD+ 78 (al) 11 (ao) 

I 
89 

BRD- 86 (bl ) 74 (bo) 160 

164 85 249 

The odds ratio would be 6.11 with ax2 statistic of29.2 (P<O.OOO); it appears that Mh+ calves 
were at increased risk ofBRD. But, perhaps this relationship was largely explicable by BRSV 
infection. What effect might this have on our observed association if we had measured it? 
Suppose there is evidence that BRSV (Z+) doubles (ie OREZ =2) the risk ofBRD. We will 
also suppose that 60% ofMh+ calves and 40% of Mh- calves were infected with BRSV. 

Based on this, the predicted number of non-case Mh+ calves that is also infected with BRSV is 
bll '=0.6*86=51.6 and the predicted number without Mh but with BRSV is blQ'=0.4*74=29.6. 
Hence, solving for the expected number ofMh+ calves with BRD and BRSV we have: 

o '-
2*78*5.1.6 

58.5 11 

(2 * 51.6+86 -51.6) 

and for the Mh- cases with BRSV we have: 

010' 
2 *11 '" 29.6 

6.3 
(2 * 29.6+ 74- 29.6) 

We can now complete the first table for the BRSV-infected subjects (ie the Z+ group). 

BRSV+ Mh+ Mh- Totals 

BRD+ 58.5 6.3 64.8 

BRD- 51.6 29.6 81.2 

The OR between Mh and pneumonia here is 5.3. Now, data for the second table for those 
without the confounder BRSV (ie the Z- group) is obtained by subtraction from the original 
observed cell values (eg alO'= Ol-Oli')' 

BRSV- Mh+ Mh· Totals 

BRD+ 19.5 4.7 24.1 

BRD- 34.4 44.4 78.8 

The odds ratio between Mh and pneumonia here is 5.4. The adjusted odds ratio would be 
elose to 5.3; thus, at least with this set of estimates, the presence ofBRSV infecticín in these 
calves would not explain very much of the observed crude association between Mh and 
BRD. 
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suppose that our principal objective is to investigate the association between Mh and 
the occurrence of BRD. Suppose the additional factor we measure is the presence of 
BRSV infection (based on titre response). BRSV is only one extraneous factor but 
we can think of situations where there are numerous factors each with an underlying 
relationship with the exposure and/or the outcome. 

The pre sum ed causal relationship between pairs of variables will be shown using 
a causal line diagram. In this instance, our predictor (or exposure) variables are 
BRSV and Mh. There are a number of possible causal model s involving just two 
predictors that we will outline subsequently. When describing the causal (structural) 
relationships between variables using line diagrams, an arrow implies a cause-and­
effect relationship, a double-headed arrow indicates causal correlation, a non-headed 
arrow (ie line) non-causal correlation (likely because of an unmeasured factor), and no 
arrow implies no causal relationship. 

We will describe the statistical results we expect, based on the causal structure in the 
line diagram, both visually using Venn diagrams and descriptively in the text. In the 
Venn diagrams, each circIe represents a factor and the amount of overlap in the circIes 
the extent (strength) of their association. If the circIes do not overlap, this indicates 
that the factors are not associated statistically; it does not mean that they are mutually 
excIusive (ie do not occur together). The position (left to right) of each circIe represents 
(where possible) the relative temporal positioning of the variables. 

In describing these models we will assume alI variables are dichotomous, similar to the 
factors used in Chapter l, Example 1.1 where we use a relative measure of association 
(the risk ratio). We continue to use that approach here except that we will use the 
odds ratio (OR) as our measure of association (see Chapter 6). In the multivariable 
setting, when examining the Mh-BRD association, any factor that is not the exposure 
of primary interest is an extraneous variable. Susser (1973) named each type of 
extraneous variable based on their causal relationships with the exposure and outcome; 
we continue that practice with some revisions from his nomencIature. Rence, 

l. OR is the unconditional (crude) OR between Mh and BRD. 
This is the measure we would obtain from a 2X2 table (or by analogy from a simple 
regression model) when we ignore all other factors. When we 'adjust' or 'control' for 
other factors, the crude measure of association might change and it is referred to as a 
conditional measure of association. Rence, 

2. ORIBRSV is the conditional, or adjusted, OR (eg ORMH) between Mh and BRD 
after controlling for the relationships with the extraneous variable BRSV. 

We can accomplish that control using either the stratification approach (section 13.7) 
or a regression approach - these are the subjects of much discussion later in this 
text (Chapters 14-23). Sometimes, but not always, we prefer the adjusted estimates 
because, if our analysis is consistent with the proposed causal model, the adjusted 
estimate should be cIoser to the 'truth' than a crude estimate of association. 

In each of the following sections we will: 
l. describe the causal relationships among the exposure, extraneous variable(s) 

and the outcome of interest, 
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2. draw the causal relationships between the two predictor variables and the 
outcome to display the underlying causal structure, 

3. note the crude statistical association between Mh and BRD that we expect to 
observe given the causal model, and 

4. examine the association (in the absence of any sampling error) between the 
exposure and outcome after the extraneous variable is 'controlled' (ie added to 
the model). 

13.11.2 Exposure-independent variable(s) 

See the causal model in Example 13.11. The underlying causal structure is that both 
Mh and BRSV cause BRD but they are unrelated causally to each other, hence BRSV 
is called an exposure-independent variable. Because of their lack of causal association 
with the exposure, unless they are correlated because of the effect of other factors, 
exposure-independent variables are expected to be uncorrelated with the exposure. In 
observational studies, exposure-independent variables might arise naturally. In other 
situations the extraneous variables are causes of the outcome but also are related to the 
exposure of interest, and might be treated as a confounding variable. However, when 
matching is used to control these extraneous variables in cohort studies, the matched 
variables are converted into exposure-independent variables. Thus, they do not bias 
the measure of association and need not be 'controlled' analytically. In controlled 
tri als (Chapter 11), we rely on randomisation to convert a number of causal extraneous 
cofactors into treatment-independent variables so they will not bias the measure of 
effect. 

Example 13.11 An exposure-independent variable 

Causal model 
Mh _______ 

-----.. BRD 

BRSV~ 
Statistical model 

BRD 

Mb = Mannheimia hemolytica 
BRS V " Bovine respiratory syncytial virus 
BRD = Bovine respiratory disease 

Comment 
The two predictor variable circles do not 
overlap indicating their independence. Both 
exposure circles overlap with the outcome 
circle indicating their significant statistical 
association with BRD. 
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Exposure-independent variables do not distort the crude measure of association. This 
is displayed in Example 13.11 by noting that the portion of the outcome explained by 
BRSV does not overlap with the proportion explained by Mh. Thus, whether BRSV 
is inc\uded in the model or not makes no difference to the OR. However, exposure­
independent variables account for some of the unexplained variation in BRD, often 
referred to as the residual variation. Thus, accounting for them in the analysis improve s 
the precision of the estimate of association by reducing the unexplained variability in 
the outcome. 

13.11.3 Simple antecedent variable 

See Example 13.12. The underlying causal structure is that BRSV (the simple 
antecedent) increases susceptibility to Mh which directly causes BRD. A simple 
antecedent is a variable that occurs temporally before the exposure variable, and is 
causaJly related to the outcome only through the exposure variable of interest. In our 
example, if BRSV is the simple antecedent, adding this variable to our model merely 
traces the sequence of causation backward in time. (This can be of importance in our 
understanding of the causal web so simple antecedents should not be dismissed as 
'unimportant' .) 

Example 13.12 A simple antecedent variable 

Causal model 
BRSV .. Mh --... BRD 

Statistical model 

Mb = Mannheimia bemolytica 
BRSV = Bovine respiratory syncytial virus 
BRD = Bovine respiratory disease 

Comment 
Often there is a weak overlap between 
variables such as BRSV and the outcome, 
but statistical associations favour direct 
causes over indirect causes so the strength 
and significance level of the BRSV 
association might be low. The Mh-BRD 
association would not change when BRSV 
is controlled. 

Assuming no sampling error, when BRSV is added to the model (ie its effects are 
controJled) it does not change the Mh-BRD association. By itself, BRSV might or 
might not be statistically associated with BRD; this depends on how much of Mh 
susceptibility is caused by BRSV and how much of BRD is attributable to Mh. 
However, when added to the model containing Mh, BRSV will not be statistically 
significant; any association it has with the outcome is already contained within the 
association explained by the exposure factor. Hence, in a forward model-building 
approach when Mh is in the model, BRSV would not be added and the likely in ference 
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might be that it is causally unimportant. Technically however, it just means it has no 
direct effect on the outcome. The sample statistics are: 

Crude: OR(Mh) significant 
Crude: OR(BRSV) might or might not be significant - but OR(Mh) >OR(BRSV) 
Conditional: OR(MhIBRSV)=OR(Mh) 

Note When describing relative relationships with '>', we assume that the associations 
are positive, that is producing odds ratios greater than l. To include the possibility of 
both associations being negative, the> symbol might be read 'farther from l' rather than 
just 'greater than l'. 

The OR(BRSVIMh) is not a valid indicator of the causal association of BRSV with 
BRD; this OR reffects only the direct effect (which in this instance is O). The crude 
OR(BRSV) is the correct estimate of the total causal effect of BRSV on BRD in this 
example. 

13.11.4 Explanatory antecedent variable - complete confounding 

See Example 13.13. The underlying causal structure is that BRSV precedes and causes 
(or predicts) both Mh and BRD, but Mh is not a cause ofBRD. Statistically, we expect to 
observe a significant crude relationship between Mh and BRD because of the common 
cause BRSV. This association is causally spurious. However, when BRSV is added to 
the model, the association between Mh and BRD becomes non-significant, because 
BRSV now 'explains' the original association. Thus, we would infer (correctly) that 
Mh was not a cause of BRD. Adding BRSV to the model usually reduces the residual 
variance also. Many extraneous factors function as explanatory antecedents in this 
mann er. The sample statistics are: 

Crude: OR(Mh) and OR(BRSV) are significant, usually with 
OR(BRSV) >OR(Mh) 

Conditional: OR(MhIBRSV)=I, (BRSV biases the OR for Mh ifit is ignored) 
OR(BRSVIMh) > l 

Note The results of the model with both BRSV and Mh included as predictors is 
not optimal for estimating the BRSV total causal effect. Once we remove ali arrows 
emanating from BRSV, there is no pathway from BRSV through Mh to BRD, hence 
the model with BRSV only is preferred for estimating this causal effect. Controlling 
Mh might not change the BRSV coefficient greatly, but it is better NOT to control 
unnecessary variables as controlling them can necessitate having to control even more 
variables. 

13.11.5 Explanatory antecedent variable - incomplete confounding 

See Example 13.14. This is also a very common causal structure. The underlying causal 
structure is that BRSV causes (or predicts) both Mh and BRD, but Mh is also a cause of 
BRD. The sample statistics are: 

Crude: OR(Mh) and OR(BRSV) are significant 
Conditional: OR(MhIBRSV) <OR(Mh) but OR(MhIBRSV) i- l 
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Example 13.13 An explanatory antecedent variable witb complete confounding 

Causal model 
Mh 

/ 
BRSV ------.. BRD 

Statistical model 

Mb ; Mannheimia hemolytica 
BRSV = Bovine respiratory syncytial virus 
BRD = Bovine respiratory disease 

Comment 
The Mb circle overlap s with the outcome, 
as they are statistically related until BRSV 
is added to the model (ie controlled). Then, 
the association becomes non-significant 
as aU of the previous crude association 
between Mb and BRD is covered by the 
BRSV-BRD association. 

Note The results of the model with both BRSV and Mh included as predictors are 
inappropriate to estimate the total causal effect of BRSV as only the direct effect 
would be refiected in the OR or regression coefficient. Mh would function as a 
partial intervening variable and should not be controlled when estimating the BRSV 
causal association with BRD. Again, the model with only BRSV is preferred for this 
purpose. 

The model with both predictors included is appropriate for estimating the total causal 

Example 13.14 An explanatory antecedent variable witb partial confounding 

Causal model 

/Mh~ 
BRSV • BRD 

Statistical model 

Mh = Mannheimia hemolytica 
. BRSV = Bovine respiratory syncytial virus 
BRD = Bovine respiratory disease 

Comment 
The Mb circle overlaps with the outcome. 
The association remains statistically 
significant when BRSV is added to the 
model (ie controlled), but some of the 
previous association is now attributed to 
BRSV. Thus, the Mh-BRD association is 
not as strong when BRSV is controlled as 
when it was not included. Adding BRSV to 
the model explains more of the vanation in 
BRD than just knowing Mb status. 
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effect of Mh. Statistically, as Mh still has an association with BRD after control of 
BRSV, this is the best estimate ofits causal association with BRD. Thus, we would infer 
that Mh was a cause of BRD, and that the reduced 'strength' was the best estimate of 
magnitude of causal effect because the spuri ou s causal component (from BRSV) was 
removed. Again, adding BRSV to the model usually decreases the residual variance of 
the model. 

13.11.6 Intervening variable 

See Example 13.15. An intervening variable is one that, in causalor temporal terms, 
intervenes in the causalor temporal pathway between exposure and disease. Now 
although unlikely from a biological point of view (humour us on this), the underlying 
causal structure is that Mh causes (or predicts) BRSV and BRSV causes BRD. The 
sample statistics are: 

Crude: Likely both OR(Mh) and OR(BRSV) significant 
Conditional: OR(MhIBRSV)=O 

Example 13.15 An intervening variable 

Causal model 
Mh .. BRSV --... BRD 

Statistical model 

Mh = Mannheimia hemolytica 
BRSV = Bovine respiratory syncytiaJ virus 
BRD = Bovine respiratory disease 

Comment 
The Mh circle might or might not overlap with 
the outcome. However, any association ofMh 
with BRD disappears when BRSV is added 
to the model (ie controlled). It might weil be 
that some or ali of the effect ofMh on BRD is 
mediated through BRSV (and in that sense Mh 
is stiJl a cause ofBRD), but adding BRSV to 
the model would lead us to conclude that Mh 
was not associated with BRD and therefore we 
might infer that Mh was not a cause ofBRD. 
Intervening variables should be identified and 
should not be controlled when estimating the 
causal effect of an exposure. 

Although this model is improper in the context of ascertaining the causal association of 
Mh on BRD, the model with both Mh and BRSV would provide a reasonable estimate 
of the causal association ofBRSV wi th BRD. Nonetheless, the model with only BRSV 
incIuded would be preferable for estimating the BRSV causal effect. 
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As noted, we recognise that this is, biologically, a silly example because we have 
no evidence that Mh would cause increased susceptibility to BRSV in the context 
of feedlot respiratory disease. However, often it is not so obvious. Thus, it is very 
important to identify intervening variables and not 'control' them (ie do not put them in 
the model). Intervening variables might be totally or only partly caused by the exposure 
but should not be 'controlled' . They are not confounders but they cause similar changes 
in the measure of association to explanatory variables; thus, we must know the likely 
causal structure and time sequence between variables to differentiate explanatory from 
intervening variables because they cannot be differentiated analytically. This is a major 
reason for our stressing the development of explicit causal models before initiating 
analyses. 

13.11.7 Distorter variable 

Causally this is the same setup as for explanatory variables except that at least one of 
the causal actions is of a different sign than the other two (ie one of the causal arrows 
reffects prevention not causation). In our example, there are two possible underlying 
causal structures, assuming Mh is a cause of BRD. In the model on the left, Mh is a 
cause of BRD and BRSV prevents BRD but is causally and statistically positively 
correlated with Mh. In the model on the right, Mh is a cause ofBRD and BRSV is also 
a cause of BRD, but BRSV is causally and statistically negatively correlated with Mh. 
Thus, the causal structure s could be either: 

/Mh~ /Mh~ 
BRSV • BRD BRSV • BRD 

The sample statistics for the left-side model are: 
Crude: OR(Mh) and OR(BRSV) might be <l, =1 or >1 
Conditional: OR(MhIBRSV) > l 

OR(BRSVIMh)<1 

+ 

Again, to estimate the causal association of Mh with BRD, we need to control for 
BRSV. Controlling BRSV will increase the strength of association between Mh 
and BRD (eg a non-significant OR(Mh) might become significant when BRSV is 
controlled). This potential for increasing the OR is of significance in model-building. 
When it occurs it signals an underlying relationship similar to that described here. It is 
also possible that a significant positive association can become a significant negative 
association, and only' distorters' can cause this reversal in the direction of association. 
The preferred model to estimate the total causal association of BRSV with BRD is 
the model with only BRSV inc\uded. When Mh is inc\uded, only the direct effects of 
BRSV are obtained. 

13.11.8 Suppressor variables and refinement of exposure and outcome variables 

See Example 13.16. Here the underlying causal structure is that Mh is a cause ofBRD 
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Example 13.16 A suppressor variable 

Causal model 
cattle contact 

íMhl~BRD 
~ 

Statistical model 

BRD 
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Mb = Mannheimia hemolytica 
BRSV = Bovine respiratory syncytial virus 
BRD = Bovine respiratory disease 

Comment 
Before control ofBRSV the variable 'cattie 
contact' is not, or only weakly, associated 
with BRD. Once BRSV is controlled by 
refinement (usually) or analysis, the Mh 
circle overlaps with the outcome indicating 
an association of 'cattie contact' with BRD. 
By controlling the non-causal component of 
OUT global variable, we increase the strength 
of the remaining factors' association with 
the outcome. 

and BRSV is not. What distinguishes this from the other examples ofrelationships with 
extraneous variables is that both Mh and BRSV are members ofthe same global variable 
as defined by the researcher. For example, we might have formed a variable called 
'cattie contact' that signified exposure to both these agents. However, because we are 
assuming that BRSV is not a cause ofBRD (in this example), when BRSV is controlled, 
it will reveal or strengthen the suppressed association between Mh and BRD. BRSV 
is the (or one of the) irrelevant components of the global variable 'cattie contact'. The 
refined variable, without BRSV included, would have a stronger association with BRD. 
Control in situations such as this is usually by refinement of the predictor variable(s), 
but can be accomplished using analytical methods also. 

Suppression often occurs with portemanteau-type (global) predictor variables (these 
are crudely defined or complex variables that contain a number of components). By 
refinement (stripping away the useless parts), the components of the original variable 
that are important can be identified. For example, 'ration' might need to be refined to 
locate which components (if any) of ration (length of roughage, amount of roughage 
etc) are related to abomasal displacement in dairy cows. We had suppression in mind 
when discussing combining length of exposure with dose of exposure to make a 
composite variable (in cohort and case-control studies; Chapters 8 and 9). Hence, we 
stated that it is best to examine the relationship of the components separately before 
assessing the composite variable for this reason. 

Suppression of the dependent variable can also occur. As an example, perhaps only 
fibrinous pneumonia, not other types of respiratory disease, is related to Mh. Thus, if 
crude morbidity is the outcome variable, the association between Mh and BRD will be 
weak. If cause-specific BRD is used as the outcome, the stronger association between 
Mh and fibrinous pneumonia can be uncovered. Thus, whenever possible, refine the 
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exposure factors and outcome variables to the point that suppression is unlikely. The 
extent of refinement used will, however, depend on the objectives of the study as weH 
as practical constraints. 

13.11.9 Moderator variable 

See Example 13.17. Moderator variables produce statistical interaction. The underlying 
causal structure is that Mh causes BRD, but only when BRSV is present. Hence, the 
statistical strength of its association with BRD depends on the presence or absence 
of BRSV. Recall from Chapter l, that interaction is the statistical result of the joint 
causal effect of two or more factors on an outcome parameter. Interaction can, but 
doesn't necessarily, reffect a biological property of the joint effect ofvariables (ie either 
synergism or antagonism ). Moderator variables might or might not be confounders. The 
sample statistics are 

Crude: OR(Mh) and OR(BRSV) usuallyi:l, but might=l 
Conditional:OR(MhIBRSV) might not be meaningfui because 

OR(MhIBRSV+ ):;tOR(MhIBRSV-) 
X2homo is significant (section 13.9) 

Example 13.17 A moderator variable 

Causal model 
BRSV+ 

Mh _______ 000000000:. BRD 

BRSV-

Statistical model 
When BRSV is present, the 
effect of Mh is present: 

Comment 

Mb = Mannheimia hemolytica 
BRSV = Bovine respiratory syncytial virus 
BRD = Bovíne respiratory disease 

When BRSV is absent, the effect of 
Mh is absent: 

The Mh circ1e overlaps with the outcome only when BRSV is present. This is the exact 
basis of the causal models shown in Examples 1.1 and 1.2. No disease occurs unless 
the two factors are present. Interaction is extremely important to identify as it has large 
implications for disease prevention. 
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13.12 SUMMARY OF EFFECTS OF EXTRANEOUS VARlABLES 

As a summary, in Table 13.3, we indicate the likely imp act of adding each type of 
extraneous variable (ie BRSV) to an analysis of the Mh-BRD association on the 
magnitude (or direction) of the association of Mh with BRD. The association can 
be measured by an odds ratio or regression coefficient (J3,); the latter denotes the 
magnitude and direction of association in linear (Chapter 14), logistic (Chapter 16) and 
Poisson (Chapter 18) regression models, and in survival models (Chapter 19). 

Table 13.3 The effect of controlling BRSV on the Mh-BRD association (measured 
in a regression-type model) 

BRSV is an ... 
variable 

Exposure­
independent 

Simple 
antecedent 

Explanatory 
antecedent 
(complete 
confounding) 

Explanatory 
antecedent 
(incomplete 
confounding) 

Intervening 

Distorter 

Suppressor 

Moderator 

Effect 

no change 

no change 

becomes O 

Comments 
(including impact on regression models) 

BRSV explains some of BRD incidence, so the 
residual 0 2 is smaller and the significance of 131 
increases 

No effect on the analysis but BRSV might be 
important to know about, from a preventive 
perspective, if it is easier to modify than Mh 

Control of BRSV will remove any Mh association 
with BRD. The R2 ofthe model should increase 
as the residual variance decreases 

Controlling BRSV will impact on the significance 
of 131 depending on the strength of the BRSV 
effect on Mh and on BRD. The R2 of the model 
should increase 

Because BRSV is more closely related to BRD, it 
probably has a stronger association and explains 
more variability. The 131 is reduced in size and 
significance. If ali of the effect passes through 
the intervener, it will remove ali of the Mh effect 
on BRD 

Essentially the same impacts as an explanatory­
antecedent variable except the Mh effect is 
increased, or in the opposite direction, to the 
crude association 

As the global variable containing Mh is refined, it 
will now have a stronger relationship with BRD, it 
will probably explain more of the variation in the 
outcome 

not applicable ln the presence of interaction, the effect of 
one variable depends on the level of the other 
variable, hence separate estimates of effect are 
required 
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14 

LINEAR REGRESSION 

OBJECTIVE S 

After reading this chapter, you should be able to: 

l. IdentifY ifleast squares regression is an appropriate analytical tool for meeting your 
objectives given the characteristics ofyour data. 

2. Construct a linear model to meet your objectives, incIuding control of confounding 
and identification of interaction. 

3. Interpret the regression coefficients from both a technical and a causal perspective. 

4. Convert nominal, ordinal or continuous predictor variables into regular or 
hierarchical variables and interpret the resulting coefficients correctly. 

5. Assess the model for linearity between continuous predictors and the outcome, 
for homoscedasticity, and normality of residuals. You should also be able to identifY 
appropriate transformations of the outcome or predictor variables to help ensure 
that the model meets these assumptions. 

6. Detect and assess individual observations as potential outliers, leverage observations 
and/or influential observations. 
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14.1 INTRODUCTION 

Up to this point, most of our examples in which we relate an outcome to an exposure, 
have been based on qualitative outcome variables, that is variables that are categorical 
or dichotomous. Here we will discuss linear regression which is suitable for modelling 
the outcome when it is measured on a continuous, or near-continuous scale. In 
regression analysis the relationship is asymmetric in that we think the value of one 
variable is caused by (or we wish to predict it by) the value or state of another variable. 
The outcome variable is denoted as the dependent, or outcome, variable, whereas 
the 'causal' or 'predictor' variables are called the independent or predictor variables. 
We continue to refer to the predictor variable(s) of primary interest as the exposure 
variable(s). The predictor variables can be measured on a continuous, categorical or 
dichotomous scale. 

14.2 REGRESSION ANALYSIS 

When only one predictor variable is used the model is called a simple regression 
model. The term 'model' is used to denote the formai statistical formula, or equation, 
that describes the relationship we believe exists between the predictor and the outcome. 
For example, the model 

Eq 14.1 

is a statistical way of describing how the value of the outcome (variable Y), changes 
across population groups formed by the values of the predictor variable XI' More 
formally it says that the mean value ofthe outcome for any value of the predictor variable 
is determined using a starting point, flo, when Xl has the value O and, for each unit 
increase inXI , the outcome changes by fll units. flo is usually referred to as the constant 
or the intercept term whereas fll is usually referred to as the regression coefficient. 
The E: component is called the error and reffects the fact that the relationship between 
Xl and Y is not exact. We will assume that these errors are normally and independently 
distributed, with zero mean and variance a 2• We estimate these errors by residuals; 
these are the difference between the observed (actual) value of the observation and the 
value predicted by the model. 

The fls represent population parameters which we esti mate based on the observed data 
and Ouf model; hence, we could write /J but to simplify the notation we will use only 
fl unless otherwise necessary. We will refer to predictor variables as Xs. In general, we 
will denote the number of observations as n. Thus Ouf predictions for the observed data 
are: 

where ~ is the predicted value of the outcome in the i th observation at the observed 
value (Xli) of the predictor Xl' More generally, for any value XI of the predictor 
variable, the prediction equation is: 
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Eq 14.2 

We will denote the specific observation by the subscript i; but in most instances, for 
simplicity we will omit reference to specific observations. Bear in mind that in using X­
variables to predict Y in a regression model there is no necessary underlying assumption 
of causation; we might just be estimating predictive associations. Nonetheless, we 
might use terms such as 'X affects y', or the 'effect of X on Y is ... ' when interpreting the 
results of Ouf models. 

Almost without exception, the regression models used by epidemiologists will contain 
more than one predictor variable. These belong to the family known as multiple 
regression models, or multivariable model s (note that 'multivariate' indicates two or 
more outcome variables). With two predictor variables, the regression model could be 
written as: 

which suggests that we can predict the value of the outcome Y knowing the baseline 
(intercept or constant) /Jo and the values of the two independent (predictor) variables 
(ie the Xs). The parameters /JI and /J2 describe the direction and magnitude of the 
association of XI and X2 with Y - more generally there can be as many X-variables as 
needed, not just two (see Chapter 15 for model-building). A major difference from the 
simple regression model is that in the above multivariable model, /JI is an estimate of 
the effect of XI on Y after controlling for the effects of Xb and /J2 is the estimated effect 
of X2 on Y after controlling for the effects of Xl. As in simple regression, the model 
suggests that we cannot predict Yexactly, so the random error term (e) takes this into 
account. Thus, our prediction equation is: 

y = Po + p]X] + P2 X 2 

where Y is the predicted value of the outcome for a specific set Xl and X2 of val~es for 
the two predictors. In this equation, /JI describes the number ofunits change in Y as Xl 
changes by one unit, X2 being held constant, while /J2 describes the number of units 
change in Y as X2 changes by one unit, Xl being held constant. 

In observational studi es, incorporating more than one predictor almost always leads 
to a more complete understanding of how the outcome varies and it also decreases 
the likelihood that the regression coefficients are biased by confounding variables. 
Assuming that we have not inc\uded intervening variables, or effects of the outcome 
in our model, the /Js are not biased (confounded) by any variable inc\uded in the 
regression equation, but can be biased if confounding variables are omitted from the 
equation (Robins and Greenland, 1986). From a causal perspective, if intervening 
variables are inc\uded the coefficients, do not estimate the causal effect (see section 
14.7). Unfortunately, one can never be sure that there are not other variables that were 
omitted from the model that also affect Yand are related to one or more of the Xs. These 
X-variables could be unknown, not thought (at !east initially) to be important, or (as it 
often happens) not practical/possible to measure. In other circumstances we might have 
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numerous potential confounders and need to deci de on the important ones to include. 
As noted in Chapter 15, a major trade-off in model-building is to avoid omitting 
necessary variables which could confound the relationship described by the fJs, while 
not including variables of little importance in the equation, as this will increase the 
number of SE(j3)s estimated and lead to poor performance of the equation on future 
datasets. AIso, having to measure unnecessary variables increases the cost of future 
work. . 

In order to assist with the principles of describing multiple regression we will develop 
examples from adataset conceming the impact of diseases on reproductive performance 
in dairy cows on two farms. In the main, the events in the dataset daisy represent 
postpartum reproductive events, although other postpartum diseases such as milk fever 
and mastitis are also recorded. Although these data were obtained from actual studi es, 
they have been changed to allow us to make specific points about correlation analysis 
and regression models, so the results should not be used as a basis for making biological 
inferences about reproductive problems. The names of the variables we will use and 
their labels are shown in Table 14.l; details can be found in Chapter 27. The diseases 
are listed in order of their average time to occurrence (eg milk fever occurs before 
retained fetal membranes). 

Table 14.1 Selected variables from the dataset daisy 

Variable Scale of measurement Description 

farmnum nominal denotes the farm identification 

age continuous age of the cow in years 

milkfvr dichotomous did the cow have milk fever? 

retpla dichotomous were fetal membranes retained for 48 hours? 

metritis dichotomous did the cow have metritis? 

ovar dichotomous did the cow develop cystic ovarian follicles? 

firstbrd continuous days from calving to first breeding; 40-day 
minimum period 

firstest continuous days from calving to first observed estrus 

calvcon continuous days from calving to conception (pregnancy) 

14.3 HVPOTHESIS TESTING AND EFFECT ESTIMATION 

14.3.1 The ANOVA table 

The idea behind us ing regression is that we believe that information in X can be used 
to predict the value of Y. Now, if we have collected the data, we know the observed 
Y-values and we can describe the distribution of Y us ing the mean, variance and other 
statistics. With no further information, the best estimate of the value of Y for a particular 
subject would be an estimate of central tendency such as the mean value. However, if 
the X-variable contains information about the Y-variable, we should be able to do a 
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better job of predicting the value of Y for agiven individual (cow) than if we did not 
have that infonnation. The fonnal way this is approached in regression is to ascertain 
how much of the sums of squares of Y (the numerator of the variance of y) we can 
explain with knowledge of the X-variable(s). FonnaIly this decomposition of the total 
sum of squares (SS) is shown in the sec ond column of Table 14.2 (ie SST=SSM+SSE; 
also, dIT=dfM+dfE): 

Table 14.2. An analysis of variance (ANOVA) table showing the decomposition of 
sums of squares in a regression model with k predictor variables 

Source of Sum of squares Degrees of Mean square F-test 
variation freedom 

Model (or SSM dfM = k MSM = SSM/ MSM/MSE 
regression) -Ln C -)2 dfM - 1':-y 

;=1 l 

Error (or SSE dfE = n- MSE = SSE/dfE 
residual) 

= L n (1': - y,) 2 
(k+1 ) 

;=1 l l 

Total SST dfT = n-1 MST = SST/dfT 

= Ln (y;-V)2 
1=1 

In the fonnulae in the table, Y is the mean of the Ys, and k is the number of predictor 
variables in the model (not counting the intercept). When the SS are divided by their 
degree s of freedom (dt), the result is a mean square, here denoted as MSM (model), 
MSE (error) and MST (total) - in other settings we might call these variances but the 
jargon in regression is to call them mean squares. The MSE is our estimate of the error 
variance and therefore also denoted as (J'2. Furthennore, (J', the square root of (J'2, is 
called the root MSE, or the standard error ofprediction (see Example 14.1). 

The sums of squares are partitioned by choosing values of the fJs that minimise the 
SSE (or MSE); hence the name 'least squares regression'. There is an explicit fonnula 
for doing this, which, in general, involves matrix algebra, but for the simple linear 
regression model the fJs can be detennined using: 

/Jo = V - AX, and /J, = ~)Xli -X,)(Y; -V)jssx, (with SSX j = ~)Xli -xJ) Eq 14.3 

For a small dataset, these computations could be done by calculator, but in practice we 
always use computer software. 

14.3.2 Assessing the significance of a multivariable model 

To assess whether or not at least some of the variables in the model have a statistically 
significant relationship with the outcome, we use the F-test of the ANOVA table. The 
null hypothesis is Ho : fJl=fJ2= .. A=O (ie all regression coefficients except the intercept 
are zero). The altemative hypothesi s is that this is not true, that is at least some (but 
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not necessarily aU) of the /Js are non-zero. The distribution of the F-statistic is an 
F-distribution with the first (ie numerator) degrees of freedom equal to dfM and the 
second (ie denominator) degrees of freedom equal to dtE (as given in Table 14.2, the 
ANOVA table, and shown in Example 14.1). 

Example 14.1 Simple linear regression 
data=daisy 

As an example of a simple regression model, we will develop a model where calving to 
conception interval (denoted by a variable called -calvcon-) is the outcome variable and 
-age- (of dairy cow) is the predictor variable. We believe that the outcome is influenced by, or 
at !east predictable by, -age- and each year of -age- will exert an effect on the outcome of size 
Pl days for each year increase in age. 

Analysis of variance table showing the partitioning of sum s of squares in a simple regression 
model of -calvcon- on - age-: 

Source 

Model 

Residual 

Total 

ss 
34758.022 

301265.744 

336023.766 

dt 

143 

144 

Number of obs = 145 
F(1, 143) = 16.50 

Prob > F = 0.0001 
R-squared = 0.1034 
Root MSE = 45.899 

MS 

34758.022 

2106.754 

2333.498 

The variance (ie mean square) of -calvcon- is greater than the mean square residual suggesting 
that we can do a better job ofpredicting the calving to conception interval ifwe know the age 
of the cow, than ifwe do not. The root MSE is 45.90 and has the same units (ie days) as the 
SD (standard deviation) of the outcome variable -calvcon- (SD=48.31 days). 

Regression coefficients from regressing -calvcon- on -age-: 

age 

constant 

Coet SE P 

7.816 

84.904 

1.924 

9.068 

4.06 

9.36 

0.000 

0.000 

4.012 

66.980 

95% CI 

11.620 

102.829 

The coefficient for -age- indicates that for each year increase in age, -calvcon- goes up by 
7.8 days. The t-statistic (with 143 df) is clearly significant so we reject the null hypothesis in 
favour of the 7.8-day value. Often our preference is to estimate the likely values of the effect 
measure by examining the confidence intervals for the coefficient. Here the likely interval is 
from 4.0 to 11.6 days increase in -calvcon- for each year increase in age. 

We usually do not test the intercept (or constant) value. Po reflects the value of the outcome 
(-ca1vcon-) when the X-variable (-age-) has the value O, but no cows calve when they are O 
years of age. We shall comment subsequently on how to modify the predictor variable so that 
the constant term gets a sensible interpretation. . 
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However, some care is necessary when interpreting the model F-statistic as its 
mean ing changes with the method of model-building. The F-test probably only has 
a straightforward meaning when the Xs are manipulated treatments in a controlled 
experiment, and all comparisons are appropriately planned a priori. In observational 
studies, the F-statistic is influenced by the number ofvariables available for entry, their 
correlations with each other, and the total number of subjects (sampling units). Most 
variable selection methods (Chapter 15) choose variables in a manner that tends to 
maximise F; hence the observed F overestimates the actual significance of the model. 
On the other hand, if useless variables are forced into the model with the hope of 
controlling all confounding, the F-statistic might be biase d downwards. Sometimes 
with highly correlated variables in the model the F-test might be significant yet the test 
of the individual coefficients might suggest that none ofthem differ significantly from 
zero (see section 14.5). 

14.3.3 Testing the significance of a regression coefficient 

A l-test with n-(k+ l) degrees of freedom (dili) is used to evaluate the significance of 
any of the regression coefficients, eg the /h coefficient. The usual null hypothesi s is 
Ho : fJrO but any value of fJ* other than ° can be used in Ho : fJrfJ* depending on the 
context. The l-test formula is: 

1= fJj - fJ* 
SE(fJJ Eq 14.4 

where SE(fJ) is the standard error of the estimated coefficient. This standard error is 
always computed as the root MSE times some constant depending on the formula for 
the estimated coefficient and the values of the X-variables in the model. Except for 
the simplest situations it is not easily computable; however, it is always given in the 
computer output from the estimation ofthe model. For a model with only one predictor 
(XI)' the standard error (SE) of the regression coefficient is: 

SECfJl) = ~MSE/SSXl Eq 14.5 

As the formula indicates, both the variance of XI and the MSE affect the standard error. 
Examples of individual I-tests of coefficients are shown in Examples 14.1 and 14.2. 

Similar to the F-statistic, the inference to be made based on the probability associated 
with the calculated I-statistic is often difficult to assess in non-experimental studi es. In 
experiments, the Xs are manipulated treatments, or blocking factors, and the observed 
t-value can be referred to tables (of the l-distribution) for a P-value C observed level of 
significance). The same is probably true ifthe variable being tested in an observational 
study was of a priori interest C eg if the observational study was conducted to determine 
the effect of a specific X on Y, given control of a set of other variables). However, if 
a variable selection programme was used to sort through a list of variables, selecting 
those with large t-values in the absence of specific a priori hypothesis, then the actual 
level of significance is higher than the nominal level of significance (usually termed 
a) that you specify for a variable to enter/stay in the equation. Nonetheless, using the 
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Example 14.2 Multiple linear regression 
data=daisy 

A multiple regression model of -calvcon- on -age-, -metritis- and -ovar- is shown below. We 
code the variable -metritis- (denoting whether or not a cow had -metritis-) as l if the cow had 
-metritis-, and as O for cows without -metritis-. The variable -ovar- is similarly coded, -age- is 
in years. 

Number of obs = 145 
F(1,143) = 16.79 

Prob > F = 0.0000 
R-squared = 0.2632 

Adj R-squared = 0.2475 
Root MSE = 41.904 

Source SS df MS 

Model 88440.458 3 29480.153 

Residual 247583.307 141 1755.901 

Total 336023.766 144 2333.498 

Coet SE t P 95% CI 

age 6.342 1.777 3.57 0.000 2.829 9.855 

metritis 18.550 8.522 2.18 0.031 1.703 35.397 

avar 53.341 10.212 5.22 0.000 33.153 73.530 

constant 79.884 8.410 9.50 0.000 63.258 96.511 

When we inc1ude data on -age-, -ovar- and -metritis- the overall model is highly significant 
with an explained proportion of the total variation in the data (R2=SSM/SST) of 26.3%. 
Controlling for -age- and -ovar-, cows with -metritis- have an 18.6-day delay in calving to 
conception interval, and controlling for -age- and -metritis-, cows with -ovar- have a 53.3-
day delay. The constant (intercept) represents the value of -calvcon- for cows of O years of 
age without -ovar- and -metritis-. We willleave the 'sensible' interpretation of this to section 
14.4.1. 

P-value as a guideline is a convenient and accepted way of identifying potentially 
useful predictors of the outcome. 

14.3.4 Estimates and intervals for prediction 

Calculating the point estimate for predictions in regression is straightforward. The 
complex component is determining the appropriate variance associated with the 
estimate, because there are two types of variation in play. One derives from the 
estimation of the parameters of the regression equation; this is our usual SE. The other 
is the variation associated with a new observation, ie the variation about the regression 
equation for the mean. The prediction error (PE) of a new observation involves both 
ofthese variations. 



LINEAR REG RES SION 281 

For example, in a simple Iinear regression model, the fitted (ie forecast) value Y for 
individuals with XI =x* has an SE of: 

Eq 14.6 

which can be interpreted as the variation associated with the expectation (ie mean) 
of a new observation, or an average of a large number of new observations, with the 
particular value x* chosen for prediction. 

The PE for a new single observation with predictor value x* is increased because we 
must account for the additional (f2 because the individual predicted value is unlikely to 
equal its expectation (ie unlikely to exactIy equal the average value for alI individuals 
withX=x*): 

Eq 14.7 

Three points can be made here. First, the variation associated with the mean is much 
less, and forecast intervals much more narrow than those for a specific instance or 
subject (a single new observation). Second, the further that x* is from the mean value 
of XI' the greater the variability in the prediction. We show the 95% confidence bounds 
(or forecast intervals) for the mean (using SE) and for a specific subject (us ing PE) in 
Fig. 14. I. Finally, the general formula for computing prediction errors from standard 
errors is: 

where a 2=MSE. 

Fig. 14.1 Prediction intervals for means and observations 
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14.3.5 Interpreting R 2 and adjusted R2 

R2 is sometimes called the coefficient of determination of the model; it describes the 
amount of variance in the outcome variable that is 'explained' or 'accounted for' by 
the predictor variables (see Example 14.2). It also is the squared correlation coefficient 
between the predicted and observed Y-values (and in simple linear regression as weil 
the squared correlation between outcome and predictor). 

Unfortunately, R2 always increases as variables are added to a multiple regression model 
which makes R2 useless for variable selection and potentially misleading. Hence, R2 can 
be adjusted for the number ofvariables in the equation (k), and this adjusted value will 
ten d to decline if the variables added contain little additional information about the 
outcome. The formula for the adjusted R2 is: adjusted R2=1-(MSE/MST); notice the 
similarity with the formula R2=SSM/SST= l-(SSE/SST). 

Note in Example 14.2 that the adjusted R2 is slightly lower than the R2. The adjusted R2 

is also useful for comparing the relative predictive abilities of equations, with different 
numbers of variables in them. For example, if one equation has seven variables and 
another equation three, the R2 for the model with seven might exceed that for the model 
with three (and it always will if the smaller model is a submodel of the larger one), but 
its adjusted R2 might be less. Adjusted R2 is sometimes used as a basis for selecting 
potentially good models, but this approach is not without its drawbacks (see Chapter 15 
about variable selection methods). 

When assessing R2 we should be aware that non-random sampling can have a 
pronounced effect on its value. For example, if you select subjects on the basis of 
extreme X-values, as in a cohort study, you might artificially increase the R2• It would 
be okay to use regression to estimate the effect of X on Y, but the R2 per se would be 
of little value. In a similar manner, if the X-values are limited to a narrow range, the R2 

might be very low. 

14.3.6 Assessing the significance of groups of predictor variables 

Sometimes (often) it is necessary to simultaneously evaluate the significance of a group 
of X-variables, as opposed to just one variable. For example, this approach should be 
used when a set ofindicator variables has been created from a nominal variable (section 
14.4.2), or if it is desired to add or remove more than one variable at a time (eg a set of 
variables relating to housing or feeding practices). 

In order to assess the impact of the set of variables, we note the change in the error 
(residual) sum of squares (SSE) before and after entering (or deleting) the set of 
variables. (Altematively, one might use the model sum of squares, as indicated 
below.) That is, note SSEfull with the variable set of interest in the model (called the 
'full model'), then remove the set ofvariables (eg X; and X;,) and note the SSEred (for 
the 'reduced mode!'). If variables X; and X;, are important, then SSEfuIl « SSEred (and 
SSMfull » SSMred)· 
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The increase in SSE (or reduction in SSM) by deleting the variables from the model 
is divided by the number of variables in the set (which equals dffired - dffifull ) to give 
us the MSM from these variables. Dividing this MS by the MSEfull provides an F-test 
of the significance of J0 and J0' conditional on the other variables in the model. In 
summary, the formula to assess a set ofvariables is: 

(
SSEred - SSE fUll ) 

F dffircd - dffi full F(dffi dffi dffi ) d H 
group = MSE ~ red - full, full un er o 

full Eq 14.9 

where the null hypothesi s Ho is that the reduced model gives an adequate description 
of the data, and large values of the F-test are considered as evidence against Ho. The 
numerator of the formula might altematively be calculated from differences of MS- and 
df-values for the model (instead of error); as SSMfull-SSMred=SSEred-SSEtull' it gives 
the same result. As will be seen subsequently, there is a similar test for use in linear, 
logistic and Poisson mode Is. Most software contains specific procedures to automate 
this process. Example 14.3 shows the calculation of an F-test for three categorical 
variables that were added to the simple Iinear model shown in Example 14.1. 

Example 14.3 Testing the significance of multiple variables 
data=daisy 

For example, suppose we had a model containing only -age- (see Example 14.1) and 
wondered, if as a set, the variables -retpla-, -metritis- and -ovar- added significantly to the 
model. The ANOVA table from the full model is shown below: 

Source 

Model 

Residual 

Total 

ss 
98924.110 

237099.656 

336023.766 

df 

4 

140 

144 

MS 

24731.027 

1693.569 

2333.498 

In the simple model with only -age- as a predictor, we had SSEred=301265.744. Rence the 
F-test is: 

F 
(301265.744 - 237099.656);(143 -140) 

12.6 
1693.569 

This F-statistic is very significant with 3 and 140 df(p<O.OOI) so we can safely infer that the 
three variables collectively add significant information to the model containing only -age-o 
This test do es not say that all three are significant, only that the amount of information in the 
set ofthree variables adds significantly to the model. 
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14.4 NATURE OF THE X-VARIABLES 

The X-variables can be continuous or categorical with the latter being either nominal 
(meaning that the variable's values constitute 'levels' (or categories) with no meaningfui 
numerical representation) or ordinal (in which case the values represent ordered leve l s 
of the variable, eg high, medium, low). Examples of nominal variables include: farm 
identification, categories representing different ways of feeding colostrum, categories 
representing different breeds of dogs etc. Nominal and ordinal variables with more 
than two levels should not be used as predictors in their num eric al form, they need 
to be converted to indicator variables. This is because the corresponding [Js would be 
meaningless (eg because herd 4 is not twice something in herd 2, or breed 5 is not 
three units more than breed 2 etc), and would not achieve the desired effect (eg of 
removing herd-to-herd variation when examining the relationship between disease and 
production in cows or calves ). 

However, a nom inal predictorwith only two level s (a dichotomous variable) can be used 
directly when it is coded as l or O (eg the variables -metritis- and -ovar- in Example 
14.2). Such variables often serve as answers to questions about presentlabsent, alive/ 
dead, sick/well etc. The regression coefficient represents the difference in the outcome 
between the levels (ie level l minus level O). 

For categorical (nom inal or ordinal) variables with multiple levels, we use indicator 
variables (also called dummy variables) to code the information into a set of 
dichotomous variables. Sections 14.4.2 and 14.4.3 review regular indicator variables 
that can be used for both nominal and ordinal variables, and hierarchical indicator 
variables applicable only to ordinal or quantitative variables. However, we first 
examine how to improve the interpretability of regression parameters. 

14.4.1 Improving interpretability of the regression parameters 

Often, the predictor variables have a limited range ofpossible, or sensible values. For 
example, many cannot be interpreted, sensibly, at the value O (ie if age, weight, or 
days to breeding were predictor variables, they have no meaningfui interpretation at 
the value O). Yet, the intercept reflects the value of the outcome when the predictor has 
the value O. Thus, it is often useful to 'rescale' these variables by subtracting the lowest 
possible sensible value from each observed value before entering the variable into the 
model. Then, the intercept coefficient [Ja will be the value of the outcome at this lowest 
possible value ofthe X-variable instead of at zero. As an example this could be two years 
(age offirst calving) for -age-o Rescaling has no effect on the regression coefficient or 
its SE, but it does change the value of the intercept (constant) (see Example 14.4). The 
rescaling can also be done with values other than the lowest possible value, for example 
a centre value (mean or median) of distribution of X. 

Anotheruse ofrescaling is when the X-variable is measured with much greater accuracy 
than needed (eg measuring -age- in days in our example). Hence, in its original form, 
even if the variable has a large 'effect' on the outcome, its coefficient will be small 
reflecting the change in -calvcon- for each additional day of -age-o This problem can be 
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Example 14.4 Rescaling predictor variables 
data=daisy 

285 

Here we reseale -age- by subtraeting two years from the aetual age, so OUf new variable is: 
age_se=age2• The effect of an increase of one year in age is the same as in the unscaled 
Example 14.1: 

age_sc 

constant 

Coet 

7.816 

100.536 

SE 

1.924 

5.806 

4.06 

17.32 

p 

0.000 

0.000 

95% CI 

4.012 11.620 

89.060 112.012 

In the original seale (Example 14.1), days to eonception was predieted to be 89.2 days for a 
O-year-old eow. Here it is 100.5 days for a two-year-old eow, hopefully a much more sensible 
number. 

circumvented by dividing the value of Xby a suitable constant (such as age/365). For 
example, if one was predicting badger numbers us ing the area of pasture, if the latter 
was measured in square metres, it might be more practical to divide this by 1002 so 
that the X-variable is now measuring hectares. Now the coefficient reffects the change 
in the number of badgers as pasture is increased by one hectare. In a similar manner, 
depending on the context, distances might be more practically expressed as km than 
metres, and weights by kg or 100 kg instead of grams. 

14.4.2 Coding regular indicator variables 

Indicator variables are created variables whose values have no direct physical 
relationship to the characteristic being described. For example, suppose there is a 
variable called -herdnum- that identifies what herd the animals in your study carne 
from. Further, suppose there are three herds coded as -herdnum-=I, 2, or 3 (or A, B, 
c) and we wish to control for 'herd effect' when examining the potential effect of 
calfuood disease( s) on growth rate in calves. To do this, we create two regular indicator 
(sometimes called disjoint) variables (Xl and X2) as logical answers to the following 
questions: Is this calf from herd l?; if yes, then Xl=l else XI=O. For the next indicator 
variable we ask: is this calf from herd 2?; if yes, then X2= l else X2=0. With respect to 
these variables, the following values would be present in the dataset: 

herdnum X1 X2 

2 

3 

1 O 
O 

O 

1 

O 

Thus, herd 3 is identified as the herd with both indicator variables equal to O, and will 
be the referent (or comparison level or reference category) for assessing the effect of 
herds l and 2 on the outcome. So, in general to code j leve l s of a nominal variable, 
j-l indicator variables are required, and the fh herd take s the value O for ali the 



286 LINEAR REGRESSION 

indicators (see Example 14.5). As the third herd has become the referent level (when 
ali the indicator variables are in the equation), fJI (the coefficient of XI) estimates the 
difference in the outcome between herds l and 3, whereas fJ2 estimates the difference in 
the outcome between herds 2 and 3. 

Example 14.5 Coding indicator (regular dummy) variables 

We will demonstrate forming regular (ie disjoint) indicator variables from a nominal variable. 
For example, when conducting a study in which one predictor is method of colostrum 
feeding we might have coded the answers in the variable -colfeed- as 1 =suckling, 2=nipple 
pail, 3=open pail, and 4=intubation. Let's assume that 'nipple pail' is a sensible referent and 
has sufficient sample size. The coding of the three disjoint variables could be completed by 
writing logical code to answer the following: 

If colfeed=1 then suckle=1 else suckle=O 

If colfeed=3 

If colfeed=4 

then openpail=1 

then tube=1 

else openpail=O 

else tube=O 

The effect and significance of each new variable (-suckle-, -openpail- and -tube-) would be 
in relation to nipple-pail feeding. Whether or not the information in the original variable 
-colfeed- added siguificantly to the model should be assessed by an F-test (see Example 
14.3). 

Because one of the level s of the nom in al variable will be the referent, often there is 
merit in considering which level it should be. In term s of the information provided 
to the model, it does not matter which level is the referent, but carefui consideration 
can enhance the interpretation of the coefficients. In essence, considerations about 
biological interpretation and the precision of estimates in each level of the nominal 
variable should be weighed in choosing a referent (eg if body temperature is recorded 
as below normal, normalor above normal, it might make sense to use 'normal' as the 
referent value). The referent should have a sufficiently large sample size so that the 
contrasts (comparisons with the referent) have reasonable precision. Sometimes the 
level of the nominal variable that has an 'average' response (eg close to the mean of 
the dependent variable) is the desired referent; this can lead to a situation where no 
design variables are significant, as the extreme categories might differ from each other 
but not from the outcome in the middie (mean) indicator. However the significance of 
the indicator variables as a set (section 14.3.6) is unaffected by the choice ofreference 
category. In other instances, the choice of the referent can be arbitrary, as for example 
when the indicators are herd indicators and the herd effects are not of primary interest 
but they must be controlled to prevent confounding. 

Most software programs have automated procedures to create indicator variables, and 
the coding can be more flexible than shown here. By default, some use the first category 
as the referent, others use the last category as the referent. Ali allow the user to set the 
referent using the contextual considerations just mentioned. 
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As noted earlier, ali indicator variables (of each nominal variable) usually should be 
entered or excluded from the model as a set using the F-test in section 14.3.6. Once 
the set has been deemed to be important in a statistical sense or from the perspective 
of confounding control, it is of ten desirable to allow only some (eg the statistically 
significant or the 'important' indicators) to remain in the model. Removal of 
unnecessary indicators can aid the development of a more parsimonious model. The 
decision about removing some of the indicators can be assisted by testing the equality 
of selected indicator coefficients. (Note To select indicators in a statistically stringent 
sense, multiple comparison procedures must be applied.) One should also be aware 
that removal of some indicators changes the interpretation of the coefficients for the 
remaining indicators. For example, if only indicator X] is in the model, the referent 
(in the above example) will be both of the remaining herds; the referent will be the 
weighted average of the outcome in herds 2 and 3 and the coefficient associated withX] 
will represent the difference in response between herd 1 and this average. Any effects 
from indicators not included in the model are present in the constant term. 

14.4.3 Coding hierarchical indicator variable s 

I f the predictor variables are ordinal in type, (eg reffect relative changes in an underlying 
characteristic, eg severity ofmilk fever), it is sometimes difficult to associate the levels 
of severity with specific numerical values that would make it meaningfui to use the 
variable as a continuous predictor. As an example, when coding a variable representing 
severity (eg us ing l, 2, or 3 representing stage l, stage 2 or stage 3 milk fever), there 
might be concem when using it as a continuous predictor based on the actual codes (eg 
is the biological effect of the difference between stage l and stage 2 milk fever the same 
as between stage 2 and stage 3 ?). It is always possible to use regular indicator variables, 
but they do not reffect the ordering of levels. Therefore, the use of hierarchical (or 
incremental) indicator variables is often the preferred approach, in order to maintain 
the ordering inherent in the original variable. This approach can also be used to recode 
a continuous variable based on us ing appropriate cutpoints. Hierarchical indicator 
variables contrast the outcome in the categorised version of the original variable against 
the level just preceding it (assuming all incremental variables are in the model). As 
with regular indicator variables it is possible to just include a subset of the indicators. 
One such situation occurs if we are interested in identifying cutpoints of an ordinal or 
continuous variable where the relationship with the outcome changes. In this setting 
we can select the most significant incremental variable for entry. The corresponding 
coefficient contrasts the outcome in levels of the categorised X-variable at or above 
the specific increment selected against the average of the outcome in the levels below 
it (Walter et al, 1987). Example 14.6 compares regular and hierarchical indicator 
variables. 

14.4.4 Errors in the X-variables 

In the regression model, the X-variables are 'fixed' (ie constant). ln reality, they might be 
fixed because they are set by the experimenter in a controlled trial (eg treatment or dose) 
or because they represent values that are constant (eg site or year). However, when the 
X-variables are measured quantities (eg in observational studies), these measurements 
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Example 14.6 Coding hierarchical dummies 
data=daisy 

In this example, we will assume that relationship of -age- to -calvcon- is neither linear, nor 
curvilinear, and, wanting to avoid the use of a more complicated function, we want to use ali 
of the information in -age- to prevent it from being a confounder of the effects of postpartum 
diseases. The average -calvcon- in each age is shown in Table 14.3 (ali cows eight or more 
years of age are combined into one category for this example). Note the general increase in 
-calvcon- with age except for the five-year old and seven-year old groups. In order to create 
hierarchical variables our code is a logical answer to the folIowing statements: 

If age >2 then X1=1 else X1=0 

If age >3 then X2=1 else X2=0 

If age >6 

If age >7 

then X5=1 

then X6=1 

else Xs=O 

else X6=0 

If we enter these into a multiple regression we obtain the coefficients shown in Table 14.3 
(for purposes of comparison we also include the coefficients for a set of regular indicator 
variables, with age category '2 years' as referent). 

Table 14.3 Summary of days postpartum to conception by age, and 
coefficlents from regressing -calvcon- on -age- coded by regular or 
hierarchical indicator variables 

Number of Mean Regression Coding 

Age cows calvcon coefficient Regular Hierarchical 

2 24 101.58 130 101.58 101.58 

3 34 110.68 131 9.09 9.09 

4 32 116.94 132 15.35 6.26 

5 25 109.88 133 8.30 -7.06 

6 16 141.69 134 40.10 31.81 

7 6 136.00 135 34.42 -5.68 

>7 8 173.00 136 71.42 37.00 

Note that for both codings of -age- the intercept (flo) is the -calvcon- value for two-year-old 
cows. With regular indicators, cows of three years of age have a 9.1 day longer calving to 
conception period than two year olds, and cows of four years of age have a 15.4 day longer 
calving to conception interval than two-year-old cows etc. With hierarchical (incremental) 
coding, cows of four years of age have a 6.26 longer calving to conception than three-year-old 
cows and cows of five years of age have a 7.06 day shorter interval than cows of age four etc. 
You might verify that both give the correct mean -calvcon- for each -age- interval. 
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might contain error: either a natural variation related to the measurements, or error in 
the sense ofmisrecordings. The consequence of this error is that relations between the 
outcome and the observed X-values are not the same as those with the true X values. 
The regression model estimates the relationship between the observedX-values and the 
outcome, and this is the appropriate relationship for prediction. A causal relationship 
between the X-variables and the outcome would usually rather involve the true values 
of the X-variables. Special models exist for taking error in the X-variables into account, 
so-called measurement error models, but they are beyond the scope of this book. 
However, as indicated in Chapter 12, ifthe magnitude of the measurement error is small 
relative to the range of the X-values in the model, we are not unduly worried when 
using the ordinary regression model. To ignore measurement errors generally tends to 
bias the parameters towards the null (ie effects will be (numerically) smaller than if the 
completely accurate information about the X-values was present). It can also be said 
that if the errors are large relative to the range of X-values serious consideration of the 
need for validation studies is in order. 

14.5 MODELING H1GHLY CORRELATED (COLLINEAR) VARlABLES 

Despite the fact that multiple regression is used to adjust for correlations among 
predictor variables in the model, if the variables are too highly correlated then a 
number of problems might arise. Before discussing these, recall that in a multi variable 
regression model the estimated effect of each variable generally depends on the other 
variables in the model. On one hand, this is the advantage of a multivariable analysis 
- that variables are studied while taking the others into account and therebyavoiding 
duplication of effects. On the other hand, this means that the effect of any variable 
might change when other variables are added to or removed from the model. If, for a 
particular variable, such changes are large (eg involving a shift of sign), its interpretation 
becomes difficult. Only in the special case that alI the X-variables are uncorrelated are 
the effects of different variables estimated completely independently of each other. 
Thus, the first problem arising from highly correlated (or collinear) predictors is that 
estimated effects will depend strongly on the other predictors present in the model. As a 
consequence, it might be difficult to statistically select the 'important' predictors from a 
larger group ofpredictors. Both ofthese concems are less serious when the purpose of 
the analysis is prediction than when interpretation of causal effects is the objective. On 
a more technical note, the standard errors of regression coefficients might become very 
large in a highly collinear model (section 14.5.1), and hence we become less certain of 
the likely magnitude of the association. 

To avoid this, a single X-variable should not be a perfect mapping of another X-variable 
or be perfectly predictable by a combination of the other X-variables in the regression 
model. However, even before the correlations become 'perfect' as a general rule, iftwo 
(or more) variables are highly correlated (collinear, lal >0.8-0.9), it will be difficult 
to select between (among) them for inclusion in the regression equation. When two 
variables are highly and positively correlated, the resulting coefficients ([Js) will be 
highly and negatively correlated. (This means that if, as a result of sampling variation, 
one coefficient gets larger, then the other gets smaller. To illustrate, if /31=3 and /32=2, 
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then removing one of the variables from the model will increase the other coefficient. 
One well-known example is the negative correlation between the slope and intercept in 
a simple regression model.) In extreme situations none of the coefficients of the highly 
correlated variables will be declared significantly different from zero, despite the fact 
that the F-test of the model might indicate that the variable(s) contributes significantly 
to the model. 

The be st way of eliminating collinearity problems is through considered exclusion of 
one of the variables, or by making a new combination of the variables on substantive 
grounds. In extreme situations specialised regression approaches, such as ridge 
regression, might be needed. 

Most software provides some wamings about possible collinearity using a variance 
inflation factor (section 14.5.1) or its reciprocal tolerance. Unfortunately, the methods 
we use for including interaction terms (section 14.6) and power terms (section 14.9.3) 
in models sometimes leads to a high collinearity between the variables. It is less serious 
than the collinearity between variables that are not constructed from each other, but will 
nevertheless affect the variance inflation factors. Thus we describe a general method 
for circumventing high correlations between these variables, known as centring the 
variables (section 14.5.2). 

14.5.1 Variance inflation factors 

The effect of entering a new variable into the model, on the variance of the coefficients 
for variables currently in the model can be assessed with a statistic known as the 
variance inflation factor (VIF). The formula for VIF is: 

VIF=_I-
1- R; Eq 14.10 

where R; is the coefficient of determination from regressing the variable that is about 

to enter the model on the other variables in the model. As this coefficient gets larger 
so does the VIF. We illustrate the importance of the VIF in a simple linear regression 
model, in which the variance of the regression coefficient,81 for X 1 is from Eq 14.4. 

(1)(/3) _ MSE(I) 
var I ----

SSX 1 Eq 14.ll 

where the superscript (l) refers to the simple linear regression model. When we place 
X2 in the model, if it is related to Xl' three things will happen: 

and 

the coefficient,8l will change because we account for the correlation of Xl with 
X 2, 

the residual sum of squares (and in most cases also the MSE(2)) will become 
smaller because Xl and X2 together can predict Y better than Xl on its own, 

the standard error of,81 might increase by an amount roughly equal to .JViii; 
specificaIly, its variance in the combined model (2) with both X 1 and X2 is: 
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(1)(/3) _ MSE(l) 
var 1 ----

SSX1 Eq 14.12 

It is seen that the variance increases unless the reduction in MSE(2) from MSE( I) 
by adding X2 more than offsets the increase due to the V/F. It is also true 
that adding variable X2 can cause the variance of fll to decrease. This is most 
likely to happen if X 2 is a good predictor of the outcome and Xl and X2 are 
nearly (or totally) independent of each other. 

The role of the VIF in multiple regression model s is similar. A (conservative) rule 
of thumb for interpreting V/Fs is that values above 10 indicate serious collinearity. 
As discussed above, this does not necessarily mean that the model is useless or that 
one is obliged to remove one or more X-variables from the model; it should however 
always be taken as a sign of waming for the interpretation of regression coefficients 
and the increase in standard errors. Note The V/Fs reported in most software do not 
take into account if X-variables are related by construction, eg quadratic terms or 
indicator variables of a categorical variable - this limits the usefulness of V/Fs in these 
situations. 

14.5.2 Centring variables to reduce collinearity 

Centring a continuous variable is performed by subtracting the mean value (or some 
other central value) from each observedX-value, similarly to the rescaling discussed in 
section 14.4.1. Centring the main effect variable and the power term (or an interaction 
term between two continuous variables) reduces the correlation between the variables 
to a low level (provided the variables are symmetrically distributed about their mean). 
If the distribution is not symmetric, then larger (or smaller) values than the mean might 
need to be subtracted. It should be stressed that centring only affects correlations 
between variables constructed from each other, and centring does not change the 
predictions or the fit of the model, only the values and interpretation of its coefficients. 
See Example 14.7 for a discussion of V/Fs and centring. 

14.6 DETECTING AND MODELING INTERACTION 

In Chapter I we developed the view that given the component cause model we might 
expect to see interaction when two factors act synergistically or antagonistically. 
Whereas within limits this might be true, the significance of an interaction term need 
not indicate anything about the causal model; it might merely describe the nature of the 
relationship being modelled. In the previous section the model contained only 'main 
effects' of the Xs, hence it assumes that the association of Xl to Y is the same at all 
levels of X2 and the association of X 2 to Y is the same at alllevels of Xl' A test of this 
assumption is to examine if an 'interaction term' adds significantly to the regression 
model (see Example 14.8). 
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Example 14.7 Detecting and resolving collinearity by centring variables 
data=daisy 

In this example we regress -calvcon- on -age- and then on -age- and age-squared (-age_sq-). 
The latter term can be used to explore if the -age- versus -calvcon- relationship is curvilinear, 
and if it is, a convenient way of 'linearising' the relationship of -age- to -calvcon- is to insert 
a power term for -age-, in this case -age_sq-. However, the correlation between -age_sq- and 
-age- is 0.95. We also show the V/Ps resulting from the two related variables being in the 
model. 

First we regress -calvcon- on -age- only, then on -age- and -age_sq-; the results are shown 
below: 

Variable 

7.816 

Model 1 

SE(I3) 

1.924 

VIF 

7.072 

0.063 

Model 2 

SE(I3) 

6.277 

0.507 

VIF 

10.57 

10.57 

This result clearly suggests that we do not need the -age _ sq- term in the model. But humour us 
for this example. Notice the large V/Ps and the corresponding increase in the SE(p\). Below 
we show the results of the same model using centred variables. The mean -age- is 4.34 years 
so we subtract that from the cow's age and denote the variable as -age_ct-. Then we regress 
-calvcon- on -age_ct- alone, and on both -age ct- and -age_ct sq-: 

Variable 

age_ct 

age ct sq 

7.816 

Model 1 Model 2 

SE(I3) VIF 

1.924 7.620 

0.063 

SE(I3) 

2.489 

0.507 

VIF 

1.66 

1.66 

Notice that the coefficient and SE change only for the linear term in Model 2. In the 
multivariable model the SE of the linear effect of -age- is greatly reduced from that in the 
uncentred model. You should also note that centring is not necessary to determine if the 
power term is needed, only to reduce the V/P if it is needed. In the multivariable model, 
the coefficient for -age_ct- changes onlyalittIe from the earlier model, due to the almost 
negligible effect of -age_sq-. Note that the V/Ps are now very small, because -age_ct- and 
-age _ ct_ sq- have a correlation of only 0.62. (In this example, because -age- is skewed to the 
right, to further reduce the correlation between -age _ ct- and -age _ ct_ sq-, it would be better to 
use a value somewhat larger than the mean.) 

Before leaving this example, alittie reflection on what has been achieved by centring. The 
V/P and the SE(P) are lowered, but we' don't intrepret the linear term independently from the 
quadratic term anyway, because that would contradict our curvilinear model. In situations 
with extreme corre1ation between a linear and quadratic term, the estimation might run into 
numericai trouble and centring will often improve matters considerably, but this is not the 
case here. The interpretation of the intercept has most likely improved, as discussed in section 
14.4.1. If further variables were to be added to the model, the usefulness of V/Ps has been 
improved by eliminating the intrinsic collinearity between linear and quadratic terms. Taken 
as a who le, these improvements might or might not warrant the effort. 
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Example 14.8 Testing for interaction 
data=daisy 

293 

To test for interaction, we generate a product variable (ovarmet=ovar*metritis) and assess its 
significance: 

Coef SE P 95% CI 

metritís 23.602 9.352 2.52 0.013 5.112 42.089 

ovar 63.109 11.462 5.51 0.000 40.449 85.768 

ovarmet ~29.561 28.857 -1.02 0.307 -86.609 27.487 

constant 105.186 4.426 23.76 0.000 96.435 113.936 

Here, because the interaction term was not significant it appears that we can act as if the 
effects of -metritis- on -calvcon- are the same in cows with and without ovarian disease. 
Had the product term been significant it would imply that the effect of -ovar- on -calvcon­
was different in cows with metritis than in cows without metritis, or the effect of -metritis­
depends on -ovar-. 

In the situation where X-variables are not indicator variables of a categorical variable, 
the interaction term is formed by the product XI * X2 which can be tested in the following 
model: 

by assessing if /13=0 (see Example 14.8). If interaction is absent ([13 is deemed to be 
not different from O), the main effects (or 'additive') model is deemed to describe 
the effects adequately. It is not necessary to centre variables (XI and X2) to see if 
an interaction term is needed, because /13 and its standard error will be unaffected. 
However, if the interaction is needed, centring might be useful because it allows us 
to interpret /11 and /12 as linear effects when the interaction cancels (eg /11 applies to the 
situation when (the centred version of) X2 is zero). Higher order interactions can be 
investigated by extending this process to an interaction term that is the product of three 
(or more) variables (see Chapter 15). 

Interactions involving categorical variables (with more than two levels) are modelled 
by including products between all indicator variables needed in the main effects model. 
For example, the interaction between a 3-level and a 4-level categorical variable 
requires (3-1 )*(4-1 )=6 product variables. These six variables should be tested and 
explored as a group (section 14.3.6). 

In many multivariable analyses the number of possibilities for interaction is large and 
there is no one correct way of selecting the model to assess if interaction is present. 
One strategy is to identify variables that make a significant contribution to the linear 
model without interaction terms present; this is the main effects model. Then, construct 
aH possible two-way interactions for the significant main effect variables. Force all 
significant main effect variables into the equation and allow the program to select 
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significant interaction terms using a forward stepwise method (or eliminate th em 
using a backwards approach). Another strategy is to only form biologically sensible 
interactions, perhaps based on what is already known in the literature. In cases with a 
large number of dummy variables (eg to control herd effects), one might have to assume 
that interaction is absent between the factors represented by the dummies and the other 
variables in the model unless the number of observations is sufficient to give reasonable 
power for assessing the numerous interactions. Three- and four-way interactions can 
be assessed in a similar manner; however their interpretation becomes more difficult 
as the number of terms increases. Thus, we recommend that these interactions only be 
investigated when there are good, biologically sound, reasons for doing so (see Chapter 
15 for a further discussion ofinteraction terms). Example 14.9 demonstrates interaction 
between two dichotomous variables, 14.10 between a dichotomous and a continuous 
predictor, and 14.11 between two continuous predictors. Hopefully this approach to 
demonstrating and understanding interaction will provide a useful platform for your 
own analyses. 

14.7 CAUSAL INTERPRETATION OF A MULTIVARIABLE LINEAR MODEL 

So far in this chapter we have focused on the technical interpretation of regression 
coefficients. Example 14.12 is presented to focus on the causal interpretation of a 
multivariable linear model and in this circumstance, care is needed to ensure that only 
the appropriate variables are controlled in the analysis (see section 13.3). 

14.8 EVALUATING THE LEAST SQUARES MODEL 

Valid regression analyses are based on a set of assumptions, and once our initial model 
is built we need to evaluate whether the model meets these (we say initial because after 
checking whether the model meets the key assumptions we might have to alter it). 
We will use the model from Example 14.12 containing five predictor variables for the 
purposes of this evaluation. 

The key assumptions of the model are: 
homoscedasticity - the variance of the outcome is the same at all level s of the 
predictor variables (ie the variance in -calvcon- in cows that have a -firstbrd- of 63 
days should be the same as the variance for those that have a -firstbrd- of 126 days, 
etc) and within all combinations of the values of the predictor variables. If this is 
true, then the error variance will be constant. This is an important assumption, 
perhaps more so than having a normal distribution of residuals. 
normaI distribution - the errors should be normally distributed at all levels of the 
predictors, or at ali combinations of predictors in the model (ie -calvcon- values for 
cows that have a -firstbrd- of 84 should be normally distributed as they should for all 
other values of -firstbrd-). We often try to get a quick assessment of this before 
starting the regression analysis by looking at the distribution of the outcome for 
normality. The errors from very non-normally distributed outcomes are unlikely 
to be 'normalised' by regression on the predictor variables unless the R2 of 
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Example 14.9 Interaction between dichotomous variables 
data=daisy 
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If we regress -cal vc on- on -retpla-, -metritis-, and their interaction (denoted as -rpmet-) we 
ob serve the following estimates: 

Coef SE P 95% CI 

retpla 72.731 19.171 3.79 0.000 34.831 110.632 

metritis 10.996 11.926 0.92 0.358 -12.581 34.574 

rpmet -49.996 25.292 -1.98 0.050 -99.996 0.004 

constant 110.769 4.398 25.18 0.000 102.074 119.464 

These results indicate that in the absence of either disease, the -calvcon- value is 110.8 days. 
By itself -retpla- adds almost 73 days to this, whereas by itself -metritis- adds only II days 
and this is not deemed to be significant. However when both are present instead of adding 84 
days (73+ ll) to the baseline -calvcon-, only 84-50=34 days are added. This might represent 
a type of antagonism between these two disease8, the biology of which we will not attempt to 
explain. An easy way to see the results of interaction involving two dichotomous variables is 
to calculate the mean calving to conception interval for each of the covariate patterns formed 
by the combination of -metritis- and -retpla-, as shown in the table below (also giving the 
number of observations). 

melrilis=O melrilis=1 lolal 

relpia mean calvcon no. obs. mean calvcon no. obs. mean calvcon no. obs. 

O 110.8 108 121.7 17 112.3 125 

total 

183.5 

114.6 

6 

114 

144.5 

132.0 

14 

31 

156.2 

118.3 

20 

145 

You can also see from this table why the detection ofinteraction has low power (note the small 
cell sizes). Thus if detecting interaction is a major feature of the work it is often necessary to 
increase the sample size accordingly (see section 2.10.8). 

the model is very high. On the other hand, as a simple example, if astrong 
dichotomous predictor for the outcome exists, then the raw distribution of the 
outcome will show as bimodal and therefore non-normal, but the residuals from the 
model might be normally distributed. 

o linea rit y - because the relationship between the outcome and continuous 
or ordinal predictors (modell ed as continuous) is described by a single 
coefficient, this assumes that the association is a straight-line relationship (ie 
a 21-day increase in -firstbrd- from 42 to 63 days affects -calvcon- by the same 
amount as a 21-day increase from a -firstbrd- of 105 to 126). There is no assumption 
involved for dichotomous variables as two points can always be connected by a 
straight line. 

o independence - the values of the dependent variable are statistically independent 
from one another (ie the -calvcon- value of one cow does not depend on the 
-calvcon- value of other cows in the dataset). Usually we do not worry about 
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Example 14.10 Interaction between a dicbotomous and a continuous 
variable 
data=daisy 

Here we regress -calvcon- on -ovar-, -firstest- and their interaction (denoted as -ovarest-) to 
see if the effect oftiming of first estrus on calving to conception interval depends on whether 
or not the cow has cystic ovaries, or if the effect of cystic ovaries depends on when estrus is 
first observed. 

Coet SE P 95% CI 

avar 83.635 18.659 4.48 0.000 46.747 120.522 

firstest 0.504 0.093 5.41 0.000 0.320 0.687 

ovarest -0.456 0.218 -2.09 0.039 -0.887 -0.024 

constant 80.162 6.670 12.02 0.000 66.976 93.347 

The results of this model indicate that -ovar- by itself has a major impact on delaying 
conception, but this impact depends on the values of -firstest-; -ovar- has a big effect on cows 
with smaller values of -firstest- and a smaller effect on cows with a larger value of -firstest-. In 
cows that do not have -ovar-, a one-day delay in -firstest- delays conception by about 0.5 days. 
However, in cows with -ovar- the effect of -firstest- is virtually non-existent (as the +0.5 and 
the -0.5 cancel each other). Thus the effect of -firstest- depends on the level of -ovar-. Again 
in this example biological antagonism seems to be at work. In a situation such as this a graph 
might make the interaction effects more apparent. This is easily accomplished by obtaining 
the predicted -calvcon- from the model and graphing it against the continuous predictor 
(-firstest-) in cows with and without ovarian disease to produce Fig. 14.2. 

Fig. 14.2lnteraction between -avar- and -firstest- on days to conception 
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Here we can see the difference in effect of -firstest- between when -ovar- is absent (the sloped 
line) and when it is present (the near horizontalline). The interaction in the model corresponds 
to different slopes for the regression on -firstest- at the two level s of -ovar-. If interaction was 
absent, the regression lines on -firstest- would be paraUel. 
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Example 14.11 Interaction between two continuous variables 
data=daisy 
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Here we regress -calvcon- on -age- (ignoring that -age- is recorded to the nearest year), 
-firstbrd- and their interaction tenn (denoted -agebrd-). The results are: 

age 

tirstbrd 

agebrd 

constant 

Coet SE P 

-6.610 3.729 -1.77 0.078 

0.309 0.197 1.57 0.119 

0.120 0.038 3.13 0.002 

71.564 17.890 4.00 0.000 

95% CI 

-13.982 0.763 

-0.081 0.700 

0.044 0.196 

36.197 106.930 

In this model, the interaction contributes significantly to the prediction, but it is not very easy 
to tell what the effects of either variable are because we cannot examine an effect when the 
other variable is not present (as neither -age- nor -firstbrd- has a sensible interpretation at the 
value O). Centring of both variables might therefore be helpfui here. Generally, when trying 
to understand interaction between two or more continuous variables, a graph can almost be 
indispensable. The general approach we use is to obtain the predicted values of -calvcon­
from the model, then divide one of the continuous variables into categories, and then plot the 
predicted values against the values of the continuous variable in each of the categories just 
created. Here we created four age categories beginning at 2, 4, 6, and 8 years and detennined 
the predicted -calvcon- in each, then plotted the se against -firstbrd- to produce Fig. 14.3. 

Fig. 14.3 Interaction between -age· and ·firstest· on days to conceptlon 
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We see that the lines representing the effect of -firstbrd- on -calvcon- are not parallel, but 
rather they diverge, depending on the age of the cow. The non-linearity reffects the effect of 
different ages within each age category. The trend is that as the cow gets older, the impact 
of delaying -firstbrd- on -calvcon- is increased. Here we might have biological synergism 
at work. Note In small datasets the graph obtained in this manner might be very noisy for 
subgroups with only a few observations. In this instance, it is recommended to create the data 
for the graph directIy from the regression model, by computing predicted -caJvcon- values 
for a range of -firstbrd- values while fixing -age- at vaJues 2, 4, 6 and 8 years. This graph will 
contain four straight (and non-parallel) lines. 
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Example 14.12 . Causal interpretation ofregression coefficients 
data=daisy 

As a concrete model to discuss we will regress -calvcon- on -farm 1-, -age-, -metritis-, -ovar­
and -firstbrd-. Here, -farml- is an indicator variable representing the farm identification and 
is coded as I if the cow is from farm l and as O if the cow is from farm 2; you can imagine 
extending this process ifwe had a larger number ofherds in our dataset, but this dataset only 
has observations from two herds. As a whole, this model is clearly significant, and gives the 
following coefficients with their SE, significance and confidence intervals: 

Co ef SE t P 95% CI 

farm1 6.108 5.551 1.10 0.273 -4.868 17.084 

age 3.615 1.353 2.67 0.008 0.939 6.291 

metritis 14.368 6.416 2.24 0.027 1.683 27.053 

ovar 34.007 7.835 4.34 0.000 18.515 49.499 

firstbrd 0.777 0.078 9.98 0.000 0.623 0.931 

constant 23.585 8.199 2.88 0.005 7.375 39.795 

Ali of the coefficients are significant at P<O.05 except for -farm 1-; however we will leave 
this variable in the model on the assumption that we had strong beliefs that it would be a 
confounder and it will help correct for a lack of independence of outcome (ie -calvcon-) 
within each farm. 

From a technical perspective the interpretation of the coefficients is as follows: 'having 
adjusted the coefficient for the other variables in the model', it holds that 

cows on farm I take 6.1 days longer to conceive than cows on farm 2, 
each year a cow gets older results in a 3.6-day delay in conception, 
cows with metritis have a 14.4-day delay in conception relative to cows without 
metritis, 
cows with -ovar- have a 34-day delay in conception relative to cows without -ovar-, 
each day's delay in -firstbrd- results in a O.8-day delay in conception. 

All these assertions are interpreted as 'ali other things being equal' (eg cows compared with 
and without metritis should be on the same farm, of the same age, and have the same values 
of -ovar- and -firstbrd-). The confidence limits give a 'fee!' for the upper and lower limits of 
these associations. 

(continued on next page) 
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Example 14.12 (continued) 

It is worthwhile to remind ourselves that the coefficients represent associations. If we are 
reasonably certain that we have controlled for the major sources of confounding then we 
can act as if these coefficients are reftecting the causal effects of each variable on -calvcon-. 
However, before that, there is one major item to consider; specifically what is the objective 
of the model? If it is to estimate the impact of delayed time to first breeding then the previous 
coefficient for -firstbrd- can be interpreted as the causal effect (0.8 days) of -firstbrd-. The 
coefficients for the remaining variables represent direct effects only, and thus they do not 
represent causal coefficients for these three variables. 

If our goal was to estimate the causal effect of metritis, then neither -ovar-, nor -firstbrd­
should be in the model because they are intervening variables for the relationship between 
-ovar- and -firstbrd-. Thus, the correct estimate for the causal effect of -metritis- would be 
12 days (based on the model omitting -ovar- and -firstbrd-) and it is no longer significant. 
In this instance, inference about any causal effect different from zero would be based on the 
confidence limits (Robins and Greenland, 1986). 

Coef SE t p 95% CI 

metritis 11.984 9.054 1.32 0.188 -5.915 29.883 

If we have inadvertently, or by commission, placed an intervening variable in our model, 
then the coefficients for the other variables do not represent the causal effects as at least part 
of their effect is removed by the intervening variable. This feature of causal interpretation is 
very important to remember; it also points out that we can usually onlyestimate the causal 
effect of one or two variables in a given model. The coefficients for the remaining variables, 
if significant, represent only direct effects. 

independence unless the context is such that the assumption is likely to be broken. 
For example, the structure of the data might signal a lack of independence when 
there are multiple observations from a single animai, or multiple animai s from a 
herd. Methods for dealing with clustered data of this sort are presented in Chapters 
20-23. Another situation where errors are likely correlated is in time series analyses 
because the value of the outcome on one day is likely correlated with the value on the 
previous day. 

Each of the first three assumptions will now be discussed in more detail, and we can 
learn much about them by examining residuals, of ten using graphical methods, although 
formai tests are also available. Once we are satisfied that these three major assumptions 
have been met, we should pursue a more detailed search for specific observations that 
might be outliers, leverage points, and/or influential points. Because of the importance 
of residuals in these assessments we begin by describing different types of residual. 

14.8.1 Residuals 

The raw residual (r) is the difference between the observed and predicted value for the 
jth observation and has the same units as the outcome variable, 
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Eq 14.13 

where the subscript i denotes the particular observation from l to n. The raw residual 
ri is our 'estimate ' of the error for observation i, by subtracting its predicted mean from 
the observation itself. 

The mean of all residuals is zero, and the variance of each residual is: 
var(ri)=a2( l-h;) Eq 14.14 

where hi is the weight of the ith observation in determining fi' The hi is call ed the 
leverage of that observation and indicates the potential for this observation to have 
a major impact on the model. In a simple regression model hi has the following 
formula: 

Eq 14.15 

indicating that as the value of the predictor becomes farther from its mean, the leverage 
of the observation increases. Note that this 'potential' impact depends only on the 
predictor, not on the value of the outcome. Leverage has a more obvious meaning when 
the predictor is measured on the continuous scale. We retum to the subject of leverage 
in section 14.10.2. 

The raw residuals can be scaled by divi ding them by their SE. If all observations are 
used to estimate a2 this produces what are called standardised residuals (these are 
also called internally studentised residuals by other authors): 

r - lj 
s;- (j~ 

Eq 14.16 

The reference distribution for standardised residuals is a t( dfE), so for sample sizes 
with n>30, based on the Gaussian distribution, there should be only about 5% ofvalues 
outside of the interval (-2, 2). The major advantage ofstandardised residuals relative to 
raw residuals is that we have this absolute scale for what constitutes a large residual. 

The raw and standardised residuals are computed from the prediction for the lh 
observation from the regression equation based on all observations. That is, the 
observation itself contributes to the prediction. An influential observation might not 
show a large residual because of its impact on the prediction. To 'troly' examine 
whether the ith observation is in agreement with the model based on the others, we 
should compare it with the prediction based on the other n-l observations. Such 
(standardised) residuals are called studentised residuals or extemally studentised 
residuals (others denote them as deleted residuals, or jackknife residuals): 

Eq 14.17 
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where the '-i' notation indicates that observation i is not inc1uded in the prediction or 
the model's variance. These residuals are distributed as a t-distribution (with dfE-l; 
Table 14.2), assuming the model is correct. 

To summarise, standardised residuals might yield a large value if: 
• the observation is an outlier in the response (y) variable (ie ri is large), or 
• the observation is an outlier in the predictor variable(s) (ie hi is large), 

and studentised residuals might be large if either of the above are true, or if 
• the observation strongly affects the fit of the model (ie the model changes 

considerably when the observation is removed). 

We now proceed to use data on the residuals to assess the overall fit of the model. 
Although we separate the study of homoscedasticity from normality, in practice 
one should look at both, as weil as linearity before deciding on modifications (eg 
transformations) to the variables. 

14.9 EVALUATING THE MAJOR ASSUMPTIONS 

In general, evaluating the model assumptions relies heavily on graphical methods, 
although a large battery of statistical tests exists for evaluating different assumptions. 
However, we recommend the tests to be used only as a supplement to the graphical 
methods, and that caution should be exercised when tests and graphics lead to different 
conc1usions. 

14.9.1 Homoscedasticity 

A constant variance is ,an important assumption in linear regression. Without equality 
ofvariance (a situation call ed heteroscedasticity), the significance tests are at be st only 
approximate because the standard error is too small for some values and too large for 
others. One can examine the homoscedasticity assumption, by plotting the standardised 
residuals against the predicted values. If the variance is constant across the range of 
predicted Y-values, then a scatter of points resembling a horizontal band will result. If 
the variance is not constant, a pattern such as fanning (increased variance with larger 
Y), or con ing (decreased variance with larger Y) might result. These patterns suggest 
that the dependent variable might need to be transformed (or a weighted regression 
used). It might also be useful to plot standardised residuals against individual 
(continuous) predictors and look for similar patterns, and to compare the residual 
variances in the groups formed by level s of categorical variables (Example 14.13). The 
plot of standardised residuals against the predicted -calvcon- in our model is shown in 
Fig. 14.4. 

14.9.2 Normality ofresiduals 

To examine for normality one can plot the residuals in the form of a histogram 
(Fig. 14.5, Example 14.14). An alternative, and more sensitive display, is a normal 
probability plot (sometimes called Q-Q (quantile-quantile) plot) for the residuals. If 
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Example 14.13 Examining residuals for equality ofvariances 
data=daisy 

FiD. 14.4 Plot of standarcJised residuals vs predicted -calvcon- values 
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The approximately equal-width band of points suggests that our model likely meets the 
assumption of equal variances. A formai test of equal variances (homoscedasticity) is the 
Cook-Weisberg test for heteroscedasticity (ie the null hypothesis is Ho: homoscedasticity). 
In the example we get a value of 0.22 for a ,i-statistic with l df. This non-significant result 
(P>0.5) is consistent with a constant variance. 

they are normally distributed, the resulting plot will be (approximately) a straight line 
at 45° to the horizontal (see Fig. 14.5). 

If the residuals are skewed to the right, the normal plot will curve below the 45° line 
(the curve is convex), whereas if the residuals are left skewed the normal plot will curve 
above the 45° line (the curve is concave). If the residuals are too peaked (platykurtic), 
the normal plot will be sigmoid curved. Whether such departures from normality are 
most easily visualised in the normal plot or the histogram is largely a matter of taste. 
As an aid for the interpretation, the skewness and kurtosis of the standardised residuals 
can also be computed. 

14.9.3 Linearity ofpredictor-outcome association 

ln a regression model we assume that the relationship between the continuous 
predictor and the outcome is linear. With multiple continuous variables in the model, 
one approach to detecting non-linearity is to plot the residuals against each of the 
continuous predictor variables (see Example 14.15). The sensitivity of this process can 
be increased by using a kernel smoothing function to help you visualise any pattem 
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Example 14.14 Examining the assumption ofnormality 
data=daisy 

Fig. 14.5 Q-Q plot and histogram of reslduals 
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The Q-Q plot displays the quantiles of the residuals versus the quantiles of the normal 
probability distribution. Here we have a dish-shaped (convex) plot suggesting a right skewed 
distribution ofresiduals. This is verified in the graph displaying a histogram ofresiduals. 

Further evidence of a lack of normality can be obtained from a test for a normal distribution. 
One standard test is the Shapiro-Wilk's statistic, which for this example gives a value of 
W=O.954 (small values are critical for Ho: normal distribution) and P<O.OO1. Note Due to the 
dependence among the residuals, P-values from tests of normality are strictly speaking not 
valid (because they refer to testing an independent sample); however, the tests can be used as 
a rough guideline. 

The residuals are clearly not normally distributed in this example, so we need to consider 
improving this aspect of our model, as is discussed in subsequent examples and summarised 
in section 14.11. 

that might be present, but be carefui of patterns in areas where the data are sparse. 
Methods for assessing Iinearity and dealing with non-linearity are discussed much 
more fully in section 16.10. However, three possible approaches to solving the problem 
will be menti one d here. The first is to add a power term (eg quadratic and higher order 
polynomials, spline polynomials, fractional polynomials) to the X-variables. This has 
the drawback of involving several parameters for the effect of the original X-variable. 
The second approach is to try to transform the Y-variable (as discussed below). Many 
software programs have helpfui routines to guide the selection of an appropriate 
transformation. The third is to categorise the continuous predictor and include either 
regular or hierarchical indicator variables in the model in place of the continuous 
predictor variable. 

Suggestions for correcting a lack of linearity by transformation 
In order to correct a lack oflinearity, we can transform the outcome or the predictor(s) 
or both. As will become apparent, we often have to use transformations to correct for 
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Example 14.15 Examining the linearity of an association 
data=daisy 

LINEAR REGRESSION 

Fig. 14.6 Seatter plot of standardised residuals vs -age- with lowess smoother 
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The relationship, while not totally linear, is sufficiently dose for our purposes. This is 
confinned by using -age- and -age_sq- tenns in the model (see Example 14.7); the coefficient 
for the latter variable was not dose to significant. 

heteroscedasticity and lack of normality also. Sometimes correcting for one problem 
solves others, but sometimes correcting one problem makes a new problem on the other 
fronts. If we transform the outcome variable to improve linearity, this will definitely 
affect the variance and normality of residuals so these must be rechecked after 
transforming the outcome variable. Indeed we might have to rebuild the model. If we 
transform the offending predictor(s), then the variance and normality of residuals are 
likely to remain relatively stable. Thus, often the route of choice for improving linearity 
is to test quadratic, or other power transformations of the predictor(s) within a power of 
±2 to assess their significance. The following are guidelines: 

if the outcome increases, at a decreasing rate with X, then try a InX or a Xl/2 

transformation 
if the outcome increases, at an increasing rate with X, then try X2 or eX 
if the outcome decreases, at a decreasing rate with X, then try X l or e-X. 

If the relationship is more complex, it is often helpfui (as noted above) to use 
hierarchical indicators instead of the continuous scaled variable. We can choose the 
important cutpoints for the indicators by selecting them in a forward manner (section 
14.4.3). We have previously shown the use of hierarchical indicators for age as a 
predictor of -calvcon- (Example 14.6). 
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14.9.4 Specification bias 

If the model is correct, the residuals are uncorrelated with the predicted outcome (1'). 
However, if an important variable is missing from the equation, the model suffers 
from specification bias. This might reflect itself in a linear pattern of the standardised 
residuals with the predicted values of Y. For example, small (negative) residuals might 
be associated with lower values of Y and large (pos iti ve) residuals with large values of 
y suggesting that one or more important predictor variables are missing. SpecificaIly, 
the sampling units with positive residuals have something in common that also gives 
them large observed values of Y, and this feature might help identify the missing 
variable. Unfortunately, with a 'weak' (low R2) model, it is difficult to discern some of 
these patterns because of the relatively large variability in ri' There are formai tests for 
specification bias, but they are beyond the scope of this text. 

14.9.5 Correcting error distribution problems: transformations ofthe outcome 

There are a number of possible transformations but only the more frequently used 
one s are menti one d here. Most program s provide a variety of eas ily accessed 
transformations so that we can readily try different approaches. The selection of the 
correct transformation also is aided by knowledge of what has worked in similar 
situations in the past, although formai assessment of the appropriate transformation 
remains useful. Some general rules: 

• if the variance of the residuals increases (mildly) with the outcome, and the 
underlying relationship is not necessarily !inear, then a square-root transform of Y 
is often useful (it is the variance-stabilising transform for variances proportional to 
the mean), 

• if the 'fanning' is strong and increases with the outcome, a logarithmic 
transformation of Y often works (the variance-stabilising transform for variances 
proportional to the mean squared ), 

• if the 'fanning' decreases with the outcome and the relationship of X and Yis nearly 
linear, a reciprocal transformation of Y could prove helpfui, 

• if Y is a proportion (p) (or more generally, an outcome in a bounded interval but 
without a binomial denominator) the variance-stabilising transformation for 
proportions is arcsin(JP). 

Often one of these suggested solutions will solve the problem. However, sometimes a 
more formai approach to deciding the optimal transformation is needed. In this regard, 
if we are concerned about a lack of normality, there is a family of transformations call ed 
Box-Cox transformations. The intent here is to determine the power transformation 
YA (except for A=O, see below) which will make the distribution of the errors as close to 
an independent Gaussian sample as possible. The Box-Cox analysis, available in most 
software, computes the value of A which best 'normalises' the errors us ing an iterative 
maximum likelihood procedure. The Box-Cox transforms can only be used on positive 
numbers (ie >0), but they can be applied to the outcome variable, the predictor(s) or 
both. Some examples of Box-Cox transformations (where y* is the transformed value 
of y) are: 

if A=I, we use Y*=Y 
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ifA=1I2, we use Y*= .tY 
if ,.1,=0, we use Y*=lnY, 
if ,.1,=-1, we use Y*=-lIY. 

L1NEAR REGRESSION 

Usually it is sufficient to round the estimated A to the nearest 1/4 unit (ie ,.1,=0.45 would 
be ,.1,=1/2), or to pick a 'nice' value within the 95% confidence interval for A. 

Note that the analysis should be based on the residuals (from an appropriate Iinear 
model), not on the distribution of the outcome itself. It should also be noted that 
Box-Cox transforms is only one (and commonly used) type of transformation; there 
is no guarantee that the optimal A works weIl (only that it is the best among the power 
transforms), and many other transformations might be relevant. For example, if the 
distributional problem with the residuals is mainly one of skewness, an altemative 
transform is of the form Y*=ln(Y-c), where c is a value to be selected to help correct the 
skewness. An advantage of this transform is that it is not constrained to transforming 
only positive numbers. The application ofthese methods to our example data is shown 
in Example 14.16. 

Example 14.16 Box-Cox and skewness transformations 
data=daisy 

In Example 14.14, the residuals were clearly non-norma!. No transformations were found 
that correct this without these same transformations leading to heteroscedasticity ofresiduals. 
The suggested Box-Cox power transform was (calvcon)o.46o and the suggested skewness 
correction transform was In(calvcon-13.5). Note The Box-Cox transformation was computed 
after adjustment for other predictors in the model (and hence adjusts the residuals) while the 
skewness transformation only works on the original outcome variable -calvcon-. However, 
the application ofthese transformations improved but did not solve the lack ofnormality and 
they both led to heteroscedasticity in the residuals. 

A major reason for the non-normality in this data set is 'structural' in that -calvcon- has a 
constrained lower limit and although the observed -calvcon- can be less than the predicted 
value, given that -calvcon- cannot be less than -firstbrd-, it is more likely that there will 
be more large positive residuals than large negative residuals. Also, because applying the 
transformations did not change any inferences about the significance of the variables in the 
model (results not shown), in order to enhance interpretation we chose to leave the variables 
in their original scales. 

14.9.6 Interpreting transformed models 

One problem with transformations is that they change the structure of the model and 
interpretation can become more difficult. Among transformations of the outcome, only 
the log transformation allows for back-transformation of regression coefficients (to 
give multiplicative effects on original scale). In general, rather than trying to explain 
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the model in a mathematical sense, we suggest that you make extensive use of graphical 
techniques, compute the predicted values and plot the back-transformed outcomes. The 
key is to obtain the predicted outcome (and any confidence limits) in the transformed 
scale and then use the back-transform to determine the outcome in the original scale 
- on the assumption that explanations of effect are much easier in the original scale. 
Sometimes it is advantageous to leave the model in its transformed format. For 
example, it has now become standard practice to use log transformed somatic cell 
counts in model s of factors that affect cell counts. 

When applying transformations to multivariable model s we need to be carefui when 
making predictions because additive and linear models in one scale become (possibly 
strongly) non-linear and non-additive (ie showing interaction) in another scale. Thus 
the outcome depends on the values of all of the variables in the model even though 
there is no actual interaction. A recommended practice here is to use the mean values 
for variables not of direct interest and a range of values for those variables of primary 
interest. Again, ali confidence limits etc are determined in the transformed scale and 
then back-transformed into the original scale as necessary. 

14.9.7 Correcting distribution problems using robust standard errors 

A number of distributional problems can be dealt with using robust standard errors. 
These are discussed in more detail in section 23.2.3 as they might also playarole 
in dealing with clustered data. Robust SEs are generally larger than regular SEs and 
hence, the CIs for the coefficients are wider (see Example 14.17). Ifrobust errors are 
used, be carefui not to use the F-test to assess the model as it is no longer valid. Also, 
the MSE no longer estimates (l2 as there is no single parametric value. 

14.10 ASSESSMENT OF EACH OBSERVATION 

Our previous efforts were directed toward evaluating the major assumptions on which 
linear regression models are based. Here we assess the fit ofthe model on an observation 
by observation basis. SpecificaIly we look for: 

cases that are not weil fit by the model and hence have large residuals; some of 
these might be deemed outliers. 
cases with unusual X-values; these are called leverage observations. 
cases that have an unduly large impact on the model; these are called influential 
observations. 

Our rationale for pursuing this observation-by-observation analysis is that we want to 
be sure the model is correct for the great majority of the study subjects, and ifwe can 
identify specific instances of observations that do not fit, or have a big influence on, our 
model, it can help us identity the reason(s) for that impact. 

There are two general approaches to assist in this task, one is to use graphical techniques 
to detect observations with an unusual value (ie atypical relative to the others) on the 
test statistic, and the other is based on identitying observations that exceed aspecific 
cutpoint. Both have their advantages, the key is to try a variety of approaches and see 
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Example 14.17 Robust standard errors 
data=daisy 

LINEAR REGRESSION 

In the model shown below we requested that robust standard errors be calculated. 

'Usual' Robust 

Coef SE SE t P 95% CI 

farm 1 -6.108 5.551 5.663 1.08 0.283 -5.089 17.305 

age 3.615 1.353 1.279 2.83 0.005 1.086 6.144 

metritis 14.368 6.416 6.956 2.07 0.041 0.616 28.120 

ovar 34.007 7.835 8.023 4.24 0.000 18.144 49.870 

firstbrd 0.777 0.078 0.064 12.08 0.000 0.650 0.904 

constant 23.585 8.199 8.317 2.84 0.005 7.140 40.029 

The coefficients are identical to those in the original regression (Example 14.12). The SE for 
metritis, as an example, has increased by about 8%, but its contributíon is still statistically 
significant. Our preference is to use transformations whenever possible, rather than relying on 
robust standard errors to 'solve' the distributional problem(s). 

which you prefer, but there is no need to use all possible approaches in agiven dataset. 
Although we use graphical techniques regularly, here we present only tabular results. 

14.10.1 Outliers 

In general, an outher is an observation in a dataset which is far removed in value 
from the others in the dataset. In multivariable datasets, we need to make precise the 
meaning of 'far removed in value', because it may be only in the combination ofseveral 
variables that an observation becomes outlying. In regression analysis, we distinguish 
between outliers in the outcome variable and outliers among the predictor variables (not 
involving the outcome). 

An outlier in the outcome is detected by a (numerically) large residual, where 'large' 
is viewed relative to both the other observations and to what would be expected for a 
dataset of the same size. 

It is important to note that, although we are interested in identifying outliers, we do so 
largely to try and explain/understand why they fit poorly, not to remove them without 
reason. Outliers inflate the standard error of the estimate and hence, reduce the power 
of statistical tests. They might arise because of transcription or data entry errors, or 
they might signal that we are missing important covariates that could 'explain' the po or 
fitting points. In most instances, one should not be unduly concemed about outliers 
unless their standardised value is greater than 3, although values between 2 and 3 
might be having an impact on the model. Recall that in a normal distribution, a small 
percentage of observations would be expected to lie outside of 3 SDs. 
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If an observation is suspected to be an outlier it can be assessed with a t-test based on 
the studentised residual. However, the probability associated with this test depends 
on whether the observation was suspected of being an outlier a priori or not. If an 
observation was suspected before hand, then the P-value is found by relating the 
studentised residual to a t-distribution with dfE-I degrees of freedom. If we are testing 
subsequent to ob serv ing the residuals, we should multiply the above probability by the 
number of observations (n) (equivalent to using the Bonferroni adjustment). 

Some general rules in managing outlier observations include: 
identify observations with large standardised residuals; 
try and find an obvious explanation for them, such as a recording error or 
erroneous test result (ie equipment or operator problem); 
if there is no recording error then think about what factors the outliers might 
have in common that, ifmeasured, could explain their lack of fit; 
try refitting the model without the outliers to see the effect on the model; and 
if the observations are to be deleted (which they rarely are), be sure to explicitly 
record this for yourself and those who read your research report. (It is hard to 
justify the deletion of observations.) 

Although deleting outliers will improve the fit of the model to the sample data, it 
might actually decrease the model's validity as a predictor for future observations. In 
Example 14.18, we have presented the five large st positive and negative residuals from 
our model along with the values of the predictor variables; this presentation often helps 
you understand the reason for the departures from expectation. 

14.10.2 Detecting 'unusual' observations: lever age 

This activity focuses on identifying subjects with unusual values in the Xs and is 
particularly applicable when many continuous variables are present in the model. 
For this purpose, we use the leverage from Eqs 14.14 and 14.15 which indicates the 
potential for the ith observation to have a major impact on the model. 

In general, observations with a value of (at least) one of the predictors that is far 
from the mean will tend to have a large leverage; note that we always have 1/n:Sh;:SI. 
Observations with a very high leverage may have a large influence on the regression 
model; whether they do or not depends on the observed Y-values. A common rule is 
to examine observations that have leverage values >2(k+ l )/n, where k is the number 
of predictors in the model (or the number of regression parameters, excluding the 
intercept). There is a fair bit of arbitrariness in this cutpoint (another commonly used 
value is 3(k+l)/n), and hence one should initially look for observations with relatively 
extreme leverage values regardless of the cutpoints. Any observation with a leverage 
above 0.9 can be considered as extreme in its predictor values. 

Note that observations with a large leverage often have a very small residual (as is 
apparent from Eq 14.14), and thus, they do not show up when searching for large 
residuals. Having identified potentially influential observations, we proceed to identify 
their actual influence on the model. 
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Example 14.18 Individual observation assessment using residuals 

The results be\ow are based on the previously discussed multiple regression model for 
-calvcon- with the five predictors -farm!-, -age-, -metritis-, -ovar-, and -firstbrd-. 

Potential outliers 
The largest five negative residual (observed < predicted) observations: 

raw standardised studentised 
cownum calvcon age firstbrd residual residual residual 

114 165 6 165 -62.950 -2.115 -2.142 

68 90 3 90 -54.468 -1.805 -1.820 

48 147 6 147 -52.598 -1.738 -1.751 

40 131 4 131 -48.937 -1.615 -1.625 

158 114 3 114 -43.006 -1.423 -1.428 

The largest five positive residual (observed > predicted) observations: 

cownum calvcon age firstbrd raw standardised studentised 
residual residual residual 

122 154 3 78 58.970 1.900 1.919 

96 134 2 56 59.678 1.930 1.949 

75 159 3 71 69.409 2.237 2.270 

133 154 3 49 75.393 2.455 2.501 

1 193 4 67 88.533 2.891 2.971 

None of these residuals are very extreme but there are two or three cows with relatively large 
positive residuals. If we were to note the observation with the largest studentised residual 
(cow number l), the P-value associated with a value of 2.971 from a t(138)-distribution is 
0.0035; when this is multiplied by the number of observations (n=145), it is clearly non-
significant (P=0.51). 

Leverage observations 
Here we list the five observations with the large st leverage values: 

standardised 
cownum calvcon age metritis ovar firstbrd leverage residual 

84 76 11 O O 54 0.114 -0.995 

15 270 9 O 1 186 0.118 1.204 

117 140 3 1 1 49 0.120 0.444 

92 146 11 1 O 59 0.131 0.770 

58 216 14 O 1 108 0.219 0.643 

The two most commonly used cutpoints for leverages (2(k+l)/n and 3(k+1)/n) are 
2*6/145=0.083 and 3*6/145=0.124. 

(continued on next page) 
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Example 14.18 (continued) 

With the exception of one old (14 years) cow, none of the cows has realIy extreme values of 
the predictor variables, although alI exceed the lower cutpoint. Three (perhaps four) of the 
cows were rather old, while one (#117) was young, had both disease s and was bred very early 
at day 49 postpartum. With this waming, we might accept that removing the few older cows 
(eg >8) in our dataset might be a more effective way to model factors affecting -calvcon- for 
the majority of cows. However, we examine the actual impact of these observations below. 

Inftuential observations 
Here we display the data for subjects with the five largest negative DFITS: 

cownum calvcon age metritis ovar firstbrd Cook'sO OFITS 

114 165 6 1 165 .0778 -.692 

68 90 3 O 90 .0403 -.496 

48 147 6 O 147 .0346 -.460 

40 131 4 O 131 .0286 -.417 

158 114 3 O 114 .0239 -.380 

and the data for subjects having the five large st positive DFITS: 

cownum calvcon age metrltis ovar firstbrd Cook's D OFITS 

15 270 9 O 186 .0324 .441 

135 242 6 O 1 129 .0376 .479 

133 154 3 O O 49 .0379 .486 

174 161 10 O O 67 .0404 .496 

193 4 O 67 .0601 .617 

Note that only one (#15) of the potentialleverage subjects was unduly infiuential so removing 
the older cows' data would not change the model substantially. However alI of these 
observations had DFITS values that exceed the eritical value of ±0.41 (2*J6j145). The model 
changes when they are omitted, but not drastically, and because we have no explicit rationale 
for removing them, they should stay in the model. 

14.10.3 Detecting influential observations: Cook's distance and DFITS 

An intuitive test of an observation's overall influence is to amit it from the equation, 
recalculate the model and note the amount of change in the predicted outcome. If an 
observation is influential the change will be large; if not, the change will be small (see 
Example 14.18). This approach forms the basis ofCook's Distance Di which is the sum 
ofsquared differences in fitted values with and without observation i (summed over all 
other observations and scaled suitably). A more direct interpretation of Cook's distance 
derives from the formula: 

Eq 14.18 

emphasising that a large standardised residual, a large leverage, or both can lead to 
undue influence. 
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A commonly suggested cutpoint is to compare the Cook's value with the F(k+ 1, n-k-l) 
distribution. Ifit exceeds the 50% percentile (not 5%), which is essentially 1, then the 
observation should be investigated. However, in Ouf practical experience, the values of 
Di rarely exceed this cutpoint, so it is recommended to look instead for values that are 
extreme relative to the others in the data. 

A similar approach is used with a statistic known as DFITS (or DFFITS). It is an 
acronym that stands for 'difference in fit' between when the observation is in the model 
versus when it is out. DFITS indicates the number of standard errors change to the 
model when that observation is deleted. The following formula for DFITS shows its 
strong similarity to Cook's distance: 

~ 
DFITSi = 'iiVHl 

Eq 14.19 

Thus, the DFITS statistic is based on the studentised residual and retains its si n. A ain, 
if the DFITS numerically exceeds a value of, for example, 1 for n<120 or 2 (k + !}/n in 
a larger dataset, it means that if that observation was deleted, the model would change 
by a relatively large amount (recall that k is the number of predictor variables in the 
model). As with outliers, be hesitant to remove influential observations without good 
reason. In general, we do not remove influential observations unless the data are known 
to be incorrect. If observations are removed, this, and the reason( s) for their removal, 
must be drawn to the attention of those reading your research results. 

14.10.4 Detecting influential values ofspecific predictors 

Given an exposure variable of interest, one can assess the impact of deleting a specific 
observation on the value of the regression coefficient for that variable. The statistic 
used for this is known as a delta-beta (DB) and reflects the number of standard errors 
by which the specific regression coefficient changes when that observation is deleted. 
Thus it help s identify if a particular variable has a large influence on the fl for that 
variable. Critical values for n<120 are 1 and for larger datasets 2/..[;; . Again, this value 
might be too sensitive and initially one should just focus on observations with very 
extreme DB values. 

14.11 COMMENTS ON THE MODEL DEFICIENCIES 

In our examples we have taken you through the basic steps of assessing a linear 
regression model. We did have a few problem cows (subjects) that were minimally 
influential, or poor fitting, but we had a nasty problem relating to the lack of normality 
with more positive residuals than negative residuals. The reality is that if we correct 
the normality assumption, we create unequal variances. Having tried a number of 
transformations and seeing the model having similar coefficients we will content 
oUfselves with these efforts. Because the outcome in these examples is time to an 
event, we might consider reanalysing these data using survival methods discussed in 
Chapter 19. 
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SAMPLE PROBLEMS 

Use the dataset pig to evaluate the effects ofvarious diseases (and other factors) on the 
average daily gain of pigs. These are a subset of data on the growth performance and 
abattoir findings of pigs; the dataset is described further in Chapter 27. The variables 
we will use are explained below. 

Field Description Codes/units 

farm 

sex 

Farm identification code 

Sex of the pig 

1-15 

O = female 

1 = castrated male 

worms Count of nematodes in small intestine Continuous 
at time of slaughter 

lu Lung score for enzootic pneumonia 0= negative (no lesions) 

1 = mild «10% affected) 

2 = moderate (10-20% affected) 

3 = severe (>20% affected) 

ar Atrophic rhinitis score (0-5 in half-point O = no lesions 
increments 

5 = complete erosion of turbinates 

adg Average daily gain in kg (based on an Continuous 
assumed birth weight of O kg and a 
live weight at slaughter estimated form 
the carcass weight 

pn Enzootic pneumonia (present or 
absent) - not in the dataset but you 
will create this variable 

Exercise 1 
1. Create -pn- (a variable indicating the presence/absence oflung lesions). 
2. Compute descriptive statistics for aU continuous variables and frequency 

distributions for aU categorical variables. Do ali of the values look reasonable? 
3. What are the simple pairwise correlations between -worms-, -pn-, -ar- and 

-adg-? Create some scatterplots to examine the data. What do the plots suggest 
about the nature of the relationships? 

4. Carry out simple linear regressions for each of the factors -worms- and -ar-o 
Interpret the results. 

5. What is the 95% CI for the mean value of -adg- for a pig with an average worm 
burden? What is the forecast interval (95% CI for -adg- for an individual pig) for a 
pig with an average worm burden? 

6. What is the 95% CI for the mean value of -adg- for a pig with no worms? What is 
the forecast interval (95% confidence interval for -adg- for an individual pig) for a 
pig with no worms? 
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Exercise 2 
Use the dataset that you created in the previous exercise to evaluate the effects of 
various diseases (and other factors) on the average daily gain of pigs. 
l. Fit a regression model for -adg- using -worms-, -ar-, -sex- and -pn- as predictor 

variables. Interpret the results. 
2. Inc\ude a series of indicator (dummy) variables representing 'farms ' and refit the 

regression. 
3. Perform a multiple partial F-test to determine if the dummy variables representing 

farms are a significant 'group' of predictors when added to the model containing 
-worms-, -ar-, -sex- and -pn-. 

4. Convert -ar- to a four-Ievel categorical variable called (ar_c4) coded as follows 

Range of values in ar 

o 

2 

3 

ar = O 

O<ar:S;2.0 

2.0<ar:S;4.0 

4.0<ar 

5. Create a set ofindicator variables for farms call ed -fOl- to -f14-. 
6. Assess the assumption that the relationship between -ar- and -adg- is linear (hint: fit 

a model with ar_c4 along with -worms-, -pn- and f01..f14). 
7. Compute a partial F-test to assess the significance of -pn- in the above model (this 

effectively gives the same answer as the t-test of the coefficient). 
8. Create a new variable representing severe -ar- (ar2:4.5). Call it -ar_sev-. 

Investigate possible interactions between the disease variables (-worms-, -pn- and 
-ar_sev-) and -sex- to see if the disease effects depend on the sex of the pigs. 

9. Is -sex- a confounding variable for the relationships between the disease variables 
and -adg-? 

10. Is -farm- a confounding variable for the relationships between the disease variables 
and -adg-? 

ll. Build an appropriate model for -adg-. Keep in mind that the primary objective is to 
determine how diseases affect -adg-. 

Exercise 3 
1. Evaluate the model built in the previous exercise by looking at various regression 

diagnostics. Before you start this, we would suggest that you sort the data by 'farm, 
sex and adg' and then generate a unique pig identification number 

2. Compute each of the following and become familiar with them by scanning the 
computed values: 

predicted values 
raw residuals 
standardised residuals 
studentised residuals 
leverage values 
Cook's distance values 
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DFITS 
delta-betas for the variable -pn-. 

3. Use the above to evaluate each of the following assumptions: 
homoscedasticity 
normality of residuals 

4. Did you identify any problems in question 3. See what happens if you make a 
natural log transform of -adg-. AIso evaluate Box-Cox transformations to see if 
there is a more appropriate transformation scale. 

5. Refit the model with -adg- (not log transformed). Identify if there are any of the 
following, and if so, determine why they have arisen and evaluate what effect they 
are having on the model: 

outliers 
high leverage points 
infiuential observations. 

Exercise 4 
l. Using the dataset daisy, build a model us ing only the 'disease variables' to see 

their relationship with the days to conception (-calvcon-). Interpret the results. 
2. What model is appropriate if your intention is to identify the causal effect of 

-pyomet- on -calvcon-? 
3. Now add -firstest- to the model. Interpret the results. 
4. Repeat Exercise 3 for assessing the model. 
5. Log transform -calvcon- to create -calvcon_ln- and interpret the effect of -pyomet­

on this model compared with the effect obtained from the non-transformed model. 
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15 

MODEL-BUILDING STRATEGIES 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Develop a 'full' (maxim al) model which incorporates your biological understanding 
of the system being investigated. 

2. Carry out procedures to reduce a large number of predictors to a more manageable 
sub set. 

3. Build regression-type model s while considering statistical and non-statistical 
criteria. 

4. Evaluate the reliability of a regression-type model. 

5. Present the results from your analysis in a meaningfuI way. 
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15.1 INTRODUCTION 

When building a regression model, we need to balance the desire to get the model 
which 'best tits' the data with the desire for parsimony (simplicity in the model). As will 
become apparent, the definition of 'best fit' depends on the goal of the analysis. 

One goal might be to come up with the best model for predicting future observations. In 
this case, the details of the model (eg the effects of specific predictors) might be oflittle 
consequence but we want to keep any variables whose relationship with the dependent 
variable is questionable out of the model. If the latter are allowed in and a future 
observation has a relatively extreme value for one of those variables, the prediction 
might be inaccurate. 

A sec ond goal could be to obtain the most preci se estimates possible of coefficients 
for selected variables of interest. This is often our goal when trying to elucidate causal 
associations. In this strategy, carefui attention must be paid to possible interaction and 
confounding effects (see section 15.2.2). 

The steps involved in building a regression model are: 
l. specity the maximum model to be considered (ie identity the outcome and the 

full set ofpredictors that you want to consider) 
2. specity the criterion (criteria) to be used in selecting the variables to be included 

in the model 
3. specity the strategy for applying the criterion (criteria) 
4. conduct the analyses 
5. evaluate the reliability of the model chosen 
6. present the results. 

Unless otherwise specified, the discussions that follow relate to alI types of regression 
model, not just linear regression models. 

15.2 SPECIFYING THE MAXIMUM MODEL 

The first step in specitying the maximum model is to identify the outcome variable and 
determine whether it is likely to need transformation (eg natural log transformation) or 
other form of manipulation (eg recategorisation of a categorical outcome ). Discussion 
of issues related to the outcome variable is presented in chapters dealing with specific 
modelling techniques (eg Chapter 14 for linear regression models). 

The maximum model is the model with alI possible predictors of interest included. 
There are pros and cons to making the maximum model very large. On one hand, it will 
prevent you from overlooking some potentially important predictors. However, on the 
other, adding a lot of predictors increases the chances of: 

a. collinearity among predictor variables (iftwo or more independent variables are 
highly correlated, the estimates of their coefficients in a regression model will 
be unstable), and 
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b. including variables that are not important 'in the real world' but happen to be 
significant in your dataset. (Interpretation of these results might be difficult and 
the risk of identifying spurious associations is high.) 

Bear in mind that building the maximum model is as much a scientific/clinical task as it 
is a statistical one. In general, the desire for parsimony should be your guiding light but 
do not exclude variables that you have good reason to believe (ie for biological reasons) 
should be in the model. Remember, the goal of most statistical analyses is to extract 
meaningfui results from acomplex dataset. If the final results are almost as complex 
as the original data, nothing has been gained. (Statistically speaking this would happen 
if the number of regression coefficients equalled the number of observations in the 
dataset). 

When specifying the maximum model, you need to identify which variables should be 
included in the model-building process, how many should be included and whether or 
not interaction terms need to be considered. 

15.2.1 Building a causal model 

It is imperative that you have a causal model in place before you begin the model­
building process. This will identify potential causal relationships among the predictors 
and the outcome of interest. For example, if you were interested in evaluating the 
effects of retained placenta (RETPLA) on reproductive performance (as measured by 
the calving-to-conception interval) in multiparous dairy cows and had recorded data 
on: 

the lactation number (surrogate measure for cow's age) (LACT) 
previous lactation milk production (kg) (MILK) 
dystocia (DYST) 
retained placenta (RETPLA) 
metritis (METRITIS) 
days from calving to first service (CFS) 
days from calving to conception (CC), 

then a putative causal diagram might look like Fig. 15.1. 

Fig. 15.1 Putative causal diagram for effects of RETPLA on reproductive 
performance 

,----r-----_+_ RETPLA 

LACT DYST~ \'~ys 
1---------. METRITIS MILK 

If the objective of the study was to quantify the effects of RETPLA on the calving to 
conception interval, you would NOT include any intervening variables (metritis, days 
to first service) in the regression model. Inclusion of these variables would remove any 
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of the effect from RETPLA that was mediated through the intervening variables. On 
the other hand, if lactation number is suspected to be an important confounder, it might 
be designated to remain in the model regardless of whether or not it is statistically 
significant. (See Chapter 13 for a more detailed discussion of confounding. ) 

Even if a study has a very large number of predictors, it is essential to start with a causal 
structure in mind and this can often be drawn by grouping variables into logical clusters 
(eg all farm management variables together, all measures of disease level s together). 

15.2.2 Reducing the number of predictors 

One is often faced with building regression models us ing datasets with a large number 
of predictor variables. One rule of thumb suggests that there must be at least 10 
observations for each predictor considered for inclusion in the model. There are a 
variety of ways of reducing the number of variables that need to be considered for 
inc1usion in a regression model. These inc1ude: 

screening variables based on descriptive statistics 
correlation analysis of independent variables 
creation of indices 
screening variables based on unconditional associations 
principle components analysis/factor analysis 
correspondence analysis. 

These will each be reviewed briefly and more detail can be found in Dohoo et al (1997). 
However, before any reduction in the number of independent variables is undertaken, 
it is essential to identify the primary variable s of interest and any other variables for 
which there is already evidence that they might be confounders or interacting variables. 
These should always be retained for consideration in the model. 

Before proceeding with an overview of the approaches for reducing the number of 
variables, we must point out that, in many cases, the most appropriate procedure would 
be to design a study which was much more focused and which collected high-quality 
data on far fewer predictors. This will greatly reduce the risk of identifying associations 
for which making a causal inference is very precarious. 

Screening variables based on descriptive statistics 
Descriptive statistics (means, variances, percentiles etc for continuous variables and 
frequency tabulations for categorical variables) can be very helpfui in identifying 
variables which might be of little value in your model. Keep in mind that, in general, 
you want to keep variables that you are confident have been measured accurately and 
precisely, and which are relatively complete. Some specific guidelines to consider are: 

Avoid variables with large numbers of missing observations. 
Select only variables with substantial variability (eg if alm ost ali of the animals 
in a study are males, adding sex as a predictor is not likely to be helpfui). 
If a categorical variable has many categories with small numbers of observations 
in each, consider combining categories (if this makes biological sense), or 
eliminating the variable. 
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Correlation analysis 
Examination of all pairwise correlations among predictor variables will identify pairs of 
variables that contain essentially the same information. Inc1usion of highly correlated 
variables will result in multicollinearity in the model, producing unstable estimates of 
coefficients and incorrect standard errors. Collinearity will certainly be a problem with 
correlation coefficients greater than 0.9, but could occur at lower levels. If pairs of 
highly correlated variables are found, one of them should be selected for inc1usion in 
the model based on criteria such as: biological plausibility, fewer missing observations, 
ease and/or reliability of measurement. Note Examining correlations among variables 
in a pairwise manner will not necessarily prevent multicollinearity because the problem 
can also arise from correlations among linear combinations of predictors. However, 
screening based on pairwise correlations will remove one potential source of the 
problem. 

Creation of indie es 
It might be possible to combine a number of predictor variables that are related into 
a single predictor that represents some overall level of a factor. This might be done 
subjectively based on the perceived importance of the contribution of a number of 
factors. For example, an index representing the level of hygiene in stalls for dairy 
cows might be created as a linear combination of scores for factors such as quantity 
of bedding present, wetness of the bedding, amount of manure present and amount of 
fecal soiling of the udder and flanks of the cows. The weights assigned to each factor 
might be subjectively assigned although, ifpossible, they should be based on evidence 
from previous research. Alternatively, data on a number of factors can be combined in 
an objective manner if procedures to do so exist. For example, data on fan capacity, 
size and shape of air inlets and barn size might be used to compute the number of air 
changes per hour in a swine barn. This might then be expressed as the proportion of 
a recommended ventilation level. One drawback to the creation of indices is that it 
prec1udes the evaluation of the effects of individual factors which were used to create 
the index (see discussion of suppressor variables in section 13.11.8). 

Screening variables based on uneonditional assoeiations 
One of the most common ly used approaches to reducing the number of predictor 
variables is to select only those that have unconditional associations with the outcome 
that are significant at some very liberal P-value (eg 0.15 or 0.2). The types of test used 
to evaluate these associations will depend on the form of the outcome and predictor 
variables. However, simple forms of a regression model (eg a linear or logistic regression 
model with a single predictor) will always be appropriate for this investigation. 

One drawback to this approach is that an important predictor might be exc1uded if its 
effect is masked by another variable (ie the effect of a predictor only becomes evident 
once a confounder is controlled) (see distorter variables, section 13.11.7). Using a 
liberal P-value helps prevent this problem. Another approach is to add all eliminated 
predictors, one at a time, back into the final model. If the confounder was inc1uded in 
the final model, then the eliminated predictor might then tum out to have a statistically 
significant association and be added back into the model. 
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This process of screening predictors individually can be extended to include building 
multivariable models using mutually exclusive logical subsets of predictors to identify 
the key predictors in each subset, which are then retained for consideration in a final 
multivariable model. For example, Lofstedt et al (1999), when evaluating a wide range 
of possible predictors of septicemia in diarrheic calves, built separate models us ing 
demographic and physical examination data, clinical chemistry data and hematology 
data. The important predictors from each ofthese three model s were then evaluated in 
an overall model. 

Principle components analysis/factor analysis 
Principle components analysis and factor analysis are two closely related techniques 
that can be used to consolidate the information contained in a set ofpredictor variables 
into a new set ofuncorrelated (ie orthogonal) predictor variables. A detailed discussion 
of the techniques is beyond the sc ope of this book but they will be summarised briefty. 
Both are designed primarily to work with quantitative (continuous) predictors, but 
techniques are available to allow categorical predictors to be included. 

Principle components analysis is used to convert a set of k predictor variables into a 
set of k principle components with each successive component containing a decreasing 
proportion of the total variation among the original predictor variables. Because most 
of the variation is often contained in the first few principle components, this sub set is 
often selected for use as predictors in the regression model. The composition of the 
principle components does not vary depending on the number of components selected 
for retention. Once the regression model has been built with this subset of the principle 
components, the resulting coefficients can be back-transformed to obtain coefficients 
for the full set of original predictors. This resulting set of coefficients will be more 
stable than those from a model built directly from the original predictors because the 
problem ofmulticollinearity has been eliminated. However, there will be no evaluation 
of the statistical significance of each of the predictors and hence, no identification of 
which ones are most 'important'. 

Factor analysis is a closely related technique, but is based on the assumption that a 
set of factors that have inherent meaning can be created from the original variables. 
For example, Humik et al (1994a,b) used factor analysis to create six factors that 
they claimed represented specific types of swine farms, in a study of risk factors for 
respiratory disease in swine. Unlike principle components, the composition of the 
factors does vary as the number of factors selected for creation vari es. The strength of 
a factor analysis rests with the plausibility of the assumption that the factors are truly 
measuring an underlying latent structure (eg swine farm type). If this assumption is 
valid, then knowing which ofthose underlying structure s (eg farm type) are associated 
with the outcome (eg respiratory disease) might be as important as information about 
individual predictor variables. Determining which of the original predictors are 
important determinants of the outcome is a subjective process based on determining 
which predictors are highly correlated (or have high 'factor loadings') with factors 
found to be significant predictors of the outcome. As with principle components 
analysis, there is no statistical testing of individual predictors. 
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Correspondence analysis 
Correspondence analysis is a form of exploratory data analysis designed to analyse 
the relationships among a set of categorical variables. One of the main objectives of 
correspondence analysis is to produce a visual summary (usually two-dimensional) 
of the complex relationships that exist among a set of categorical variables (both 
predictors and the outcome). The two axes are factorial axes which reffect the most 
'inertia' (variability) in the original predictor variables. The result is a scatterplot which 
identifies clusters of predictors that are closely associated, with clusters farther from 
the intersection of the axes hav ing stronger associations. The values of the outcome 
variable (also categorical) can also be projected on the same axes to determine which 
clusters of predictor variable values are associated with the outcome(s) of interest. A 
correspondence analysis of a subset of the risk factors for swine respiratory disease is 
presented in Example 15.1. 

While principle components analysis, factor analysis and correspondence analysis can 
be used to deal with the problem of large numbers of independent variables, they are 
perhaps better viewed as complementary techniques to model-building procedures. 
They provide insight into how predictor variables are related to each other and 
ultimately, into how groups of predictors are related to the outcome of interest. 

15.2.3 Identifying interaction terms of interest 

It is important to consider including interaction terms when specifying the maximum 
model. There are five general strategies for creating and evaluating two-way 
interactions. 

l. Create and evaluate all possible two-way interaction terms. This will only be 
feasible if the total number ofpredictors is small (eg S8). 

2. Create two-way interactions among all predictors that are significant in the final 
main effects model. 

3. Create two-way interactions among a11 predictors found to have a significant 
unconditional association with the outcome. 

4. Create two-way interactions only among pairs of variables which you suspect 
(based on evidence from the literature etc) might interact. This will probably focus 
on interactions involving the primary predictor(s) of interest and important 
confounders. 

5. Create two-way interactions that involve the exposure variable (predictor) of 
interest. 

Regardless of how the set of interaction term s is created, you could subject them to 
the same sort of screen ing processes described above to reduce the number included 
in the model-building process. If an interaction term is to be included in the model, 
then it is recommended that the main effects that make up that interaction term also be 
included. Evaluation ofa large number oftwo-way interactions could identify spurious 
associations, due to the fact that a large number of associations are being evaluated. 
Two-way interactions between continuous predictors are difficult to interpret, and, 
whenever significant, should be evaluated by fitting a range of possible values for both 
predictors (see Example 14.11). 
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Example 15.1 Correspondence analysis of pig respiratory disease risk 
factors 
data=pig_ farm 

In a study aimed at identifYing risk factors for enzootic pneumonia in swine, a large number 
ofherd characteristics were evaluated (details ofthe dataset are presented in Chapter 27). For 
the purpose of this example, only factors selected by automated model-building procedures 
(Example 15.2) have been included. They include: 

pncode pneumonia prevalence (the outcome variable) 
(Iabelled as prevalence in Fig. 15.2) 

inlet 

exhau 

hldbc 

size 

exprn 

floor 

hmrsd 

air inlet size (as proportion of recommendation) (recoded 0,1,2) 

exhaust fan capacity (as proportion of recommendation) (recoded 0,1.2) 

holding back slow-growing pigs (coded 0,1) 

herd size ('OOOs of pigs) (recoded 0,1,2) 

farmer experience (recoded 0,1,2) 

type of flooring (coded 0,1) 

only home-raised pigs (coded 0,1) 

Correspondence analysis was used to visually evaluate the relationships among these variables 
with the results presented in Fig. 15.2. Note This correspondence analysis is provided for 
pedagogical purposes only; a more complete analysis is described in Dohoo et al (1997). 

Fig. 15.2 Multiple correspondence analysis of risk factors for enzootic 
pneumonia in pigs 

.2 

o 

-.2 

prevalence 
<10% 

-.4 

exprn_O 

exhau_1 floor o 
size O -

hmrsd_1 

prevalence 
10-40% 
exprn_1 

inlet_O 

-.2 O 

hldbc_1 

orevalence 
>40% 

inlet_1 

.2 .4 

As can be seen, high levels of pneumonia were associated with holding back slow-growing 
pigs (hldbc_l), bams with slatted floors (floor_l), and large herd sizes (size_2). Low levels 
of pneumonia were associated with moderate-sized herds (size_l), high air inlet capacity 
(inlet_2) and young (low level of experience) farmers (expm _O). 
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Three-way interactions might be considered, but they are usually difficult to interpret. 
They should only be inc1uded if you have good reason (a priori) to suspect the existence 
of such an effect or if they are made up of variables with significant main effects and 
two-way interactions. Three-way interactions might also unnecessarily complicate the 
model because all of the main effects and two-way interactions among the predictors 
making up the three-way interaction need to be inc1uded in the model. 

15.3 SPECIFY THE SELECTION CRITERIA 

Once a maximum model has been specified, you need to decide how you will determine 
which predictors need to be retained in the model. Criteria for retention can be based on 
non-statistical considerations or the statistical significance ofthe predictor. It is essential 
that both be considered and the non-statistical considerations will be discussed first. 

15.3.1 N on-statistical considerations 

Variables should be retained in the model if they meet any of the following criteria. 
They are a primary predictor of interest. 
They are known, a priori, to be potential confounders for the primary predictor of 
interest. 
They show evidence ofbeing a confounder in this dataset because their removal 
results in a substantial change in the coefficient for one of the primary predictors 
of interest. Note Building an appropriate causal model before starting the 
model-building process will help ensure that the variable is not an intervening 
variable (see section 13.11.6). 
They are a component of an interaction term which is inc1uded in the model. 

15.3.2 Statistical criteria - nested models 

Nested model s are models based on the same set of observations in which the predictors 
in one model are a sub set of the predictors in the other model. By far the most common 
approach to evaluating the statistical significance ofindividual predictors is to use tests 
based on nested models. For a linear regression model this would involve carrying 
out a partial F-test for the predictor, while in other types of regression model (eg 
logistic, Poisson) a Wald test or likelihood-ratio test could be used. When evaluating 
the significance of a categorical variable (inc1uded in the model as a set of indicator 
variables), the overall significance of all the indicator variables in the model should be 
used, not the statistical significance of individual indicator variables. 

15.3.3 Statistical considerations - non-nested models 

A number of information measures have been developed for use in comparing 
mode I s that are not nested. The most common are the AIC (Akaike's Information 
Criteria) and the BIC (Bayesian Information Criteria - also known as the Schwartz 
Bayesian Criteria). They are based on an overall assessment of the model and can be 
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used to compare different models, regardless of whether they are nested. Although the 
following formulae are presented in terms of likelihoods (see Chapter 16), they are 
equally applicable to linear regression models. However, some words of caution are 
in order. First, these tests should not be used to compare nested models - test- based 
comparisons (eg partial F-tests or likelihood-ratio tests) are superior. Second, these 
tests cannot be used to compare models which are based on different numbers of 
observations. 

The AIC is computed as: 
AIC = -21nL + 2(k + l) Eq 15.1 

where L is the log likelihood and k is the number of predictors in the model. The 
smaller the value of the AIC, the betier the model. Iftwo models have comparable log 
likelihoods, the more parsimonious (ie fewer parameters) will have the smaller AIC. 

The BIC is computed as: 
BIC = -21nL - (N - k - l )ln(N) Eq 15.2 

where N is the number of observations in the dataset. 

A 'better' model will be more negative than the 'poorer' model and Table 15.1 provides 
guide lines for assessing the evidence of superiority of one model over another (Raftery, 
1996). In general, the BIC leads to more parsimonious model s than the AIC does. 

Table 15.1 Guidelines for interpreting BIC values from non-nested models 

Absolute difference in BIC Evidence for superiority of the bette r model 

0-<2 

2 - <6 

6 - <10 

~ 10 

weak 

positive 

strong 

very strong 

Two additional approaches, applicable to linear regression models, are based on the 
adjusted R2 or a statistic called Mallow's ep. The model which maximises the adjusted 
R2 (se e section 14.3.5) is, in effect, maximising the amount ofvariance explained by 
the model, while prec1uding the incorporation of predictors which explain only a very 
small amount of the variance. This approach is equivalent to finding the model which 
minimi se s the mean square error (MSE). Note Adding more and more unimportant 
terms to the model will actually increase the MSE because the df on which it is based 
becomes smaller. 

Mallow's ep is computed as follows. If k predictors are selected from a complete set of 
p predictors, then Mallow's ep for that model is: 

ep = " (y - y t n + 2k 
L. (Y2 Eq 15.3 
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where Y and Y are the observed and expected values of Y for a model based on the k 
predictors, a2 is the MSE from a model based on all (P) predictors and n is the sample 
size. Mallow's ep is a special case of the AIC. Models with the lowest ep are generally 
considered the be st. In general, Mallow's ep is not negative, but might be so in cases 
in which the dataset is small and there are a large number of predictors (eg Example 
15.2). 

15.4 SPECIFYING THE SELECTION STRATEGY 

One e the criteria (both statistical and non-statistical) to be used in the selection process 
have been specified, there are a number of ways to actually carry out the selection. 

15.4.1 Ali possible/best subset regressions 

If the number of predictors in the maximum model is small, then it is possible to 
examine all possible combinations of predictors. Once all of the models have been fit, 
it is relatively easy to apply both the non-statistical and statistical criteria described 
above in order to select the 'best' model. This approach is best applied in a context that 
a researcher is searching for a number of good models, such as early in an investigation 
on a topic. 

This process is modified slightly with best subset regression. In this procedure, the 
computer identifies the 'best' model (according to one of the criteria outlined above), 
with a given number ofpredictors. For example, it will identify the single-term model 
with the largest R2, the two-term model with the largest R2, the three-term model with 
the largest R' etc. The investigator can then identify the point at which increasing the 
number of predictors in the model is oflittle value in terms of improving the predictive 
ability of the model. Both nested and non-nested model s can be compared using 'all 
possible' or 'best sub set' selection procedures. 

15.4.2 Forward selectionlbackward elimination/stepwise 

When a forward selection process is used, the computer first fits a model with only 
the intercept and then selectively adds terms that meet a specified criterion. The usual 
criterion for inclusion is a parti al F-test statistic (Wald test in logistic, Poisson etc 
regression) over a specified value (equivalent to a P-value below a specified value 
such as 0.05). The term with the largest partial F is added first and then the process is 
repeated. This continues until no term meets the entry criterion. If there is a very large 
number of potential predictors, forward selection might be the only feasible approach 
because it might be impossible to fit the maximum model and obtain reasonable 
estimates (due to problems with collinearity). 

With backward elimination, the process is reversed. The maximum model is fit and 
then terms are removed sequentially unti l none of the terms remaining in the model has 
a parti al F statistic under the specified criterion. An advantage ofbackward elimination 
is that the statistical significance ofterms is assessed after adjustment for the potential 
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confounding effect of other variables in the model. With forward selection, this 
happens to a much more limited extent (only after confounders have been selected and 
incorporated into the model). Therefore, forward selection often identifies a smaller 
model than backward elimination, and might be considered the inferior procedure for 
datasets with a reasonably small number of predictors. 

Stepwise regression is simply a combination of forward selection and backward 
elimination. If it starts with forward selection, after the add iti on of each variable, the 
criterion for backward elimination is applied to each variable in the model to see if it 
should remain. If it starts with backward elimination, after the removal of each variable, 
all removed variables are checked to see if any of them would meet the forward 
selection criterion for inclusion. 

Different selection procedures will often result in different final models, as can be seen 
in Example 15.2. 

15.4.3 Cautions in using anyautomated selectio n procedures 

While the automated selection procedures described above are convenient, easy to 
apply and quickly reduce a large complex dataset to a succinct regression model, they 
must be applied judiciously and should be considered methods of data exploration 
rather than definitive approaches to building a model. Some scientific joumals will no 
longer accept regression model s which have been built sole ly us ing automated selection 
criteria. 

Some of the problems with automated model-building procedures are that they: 
yield R2 values which are too high (see more on validation in section 15.6) 
are based on methods (eg partial F-tests) which were designed to test specific 
hypotheses in the data (as opposed to evaluating all possible relationship s) so 
they produce P-values which are too small and confidence intervals for 
parameters which are too narrow (more on this below) 
can have severe problems in the face of collinearity 
cannot incorporate any of the non-statistical considerations identified above 
make the predictive ability of the modellook belier than it really is 
waste a lot of paper. 

However, the most serious drawback in their use is that they allow the investigator 
to avoid thinking about their data and the questions to be asked. By turning the 
model-building procedure over to an automated process, the investigator abdicates all 
responsibility for the results of their analysis. To quote Ronan Conroy (Sribney et al, 
1998): "Personally, I would no more let an automatic routine select my model than I 
would let some best-fit procedure pack my suitcase." 

However, when faced with a large number of predictor variables, us ing a vari et y of 
automated selection procedures might be helpfui in identifying all of the predictors 
which potentially have statistically significant associations with the outcome. 
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Example 15.2 Automated model selection for risk factors for pneumonia in 
swine 
data=pig_ farm 

329 

Starting with a full set of 43 predictors in this dataset and using the natural log of the 
prevalence of pneumonia (proportion of hogs with typical lung lesions at slaughter) as the 
outcome (n=66 observations), both forward and backward selection procedures were applied 
using a selection threshold of P=O.05. The predictors selected by each approach (and their 
coefficients) were: 

Variable Forward selection Backward elimination 

inlet -0.04 

hldbc 0.50 0.67 

size 0.43 0.67 

exhau -0.37 -0.46 

exprn 0.03 0.02 

floor (slatted) -0.51 

hmrsd -0.50 

constant -2.10 -2.62 

Model parameters 

SStot 62.9 62.9 

SSE 28.2 31.6 

square root MSE 0.69 0.73 

-21nL 131 139 

adJusted R2 0.51 0.46 

AIC 145 151 

81C -116 -113 

Cp -11.1 -8.1 

The description of the selected variables is presented in Example 15.1. A full description of 
the dataset can be found in Chapter 27. The two procedures arrived at different final models, 
which was not surprising given the low variable to number of case s ratio in this dataset. 
The forward selection procedure has produced a superior model which explains more of the 
variation in the log-prevalence of pneumonia, has lower AIC and BIC scores and a lower 
Mallow's Cp. A best sub set approach might be useful to identífy a number of good models 
in situations such as this. However, variables that were selected in both procedures were 
consistent in their direction, although there were substantial differences in the coefficients. 
The model which gave the lowest MaIlow's Cp (-11.72) was very similar to the forward 
selection model but had one additional term (floor feeding). The model which maximised 
the adjusted R2 contained 19 predictors and would have been totally unsuitable (results not 
shown). 

Note This example is provided for peda,gogical purposes only, not as a recommended 
approach to model-building. 
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Three additional points must be kept in mind when using anyautomated procedure. 
First, group s of indicator variables formed by breaking down a categorical variable 
must alI be added or removed together. Second, if any interaction term is included, 
the main effects of both variables that make up the interaction term must be kept in 
the model. Third, the analysis will only be based on those observations for which alI 
variables are not missing. 1fthere are many missing observations in the dataset, the data 
used to estimate the model might be a very small subset of the full dataset. 

P-values and automated selection procedures 
It is important to note that if you alIow an automated selection procedure to sift 
through all of your predictors and select a group that are significant, the actual level 
of significance of the selected predictors is less than the a level that you set (eg 0.05). 
Specifically, if you select 'significant' predictors from a list of 10 variables (with 
a=0.05), then the probability offinding at least one predictor significant due to chance 
alone is: 

a* = 1 - (1 - 0.05)10 = 0.40 

There is a 40% chance that at least one predictor will be significant, even if none of 
them has any association with the outcome. This value (40%) is called the experiment­
wi se error rate. 

15.5 CONDUCT THE ANALYSIS 

Once the issues described in the preceding sections have been addressed, the analysis 
should be relatively straightforward. However, it is inevitably an iterative process. 
As models are built and evaluated, the investigator gains insight into the complex 
relationship s that exist among the variable in the dataset which allows for more refined, 
and biologically reasonable model s to be built. In the process, investigators must 
incorporate their biological knowledge of the system being studied along with the 
results of the statistical analyses. 

15.6 EVALUATE THE RELIABILITY OF THE MODEL 

Evaluating any regression model is a two-step process. The first step is to thoroughly 
evaluate the model using regression 'diagnostics' (eg evaluating the normality of 
residuals from a linear regression model). This assesses the validity of the model 
and procedures for doing this are described in each chapter describing specific model 
types. The second step is to evaluate the reliability of the model. That is, to address 
the question of 'how weIl will the model predict observations in subsequent samples?' 
Note The term reliability is used differently by various authors, but we will use it to 
describe how weIl the conclusions from a regression model can be generalised - ie 
make future predictions (Kleinbaum et al, 1988). Simply reporting the R2 of a linear 
model or computing the '% correctly classified' by a logistic model does not evaluate 
reliability as these estimates will always overstate the true reliability of the model. 
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The two most common approaches to assessing reliability are a split-sample analysis 
and leave-one-out analysis. A split-sample analysis involves divi ding the data into 
two groups. In a longitudinal study, the data might be divided by time period (eg early 
versus late) and in a cross-sectional study they might be divided randomly. A regression 
model is built using the data from one of the two groups and the model is then applied 
to the second group to obtain predicted values for the remaining observations. For 
linear regression models, the correlation between the predicted and observed values in 
the sec ond group is called the cross-validation correlation. The difference between 
the R2 obtained from the analysis of the first group's data and the square of the cross­
correlation validation is call ed the shrinkage on cross-validation. If it is small (a 
subjective decision, although 0.1 would be considered small by most people), then the 
model is considered reliable. For non-linear regression models (eg logistic models), 
the same general approach can be used but some other measure of predictive ability 
(eg replace R' with % correctly classified) needs to be used to compare the two sets of 
results. 

If only a small dataset is available, it might be desirable to put more than 50% of 
the observations in the first group (the one used to build the prediction model). 
Alternatively, a l O-fold cross-validation can be carried out in which the data are divided 
into 10 subsets with 9 being used to estimate the model and that model used to generate 
predicted values for the 10th sub set. This process is repeated with each subset being left 
out of the model estimation procedure. Split-sample validation of the swine pneumonia 
model from Example 15.2 (based on the backwards elimination model) is shown in 
Example 15.3. 

Example 15.3 Validating the swine respiratory disease model 
data=pig_ fann 

A forward selection procedure was used to build a regression model (as in Example 15.2) but 
only a randomly selected 75% subset of the data (n=47 herds) was used to build the model. 
The resulting model was as shown. This model was then used to compute the predicted 
pneumonia prevalence fot the remaining 19 herds and the correlation between those values 
and the actual prevalences was computed. 

Variable eDet P-value 

hldbc 0.694 0.005 

size (x1000) 0.383 0.020 

exprn 0.026 0.005 

inlet -0.048 0.020 

constant -2.733 <0.001 

The correlation between the predicted and actual values for the estimation subset (n=47) was 
0.703 (R2=0.495) while for the remaining 19 herds it was 0.633 (R2=0.400). The shrinkage 
on cross-validation was <0.1 suggesting that the selected predictors make up a reasonably 
reliable model. 
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An alternative approach to split-sample validation involves building separate 
regression model s for each of the sub-groups and subjectively comparing the regression 
coefficient. Note This can be done for any type ofregression model. If the coefficients 
are substantially different in the two models, then the model is not reliable. 

A Ieave-one-out approach to validation is based on fitting the model many times, 
with one observation left out each time (until alI have bee n omitted). The residuals 
for the omitted observations are summed to provide an estimate of the prediction error 
which can then be compared with the prediction error from the model based on alI 
observations. If the two values are close, it suggests that the model wiII predict future 
observations weil. 

15.7 PRESENTING THE RESULTS 

The standard method of presenting results from a regression model is to present the 
coefficients (don't forget to include the intercept), their standard errors and/or their 
confidence interval. Assuming the observed effects are causal, the coefficients represent 
the change that would be expected in the outcome for a unit change in the predictor. 
For dichotomous predictors (or categorical variables that have been converted to a set 
of dichotomous predictors), the coefficient represents the effect of the factor being 
present compared with when it is absent. However, for continuous variables, assessing 
their impact is more difficult because they are alI measured on different scales (and 
hence, a 'unit change' might represent either a small or large change in the predictor). 
Consequently, it is difficult to determine the magnitude of the impact of each predictor 
on the outcome. In order to obtain a better understanding of the effect of a predictor, 
it would be helpfui to have an idea of what constitutes a reasonable change in any 
predictor measured on a continuous scale. Two approaches to presenting results in order 
that the relative impact of different predictors can be compared are to 

a. use standardised coefficients or 
b. compute predicted effects as a continuous predictor changes over its interquartile 

range. 
Each of these will be discussed briefly. 

15.7.1 Standardised coefficients 

Standardised coefficients represent the effect on the outcome that results from a change 
of 1 standard deviation (SD) in the predictor. They can be computed by rescaling the 
coefficient by multiplying it by the ratio of the SD of the predictor to the SD of the 
outcome [f3*=f3(O"xfO"y)]. In the past, they have not only been used to evaluate the relative 
magnitude of effects for various predictors in a model, but to compare results across 
studies. However, there are two problems with this approach. First, the SD might not be 
a good measure of the variability of a continuous predictor variable. If the distribution 
is skewed to the right, a few large values might unduly inflate the estimate of the SD. 
More importantly, the SD of the predictor or the outcome might vary from population 
to population. If standardised coefficients are used to compare results across studi es, 
identical results from two studies can appear different due to differences in 'the scaling 
factor. Consequently, standardised coefficients are no longer recommended for general 
use. 



MODEL-BUILDING STRATEGIES 333 

15.7.2 Interquartile ranges 

Rather than com put ing standardised coefficients, the effect of a predictor can be 
represented by computing the change in the outcome that would be expected to 
accompany a ch ange in the predictor across its interquartile range (IQR) (ie from its 25th 

to 75th percentile). This avoids the problem ofoutlying observations having a big impact 
on the standard deviation. Although the IQR might also vary across populations (as the 
SD does), the problem of comparability across studies can be avoided by supplementing 
the ordinary coefficients with the estimates of effect based on the IQR, rather than 
replacing the ordinary coefficients with standardised ones. Example 15.4 shows the 
effects ofvarious variables on the log-prevalence ofrespiratory disease in swine. 

Example 15.4 Effects ofpredictors 
data=pigjann 

Based on the model selected using backward elimination (Example 15.2), the effects of the 
various predictors was evaluated by computing the expected change in the log-prevalence of 
pneumonia for defined changes in each of the predictors. 

Estimated effect 

Variable Coef Basis change Effect 

hldbc 0.666 dichotomous 0-1 0.666 

size ('00Os) 0.669 lOR 0.600 - 1.600 0.669 

exhau -0.458 lOR o. 141 - 1.407 -1.342 

exprn 0.023 lOR 9 - 26 0.391 

floor -0.509 dichotomous 0-1 -0.509 

It appears that the capacity of the exhaust fans is one of the largest detenninants of the 
prevalence of respiratory disease in this study population. 

15.7.3 Predictors eliminated from a model 

When presenting results from a multivariable model, you might also want to discuss 
the potential effects of predictors not included in the model. Unless the P-value is very 
large, it is unwise to assume that the effect is zero. Some investigators will discuss 
unconditional associations between those predictors and the outcome. An altemative, 
if a backward elimination procedure has been used in the model-building process, is 
to use the coefficient of the predictor at the last step before it was removed from the 
model. A third approach is to force the predictor back into the final model and use its 
coefficient from that model as an estimate of its effect (adjusted for other predictors in 
the model). 
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15.7.4 Scale of results 

Ali of the model s presented in the examples in this chapter have shown the effects of 
a predictor on the log-prevalence of pneumonia. The log transformation was necessary 
to ensure that the residuals from the regression model had an approximately normal 
distribution. However, it makes the interpretation of the results more difficult and it 
is often desirable to present results on a different scale than was used in the analysis. 
Back-transformations following linear regressions are discussed in section 14.9.6. 
Converting results from the logit scale to the probability scale after logistic regression 
is discussed in section 16.8.5. 

In Example 15.4, the effect of each predictor is assumed to be linear on the log scale, 
which is equivalent to having a multiplicative effect on the original scale. For example, 
holding back slow-growing pigs (j3=0.666) increases the prevalence of pneumonia by 
a factor of l.95 times (eO.666=l.95). Consequently, the effect ofholding back pigs will 
depend on the values of other factors in the model, because they will determine the 
prevalence of pneumonia that is multiplied by l.95. It is often useful to compute the 
expected effects ofkey predictors on the original scale at various levels of other factors 
in the model. 
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16 

LOGISTIC REGRESSION 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Understand logistic regression 
a. Understand log odds as a measure of disease and how it relates to a linear 

combination ofpredictors. 

2. Build and interpret logistic regression models 
a. Compute and interpret odds ratios derived from a logistic regression 

model. 
b. Evaluate the effects of predictors on the outcome of interest on a probability 

scale. 
c. Statistically compare different logistic models us ing both Wald tests and 

likelihood ratio tests. 
d. Determine if the relationship between a continuous predictor variable and 

the log odds of disease is line ar. 

3. Evaluate logistic regression models 
a. Understand covariate patterns and how they impact the computation of 

residuals for logistic regression models. 
b. Compute residuals on the basis of one per covariate pattern and one per 

observation. 
c. Select and use the appropriate testes) to evaluate the goodness of fit of a 

logistic model. 
d. Determine the effect of changing the threshold ('cutpoint') on the 

sensitivity and specificity of the model. 
e. Generate ROC curves as a method of evaluating the goodness of fit. 
f. Identify and determine the impact of influential observations on a logistic 

model. 
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16.1 INTRODUCTlON 

In veterinary epidemiology, we are often in the situation where the outcome in our 
study is dichotom ou s (ie Y=O or l). Most commonly, this variable represents either the 
presence or absence of disease or mortality. We can't use linear regression techniques 
to analyse these data as a function of a set of linear predictors X=(Aj) for the following 
reasons. 

1. The error terms (t:) are not normally (Gaussian) distributed. In fact, they can 
only take on two values. 

if y = lthen é" = 1- (Po + I P j X j) 

Eq 16.1 

2. The probability of the outcome occurring (ie p(Y=I)) depends on the 
values of the predictor variables (ie X). Since the variance of a binomial 
distribution is a function of the probability (P), the error variance will also 
vary with the level of X and consequently, the assumption of homoscedasticity 
will be violated. 

3. The mean responses should be constrained as: 

O::::E(Y) = p:::: l 

However, with a linear regression model, the predicted values might fan outside 
of these constraints. 

In this chapter, we will explore the use of logistic regression to avoid the problem s 
identified above. The primary dataset used in the examples in this chapter is one 
derived from a case-control study of Nocardia spp. mastitis that was carried out during 
an outbreak of this disease in dairy herds in Nova Scotia, Canada. The data consist of 
observations from 54 case herds and 54 control herds. The predictors of interest were 
primarily related to the management ofthe cows during the dry period and, in particular, 
the use of specific types of dry cow mastitis treatment. The variables used in this chapter 
are presented in Table 16.1. 

Table 16.1 Selected variables from the Nocardia dataset 

Variable Description 
casecont case or control status of the herd (the outcome) 

dcpct percentage of cows treated with dry cow treatments 

dneo use of neomycin-based dry cow products in the last year (yes/no) 

dclox use of cloxacillin-based dry cow products in the last year (yes/no) 

dbarn categorical variable for barn type (1 =freestall, 2=tiestall, 3=other) 

Details of the dataset can be found in Chapter 27. 
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16.2 THE LOG IT TRANSFORM 

One way of getting around the problems described in section 16.1 is to use a logit 
transform of the probability of the outcome and model this as a linear function of a set 
of predictor variables. 

Eq 16.2 

where In[~] is the logit transform. This value is the log of the odds of the 
l-p 

outcome (because odds=p/(l-p)), so a logistic regression model is sometimes referred 
to as a log odds model. 

Fig. 16.1 P vs logit of P 

1.0 

0.8 

~O.6 
:.c 
ro ..c 
~ 0.4 

0.2 

o ~ ______ .-______ .-,,-. ______ -, ______ -, 
-7 -1 O 4 7 

logi! 
~----------------------------------------~ 

Fig. 16.1 shows that 
while the log it of p 
might become very 
large or very small, p 
does not go beyond 
the bounds of O 
and l. In fact, logit 
values tend to remain 
between -7 and +7 as 
these are associated 
with very small 
«0.001) and very large 
(>0.999) probabilities, 
respectively. 

This transformation leads to the logistic model in which the probability of the outcome 
can be expressed in one of the two following ways (they are equivalent). 

l e (,00+ LPjx,) 

p l+e-(po+LPiXJ l+e(po+LPjXj ) Eq16.3 

16.3 ODDS AND ODDS RATIOS 

Let's look at the simple situation in which the occurrence of disease is the event of 
interest (Y=O or I) and we have a single dichotomous predictor variable (ie x=o or I). 
The probability of disease becomes: 

Eq 16.4 
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From this, we can compute the odds of disease (ie p/l-p). To simplify calculating the 
odds of disease: 

R +f3X a leta=e Po 
1 sop=--

l+a 
Then it follows that: 

OddS=~=~/(l-~) 
l-p l+a l+a 

=~/l+a-a 
l+a l+a 

= a = e f30 +f31 X Eq 16.5 

From this it is a relatively simple process to determine the odds ratio (OR) for disease 
that is associated with the presence of factor 'X'. 

The odds ratio is then: 

if X = 1 odds = ef30 +f31 

if X = O odds = e f30 

Eq 16.6 

This can be extended to the situation in which there are multiple predictors and the OR 

for the kth variable will be e flk. 

16.4 FITTING A LOGISTIC REGRESSION MODEL 

In linear regression, we used least squares techniques to estimate the regression 
coefficients (or at least the computer did this for us). Because the error term has a 
Gaussian distribution, this approach produces maximum likelihood estimates of the 
coefficients. In a logistic model, we use a different maximum likelihood estimation 
procedure to estimate the coefficients. 

The key feature of maximum likelihood estimation is that it estimates values for 
parameters (the fJs) which are most likely to have produced the data that have been 
observed. Rather than starting with the observed data and computing parameter 
estimates (as is done with least squares estimates), one determines the likelihood 
(probability) of the observed data for various combinations of parameter values. The 
set of parameter values that was most likely to have produced the observed data are the 
maximum likelihood (ML) estimates. 

The following is a very simple example which demonstrates the maximum likelihood 
estimation process. Assume that you have a set of serologic results from a sample of 10 
cows from a dairy herd and the parameter you want to estimate is the prevalence of the 
disease. Three of the 10 samples are positive (the se are the observed data). 
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The likelihood (L) of getting three positive results from 10 cows if the true prevalence 
isP: 

The log likelihood (lnL) is: 

ln L(P)= ln{ cn }+31n(p)+ 71n(l- p) 

In this situation, the maximum value ofthe lnL can be determined directly, but in many 
cases an iterative approach is required. If such a procedure was being followed, the 
steps would be: 

a. Pick a value for the prevalence (perhaps your first guess is 0.2). The 
probability of observing three positive cows out of 10, if the true prevalence 
(P) is 0.2, is: 

L(O.2) = (:) r (1- p)n-x = GO) 0.2\1- 0.2)10-3 = 0.201 
Eq 16.7 

The InL is -1.60. 
b. Pick another prevalence (perhaps your next guess is 0.35) and recompute 

the likelihood. This tums out to be 0.252 (InL=-1.38). 
c. Keep repeating this process until you have the estimate of the parameter 

that gives you the highest likelihood (ie the maximum likelihood). This 
would occur at P=0.3 (but you already knew that, didn't you?). 

A graph of the relationship between InL and prevalence (Fig. 16.2) shows the maximum 
value at P=O.3. 

Fig. 16.2 Log likelihood versus prevalence 

-1 

'o o o 
:!: -2 ui 
~ 
ol 
.Q 

-3 

.1 
prevalence 

Of course, the computer doesn't just pick values of parameters at random; there are 
ways of estimating what the parameter is likely to be and then refining that estimate. 
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Since it is possible to keep refining the estimates to more and more decimal places, you 
have to specify the convergence criterion. Once the estimates ch ange by less than the 
convergence criterion, the process of refining the estimates is stopped (ie convergence 
has been achieved). 

16.5 ASSUMPTIONS IN LOGISTIC REGRESSION 

As with linear regression, there are a number of assumptions inherent in fitting a 
logistic model. In a logistic model, the outcome Y is dichotomous: 

Yi{~ p(Yi =1)=Pi =1-p(Yi =0) 
Eq 16.8 

and two important assumptions are independence and linearity. 

Independence It is assumed that the observations are independent from each other (the 
same assumption was made in linear regression). If animals are maintained in group s 
or, if multiple measurements are being made on the same individual, this assumption 
has probably been violated. For example, if animai s are kept in herds, variation 
between animals in the study population results from the usual variation between 
animals plus the variation that is due to differences between herds. This often results in 
'over-dispersion' or 'extra-binomial variation' in the data. Some methods of checking 
this assumption will be presented in section 16.11.3 and methods of dealing with the 
problem are discussed in Chapters 20-23. 

Linearity As with linear regression, any predictor that is measured on a continuous scale 
is assumed to have a linear (straight-line) relationship with the outcome. Techniques for 
evaluating this assumption are presented in section 16.10. 

16.6 LIKELIHOOD RATIO STATISTICS 

Although the maximum likelihood estimation process produces the largest possible 
(ie maximum) likelihood value, these values are always very, very small because 
they are describing the probability of an exact set of observations given the parameter 
estimates selected. Because of this (and the fact that the estimation process is simpler), 
computer programs usually work with the log likelihood which will be a moderately 
sized negative number. Most computer programs print out the log likelihood of the 
model that has been fit to the data. It is a key component in testing logistic regression 
models. 

16.6.1 Significance of the full model 

The test used to determine the overall significance of a logistic model is 
called the likelihood ratio test (LRD as it compares the likelihood of the 
'full' model (ie with ali the predictors included) with the likelihood of the 



LOGISTIC REGRESSION 341 

'null' model (ie a model which contains only the intercept). Consequently, 
it is analogous to the overall F-test of the model in linear regressions. The 
formula for the likelihood ratio test statistic (Gg) is: 

G~ = 21n 1:.. = 2(ln L -In Lo) 
Lo Eq 16.9 

where L is the likelihood of the full model and Lo is the likelihood of the null model. 
The statistic (Gg) has an approximate X2 distribution with k degrees of freedom (dt) 
(k=number of predictors in the full model). If significant, it suggests that, taken 
together, the predictors contribute significantly to the prediction of the outcome. 

Note When computing an LRT statistic, two conditions must be met. 
l. Both models must be fit using exactly the same observations. If adataset 

contains missing values for some predictors in the full model, then these 
would be omitted from the full model but included when the null 
model is computed. This must be avoided. 

2. The models must be nested. This means that the predictors in 
the simpier model must be a subset of those in the full model. This 
will not be a problem when the smaller model is the null model, but might be a 
problem in other situations. 

In Example 16.1, a logistic regression model from the case-control study of 
Nocardia spp mastitis has been fit with three predictor variables (-dneo-, -dclox­
-dcpct-). The likelihood ratio test evaluating the three predictors as a group is highly 
statistically significant (Gg=41.72, df=3, P <0.001). 

16.6.2 Comparing full and reduced models 

In the preceding section, the LRTwas used to compare the full and null models but an 
LRT can also be used to test the contribution of any subset of parameters in much the 
same way as a multiple partial F-test is used in linear regression. The formula is: 

G~ = 21n LfulJ = 2 (ln L full -In L red ) 

Lred Eq 16.10 

where Lfull and Lred refer to the likelihood of the full and reduced models, respectively. 
As can be seen in Example 16.1, the two antibiotic specific predictors (-dneo-, -dclox-) 
are highly significant predictors of case-control status. This test is sometimes referred 
to as the 'improvementx2'. 

16.6.3 Comparing full and saturated models (deviance) 

A special case of the likelihood ratio test is the comparison of the likelihood of the 
model under investigation to the likelihood of a fully saturated model (one in which 
there would be one parameter fit for each data point). Since a fully saturated model 
should perfectly predict the data, the likelihood of the observed data, given this model, 
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Example 16.1 Comparing logistic regression models 
data=Nocardia 

The log likelihoods from four different models were: 

Model Predictors # of predictors Log likelihood 

null intercept -74.86 

~o 

full intercept, dcpct, 4 -54.00 
dneo, dclox 
~o , ~1 , ~2 • ~3 

reduced intercept, dcpct 2 -69.07 
~o, ~1 

saturated 108 'hypothetical' 108 o 
predictors 

~o. ~1"'~n-1 

Overalllikelihood ratio test ofthe full model: 
G~=2(-54.00 - (-74.86»=41.72 with 3 df(P <0.001) 
Taken together, the three predictors are highly significant predictors of case-control 
status. 

Likelihood ratio test comparing the full and reduced models: 
G~=2(-54.00 - (-69.07»=30.16 with 2 df (P <0.001) 
The two antibiotic specific predictors (-dneo- and -delox-) are highly significant 
predictors. 

Likelihood ratio test comparing the saturated and full models: 
G~=2(0 - (-54.00»=108.00 with 104 df. 
Note This does not have a t distribution. 

should be 1 (or InLsat=O). This comparison yields a statistic called the deviance which 
is analogous to the error sum of squares (SSE) in linear regression. The deviance is a 
measure of the unexplained variation in the data. 

D = 2In Lsat = 2(1n Lsat -In L full ) = -2(1n L rull ) 
L full Eq 16.11 

Note The deviance computed in this manner does not have a X2 distribution. (See 
section 16.11.2 for more discussion of deviance.) 

16.7 W ALD TESTS 

An altemative approach to evaluating the significance of a single coefficient is to use 
a test that relates the coefficient to its SE. A Wald test is the ratio of the coefficient to 
its SE and it follows (asymptotically) a standard normal (z) distribution. This tests 
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whether the coefficient is significantly different from zero. It is routinely computed 
by most computer programs and is the most widely used test of the significance of 
coefficients. However, the estimates of the coefficient and its SE are only estimates 
and consequently, the normal approximation of its distribution might not be reliable 
particularly if the sample size is small. Consequently, to evaluate the significance of 
variables with a P-value close to the rejection region, it is best to use a likelihood ratio 
test. 

Just as with multiple partial F-tests in linear regression, multiple parameters in a logistic 
model can be tested with a multiple Wald test. For example, comparing the full and 
reduced model s in Example 16.1 would be equivalent to testing the null hypothesis: 

Ho: Ih = fJ3 = O 

In this case, the test statistic is compared to a X2 distribution with the df equal to the 
number of predictors being tested. In Example 16.1, the Wald X2 for comparing the 
full and reduced model s has a value of 21.4 and 2 df. This is a more conservative 
test statistic (although this is not generally the case) than the likelihood ratio test 
(Gg=30.16), but it is still highly significant. 

16.8 INTERPRETATlON OF COEFFICIENTS 

The coefficients in a logistic regression model represent the amount the logit of the 
probability of the outcome changes with a unit increase in the predictor. Unfortunately, 
this is hard to interpret so we usually convert the coefficients into odds ratios. The 
following sections are based on the model shown in Example 16.2. 

ln -I p = /30 + /31 (dcpct)+ /32 (dneo)+,83 (dclox)+ /34 (dbam _ 2)+ /35 (dbam _ 3) 
-p 

16.8.1 Dichotomous predictor 

Coefficients for a dichotomous predictor represent the amount that the log odds of 
disease increase (or decrease) when the factor is present. These can be eas ily converted 
into OR by exponentiating the coefficient. For example, the OR for -dneo- in Example 
16.2 is: 

OR = efJ2 = e2
.
685 = 14.7 

If the outcome of interest is relatively rare, the OR provides a good approximation 
of the risk ratio (RR). If the data come from a case-control study in which incidence 
density sampling was employed, the OR is a good estimate of the incidence rate ratio 
(IR) in the original population (see Chapter 6). 

16.8.2 Continuous predictor 

For a continuous predictor, the coefficient ([JI) represents the change in the log odds of 
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Example 16.2 Interpreting logistic regression coefficients 
data=Nocardía 

The tables below present results from a logistic regression of -casecont- on -dcpct­
-dneo- -delox- and two levels of -dbam-. The first table presents the effects of the predictors 
on the logit of the outcome (case-control status), while the second shows the same results 
expressed as odds ratios. 

Number of obs = 108 
LR chi2 (5) = 47.40 
Prob > chi2 = 0.000 

Log likelihood = -51.168 

Predictor Coet SE Z P 95% CI 

dcpct 0.022 0.008 2.82 0.005 0.006 0.037 

dneo 2.685 0.677 3.96 0.000 1.358 4.013 

dclox -1.235 0.581 -2.13 0.033 -2.374 -0.096 

dbarn_2 -1.334 0.632 -2.11 0.035 -2.572 -0.095 

dbarn_3 -0.218 1.154 -0.19 0.850 -2.481 2.044 

constant -2.446 0.854 -2.86 0.004 -4.120 -0.771 

Predictor OR SE 95% CI 

dcpct 1.022 0.008 1.007 1.037 

dneo 14.662 9.931 3.888 55.296 

dclox 0.291 0.169 0.093 0.908 

dbarn_2 0.263 0.166 0.076 0.909 

dbarn_3 0.804 0.928 0.084 7.722 

Effect of -dneo- Use of neomycin-based products in the herd increased the log odds ofNocardia 
mastitis by 2.685 units. Altematively, one can say that using neomycin-based products increased 
the odds 14.7 times. Since Nocardia mastitis is a relatively rare condition, it would be reasonable 
to interpret the odds ratio as a risk ratio and state that use of neomycin-based products increased 
the risk ofNocardia mastitis by approximately 15 times. 

Effect of -dcpct- Changing the percentage of dry cows treated from 50% to 75% increases 
the log odds of disease by: (75-50)*0.022=0.55 units. Alternatively, it increases the odds of 
disease by: (1.022)(75-50)=1.73. An increase of 25% in the percentage of cows dry-treated 
increases the risk of disease by about 73% (ie 1.73 times). 

Effect of -dbarn- Tiestall bams (-dbam_2-) and other bam types (-dbarn_3-) 
both had lower risks of Nocardia mastitis (ie OR <l) than did freestall bams 
(-dbam _1- was the omitted baseline). However, the multiple Wald test and the likelihood ratio 
tests of the two ineluded categories were 0.08 and 0.06, respectively, suggesting that bam type 
was only borderline significant (0.1 >P >0.05). 
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disease for a one-unit change in the predictor. Similarly, the computed OR represents the 
factor by which the odds of disease are increased (or decreased) for each one-unit change 
in the predictor. However, we are often interested in changes of multiple units of the 
exposure variable(s), such as from Xl to X2' For example, for a change from 50% to 75% 
of cows dry-treated, the log odds of disease changes by: 

log odds (xl' X2) = (X2 - Xl) * /JI = (75 - 50) * 0.022 = 0.55 Eq 16.12 

For this 25% change in -dcpct-, the odds of disease change by: 

eO.55 =l.73, or OR (X I,X2) = OR (x2- xIl =l.022(75-50) =l.73 Eq 16.13 

16.8.3 Categorical predictor 

As in linear regression, predictors with multiple categories (eg 'j' categories) must 
be converted to a series of indicator variables (also called 'dummy' variables) with 
j-l variable s put into the model. The coefficient for each indicator variable represents 
the effect of that level compared to the category (ie the 'baseline') not inc\uded in the 
model. The coefficients are interpreted in the same manner as for any other dichotomous 
predictor. 

Note There are other ways of coding categorical variables, such as hierarchical indicator 
variables, and these are used in the same way as described in Chapter 14. 

When creating indicator variables, the choice of the baseline might be important. In 
general, we choose one that makes biological sense (ie makes some sense as a reference 
level) and one that has a reasonable number of observations so we are not comparing 
everything with a category for which the effect can only be estimated very imprecisely. 
When evaluating the statistical significance of coefficients for categorical variables, it is 
important NOT to pay much attention to the P-values of individual coefficients. This P­
value indicates whether or not the chosen level is statistically different from the baseline 
level. However, because the choice of the baseline is arbitrary, any category has a range 
of possible P-values that could be computed. Instead, you should evaluate the statistical 
significance of all of the categories together with a multiple Wald test or a likelihood ratio 
test. 

In Example 16.2, the variable -dbam- was converted to a series ofthree dummy variables 
and two of these (-dbam_2-, -dbam_3-) were included in the model. These represented 
tiestall and 'other' types of housing, respectively and, consequently, the coefficients 
represent the effects ofthese types ofhousing on the risk of Nocardia mastitis compared 
with freestall bams (the category that was omitted). 

16.8.4 Interpretation of the intercept 

Interpretation of the intercept (constant) in the regression model depends on how the data 
were collected. The intercept represents the logit of the probability of disease if ali of the 
'risk factors' are absent (ie equal to zero). This can be expressed as: 
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ln ( J!..!L) = /30 ll- Po 
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Eq 16.14 

where Po equals the probability of disease in this 'non-exposed group'. In a cross­
sectional or cohort study, Po has real meaning because it represents the frequency 
of disease in the non-exposed group. However, in a case-control study, Po will vary 
depending on how many cases and controls are selected for inclusion in the study. We 
don't really know what the frequency of disease is in the non-exposed group because 
we didn't take a sample from that group. Consequently, the value of the intercept cannot 
be meaningfully interpreted if the data carne from a case-control study. 

16.8.5 Presenting effects offactors on the probabiIity scale 

As has been presented above, the coefficients from a logistic model represent the 
change in the log odds of disease that is associated with a unit ch ange in the factor of 
interest. These can be relatively easily converted to an odds ratio (by exponentiating the 
coefficient) but there is a limitation to the usefulness of this parameter. 

We normally think about the probability of disease (rather than the odds) and the 
probability of disease is not linearly related to the factor of interest. Consequently, 
the effect of a unit increase in the factor usualIy does not increase the probability of 
disease by a fixed amount. The amount that a unit increase in the factor changes the 
probability of disease depends on the level of the factor and the levels of other factors 
in the model. 

In Example 16.3, you can see that the effect of a 10% increase in the percentage of 
cows dry treated depends heavily on whether it occurs in a herd that uses neomycin or 
one that uses cloxacillin. It also depends on whether the change is from 10-20% or 80-
90%. It is very helpfui to generate some graphs of predicted probabilities to get a full 
understanding ofthe effects of key variables in your model. 

As can be seen, a 10% increase in the level of -dcpct- has a greater effect on the 
probability ofNocardia mastitis in herds us ing neomycin; furthermore, in the cloxacillin 
herds, there is a bigger increase in the predicted probability ofmastitis going from 80% 
to 90% than in going from O to 10%. 

16.9 ASSESSING INTERACTION AND CONFOUNDING 

Assessment of interaction and confounding in logistic regression models is similar to 
the process used in linear regression. Confounding is assessed by adding the potential 
confounding variable to the model and making a subjective decision as to whether or 
not the coefficient of the variable of interest has changed 'substantially' . In Example 
16.4, it appears there is some degree of confounding between -dcpct- and -dclox-. 
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Example 16.3 Effects of factors on the probability scale 
dataset=Nocardia 

In this example, a model containing -dcpct-, -dneo- and -dclox- was fit and the predicted 
probability of Nocardia mastitis computed as -dcpct- rose from O to 100%. Predicted 
probabilities were computed separately for neomycin-using herds and c1oxacillin-using 
herds. 

Predictor Coef SE Z 

dcpct .023 .007 3.15 

dneo 2.212 .578 3.83 

dclox -1.412 .557 -2.53 

constant -2.984 .772 -3.86 

Fig. 16.3 Effect of dry-cow treatment 
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The effect of a 10% increase 
in -dcpct- depends on whether 
the herd is a neomycin-using 
or a cloxacillin-using herd (ie 
the effect is much greater in 
neomycin-using herds). It also 
depends on where on the scale of 
-dcpct- the increase occurs 
(going from 10-20% in a 
cloxacillin-using herd has a 
smaller effect than going from 
80-90%). 

Interaction is assessed by adding the cross-product term (Xl * X2) and determining if 
the coefficient for the term is statistically significant. Estimation of ORs in the presence 
of interaction deserves some attention though. If interaction is present, the OR for the 
variable of interest has to be determined at a predefined level of the interacting variable 
because it will vary with the level of the interacting variable. 

If the interaction is between two dichotomous predictors, the coefficients for the main 
effects and the interaction term have straightforward interpretations. The coefficient for 
each main effect represents the effect of that variable in observations in which the other 
variable is absent. In Example 16.5, the coefficient for -dneo- (3.184) is a measure of 
the effect of neomycin used in herds that don't use cloxacillin. The interaction term 
represents the additional effect ofhaving both factors present, over the sum of the two 
indi vidua l effects. The results shown in Example 16.5 are summarised in Table 16.2. 
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Example 16.4 Assessment of confounding 
dataset=Nocardia 

First a 'full' model containing -dcpct- -dneo- and -dclox- was fit, and then -dcpct- was 
dropped from the model. 

Full model Reduced model 

Predictor eoet SE Coef SE 

dcpct 0.023 0.007 nIa nIa 

dneo 2.212 0.578 2.377 0.550 

dclox -1.412 0.557 -1.010 0.532 

constant -2.984 0.772 -1.480 0.501 

When -dcpct- was removed from the model, the coefficient for -dneo- changes very little 
(-7%), but the coefficient for -dclox- changes by almost 30% suggesting that -dcpct- and 
-dclox- might be related (and acting as confounders for each other). 

Example 16.5 Assessment of interaction 
dataset=Nocardia 

Interaction between -dneo- and -dclox- was evaluated by adding their cross-product term: 

Predictor Coef SE Z P 95% CI 

dcpct 0.023 0.008 2.93 0.003 0.007 0.038 

dneo 3.184 0.837 3.80 0.000 1.543 4.825 

dclox 0.446 1.026 0.43 0.664 -1.565 2.457 

neoclox -2.552 1.205 -2.12 0.034 -4.914 -0.190 

constant -3.777 0.993 -3.80 0.000 -5.724 -1.830 

The effect of neomycin and c10xacillin use can be summarised as follows: 

neomycin only log odds goes up by: 3.18 units 

cloxacillin only log odds goes up by: 0.45 units 

using both log odds goes up by: 3.18 + 0.45 -2.55 = 1.08 units 

Consequently, using neomycin-based products is much more harmfuI (increase of 3.18 
units in log odds of Nocardia mastitis) in herds using neomycin exclusively. If the herd 
uses c10xacillin as weIl, the effect ofneomycin is only an increase of 0.63 units (1.08-0.45). 
Alternatively, c10xacillin seems to have a smaIl (insignificant) detrimental effect when used 
in herds that don't use neomycin (increase of 0.45 units), but in herds that use neomycin, it is 
highly beneficial (reduces log odds by 2.1 units (3.18-1.08). 
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Table 16.2 Effect of neomycin and cloxacillin use on the log odds of Nocardia 
mastitis compared with using neither (from Example 16.5) 

o 
neomycin 

cloxacillin 

o 
o 0.446 

3.184 1.078 

Note 1.078=3.184+0.446-2.552 
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Higher-order interactions (eg three-way interactions) might also be evaluated (see 
section 15.2.3). 

16.10 MODEL-BUILDING 

In general, the process of building a logistic model is very similar to that of building a 
linear regression model. It might involve any of the following steps. 

laying out a tentative causal diagram to guide your thinking 
unconditional analyses of relationships between predictors and the outcome of 
interest using a 'liberal' P-value 
evaluation of relationships (correlations) among predictor variables 
automated model-building processes (used with caution) 

forward selection 
backward elimination 
stepwise selection 
best sub set regression 

manual model-building guided by a causal diagram (preferred method) 
including: 

evaluation of confounding 
evaluation of interaction. 

However, there is one fundamental difference and it relates to the process of evaluating 
the shape of the relationship between a continuous predictor variable and the outcome 
of interest. In linear regression, you might be able to get a reasonable estimate of the 
relationship between a continuous predictor and the outcome of interest by looking at 
a simple scatterplot of the two variables. In a logistic model, the assumption behind a 
linear modelling of any continuous predictor is that the log odds of disease increases 
linearly with the predictor. Unfortunately, a simple scatterplot of the two variables is 
of little use with a dichotomous outcome because it produces points that make two 
horizontallines across the graph. 

Some of the options that you have for evaluating the shape of this relationship 
include: 

I. Plotting the residuals from the model, with the predictor included, against 
the values of the predictor. 



350 LOGISTlC REGRESSION 

2. Categorising the continuous predictor and: 
a. inserting the indicator variables into the model, or 
b. computing and plotting the log odds of the outcome against the category 

means. 
3. Adding higher order terms to the model: 

a. quadratic and possibly cubic terms, or 
b. orthogonal polynomials, or 
c. fractional polynomials. 

4. Generating a smoothed scatterplot of the log odds of the outcome against the 
predictor. 

5. Creating severallinear splines to use instead of the original variable. 

We will discuss each of these in tum using the effect of herd size (-numcow-) on the 
odds of Nocardia mastitis. Another approach, based on generalised additive model s, 
will not be discussed but has been reviewed elsewhere (Hastie and Tibshirani, 1995). 

16.10.1 Plotting residuals 

Fig. 16.4 in Example 16.6 show s the Pearson residuals (see section 16.11.2) from a 
model containing only -numcow- as a predictor of Nocardia mastitis. Any departure 
from linearity is not obvious. However, in general, this method of evaluating the 
functional form of the relationship between a continuous predictor and the log odds 
of the outcome is of ten not very informative. The plot of residuals will only show a 
distinct non-linear pattem if the predictor is strongly associated with the outcome and 
has a distinctly non-linear relationship. 

Example 16.6 Evaluating continuous predictors (Part 1) - plots of residuals 

Fig. 16.4 Pearson residuals 
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The graph shows a plot of 
Pearson residuals from a 
logistic model with -numcow­
as the only predictor against 
herd size (-numcow-). No 
indication of non-linearity is 
evident. -numcow- is 
borderline significant in this 
model (jJ=O.0l5, P=O.04) 
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16.10.2 Categorising a continuous predictorvariable 

If the relationship between a continuous predictor and the log odds of the outcome 
is not linear, one simple approach is to chop the predictor up into categories and fit a 
set of indicator variables in the model. The two drawbacks to this approach are that 
you throw away information by categorising the continuous variable and, if many 
categories are required to capture the effect of the predictor, then you will have to 
include a lot of indicator variables in the model (ie estimate manyparameters). The 
decision on where to divide the categories should be based, if possible, on what would 
be biologically meaningfuI. For example, ifrectal temperature had been measured in a 
study ofhorses with colic, it might be reasonable to categorise the temperature as below 
normal, normal range or elevated. However, in many cases, there is no obvious choice 
for cutpoints. In these situations, choosing cutpoints that create roughly equal-sized 
group s is an appropriate strategy. 

If ordinary indicator variables are created, then a general increase (or decrease) in the 
coefficients as you go up through the categories of the predictor will be indicative of an 
approximately linear relationship. The coefficients for the indicator variables shown in 
Example 16.7 suggest there is little difference between the two largest herd-size groups. 
If you create hierarchical indicator variables, and the categories of the predictor are 
equally spaced, then you would expect ali of the coefficients to be approximately the 
same size (because hierarchical variables reffect the effect of going from one category 
to the next highest category). 

On ce the continuous variable has been divided into categories, you can compute the log 
odds of the outcome among the observations that fali in each of the categories and plot 
those values against the midpoints of the categories. This provide s a very good visual 
assessment of the linearity of the relationship provided you have reasonable sample 
sizes in each of the groups. Fig. 16.5 suggests that the odds of the outcome increases 
quickly at small herd sizes but ffattens off at about 50 cows. 

16.10.3 Polynomials 

Polynomials are power terms (eg X,2) that are added to a model to allow the regression 
line to follow a curve through the data rather than a straight line. The complexity of 
the curve (ie number of bends) depends on the number of power term s included in 
the polynomial. Three ways of creating polynomials will be discussed: quadratic, 
orthogonal and fractional. 

16.10.4 Quadratic polynomials 

The most common way to fit a curve (rather than a straight line) through the data is 
to add a quadratic term (the predictor squared). This fits a simple curve which bends 
in only one direction. The significance of the quadratic term can be used as a check 
of whether the assumption of linearity is acceptable (provided the data do not follow 
a more complex pattem than suggested by the single curve of a quadratic model). 
One issue to keep in mind is that the original value is often highly correlated with its 
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Example 16.7 Evaluating continuous predictors (Part 2) - categorising the 
data 

The table below presents a logistic model with the original variable -numcow- replaced by 
three indícator variables representing herds from 32-41 cows, 42-54 cows and ~55 cows. All 
are compared to the smallest herds (::::31 cows). 

Number of obs = 108 
LR chí2 (3) = 1.35 

Prob > chí2 = 0.716 
Log líkelíhood = -74.183 

Mean herd 
Predictor eoet SE Group size size in group 

numcow_O - - 29 23.6 

numcow_32 0.348 0.544 26 37.9 

numcow_42 0.502 0.545 26 48.2 

numcow_55 0.571 0.541 27 88.1 

constant -0.348 0.371 NA NA 

It appears that there is a relatively large jump in the log odds of the outcome between the 
smallest herds (baseline) and the next size group (log odds increases 0.35 units), but as 
herd size continues to increase, there is little additional increase. Note, however, that when 
categorised using these cutpoints, -numcow- is not a statistically significant predictor of 
-casecont- (P=O.72). 

Fig. 16.5 Assessi"g li "earit y assumptio" -log odds 
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A graph of log odds of 
the outcome predictor 
against the midpoints 
of the four categories 
of herd size (divided at 
the quartiles) suggests 
that the risk of Nocardia 
mastitis increases sub­
stantially going from the 
smallest herds to those 
in the second quartile. 
Increases beyond this are 
successively smaller. 
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squared term and collinearity might be a problem in the model. The usual way to avoid 
this problem is to centre the original variable before squaring it (se e section 14.6.2). 
Example 16.8 show s that the quadratic term is not significant, suggesting that a linear 
relationship might be acceptable. Caution must be used when interpreting results from 
polynomial models. They might be heavily influenced by points at the ends ofthe range 
ofvalues for the predictor. It is also very dangerous to make any predictions outside the 
range of observed values. 

Example 16.8 Evaluating continuous predictors (Part 3) - polynomials 

Quadratic term: -numcow- was centered by subtracting the value 75 from all observations and 
then squared. The correlation between the se two new variables was 0.27 which should not 
cause any problem with collinearity. 

Predictor Coef 

numcow_ct 0.016 

numcow_ct_sq 0.981 
(x 10,000) 

constant 0.284 

SE Z 

0.009 1.74 

1.827 0.54 

0.352 0.81 

Number of obs = 108 
LR chi2 (2) = 4.67 

Prob > chi2 = 0.097 
Log líkelihood = -72.525 

P 95% CI 

0.081 -0.002 0.033 

0.591 -2.600 4.563 

0.420 -0.407 0.975 

The complete lack of significance for the quadratic term suggests that using a linear term 
might be adequate. 

Orthogonal polynomials: two new terms (-numcow_opl- -numcow_op2-) were created as 
orthogonal polynomials from -numcow-. These variables are on a new scale with each having 
a mean of O and a standard deviation of l and they are totally uncorrelated. 

Variable Obs Mean SD Min Max 

numcow 108 49.092 30.020 16 190 

numcow_op1 108 O 1.005 -1.107 4.716 

numcow_op2 108 O 1.005 -1.209 5.697 

The logistic model was refit using the orthogonal polynomials. 

Predictor Coef SE Z P 95% CI 

numcow_op1 0.515 0.309 1.66 0.096 -0.091 1.121 

numcow_op2 0.164 0.305 0.54 0.591 0.433 0.761 

constant 0.030 0.202 0.15 0.881 -0.367 0.427 

(continued on next page) 
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Example 16.8 (continued) 

Fractional polynomials: two new variables (-fp_ncl- and -fp_ nc2-) have been created: 

numcowjp1=(numcow/100)-2 - 4.149 

numcowJp2=(numcow/l00)+3 - 0.1183 

Unlike orthogonal polynomials, these two variables have some degree of correlation 
(p=-0.28). These have been used in a logistic model of -casecont-. 

Predictor 

numcow_fp1 

numcow_tp2 

constant 

Coet 

-0.018 

0.682 

0.001 

SE 

0.024 

0.548 

0.235 

z 
.{J.77 

1.24 

0.01 

p 

0.442 

0.213 

0.995 

Number of obs = 108 
LR chi2 (2) = 5.53 

Prob > chi2 = 0.063 
Log likelihood = -72.097 

95% CI 

-0.066 0.029 

-0.392 1.757 

-0.459 0.462 

The log likelihood of the model has been reduced to -72.1 (from -72.5), but neither of the 
terms is significant individually, although they are jointly borderline (P=0.063) significant. 

16.10.5 Orthogonal polynomials 

One way to ensure the new variables that are replacing the original variable are 
uncorrelated is to create orthogonal polynomials. These are variables that are 
constructed from the original data but are on a new scale with eae h variable having a 
mean of O and a SD of l. The correlation between any pair ofthese variables is O. These 
new variables can be used in place of the original variables in the logistic model. The 
model based on orthogonal polynomials in Example 16.8 shows exactly the same result 
as the quadratic model described above. Although the coefficients are different (because 
the new variables are on a different scale), the P-value of the squared (quadratic) term 
is exactly the same. Removal of the collinearity makes it possible to interpret the lower 
order terms, but the fact that they are not in the original scale makes this difficult. 

16.10.6 Fractional polynomials 

While any set ofvariables might be orthogonalised, orthogonal polynomials are usually 
limited to power terms that have positive integer values (eg X 12, X I 3). One way of 
exploring more f1exible functional forms is to use fractional polynomials. Fractional 
polynomials are power term s that can take on both positive and negative integer values 
and fractional values (eg XO· 5, X-2, X3). In addition, they can include the natural log 
of the Ofiginal value. The combination of fractional polynomials that be st fits the data 
(ie the model with the smallest log likelihood) can be determined. Because there are 
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an infinite number of possibilities to choose from, it is usual to restrict the search to a 
range of power term s (eg between -2 and +3 and including -0.5 and +0.5). In Example 
16.8, the power term s -2 and +3 have been selected as the best fit. The drawback of 
fractional polynomials is that, while they might fit the data very weil, the coefficients 
are alm ost impossible to interpret. However, if you want to merely control for the 
effect of a factor (ie a potential confounder) in a logistic regression model, then fitting 
fractional polynomials can be a useful approach. 

16.10.7 Smoothed scatterplots 

A simple graph of the outcome against the predictor is uninformative because it consists 
oftwo horizontallines ofpoints. However, a smoothed scatterplot ofthe probability of 
the outcome against the predictor variable will show you how the mean probability of 
the outcome changes as the predictor increases. While this can be generated with the 
original data (ie on the probability scale), it is more informative to generate a graph on 
the log odds scale. An advantage of smoothed scatterplots over fitting some form of 
polynomial function is that local weighting in the smoothing process makes it easier to 
pick up departures from global curves. However, while a smoothed scatterplot might 
identify the functional form of the relationship, it does not generate the variables 
necessary for inclusion in the logistic model. It is therefore a descriptive rather than a 
modelling tool. 

Smoothed scatterplots can be computed as a function of the original data, or from 
predicted values based on a regression function. In the former, the running mean at any 
given point is computed as a weighted average of the points around the point ofinterest. 
Weights are applied so that data points close by are weighted more heavily than those 
at a distance. In the latter, instead of weighting the original data points, a weighted 
linear regression is run on the points surrounding the one of interest and the predicted 
value is obtained. These predicted values are then joined to form the smoothed line, 
referred to as a lowess curve. This latter approach tends to produce smoother curves, 
but might generate unusual results at the extreme values of the predictor. In both cases, 
a parameter call ed the bandwidth determines how large a subset of the data is used 
in the computation at each point. For example, if the bandwidth is 0.5, then 50% of 
the observations will be included in each calculation (except towards the ends of the 
distribution where smaller uncentred subsets are used). However, points towards the 
ends of the bandwidth receive relatively little weight in the calculation. 

A smoothed (running mean) scatterplot of the log odds of -case cont- against -numcow­
is shown in Fig. 16.6 in Example 16.9. The log odds of -casecont- increases in a curved 
fashion up to about 70 cows and then levels off. 

16.10.8 Piecewise linea r functions (splines) 

In situations when the functional form of the relationship s appears to consist of a set of 
straight lines, you can replace the original variable with a set of variables that will fit 
straight lines through subsets ofthe data. This set ofpiecewise linear functions is called 
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Example 16.9 Evaluating continuous predictors (Part 4) - smoothed 
scatterplots 

Fig. 16.6 Smoothed scatterplot 
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a spline. Based on the scatterplot in Fig 16.6, it appears that a straight line up to about 
70 cows, followed by a second straight line up to 190 cows might fit the data reasonably 
weil. The point at which one piecewise linear function stops and the next begins is 
known as a knot point. In a simple situation with two linear splines, the first will take 
the values of the original variable up to the knot point while the second is set to zero. 
Beyond the knot point, the first variable has the value of the knot point while the second 
has the original value minus the knot point. This can be seen in Example 16.10. 

Splines are not necessarily restricted to fitting linear functions to subsets of the data (ie 
polynomial functions can be fit as weil and the way these are pieced together at the knot 
points becomes part of the spline specification), but the computation ofthese is beyond 
the scope of this book. 

At this point, you have conflicting evidence about the nature of the relationship between 
herd size (-numcow-) and the log odds of -casecont-. The smoothed scatterplot clearly 
suggests that the functional form is not linear, but none of the methods that add additional 
terms (eg polynomials, splines) provide any statistical support for the addition of these 
terms. This lack of statistical significance is, in part, a function of the fact that herd size 
is only a weak predictor of whether or not the herd was a case or a control. If you were 
exploring herd size as a risk factor, there would be little justification for using anything 
other than a linear term. If you had reasonable evidence to believe that herd size was 
a potential confounder and you wanted to do the best job possible of removing that 
confounding effect when evaluating other risk factors, then fitting a polynomial model 
of some sort would be appropriate. 



LOGISTIC REGRESSION 357 

Example 16.10 Evaluating continuous predictors (Part 5) - splines 

Two new variables (-numcow_spl- and -numcow_sp2-) were computed to fit straight 
lines through the herd sizes ~70 and >70. These were then used in a logistic model of 
-casecont-. Selected -numcow- data are used to demonstrate the corresponding spline value. 

Herd numcow numcow_spl numcow-sp2 

32 42 42 O 

89 50 50 O 

97 65 65 O 

98 72 70 2 

103 97 70 27 

106 140 70 70 

Number of obs = 108 
LR chi2 (2) = 4.52 

Prob > chi2 = 0.105 
Log likelihood = -72.601 

Predictor Coef SE Z P 95% CI 

numcow_sp1 0.010 0.014 0.68 0.497 -0.018 0.037 

numcow_sp2 0.022 0.019 1.16 0.247 0.015 0.058 

constant -0.513 0.610 -0.84 0.400 -1.709 0.682 

This model doesn't fit the data quite as weil as the quadratic polynomial (log likelihood is 
-72.6 versus -72.5) and even less weil than the fractional polynomial. 

16.11 EVALUATING LOGISTIC REGRESSION MODELS 

There are two steps in assessing the fit of the model. The first is to determine if the 
model fits, in general, using summary measures of goodness of fit or by assessing the 
predictive ability ofthe model. The second is to determine whether there are any specific 
observations (or groups of observations) that do not fit the model or that are hav ing an 
undue influence on the model. However, before proceeding with either of these two 
areas, it is important to understand the distinction between residuals computed on the 
basis of 'covariate patterns' and those computed on the basis of 'observations'. 

16.11.1 Covariate patterns 

Most of the summary measures of goodness of fit depend on an understanding of 
the term covariate pattern. A covariate pattern is a unique combination of values 
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of predictor variables. For example, if the model contains only two dichotomous 
predictors, there will be foUf covariate patterns: (1,1) (1,0) (0,1) (0,0). Data of this 
form are called binomial data because observations within the groups formed by the 
covariate pattern are modelled as replications and the number of pos iti ves within 
a group is binomially distributed. On the other hand, if the model contains many 
continuous variables, there might very weil be as many covariate patterns as there are 
data points (ie each covariate pattern will have only one observation in it) and the se 
data are referred to as binary data. 

Residuals from log isti c models can be computed on the basis of one residual per 
observation or one residual per covariate pattern. To get a feeling for the difference 
between these two approaches, imagine a covariate pattern 'A' with two observations, 
l disease '+' and one disease '-'o Further assume that the predicted value for the 
probability of disease in animals with this covariate pattern is 0.5 (Table 16.3). 

Table 16.3 Residuals computed on the basis of one per observation and one per 
covariate pattern 

Observation 

2 

Covariate 
pattern 

A 

A 

Disease 

o 

Predicted 
value 

0.5 

0.5 

1 per 
observation 

pos iti ve 

negative 

Residuals 

1 per covariate 
pattern 

o 

With one residual per observation, we have two residuals, of which one will be positive 
and one will be negative. With residuals computed on the basis of covariate patterns, 
the predicted value (0.5) exactly equals the observed value (0.5) so the residual is zero. 
For logistic models, residuals are normally computed on the basis of one per covariate 
pattern and some of the desirable properties of the residuals only apply if there is a 
reasonable number of observations in each covariate pattern. 

In the following discussion, we will use j to represent the number of covariate patterns, 
mj to represent the number of data points in the jth covariate pattern, k to represent the 
number of predictors in the model (not including the constant) and n is the number of 
data points in the dataset. 

Ali of the examples in this section are based on the model shown in Example 16.4. The 
values of the predictors in this model make up 30 distinct covariate patterns. 

16.11.2 Pearson and deviance residuaIs 

Computing residuals for a logistic model is not as straightforward as it is following 
a linear regression model (ie observed value-expected value). A number of different 
types of residual have been proposed, but the two most commonly used are Pearson 
residuals and deviance residuals. 
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Pearson residuals are roughly analogous to standardised residuals in linear regression. 
They are based on the difference between the observed and expected values for agiven 
covariate pattern, but are adjusted based on the precision of the estimate of the observed 
value (ie covariate patterns with a large number of observations will have a more 
precise estimate than those in which there are few observations). Pearson residuals 
are computed as: 

ri 

where yrthe number of positive outcomes in the fh covariate pattern and Pj=the 
predicted probability for the fh covariate pattern. Pearson residuals might also be 
standardised to have a mean of zero and unit variance if the data are binomial. These 
are called standardised Pearson residuals. Pearson residuals computed on the basis of 
one per covariate pattern and one per observation are presented in Example 16.11. 

Example 16.11 Residuals and covariate patterns 
data=Nocardia 

Logistic regression model of -casecont- on -dcpct-, -dneo-, and -dclox- was fit (se e Example 
16.4). 

It turns out that there were 30 distinct covariate patterns represented in this model. The data 
for covariate pattern #9 (herds that dry-treated 20% of their cows, and used neomycin-based 
products but not cloxacillin-based products) are shown below. 

Pearson Pearson 
case- cov. pred. residual residual 

id control dcpct dneo dclox pattern value (covariate) (observ.) 

86 20 O 9 0.421 0.226 1.173 

22 O 20 O 9 0.421 0.226 -0.853 

There were two observations in covariate pattern #9 and an observed probability of a 
positive outcome of 0.5 (l of the 2 herds was positive). The predicted probability was 0.421 
and the Pearson residual computed on the basis of one residual per covariate pattern was a 
small positive value (0.226). However, when residuals were computed for each observation 
individually, there was one moderately large positive residual value (1.173 for the case herd) 
and a negative residual value of a similar magnitude (-0.853) for the control herd. 

Deviance residuals represent the contribution of each observation to the overall 
deviance. The sum of deviance residuals computed on the basis of individual 
observations (rather than covariate patterns) is the deviance (-2*log likelihood) that 
was observed when comparing the full and saturated models (section 16.6.3). 
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16.11.3 Goodness-of-fit tests 

A variety of tests are available to provide an overall assessment of how weil the model 
fits the observed data. All of these tests are based on the premise that the data will be 
divide d into subsets and within each sub set, the predicted number of outcome events 
will be computed and this will be compared with the ob serve d number of outcome 
events. Two tests (the Pearsonx2 and the deviance X2) are based on dividing the data up 
into the natural covariate patterns. A third test (Hosmer-Lemeshow test) is based on a 
more arbitrary division of the data. Other measures offit are also described. 

Pearson and deviance X2 tests 
The sum of Pearson residuals squared is known as the Pearson X2 statistic. When 
computed on the basis of one per covariate pattern, this statistic has a X2 distribution 
with U-k-l) dfprovided that} is much smaller than n (ie on average, the mj are large). 
} being much smaller than n ensures that the observed probability of the outcome in 
each covariate pattern is based on a reasonable sample size. If}=n (ie binary data), or 
almost so, the statistic does not follow a X2 distribution, so this goodness-of-fit statistic 
cannot be used. 

The Pearson X2 indicates whether or not there is sufficient evidence that the observed 
data do not fit the model (ie Ho is that the model fits the data). If it is not significant, it 
suggests that there is no reason to assume that the model is not correct (ie we accept that 
the model generally fits the data). Note In general, goodness-of-fit tests do not have a 
lot of power to detect inadequacies in the model. 

The sum of the squared deviance residuals computed on the basis of l per covariate 
pattern (ie only applicable to binomial data) is called the deviance X2. Note The term 
deviance X2 is used to differentiate this deviance from that computed on the basis of 
l per observation (discussed in section 16.6.3). As with the Pearson X2, it has a X2 

distribution with (j-k-l) df. If either the Pearson X2 or the deviance X2 are significant, 
you should be suspicious that the data do not fit the model. Example 16.12 shows the 
Pearson X2 and deviance X2 for the model presented in Example 16.4. 

Hosmer-Lemeshow goodness-of-fit test 
If you have binary data (or any situation where) is not much less than n), you can 't 
rely on covariate patterns to divide your data into subsets of sufficient size for a valid 
goodness-of-fit test. One way to get around this problem is to group the data using 
some method other than covariate patterns and compare the observed and predicted 
probabilities of disease (if that is the outcome of interest) in each group. This is the 
basis of the Hosmer-Lemeshow test. 

There are two ways to group the data. The first is on the basis of percentiles of estimated 
probability and the sec ond is on fixed values of estimated probability. For example, if 
you want 10 groups, the first method would take the 10% of the data points with the 
lowest predicted probabilities of disease and put th em in group l, the next 10% in 
group 2 etc. The second approach would take all data points for which the predicted 
probability of disease was less than 0.1 and put them in a group (regardless of how 
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many data points fell into that group). In general, the first approach is preferable 
because it avoids the problem of some group s having very small sample sizes. 

Once the data are grouped, a 2*g table is set up (g is the number of group s and should 
not be <6) with the ob serve d and expected number of cases included in each cell. The 
expected number of cases in the g=l row ofthe table is simply the sum of the estimated 
probabilities for all subjects in the group. The observed number of cases is simply the 
number of observations with Y=l. The observed and expected values are compared 
using a X2 statistic with g-2 df. A visual comparison ofthe observed and expected values 
will also identify areas where the model might not fit weIl. Example 16.12 shows the 
Hosmer-Lemeshow X2 along with the observed and expected values. 

Example 16.12 Goodness-of-fit tests 

Test X2 df p 

Pearson X2 45.58 26 0.010 

Deviance X2 22.98 26 0.136 

Hosmer-Lemeshow 6.06 2 0.048 

As can be seen from the P values, there is quite a range of estimates. Since goodness-of-fit 
tests generally have low power for detecting inabilities of models to adequately fit the data, 
the general guideline is that if any goodness-of-fit test is statistically significant, you should 
assume there is a problem with the model and try to correct it. It is also worth noting that 
with 108 observations and 30 covariate patterns, the average number of observations per 
covariate pattern is quite low, so the Hosmer-Lemeshow test might provide the most reliable 
evaluation. 

A table of the observed and expected values from the Hosmer-Lemeshow test provides some 
insight into where the model does not fit the data very weil. 

Cases 
Group p(D+) observed Expected # ofherds 

0.106 4 1.9 24 

2 0.408 3 6.2 20 

3 0.717 12 13.2 24 

4 0.817 35 32.7 40 

Proportionally, the largest difIerence between the observed and expected number of cases 
is in the first group (lowest predicted probabilities). One possible explanation of this is that 
some cases might have ari sen from mechanisms not inc1uded in the model. 
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R2 (pseudo-R2) 
A number of pseudo R2-type measures for estimating the amount of variation explained 
by a logistic regression model have been propo sed and recently reviewed (Mittlbock 
and Schemper, 1996). In general, Hosmer and Lemeshow (2000) argue that the pseudo­
R2 is equivalent to the likelihood ratio test for ali of the parameters in the model (ie 
comparing the likelihood of the full model to one with only the intercept). It does not 
compare the fit ofthe model with the observed values and consequently is better suited 
for comparing models than for assessing the goodness of fit of a selected model. 

16.11.4 Predictive ability of model 

A sec ond general approach to assessing the overall usefulness of the model is to assess 
its predictive ability (ie how good ajob does it do in predicting the outcome?). This can 
involve computing the sens iti vit y and specificity of the model at various probability 
thresholds and/or generating a receiver operating characteristic (ROC) curve. 

Sensitivity and specificity 
The ability of the model to correctly classify individuals (or in this example, herds) can 
be assessed by computing the classification statistics after fitting a model. By default, 
these are computed by classifying every observation that has a predicted probability 
::>0.5 as positive and those with values <0.5 as negative. However, this cutpoint can be 
lowered (to increase the sensitivity of the model) or raised (to increase the specificity) 
similar to the discussion of cutpoints for tests (section 5.6.3). A graph of the sensitivity 
and specificity vs the potential cutpoint values (two-graph ROC curve) is helpfuI in 
selecting an appropriate cutpoint (Example 16.13). 

Receiver opera ting characteristic curves 
An ROC curve for the model can also be generated to evaluate the performance of the 
model at ali possible cutpoints. The closer the curve comes to the upper left corner of 
the graph, the better the predictive ability of the model. If the ROC curve is close to the 
diagonalline, it indicates that the model has very little predictive ability. The maximum 
area under an ROC curve is l.0 (ie sensitivity=l 00% and specificity=l 00%) while the 
area will be 0.5 if the curve falls on the diagonal line (ie has no predictive ability at 
ali). (See section 5.6.4 for a more complete discussion ofROC curves.) The predictive 
ability of the model for Nocardia mastitis is shown in Example 16.13. 

16.11.5 Identifying important observations 

Detecting observations which either do not fit the model weil, or which might have 
an undue influence on the model is an important component of evaluating a logistic 
regression model, particularly if any of the goodness-of-fit statistics indicate problems 
with the model. 

Outliers 
Pearson residuals and deviance residuals represent the square root of the contribution 
of the covariate pattem to the Pearson and deviance X2 statistics, respectively. As with 
standardised residuals from linear regression, large positive or negative standardised 
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residuals identify points which are not weH fit by the model. If outliers are observed, it 
is important to try to determine: 

l. Why they are outliers (what are the characteristics of the observations that 
make them outliers?). 

2. If the data are found to be erroneous, they should be corrected, or failing that, 
deleted. 

3. If the data are correct, determine if they are having an undue effect on the 
model. 

This last point can be evaluated by looking at other diagnostic parameters (leverage, 

Example 16.13 Predictive ability of a model 
data=Nocardia 

For the model presented in Example 16.10, the classification statistics are: 

Classified (predicted) status 

T+ T-
True status p(D+)2:0.5 p(D+)<0.5 Total 

D+ 45 9 54 

D- 14 40 54 

Total 59 49 108 

Sensitivity pr (T+ID+) 83.3% 

Specificity pr(T-ID-) 74.1% 

Positive predictive value pr(D+IT+) 76.3% 

Negative predictive value pr(D-IT-) 81.6% 

Fig. 16.7 Use of a two-graph ROC to show the effect of changing cutpoint 
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At a cutpoint of 0.5, the 
sensitivity and specificity 
of the model are roughly 
balanced. The effect of 
changing the cutpoint 
can be evaluated visually 
in the graph. 

In this situation, reducing 
the cutpoint would 
reduce specificity quite 
dramatically and raising 
it beyond about 0.75 
would seriously affect 
sensitivity. 

'-----------------------' (continuedon next page) 



364 

Example 16.13 (continued) 

Fig.16.8 ROC curve 
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An ROC curve for this 
model is presented in 
Fig. 16.8. 

The ROC curve extends 
reasonably weil into the 
upper left-hand corner of 
the graph and the area 
under the curve is 0.84. 
Both ofthese indicate that 

O '-,-___ -,-___ -,-___ ,--___ .-- the model has a moderate 
O 0.25 0.50 0.75 1.00 predictive ability. 

1 - specificity 

delta-betas, etc (see below) or by refitting the model with the outliers omitted. (Deleting 
the outliers should only be done for the purpose of evaluating their impact on the model 
and they must be put back in the dataset.) In general, outliers contribute to the lack of fit 
of a model but often do not have an undue inftuence on it. An index plot of standardised 
Pearson residuals (1 per covariate pattern) is shown in Example 16.14. 

Hat matrix and leverage 
Another quantity central to the discussion of logistic regression diagnostics is the hat 
matrix. It is used to calculate leverage values and other diagnostic parameters. The 
hat matrix is a square matrix of dimension j * j U=number of covariate patterns) or 
n * n (n=number of data points) depending on whether the data are binomial or binary. 
The diagonal elements of the hat matrix are the logistic regression leverage values (h) 
(see Hosmer and Lemeshow, 2000 for details). 

As in linear regression, leverage measures the potential impact of an observation (or 
covariate pattern) on the model. Points with high leverage certainly deserve evaluation 
given their potential impact. 

Unlike leverage values in linear regression models, the leverage of a data point in a 
logistic model is not exc1usively a function of the values of the predictors. Data points 
that have extreme values of predictor variables (which would have high leverage 
in linear regression) might, in fact, have low leverage in logistic regression if the 
predicted value is very large or very small. Observations with extreme values of the 
predictor(s) will have leverage values that are: highest if the predicted probability 
lies between 0.1 and 0.3 or 0.7 and 0.9, moderate between 0.3 and 0.7, and low if the 
predicted probability is <0.1 or >0.9. The covariate patterns with the highest leverage 
are shown in Example 16.15. 



LOGISTlC REGRESSION 365 

Delta-betas 
Values of delta-beta provide an estimate of the effect of the jlh covariate pattem on the 
logistic regression coefficients. These values are analogous to Cook's distance in linear 
regression models. 

A single set of values of delta-beta can be calculated - one value for each covariate 
pattem - and this represents the overall effect ofthe covariate pattem on the regression 

Example 16.14 Identifying important observations 
data=Nocardia 

eloser examination of the two large standardised residuals identifies why they are so large. 

covariate case- predicted standardised 
id pattern control dcpct dneo dclox value residual 

84 21 83 O 1 0.075 3.569 

17 7 10 O O 0.060 4.029 

These two covariate patterns each consisted of a single-case herd which had a very low 
predicted probability of being a case herd « 8%). This suggests that Nocardia mastitis might 
have arisen in these herds from some mechanism other than those covered by the predictors 
in the model, although the possibility of misclassification bias (ie false positive cases) cannot 
be ruled out. 

Fig. 16.9 Index plot of standardised reslduals 
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From the model fit in Exercise 16.8, an index plot of standardised residuals with the covariate 
pattern identification number used as the plotting symbol identifies two outliers. There were 
no covariate patterns with particularly large negative residuals. 

(continued on next page) 
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Example 16.14 (continued) 

If the model is retit with those two points omitted, the resulting model is: 

Predictor Coet SE 

depet .027 .008 

dneo 2.871 .702 

delox -1.642 .600 

constant -3.956 .943 

Z P 

3.44 0.001 

4.09 0.000 

-2.73 0.006 

-4.20 0.000 

Number of obs = 106 
LR ehi2 (5) = 51.24 
Prob > ehi2 = 0.000 

Log likelihood = -47.836 

95% CI 

.012 .043 

1.495 4.247 

-2.819 -.465 

-5.805 -2.108 

The effect of removing the two outliers is that the coefficients for aU three predictors have 
moved away from the null (ie either larger positive or negative values). This suggests that the 
model based on the full dataset might provide slightly conservative estimates of the effects of 
these three factors (but the full model should be used). 

model. It is a measure of the distance between the observed set ofregression coefficients 
and a similar set that would be obtained if the observations in the covariate pattern of 
interest were omitted when building the model. Alternatively, separate sets of delta-betas 
could be determined for eaeh predictor variable to measure the effect of the covariate 
pattern on each coefficient in the model. 

Values of delta-beta will depend on the leverage that the covariate pattern has, the 
predicted value, whether or not the model fits the data point well (ie is it an outlier?) and 
also on the number of observations in the covariate pattern. Covariate patterns with a 
large number of observations will naturally tend to have a large influence on the model, 
so we want to identify covariate patterns with a large influence but a small mj' for further 
investigation. 

If a particular pattern has a large delta-beta, it is important to determine why that is. As 
noted in our example (16.15), when mj is large, that covariate pattern wiIllikely have a 
big impact on the model. This is as it should be and need not concern us. However, if it 
is a covariate pattern with relatively few observations, then it is important to verify that 
the data are correct and determine ifthere is a logical explanation for the influence it is 
exerting. 

Other parameters 
Two other parameters which measure the overall influence of a covariate pattern on 
the model are the delta-x2 and the delta-deviance. The delta-x2 provides an overall 
estimate of the effect of the}fh covariate on the Pearson X2 statistic. The deIta-deviance 
provides an overall estimate of the effect of the jth covariate on the deviance X2. These 
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Example 16.15 Identifying influential observations 
data= N ocardia 

Based on the model fit in Example 16.8, the covariate patterns with the large st leverage 
values are: 

covariate # of predicted 
pattern herds p(D+) dcpct dneo dclox value leverage 

28 11 0.18 100 O 1 .106 .427 

30 9 0.44 100 1 1 .521 .540 

27 8 0.13 100 O O .328 .547 

29 3.8 0.87 100 1 O .817 .747 

None of the covariate patterns have a particularly large leverage value and nor were either 
of the outliers a covariate pattern with high leverage. The covariate patterns with the largest 
overall delta-betas were determined: 

covariate #of predicted delta-
pattern herds p(D+) dcpct dneo dclox value beta 

5 3 0.00 5 1 O .341 .552 

28 11 0.18 100 O 1 .106 .860 

27 8 0.13 100 O O .328 3.98 

29 38 0.87 100 1 O .817 7.89 

The covariate pattern with the largest delta-beta is pattern #29. This is not surprising since 
this covariate pattern contained 38 observations (approximately 113 of the data). Neither 
the evaluation of the leverage values nor the delta-betas cause particular concern for this 
model. 

The two observations that were previously identified as outliers are also the covariate 
patterns with the large st delta-chi-square and delta-deviance values (data not shown). 

two rneasures are overall evaluations of the fit of the model (ie they are based on the 
unexplained variation) so points that are outliers will tend to have large values for the 
delta-x2 and delta-deviance. However, as noted, these observations can only be deleted 
if you are certain that the data are erroneous. 

16.12 SAMPLE SIZE CONSIDERATIONS 

There are two important issues related to sample size in logistic regression analyses. 
The first relates to the power of the study to detect effects of interest. For a simple 
logistic regression model with a single dichotomous predictor, the formula for 
comparing two proportions in Eq 2.6 will provide a reasonable estimate of the sample 
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size. For multivariable models, the sample size adjustment shown in Eq 2.10 or 2.ll 
can be used. The simulation approach described in section 2.10.8 provides a very 
flexible method of addressing all sample size issues. 

The sec ond issue relates to the adequacy of the obtained sample to support the fitting of 
a logistic model. In addition to considering the total sample size, the number of positive 
and negative outcomes in the observed data influence the precision of the estimates 
of the coefficients in the model. If positive outcomes are rare, then variances might 
be over- or underestimated and hence parameter estimates and test statistics might be 
affected. It has been suggested that the dataset should contain a minimum of 1 O(k+ l) 
positive outcomes where k is the number of predictors in the model (not counting the 
intercept) in order to adequately fit the model (Hosmer and Lemeshow, 2000). The 
same rationale applies if negative outcomes are rare: there should be l O(k+ l) negative 
outcomes in the dataset. 

16.13 LOGISTIC REGRESSION USING DATA FROM COMPLEX SAMPLE 

SURVEYS 

Data used in logistic regression analyses often come from complex sample surveys in 
which one or more of the following features might apply to the data. 

The population from which the data are obtained could be divided into strata and 
the sampling might have been done within each stratum. 
The primary sampling unit might not have been the unit of observation. For 
example, a sample of dairy herds might have been chosen from a sampling frame. 
Subsequently, data might have been collected on all cows (c1uster sample) or a 
sample of cows (multistage sampling) in each herd. Altemative approaches to 
dealing with this problem of c1ustering are discussed in Chapters 20-23. 
The probability of each individual in the population being selected for inc1usion 
in the study might have vari ed (across strata, sampling units etc). In this case, each 
observation should have a sampling weight applied to it. 

These features and their effects on parameter estimates are discussed in Chapter 2. 

Specialised software is required to fit logistic model s to this type of data and to take 
the nature of the sampling process into account. As examples, these are available in the 
-svy- commands in Stata or in SUDAAN (a specialised SAS-compatible program for 
the analysis of survey data). Three main points which need to be considered are: 

1. Analytic procedures which take into account the sampling strategy should be 
used to obtain appropriate parameter and variance estimates. 

2. Likelihood ratio tests cannot be used to compare nested models because 
the likelihood function which is used to determine the estimates is only an 
approximation. 

3. Specialised diagnostic procedures for evaluating these logistic models are not 
yet available so methods applicable to ordinary logistic models have to be 
used. 

See section 6.4 of Hosmer and Lemeshow (2000) for a more complete discussion of 
these issues. 
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16.14 CONDITIONAL LOGISTIC REGRESSION FOR MATCHED STUDlES 

In our discussions of procedures to control confounding, we discussed the technique of 
matching. The most common application of this technique is in matched case-control 
studies in which a case is matched with one or more controls on the basis of some factor 
such as age, breed, herd of origin etc. Because there might be one case and a variable 
number of controls, this is often referred to as l-M matching, of which 1-1 matching 
is a special case. 

We could analyse the data using regular logistic regression procedures by simply 
including dummy variables to represent thej strata, where a case and its control(s) make 
up astratum. Unfortunately, the generally desirable properties of maximum likelihood 
estimation of a logistic regression model only hold if the sample size is 
large relative to the number of parameters estimated and this wouldn't be true in 
a matched study with j-l dummy variables to indicate the strata in addition to the 
predictors of interest. With matched-pair data (ie one case and one control in each 
matched set), an unconditional logistic regression model including j-l dummy 
variables produces estimates of the coefficients of interest that are the square of their 
true value (eg 4 vs 2). This is clearly undesirable. 

As we don 't really care about the coefficients for the j strata variables, we can use 
a technique known as conditional logistic regression to analyse matched data. (The 
conditionallikelihood for thejlh stratum is simply the probability of the observed data 
conditional on the number of observations in the stratum and the total number of cases 
in the study). 

While logistic regression model s from studies which employed 1-1 matching can be 
fit using ordinary logistic regression programs, provided the data are appropriately 
reformatted, a conditional logistic regression model needs to be employed in the case 
of 1-M matching. Note Conditionallogistic regression models can also be fit us ing a 
Cox proportional hazards model (described in Chapter 19). 

When analysing matched data us ing conditional logistic regression, only predictors 
that vary within a matched set can be evaluated. Coefficients cannot be estimated for 
variables that are constant within all matched sets, even if they vary between sets. It is 
als o important to note that conditional models do not estimate an intercept. 

If data that were collected in a matched-design study are analysed using an unconditional 
logistic regression model, one of two effects can oc cur. If the matching was done on 
variables that are confounders (ie matching was required to prevent bias) then the 
estimates from the unconditional analysis will be biased towards the null (ie a conservative 
estimate). If the matching was not necessary to avoid bias, then the coefficients from the 
unconditional analysis will not be biased, but will be less efficient (ie will have wider 
confidence intervals). Cűnsequently, matching should be accounted for in the analysis if 
it was incorporated into the design of the study (Breslow and Day, 1980). 

The evaluation of these models (ie regression diagnostics) is not as straightforward 
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as it is for ordinary logistic models (eg the Hosmer-Lemeshow goodness-of-fit test 
is inappropriate). In the absence of readily available software to compute diagnostic 
parameters specific for matched-study designs, we recommend that you fit an unconditional 
model and use the standard regression diagnostics described in section 16.11.5. The reader 
is referred to Chapter 7 Hosmer and Lemeshow (2000) for a more complete discussion of 
some of the issues related to conditional logistic regression. Example 16.16 provides an 
example of the analysis of data from a matched case-control study. 

Example 16.16 Conditionallogistic regression 
data=sal_ outbrk 

An outbreak of Salmonella in Funen County ofDenmark in 1996 was investigated (see Chapter 
27 for description of dataset). The data consisted of 39 cases of Salmonella typhimurium 
phage type 12 and 73 control s matched for age, sex and municipality of residence. Data on 
numerous food exposures were recorded and a small subset of those data are included in the 
dataset -sal_outbrk-. 

Only one food exposure (consuming pork produced by slaughterhouse A) was significantly 
assocÍated wíth the outcome. Conditional logistic regression of the outcome on this factor 
produced an OR of 4.42 (95% CI: 1.60-12.19). In comparison, an ordinary logístic regression 
analysis ofthese data produced an (incorrect) OR of3.21 (95% CI: 1.42-7.27). 
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SAM PL E PROBLEMS 

The data for the logistic regression exercises come from a retrospective analysis of 
the medical records from all diarrheic calves which were presented to the Atlantic 
Veterinary College between 1989 and 1993. The ultimate objective ofthe study was to 
develop a logistic model which would predict whether or not the calf was septic at the 
time of admission (septic calves have a much poorer prognosis than non-septic calves 
and are not usually worth treating from an economic point of view). The principal 
investigator in this study was Dr Jeanne Lofstedt (Lofstedt et al, 1999.) 

There are 254 observations (records) and 14 variables in the dataset (cait). The original 
dataset had far more variables (inc1uding a lot of laboratory data) but we will restrict 
ourselves to using a sub set of the demographic data and the physical examination data 
collected. These predictor variables would be readily available to any practitioner and 
they are virtually complete (ie few missing values). A description of the variables in the 
dataset can be found in Chapter 27. 

Exercise 1 
l. Familiarise yourself with the data. Look at descriptive statistics to check that 

all the values look reasonable. How many calves were ultimately diagnosed as 
septic? 

2. Next, look into un conditional associations between the predictor variables and 
the outcome for sepsis (-sepsis-). Use simple statistics (t-tests,x2 as appropriate) to 
do this. 

3. Identify all variables with a significant (P :sO. l ) association with sepsis. 
4. Build a simple logistic model us ing only posture and swollen umbilicus as 

predictors. Remember, that posture is not a dichotomous variable so you will have 
to con vert it to a series of dummy variables. 

5. Based on the model in 4. explain the relationship between a swollen 
umbilicus and the risk ofbeing septic? 
a. How does the predicted probability of sepsis change as posture changes from 

standing to stemal to lateral? 
b. What is the predicted probability ofsepsis in calf#1294? 

Exercise 2 
We want to build a logistic model for -sepsis- us ing, as a starting point, the following 
predictors which were found to have significant (P :SO. l ) association with sepsis. 

Categorical variables 

attd 

eye 

jnts 

post 

umb 

Continuous variables 

age 

dehy 

resp 

temp 
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l. First, consider what type of causal structure might exist among the predictors and 
with the outcome. 

2. One of the assumptions in a logistic regression model is that the relationship 
between the log odds of the outcome and a continuous predictor variable is linear. 
Evaluate this assumption for each of the continuous predictor variables us ing the 
following two approaches: 
a. Categorise the predictor and 'eyeball' the coefficients in a logistic regression 

model inc1uding dummy variables for each level, and 
b. Categorise the predictor and plot the log odds of disease against the predictor. 
Create quadratic or ordinal variables from continuous variables which do not have 
an approximate linear relationship with the log odds of sepsis. 

3. Build a logistic model to predict sepsis using P :S0.05 as the criterion for statistical 
significance when considering terms to keep in the model. Approach this in two 
ways. 
a. First build one 'manually' by looking at various combinations of term s to 

inc1ude in the model. Use likelihood ratio tests to evaluate the significance of 
groups ofterms (eg categorical variables). AIso, subjectively assess the impact 
of term addition/removal on the coefficients (and SEs) of other terms 
in the model. 

b. Once you have settled on what you feel is a reasonable model, try using a 
stepwise selection procedure to build the model. Do you get the same result? 

4. Using a model which inc1udes only -age- and -age-squared-, -posture-, and 
-umbilicus-. 
a. Investigate the association between swollen umbilicus and posture 

further by seeing if there is evidence of confounding or interaction between 
those two variables. 

b. Is -age- a confounder for -umbilicus- or -posture-? 

Exercise 3 
Evaluate the model specified in Exercise 2, 4. (ie inc1uding -age-, -age-squared-, 
-posture- and -umbilicus-). 
SpecificaIly: 

1. Assess the fit of the model based on the Hosmer-Lemeshow goodness-of-fit test 
and the estimation of the sensitivity and specificity of the model. 

2. Examine residuals, leverages, and delta-betas. Are there any individual calves 
that have an unduly large influence on the model? 

3. How weIl does the model predict sepsis? Evaluate an ROC curve for the 
model. 

4. What would be an appropriate value to use as a cutpoint or threshold 
for the model ifwe wanted to predict sepsis? What factors should you consider 
in making that choice? 
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17 

MODELLING MULTINOMlAL DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 

1. Select an appropriate model from the following based upon the objectives ofyour 
study and the nature of your data 

multinomiallogistic model 
adjacent-category model 
continuation-ratio model 
proportional-odds model. 

2. Fit all of the models listed above. 

3. Evaluate the assumptions on which the models are based and use one or more tests 
to compare different models. 

4. Interpret OR estimates from each of the models. 

5. Compute predicted probabilities from each of the models. 
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17.1 INTRODUCTION 

In some studies, the outcome of interest might be categorical but have more than two 
categories (ie multinomial). These data could be recorded on either a nominal or ordinal 
scale. Nominal data arise when the outcome categories have no specific ordering (eg 
reason for culling might be classified as due to low production, reproduction, mastitis 
or other). Ordinal data arise when the outcome categories have a distinct order to them 
(eg severity of disease might be classified as absent, mild, moderate or severe). 

Nominal data can be analysed us ing log-linear models or multinomial logistic 
regression models. Log-linear models can simultaneously evaluate the effects of 
multiple predictors on multiple outcomes but are limited to the evaluation of categorical 
variables (predictors and outcomes). Log-linear models are used less frequently than 
regression-type models in veterinary epidemiology so they will not be discussed 
further. 

An overview of a variety of regression models applicable to nominal and ordinal 
data is presented in section 17.2. Each of the four models introduced in this section 
is described in more detail in sections 17.3 to 17.7. All of the examples used in this 
chapter are based on data derived from a study designed to determine if ultrasound 
evaluation of beef cattle at the start of the feeding (fattening) period could be used to 
predict whether the carcass from the animai would eventually be graded as 1 =AAA 
(highest grade), 2=AA, or 3=A (lowest grade in term s of price) (Keefe et al, 2003). This 
classification is based on the amount of 'marbling' (intramuscular fat in the loin region) 
present in the carcass after slaughter with grade AAA selling for the highest price. The 
dataset (beeCultra) is described more fully in Chapter 27, but the main variables used 
in this chapter are shown in Table 17.1. 

Table 17.1 Variable from beef ultrasound dataset 

farm 

id 

grade 

sex 

backfat 

ribeye 

imfat 

care_wt 

17.2 OVERVIEW OF MODEL S 

farm id 

animai id 

eareass grade 1 =AAA 2=AA 3=A 

O=heifer (female) 

1 =steer (eastrated male) 

baekfat thiekness (mm) 

area of ribeye musele (sq cm) 

intramuscular fat sccre (%) 

eareass weight (kg) 

An overview of the four models to be discussed in this chapter is presented here. In each 
case we will assume that the outcome has J categories withj being used to designate the 
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categories from 2 to J (ie j=2, ... ,J). For the sake of simplicity, we will assume that there 
is a single dichotomous predictor in the model, but these models can easily be extended 
to multiple predictors. A simple example, based on the data in Table 17.2, will be used 
to demonstrate most of the models. 

Table 17.2 Cross-tabulation of grade and sex from the dataset beeCuitra 

Category Grade Steer Female Totals 

1 AAA 100 64 164 

2 AA 185 92 277 

3 A 29 17 46 

314 173 487 

17.2.1 Multinomiallogistic model 

Nominal data can be analysed using a multinomiallogistic model which relates the 
probability of being in category j to the probability of being in a baseline category 
(which we will refer to as category l). The model can be written as follows. 

ln p(f = j) pJj) + pij) X 
p(f = l) Eq 17.1 

A complete set of coefficients (/Jo and Pl) are estimated for each of the J-l levels being 
compared with the baseline (these are designated as PUJ). Graphically, the effect of the 
predictor can be seen in Fig. 17.1. 

Fig. 17.1 Multinomiallogistic model 

123 

~~ ________ O_R_(_2) ________ AA __ 1 _________ O_R_(3_) ____ ~i 
Based on the data in Table 17.2, the odds ratio (OR) associated with being a steer for 
category 2 (AA) (compared with category l) is: 

OR(2) 64*185 1.29 
100*92 

SimilarJy, the OR for category 3 (A) compared with category l (AAA) is: 

OR(3) 64 * 29 1.09 
100* 17 
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17.2.2 Adjacent-category model 

If the categories are ordered, and in some sense 'equidistant', then a constrained 
multinomial model, or adjacent-category model can be fit to the data. This model 
is based on the assumption that the predictor increases (or decreases) the log odds 
of a category occurring by a fixed amount as you go up through the categories. 
Consequently, the model can be written as follows. 

lnP(Y=j) pJj)+{J-l)PIX 
p(Y = 1) Eq 17.2 

Fitting this model requires that J-I intercepts (JJo) be estimated, but only a single /3
1
• 

Graphically, the effects of the predictor can be seen in Fig. 17.2. 

Fig. 17.2 Adjacent-category model 
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The estimate of /3 cannot be derived easily from the data in Table 17.2, but the OR for 
AA vs AAA is 1.13 while that for A vs AAA is (1.13)2=1.28. 

17.2.3 Continuation-ratio model 

An altemative for analysing ordinal data is to use a continuation-ratio model which 
relates the probability of being in a category to the probability of being in any lower 
category. The model can be written as follows. 

ln p(Y = j) pJj) + pij) X 
p(Y < j) Eq 17.3 

A complete set of coefficients (JJo and /3) is estimated for each of the J-I categories 
above the baseline. Graphically, the effect of the predictor can be se en in Fig. 17.3. 

Fig. 17.3 Continuation-ratio model 
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Based on the data in Table 17.2, the OR associated with being a steer for category 2 
(compared with category l) is: 

64*185 
100*92 

1.29 
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while the OR associated with being a steer for category 3 (compared with being <3) (ie 
A vs AA or AAA) is: 

OR(3) = (64+92)*29 0.93 
17*(100+185) 

17.2.4 Proportional odds model 

A third approach for analysing ordinal data is to use a proportional odds model which 
relates the probability of being at or above a category to the probability of being in 
any lower category. The model assumes that this relationship is the same at each of the 
categories. The model can be written as follows. 

ln p(y ~ j) fJJj) + fJ,X 
p(Y < j) Eq 17.4 

Fitting this model requires that J-I intercepts (/Jo) be estimated, but only a single fl]" 
Graphically, the effects of the predictor can be seen in Fig. 17.4. 

Fig. 17.4 Proportional odds model 
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Based on the data in Table 17.2, the OR associated with being a steer (castrated male) 
for category 2 or 3 (compared with category l) is: 

OR(2) = 64 * (185 + 29) = 1.26 
(92+17)*100 

while the OR associated with being a steer for category 3 (compared with being <3) (ie 
A vs AA or AAA) is: 

OR(3) = (64+92)*29 0.93 
17*(100+185) 

Because the two ORs are not the same (or close), the assumption ofproportional odds 
seems to have been violated, so this might not be an appropriate model. 

17 .3 MULTINOMIAL LOGISTIC REGRESSION 

In multinomial logistic regression of an outcome that has J categories, the probability 
ofmembership in eae h of the outcome eategories is eomputed by simultaneously fitting 
J-l separate logistie model s (with one eategory serving as the baseline or reference 
eategory). Consequently, for a dependent variable with four levels (leaving the first 
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level as the baseline category), we estimate three sets of coefficients ({Pl, P(3), {f4)) 
corresponding to the remaining outcome categories. Because {fl)=O, the predicted 
probability that an observation is in category l is: 

p(Y = l) = --X-j3(;:-;2)_-=1:c..
xP

--;(:-;-3)--x-p-'-(4:;-) 

l+e +e +e 
while the probability ofbeing in category 2 is: 

e xP(2 ) 

p(Y = 2) = --X-.,,-::(2c-) --'----x-,,-:::(3c-) --X-p-'-(4c-) 

l+e f' +e f' +e 

and similarly for categories 3 and 4. 

17.3.1 Odds ratios 

Eq 17.5 

Eq 17.6 

For any given predictor (eg sex=steer), there is a separate estimate of the effect of that 
predictor on each outcome (relative to the base level). Exponentiation of the coefficients 
from a multinomial regression model produces odds ratios as a measure of effect. Note 
Strictly speaking, these effect measures are not odds ratios. They are actualIy the ratio 
of two relative risks (or risk ratios) with each relative risk describing the probability of 
the outcome in the category of interest relative to the baseline category. Consequently, 
it would be more appropriate to refer to them as relative risk ratios and some computer 
programs do so. However, the term odds ratio is more commonly applied and will be 
used in this chapter. 

Example 17.1 shows a very simple model for carcass classification with -sex-as the 
single predictor. The odds ratios are exactly the same as were found in section 17.2. 
They indicate that a steer was 1.29 times as likely to grade AA (compared with AAA) 
as a heifer was. Similarly, a steer was 1.09 times as likely as a heifer to grade A. 

Both of the aRs in Example 17.1 suggest that being a steer increases the risk ofa lower 
carcass grade. However, the effect is not statisticalIy significant (see section 17.3.3 for 
assessment of significance). 

As with ordinary logistic regression, multinomial logistic regression can be extended 
to model the effects of multiple predictors that might be categorical or continuous in 
nature. Example 17.2 show s a model for carcass grade including several predictors 
with results presented as coefficients. 

17.3.2 Interpretation of estimates 

Estimates (coefficients or aRs) from multinomial logistic regression model s are 
interpreted in a manner similar to those from ordinary logistic regression. The OR 
for the predictor -imfat- in Example 17.2 suggests that, for a unit increase in the 
intramuscular fat reading from the ultrasound examination, the odds of being graded 
AA goes down by a factor of e-oA88=0.6l (39% reduction) while the odds of being 
graded A goes down by a factor of e-Ll14=0.33 (67% reduction). In Example 17.2, alI of 
the predictors have more pronounced effects on the A vs AAA comparison compared 
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Example 17.1 Simple multinomiallogistic regression 
data=beeC ultra 

A simple multinomiallogistie regression of eareass grade (3 levels) was earried out with -sex­
as the sole predietor. Careass grade AAA was the baseline (referent) level. 

The first table presents the results in terms of eoeffieients of the logistie models. 
Number of obs = 487 

LR chi2 (2) = 1.56 
Prob > chi2 = 0.459 

Log likelihood = -442.56 

Coet SE Z P 95% CI 

AA 

sex=steer 0.252 0.205 1.23 0.218 -0.149 0.653 

constant 0.363 0.163 2.23 0.026 0.044 0.682 

A 

sex=steer 0.088 0.345 0.25 0.799 -0.588 0.764 

constant -1.326 0.273 -4.86 <0.001 -1.860 -0.791 

Being a steer eompared with being a female, inereased the logit of the probability of grading 
AA or A by 0.25 and 0.09 units, respeetively. 

The seeond table presents the results in terms of odds ratios. 

OR SE 95% CI 

AA 

sex=steer 1.287 0.263 0.862 1.922 

A 

sex=steer 1.092 0.377 0.555 2.146 

Steers were 1.29 and 1.09 times as likely to be downgraded to AA or A compared with 
females. 

with the A vs AA comparison. This was expected given the ordinal nature of the data, 
but nothing in the model guarantees this (it was not true in Example 17.1). This pattem 
would not be expected if unordered nominal data were being analysed. 

17.3.3 Testing significance of predictors 

The significance of predictors can be assessed us ing either a Wald test or a likelihood 
ratio test (LRT). Overall tests of signifieance can be carried out (for alllogistic models 
fit) as weil as tests for coefficients within individual models. Note however, that tests of 
significanee for a predictor within agiven logistic model (eg for grade=A) will change 
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Example 17.2 Multiple multinomiallogistic regression 
data=beeC ultra 

Prediction of carcass grade based on the sex and weight of the animaI and three ultrasound 
measurements detennined at the start of the feeding period. 

Number of obs = 487 
LR chi2 (10) = 125.63 

Prob > chi2 < 0.001 
Log likelihood = -380.522 

Coef SE Z P 95% CI 

AA 

sex=steer 0.912 0.262 3.49 0.000 0.399 1.425 

backfat -0.278 0.116 -2.40 0.017 -0.506 -0.051 

ribeye 0.316 0.077 4.07 0.000 0.163 0.468 

imfat -0.488 0.121 -4.02 0.000 -0.726 -0.250 

care_wt -0.022 0.003 -6.54 0.000 -0.028 -0.015 

constant 7.449 1.223 6.09 0.000 5.052 9.846 

A 

sex=steer 1.533 0.449 3.42 0.001 0.653 2.412 

backfat -0.708 0.251 -2.82 0.005 -1.200 -0.215 

ribeye 0.382 0.147 2.59 0.010 0.093 0.671 

imfat -1.114 0.233 -4.77 0.000 -1.572 -0.656 

care_wt -0.046 0.006 -7.24 0.000 -0.058 -0.033 

constant 15.745 2.123 7.42 0.000 11.584 19.905 

Carcass grade=AAA was the baseline (referent) level. 

Sex=steer is now highly significant and is a strong risk factor for lowergrades. -carc _ wto, 
-backfat-, -ribeye- and -imfat- are intervening variables between -sex- and -grade- suggesting 
that the direct effect of -sex- is much stronger than the total effect. See Chapter 13 for a 
discussion of intervening variables. 

if the baseline category is changed. Consequently, overall tests of significance provide 
a better estimate of the significance of the predictor. In Example 17.1 neither the Wald 
nor the likelihood ratio test produced a significant result (P=0.46 for both). However, 
based on the model in Example 17.2, while the Wald likelihood ratio tests for -sex- give 
slightly different values (X2 of 17.4 and 18.3, respectively on 2 df); both were highly 
significant (P<O.OO l). Control of other factors (intervening variables), has made sex an 
important predictor of carcass grade. 



MODELLING MULTINOMlAL DATA 381 

17.3.4 Obtaining predicted probabilities 

Predicted probabilities of the occurrence of each outcome category can be computed 
from the multinomiallogistic regression (see Eqs 17.5 and 17.6). These will, of course, 
vary with the values of the predictors for the animaI. Table 17.3 shows those values for 
a small subset of the cattle based on the model shown in Example 17.2. 

Table 17.3 Predicted probabilities from a multinomiallogistic regression model 

observed Probability of grade 

id grade sex backfat ribeye imfat carc_wt AAA AA A 

AA steer 2.51 8.94 4.46 357.7 .035 .588 .377 

2 AA steer 5.86 11.77 5.24 323.2 .016 .675 .309 

3 AAA steer 3.14 9.68 3.50 360.0 .055 .676 .269 

4 AA female 2.47 7.46 5.18 307.3 .027 .446 .526 

5 AAA steer 1.85 8.03 4.89 354.5 .032 .532 .435 

The sum of the probabilities for each animaI equals l. 

17.3.5 Regression diagnostics 

Specialised diagnostics for multinomiallogistic regression are not as readily available 
as they are for ordinary logistic regression. One approach is to fit ordinary logistic 
models for pairs of comparisons (eg grade=A vs AAA and AA vs AAA) and evaluate 
the regression diagnostics for those models. 

17.4 MODELLING ORDINAL DATA 

Ordinal data can arise in a variety of ways. For example, an observed continuous 
variable might be divided into categories. Alternatively, levels of an ordinal variable 
could represent categories of an unobserved (but hypothesi sed) continuous variable 
(eg opinions rang ing from strongly agree to strongly disagree, or disease severity 
ranging from absent to severe). Finally, categories might represent total values of a 
composite variable made up of a series of scored variables (eg a hygiene score that 
represents the sum of scores from several questions about hygiene in a barn). 

While the multinomial models described above can also be used to analyse ordinal data, 
they ignore the fact that the categories fall in a logical, ordered sequence. There are a 
number of different ways of fitting ordinal models. We will consider three of them: 
adjacent-category model s (section 17.5), continuation-ratio model s (section 17.6) and 
proportional-odds model s (section 17.7). 
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17.5 ADJACENT-CATEGORY MODEL 

In an adjacent-category logistic regression model, each coefficient measures the effect 
of a factor on the logit of the probability of being in a specified level compared with 
the probability of being in the level below. For any given predictor, this results in the 
estimation of a single effect that expresses how the predictor influences the log odds of 
the outcome moving up to the next (adjacent) category. This model is also known as a 
constrained multinomial model because it is estimated as a multinomial model with the 
constraint that the coefficient for categories n levels apart be n times the coefficient for 
adjacent categories. (Altematively, the OR for categories n levels apart will be the OR 
for adjacent levels raised to the power n.) This model is based on the assumption that, 
as you go from one level to the next, the OR is constant. A graphic representation is 
shown in Fig. 17.2. 

Example 17.3 presents an adjacent-category model based on the multinomial model 
fit in Example 17.2. A likelihood ratio test can be used to compare this 'constrained 
multinomial model' with the usual multinomial model. If the test is significant, it 
suggests that the multinomial model is superior. The LRT for the model in Example 
17.3 had a X2 of 7.73 with 5 df (because five fewer coefficients were estimated) with a 
P-value of 0.19, suggesting that there is little evidence that the unconstrained model fits 
the data better than the adjacent-category model. In this case, for the sake of simplicity, 
the adjacent-category model is preferable. 

17.6 CONTINUATION-RATIO MODEL 

In continuation-ratio models, the log OR measures the effect of a factor on the odds of 
being in a specified level compared with the odds of being in any of the lower levels. 
This type of model is useful in situations where the dependent variable represents the 
number of attempts required to achieve an outcome (eg number of breedings required 
for conception in dairy cows). A graphic representation is shown in Fig. 17.3. 

This model can be fit as a series of simple logistic model s in which the dependent 
variable (y) is recoded to be l for the level of interest, O for alllower levels and missing 
for all higher leve ls. For example, a continuation-ratio model evaluating the effects of 
predictors on the probability of conception for up to four breedings would require three 
separate logistic regressions. The data would be recoded as shown in Table 17.4. 

Table 17.4 Coding of data for a continuation-ratio model of the effect of 
predictors on the number of services required for conception 

Breeding 

2 3 4 

Y1 O missing missing 

Y2 O O 1 missing 

Y3 O O O 
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Example 17.3 Adjacent-category model 
data=beeC ultra 

383 

An adjacent-category model was fit using the same predictors presented in Example 17.2. 
The constraint that coefficients for categories two levels apart be twice those of the adjacent 
categories reduces the number of parameters which need to be estimated. 

Number of obs = 487 
LR chi2 (5) = 117.90 
Prob > chi2 < 0.001 

Log likelihood = -384.385 

Coef SE Z P 95% CI 

AA 

sex=steer .811 .206 3.94 0.000 .407 1.214 

backfat -.305 .095 -3.21 0.001 -.491 -.118 

ribeye .237 .060 3.94 0.000 .119 .356 

imfat -.520 .099 -5.25 0.000 -.714 -.323 

carc_wt -.023 .003 -8.22 0.000 -.028 -.017 

constant 8.713 1.010 8.63 0.000 6.733 10.692 

A 

sex=steer 1.621 .412 3.94 0.000 .814 2.428 

backfat -.610 .190 -3.21 0.001 -.983 -.237 

ribeye .475 .121 3.94 0.000 .238 .711 

imfat -1.039 .198 -5.25 0.000 -1.427 -.651 

carc_wt -.046 .006 -8.22 0.000 -.057 -.035 

constant 14.393 1.906 7.55 0.000 10.658 18.129 

Outcome grade=AAA is the comparison group. 

Note The coefficient for each predictor for grade=A is twice that for grade=AA because it is two 
categories away from AAA. For example, being a steer increases the log odds of being graded A 
by 1.62 units but the log odds of being graded AA by only 0.81 units. 

In this example, the coefficient for a predictor represents the effect of the factor on the 
log odds of conceiving on the ih breeding, conditional on not conceiving on any previous 
breedings. 

The model contains the same number of parameters as the multinomial model presented 
in section 17.3. Consequently, the model is no more 'parsimonious', but it results in 
estimates of the OR which have different interpretations than those from a multinomial 
logistic regression model. A constrained continuation-ratio model can be fit with the OR 
for each predictor constrained to be equal for each increment in the outcome. A likelihood 
ratio test, comparing the constrained and unconstrained models, can be used to evaluate 
the assumption of equal OR. 
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The OR from the separate logistic model s for the beefultrasound data are not presented 
because it does not make biological sense to fit these data with a continuation-ratio 
model (ie mové'ments between grades are not sequential events). 

17.7 PROPORTIONAL ODDS MODEL (cONSTRAINED cUMULA TIVE LOGIT 

MODEL) 

This is the most commonly encountered type of ordinallogistic model. In a proportional 
odds model, the coefficients measure the effect of a predictor on the log odds of being 
above a specified level compared with the log odds of being at or below the specified 
level. It is based on the assumption that the coefficients do not depend upon the 
outcome level, so only a single coefficient for each predictor is estimated. A graphic 
representation of this model is presented in Fig. 17.4. 

A proportional-odds model assumes that the ordinal outcome variable represents 
categories of an underlying continuous latent (unobserved) variable. Assume that 
the value of the underlying latent variable (or 'score') (S) is a linear combination of 
predictor variables. 

Eq 17.7 

where ei is a random error term from a continuous distribution. 

The latent variable (s) is divided by cutpoints Ct) so that the z'tlt individual is c1assified as 
J 

category l (AAA) if Si:S 't) and is c1assified as category 2 (AA) ih) < Si:S 't2, and so on. 

1 (AAA) 2 (M) 3 (A) Y 
----------~----------~------------S 

The probability of observing outcome j in the z'tlt individual is: 

p(outcomei = j) = p(-rj _) < Si < -rJ Eq 17.8 

If the random term (e) is assumed to have a logistic distribution (with a mean of O and 
a variance of n2/3), then 

Eq 17.9 

Note Assuming the latent variable has a normal distribution gives rise to an ordinal 
probit model, but those are not discussed in this chapter. 

The model fit by assuming a logistically distributed latent variable can also be written 
as (presented with a single predictor X for simplicity): 

logit (p(Y :Sj))=P
OJ 

+ pX Eq 17.10 



MODELLING MULTINOMlAL DATA 385 

where the POjare intercepts and p is the effect (slope) of the predictor. Thus, the model 
is one in which the log odds of the outcome can be viewed as being represented by a 
series of parallel lines with different intercepts. 

Example 17.4 presents a proportional-odds model for the carcass grade data. 

Example 17.4 Proportional-odds model 
data=beeC ultra 

A proportional-odds model was fit to the carcass grade data with the same predictors as used 
in Example 17.2 and 17.3. 

Number of obs = 487 
LR ehi2 (5) = 115.97 
Prob> chi2 < 0.001 

Log likelihood = -385.349 

Coef SE Z P 95% CI 

sex=steer 0.919 0.229 4.02 0.000 0.471 1.368 

baekfat -0.326 0.105 -3.09 0.002 -0.533 -0.120 

ribeye 0.274 0.067 4.08 0.000 0.142 0.405 

imfat -0.569 0.108 -5.26 0.000 -0.781 -0.357 

care_wt -0.026 0.003 -8.56 0.000 -0.032 -0.020 

cutpoint 1 -9.678 1.078 

cutpoint 2 -6.151 1.004 

The odds ratio associated with being a steer, compared with being a female is: 
eo.919=2.51 

This suggests that being a steer increases the odds of being at or above any given carcass grade 
compared with being below that grade by 2.51 times. (Remember that the data are coded so 
that A is grade 3 - ie greatest economic loss). As such it measures the overall increased chance 
of a poor (higher) grade that is associated with being asteer. 

17.7.1 Predicted probabilities 

The first observation in the dataset is a steer (sex= 1) with a backfat=2.51, a ribeye=8.94, 
an imfat=4.46 and a carc_wt=357.7. For this animaI, the latent variable (S) is: 

S=-9.202 
I 

Consequently, the probability of this animaI being in category 1 (AAA) (from Eq 17.9) 
IS: 

p(Y = l) l = 0.38 
1+ e-9.202-(-9.678) 
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Similarly, the probability of this animaI being graded AA is 0.57 and A is 0.05. 

The probabilities of each grade outcome for the first five animals from this dataset (and 
the values of the predictor variables for those animai s) are shown in Table 17.5. 

Table 17.5 Values of predictor variables, latent variables (Sj) and predicted 
probabilities of each of the carcass grades from the proportional-odds model 

Probability of grade 

id sex backfat ribeye imfat carc_wt S AAA AA A 

steer 2.51 8.94 4.46 357.7 -9.202 .38 .57 .05 

2 steer 5.86 11.77 5.24 323.2 -9.076 .35 .60 .05 

3 steer 3.14 9.68 3.50 360.0 -8.718 .28 .65 .07 

4 female 2.47 7.46 5.18 307.3 -9.625 .49 .48 .03 

5 steer 1.85 8.03 4.89 354.5 -9.398 .43 .53 .04 

The effect of a single predictor (-imfat-) on the predicted probability can best be 
viewed by generating smoothed curves ofthe probability of each grade against -imfat-. 
Fig. 17..5 shows a graph of kernel smoothed mean probabilities (smoothed with a 
bandwidth of 30%) of each grade against the intramuscular fat level (over the range 
of3.0 to 6.0 - the range in which most -imfat- values faB). Note As the probability of 
each outcome depends on the value of aB predictors in the model, the smoothed curves 
shown in Fig. 17.5 represent average probabilities of the grade as -imfat- changes. 

Fig. 17.5 Smoothed mean probabilities of grades 
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As can be seen, the probability of a carcass being graded AA or A goes down as the 
intramuscular fat level at the start of the feeding period goes up. On the other hand, the 
probability of a grade of AAA goes up substantiaBy. 
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17.7.2 Proportional-odds assumption 

A rough assessment of the assumption of proportional odds can be obtained by 
comparing the log likelihood of the ordered logit model (L]) with one obtained from 
the multinomial logit model (L o) using a likelihood ratio test. If there are k predictors 
(not counting the intercept) and J categories of outcome, the multinomial model 
will fit (k+ I)(J-I) parameters, while the proportional-odds model will fit k+(J-I) so 
the difference in degree s of freedom is k(J-2). Consequently, -2(L]-Lo) should have 
an approximate X2 distribution with k(J-2) degrees of freedom. Note This is only 
an approximate test because the proportional-odds model is not nested within the 
multinomial model. However, it gives a rough assessment of the assumption of the 
proportional-odds assumption. 

In our example, the log likelihoods of the two models are -380.5 and -385.3, respectively 
so the LRT is: 

LRT=-2( -380.5-[ -385.3])=9.6 

The r statistic has k(J-2)=5 df which yields a P-value of 0.09. Consequently, this 
provide s marginal evidence that the proportional-odds assumption does not hold. 

An altemative approximate LRT based on fitting J-I separate binary models has been 
developed (Wolfe and Gould, 1998). The model s are fit first assuming the {Js are 
constant across ali model s (proportional-odds assumption) and the sum of these log 
likelihoods are compared with the sum of those obtained by fitting the models without 
the assumption of constant {Js. For the beef ultrasound model, this test produces a X2 
value of 7.47 (P=0.19). 

The likelihood ratio tests described above are omnibus tests which evaluate the 
assumption of proportional odds over ali predictors. A Wald test which will provide 
an overall assessment as weil as an evaluation of the assumption for each predictor 
separately is available (Brant, 1990). The results ofthis test for the model fit in Example 
17.4 are presented in Table 17.6. 

Table 17.6 Brant (Wald) test of proportional-odds assumption 

Variable X2 P df 

ali 7.81 0.167 5 

sex 0.08 0.777 

backfat 0.58 0.448 

ribeye 1.53 0.216 

imfat 0.77 0.380 

carc_wt 0.64 0.425 

The P-value of the overall Wald test is comparable to the second approximate 
likelihood ratio test described above. None of the individual predictors have significant 
test results suggesting that the proportional-odds assumption is valid. Other tests of 
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the proportional-odds assumption are available but there are no c1ear guidelines for 
choosing one test over another. In general, if any of the tests discussed above yields a 
significant result, the assumption should be investigated further. 
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SAMPLE PROBLEMS 

The data for this exercise are included in the dataset 'colostrum '. They represent a small 
subset ofthe data collected during a study looking at the effects on calfhealth ofbacterial 
levels in colostrum. It had been postulated that high bacterialloads in colostrum might 
adversely affect calf health either directly, or by reducing immunoglobulin absorption 
by the calf. The variables in this dataset are: 

Variable Description 

health a 3-level outcome variable deseribing the health of the calf over the first four 
weeks of life 

O=completely healthy 

2=mild i1lness 

3=serious illness (including a few calves that died) 

herd the 6 herds in the study have bee n divided into 2 groups 

O=the single large herd 

1 =a collection of the five smaller herds 

quantity of colostrum fed (litres) 

naturallogarithm of the total bacterialload (bacUmi) in the colostrum (sample 
taken just before first feeding) 

l. Fit mUltinomial, adjacent-category and proportional-odds models for -health­
with -herd-, -qt y- and -log_tot- as predictors. 

2. Is there evidence that the multinomial model fits the data better than the 
adjacent-category model? 

3. Evaluate the assumption of 'propórtional odds' for the overall proportional-odds 
model using both a likelihood ratio test and a Wald test. Use the Wald test to 
determine if any individual predictors violate the assumption. 

4. Test the overall significance of the variables -herd- and -qty-. Although the 
variable -qt y- is not statistically significant, examine what effects removing 
it has on the apparent effect of -log_tot-. 

5. What is your overall conclusion about the effect of bacterial load in colostrum 
on calfhealth? 
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18 

MODELLING COUNT AND RATE DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Understand the relationship between counts of disease events and incidence 
rates. 

2. Fit, evaluate and interpret Poisson regression models. 

3. Be able to determine when a negativ e binomial model is likely to be more appropriate 
than a Poisson model and to quantify and statistically assess overdispersion. 

4. Fit, evaluate and interpret negative binomial regression models. 

5. Decide when a zero-inflated model might be more appropriate than a Poisson or 
negative binomial model. 

6. Fit a zero-inflated model and interpret the model and the Vuong statistic. 
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18.1 INTRODUCTION 

In previous chapters, we have looked at methods of analysing data measured on a 
continuous scale (Chapter 14) and two types of discrete data: binary/binomial data 
(Chapter 16) and multinomial data (Chapter 17). Here, we are introduced to the 
situation in which the outcome we are measuring represents a count of the number of 
times an event occurs in an individualor group of individuals. 

a. It might be a simple count of events, such as the number of breedings 
required for a dairy cow to conceive. A recently published manuscript 
used Poisson regression to evaluate the effect of peripartum treatment with 
an anthelmintic on the number of services per conception in dairy cows 
(Sanchez et al, 2002). 

b. It might be a count of cases of disease over a period of time with the amount of 
animaI-time at risk having to be taken into consideration (eg total number of 
cases of clinical mastitis in a dairy herd over a year with the number of cow­
months contributed by lactating cows as the amount of animai-time). Hence, this 
is a measure of the incidence rate (I) of disease. The examples used in this chapter 
will focus on this kind of data: the incidence rate of clinical mastitis in 
a hypothetical trial of 'pre-dipping' in a dairy herd and the incidence rate of new 
Mycobacterium bovis infections in cattle and cervid herds after the introduction 
of the agent to the herd. 

c. It might be a count of cases of disease with the size of the population at risk 
being taken into consideration (eg cases of lymphosarcoma in slaughtered cattle 
seen at variaus abattoirs with the number of cattle slaughtered as the population 
at risk). This is an estimate of the (lifetime) incidence risk oflymphosarcoma in 
cattle. 

d. It might be a count of an outcome that is measured over a geographical area. 
For example; Poisson model s are also used to investigate factors related 
to the number of events per unit area. Hammond et al (200 l) investigated 
whether land use was predictive of the number of badgers in 500 m2 grids 
in an area in Ireland. The study area was overlaid by a 500 m2 grid and the 
number of badgers caught in each grid was recorded. Land use 
within each cell of the grid was described by a set of categorical variables. 
The mean number of badgers per grid was 0.6 and the variance was 1.5. A 
major finding was that as the area ofhigh-quality pasture within a grid increased, 
the number of badgers also increased. 

18.1.1 Approaches to analysis 

We might want to evaluate the effect of 'pre-dipping' (disinfection of teat ends prior 
to milking) on the incidence of clinical mastitis. We will assume that a controlled trial 
can be carried out in three large dairy herds and cows will be individually assigned 
to be pre-dipped or not. The outcome of interest might be the total number of case s 
of clinical mastitis occurring in each cow over a full lactation. Other factors that will 
have to be taken into consideration are the age of the cow (it is generally accepted that 
the risk of clinical mastitis increases with age) and which herd the cow is in (because 
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incidence rates of mastitis vary among herds). While random assignment of cows to 
treatment groups should balance the age and herd factors across the study groups, you 
might still want to consider them in the analysis. Given the clinical trial design, we can 
assume that the population is closed, but the time at risk will vary among cows. Note 
In this example, we are interested in the total number of cases of mastitis. If we were 
interested only in first cases, we could create a binary variable for each cow and fit a 
logistic model. 

There are a number of ways to approach the analysis of the data generated by this 
study. 

a. The incidence rate of clinical mastitis could be computed for each study 
group and the difference between the two group s tested us ing an unconditional 
Z-test that was discussed in Chapter 6. This approach does not allow for the 
control of other potential confounding variables (ie age of cow and herd), so it 
would rely totally on random assignment to control for these effects. 

b. Altematively, you could determine the incidence rate of clinical mastitis 
within each cow and use that value as the dependent variable in a linear 
regression with pre-dipping as the primary exposure (predictor) of interest and 
age and herd as extraneous variables. However, most cows would have an I of 
zero, so it is very unlikely that the error terms would have anything close 
to a normal distribution. Consequently, one of the fundamental assumptions 
oflinear regression would be violated. It is also possible that some combination 
of predictor variables could be found that predicted a negative I for the cow. 
This approach looks worse than the first. 

c. The preferred approach is to use Poisson regression to model the incidence of 
new cases while adjusting for the amount of time each cow was at risk. 

18.2 THE POISSON DISTRIBUTION 

The Poisson distribution is often used to model counts of 'rare' events: 

p(y=y)=,uye-,u 
yl Eq 18.1 

where y is the observed count of events and f.1 is the mean number of events. An 
interesting characteristic of the Poisson distribution is that the mean and the variance 
are equal (ie f.1). 

The Poisson distribution can be thought of in two ways. 
a. Ifthe times between events (eg cases ofmastitis) are independent and follow an 

exponential distribution with a mean value of t, then the number of cases of 
mastitis (y) in a defined time period (T) will follow a Poisson distribution with 
f.1=T/t. For example, if the mean time between cases ofmastitis is 150 days, then 
the expected number of cases in a 300-day lactation will be 300/150=2 cases. 
The time between events is sometimes referred to as the 'waiting time'. Using 
this formulation of the Poisson distribution, there is a natural connection 



394 MODELLING COUNT AND RATE DATA 

between the analysis of counts of events (Poisson regression) and the analysis 
of time to event occurrence (survival analysis - Chapter 19). 

b. The Poisson distribution approximates the binomial distribution ifthe population 
(n) is large, consists of independent units and the binomial proportion (P) is 
small (ie the two characteristics that would make an event 'rare'). In this case, 
f.1=np. For example, if the probabi1ity of the occurrence of mastitis on any 
given day is 1/150=0.0067, then the expected number of cases in a 300-day 
lactation will be 300*0.0067=2. 

Ifthe outcome follows a Poisson distribution and the mean is known, you can calculate 
the probability of a specific number of events occurring. For example, if the average 
number of milk fever cases in a dairy herd is 5 per year, the probability of getting 10 
cases in a year is: 

510 e-5 

p(r = 10)= --= 0.018 
10! 

This indicates that there is approximately a 2% chance of having exactly 10 cases in a 
year (provided the mean for the population is not changing over time). 

Poisson distributions with means of 0.5, 1.0,2.0 and 5.0 are shown in Fig. 18.1. As this 
figure indicates, as the mean increases, the Poisson distribution approach es a normal 
distribution. 

Fig. 18.1 Poisson distributions 
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18.3 POISSON REGRESSION MODEL 

The usual fonn of the Poisson regression model is: 

E(r)= fl = nA 

where E( y) = the expected number of cases of disease 
n = exposure (eg animaI-time units at risk) 
A = represents a function which defines the disease incidence rate. 

395 

Eq 18.2 

The exposure (n) adjusts for different amounts of time at risk (or altematively different 
sizes of populations at risk) for the various study subjects (animals or group s of 
animals). (Note Throughout this text, the letter n is most commonly used to denote the 
number of animals in a population. Here we are also us ing it to denote the amount of 
animaI-time at risk.) n could be recorded either on the original scale (ie the amount of 
animaI-time at risk, referred to as the exposure), or on a log-scale (ie the log (animal­
time at risk), referred to as an offset). However, if n is equal for all subjects, it can be 
omitted but you must remember that predicted counts will refer to the expected number 
of cases in n animaI-time units at risk. For example, in the badger study referred to, 
each count related to the same 500 m2 grid size so no offset or exposure was required. 
However, the predicted counts were counts per 500 m2. 

One of the ways that A can be related to the predictor(s) is: 

A=efJo+/3ix or ln(A)=,Bo+,B}X Eq18.3 

Consequently, the Poisson regression model is: 

E(Y) = nefJo +fJJX or ln E(Y) = ln n + Po + p}X 

or ln E(I) = ln E(r) = Po + p}X 
n Eq 18.4 

where InE(I) is the log of the expected value of the incidence rate (I) of disease which 
is being modelled as a linear combination of predictors. Note This example assumes 
that there is a single predictor variable (X), but the model can be extended to include 
multiple predictors. 

As with logistic regression, Poisson regression models are fit using an iterative maximum 
likelihood estimation procedure. The statistical significance of the contribution of 
individual predictors (or group s of predictors) to the model can be tested using either 
Wald tests or likelihood ratio tests. An example of a Poisson regression analysis, based 
on tuberculosis data from cattle and cervids is presented in Example 18.1. 
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Example 18.1 Poisson regression model 
data=tb Jeal 

The incidence rates of new tuberculosis (TB) infections in cattle, cervid (deer and eIk) 
and bison herds in 9 TB outbreaks in Canada between 1985 and 1994 were estimated (see 
Chapter 27 for explanation of method of estirnation). These incidence rates were modelled 
as a function ofseveral characteristics of the animals in the herd (type, sex and age). The key 
predictors were: 

type: l =dairy, 2=beef, 3=cervid, 4=other 

sex: l =female, 2=male 

age: 0=0-12 mo, 1=12-24 mo, 2=24+ mo 

A more complete description of the dataset is in Chapter 27. 

A Poisson regression model with the three predíctor variables and the time at risk included as 
an exposure variable (or offset) produced the following results. 

Number of obs = 134 
Log likelihood = -238.7 

95% CI for IR 

Variable Coef SE P IR Lower Upper 

type=beef 0.442 0.236 0.061 1.56 0.98 2.47 

type=cervid 1.066 0.233 <0.001 2.90 1.84 4.59 

type=other 0.438 0.615 0.476 1.55 1.46 5.17 

sex=male -0.362 0.195 0.064 0.70 0.47 1.02 

age=12-24 mo 2.673 0.722 <0.001 14.49 3.52 59.62 

age=24+ mo 2.601 0.714 <0.001 13.48 3.33 54.59 

constant -11.328 0.771 <0.001 NA NA NA 

Herd type was a significant predictor (P <0.001) with incidence rates in beef and cervid 
herds higher than in dairy herds although the coefficient for beef herds was only borderline 
significant. Males appeared to have a lower incidence rate (again borderline significance) and 
animals over 12 months of age definitely had higher incidence rates. 

The deviance and Pearson goodness-of-fIt test statistics were: 

Deviance 

Pearson 

df p 

127 348.4 <0.001 

127 1105.7 <0.001 

These suggest that there are serious problems with the model (ie strong evidence of lack of 
fit). 



MODELLING CO UNT AND RATE DATA 397 

18.4 INTERPRETATION OF COEFFICIENTS 

The coefficients from a Poisson regression model represent the amount the log of I 
(InI) is expected to change with a unit change in the predictor. Assuming that there are 
two exposure groups (X=O and X= l), then the incidence rate ratio (IR) associated with 
belonging to group X= l is: 

Eq 18.5 

so the coefficients from a Poisson regression can easily be converted into IR estimates. 
In general, the IR represents the proportional increase in I for a unit change in the 
predictor. For example, if the IR for lactation number in a study of clinical mastitis 
cases was 1.5, that would suggest that the incidence rate of clinical mastitis went up by 
50% for each additionallactation that a cow had (ie that it was 1.5 times higher than the 
rate in the previous lactation). Note In general eP! represents the ratio between mean 
counts in two groups. However, because Poisson regression is most commonly used 
for incidence rate data in epidemiologic studies, this specific use will be emphasised 
throughout this chapter. 

The effect of a predictor on the absolute number of cases of disease (or other outcome 
event) depends on the values for other predictors in the model. For example, the IR for 
type=cervid in Example 18.1 was el.066=2.9 (compared with dairy herds). The predicted 
I for young (0-12 mo), females in a dairy herd was e-!1.328=0.12 cases/10,OOO animal­
days at risk. For cervids, the predicted rate would be 0.12*2.9=0.35 cases/10,000 
animal-days, or an extra 0.23 cases per 10,000 animal-days. In animals aged 12-24 mo, 
the predicted rate for female s in dairy herds was e-8.655=1.7 casesllO,OOO animal-days. 
For cervids of this age, the rate would be 1.7*2.9=4.9 casesllO,OOO animal-days, or an 
extra 3.2 cases per 10,000 animal-days. 

18.5 EVALUATING POISSON REGRESSION MODELS 

18.5.1 Residuals 

Raw residuals can be computed for each observation as the observed number of cases 
(obs) minus the expected number of cases (ex p) predicted from the model. Residuals 
are computed on the basis of 1 per observation. 

Pearson residuals can be computed as: 

obs -exp 

& Eq 18.6 

where var is the estimated variance of the observations. For a Poisson model, the 
estimated variance is equal to the expected number of cases (P). For negative binomial 
models (discussed below), the variance is f.1+af.12. 
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Deviance residuals (formula not shown) can also be computed. The sum of the squared 
deviance residuals gives the deviance for the model which is defined as minus twice 
the difference between the log likelihood of the model and the maximum log likelihood 
achievable. Anscombe residuals are very similar to deviance residuals but are adjusted 
so that they will most closely follow a normal distribution if the Poisson model is 
appropriate. 

18.5.2 Assessing overall fit 

As with logistic regression, X2 goodness-of-fit tests can be computed as the sum of the 
squared deviance or Pearson residuals. The resulting test statistic has an approximate X2 
distribution if there are multiple observations within each covariate pattem defined by 
the predictors in the model. However, the values of the two test statistics could be quite 
different and, if either is indicative of a lack of fit, the model should be investigated 
thoroughly. As with ali overall goodness-of-fit statistics, a significant result (indicating 
lack of fit) provides no information about what the cause of the lack offit is. However, 
with Poisson models, a common cause is overdispersion (ie the variance of the counts 
is much larger than the mean). 

18.5.3 Evaluating overdispersion 

The assumption beh ind a Poisson model is that the mean and the variance are equal 
(conditional upon the predictors in the model); that is, the mean and the variance of the 
number of everus are equal after the effects of the predictors in the model have been 
taken into account. Including predictors in the model does not ch ange the mean number 
of events, but will reduce the variance. Consequently, one could have a variance greater 
than the mean in the raw data (ie unadjusted estimates ), but still meet the assumption of 
equidispersion. However, as a rule, if the unadjusted variance is greater than twice the 
unadjusted mean, one must be suspicious that overdispersion will be present. 

Having a variance much larger than the mean is a common problem with count data. 
This is called extra-Poisson variation or overdispersion. It often arises when the data 
are clustered (eg animals within a herd) and the c1ustering has not been adequately 
taken into account. 

For example, in the TB data described in Examples 18.1 and 18.2, each herd contributed 
multiple observations to the dataset. (While most herds had only one type of animai, 
they would have had multiple age classes and perhaps, males and females). The 
incidence rate of TB cases is more alike among groups of animals within a herd than 
across different herds. Consequently, part of the variation between groups of animals is 
due to the variation between herds, and this has not been taken into account. Thus the 
model does not fit the data weil. 

Overdispersion can be dealt with by fitting a model which allows the variance to be 
larger than the mean. This can be done in one oftwo ways. (Actua11y, there are lots of 
ways it can be modified, but these two are the most common). The simplest modification 
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Example 18.2 Poisson regression - examining the model 
data=tb-real 

Based on the model fit in Example 18.1, the observations with the five 1argest and smal!est 
deviance residuals are: 

age time at reactors deviance Cook's 

farm type sex (mo) risk observed predicted residual distance 

89 cervid male > 24 27410 O 3.261 -3.539 0.307 

54 cervid female > 24 26182 1 8.588 -3.298 0.174 

53 cervid female 12-24 12420 O 4.379 -2.959 0.097 

27 dairy female > 24 57176 1 6.457 -2.680 0.311 

108 beef female > 24 19146 O 3.365 -2.594 0.030 

120 cervid male 12-24 15921 11 3.909 2.929 0.389 

25 dairy female 0-12 389 1 0.003 3.076 0.078 

119 cervid female > 24 12269 12 4.024 3.205 0.164 

45 cervid female > 24 21848 29 7.167 6.116 1.371 

133 beef female > 24 6418 20 1.128 8.790 0.875 

Large negative residua!s were associated with group s of animals where many cases were 
expected, but few observed. Large positive residuals were found in groups of animals where 
many more cases were observed than were expected. AlthOUgh they only accounted for 38% 
of the observations in the dataset, group s of cervids accounted for 5 of the 8 most extreme 
residuals suggesting that the model did not fit as wel! for cervids as it did for cattle. 

The four observations with the largest Cook's distance were as follows. 

age pop. at reactors deviance Cook's 

farm type sex (mo) risk observed predicted residual distance 

118 cervid female 12-24 21660 17 7.637 2.912 0.552 

92 other female > 24 9360 O 1.639 -1.810 0.656 

133 beef female > 24 6418 20 1.128 8.790 0.875 

45 cervid female > 24 21848 29 7.167 6.116 1.371 

Large Cook's distances were associated with observations that had moderate or large 
residuals and contributed greatly to the overall time at risk. Observations with small amounts 
of time at risk, tended not to have a large impact on the model (small Cook's distance) (eg 
observation 25 - in the table of large residuals). 

(continued on next page) 



400 MODELLING CO UNT AND RATE DATA 

Example 18.2 (continued) 
data=tb-real 

A normaI probability plot of Anscombe residuals shows an approximate normal distribution 
but highlights the large positive residuals. 

Fig. 18.2 Normal probability of Anscombe residuals 
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is to assume that the variance is a constant multiple of the mean instead of equal to the 
mean (this allows the variance to be larger than the mean): 

var = (1 + a),ll = ,ll + a,ll Eq 18. 7 

where a is referred to as the dispersion parameter. 

An altemative formulation for the variance is to assume that the variance is a function 
of the mean: 

Eq 18.8 

This formulation of the variance gives rise to a negative binomial model which is 
discussed further in section 18.6. 

Note In either of the above two formulations, if a=O, then the variance once again 
equals fl and the model is a simple Poisson model. 

18.5.4 Influential points and outliers 

Outliers can be identified by looking for large values of either the Pearson or deviance 
residuals. Influential points can be identified by looking for large values of Cook's 
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distance (see Chapter 14 for introduction to Cook's distance). Examples of these are 
shown in Example 18.2. As with other forms of regression models, ill-fitting points 
must be checked thoroughly. If the data are incorrect, they must be fixed or excluded. 
If the data are correct, evaluation of poorly fitting points could provide insight into 
reasons why the model does not fit weil. 

18.6 NEGATIVE BINOM lAL REGRESSION 

The negative binomial distribution is a two-parameter distribution for counts, and as 
noted in section 18.5.3, its variance can be expressed as a function of the mean as 
shown in Eq 18.8 and repeated here: 

var = f.l + af.l2 

If a=O, then the negative binomial distribution reduces to the usual Poisson distribution 
with a variance equal to the mean. Fig. 18.3 shows four negative binomial distributions 
with various combinations of means and variances. Comparing these distributions to 
the Poisson distributions with means of2 and 5, you can see the more prominent right 
tails on the negative binomial distributions. 

The interpretation of a negative binomial distribution as a Poisson distribution with 
extra dispersion corresponds to a random effects model where the distribution of 
Poisson means are subjected to additional variation which has a gamma distribution 
(see section 22.4.3). 

Fig. 18.3 Negative binomial distributions 
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As with the Poisson distribution, the usual form of a negative binomial regression 
model is: 

E(Y)=n.-1, or 

except in this case E(Y) has a negative binomial distribution. As in a Poisson model, n 
is a measure of exposure and A is a function of the predictors, with the most usual form 
for A being: 

Eq 18.9 

Consequently, exponentiated regression coefficients from a negative binomial model 
in which the exposure was a measure of time at risk are interpreted as incidence rate 
ratios. 

As presented above, the most common form of the negative binomial model is based 
on the assumption that a is a constant value for ali observations. More complex models 
might allow a to vary as a function of one or more predictors (which might, or might 
not, be the same predictors as in the negative binomial model). A more detailed 
discussion ofthese models is beyond the scope of this text and the reader is referred to 
Irvine et al (2000). 

18.6.1 Evaluating overdispersion 

A likelihood ratio test which compares the usual Poisson model to the negative binomial 
model is equivalent to a test of a=O. This provides a formai test for the presence of 
overdispersion in the model. Because a cannot be negative, this is a I-tailed test. 

As the additional variance is now a function of both a and fl [var=( I +afl)fl] , 
the amount of overdispersion is a function of both values. If afl > I, then 
(1 +afl) >2, which would indicate substantial overdispersion. For example, if 
a=0.5 and most counts are 0, 1 or 2 with a mean of 1.0, then (l+afl)=1.5, so there 
is only slight evidence of overdispersion. However, if a=0.5 and most counts range 
from O to 15, with a mean of 5.0, then (l +afl)=3.5 which is indicative of substantial 
overdispersion. Example 18.3 provide s an example of a negative binomial model and 
an assessment of overdispersion. 

18.7 ZERO-INFLATED MODELS 

One occasionally encounters situations in which the distribution of outcome events 
might follow a Poisson (or negativ e binomial) distribution, except that there is an 
excess of zero counts in the data. This might be because there are two processes by 
which zero counts might arise. For example, assume your outcome of interest is the 
number of slaughter hogs with lesions of enzootic pneumonia (caused by Mycoplasma 
hyopneumonia), in samples taken from many herds. ln herds in which Mycoplasma 
hyopneumonia is endemic, the count of lesioned animals might follow a Poisson 
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Example 18.3 Negative binomial regression 
data=tb Jeal 

403 

Fitting the same data as were used in Examples 18.1 and 18.2 with a negative binomial model 
yields the following results. 

Log likelihood = -157.7 

Variable eoef SE Z P 95% CI 

type=beef 0.605 0.675 0.90 0.370 -0.718 1.927 

type=cervid 0.666 0.684 0.97 0.330 -0.675 2.006 

type=other 0.800 1.119 0.71 0.475 -1.393 2.993 

sex=male -0.057 0.405 -0.14 0.887 -0.851 0.736 

age=12-24 mos 2.253 0.903 2.49 0.013 0.483 4.023 

age=24+ mos 2.481 0.882 2.81 0.005 0.753 4.209 

constant -11.124 1.171 -9.50 0.000 -13.418 -8.829 

alpha 1.740 0.441 1.059 2.860 

The likelihood ratio test of a=O is highly significant (P<O.OOI) suggesting that the variance 
in the data is higher than would be expected for a Poisson regression. Since the overall mean 
number of reactors in these data was 1.46, the value of (l+ap)=l+(1.74*1.46)=3.54 (ie 
substantialoverdispersion). 

The deviance X2 goodness-of-fit test was not significant (x2=99.4 on 127 df, P=O.97) indicating 
the model fit the data weIl. An examination of the residuals did not identify any very large 
negative or pos iti ve deviance residuals. However, a listing of the observations with the five 
largest Cook's distance values showed that the model was heavily influenced by one group 
of animals (observation #133). CI early this group ofbeef cows with 20 reactors had a strong 
influence in the model. 

age pop reactors deviance Cook's 

obs type sex (mo) at risk observed predicted residual dis!ance 

117 cervid male 12-24 6224 O 1.516 -1.218 6.593 

49 dairy female 12-24 6588 O 0.873 -1.031 7.557 

26 dairy female 12-24 6526 O 0.865 -1.027 11.398 

133 beef female > 24 6418 20 1.956 2.600 133.366 

As was suggested in Chapter 15, you might omit this group of animals and refit the model. 
However, this should only be done to further evaluate the impact of this observation on the 
model. 



404 MODELLING COUNT AND RATE DATA 

distribution, and some herds could still have zero counts (ie no animals with lesions 
at slaughter). However, other herds will have zero counts because Mycoplasma 
hyopneumonia is not present in the herd. Consequently, a count of zero might arise 
from either of the two situations. 

Zero-inflated model s deal with an excess of zero counts by simultaneously fitting a 
binary model (usually a logistic regression model) and a Poisson (or negative binomial) 
mode!. The two models might have the same, or different, sets of predictors. The 
outcome in the binary model is the probability of a zero count so coefficients have an 
opposite sign than they would in a usuallogistic regression (and if the same predictor is 
in the Poisson model, they often have opposite signs in the two models). 

Whether or not a zero-inflated model fits the data better than the usual Poisson or 
negative binomial model can be assessed us ing a Vuong test (V). This test compares 
two non-nested model s and is asymptotically distributed as norma!. If the value of V is 
> 1.96, one model (eg the usual Poisson or negative binomial model) is favoured. If V 
<-1.96, the sec ond model (ie the zero-inflated model) is favoured. If V lies between 
-1.96 and 1.96, neither model is preferred. 

A zero-inflated negative binomial model was recently used to model factors affecting 
fecal egg counts in adult dairy cattle (Nodtvedt et al, 2002). Fecal egg counts are 
generally low in adult cattle and might arise because the animai is uninfected or is 
infected but shedding eggs in numbers too low to be detected. The zero-inflated negative 
binomial model identified a number of factors which influenced the number of eggs 
among animals shedding, but only a single factor (lactation number) was associated 
with any shedding at all in the logistic component of the model (older cows were more 
likely to shed no eggs). Example 18.4 show s the application of a zero-inflated negative 
binomial model to these data. 
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Example 18.4 Zero-inflated negative-binomial model 
data=fec 
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Fecal egg counts (n=2250) from 304 cows in 38 dairy herds in four regions of Canada were 
determined over a one-year period in conjunction with a clinical trial of eprinomectin as a 
treatment for gastro-intestinal nematodes in Canadian dairy cattle. A more detailed description 
of the dataset can be found in Chapter 27. Although the mean fecal egg count was 8.6, almost 
one-halfthe observations had zero counts. 

Counts obtained from control cows and treated cows prior to treatrnent were analysed using a 
zero-inflated negative binomial model. Lactation (two groups), season (four group s ), province 
(four groups) and several herd management variables were included in the negative binomial 
portion of the model. Age and herd of origin (38 groups) were included in the logistic portion 
of the model. Clustering of observations within cows was accounted for by using robust 
standard error estimates. The resulting model follows. 

Number of obs = 1840 
Non-zero obs = 983 

Zero obs = 857 
Log likelihood = -4428.953 

Variable Coet SE Z P 95% CI 

Negative binomial portion 

lact=2+ -0.942 0.229 -4.11 0.000 -1.391 -0.493 

season=Jan-Mar -0.705 0.176 -4.00 0.000 -1.050 -0.359 

season=Apr-Jun 0.361 0.224 1.61 0.107 -0.078 0.800 

season=Jul-Sep 0.076 0.256 0.30 0.766 -0.426 0.578 

prov=Quebec -0.556 0.274 -2.03 0.042 -1.092 -0.020 

prov=Ontario -0.333 0.535 -0.62 0.533 -1.382 0.716 

prov=Sask 0.417 0.809 0.59 0.555 -1.108 2.063 

pasUact 0.925 0.334 2.17 0.006 0.271 1.579 

man_heit -0.878 0.244 -3.60 0.000 -1.356 -0.399 

manJact 0.601 0.285 2.11 0.035 0.043 1.159 

constant 2.474 0.306 8.08 0.000 1.874 3.074 

Logistic portion 

lact=2+ 1.495 0.530 2.82 0.005 0.456 2.535 

herds 2-38 coefficients not shown 

constant -3.132 1.431 -2.19 0.029 -5.936 -0.327 

alpha 2.889 0.133 2.640 3.163 

The Vuong statistic was 7.55 suggesting that the zero-inflated model was clearly superior to 
the regular negative binomial model. The value of a (2.89, 95% CI of 2.64 to 3.16) suggests 
that a negative binomial model is preferable to an ordinary Poisson model. The coefficients 
for -lact- in the negative binomial portion (-0.94) and the logistic portion (1.50) ofthe model 
indicated that multiparous cows generally had lower fecal egg counts and were more likely 
to have zero egg counts. 
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SAMPLE PROBLEMS 

1. You are interested in modelling the spread of tuberculosis (TB) within 
cattle herds so you decide to retrospectively collect data from a number of 
herds in which there was good evidence that TB had been introduced. For those 
herds which you know the most likely date of entry of the organism into the herd, 
you collect the following data: 

Variable Description 

dairy dairy=1, beef=O 

bunk cattle eat from a common bunk: yes=1 no=O 

confine animals confined in some manner (barn, dry lot) ali year round=1 
cattle on pasture for part of the year=O 

herdsz number of animals in the herd 

time number of months from the time the infection was introduced to the time 
the infection was discovered and the herd completely tested 

tb number of animals that tested positive for TB when the herd was tested 

The data from 60 herds are included in the dataset -tb fake-. Note Some of these 
herds had no positive animals when tested but you are fairly certain that they were 
exposed to TB. 
a. Compute a variable -cowmo- that represents the cow-months at risk between 

the time of introduction of the infection and the time of testing. (Don't worry 
about adjusting the estimate based on the number of positive cases found at 
testing.) 

b. Use Poisson regression to determine the effects of -dairy-, 
-bunk - and -confine- on the rate of spread of TB. Make sure you adjust for the 
effect of different sample sizes. 

c. What does each of the parameters in the final model mean (including the 
coefficient for the constant)? 

d. Does the Poisson model fit the data weH? Are there any large (negative or 
positive) residuals or herds which have a large influence on the model? 

e. Would you expect a negative binomial model to fit better? Does it? 
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19 

MODELLING SURVIVAL DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 

1. Distinguish between non-parametric, semi-parametric and parametric analyses of 
survival time data. 

2. Carry out non-parametric analyses using either actuarial or Kaplan-Meier lifetables 
and compare the survival experiences of group s of animals using a variety of 
statistical tests. 

3. Generate survivor and cumulative hazard function graphs to display survival data. 

4. Understand the relationships among survivor functions Set), failure functions F(t), 
probability den sit y functions j(t), hazard functions h(t) and cumulative hazard 
functions H(t). 

5. Carry out a semi-parametric analysis of survival data using a Cox proportional 
hazards model. 
a. Evaluate the model to: 

i. assess the validity of the assumption ofproportional hazards, 
ii. assess the validity of the assumption of independent censoring, 
iii. check the overall fit of the model, 
iv. evaluate the functional form ofthe predictors in the model, and 
v. check for outliers and influential points. 

b. Incorporate time-varying covariates into the model to evaluate or account for 
non-proportional hazards. 

6. Carry out a parametric analysis of survival data based on an assumption that the 
survival times have an exponential, Weibull or log-normal distribution. 

7. Incorporate frailty effects into a model to account for unmeasured covariates at the 
individualor group level. 

8. Analyse multiple failure (recurrence) type data. 
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19.1 INTRODUCTION 

In previous chapters we have looked at statistical models for evaluating how much of 
an outcome occurred (linear regression), whether or not an event occurred (Iogistic 
regression), which category of event occurred (multinomial models) and the number of 
events that occurred (or the rate of event occurrence) (Poisson regression). However, we 
are often interested in how long it took for an event to occur (time-to-event data). These 
data are often referred to as 'survival' data because the outcome of interest is often the 
time until death (ie the survival time). However, the analytical approaches discussed 
in this chapter apply equally to any time-to-event data (eg interval from calving to 
conception in dairy cows, or time to reoccurrence of Mycoplasma infections in swine 
bams after an eradication program). As these examples suggest, the unit of analysis 
could be an animai or a group of animals (litter, pen, herd) although in general we will 
present the discussion in terrns of animals. The occurrence of the event of interest is 
often referred to as a 'failure' even though in some cases the outcome is desirable (eg 
time to conception after calving in dairy cows). Some relatively recently published 
texts which cover the analysis of survival data include (Collett, 1994, Hosmer and 
Lemeshow, 1999, Cleves et al, 2002). 

There are specific issues that affect how we quantify and express time to occurrence of 
an event and how we evaluate the effects offactors (predictors) on that time. However, 
before discussing these issues, let's look at a simple hypothetical example (Example 
19.1). 

19.1.1 Quantifying survival time 

How should the time to recurrence (ie time after initial diagnosis) oflymphosarcoma in 
dog s that have been treated for Iymphosarcoma be quantified and expressed (Example 
19.1)? For many dogs, we do not know what the time to recurrence was. All we know 
is that the disease did not occur in the time period for which the dogs were followed. 
These 'non-failures' are called censored observations and are a unique feature of time­
to-event data. 

Some possible ways of quantifying and express ing the time to recurrence are as follows 
(using data from Example 19.1). 

1. Mean time to recurrence - The mean time to recurrence can only be computed using 
data from the dogs in which recurrence has been observed. Consequently, we 
can only use data from five dogs (mean survival=2.1 years). The estimate will have 
a downward bias because recurrence in dog s which had a long time to recurrence 
are less likely to be observed. On the other hand, if the follow-up observation period 
is long, the mean suffers from the problem that it might be heavily inftuenced by a 
few animai s with long survival times. Time-to-event data often have an 
asymmetrical distribution with a long right tail (ie right skew). 

2. Median time to recurrence - This can only be computed ifat least 50% of the animals 
are observed to have the event of interest and if none of the censored observations 
were censored before the failure of 50th percentile individual (ie if they were going 
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Example 19.1 Hypothetical survival data 

Fig. 19.1 shows the time from treatment of 12 dogs with lymphosarcoma to the recurrence 
of the cancer. The study was carried out over a 5.5 year period with dogs entering the study 
as they were diagnosed and treated for the first occurrence. Once enrolled, not all dogs were 
followed for the rest ofthe study period because some died (from other diseases) or the owner 
moved away from the study location. For convenience, all dogs were assumed to have had the 
initial diagnosis and treatment at the start of a year and events (recurrence or loss to study) 
occurred at the mid-point of a year. In reality, this would not normally be the case. 

Fig. 19.1 Time from treatment to recurrence of cancer 
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One way to simplify the graphic representation ofthese 12 dogs would be to express all times 
as being relative to the time of first diagnosis (Fig. 19.2). 

Fig. 19.2 Ali times relative to time of first diagnosis 
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to fail, they had a failure time at least as large as the median). It could not be 
computed for the data in Example 19.1. However, if it can be computed, the median 
is not infiuenced by a few animaI s having long times to recurrence in the same way 
that the mean is. 

3. Overall probability of recurrence - The proportion of dogs having a recurrence of 
the tumour could be computed, but it is not at all clear what constitutes a 'negative' 
dog (ie one which does not have a recurrence). Should the dog be required to have 
some minimum number ofyears offollow-up to be considered eligible to contribute 
to the denominator of the proportion? 

4. n-year survival risk - This expresses the number of dogs which have not had a 
recurrence by the n th year. For each year (eg first, second) it can be computed based on 
the dogs that were observed for that number of years. This approach is often used 
in human epidemiology to quantify survival of people diagnosed with various forms 
of cancer (eg five-year survival ofbreast cancer patients). The two-year 'survival' 
for dogs in Example 19.1 is 0.78 (two recurrences among nine dogs that had either 
two complete years offollow-up or a failure at <2 years). 

5. Incidence rate - The number ofrecurrences relative to the accumulated dog-years at 
risk would be one way to use all of the available data. In some cases, the average 
time to recurrence could be estimated from the incidence rate (see section 
4.5). However, this approach assumes that the incidence rate of recurrence 
remains constant after first diagnosis and this is often not the case with time-to 
event data. The incidence rate in Example 19.1 is 0.19 cases per dog-year (five cases 
in 26 dog-years of follow-up time - dogs no longer contribute to the pool of dog­
years once they have experienced a recurrence). 

The approaches outlined above identify two key problems to be considered when 
analysing time-to-event data. First, many observations are censored; that is, the 
individual is not followed for a sufficiently long period of time to observe the event 
of interest if it were to occur. Second, the distribution of survival times is often not 
symmetrical, and might not even be unimodal. For example, tumour recurrences might 
be common in the first year after first diagnosis and then relatively rare for several years 
before becoming more common again as the dog ages. These issues are also important 
when evaluating the effect ofpredictors on the time-to-event occurrence. 

19.1.2 Evaluating the effect of factors on survival times 

Because time-to-event data are continuous, it would be tempting to evaluate the effects 
of factors on the time to the occurrence of an event using linear regression models. In 
some cases, this would be appropriate. However, as noted above, time-to-event data are 
often not symmetrical and might not even be unimodal. The assumption of normally 
distributed residuals required for a linear regression model would be violated in these 
cases. (In extreme cases, a linear model might predict negative survival times which are 
impossible). However, linear models have been successfully used to analyse time-to­
event data. We recently evaluated calving-to-conception intervals in dairy cattle using 
this approach (Dohoo et al, 2001). The data were either log or Box-Cox transformed to 
deal with the distribution ofresiduals being skewed to the right. Numerous examples in 
Chapter 14 were also based on calving-to-conception intervals. 
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Even if the distribution of the residuals is (or can be made) approximately normal, the 
problem of censored observations remains. Censoring is discussed further in section 
19.1.4. In the case of calving-to-conception interval data, because most cows are not 
culled until the end of the lactation, the follow-up period for most cows is adequate. 
However, many cows are bred unsuccessfully several times and then the producer stops 
trying. The data from these cows are lost to the analyses so the effects of factors which 
reduce conception might be underestimated. 

19.1.3 General approaches to analysing survival data 

There are three general approaches to analysing survival data: 
non-parametric analyses 
semi-parametric model s 
parametric models. 

These are discussed in much more detail later, but the essential features of each 
approach is summarised here. 

In a non-parametric analysis, we make no assumptions about the distribution of 
survival times, nor about the functional form of the relationship between a factor 
(predictor) and the survival time. Consequently, they are only appropriate for evaluating 
the effect of qualitative (categorical) predictors. 

ln a semi-parametric analysis, we make no assumption about the distribution of the 
survival time, but mere ly use the survival time to order the observations in terms of 
time of occurrence of the event. We then evaluate the probability of the event occurring 
at each of those time points as a function of the predictors of interest. Because the time 
variable is only used to order the observations, it makes no difference if there was a 
large time interval or a small time interval between successive events. 

In a parametric analysis, we replace the distributional assumption that the residuals are 
normally distributed (as required in a linear model) by a more appropriate distribution 
that reffects the pattem of survival times. Because we specify a distribution for the 
survival times, the length of the interval between events is relevant for the analysis. 
Consequently, if the assumed distribution is correct, a parametric model is more 
efficient than a semi-parametric model (ie it makes better use of the available data). 

19.1.4 Censoring 

Censoring is defined as the occurrence (or possible occurrence) of a failure when the 
animai is not under observation. Censoring can arise in a variety of ways and these are 
summarised in Fig. 19.3. 

Right censoring occurs when an animaI is lost to a study, before the outcome of 
interest has occurred. This might arise because the study ends before the event occurs 
or because it is lost to follow-up during the study (eg the owner move s to another city). 
Right censoring is the most common form of censoring that needs to be dealt with in 
survival analyses. 
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Fig.19.3 Sum mary of censoring 
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Interval censoring might arise when an animaI is only observed periodicalIy 
throughout a study period. If examinations are conducted every six month s and at 
one examination (t4 in Fig. 19.3) it is determined that the event had happened in the 
preceding six months, alI that is known is that the event occurred sometime between t3 
and t4• The precise time the event occurred is not known. 

Left censoring is similar to interval censoring except that the 'interval' occurs at the 
start of the study (ie the event occurred in the animaI before the animai was observed). 
Consequently, the animai is not put in the study. Left censoring usualIy arises if the 
onset of risk occurs before the start of the study. For example, if a study of calving 
to conception intervals started following cows at 45 days post-partum, a cow which 
conceived to a breeding at 42 days would be left censored. (Note If multiple failures are 
possible, the animaI might be put on the study and the left censoring then becomes left 
truncation (see below)). 

A related concept is that of truncation. While censoring relates to the possible 
occurrence of events during periods when the animai was not observed, truncation 
refers to periods oftime in which nothing is known about the animaI in term s ofwhether 
or not the event occurred or what the values of the predictors were. These periods of 
time might be referred to as gaps. In cases where multiple events are possible (eg cases 
ofmastitis), you have no knowledge ofhow many cases occurred during the gap. For 
outbreaks which can only occur once (eg death), ali that is known is that the event did 
not occur during the gap (or the animaI would not have come back into the study). 
Truncation can occur throughout a study (interval truncation) or at the start of a study 
(left truncation). Right truncation is the same as right censoring. 

As noted above, the most common problem is with right censoring and it will be the 
only type of censoring or truncation that we deal with in examples in this chapter. A 
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more complete discussion of censoring and how the various forms are dealt with can be 
found in Chapter 4 of Cleves et al (2002). 

19.2 NON-PARAMETRIC ANALYSIS 

In a non-parametric analysis of survival data, we make no assumption about either 
the distribution of survival times or the functional form of the relationship between 
a predictor and survival. Hence, they can be used to compare survival experiences of 
groups of animals, but not to evaluate the effect of a continuous predictor on survival 
times. We willlook at three non-parametric methods for analysing survival data: 

actuariallife tables 
Kaplan-Meier estimator of the survivor function 
Nelson-Aalen estimator of the cumulative hazard function 

In this section, we introduce the concepts of survivor and hazard functions. These will 
be described more formally in section 19.7. 

19.3 ACTUARIAL LIFE TABLES 

Life tables were originally developed to summarise long-term human-survival data 
by dividing the lifespan into short intervals in which the probability of dying was 
reasonably constant over the time interval. (It certainly isn't constant over an entire 
lifespan). 

The requirements to create an actuariallife table are as follows. 
A clearly demarcated starting point to the period of risk (eg birth, calving, first 
diagnosis, first exposure etc) 
A well-defined study outcome (death, seroconversion, pregnancy diagnosis, 
calving) 
Only one episode or event per individual animaI (not multiple remissions or 
relapses) 
Losses to follow-up should be independent of the study outcome (another 
way of saying this is that the animals lost from the study should have the same 
future experience as those that remain under observation) 
The risk ofthe outcome remains constant over calendar time (no secular changes 
in risk). This does not imply that risk stays the same in an individual over 
time. Secular changes in survival rate s for cancers (eg due to better therapies), 
might for example, affect valid it y of studies of survivorship 
The risk of outcome must remain constant within the intervals used for 
constructing a life table. Intervals of any length could be calculated to meet this 
requirement. In fact, the intervals need not be of the same length. 

19.3.1 Steps in constructing the actuariallife table 

Table 19.1 shows the columns required to build an actuariallife table, based on the data 
from Example 19.1. 
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Table 19.1 Actuarial life table 

tj_1,tj lj Wj rj d j qj Pj 

0<1 12 1 11.5 1 0.087 0.913 

2 1 < 2 10 2 9.0 0.111 0.889 

3 2<3 7 3 5.5 2 0.364 0.636 

4 3<4 2 O 2.0 0.500 0.500 

5 4<5 0.5 O 0.000 1.000 

where ... 
j listing of time intervals (time intervals should be established a priori). 
~-J,~ time span covered in the interval 
~ subjects at risk of failure at the start of the time interval 

~ = lU_I) - (WU-I) + dU_l)) 
Wj subjects withdrawn during interval (censored observations) 

Sj 

0.913 

0.812 

0.516 

0.258 

0.258 

These are animals who died of causes other than the condition under study or 
were otherwise lost to follow up during that interval. Animals who were still 
free of the outcome when the study ended are counted as withdrawals in that 
interval 

rj average number of subjects at risk during the current time interval 
rj = lj - (w/2) 
This calculation is based on the assumption that the censored observations were 
withdrawn, on average, at the midpoint of the interval 

~ outcomes (failures) during the interval 
This is the number experiencing the outcome during the time interval (death, 
seroconversion, relapse etc) 

qj risk of event during interval 
qj = (~)/(rj) 
This is the probability that the subject will develop the study outcome during the 
given interval, conditional upon surviving without the outcome up to the 
beginning of the time interval 

Pj probability of surviving the interval 
Pj = l - qj 
The conditional probability of surviving the time interval, given survival to the 
beginning of the interval 

Sj cumulative survival probability to the end of the interval 
Sj = (p1)(p2)(P3) .... (p) 
The probability of surviving without experiencing the event of interest from the 
start of follow-up through the end of the current interval in the life table. 

The risk of an animaI experiencing the event of interest during the interval (q) divided 
by the length of the interval is also known as the hazard. The cumulative survival 
probability (S) is als o known as the survivor function. These two quantities are key 
elements of all survival analyses. 
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19.4 KAPLAN-MEIER ESTIMATE OF SURVIVOR FUNCTION 

19.4.1 Overview and comparison to actuarial method 

The Kaplan-Meier (K-M) (Kaplan and Meier, 1958) estimate of the survivor function 
is also known as the product-limit estimate. It has two important differences from the 
actuarial estimate described above. 
l. The K-M method does not depend on discrete time intervals constructed by the 

investigator. Each row in the table (hence, each time interval) is defined by the time 
at which the next subject (or subjects, in the case oftwo events happening at the 
same time) experiences the event of interest. 

2. Censored observations (losses to follow up etc) between two events are counted as 
animals at risk only up to the time of the earlier of the two events. 

The K-M method has the advantage that it avoids the assumption that withdrawals 
occurred uniformly throughout the interval (ie the actuarial assumption) and that the 
risk is constant over the arbitrarily selected interval. (The only remaining assumption 
about withdrawals is that they have the same future experiences as those remaining 
under observation). However, because it creates an 'interval' for each unique time to 
the event of interest, it is best sui ted for small sample sizes (or you end up with a very 
large number of 'intervals '). 

19.4.2 Construction of the K-Mlife table 

An ordered list of the event times is constructed from the sample, with patients ranke d 
in ascending order ofthe time ofthe event of interest. Based on these, Table 19.2 can be 
filled out (us ing the data from Example 19.1) 

Table 19.2 Kaplan-Meier life table 

t j rj dj Wj qj Pj Sj 

0.5 12 1 1 0.083 0.917 0.917 

2 1.5 10 1 2 0.100 0.900 0.825 

3 2.5 7 2 3 0.286 0.714 0.589 

4 3.5 2 1 0.500 0.500 0.295 

5 1 O O 0.000 1.000 0.295 

where: 
j listing of time points 
t j time of event 
rj number at risk of event at time t j 

rj = rj_1 - (0-I + Wj-l) 

lncludes ali subjects known to be alive and in the study (notcensored) atthe time of 
the event at time t, plus the number experiencing the event at time t. When 
censored times are tied with event times, the event is usually assumed to have 
occurred first 
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~ number of events at time 0' 
Wj number of censored observations at time t j 

Censoring between time ~ and ~+ I is assumed to have happened at t j so the 
animals will not be considered at risk at time ~+ I, 

qj risk of event at time ~ 
qj = (~)/(r) 
Also known as the instantaneous hazard, this is the individual probability of the 
event at time t j, conditional upon survival to time t j 

Pj probability of survival at time t j 
pj=l-qj 

Sj cumulative probability of surviving up to and including time t j 
Sj = (p1)(p2)(P3) .... (p) 

Survivor functions are usually presented graphically as step functions ofthe cumulative 
survival over time. They start at l and monotonically descend (ie they never go up) as 
time proceeds. The Kaplan-Meier survivor function is shown in Fig. 19.4 along with 
95% confidence intervals of the survivor function. 

Example 19.2 shows an actuariallife table and a Kaplan-Meier estimate of a survivor 
function using some published data on calfpneumonia (Thysen, 1988). 

Fig. 19.4 Kaplan-Meier survivor function (with 95% confidence interval) 
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Example 19.2 Actuarial and Kaplan-Meier estimates of survivor functions 
data=calf ~neu 

Data on the occurrence of calf pneumonia in calves raised in two different housing systems 
were published (Thysen, 1988). Calves surviving to 150 days without experiencing pneumonia 
were considered censored at that time. 

The table be10w presents an actuariallife table estimate of the cumulative survivor function. 

Beg. 
Interval total Deaths Lost Survival SE 95% CI 

15 30 24 O 0.958 0.041 0.739 0.994 

45 60 23 O 0.917 0.056 0.706 0.979 

60 75 22 1 O 0.875 0.068 0.661 0.958 

75 90 21 3 O 0.750 0.088 0.526 0.879 

90 105 18 2 0.664 0.097 0.439 0.816 

105 120 15 3 6 0.498 0.110 0.273 0.688 

120 135 6 O 0.415 0.119 0.189 0.629 

150 165 5 O 5 0.415 0.119 0.189 0.629 

Note that survival estimates are only presented for intervals in which at least one event or 
censoring occurred. Thus, the cumulative survival at the end of the 30-45 day interval would 
be exactly the same as at the end of the 15-30 day interval (0.958). 

The tabi e below presents the results of a Kaplan-Meier estimate of the survivor function. 

Beg. Net Survivor 
Time total Fai! lost function SE 95% CI 

27 24 O 0.958 0.041 0.739 0.994 

49 23 O 0.917 0.056 0.706 0.979 

72 22 O 0.875 0.068 0.661 0.958 

79 21 2 O 0.792 0.083 0.570 0.908 

89 19 O 0.750 0.088 0.526 0.879 

90 18 O 0.708 0.093 0.484 0.849 

101 17 1 0.667 0.096 0.443 0.817 

113 15 2 4 0.578 0.102 0.357 0.747 

117 9 2 0.514 0.109 0.288 0.700 

123 6 1 O 0.428 0.120 0.200 0.641 

150 5 O 5 0.428 0.120 0.200 0.641 

The two estimates of the probability of survival up to day 150 are very close (41.5% and 
42.8%). 
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19.5 NELSON-ÁALEN ESTIMATE OF CUMULATlVE HAZARD 

In the above two sections, we introduced the concept of 'hazard' , being the probability 
of failure at a point in time, given that the animaI had survived up to that time point. 
This is discussed more formally in section 19.7, but for now, we note that a cumulative 
hazard (Nelson-Aalen estimate) can also be computed. The cumulative hazard is 
the expected number of outcomes occurring up to a point in time (assuming that 
the outcome could occur multiple times in an individual). For example, in the calf 
pneumonia data, the cumulative hazard at day 60 would be the sum of alI the individual 
hazards (computed at failure times), up to day 60. 

The cumulative hazard can range from O to infinit y (as the time period gets longer, the 
expected number of outcomes keeps going up with no upper bound). A graph of the 
cumulative hazard is, like a graph of the survivor function, a way of express ing the 
overall failure (survival) experience of the population. Fig 19.5 shows the cumulative 
hazard (and 95% CI) for the calf-pneumonia data. 

Fig. 19.5 Nelson-Aalen cumulative hazard estimate (95% confidence interval) 
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19.6 STATISTICAL INFERENCE IN NON-PARAMETRIC ANALYSES 

19.6.1 Confidence intervals and 'point-in-time' comparisons 

Although the formulae have not been shown, standard errors (SE) of the cumulative 
survival estimates can be computed from actuarial or Kaplan-Meier survivor functions 
at any point in time. These SE can be used to compute confidence intervals around the 
functions (see Example 19.2 and Figs. 19.4 and 19.5). They can also be used to test 
the difference between survivor functions for two (or more) populations at any point in 
time us ing a standard normal Z-test. 
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z 
~[SE(S JI )] 2 + [SE(S j2)] 2 Eq 19.1 

where Sjl =cumulative probability of survival in population l at time=j and SE(~I) is the 
standard error of the estimate. Sj2 and SE(Sj2) are the same estimates from population 
2. There are potentially, an infinite number of points at which the cumulative survival 
probabilities could be computed. This could lead to a serious problem of 'data snooping' 
or multiple comparisons and consequently, 'point-in-time' comparisons are only valid if 
it is possible to identify specific times at which the comparison of survival probabilities 
is warranted. These should be specified a priori (ie before the data are collected) and if 
multiple time points are evaluated, some adjustment for multiple comparisons must be 
made. 

19.6.2 Tests of the overall survival curve 

There are several tests that can be used to test whether the overall survivor functions 
in two (or more) groups are equal. They are all based on a series of contingency 
tables of ob serve d and expected events for each group at each time point at which an 
event occurred (assuming the test is based on a Kaplan-Meier survivor function). The 
observed number of events at each time point is compared to the expected number 
(under the Ho that there is no difference between the two groups) and a X2 statistic 
computed. Consequently, the tests can be viewed as the survival analysis equivalent of 
the Mantel-Haenszel test for stratified data. 

All of the tests assume that the ratio ofrisks of the event ofinterest for the two groups 
is constant across all strata (equivalent to the no-interaction assumption in a Mantel­
Haenszel test). This assumption is known as the 'proportional hazards' assumption (you 
will see more of this later). If the survivor functions cross over, then it is clear that this 
assumption is violated. The differences among the tests depend on the weights used to 
combine the esti mate s derived at each point in time. 

Log-rank test 
The log-rank test is the simplest test as it assigns equal weight to each point estimate 
(weights=l). Consequently, it is equivalent to doing a standard Mantel-Haenszel 
procedure to combine the estimates. 

Wilcoxon test 
This test weights the intervals according to the sample size (w(t)=n) . Consequently, it 
is more sensitive to differences early in the time period when the sample size is larger. 
Some people advocate using both Wi1coxon and the log-rank test to see if differences in 
the survival curves occur early or late in the time period studied. The Wilcoxon test is 
less sensitive than the log-rank test to the assumption of proportional hazards, but will 
be unreliable if the censoring patterns vary across the groups being compared. 

Tarone-Ware test 
The Tarone-Ware test is intermediate between the log-rank and Wilcoxon tests in that 
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it weights the estimates by the square root of the population at risk at each time point 
(w(t;) = ../nj). 

Peto-Peto-Prentice and Harrington-Flemming tests 
All of the previous tests weight the estimates according to the total population at risk. 
Consequently, if two group s have markedly different censoring patterns, this can have 
a substantial infiuence on the test statistic. The Peto-Peto-Prentice and Harrington­
Flemming tests weight the estimates on the overall survival experience (estimated just 
before the time point ofinterest). These tests are preferred if the groups have markedly 
different censoring patterns. 

Example 19.3 shows separate survivor functions for 'batch' and 'continuous' stocked 
calves and the results from several of the tests for the overall equality of the survivor 
functions. 

19.7 SURVIVOR, FAILURE AND HAZARD FUNCTIONS 

The concepts of survivor, and hazard functions were introduced when we looked at 
non-parametric methods of analysis of survival data. Before proceeding with semi­
parametric and parametric analyses, we need to develop a more complete understanding 
of these and related functions. 

19.7.1 Survivor function 

The survivor function (S(t)) is the probability that an individual's survival time (T) (or 
more generally, their time to event occurrence) will exceed some specified time t. It can 
be written as: 

Set) = p(T? t) Eq 19.2 

Survivor functions are 'non-increasing' (ie they are fiat or he ad downwards). They start 
at l and drop to O if all individuals ultimately experience the event of interest. Note By 
convention, cumulative functions will be designated by upper-case letters and density 
functions by lower-case letters. The survivor function is a cumulative function in that it 
represents the cumulative probability of surviving up to a point in time t. 

19.7.2 Failure function 

The failure function (F(/)) is the probability of not surviving past time t. Consequently, 
it is: 

F(t) = I-S(t) Eq19.3 

19.7.3 Probability density function 

The probability density function (fCt)) is the slope of the failure function. Consequently, 
it represents the instantaneous rate at which failures are occurring in the study 
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Example 19.3 Comparing survivor functions 
data=calf 'yneu 

Fig. 19.6 show s the Kaplan-Meier survival functions for batch and continuous-stocked 
calves. 

Fig. 19.6 Kaplan-Meier survivor function 
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Continuous-stocked cal ves were at greater risk of having pneumonia than batch-stocked 
calves. The statistical significance of the test results for the difference between these two 
survivor functions were as follows: 

Test P-value 

log-rank test 0.084 

Wilcoxon 0.083 

Tarone-Ware 0.081 

Peto-Peto-Prentice 0.078 

Ali tests provided comparable results (borderline significant). 

population at a point in time. It is determined by taking the derivative of the failure 
function with respect to time. 

19.7.4 Hazard function 

The hazard function (h(t» is the probability of an event occurring at time t given that it 
had not occurred up to time t. With time divided into discrete intervals (as in a life table) 
it can be expressed as: 

h(t)=p(T=tl T?t) Eq 19.4 
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With time on a continuous scale, the hazard function describes the instantaneous 
probability of an event occurring at a point in time given that it did not occur previously. 
The hazard function is: 

h( ) 
lim p(t :s; T < t + ~ t I T:2. t) 

t = .1t-O.::...-'.------"-----'­
~t 

The hazard function can also be computed as the ratio of the probability den sit y 
function (which represents the rate at. which failures are occurring at a point in time) 
and the survivor function (which represents the probability of surviving up to that point 
in time). 

Eq 19.5 

Hazard functions are always non-negative (ie greater than or equal to zero) and have no 
upper bound (their value will change with the time scale used). 

19.7.5 Cumulative hazard function 

The cumulative hazard H(t) , also known as the integrated hazard, represents the 
accumulation of hazard over time. It can be computed as the integral of the hazard 
function but is more conveniently found us ing the following equation. 

H(t) = -ln Set) Eq 19.6 

As noted before, the cumulative hazard represents the expected number of outcomes 
of interest that would occur (assuming that repeat occurrences were possible in an 
individual). For example, if you were studying the survival of cats following infection 
with the feline infectious peritonitis virus and at three years you find that the cumulative 
hazard is 4 [H(t3)=4], then that would suggest that in three years after infection, we 
would expect to see four deaths. Obviously, only one death is possible, but it provides 
an indication that the probability of the cat surviving to three years post-infection is 
very low. 

19.7.6 Relationship among survivor, failure and hazard functions 

Some of the relationships between the survivor, failure and hazard functions have 
already been shown in previous sections. If one of the functions is known, the others 
can alI be computed. For example, if the survivor function is known, the other functions 
are: 

F(t)=l-S(t) f(t) = dF(t) 
dt 

H(t)=-lnS(t) 
Eq 19.7 

While survival experiences for groups of animals are usually shown by plotting 
the survivor function, the hazard function plays a key role in semi-parametric and 
parametric analyses. 
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19.7.7 Examples of hazard functions 

A wide variety ofhazard functions are possible, but constant and Weibull functions are 
the two most commonly encountered in survival analyses. Other forms used include the 
log-normal, log-logistic, gamma and Gompertz. 

Constant hazard 
A constant hazard is one which does not change over time. With a constant hazard (A), 
the survivor function drops exponentially and survival times will have an exponential 
distribution. The haz ard het), density fit) and survivor Set) functions are: 

h(t)=). f(t)= ).e-At S (t) = e-At Eq 19.8 

The appropriateness of an exponential model can be assessed by plotting the cumulative 
hazard H(t) (or equivalently -lnS(t)) against t. If the exponential model is appropriate, 
the line will be straight. Fig. 19.7 shows a survivor function derived from a constant 
hazard of A=O.OI per day. 

Fig. 19.7 Survivor function from a constant hazard 
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Weibull hazard 
A Weibull hazard function depends on two non-negative parameters: a scale parameter 
(A) and a shape parameter (P). If p= l this function reduces to the exponential distribution. 
If p<1 then the hazard function decreases monotonically. If p> 1 then the function is 
monotonically increasing with a value between l and 2 producing a curve that increases 
at a decreasing rate, p=2 produces a hazard function that increases linearly with time 
and p>2 produces a function that increases at an ever-increasing rate. The hazard and 
survivor functions are: 

het) =Ap(lY-l Set) = e-Atp Eq 19.9 

Fig. 19.8 shows Weibull hazard functions for several values ofp. An increasing Weibull 
hazard function (l <p<2) might be appropriate for dairy cow conception data if the 
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Fig. 19.8 Wei bull hazard functions 

"E 
ro 
N 
ro 

.r::: 

6 

4 

2 

p=3 /P=2 
/ 

/ 

/ 
/ 

/ 

/ .- ... --" 
/ ---

".,..---",_.-r 

MODELLING SURVIVAL DATA 

p=1.5 

--" .... ----

p=1 

p=O.5 

o L,-------------,--------------,--------------,-
o 2 

time (days) 
4 6 

fertility of the cow increases with time after parturition, but does so at a decreasing 
rate. A decreasing Weibull hazard function (P<I) might be appropriate for the survival 
of animals after surgery when the hazard is highest right after surgery and then 
decreases. 

The suitability of the Weibull model can be assessed by evaluating the log-cumulative 
hazard plot [ln(H(t)) versus Int]. If the data fit a Weibull distribution, the line on the 
graph should be an approximately straight line. The intercept and the slope of the line 
will be ln(íl) and p respectively. Fig. 19.9 show s the log cumulative hazard plot for 
the calf-pneumonia data. The line is approximately straight suggesting that a Weibull 
model might be appropriate for these data. The slope is approximately (0-(-3))/(5-

Fig. 19.9 Log cumulative hazard plot (calf-pneumonia data) 
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3.25)= 1.75 suggesting that the hazard is increasing over time, but at a decreasing rate. 
Parametric survival models based on exponential and Weibull hazard functions are 
described in section 19.8. 

Other distributions 
One of the limitations of the Weibull model is that the hazard can only increase or 
decrease over time. Gamma, log-normal and log-Iogistic hazards can be used to deal 
with the situation in which the risk first increases and then decreases (or vice versa). 
Such a model would be appropriate in a situation where the risk of death was high early 
in an illness, drops to a lower level and then increases again over time. For example, 
a new intramammary infection with Slaph. aureus in a dairy cow might produce a 
high risk of culling early (if acute clinical mastitis developed), followed by a sharp 
reduction in the risk and then a gradually increasing risk as the level of chronic udder 
damage increased over time. Detailed description s of these functions can be found in 
recent survival analysis texts (Collett, 1994, Hosmer and Lemeshow, 1999, Cleves et 
al,2002). 

19.8 SEMI-PARAMETRIC ANALYSES 

Non-parametric analyses are limited to evaluating the effect of one, or a small number, 
of qualitative variables on survival times. However, we often want to simultaneously 
evaluate the effects of multiple continuous or categorical explanatory variables. This 
requires that we model the survival data using a multivariable technique. The most 
common ly used form of multivariable analysis for survival data is the proportional 
hazards model (also known as the Cox regression model) (Cox, 1972). It is a semi­
parametric model in that we do not have to assume any specific functional form for the 
hazard, but we do model the ratio ofhazards as a linear function of the predictors. 

19.8.1 Cox proportional hazards model 

The proportional hazards model is based on the assumption that the hazard for an 
individual is a product of a baseline hazard (ho) and an exponential function of a series 
of explanatory variables. 

h(l) = ho(t)efJx 

where flX=fl]X] + fl2X2 + ... + fl~k' Equivalently, it can be expressed as: 

HR = h(l) = eflX 
ho (I) 

Eq 19.10 

Eq 19.11 

where HR is the hazard ratio. The first formulation emphasises that the hazard for an 
individual is always a multiple (eflX) of a baseline hazard, while the second formulation 
shows that it is the ratio of the hazards which is assumed to be constant over time. 
Two important features of this model are that no assumption is made about the shape 
of the baseline hazard (ho) and that the model has no intercept. In fact, the intercept 
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(which in most regression model s reffects the value of the outcome when alI covariates 
(predictors) are zero) is subsumed into the baseline hazard which represents the hazard 
when alI covariates are zero. 

19.8.2 Hazard ratios 

Based on Eq 19.11, the lnHR=pX. Consequently, exponentiating the coefficient from a 
proportional hazards model produces a hazard ratio. Hazard ratios have interpretations 
similar to odds ratios and risk ratios. They represent the effect of a unit change in the 
predictor on the frequency of the outcome (which in this case is measured as ahazard). 
Note You will sometimes encounter hazard ratios referred to as relative risks (or risk 
ratios), but this is not a correct use of the term and should be avoided. For example, if 
factor Xl has an HR=2, then a unit change in Xl will double the haz ard of the outcome. 
If Xl is a dichotomous variable and, because we are assuming that this HR is constant 
(over time), this means that at any point in time during the risk period 'failures ' will be 
occurring at twice the rate in animals with X l=l than in animals with Xl=O. This is not 
equivalent to adoubling of the risk over the full study period. 

Example 19.4 provide s some examples of HRs derived from a dataset from a clinical 
trial of prostaglandin use in dairy cattle. A total of 319 cows in three herds were 
assigned random ly to receive prostaglandin (or not) at the time that the producer had 
indicated was the beginning of the breeding period (ie the number of days after calving 
that he would start breeding a cow that carne into heat). The time from the on set of 
the breeding period to conception was the outcome of interest. The dataset (pgtrial) is 
described more fully in Chapter 27. The variables in Table 19.3 are those that we will 
use in examples in this chapter. 

Table 19.3 Variables = the dataset pgtrial 

herd herd (cows from three herds were used in the study) 

tx treatment (1=yes, O=no) 

lact age (lactation number - a eontinuous variable) 

thin body condition seore at time of treatment (1 =thin, O=normal orfat) 

dar days at risk (number of days from end of voluntary wait period to either 
eoneeption or eensoring); this is the outeome of interest 

preg status of animai at end of 'dar' (1 =pregnant, O=censored) 

As the main interest was in the effect of treatment, a pair of Kaplan-Meier survival 
curves (one for each treatment group) provides some initial insight into the possible 
effect of the treatment (Fig. 19.10). It appeared that treated cows conceived slightly 
more quickly, although the difference was most pronouneed early in the breeding 
period. 

19.8.3 Fitting the Cox proportional hazards model 

Obtaining maximum likelihood estimates of the parameters in a Cox proportional 
hazards model requires an iterative estimation procedure (the Newton-Raphson 
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Example 19.4 Cox proportional hazards model 
data=pgtrial 

429 

A Cox proportional hazards model was fit to the prostaglandin-trial data with herd, treatment 
lactation number, and body condition (-thin-) as predictors. The first table presents the model 
in terms of coefficients. 
No of subjects = 319 
No of failures = 264 
Time at risk = 25018 

Predictor Coet 

herd=2 -0.284 

herd=3 0.037 

tx 0.184 

lact -0.043 

thin -0.146 

SE 

0.170 

0.174 

0.125 

0.041 

0.138 

Z P 

-1.68 0.094 

0.21 0.833 

1.46 0.143 

-1.04 0.297 

-1.06 0.291 

Number of obs = 319 
LR chi2(5) = 9.50 

Log likelihood = -1307.73 
Prob > chi2 = 0.0908 

95% CI 

0.617 0.048 

0.305 0.378 

-0.062 0.429 

-0.123 0.038 

-0.416 0.125 

Although not statistically significant, treatment appears to increase the InHR by 0.18 units. Ás 
we rarely think in terms oflnHRs, it is more common to present the results as HRs. 

Predictor HR SE Z P 95% CI 

herd=2 -0.752 0.128 -1.68 0.094 0.539 1.050 

herd=3 1.037 0.181 0.21 0.833 0.737 1.460 

tx 1.202 0.151 1.46 0.143 0.940 1.536 

lact 0.958 0.039 -1.04 0.297 0.884 1.038 

thin 0.865 0.119 -1.06 0.291 0.660 1.133 

Here, it appears that treatment increases the hazard of conception 1.2 times. If this effect is 
real (which appears questionable at this stage given the P-value of the HR), it means that at 
any point in time after the onset of the breeding period, conceptions were happening at a 20% 
higher rate in the treated cows than in the non-treated ones. Similarly, for each additional 
lactation the cows had experienced, the rate of conception dropped by approximately 4% (but 
this predictor had an even larger P-value) .. 

procedure is most commonly used). As with a non-parametric Kaplan-Meier estimation 
procedure, a Cox model is only evaluated at the times at which failures occur. In fact, 
fitting a Cox model with no predictors produces exactly the same survival curve as a 
Kaplan-Meier estimation does. In both procedures, it is not the actual times at which 
failures occur which is important, it is only the order in which they oc cur that matters. 

Because the order in which failures occur is eritical for conducting the analysis, there 
must be a way of handling the problem of two (or more) failures being recorded at 
the same time. Details of various methods of dealing with ties can be found in texts 
on survival analysis but they fali into two general approaches. The first is call ed a 
marginal calculation or continuous-time calculation and is based on the assumption 
that the tim ing of the events was not really tied, but simply due to the fact that the 
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Fig. 19.10 Kaplan-Meier survival estimates by treatment (prostaglandin trial data) 
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timing of the failure was not recorded with sufficient precision to differentiate among 
'tied' observations. The sec ond is caUed the partial calculation and is based on the 
assumption that the events were actuaUy tied and treats the problem as a multinomial 
problem. Exact calculation of the likelihood function under either assumption is 
very computationaUy demanding so a number of approximate methods have been 
developed. The most commonly used is the Breslow approximation of the marginal 
calculation and aU examples in this chapter will use this approach. 

19.8.4 Baseline hazard 

Although, as noted above, no assumption is made about the baseline hazard (ho) and 
the Cox model does not estimate it directly, an estimate of it can be derived conditional 
on the set of coefficients estimated model. This baseline hazard represents the hazard 
in an individual for whom all predictors equal zero. For it to be meaningfui, it is 
important that x=o is reasonable for aU predictors. If computed directly from the data 
in pgtrial using the model shown in Example 19.4, this would represent the hazard of 
conception in a non-treated, normal body condition cow in herd l in her Oth lactation. 
To avoid this nonsensical value for lactation, lactation should be modified so that a 
cow with a value of O is possible (eg rescale it by subtracting l so a cow in lactation l 
now has a value of O). The contribution to the baseline hazard can only be computed 
at times (days) at which a failure occurred. If the hazard is assumed to be zero at aU 
other days and a smoothed graph generated, you can get an estimate of the shape of 
the baseline hazard. Such a graph is shown in Fig. 19.11. The hazard of conception in 
non-treated, normal-weight, first-1actation cows in herd 1 starts at about 0.015 (1.5%) 
and then very graduaUy dec\ines over time. 

19.8.5 Model-building 

In general, model-building procedures for Cox model s are similar to those used for 
other regression-type models. Wald tests and likelihood ratio tests can be used to 
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Fig. 19.11 Baseline hazard estimate 
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evaluate the significance of individual predictors or group s of predictors. Confounding 
and interaction can be assessed using methods presented for other regression-type 
models. Because the explanatory variables are related to the logarithm of the hazard 
ratio, it follows that interaction will be assessed on a multiplicative scale. There are, 
however, two issues that are specific to survival models: stratified analysis to allow for 
different baseline hazards in different group s of animals in the study, and the possibility 
ofincluding time varying covariates (see section 19.8.6). 

Although we made no assumption about the shape of the baseline hazard, we have 
assumed that it is appropriate for an animai with all Xk=O. Let's consider the effect of 
being 'thin' on the hazard of conception in the prostaglandin data. If we obtained a 
significant HR for -thin-, we would assume that it multiplies the ho by the HR and that 
this effect was constant over time. Ifwe had reason to believe that the shape of the hazard 
was different in thin cows than in normal-weight cows, we could stratify the analysis 
on -thin- and obtain separate estimates of the baseline hazard in each group. Fig. 19.12 
show s the results of this evaluation. It plots the kernel smoothed mean estimates of the 
baseline hazard in the two group s of cows. While non-treated, first-Iactation, herd 1, 
thin cows conceive at a slower rate than comparable normal-weight cows, there is no 
strong evidence that the baseline hazards in the two groups have different shapes. 

19.8.6 Time varying covariates 

Up to now, we have focused on exposure factors that do not change their value over 
time. However, given the long-term nature of many survival studies, it is conceivable 
that the values ofsome ofthose predictors might change over time. For example, in the 
prostaglandin tri al, if the body condition of the cows had been assessed periodically, 
rather than just once, some cows that were initially thin could have gained enough 
weight to be classified as normalor vice versa. If the value of a predictor changes 
during the study period, it is call ed a time varying covariate, and semi-parametric and 
parametric survival models are able to appropriately analyse these data. 
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Fig. 19.12 Baseline hazards (normal and thin cows) 
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Because there were no time varying covariates in the prostaglandin tri al data, we will 
shift our attention to a study that evaluated the effects ofa number of risk factors on the 
time to occurrence ofinfectious salmon anemia (ISA) outbreaks in salmon being reared 
in net-pens in ocean-based aquaculture operations. These data (isa_risk) are from 182 
net-pens on 18 sites and are described more fully in Chapter 27. For this example, 
we will focus on a single predictor: whether or not there was (or had been) another 
outbreak at the site. At a site with no outbreaks, ali records were censored at the end 
of the study period and there was a single record for each net-pen. For sites where an 
outbreak occurred, each net-pen would have two records. The first would describe the 
period up to the date of the first outbreak and would end in a censoring for ali net-pens 
except for the one that had the first outbreak. The second record would span the period 
from the date ofthe first outbreak until the cage either had an outbreak or was censored. 
Example 19.5 shows how the data must be modified to account for a time varying 
covariate. (Day O represents the calendar day at the start of the study period.) 

The use of time varying covariates is not limited to the situation in which a covariate 
changes at discrete time points. Continually varying covariates are used to evaluate 
interaction terms between predictors and time. ln this case, the effect of the predictor 
changes continually with time. This is discussed further in section 19.8.8 because time 
varying covariates are one way of evaluating the proportional hazards assumption. 

19.8.7 Validating the model 

Validation of a Cox proportional hazards model will be covered in the following six 
sections. The components in the validation process include: 

evaluating the proportional hazards assumption (section 19.8.8) 
evaluating the assumption of independent censoring (section 19.8.9) 
evaluating the overall fit of the model (section 19.8.1 O) 
evaluating the functional form ofpredictors (section 19.8.11) 
checking for outliers (section 19.8.12) 
detecting influential points (section 19.8.13). 
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Example 19.5 Time varying covariate 
data=isaJisk 
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Data were collected on a number of risk factors for outbreaks of ISA in net-pens of salmon at 
sea-cage sites. The period of risk was considered to start on 1April1997 (day=O) and carried 
on until the fish were harvested in the fall of 1997. Data from three net-pens at site 19 are: 

time 

site net-pen start end outcome 

19 39 O 86 outbreak 

19 46 O 211 censored 

19 56 O 79 outbreak 

Net-pen 46 did not have an outbreak and was censored on day 211. Net-pens 39 and 56 had 
outbreaks on days 86 and 79 respectively with the outbreak in net-pen 56 being the first 
outbreak at the site. In order to allow for a time varying covariate to indicate whether or not 
there had been another net-pen with an outbreak on the site, multiple records for each net-pen 
need to be created. The resulting data are as follows. 

time site 

site net-pen start end outcome positive 

19 39 O 79 O O 

19 39 79 86 1 1 

19 46 O 79 O O 

19 46 79 211 O 1 

19 56 O 79 O 

Net-pen 39 now has one record for the period of days O to 79 during which the covariate 
(predictor) for the site being positive was O and which ended in a censoring. It has a second 
record for the period from day 79 to day 86 when the site was positive and which ended in 
an outbreak. Similarly, net-pen 46 has two records (representing the period before and after 
the site became positive), but both end in censorings because this net-pen did not have an 
outbreak. Net-pen 56 still has only one record because it was the first outbreak. 

A Cox model fit to these data with the single predictor -pos- (ie site was positive) produces: 

No of subjects = 182 Number of obs = 319 
No offailures = 83 LR chi2(1) = 15.24 
Time at risk = 28353 Log likelihood = -392.91 

Prob> chi2 = 0.0001 

Predictor HR SE z p 95% CI 
pos 2.610 0.676 3.70 0.000 1.571 4.335 

Although it appears that there were 312 observations, the number of subjects is correctly 
identified as 182. Once a site became positive, the rate of outbreaks in other cages at the site 
was 2.6 times higher than prior to the site becoming positive. 
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19.8.8 Evaluating the assumption of proportional hazards 

There are three general ways oftesting the assumption ofproportional hazards: 
graphical assessment 
the use of time varying covariates 
statistical assessment using Schoenfeld residuals. 

Graphical assessment 
For a categorical predictor, the assumption of proportional hazards can be tested by 
examining the log-cumulative hazard plot (lnH(t) vs Int) to check if the lines for the 
two (or more) study groups are parallel. If they are not parallel, then the assumption has 
been violated. Fig. 19.13 shows a log cumulative hazard plot for the prostaglandin data. 
It is clear that the lines are not parallel, at least up to ln(time) =3.5 (33 days), suggesting 
that the proportional hazards assumption has been violated. This seems reasonable 
because we would expect prostaglandin treatment to have a more pronounced effect 
shortly after administration than many weeks later. 

Fig. 19.13 Log cumulative hazard plot by treatment 
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Time varying covariates 
A tenn for the interaction between the treatment and time (or the log of the survival 
time) can be adde d to the model. This makes treatment into a time varying covariate 
because its effect will be allowed to vary over time. This is the same as saying that the 
HR for treatment changes over time. The effect of treatment can be allowed to vary 
with time in a linear fashion or to vary with ln(time) (or any other function of time for 
that matter). In Example 19.6 a Cox model has been fit in which the effect oftreatment 
is allowed to vary with ln(time). The advantage of adding a predictor*time interaction 
tenn is that if the assumption of proportional hazards is violated, the addition of the 
interaction tenn can solve the problem (provided the change in effect over time can be 
appropriately modelled). 
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Example 19.6 Assessing proportional hazards assumption 
data=pgtrial 

A Cox model with a single predictor (treatment) was fit but the effect oftreatment was allowed 
to interact with time on a log scale. In(time) was chosen because it was assumed that the effect 
oftreatment would drop offrapidly after administration and then more slowly as time went on 
(instead ofa Iinear or straight-line decay in effect). 

No of subjects = 319 
No of failures = 264 
Time at risk = 25018 

Predictor 

main effect 

tx 

In(time) interaction effect 

tx 

HR SE 

3.085 1.102 

0.759 0.072 

z 

3.15 

-2.92 

Number of obs = 319 
LR chi2(2) = 10.51 

Log likelihood = -1307.22 
Prob > chi2 = 0.0052 

p 95% CI 

0.002 1.532 6.211 

0.003 0.631 0.913 

Treatment is now a significant predictor of time to conception. The treatment*ln(time) 
interaction term is also significant, confirming that the effect oftreatment does vary with time 
(ie the proportional hazards assumption does not hold). In the presence of interaction, the 
effect oftreatment can be better understood by computing the HR at a number of time points. 
The hazard ratio at time t is 3.08*O.7591n(t). 

time (days) In(time) HR 
1.0 O 3.08 

2.7 1 2.34 

7.4 2 1.77 

20.1 3 1.35 

54.6 4 1.02 

148.4 5 0.78 

The effect oftreatment drops offuntil by day 55, it has completely disappeared. 

Schoenfeld residuals 
Schoenfeld and scaled Schoenfeld residuals are based on the contribution that an 
observation makes to the partial derivative of the log partial likelihood (which is 
computed as part offitting the Cox model). There is a separate set ofresiduals for each 
predictor in the model, each set corresponding to the parti al derivative for that covariate. 
These residuals are only computed at observed survival times. Scaled Schoenfeld 
residuals are adjusted using an estimate of the variance of the residual. 

A graph ofthe scaled Schoenfeld residuals for agiven predictor, when plotted against time 
(or In(time» can provide a graphic assessment of the proportional hazards assumption. 
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This is particularly useful for continuous predictors because the log cumulative hazard 
plot is not useful for those variables. This graphical assessment can be enhanced by 
adding a smoothing line to indicate the overall trend. The residuals should hov er around 
the 'zero' line, indicating no trend in the residuals over time. Ifthe residuals trend up or 
down, it suggests that the effect of the predictor is varying over time. Fig. 19.14 shows 
a plot of the scaled Schoenfeld residuals for lactation against ln(time). The assumption 
of proportional hazards appears to be reasonable for this predictor. 

Schoenfeld residuals also form the basis for a statistical test of the assumption of 
proportional hazards. The test checks for a non-zero slope of the scaled Schoenfeld 
residuals against time (or a function of time) using a generalised linear regression. It 
provides an overall assessment and a test for each predictor separately. Results of this 
test for the prostaglandin data are presented in Example 19.7. These suggest that a 
treatment*time interaction term does need to be added to the model. 

19.8.9 Evaluating the assumptio n of independent censoring 

One of the fundamental assumptions of survival models is that censoring is independent 
of the outcome of interest. This means that censored animals should have the same 
future survival expectation as non-censored animals (ie if the animals were not 
censored, they would have the same survival distribution as the non-censored animals). 
There are no specific tests to evaluate the independence of censoring and the event of 
interest. However, sensitivity analyses can be used to look at the extreme situations of 
complete positive or negative correlations between censoring and the event of interest. 

Complete positive correlation would mean that every animai that was censored 
would have experienced the event of interest immediately if it had not been censored. 
This could be evaluated by refitting the model after recoding all of the censored 
observations so that they had the event of interest instead of being censored (at the time 
of censoring). 

Complete negative correlation would mean that every animai that was censored would 
be guaranteed a long 'event-free' existence if it had not been censored. This could be 
evaluated by refitting the model after changing each censored animal's time at risk to a 
large, but plausible, value. 

The above two analyses would provide the possible range ofvalues that the coefficients 
ofthe factors ofinterest could possibly take if the assumption ofindependent censoring 
was badly violated. If gross violation of this assumption does not drastically alter the 
estimates of the parameters of interest, you can be confident that the actual bias in the 
parameter estimates will be small. 

Example 19.8 presents the results of a sensitivity analysis designed to evaluate this 
assumption in the prostaglandin data. 
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Example 19.7 Testing the proportional hazards assumption 
data=pgtrial 
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A Cox model with herd, treatment, lactation and body condition (-thin-) as predictors was 
fit to the prostaglandin trial data (without any time varying covariates). Schoenfeld and 
scaled Schoenfeld residuals were obtained. Fig.19.14 show s a smoothed plot of the scaled 
Schoenfeld residuals for lactation plotted against time on a log scale. 

Fig. 19.14 Schoenfeld residuals for lactation 
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The statistical test for a non-zero slope for any of the predictors (against ln(time)) resulted in 
the following. 

rho chi2 df prob>chi2 

herd=2 -0.03508 0.34 0.5591 

herd=3 -0.01793 0.09 0.7600 

tx -0.16812 7.65 0.0057 

lact 0.03007 0.28 0.5937 

thin -0.07995 1.81 0.1789 

global test 10.43 5 0.0639 

While the global test was borderline significant, it is cIear that the assumption ofproportional 
hazards was violated for treatment. 
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Example 19.8 Assumption of independence of censoring 
data=pgtrial 

A Cox model with herd, treatment, lactation and body condition ( -thin-) as predictors was fit to 
the prostaglandin trial data (with treatment as a time varying covariate on the ln(time) scale). 
The model was then refit assuming complete positive and complete negative correlations 
between censoring and conception (see text for description ofmethod). Negative correlation 
was based on assigning a -dar- of 400 to ali censored cows. The results are summarised in 
the following table. 

Original Assuming complete Assuming complete 
Variable estimate positive correlation negative correlation 

herd=2 -0.260 -0.199 -0.228 

herd=3 0.023 -0.007 0.008 

tx 1.089 0.983 0.927 

lactation -0.043 -0.006 -0.061 

thin -0.145 -0.141 -0.050 

, tx*ln(time) -0.259 -0.209 -0.215 

Both sensitivity analyses resulted in a small reduction in the coefficient for treatment, but 
the change was not large and the treatment effect remained highly significant (P-values not 
shown). 

19.8.10 Evaluating the overall fit of the model 

Two approaches to evaluating the overall fit of the model are: to evaluate graphically 
the distribution of the Cox-Snell residuals and to use a goodness-of-fit test similar to 
the Hosmer-Lemeshow test used for logistic regression. 

Cox-Snell residuals are the estimated cumulative hazard for an individual at its failure 
(or censoring) time. If the model is appropriate, these residuals are a censored sample 
from a unit exponential distribution (ie an exponential distribution with a mean of zero 
and variance of l). Consequently, the range ofthese residuals is zero to +00. Cox-Snell 
(CS) residuals can be used to assess the overall fit of a proportional hazards model 
by graphically assessing how close these residuals are to having a unit exponential 
distribution. To do this, you: 

compute the CS residual 
fit a new proportional hazards model with the CS residuals used as the 'time' 
variable (along with the original censoring variable) 
derive an estimate of the cumulative hazard function (H(t» from this new 
model 
plot H(t) against the CS residuals 

If the residuals have a unit exponential distribution, the cumulative hazard should be a 
straight line with an intercept of O and a slope of l. 

For censored observations, the estimated cumulative hazard is an underestimate 
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of the true cumulative hazard for an individual (by virtue of the fact that we don 't 
ob serve them for the full period until they have the outcome of interest). Consequently, 
Cox-Snell residuals are sometimes modified by the addition of a constant (either l or 
ln(2)=O.693) for censored observations. This is only important if a substantial proportion 
of the observations are censored. Because approximately 17% of the observations in 
the prostaglandin trial dataset were censored, this modification could be helpfuI. A 
comparison ofplots of the cumulative hazard versus modified Cox-Snell residuals for 
models without and with treatment as a time vary ing covariate (Fig. 19.15) suggest that 
the latter might fit the data slightly better. 

An overall goodness-of-fit test similar to a Hosmer-Lemeshow test for logistic 
regression models can be computed. The observed number of failures in groups defined 
by quantiles of risk from the fitted model are compared to the expected number of 
failures which are based on Martingale residuals (see section 19.8.11). However, this 
test has limited power to detect problems with model fit (see Example 19.9). 

19.8.11 Evaluating the functional form of predictors 

Martingale residuals can be used to evaluate the functional form of the relationship 
between a continuous predictor and the survival expectation for individuals. These 
residuals represent the difference between the ob serve d finaloutcome for an individual 
and the cumulative hazard for that individual at the final point in time. (As such, they 
are more like typical residuals which represent a difference between an observed and 
a predicted value). Because they are based on the estimated cumulative hazard, these 
residuals are similar to Cox-Snell residuals except their range is from _00 to l. The values 
of these Martingale residuals are: 

uncensored observations: 1- estimated cumulative hazard 
censored observation: O - estimated cumulative hazard 

Consequently, residuals will be negative for all censored observations and for 
observations in which H(t» l (equivalent to S(t)<0.37). 

To check for the functional form of continuous predictors, Martingale residuals should 
be computed from a null model (ie one with no predictors inc1uded). These residuals 
can then be plotted against each continuous predictor. A smoothing function (eg kernel 
smoothing) can be used to better visualise the relationship. If the relationship is linear, 
the smoothed Martingale residual line should be approximately straight. Fig. 19.16 
shows a kernel smoothed graph of Martingale residuals against lactation number. It 
appears that a linear relationship is appropriate. 

19.8.12 Checking for outliers 

Two types of residual can be used to identifY outliers (ie points that are not weIl fit by 
the model). These are deviance residuals and score residuals (also known as efficient 
score residuals). 

Deviance residuals are Martingale residuals that have been rescaled so they are 
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Example 19.9 Evaluating overall fit of a model 
data=pgtrial 

Two Cox proportional hazards models were fit for the prostaglandin trial data with herd, 
treatment, lactation number, and body condition (-thin-) as predictors. In the first model it 
was assumed the effect of treatment was constant over time. In the second model, treatment 
was allowed to vary with ln(time). Fig. 19.15 shows cumulative hazard versus Cox-Snell 
residuals for the two models. 

Fig. 19.15 a and b Goodness-of-fit plots 
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It appears that the model with treatment as a time varying covariate fits better. 

An overall goodness-of-fit test was carried out with the data divided into five percentiles of 
risk. The results are shown in the tables be1ow. 

Model 1 (treatment no time-varying covariates) 

Quantile of risk Observed Expected Z p-Norm Observations 

1 56 54.287 0.233 0.816 76 

2 50 63.217 -1.662 0.096 65 

3 50 43.294 1.019 0.308 56 

4 58 56.796 0.16 0.873 67 

5 50 46.407 0.527 0.598 55 

Total 264 264 319 

Model 2 (treatment as a time-varying covariate) 

Quantile of risk Observed Expected Z p-Norm Observations 

1 49 43.245 0.875 0.382 64 

2 58 64.503 -0.81 0.418 70 

3 49 53.491 -0.614 0.539 58 

4 58 55.631 0.318 0.751 72 

5 50 47.130 0.418 0.676 55 

Total 264 264 319 

Neither test identified the Jack of fit inherent in the first model (without treatment as a time 
varying covariate). This highlights the limited power of overall goodness-of-fit tests to detect 
some inappropriate modeIs. 
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Fig. 19.16 Martingale residuals for lactation 
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symmetric around O (if the fitted model is appropriate). If plotted with an observation 
number as the plotting symbol, they can be used to identify outlying observations. 
Fig. 19.17 is a plot of deviance residuals from the model with -tx- as a time-varying 
covariate. The c1uster oflarge positive residuals at the top left are residuals from 6 cows 
(33,37,68,75, 103, 112) that conceived on day I or day 2 (before the large block of 
cows that conceived on day 3). The cumulative hazard was low on days I and 2 because 
relatively few cows conceived on those days (relative to the large poci of cows 'at risk' 
of conception). Hence, for any cow that did conceive, the Martingale and deviance 
residuals were 'large'. 

Score residuals are a variation of Martingale residuals but are computed for each 
predictor (covariate) in the model. They have a 'Ieverage-like' property in that 

Fig. 19.17 Deviance residuals 
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observations that are far from the mean of the predictor have larger (positive or 
negative) residuals. When plotted against time, they typicaIly form a 'fan-shaped' 
pattem (with the centre of the fan at the mean of the predictor) and observations Iying 
outside this 'fan' should be considered as outliers. They are most useful for identifying 
influential and poorly fit subjects. 

19.8.13 Detecting influential points 

Score residuals can be modified to compute a deIta-beta-like parameter for coefficients 
in the model. This modification involves multiplying the score residual by the estimated 
variance of the coefficient (from the variance-covariance matrix of the coefficients) 
and produces what is called a scaled score residual. A plot of these residuals against 
time, with an observation identifier as the plotting symbo I will identify observations 
which have a substantial influence on that coefficient. Fig. 19.18 show s a plot of the 
scaled score residuals for treatment against time. No cows stand out has having a huge 
influence, but cows 283 and 63 warrant some further investigation. These cows were 
both censored after long observation periods. They were also both treated. The main 
effect of these two cows is to reduce the estimated treatment effect. 

Fig. 19.18 Scaled score residuals 
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19.9 PARAMETRIC MODELS 

200 

time (days) 
300 400 

As noted previously, Cox proportional hazards models make no assumption about the 
shape of the baseline hazard, which can be a real advantage if you have no idea what 
that shape might be, or if it has a very irregular form. However, these model s achieve 
this flexibility at a price. Because they only use information about the observations at 
times at which one or more fails, they do not efficiently use all of the information you 
have about the observations. For example, because the Cox model is based sole ly on 
the rank ordering of the observations, it makes no difference if two successive failures 
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are one day apart or one year apart. The length of the interval, which provide s some 
valuable information in terms of survival times, is ignored. Consequently, if you can 
correctIy specify the form of the baseline hazard, a parametric model will be more 
efficient (ie use more of the available information). 

A parametric model could be written in the sam e way as a semi-parametric model: 
het) = ho(t)efJx 

but ho(t) is assumed to have a specified functional form. The major difference is that fiX 
now inc\udes an intercept term ([Jo). (An alternative method ofwriting these model s is 
described in section 19.10). 

Two of the most common ly used shapes for ho(t) are the constant and Weibull forms. 
Each of these will be discussed briefly. 

19.9.1 Exponential model 

An exponential model is the simplest form of parametric model in that it assumes 
that ho(t) is constant over time (ie in the baseline group, the rate at which failures are 
occurring remains constant). Consequently 

h(t) = c( efJX) Eq 19.12 

where c is the constant baseline hazard. For any given set of predictor values, e~X will 
also have a unique value, so we will let c'=c(efJX). Consequently: 

H(t) = h(t)*t = c( efJX)*t = c't* and Set) = e-c"t Eq 19.13 

The survival probability for any individual will have a decreasing exponential 
distribution. 

Interpretation of coefficients 
Coefficients for predictors in parametric model s are interpreted the same way as 
coefficients from a Cox model. The exponentiated coefficient is the hazard ratio - a 
measure of the increase (or decrease) in the rate of the outcome that accompanies a 
unit change in the predictor. The intercept in the model is the estimate of the log of 
the (constant) baseline hazard. In Example 19.1 O an exponential model is fit to the 
prostaglandin data. If this model was appropriate (which it isn't - but more on that later), 
the baseline hazard would be estimated to be e-4.41=O.OI2. That is, cows in the baseline 
group are conceiving at a rate of 1.2% per day. Note Lactation was rescaled so that the 
baseline group was first lactation animals. 

EvaIuating the assumption of constant hazard 
The assumption that the baseline hazard is constant over time can be evaluated in 
several ways. The first is to generate an estimate of the baseline hazard from a Cox 
model and graph it to see if it approximately follows a straight, horizontal line. Fig. 
19.11 showed that the baseline hazard fell gradually over time. A sec ond approach is to 
fit a model with a piecewise-constant baseline hazard. In this case, the baseline hazard 
is allowed to vary across time intervals by including indicator variables for each of the 
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Example 19.10 Exponential regression 
data=pgtrial 

MODELLING SURVIVAL DATA 

An exponential survival model was fit to the prostaglandin data after rescaling -lact- so that 
first lactation animals had a value of O. 
No of subjects = 319 
No of failures = 264 
Time at risk = 25018 

Predictor Coef 

herd=2 -0.315 

herd=3 0.038 

tx 0.218 

lact=2+ -0.041 

thin -0.157 

constant -4.405 

SE 

0.169 

0.175 

0.125 

0.041 

0.138 

0.161 

Z 

-1.86 

0.21 

1.74 

-1.01 

-1.14 

-27.28 

P 

0.063 

0.830 

0.083 

0.314 

0.256 

0.000 

Number of obs = 319 
LR chi2(5) = 11.42 

Log likelihood = -528.356 
Prob > chi2 = 0.0437 

95% CI 

-0.647 0.017 

-0.306 0.381 

-0.028 

-0.123 

-0.428 

-4.721 

0.464 

0.039 

0.114 

-4.089 

The HR for treatment would be eO.218: 1.24 but it was only borderline significant. The baseline 
hazard would be estimated to be e-4.4o=0.012 or 1.2% per day. 

The assumption that the baseline hazard was constant was evaluated by fitting a model with 
a piecewise-constant hazard (ie the baseline hazard was estimated separately for the time 
intervals 0-19, 20-39,40-79,80-119 and 120+ days). Fig. 19.19 show s a plot ofthe estimated 
baseline hazard up to day 200 (which captures most of the data). 

Fig. 19.19 Baseline hazard (plecewise-constant) 
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From this graph, it is evident that early in the study period, the hazard faUs and it might 
then rise slightly (at least up to day 120) making the assumption of a constant hazard 
inappropriate. 
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time intervals in the model. The baseline hazard is assumed to be constant within each 
time period, but can vary between time periods. This produces the step graph shown in 
Fig. 19.19. Here it appears that the hazard falls early on, followed by a rise (up to day 
120). A third approach to evaluating the assumption of constant hazard is to evaluate the 
shape parameter from a Weibull model (see section 19.9.2). 

19.9.2 Weibull model 

In a Weibull model, it is assumed that the baseline hazard function has a shape which 
gives rise to a Weibull distribution of survival times. The baseline hazard is: 

ho(t) = Jeptp-l Eq 19.14 

where Je is the scale parameter and p is the shape parameter. As noted previously these 
distributions are either monotonically increasing or decreasing ( or fiat) (see F ig. 19.8) 
If a vector of covariates (predictors) is added to a Wei bull model, the formula for the 
hazard function becomes: 

het) = 'Aptp-1ePx Eq 19.15 

where fJX includes an intercept term ((Jo). 

Evaluating the Weibull distribution 
As was noted previously, the suitability of the assumption that the survival times follow 
a Wei bull distribution can be assessed by generating a log-cumulative hazard plot. If the 
distribution is Weibull, this graph will show as a straight line. A rough evaluation can 
be obtained by generating a simple plot oflnH(t) vs ln(t) for ali of the data. Fig. 19.13 
shows a plot oflnH(t) vs ln(t) for each of the two treatment groups in the prostaglandin 
data. The baseline hazard will be included in the non-treated group and that line was 
approximately straight suggesting that the Wei bull model might be appropriate. The 
step graph of the baseline hazard (Fig. 19.19) however, suggests that the Weibull model, 
although preferable to the exponential, might not be ideal because the hazard initially 
falls and then rises. A Wei bull model would assume that it continued to fali with time. 
The esti mate of the shape parameter from the Wei bull model gives an indication of 
whether the hazard is falling (p< 1), constant (p= 1) or increasing (p> 1) with time. If p 
equals, or is close to, 1, it suggests that the exponential model might be adequate. For 

. the prostaglandin data (Example 19.11),p=0.867, indicating that overall, the hazard is 
falling with time. 

19.10 ÁCCELERATED FAILURE TIME MODEL S 

Parametric model s can be written in one oftwo ways: as a proportional hazards model 
(which is what has been presented thus far) or as an accelerated failure time model 
(AFT). Some mode I s (eg exponential and Weibull) can be written in either form, while 
others can only be written as AFT models. 
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Example 19.11 Weibull model 
data=pgtrial 

A Weibull model was fit to the prostaglandin data. 
No of subjects = 319 Number of obs = 319 
No of failures = 264 LR chi2(5) = 9.96 
Time at risk = 25018 Log likelihood = -524.174 

Prob > chi2 = 0.0764 

_t Coet SE Z P 95% CI 

- Iherd_2 -0.289 0.169 -1,71 0.088 -0.621 0.043 

- Iherd_3 0.038 0.175 0.22 0.825 -0.304 0.381 

tx 0.205 0.125 1.63 0.102 -0.041 0.450 

lact2 -0.041 0.041 -1.01 0.315 -0.122 0.039 

thin -0.136 0.138 -0.99 0.324 -0.406 0.134 

constant -3.790 0.259 -14.64 0.000 -4.2 -3.282 

In_p -0.143 0.051 -2.80 0.005 -0.243 -0.043 

P 0.867 0.044 0.784 0.958 

1/p 1.154 0.059 1.044 1.275 

The treatment effect is similar to that seen in the exponential and Cox models and intermediate 
to those two models in terms of statistical significance. The shape parameter (P) from the 
Weibull distribution indicates that the hazard is falling with time (ie p <I). 

The general form of an AFT model is: 
Int = f3X + lm or t = efJxr Eq 19.16 

where Int is the natural log of the time to the failure event, f3X is a linear combination 
of explanatory variables and lm is an error term with an appropriate distribution. 
Note The values of the f3s in this representation will not be the same as the f3s in a 
proportional hazards representation. 

From Eq 19.16 it can be seen that r is the distribution of survival times when f3X=O (ie 
efJx= l). r is assumed to have a specific distribution (eg Weibull, log-normal). If r has a 
log-normal distribution, then the log of survival times will have a normal distribution 
which is equivalent to fitting a linear model to In(survival times) (assuming you can 
ignore the problem of dealing with censored observations). 

Eq 19.16 can be rearranged as follows: 
r = e'fiXt or ln(r) = -f3X + ln(t) Eq 19.17 

The linear combination of predictors in the model (f3X) act additively on log(time) 
or multiplicatively on time (ie they accelerate or decelerate the passage of time by a 
multiplicative factor) where e-fiX is called the acceleration parameter because if: 

e-fiX> l, then t<r so time passes more quickly (ie failures expected sooner) 
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e-fJX = 1, then t=r so time passes at a 'normal ' rate (ie no effect of predictors) 
e-fJX<l, then t>r so time passes more slowly (ie failures expected later) 
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As indicated above, the exponential and WeibuU models can be written either as 
proportional hazards model s or as AFT models. Other parametric models (eg log­
normal, log-logistic, gamma) can only be written as AFT models (the predictors in 
these model s do not necessarily multiply the baseline hazard by a constant amount). 
The relationship between the coefficients from a proportional hazards expression (fJph) 
of a WeibuU model and an AFT expression (fJaft) is: 

fJ 
- -fJph 

aft -
p Eq 19.18 

where p is the shape parameter from the Weibull model. 

19.10.1 Coefficients in AFT models 

A coefficient in an AFT model represents the expected change in the ln( survival time) for 
a l unit change in the predictor. For example, assume you have a dichotomous predictor 
(X with a coefficient of 1.6. If, in the absence of X, a study subject is expected to fail at 
t=5 days (Jn(t)=1.61), the presence ofXwould increase the expected ln(survival time) 
to 1.61+ 1.6=3.21 or the survival time to 24.8 days. The presence of X in a subject which 
was expected to survive 30 days would result in an increase expected survival time from 
30 to 149 days. As you can see, in absolute time, factors have a greater impact at longer 
expected survival times. 

An altemative interpretation is to exponentiate the coefficient to compute a time ratio 
(TR). A coefficient of 1.6 produces a TR=4.95 which means that the presence of X 
increases the expected survival time by a factor of almost 5 times. 

An example of a log-normal survival model expressed in AFT terms is shown in 
Example 19.12. Because it appeared that the baseline hazard from the prostaglandin 
data first decJined and then rose, either a log-normal or log-logistic model might be 
more appropriate than a WeibuU model which requires the model to either increase or 
decrease continually. 

19.11 MULTIPLE OUTCOME EVENT DATA 

In ali of the material presented so far in this chapter, we have assumed that there was 
only one possible occurrence of the outcome of interest (eg onset of pneumonia in 
calves, conception in dairy cows). However, in some instances multiple outcome events 
are possible, and these faU into three general cJasses. 

Multiple different failure events - These arise in situations where you want to 
evaluate the effect of a predictor on multiple possible outcomes such as an 
evaluation of the use of a nutritional supplement in dairy cows after calving on 
the time to first service, the time to achieving positive energy balance and the 
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Example 19.12 Accelerated failure time (log-normal) model 

A log-normal model was fit to the prostaglandin data and the results are shown here. 
No of subjects = 319 Number of obs = 319 
No of failures = 264 LR chi2(5) = 13.85 
Time at risk = 25018 Log likelihood = -533.499 

Prob > chi2 = 0.0167 

Predictor Coet SE Z P 95% CI 

herd=2 0.293 0.238 1.23 0.217 -0.172 0.759 

herd=3 -0.046 0.244 -0.19 0.852 -0.524 0.433 

tx 0.061 0.054 -3.08 0.002 -0.045 0.168 

lact=2+ 0.061 0.054 1.13 0.259 -0.045 0.168 

thin 0.064 0.193 0.33 0.740 -0.313 0.441 

constant 3.948 0.228 17.28 0.000 3.501 4.40 

Ina 0.423 0.045 9.49 0.000 0.336 0.510 

o 1.526 0.068 1.399 1.666 

Expressing the results at time ratios (TR) produces: 

Predictor Time ratio SE 95% CI 

herd=2 1.341 0.319 0.842 2.136 

herd=3 0.955 0.233 0.592 1.542 

tx 0.581 0.102 0.411 0.821 

lact=2+ 1.063 0.058 0.956 1.182 

thin 1.066 0.205 0.731 1.555 

In this model, treatment is a highly significant predictor of survival time and the TR for 
treatment suggests that it reduces the time to conception by a factor of 0.58 (ie a 42% 
reduction). o is the SD of the (assumed) normal distribution of the log survival times. Note 
Although -tx- is now highly significant, this model does not treat -tx- as a time varying 
covariate. Allowing the effect of -tx- to vary with ln(time) substantially reduced the log 
likelihood (ie the model with -tx- as a time varying covariate fits the data much better). Data 
from the latter model are not presented, but the program for fitting the model is available in 
Chapter 28. 

time to peak milk production. These are sometimes referred to as competing 
risks data. 
Multiple 'same' endpoints (not ordered) - These arise in situations where 
multiple possible outcomes of the same event are possible, but there is not 
necessarily any ordering to them (eg time to onset of clinical mastitis in each 
of the quarters of a cow). One way of dealing with these is to change the unit 
of observation to the quarter, but in many cases, most of the risk factors will be 
at the cow level. 
Multiple 'same' endpoints (ordered) - These are also call ed recurrence 
data. They arise when it is possible for the outcome event to occur multiple times 
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in the same animai (eg breedings, cases of clinical mastitis). They key feature to 
these is that there is a naturalordering to them (ie the second case cannot happen 
before the first case). These types of data are the focus of this section. 

19.11.1 Models for recurrence data 

Three approaches to modelling recurrence data have been reviewed (Wei and Glidden, 
1997). These will be summarised here, but details of structuring data appropriately for 
these analyses is presented in Cleves (1999) and an example is shown here in Example 
19.13. 

Anderson-GiII (AG) model 
This model is a generalised proportional hazard model and is the simplest approach 
to analysing recurrence data. The risk of recurrence is assumed to be independent of 
previous events, although the assumption of independence can be relaxed by including 
a time-dependent covariate for the number ofprevious occurrences. The model is fit by 
assuming each subjects 'at-risk' time starts over again after each outcome is observed. 
If an animaI is not considered to be at risk for a defined period after the occurrence of a 
case, then the time not at risk can be excluded (interval censored or gap). For example, it 
is common when defining cases of clinical mastitis that 7 -14 days elapse between cases 
for the second occurrence to be considered a new case. An Anderson-Gill model fit to 
some hypothetical data is shown in Example 19.13. 

Prentice-William-Peterson (PWP) model- conditional risk sets model 
This model is a proportional hazard model that is conditional on previous occurrences. It 
is equivalent to carrying out a stratified analysis with the strata defined by the number of 
previous outcome events. All first occurrences would be in the first stratum, the second 
stratum would consist of second cases, but onlyanimals that had experienced a first case 
would be at risk etc. Time at risk for each outcome can be measured either from the 
start of the study period or from the time of the previous event. An example of the latter 
approach is shown Example 19.13. 

Wei-Lin-Weissfeld model- marginal risk sets model 
This model is based on an approach similar to that which could be used for survival data 
with multiple different failure events. Strata are set up for each possible failure event 
(up to the maximum number observed in the data) and a proportional hazards model fit 
for each ofthe strata and then pooled to derive a single estimate of the coefficients in the 
model. Separate estimates of the coefficients for each stratum could be obtained, but the 
overall results shown in Example 19.13 provide a single pooled estimate of the effect 
of the predictor. 

In each of the above three models, the multiple observations within an animai are not 
independent. In Example 19.13, this lack of independence was dealt with by using 
robust standard error estimates (as proposed by Lin and Wei (1989)). Robust standard 
errors are described in more detail in Chapter 24. An altemative approach to dealing 
with the lack of independence is to use a frailty model (section 19.12). 
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Example 19.13 Multiple failure event models 
data=hypothetical data 

Some hypothetical data were constructed according to the following specifications 
2,000 animals 
1,000 animals with a risk factor (X) and 1,000 without 
X increased the risk of failure (X reduced ln( survival times) by 20%) 
the number of events observed followed a Poisson distribution with a mean of 1.5 
animals with O events were censored, alI other animai s had a censoring time on or 
after their last event 

The data structures for animals 3 and 4 for each of the models fit is shown below. Animai #3 
had 3 events (days 31, 48, 61) and was censored on day 66, while animai 4 had a single event 
on day 54 and was censored on day 94. 

Prentice-William- Wei-Lin-
Anderson-GiI! Peterson Weissfeld 

ID Event Outcome Start End Start End Start End 

3 1 O 31 O 31 O 31 

3 2 31 48 O 17 O 48 

3 3 1 48 61 O 13 O 61 

3 4 O 61 66 O 5 O 66 

3 5 O 66 

4 1 1 O 54 O 54 O 54 

4 2 O 54 94 O 40 O 94 

4 3 O 94 

4 4 O 94 

4 5 O 94 

The results (Cox proportional hazards model coefficients) from each of the models fit are 
shown below. There was a single predictor -X- in each model. 

Model Coef SE Lower CI Upper CI 

Anderson-GiI! 0.481 0.052 0.380 0.582 

Prentice-William-Peterson 0.551 0.045 0.463 0.638 

Wei-Lin-Weissfeld 0.587 0.060 0.470 0.705 

The effect estimates (coefficients) are roughly similar, although the Anderson-Gill model 
produces a somewhat lower estimate. 
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19.12 FRAIL TY MODELS 

As noted in previous sections, predictors in survival model s (semi-parametric and 
parametric) act multiplicatively on the baseline hazard (ie the hazard for an individual is 
a multiple of the baseline function). In a frailty model, an additionallatent (unobserved) 
effect (ie the frailty) acts multiplicatively on the hazard. The frailty is not measured 
directly, but is assumed to have a specified distribution and the variance of the 
distribution is estimated from the data. The addition of a frailty to the model is useful if 
the standard model does not adequately account for all of the variation in the data. 

There are two general types of frailty model: individual frailty and shared frailty 
models (Gutierrez, 2002). In an individual frailty model, the additional variance is 
unique to individuals and serves to account for additional variability in the hazard 
among individuals in much the same way that the negative binomial model accounts for 
more vari abi lit y than a Poisson model. In a shared frailty model, group s of animals are 
assumed to have a common frailty so this model is analogous to a random effects model 
(see Chapters 20-24). Each ofthese will be discussed and examples presented based on 
hypothetical data and/or those from the prostaglandin trial. 

19.12.1 Individual frailty models 

An individual frailty model can be written as follows: 
h(lla) = a.h(l) Eq 19.19 

Conditional on the frailty, the hazard at any point in time is multiplied by a factor a, 
which is assumed to have a distribution with a mean of l and a variance of 8. Two 
common ly assumed distributions of a are the gamma and the inverse Gaussian. The 
frailty can be thought ofas representing the effects ofunmeasured predictors (which, if 
they had been measured, would act multiplicatively on the hazard). 

A frailty effect can account for apparent changes in the hazard in a population over time. 
This can be st be seen with some simulated data (Example 19.14). In this example, the 
addition ofa frailty term (random effect) to a Weibull model helps explain some of the 
variability in the unconditional (population) hazard function. 

Hazard ratios need to be interpreted with caution in individual frailty models. The HR 
at any time I represents the shift in the hazard due to a unit change in the predictor, 
conditional on the frailty a (ie assuming a comparable frailty). In general, the population 
hazards might not be proportional over time and the hazard ratio only represents the 
effect of the predictor at time O. In general, the effect of the predictor on the population 
hazard will diminish over time in favour of the frailty effect. With gamma frailties, 
the population hazard ratio tends to 1 as time approaches infinit y, while for an inverse 
Gaussian frailty the HR tends toward the square root of the HR. 

Example 19.15 shows the add iti on of a gamma frailty to the Weibull model of the 
prostaglandin data (with no time varying predictors). 
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Example 19.14 The effect of frailty on the population hazard 
data=hypothetical 

A hypothetical dataset of 100 observations was created so that the hazard was assigned the 
following values in each time period: 

1-19days: hazard=O.Ol/day 

20-39 days: hazard = 0.02/day 

40-59 days: hazard = 0.005/day 

60-100 days: hazard = 0.0025/day 

Computer-generated random numbers (uniform distribution) were used to determine survival 
or failure on any given day. 

Fig. 19.20 shows the empiricai hazard (Kaplan-Meier estimate) from the data along with the 
predicted hazard from a: 
• Weibull model (log likelihood = -1464.6), 
• 10g-normaI model (log likelihood = -1426.3) 
• Weibull model with a gamma frailty (log likelihood = -1405.5) 

Fig.19.20 Estimated hazard functlons 
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CIearly the Weibull model is inappropriate because the hazard initially increases and then 
decreases and a Weibull model is restricted to monotonically increasing or decreasing hazards. 
While none of parametric models fit the data particularly weIl, the log-normal model would 
be preferable to the Weibull model. However, the addition of a gamma frailty parameter to 
the Weibull model accounts for some of the variation in the hazard that is not accounted for 
by the Weibull hazard function. Based on the graph, and the log-likelihood estimates from 
each of the model s, this model appears to fit the data the best. (Note The shape Parameter for 
the Weibulllgamma model is 1.75 indicating a monotonically increasing hazard. The frailty 
parameter accounts for the decrease in the estimated hazard after day 20). 
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Example 19.15 Individual frailty model- prostaglandin trial data 
data=pgtrial 

A Weibull model with a gamma frailty was fit to the prostaglandin tria! data. 
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No of subjects = 319 Number of obs = 319 
No offailures = 264 LR chi2(5) = 9.96 
Time at risk = 25018 Log likelihood = ~524.174 

Predíctor 

herd=2 

herd=3 

tx 

lact=2+ 

thin 

constant 

p 

e 

Coef 

-0.289 

0.039 

0.205 

-0.041 

-0.136 

-3.790 

-0.143 

-14.871 

0.867 

0.000 

SE 

0.169 

0.175 

0.125 

0.041 

0.138 

0.259 

0.051 

756.182 

0.044 

0.000 

z 
-1.71 

0.22 

1.63 

-1.01 

-0.99 

-14.64 

-2.80 

-0.02 

p 

0.088 

0.825 

0.102 

0.315 

0.324 

0.000 

0.005 

0.984 

Preb> chí2 = 0.0764 

95% CI 

-0.621 0.043 

-0.304 0.381 

-0.041 0.450 

-0.122 0.039 

~0.406 0.134 

4.297 -3.282 

.-0.243 -0.043 

-1496.961 1467.219 

0.784 0.958 

O 

The variance of the gamma frailty was estimated to be zero (ie no frailty effect at ali), 
suggesting that the Weibull hazard might be appropriate for these data. 

Shared frailty models 
In a shared frailty model, it is assumed that a number of individuals share a common 
frailty as opposed to the frailty being distinct for each individual. Consequently, the 
shared frailty can be thought of as representing the effects of unmeasured predictors 
which those individuals have in common. These can represent the random effect of a 
group ing variable such as herd. (See Chapters 20-24 for more discussion of random 
effects). A shared frailty would be an appropriate way of dealing with the lack of 
independence observed when we have multiple failure times in an individual. (The 
frailty would represent the common characteristics of the individual that affect time to 
each event occurrence.) 

A shared frailty model can be written as follows: 
h;(tla;) = a;h;(t) Eq 19.20 

where ai represents the frailty for the ith group. Example 19.16 shows a shared frailty 
model fit to the prostaglandin trial data, with the frailty common to the herd. Normally, 
we would not fit a random effect (shared frailty) when there were only two herds, so this 
has been done for example purposes only. 
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Example 19.16 Shared frailty 
data=pgtrial 

MODELLING SURVIVAL DATA 

A shared frailty model (Weibull distribution with gamma distributed frailty common to all 
cows in a herd) was fit to the prostaglandin trial data. 
No of sUbjects = 319 Number of obs = 319 
No of failures = 264 LR chi2(3) = 4.79 
Time at risk = 25018 Log likelihood = -526.591 

Prob > chi2 = 0.1881 

Predictor Ccef SE Z P 95% CI 

tx 0.186 0.125 1.48 0.139 -0.060 0.431 

lact=2+ -0.044 0.041 -1.09 0.274 -0.124 0.035 

thin -0.115 0.131 -0.87 0.383 -0.372 0.143 

constant -3.853 0.245 -15.73 0.000 -4.333 -3.373 

InJ> -0.147 0.051 -2.88 0.004 -0.247 -0.047 

I n_9 -4.566 1.684 -2.71 0.007 -7.866 -1.266 

P 0.863 0.044 0.781 0.954 

9 0.010 0.018 0.000 0.282 

The variance of the gamma distribution is significantly different from l (P-value for Ho:ln8=O 
(or 8=1) is 0.007). Comparing the likelihoods from models with the frailty term included 
(lnL=-526.6) and without (lnL=-527.0) (testing Ho:8=O) suggests that the variance is not 
significantly different from zero. However, including the frailty term did result in a slight 
increase in the coefficient for treatment. 

19.13 SAMPLE SIZE CONSIDERATIONS 

Computation of sample sizes for studies with survival time as the outcome can be a 
complex process. For studies where the primary focus is the comparison of survival 
times across two (or more) groups, as it often is in controlled trials, one approach is to 
compute the sample size required to have a desired power in an analysis based on an 
unweighted log-rank test. If an assumption of proportional hazards is likely not valid, 
basing the sample size on that required for a weighted version of the test (eg Tarone­
Ware or Harrington-Flemming tests) might be more appropriate. 

However, there are many factors which will influence the required sample size. Some 
of the following have been discussed under sample size estimation in Chapter 2 and 
some are unique to studies of survival time. 

l. Sample size might need to be increased to account for multiple predictors in 
the analysis, and/or to adjust for clustering of the data (ie non-independence 
among observations) (see Chapter 2). 

2. As pointed out in Chapter ll, multiple comparisons (often arising from interim 
analyses), losses in the follow-up process and subgroup analyses are common 
features of controlled trials which require adjustment to the sample size. 
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3. The shape of the baseline hazard function might not be known in advance of the 
study so a sample size estimate based on a non-parametric test (eg log-rank) 
would be appropriate. 

4. The possibility of non-proportional hazards needs to be considered. 
5. In controlled trials, crossover might occur in which animals could move from one 

treatment group to another (eg treated to not-treated if the owner fails to comply 
with treatment instructions). 

6. Recruitment of animals into the study could take place over time which might 
affect the length of follow-up period for animals recruited. 

A general discussion of sample size issues can be found in Friedman et al (1998). A 
brief discussion of some of the issues identified above and a description of a software 
program for ~omputing samples sizes for survival analysis studies has recently been 
published (Royston and Babiker, 2002). 
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SAMPLE PROBLEMS 

1. This problem is based on some artificial data ..... when you have completed these 
analyses ... DO NOT send them off for publication in a peer-reviewedjoumal. 

You are interested in the efficacy of radiation and chemotherapy as adjuncts to 
surgery for treating dog s with malignant lymphosarcoma. By working 
collaboratively with seven veterinary schools in major European cities, you are able 
to carry out a prospective study in which dogs are random ly assigned to receive 
chemotherapy, radiation therapy, both or neither. Randomisation is done using a 
random numbers program at each centre so you do not have exactly equal numbers 
in all groups. 

You emoll 300 dog s in the study and follow them (as be st you can) for the rest of 
their lives (you have to be patient - this is a long-term study). At the end of the study 
you have a database (called lympho) with the following variables in it. 

Variable Description 

clinic the clinic identification number (1 .. 7) 

dog the dog's identification number (1 .. 300) 

age the age of the dog in years when it was diagnosed with Iymphosarcoma 

rad whether or not the dog received radiation therapy (O=no, 1 =yes) 

chemo whether or not the dog received chemotherapy (O=no, 1 =yes) 

died whether the dog died (1) or was lost to follow-up (O) 

months the number of months after the start of therapy befo re the dog died or was 
lost to follow-up 

a. Use Kaplan-Meier life tables to evaluate the effects of radiation and 
chemotherapy on the survival expectations of these dogs. Generate a graph of 
survival times for each of the four possible treatment combinations. 

b. Build a Cox proportional hazards model which includes -age-, -rad- and -chemo-. 
(Ignore the clinic identifier; we will come back to that later). Is there any 
evidence of interaction or confounding among the three variables? Would 
confounding between age and radiation therapyor age and chemotherapy be 
possible? 

c. Interpret the results from this final model in terms that a lay audience would 
understand (ie pretend you are presenting them to a local kennel club). 

d. Is the assumption of proportional hazards valid for all predictors in the model. 
Use both graphical and statistical techniques to assess this assumption. 

e. Is the assumption of independent censoring valid? 
f. Evaluate the overall fit of the model. Does it se em reasonable? 
g. Is it reasonable to assume that the effect of age on the log of the hazard ratio is 

linear? 
h. Are there any dogs whose survival time was not weIl predicted by the model? 

What effect does removing these observations have on the model? Should you 
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remove these dogs? 
i. Are there any dogs which se em to have an undue influence on the model? What 

effect does removing these observations have on the model? Should you 
remove these dogs? 

j. Compute the baseline hazard and survival values. Before doing this, create 
a new age variable so that a dog of age 24 months has a value ofO. (Otherwise, 
the baseline hazard that you compute is going to be the hazard for a dog of O 
months of age). Evaluate the baseline hazard and survivor functions by graphing 
them against time. What shape does the hazard appear to have? 

k. Fit a Wei bull model to the data. What is the shape of the baseline hazard? Try 
fitting other baseline hazard distributions (Iog-normal and log-logistic). Do they 
fit the data better? 

I. Does add ing an individual frailty term to the model make much difference to the 
model? 

m. Up to now, we have ignored any potential effect of -clinic-. It is conceivable 
that dogs at some clinics have better (or worse) survival expectations due to 
a variety of factors (eg breed distributions at the clinics, expertise and skill of 
the clinicians). Fit a shared frailty model to investigate this possible difference 
among clinics. What is the estimated variance of this shared frailty term? Is it 
significantly different from zero (ie is there evidence of shared frailty)? 

n. Because the baseline hazard is not particularly weil fit by any ofthe distributions 
explored above, fit a piecewise exponential distribution (ie assume a constant 
hazard over periods of time) to see if you can better fit the observed baseline 
hazard. 
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20 

INTRODUCTION TO CLUSTERED DATA 

OBJECTIVE S 

After reading this chapter, you should be able to: 

l. Determine if c1ustering is likely to be present in your data. 

2. Understand why c1ustering might be a problem, particularly as related to estimating 
standard errors of coefficients. 

3. Understand what impact c1ustering might have on your analysis of either continuous 
or discrete data. 

4. Use fixed effects models as one approach to dealing with clustering. 
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20.1 INTRODUCTION 

In common usage, a c1uster denotes a set of objects (eg individuals) in a small group. 
In statistics, c1uster analysis aims to identify c1usters among the observations, based 
on the similarity of their outcomes and possibly their physical distance. Our usage of 
clustered data is similar but does not pertain to c1uster analysis. We think of c1usters as 
observations that share some common features (that are not explicitly taken into account 
by explanatory variables in a model). This type of c1ustering is always derived from 
the data structure, of which the most common example is a hierarchical data structure. 
It is usually expected to lead to dependence between the responses of observations in a 
group (or c1uster) because the shared feature make s the out comes 'more similar' than 
otherwise. Thus, two altemative and occasionally encountered terms for these data are 
hierarchical data and correlated data. 

Before proceeding, recall that statistical dependence between observations (for 
example, Y\ and Y2) is measured by covariance or correlation (which equals the 
covariance divided by the respective standard deviations): 

( ) 
cOV(1';'Y2) 

P = corr 1';, Y2 , 
SD(Y[ ) SD(Y2 ) 

where -I ~ P ~ l 
Eq 20.1 

Similarity between observations corresponds to positive values of p and the dependence 
increases the further the value is from zero. 

20.2 CLUSTERING ARISING FROM THE DATA STRUCTURE 

In this section, we discuss here c1ustering which arises from animals sharing a 
common environment, c1ustering in space (eg geographical proxi mit y) and repeated 
measurements within the saine individual. 

Common environment 
Cows within a herd, puppies within a litter, and quarters within a cow are ali examples 
of c1ustering in an environment. We usually assume that the degree of similarity among 
all pairs of observations within such a c1uster are equal. Clustering is not necessarily 
restricted to a single level. For example, pigs might be c1ustered within a litter which 
might be c1ustered within a pen ofpigs, which might be clustered in a farm which might 
be clustered in a region, as shown in the Fig. 20.1. Such data are call ed hierarchical or 
multi level data. The structure shown in Fig. 20.1 is a 5-level structure. In practice, we 
deal more often with data that have a 2-level or a 3-level structure. 

Spatial clustering 
The hierarchy in Fig. 20.1 suggests that farms in the same region are similar. It 
sometimes seems natural to replace or extend this relationship by one where the 
dependence between farms is directly related to (inversely proportional to) the distance 
between them. Spatial model s incorporate the actuallocations ofstudy subjects (in this 
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example the subjects are farms but they could also be the actuallocations of cows in a 
tie-stall barn). If such detailed information is not available or detailed spatial modelling 
is not desirable (eg due to sparse data), spatial clustering might be accounted for by 
hierarchical levele s). 

Fig. 20.1 A typical hierarchical data structure in veterinary epidemiology 

Region 

LFarm/Herd 

Lsow/Pen/Batch 

Repeated measurements 

L Litter 

LAnimal 

Repeated measures arise when several measurements of a variable are taken on the 
same animai (or other unit of observation) over a period of time. Daily milk weights 
in a cow are highly correlated because the level of milk production .on one day, is 
likely to be quite close to the production on the day before and the day after. Multiple 
measurements of lactation total milk production across lactations within a cow 
are also repeated measurements, but would not be so highly correlated. We might 
think of repeated measures as a special type of hierarchical clustering (eg in Fig. 
20.1 an add iti on al level could be added at the bottom of the hierarchy for repeated 
measurements on the animai). However, just as with spatial clustering, several special 
considerations apply. Observations close together in time are likely to be more highly 
correlated than measurements with a longer time span between them. AIso, repeated 
measurements might occur at any level in the hierarchy, not just a the lowest level. For 
example, if a study on pig production involved several batches within a farm, the batch 
level would then correspond to repeated measures over time on the farm. 

Diagrams such as Fig. 20.1 are highly recommended to determine and present data 
structures, as long as their defaults with regard to spatial and repeated structures are 
kept in mind. Note that the data structure pertains not only to the outcome but also to 
the predictor variables and it is very useful to know whether predictors vary or were 
applied at particular levels. We elaborate on this idea in the context of the simplest 
two-Ievel experimental design: the split-plot design. Section 20.2.3 briefly discusses 
how the effects of predictors vary in their interpretation at the different levels of a 
hierarchy. 

20.2.1 Split-plot design 

The split-plot concept and terminology date s back to the early 20th century when 
statistical methods were developed in the context of agricultural tieid trials. Consider 
the planning of an experiment involving two factors A and B with a and b levels, 
respectively. The special feature of the design is that factor B is practically applicable 
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to smaller units of land (plots) than factor A. In the field trial context, we might think 
of A as a large-scale management factor such as pesticide spraying by plane and B as a 
small-scale factor such as plant variety. The experimental units for factor A are called 
whole-plots. The design needs some replication, and we assume we have c blocks of 
size a at our disposal, giving a total of ac whole-plots. The blocks would typicaIly be 
separate pieces ofland or experimental sites. A minor modification of the design occurs 
if the ac whole-plots are not laid out in blocks but are just replicates; the same principle 
applies, but for simplicity we describe the design with blocks. Within each block, the 
design would now be laid out in a two-step procedure, as illustrated in Fig. 20.2. 

l. randomly distribute the levels of factor A onto the a whole-plots, 
2. divide each whole-plot into b subplots, and random ly distribute the levels of 

factor B onto the subplots. 

Fig. 20.2 Split-plot layout within one block, with a = 2 whole-plots and b = 4 subplots 

A=2 A= 1 

B"J:~~:~ subplo" 

B=2 ! B=3 / 
i .V 

~~ 
whole-plots Blockl 

As an animal-production example, we might have a herd-management factor A (eg 
tie-stall versus free-stalI bams) and a treatment B applicable to individual animals (eg 
vaccination with one offour vaccines). Thus, the whole-plots would be the herds, and 
the subplots the animals. The blocks could be groups of similar herds, eg in the same 
region, or there could be replication instead of blocks (eg pairs of herds - one tie stall 
and one free stall). A split-plot design corresponds to a 2-level hierarchy with who le­
plots as the upper level and subplots as the bottom level. 

In the analysis of a split-plot experiment, the two factors A and B cannot be expected to 
be treated equally because they are applied to different experimental units. In particular, 
effects of the whole-plot factor A should be compared to the variation between who le­
plots (corresponding to the first step of the design construction), and effects of the 
subplot factor B to the variation between subplots. It follows that it is necessary (and 
possibie!) to split the total variation into variations between and within whole-plots. 
These variations are estimated independently from each other and with different 
accuracy (degrees of freedom). Usually the whole-plot variation will be considerably 
larger than the subplot variation, and factor A is estimated with less precision than 
factor B. The interaction between A and B 'belongs to' the subplot variation because 
differences between B-Ievels within any A-level can be determined within the who le­
plots. This makes the split-plot design particularly attractive in situations where the 
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principal interest is in the main effect of factor B and its interaction with factor A. In 
the example above, this would correspond to estimating the effects of the vaccines 
and determining if the vaccines worked differently in tie-stall compared with free-stalI 
bams. 

20.2.2 Variation at different levels 

The split-plot design with its 2-level structure (eg cows within herds) illustrated how 
variation in the outcome of interest resides at the different levels of the hierarchy and 
how predictor variables explain variation at these different leve ls. One important 
implication is that the amount of unexplained variation at the different level s indicates 
what can be achieved by a detailed study of the units at the different levels. For 
example, a large unexplained variation between herds might indicate a substantial 
room for improvement in the outcome of interest, if we were able to understand why 
some herds do better than others. Generally, interventions targeted at the level where 
the greatest variation resides would se em to have the greatest chance of success. 
Explorative studies prior to interventions are one example ofwhen the clustering of the 
data within the hierarchical structure is ofprimary interest (Dohoo et al, 2001). 

20.2.3 Clustering of predictor variables 

While the focus of our discussion to this point has been in the variation in the outcome 
of interest, we have also noted that predictor variables occur at various levels and might 
also be clustered. There is a wealth of potential relationships that can be examined 
when the hierarchical structure of the data is taken into consideration. For example, if 
data are recorded at the cow level, but clustered at the herd level we can examine: 

cow-level factors (eg lactation number) that affect a cow-Ievel outcome 
(lactation total milk production), 
herd-level factors (eg barn type) that affect a cow-level outcome, 
herd-level factors (eg barn type) that affect a herd-level outcome (eg average 
lactation total milk production for the herd), 
cow-level factors (eg lactation number) that affect a herd-Ievel outcome (eg 
average lactation total milk production for the herd), where the cow-level 
factors could either be recorded individually or aggregated to the herd-level (eg 
average lactation number for the herd), 
herd-level factors (eg barn type) that might alter a cow-level relationship (eg is 
effect of lactation number on milk production different in tie-stall and free-stalI 
bams?) or vice versa. 

Correctly evaluating the range of effects outlined above requires correct identification 
of the hierarchical structure of the data. 

20.3 EFFECTS OF CLUSTERING 

Aside from any interest we might have in questions pertaining to the data structure, the 
reason for our interest in clustering is that it must be taken into account to obtain valid 
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estimates of the effects of interest. This is because the assumption of independence 
inherent in most of the statistical model s review ed up tilI now in the book will be 
invalidated by the clustering. 

To start with, let us address two common questions: l. what happens if clustering is 
ignored?, and 2. if the data show no dependence, can clustering be ignored? If the 
presumption of these questions is whether one can escape the nuisance of accounting 
for clustering if it is not 'influential', we must raise a sign of waming. Today's 
standard statistical software offers a variety of easily accessible options to account for 
clustering, and we find it hard to justify scientifically the use of a flawed method (ev en 
if only slightly) when better methods are readily available. If 'no dependence' means 
that a significance test of correlation tumed out non-significant, it might be worthwhile 
to recall that the data showing no (significant) evidence against independence is by no 
means a proof of independence (by the distinction between Type I and Type II errors 
of statistical tests). Remember, "absence of evidence is not evidence of absence" (Carl 
Sagan). 

Having said that, it might be fruitful for the understanding of the concept of clustering 
to examine the consequences of ignoring it. Perhaps not too surprisingly, the answer to 
the question depends on the statistical model used. Linear and logistic regression are 
discussed in more detail in the sections below. However, one general effect of ignoring 
clustering is that the standard errors (SEs) of parameter estimates will be wrong and 
of ten too small. This is particularly true if the factor of interest is a group-level factor 
(eg a herd-level factor such as barn type), or if it is an individual-Ievel factor that is 
also highly clustered within group s (eg occurrence of milk fever - some cows are 
affected and others not, but some herds have a lot of cases while others have few). For 
a two-level structure and a group-level predictor, it is possible to compute a variance 
inftation factor (VIF) (section 20.3.3) for a cluster-adjusted analysis relative to an 
unadjusted analysis. 

Unfortunately, the simple VIF calculation lead to a widespread, but incorrect, belief that 
clustering always and only causes variance inflation. The discussion of the split-plot 
design illustrated the separation of the total variation into variation between and within 
whole-plots, with different values and degrees of freedom for each level. Therefore, if 
the data show these variations to be respectively large and small, the cluster-adjusted 
(split-plot) analysis will actually give smaller standard errors for subplot predictors 
- and larger standard errors for whole-plot predictors. It also follows that in adataset 
with only a few herds (even if there is littl e clustering within herds), ignoring the 
hierarchical structure will lead you to grossly overestimate the power for evaluation 
of herd-level factors because it is the number of herds that determines the appropriate 
degrees űf freedom, not the number of animals within herds. However, accounting for 
the data structure in the analysis might lead to smaller SEs for an animaI-level factor. 
A final, less clear-cut effect of ignoring clustering is in the weighting of observations 
from different clusters. If the number of cows in different herds is highly variable, 
an unadjusted analysis gives unreasonably large weight to large herds. In summary, 
ignoring clustering can lead to other deficiencies than variance inflation, and in answer 
to question 2. above, even when 'no dependence' is seen, one would usually wan t to 



INTRODUCTION TO CLUSTERED DATA 465 

use cluster-adjusted methods to properly take into account the data structure. 

20.3.1 Clustering for continuous data 

Least squares estimation for linear (regression) model s yields unbiased estimates ofthe 
regression coefficients, even if clustering is present and ignored (Diggle et al 1994). 
This, perhaps intuitively surprising, fact is however of limited practical use because 
the corresponding SEs might be strongly affected by ignoring clustering. Thus, without 
reliable standard errors and test statistics to assess the precision and significance of the 
estimates, the statistical analysis does not go very far. Also, even if the estimates are 
unbiased, they might be very inefficient. By means oftwo simulated datasets, Example 
20.1 illustrates how clustering might affect the standard errors. In this example, we use 
a linear mixed model (Chapter 21) to account for clustering, but other approaches are 
presented in Chapter 23. 

20.3.2 Clustering for discrete data 

Estimation procedures in regression model s for discrete data (eg logistic and Poisson 
regression models ) are asymptotically unbiased which means that with infinite ly large 
samples, they produce correct parameter estimates. However, with limited sample 
sizes, some bias in the estimates will be present. If the data are clustered and the 
clustering is ignored in the analysis, the variance of the SEs of the estimates will (in 
most case s) be underestimated as was seen in models for continuous data. The larger 
'true' variance in the parameter estimate means that the parameter estimate might be 
far from the true value, but this will not be readily apparent, resulting in (apparently) 
more biased estimates. 

The link between the mean and the variance in discrete model s makes them quite 
sensitive to clustering, but also it provides a tool to detect clustering - by comparing 
the dispersion in the data with the dispersion predicted by the model. As a very simple 
example, assume that the overall prevalence of disease in a population was 50% and 
there were no differences among herds (ie no clustering within herds). If data were 
collected from 10 herds of 20 cows each, the herd prevalence values might look like 
this due to random variation: 

.3 .4 .45 .5 .5 .5 .5 .55 .6 .7 
The variance of the se herd prevalences is 0.012 (0=0.108). However, ifthere was 100% 
clustering within herds and five herds had all cows affected and five had none, the herd 
prevalence values would be: 

O O O O O 1.0 1.0 1.0 1.0 1.0 

Now the variance of the herd prevalence is 0.278 (0=0.527). Because the logistic model 
esti mate s the variance from the overall prevalence, it would estimate the variance to be 
the same as in the first situation and this underestimates the actual variance because it 
ignores the between herd variability. Example 20.2 illustrates the practical implication 
of ignoring clustering for two simulated datasets. In this example, we use a logistic 
(generalised linear) mixed model to account for the clustering (Chapter 22), but other 
approaches are described in Chapter 23. 
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Example 20.1 
data=simul ated 

INTRODUCTION TO CLUSTERED DATA 

Clustered continuous data 

Two simulated datasets, each consisting of cows in 100 herds, were created. Herd sizes 
ranged from 20 to 311 cows (u=1l6). Herd mean daily milk production varied randomly 
between herds (u=30 kg/day, (Jh=7 kglday). with larger herds tending to have higher 
production. Individual cow daily mi/k production values were normally distributed around 
the herd average (with (5=8 kg/day) unless the factor -X- was present, in which case the milk 
production was 5 kg higher. The single predictor -X- was added to each dataset with the herd 
prevalence of -X- varying between datasets. In dataset l, -X- was a herd-level factor so ali 
cows in 50 herds had X=I and ali cows in 50 herds had x=o. In dataset 2, -X- was a cow-level 
factor, present in half of the cows in each herd. 

For each dataset, two or three models were fit. In the first, an ordinary Iinear model (a simple 
two-sample comparison) ignoring herd was fit. In the second, a linear mixed model was used 
to account for the clustering within herds. In the third, herd average values of inilk production 
were computed and analysed with respect to -X- (also a two-sample comparison); this was 
only appropriate for dataset l in which -X- was a herd-level variable. 

Regression coefficients and SEs for analyses of two simulated datasets 

Logistic mixed Herd average 
Logistic model model linear model 

Dataset Parameter Estimate SE Estimate SE Estimate SE 

1: -X- at -X- 3.557 0.200 3.796 1.495 3.779 1.497 
herd level constant 30.021 0.146 31.137 1.058 31.166 1.059 

2: -X- at -X- 4.982 0.199 4.968 0.149 
cow level constant 29.257 0.141 30.646 0.728 

In dataset I, ali the estimates for -X- are a long way from the true value (5) but this is due to 
random variation in the generation ofthe data. Most importantly, ignoring clustering produces 
SEs that are much lower than they should be. Controlling for clustering by computing herd 
average values for milk production and analysing those with respect to presence/absence of 
-X- produces almost exactly the same values as those observed from the linear mixed 
model. 

In dataset 2, both estimates for -X- are close to the true value because estimation of a cow­
level effect is much more precise than a herd-level effect. The linear mixed model gives 
a reduced SE for -X-, because the SE is derived from the within-herd variation which is 
smaIIer than both the between-herd variation and the total variation. For the constant (average 
mi/k production for cows with X=O across herds), the correct SE involves the between-herd 
variation, and when clustering is ignored, the SE is again far too small. 
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Example 20.2 Clustered binary data 
data=simulated 

To the same (fictitious) 100 herds as in Example 20.1, a binary outcome -dis- (disease) 
was added. In both datasets, the effect of -X- corresponded to an OR of 2, or a regression 
coefficient ofln2=0.693 on the logistic scale. The disease level ofnon-exposed cows was set 
at P=0.2, corresponding to a value ofln(0.2/0.8)=-1.4 on logistic scale. Herd effects varied on 
the logistic scale with a standard deviation of l. As before, dataset 1 had -X- as a herd-level 
factor (with -X- present in 50 herds), and dataset 2 had -X- as a cow-Ievel factor (with -X­
present in 50% of the cows in each herd). 

For each dataset, two models were fit: an ordinary logistic regression ignoring herd clustering 
(a 2X2-table analysis), and a logistic mixed model to account for herd clustering. 

Regression coefficients and SEs for analyses of two simulated binary datasets 

Logistic model Logistic mixed model 

Dataset Parameter estimate SE esti mate SE 

1: -X- at herd -X- 0.529 0.042 0.649 0.204 
level constant -1.242 0.033 -1.311 0.146 

2: -X- at cow -X- 0.586 0.042 0.697 0.046 
level constant -1.250 0.032 -1.361 0.111 

In both datasets, the most conspicuous difference between the two analyses is that the simple 
logistic model underestimates the standard errors. The parameter estimates of the mixed 
logistic model are somewhat closer to the true value in this case, but the SEs show that it 
could easily have been the other way around. Note that the SEs for the logistic mixed model 
in dataset 2 are less than in dataset 1 (because a within-herd design is more powerful than a 
between-herd design), but stilllarger than the incorrect SE from the logistic model. This is an 
effect of the variance in a discrete model being estimated from the mean, and not reflecting 
the actual variation in the dataset. 

20.3.3 Variance inflation as a result of clustering 

The effect of clustering on variance estimates can most easily be se en in the situation 
in which a group (eg herd) level factor is being evaluated, but the outcome (eg milk 
production) is measured at the individual (eg cow) level. In this case, it is the variance 
of the herd mean milk production which is important for statistical testing. The 
magnitude of the effect of clustering on this variance (estimate ) depends on both the 
intra-class correlation (leC), and the size of the clusters. The lee is the correlation 
between two observations within a cluster. If we assume that this correlation (P) is the 
same in all herds, then the variance ofa herd mean milk production (var(y)) for a herd 
ofsize mis: 

(Y2 

var(y) = - [I + (m -I)p] 
m Eq20.2 
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where a2 is the variance among individual cow milk production values (and the 
variance is assumed constant within the cluster). Note 1fthere is no clustering (ie p=O), 
then this formula is the usual one for the variance of a group mean). The quantity 
[1 +(m-1)p] is sometimes referred to as the variance inflation factor (Wears, 2002). In 
section 2.10.6 you saw how this quantity can be used to adjust sample size estimates 
for clustering when computing sample sizes. Table 20.1 show s how both the group 
size and the magnitude of the lCC affect how much the variance needs to be inflated to 
adequately account for clustering. lCCs have been computed for herd-level clustering 
of a number of infectious diseases and were found to range from 0.04 (Anaplasma 
marginale in cattle) to 0.42 (bovine viral diarrhea in cattle), but most were less than 
0.2 (Otte, 1997). 

Table 20.1 The effect of group size (m) and the ICC (p) on the variance of group 
means when dealing with clustered data (from Eq 20.2) 

p m VIF Comment 

o any No within-group clustering = no variance inflation 

m m Complete within-group clustering eftectively makes the sample size 

0.1 6 
0.5 2 

0.1 101 

equal to the number of groups 

1.5 A low ICC with a moderate group size can have as much impact as a 
1.5 high ICC wi th a very small group size 

11 Large group sizes, even with a low ICC, result in a very high variance 
i nflation factor 

Finally, a few notes on the use of VlFs. First, they apply to cluster means and therefore 
more generally to between-cluster effects, but not to within-cluster effects. Second, 
because the VlFs depend only on the lCC and the cluster size, they are equally 
applicable to discrete as continuous outcomes. However, the underlying assumption of 
equal variances within each cluster will not hold for discrete data with within-c1uster 
predictors, because the variance varies with the prevalence of the outcome (which will 
change depending on the distribution of within-cluster predictors). 

20.4 INTRODUCTION TO METHODS OF DEALING WITH CLUSTERING 

The next three chapters of the book deal with'statistical models involving clustering. 
Our primary focus is on mixed, or random effects models which, with recent advances 
in computer software and power, have become widely access ib le. These model s are 
reviewed for continuous and discrete data in Chapters 21 and 22, respectively. Many 
more methods exist, and a few ofthese are briefly reviewed in Chapter 23. In addition, 
frailty models for dealing with clustering in survival data are introduced (briefly) in 
section 21.5. We also revisit the repeated measures and spatial data structure s that 
only partly fall within the hierarchical framework, in section 22.6. Among the many 
special approaches for discrete data, we cover estimation using generalised estimation 
equations (GEE) in section 23.3. The present section contains some introductory 
remarks on detection of clustering, and a discussion of simpier, traditional approaches 
to dealing with clustering using fixed effects and stratification. 
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20.4.1 Detection of clustering 

The primary resource for detection of clustering is the researcher's awareness. Whenever 
data are collected from individuals that are managed in a group, we should suspect 
that the data might be clustered. More generally, this is the case whenever animai s 
share common features of potential impact that are not accounted for by explanatory 
variables. Any hierarchical structure of the origin or management ofindividuals might 
introduce clustering, as shown in Fig. 20.1. Also, repeated measures and spatial data 
structure s should always be noticed and examined. 

One might expect some general statistical test for clustering to be 'standard' (in 
common use), but this is not so. We offer two explanations. One is that clustering is 
dealt with differently in discrete and continuous data, and in different statistical models. 
One general approach is to extend a statistical model with an additional parameter (or 
effect) for clustering, estimate that parameter and test whether it differs significantly 
from zero (no clustedng). This approach has been introduced in Chapter 18 where 
addition of an extra variance parameter to the Poisson model, produced a negative 
binomial model. In discrete model s such as logistic and Poisson regression, one might 
also compare the actual variation in the data with the expected variation (from the 
binomial or Poisson distributions) by a goodness-of-fit statistic, which, if significant, 
indicates overdispersion, potentially a result of clustering. A second reason why testing 
for clustering is less common than one might expect, is that even small amounts of 
clustering might have substantial impact on variance estimates, as illustrated in section 
20.3.3. Therefore, one is often inclined to keep a clustering effect in the statistical 
model even if it is not statistically significant, particularly if it shows 'some effect' and 
is strongly suggested by the data structure. 

20.4.2 Fixed effects and stratified models 

As indicated above, methods for dealing with clustering will be covered in more detail 
in the next three chapters. However, we will first discuss one simple and previously 
common approach to dealing with clustering which has been used in previous chapters 
of this book - that is to include the group identifier as a fixed effect in the regression 
model. Let us for the sake of the discussion, refer to the groups as herds and the 
within-groups subjects as cows. In fixed effects models, dummy (indicator) variables 
representing the 'group' (eg herd) are included in the model. The fixed effects analysis 
then effectively estimates a separate parameter for each herd. This has the effect of 
separating the variation between herds from the residual variation and results in more 
appropriate tests of significance for within-herd factors. 

There are se vera l major drawbacks to this approach. The first is that one cannot 
include any herd-level predictors (eg barn type) in the model because they will be 
included in the herd effects. The second drawback is that the model does not contain 
any dependence between cows in the same herd (ie the model contains only the 
within-herd variance as the between-herd variance is removed by the fixed effects), 
and therefore does not properly inflate the variance on means across herds (eg the 
calving to conception interval for heifers treated with a certain vaccine). Another way 



470 INTRODUCTION TO CLUSTERED DATA 

of saying this is that any inferences made are specific to the actual herds, where very 
often one would want conclusions to refer to a more general population of herds. A 
third drawback is that with many herds it requires the fitting of a large number of 
parameters (one for each herd), and the parameter estimates in the model might become 
unstable ifthere are relatively few observations per group. Because we are not usually 
interested in the actual effects of each herd these fixed effects are often considered 
'nuisance' parameters. A fixed effect model based on the data presented in Example 
20.1 is shown in Example 20.3. 

Example 20.3 Fixed effects model for continuous data 
data=simulated 

For dataset 2, from Example 20.1, with -X- as a cow-level factor, a linear model was fit with 
effects of -X- and herds (essentially, a two-way ANOVA). The 99 coefficients for the herds 
2- lOD are not shown below. 

Regression coefficients and SEs for fixed effects of asimulated dataset 

Linear mixed model Fixed effects linear model 

Parameter Estimate SE Estimate SE 

-x-
constant 

4.968 

30.646 

0.149 

0.728 

4.968 

24.324 

0.149 

1.800 

The estimates and SEs for -X- are identical to those from the linear mixed model in Example 
20.1. In the fixed effects model, the constant corresponds to the mean ofherd 1, and therefore 
differs from the overall mean (across all herds) from the linear mixed model. 

The fixed effects approach applies equally to discrete models, and has the same 
drawbacks. As most discrete models use an iterative estimation procedure, the 
consequences of having a large number of 'nuisance' parameters in the model might 
be more serious than for normal distribution mode Is. The fixed effects approach is 
illustrated in Example 20.4 for the previously used binary dataset. 

Another simple approach to dealing with clustered binary data and a dichotomous 
within-herd factor is to carry out a stratified analysis using the Mantel-Haenszel 
procedure described in Chapter 13, with strata defined by the clustering variable. Such 
an analysis, based on the data from Example 20.2, is also shown in Example 20.4. 

Despite the above-menti one d drawbacks of fixed effects modell ing, it might still be a 
useful approach to account for herd-Ievel clustering, particularly when: 

1. there are no herd-Ievel predictors, 
II the number ofherds is reasonably small, and 
iii there is more interest in the specific herds than assuming they represent a 

population. 
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Example 20.4 Stratified analysis and fixed effect model for binary data 
data=simulated 

471 

For dataset 2 from Example 20.2 with -X- as a cow-level factor, the crude OR for -X- was 
eO.586=1.797 from Example 20.2, and Mantel-Haenszel combined OR was eO.698=2.009. 
Furthermore, a logistic model was fit with fixed effects ofherds and -X-o The 99 coefficients 
for the herds 2-100 are not shown be1ow. 

Regression coefficients and SEs for fixed effects and stratified analyses of a 
simulated binary dataset 

Logistic mixed Logistic fixed effects Stratified MH 
model model analysis 

Parameter Estimate SE Estimate SE Estimate SE 

-X- 0.697 0.046 0.704 0.046 0.698 0.046 

constant -1.361 0.111 -2.130 0.632 

Both estimates and SE for -X- from the MH procedure and the fixed effects model are very 
close to the results of the logistic mixed model. 
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SAMPLE PROBLEMS 

l. Open the pig dataset and evaluate the relationship between worm count and 
average daily gain. 
a. First fit a simple linear regression. What is the effect of-worms- on -adg-.? 
b. Next, control for 'farm' by including them in the model as fixed effects. 

i. What happens to the coefficient for worms? Why? 
ii. What happens to the SE of the coefficient for worms? Why? 

c. What is the relationship between -worms- and -adg- at the farm level? (Hint -
collapse the data so you have one record per farm with the farm average worm 
counts and daily gains? 
i. Does this help explain any of the things you observed in l.b.? 

2. Using the same dataset, explore the relationship between atrophic rhinitis (-ar-) and 
pneumonia (pn=lu>O). 
a. First fit a simple logistic regression. What is the effect of -ar- on -pn-? 
b. Next, control for 'farm' by including them in the model as fixed effects. 

i. What happens to the coefficient for -ar-? Why? 
ii. What happens to the SE of the coefficient for -ar- ? Why? 

c. What is the relationship between -ar- and -pn- at the farm level? 
l. Does this help explain any of the things you observed in 2.b.? 
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21 

MIXED MODEL S FOR CONTINUOUS DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Write an equation for a model that contains both fixed and random components. 

2. Compute the variance for each level of a multilevel model. 

3. Determine how highly correlated observations are within a c1uster. 

4. Determine ifpredictors have the same (fixed), or different (random slopes) effects 
across c1usters. 

5. Compute the variance of the outcome (a complex function) in models containing 
random slopes. 

6. Evaluate the statistical significance offixed and random effects in a model. 

7. Evaluate residuals from a multilevel model. 

8. Determine the optimum Box-Cox transformation for the outcome in order to 
normalise the residuals from a model. 

9. Choose among a variety of correlation structure s that might be appropriate for 
repeated measures or spatial data. 
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21.1 INTRODUCTION 

Mixed models (for continuous data) contain parameters or effects oftwo types: 
fixed, or mean effect, such as ordinary regression coefficients in a linear 
regression model (Chapter 14), 
random, or variability around the mean effect, explaining some of the error 
term. 

Mixed model s can be used to take into account that the data have a hierarchical or 
multilevel or nested structure, and are sometimes referred to by these terms. Although 
other methods exist for analysing hierarchically structured data, the use of mixed 
models has become a popular choice during the last decade, due to advances in 
computing power. Mixed model s also apply to many other data structures, but our 
focus is on hierarchical data and we only briefly discuss repeated measures and spatial 
data (section 21.5). Mixed models are also known as variance component models. 
Variance components are the technical/mathematical constructs used to decompose the 
variance (variation, variability) in adataset into (a sum of) several components that can 
each be given a useful interpretation. 

The dataset scc_ 40 (described in more detail in Chapter 27) is used to illustrate the 
methods numerically. It is comprised of data from 40 herds selected from a mu ch larger 
dataset that was collected to study problems related to mastitis and milk yield. We will 
take the (log) somatic cell counts (SCC) as the outcome. The data structure is 3-level 
hierarchical: 14,357 tests within 2,178 cows within 40 herds. The tests were perfonned 
on each cow approximately monthly through out one lactation, and thus constitute 
repeated measures per cow. In this section we include only a single test per cow, the 
first test recorded in the cow's lactation. This gives a 2-level structure of the 2,178 cows 
in 40 herds; herd sizes ranging from 12 to 105. The 2-level dataset is denoted scc40_ 
2level. Obviously, any inferences to real associations of predictors with the outcome 
should not be based on results from such subdatasets. The variables used in the examples 
in this chapter are listed below. For clarity, we use the tenn season for the quarters of the 
year without claiming to infer any seasonal effects from two years of data. 

Table 21.1 Selected variables from the dataset scc_ 40 

Level of 
Variable measurement Description 

herdid 3:herd herd identification 

cowid 2:cow cow identification 

test 1 :test approximate month of lactation for test: 0,1,2, ... ,10 

h_size 3:herd herd size (averaged over study period) 

c_heifer 2:cow cow parity with values 1 (heifer) and O (older cow) 

t_season 1 :test season of test with values 1 (Jan, Feb, Mar), 2, 3 and 4 

t_dim 1 :test days 'in milk' (since calving) on test day 

Unscc 1 :test (natural) log of somatic cell count 
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21.2 LINEAR MIXED MODEL 

Linear mixed models extend the usual linear regression models (Chapter 14) of the 
form: 

Eq 21.1 

We will take as our outcome Y the log somatic cell counts and as our regressors X], ... ,xk 
the continuous and dummy variables necessary to represent the chosen predictors. 
Further, the errors C\'OO"Cn are assumed independent and ~ N(0,a2). This equation (and 
its assumptions) would be meaningfui ifwe considered one test per cow and there was 
no c1ustering in herds (eg we might have data from only one herd). It is worth noting 
that, in this model, the observations Y\oo., Yn are independent and aU have the same 
vanance: 

var(r;) = var(c;) = (J2 

So far, there is no trace ofvariance components. However, in reality we have recordings 
in several (40) herds, and we would like the herds to enter our model as weU, because 
we know that there might be some variation of cell counts across herds. Previously, we 
have inc1uded herds in the model by including a set of (40-1) indicator variables and 
estimating a separate fl for each of them. A mixed model with a random herd effect 
is written: 

Eq 21.2 

Note For the sake of simplicity, a single index notation will be used for aU multilevel 
data. The subscript j denotes the iridividual (lowest level) observation. In the example 
above, uherd(i) refers to the herd containing the i th individual. If there are 40 herds, u 
could have one of 40 values. An alternative notation uses multiple indices such as 
ui + cu wherej refers to the herd and j to the ith individual in the jth herd. 

The explanatory variables and the fl-parameters inEqs 21.1 and 21.2 are unchanged. 
These are usually termed the fixed effects, in contrast to the last two terms which are 
random effects. The only new term in Eq 21.2 is Uherd(i)' a random herd effect for the 
herd ofthe jth cow (eg U7 for cows in herd 7). Thus, in total we have 40 random effects: 
ui' j= l, ... ,40 in the model. Random simply means that it is modelled as a random 
variable, in contrast to a fixed parameter (according to a 'frequentist' or non-Bayesian 
view; see section 23.4 for further discussion and the alternative Bayesian approach). 
Let's defer the question as to why we model herd as a random term for now, and first 
look at the assumptions for u and c: 

Uj ~ N(O, (J'i), Ei ~ N(O, (J'2) 

where ali Ui and Cj are independent. 

Thus, we assume the impact of each herd to be a random fluctuation with mean zero 
(and consequently centred at the mean determined by the fixed effects) and standard 
deviation (Jh' Therefore, the parameter (J~ can be interpreted as the overall random 
variation in log cell counts between herds. Furthermore, we could calculate: 
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var(r;) = var(Uherd(i))+ var(ci) = (7; + (72 Eq2J.3 

In effect, we have decomposed the total variance to a sum of the variance between 
herds and the error variance (or the variance within herds). The a 2s are the variance 
components; Example 21.1 shows how they might be interpreted. 

Example 21.1 Variance components and random effects 
data=scc40 _ 2level 

This dataset contains one observation from each of 2,178 cows from 40 herds. In a 2-level 
random effects model for -Unscc- with no fixed effects (a 'null' or 'empty' model'), the 
variance components were estimated at: 

at=0.148 and 0'2=1.730 

Thus, the total (unexplained) variance was 0.148+ I. 730= 1.878. It is often useful to compute 
the fractions at the different levels; here we have 0.148/1.878=7.9% of the variance between 
herds and 84.3% within herds. We can also give a direct interpretation of a;: 95% ofthe herd 
effects should be within an interval of±1.96I1h= ±0.754. As the overall mean (flo) was 4.747, 
this means that most herd mean -lnscc- values!ie between 3.993 and 5.501. 

Random effects modell ing of herds can be motivated in different ways. Strictly 
speaking it corresponds to effects (herds) in the model being randomly selected from 
a population. Sometimes, in a study, this could be the case, but it might be reasonable 
to assume that the herds are generally representative of the population even if they 
were not randomly selected. In our example, the 40 herds were random ly selected 
from the full set of study herds, which constituted all milk-producing herds in a certain 
geographical area of Denmark. Consequently, these 40 herds were representative of this 
region. With random effects, the focus shifts from the individual herd to the variability 
in the population a;. In a study with only a few herds of particular interest (possibly 
because they were individually selected for the study), one might prefer to model herds 
by fixed effects (ie p-parameters) instead (see sections 20.4.2 and 23.2.1). 

Mixed models can be used to take into account more general hierarchical data structures 
by inserting random effects for alllevels above the bottom level (which is already 
present in the model as the error term 6). For example, a 3-level structure with animals 
in herds in regions would lead to random effects for both herds and regions and we then 
split the variation into three terms: var(lj)= (7; +0';+0'2. Note, however, that modell ing 
the somatic cell count dataset with multiple tests per cow in the lactation in a similar 
model with random effects for both cows and herds causes problems due to the long 
series ofrepeated measures on each cow (section 21.5). In mixed models, the predictors 
might reside at any level of the hierarchy. As a particular example, the split-plot design 
(section 20.2.1) could be analysed by a mixed model with random effects for the 
whole-plots. In epidemiology, we often work with datasets in which predictors explain 
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variation at several levels (section 20.2.2); the mixed model analysis takes this into 
account. Finally, the one exception to the 'random effects for every level' rule is that the 
top level could be modell ed by fixed effects, if (and only if1) there are no predictors at 
that level. As discussed above, this situation often occurs when the top level (eg herd or 
region) is not a random sample of a larger population and does not have a large number 
of elements. Example 21.2 shows some of the possible changes to a linear mixed model 
when fixed effects are included. 

Example 21.2 Mixed model estimates for 2-level somatic cell count data 
data=scc40 _ 2level 

A linear mixed model with herd size, heifer, season and days in milk was fit to the 40-herd, 
2-level scc data (see Table 21.1 for codes). 

Coef SE t P 95% CI 

h_size (*100) 0.408 0.377 1.08 0.286 -0.355 1.172 

c_heifer -0.737 0.055 -13.3 0.000 -0.845 -0.628 

t_season = spring 0.161 0.091 1.78 0.076 -0.017 0.339 

Cseason = summer 0.002 0.086 0.02 0.986 -0.168 0.171 

t_season = fali 0.001 0.092 0.02 0.987 -0.179 0.182 

t_dim (*100) 0.277 0.050 5.56 0.000 0.179 0.375 

constant 4.641 0.197 23.5 0.000 4.245 5.038 

Note that, because of the random herd effects, the constant refers to the log somatic cell count 
in an average herd, not to the value of an average cow across the population of cows. As herds 
differ in size, these means are not necessarily the same. For example, if the highest cell counts 
were obtained in the large st herds (even if the -h_size- estimate hardly indicates this to be the 
case), then the cow average would typically be higher than the herd average. The cow and 
herd averages are analogous to weighted and unweighted average s in multistage sampling 
(section 2.8). The other regression coefficients are interpreted in the usual way. 

In addition, the estimated variance components (also with standard errors (SEs» were: 

a; = 0.149 (0.044) and a2 = 1.557 (0.048) 

In a linear regression model, adding predictors always reduces the unexplained variation. 
Intuitively, one would expect a similar effect in a mixed model at the levels affected by 
added predictors. But, by comparison, in Example 21.1, we note a reduced value for 0'2 and 
a slightly increased value for ai. It is not unusual that adding fixed effects to hierarchical 
models redistributes the variation across the levels and thus increases some of the variance 
components and, sometimes, even the total variation (the sum of ali variance components). 
No simple intuitive explanation can be offered; see Chapter 7 in Snijders and Bosker (1999) 
for details and ways of defining measures of the variance explained by fixed effects. 
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21.2.1 Intra-class correlation coefficient 

The model assumptions allow us to examine the dependence or correlation between 
observations from the same herd. In a linear model, ali observations are independent, 
but in mixed models this is no longer so. The correlation between observations within 
the same group (in our example, herd) is described by the intra-class correlation 
coefficient (lee or p). For a 2-level model (21.2), the lee equals the proportion of 
variance at the upper level; from Example 21.1: 

(52 
p= h 

(5; + (52 

_--'-0..:..:.1--'.,48-=----_ = 0.079 
0.148 + 1.730 Eq 21.4 

Thus, a low lee means that most of the variation is within the groups (ie there is very 
little clustering), while a high lee means that the variation within a group is small 
relative to that between groups. 

Generally in mixed models with homogeneous variances and independent random 
effects, correlations are assumed to be the same between any two observations in a 
group and can be computed by a simple rule. Recall (Eq 20.1) that the correlation is 
the ratio between the covariance of the two observations in question and the product of 
their standard deviations. As ali observations have the same variance, the denominator 
of this ratio is always the total variance, ie the sum of ali variance components. The 
numerator is obtained by noting which random effects are at the same level for the 
two observations in question, and summing the respective variance components. For 
the 2-level model, this rule gives Eq 21.4 for observations in the same group and zero 
correlation for observations in different groups. If region was added as a third level to 
the model, the correlation between cows in the same herd (and hence within a region) 
would be: 

Eq 21.5 

Similarly, the correlation between cows in different herds in the sam e region would 
be: 

2 

P (cows in same region, but different herds) = (5, 

(5; + (5~ + (52 Eq 21.6 

Example 21.3 shows similar computations for a 4-level model. The correlation in 
Eq 21.6 referred to cows in different herds but an intuitively more appealing value 
might be the correlation between herds - more precisely, between herd means. The 
correlation between means of two herds of size m is 

2 

P (herds of size m in same region) = 2 ~, 2 
(5, + (5h + (5 / m Eq21.7 

When m is large, the contribution of (J2/m to the formula is small and might be ignored 
(see Example 4.7 of Snijders and Bosker, 1999 for further discussion). 
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Example 21.3 Intra-class correlations in a 4-level mixed model 
data=reu _ cfs 

Dohoo et al (200 I) used 4-level mixed models to analyse the (log) calving to first service 
intervals for cattle in Reunion Island. Their model had several fixed effects which we denote 
XI'" "Xko so that the model could be written: 

l'í = Po + PIXIi + ... + PkXki + Ucow(i) + vherd(i) + wregion(i) + Ei 

The variance components for the unexplained variation were: 

region : 0-; = 0.001, herd: O'i = 0.015, cow: 0'; = 0.020, lactation : 0'2 = 0.l32 

The fact that the first three variance components were small once again points out that there 
is little similarity (in term s of calving to first service interval) between lactations within a 
cow, between cows within a herd or between herds within a region. In the original study, the 
authors suggested that management of reproductive performance should focus on individual 
Jactations within individuaJ cows, because this is where most of the unexpJained variation 
resided. 

From the estimates we could compute a total variance of 0.168 and the following correlations 
between observations (lactations): 
Jactations ofthe same cow: p = (0.001 + 0.015 + 0.020) / 0.168 = 0.214 
lactations of different 

cows in the same herd: 
lactations of cows in different 

herds in the same region: 

21.2.2 Vector-matrix notation 

p = (0.001 + 0.015) / 0.168 = 0.095 

p = 0.001/ 0.l68 = 0.006 

Notation involving vectors and matrices allows us to write the linear and linear mixed 
models in a compact and c\ear form. The linear regression model (Eq 21.1) can be 
written 

Y=Xf3+ 8 

where Y, f3 and 8 are (column) vectors and X is the so-called design matrix, comprised 
of a column of l s followed by the k columns containing the values of the k predictors 
of the model. (Note Our usage of JS, for the element in the i th row and}th column of 
X contrasts usual matrix notation but is of no serious consequence because we do not 
pursue any computations with matrix notation.) Similarly, linear mixed model s such as 
Eq 21.2 can generally be written as: 

Y=Xf3+ Zu + 8 Eq 21.8 

where u is a vector of all random effects (except for 8) and Z is the design matrix for the 
random part of the model. Our assumptions for this model (up to section 21.5) are that 
all random variables are normally distributed with mean zero, and that all the errors are 
independent, have the same variance and are independent of the random effects. 
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21.3 RANDOM SLOPES 

21.3.1 Additive and non-additive modelling 

Before tuming to the extension of the mixed model (Eq 21.2) with a random slope, 
we consider in more detail one implication of the model assumptions. Let's focus on 
a quantitative explanatory variable, for instance, days in milk. Assume these values 
to be in Xl> and assume the model has a linear term for XI with a positive regression 
coefficient (fi I), and no interaction terms with X2 (parity of the cow>. Then the predicted 
log somatic cell counts from the model for different cows in different parities, as a 
function of XI will be parallel lines, as outlined on the left in Fig. 21.1. Each line 
represents the predicted value for cows of a specific parity. If an interaction term 
between parity and days in milk was added, this would produce non-parallel lines (for 
different parities), as outlined on the right. 

Fig. 21.1 Schematic graphs of additive and non-additive modelling of a 
continuous predictor (days in milk) for a continuous outcome (Insec) 

interaction between 
5 additive model 5 parity and days in milk 

3~ __________________ ~~ 3~ ____________________ ~ 

1 250 1 250 
days in milk (Xl) days in milk (Xl) 

Exactly the same interpretation is valid for cows in different herds: in an additive model 
(Eq 21.2) the regression lines corresponding to different herds are parallel, and the 
random herd effects can be read as the vertical distances between the lines. Thus, Eq 
21.2 assumes the impact on the logarithmic cell counts of a change in days in milk (eg 
lO-day increase) to be the same for all cows in all herds (parallel lines ). 

21.3.2 Random slopes as non-additive herd effects 

An assumption of additive herd effects (parallel lines ) might not be biologically obvious 
because other factors such as breed or herd management factors (inherent in the herd 
effects) could influence the relationship. Adding an interaction between parity and XI 
to the model means that separate slope (jJ-) parameters for the regression of Y on XI are 
estimated. Adding an interaction between herds and XI means that slopes vary randomly 
between herds according to some distribution, in addition to the intercepts varying 
between herds. A model with random slopes for a single fixed effect (XI) is written as: 

Ji = Po + PIXli + Uherd(i) + bherd(irli + Ci Eq 2/.9 

where in addition to the previous assumptions, we assume for the random slopes that 
the bherdS ~ N(O, a} ). The parameter af is interpreted as the variation in slopes between 
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herds. The regression parameter PI is now the overall or average slope for XI. which 
is then subject to random fluctuations between herds. As a rough rule, with probability 
95%, the slope in agiven herd would lie in the interval PI ± 2a\. The choice ofwhether 
the slopes should be modelled as random or fixed effects usually follows the choice for 
the random effects themselves. That is, if herds are modelled as random, any slopes 
varying between herds should also be random. In social science applications, such 
models (with random slopes) are often referred to as hierarchical models, but we will 
call them random slope models. 

We have not yet spec ifi ed the assumptions about the relationship between bherdS and 
the other random variables, and it is undesirable to assume random effects at the same 
level to be independent. In oUf example, the two random effects at the herd level (uherd 

and b herd) correspond to intercept and slope for the regression on Xl at the herd level. 
Recall that slope and intercept are usually strongly negatively correlated (although 
centring the variable might remove this correlation). ConsequentIy, we usually estimate 
a correlation or covariance between the herd intercept and slope. It is useful to display 
the three parameters: a; ,af and the covariance ahI. in a 2X2 matrix as follows: 

and the correlation between the herd intercepts and slopes is computed as (Jh/(ahal ) 

Example 2104 show s the effect of adding a random slope to the SCC data. 

Example 21.4 Random slopes of -t_dim- for somatic cell count data 
data=scc40 _ 2level 

Adding a random slope of -t_dim- to the model of Example 21.2 gave almost the same 
regression coefficient (0.0027) but with a somewhat increased SE (0.0006), and the random 
effect parameters (with SEs) were: 

= and (J = 1.541 0.048 (
a; ahi] (0.210 (0.068) - 0.0011 (0.0011) ) 2 

ahi a
l
2 - 0.00059 (0.00037) 0.0000043 (0.0000026) () 

The value of a l
2 is very small because the regression coefficient for -t_ dim- is already small. It 

suggests that 95% of the slopes for -t_dim-He roughly within 0.0027 ±0.0040. The correlation 
between intercepts and slopes is negative and strong (- 0.00059/'/0.210 * 0.0000043 = -0.62), as 
expected. However, the values of al

2 
and ahi are only moderately larger than their respective 

SEs, so it is not obvious whether the random slopes add much to the model. We will later see 
how to compute a statistical test for the random slopes (it is far from significant). Note finally 
that a model with random slopes for -h_size- would not be meaningfuI; random slopes are 
possible only for variables at a lower level than the random effects themselves in order to 
be interpreted in the way we have done. 
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21.3.3 Caveats of random slopes modelling 

As intuitively appealing as the random slopes might appear, we must raise a few 
waming signs in their use. Usually, in epidemiological studies our main interest is in 
the fixed effects, and it is then wise policy not to build models with too many variance 
parameters. In our experience, it is rarely us ef ul to have more than one or two random 
slopes in a model, and random slopes should usually only be inc1uded for statistically 
significant and c1early interpretable predictors. 

One reason why random slopes should be used cautiously is that the variance of the 
model is no longer constant. To illustrate, we compute the variance components for 
the random slopes model of Eq 21.9: 

var(Y; ) = var(uherd(i)) + var(bhcrd(i)Xli ) + 2 COV(Uherd(i)bhcrd(i)XIi ) + var( Ci) 

Eq 21.10 

This equation involves the values of the explanatory variable XI' In consequence, the 
variance is no longer the same for all observations but a function of XI' Also, there is 
no longer a unique decomposition ofvariance in the model. For moderate magnitudes 
of a l

2 and ahI one might arrive at approximately the same decomposition of variance 
within the most relevant range of XI' It is always recommended to plot the resulting 
variance function from a random slopes model, and if possible, convince yourself 
that it makes biological sense. Fig. 21.2 shows the variance function of the random 
slopes model for the somatic cell count data. The dependence of the total variance on 
XI is rather weak because the major portion of the variance is at the cow/test level; 
nevertheless, the dependence on XI is biologically reasonable. Mastitis in cows is more 
dynamic early in lactation (so we might expect more variance in -t_Inscc- early in 
lactation) and rises again late in lactation. 

Fig. 21.2 Variance function of random slopes model for somatic cell count data 

o 100 
days 

200 
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Random slope models have been introduced for continuous predictors (where 
the relationship between Y and X is a regression). However, interactions between 
categorical variables and random effects are possible as weH, although not interpretable 
as random slopes. As before, an additive model assumes the impact of each categorical 
predictor to be the same in aH herds, and sometimes one might want to aHow it to vary 
between herds. !t's simplest to specifY such model s for a dichotomous predictor: treat 
its O-I representation as if it was a continuous variable. If the variable takes several (j) 
categorical values, one might create (j-l) indicator variables and proceed in the same 
way. Be aware that such models quickly grow to contain a lot of covariance terms, and 
that they could produce very different variances for the different categories. 

Example 21.5 shows the effect of adding a random slope for a dichotomous predictor 
in the sec data. 

Example 21.5 Random sio pes of -c _ heifer- for somatic cell count data 
data=scc40 _ 21evel 

Adding a random slope (ofheifer) to the model from Example 21.2 produces a regression 
coefficient of -0.431(0.202) and the variance parameters (with SEs): 

= and a = 1.546 0.048 (
ol ahl] (0.202 (0.062) - 0.076 (0.042») 2 ( ) 

ahl a? - 0.076 (0.042) 0.051 (0.039) 

The two herd level variance contributions of this model are 0.202 for non-heifers and 
0.202+0.051+2 * ( -O .076 )=O.l O l for heifers. We see how the covariance is part of the variance 
calculation, so it should not be assumed to be zero when dealing with random slopes for 
categorical predictors. The data thus seem to indicate both smaller mean and less variation 
of somatic cell counts for heifers than older cows. This makes biological sens e based on our 
knowledge ofmastitis. 

21.4 STATISTICAL ANALYSIS OF LINEAR MIXED MODEL S 

In mixed models there are several methods of analysis, and the principal estimation 
procedure, which is based on the likelihood function (section 21.4.1), does not have 
closed-form expressions for the estimates but involves running several steps of an 
estimation algorithm. This requires some extra attention by the researcher to the 
statistical software to ensure that it employs the desired estimation procedure and to 
ensure that it is capable of analysing the data at hand. Statistical software differ in the 
range of models that can be analysed, in their ability to handie large data structures 
(many units at any level beyond the lowest one) and in their user interface. Specialised 
hierarchical or multi level software has been developed to deal with huge data 
structures; a good source of information is the website ofthe Multilevel Models Project 
at the Institute of Education, University of London, UK (http://multilevel.ioe.ac.uk). 
Unlike the rest of this text, in which Stata was used for ali analyses, the analyses 
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presented in this chapter and a few analyses in Chapters 22 and 23 have been carried out 
using the SAS system or the MLwiN program. (Without going into details regarding 
different software, just a cautionary note that some package s require the data to be 
sorted according to the hierarchicallevels before analysis; failure to do so might lead 
to meaningless results.) 

In most ways the mechanics of the analysis of linear mixed models is similar to the 
analysis of linear models, because the actual estimation procedure is taken care of by 
the software program, which also outputs many of the same quantities (eg estimates 
and SEs, tests of individual parameters and confidence intervals, as already shown in 
Example 21.2). 

21.4.1 Likelihood-based analysis 

Parameter estimation in normallinear mixed models is based on the likelihood function 
derived from the normal distribution assumptions. Roughly speaking, the likelihood 
function for any set of parameters gives the 'probability' of the observed data under 
that set of parameters (se e section 16.4). Then it is intuitively reasonable to se ek the 
set ofparameters that maximises this probability - the maximum likelihood estimates. 
Because of the complicated form of the likelihood function, closed-form formulae for the 
maximum likelihood estimates generally do not exist. Therefore, parameter estimation 
employs an iterative procedure in which tentative estimates are gradually improved 
from their starting values to final convergence. As with an iterative procedures, caution 
must be exercised so that convergence is achieved. The estimation software should 
take care of this, but any messages that the iterative procedure has not converged are 
true causes for alarm. If the iterative procedure fails to converge, it sometimes helps to 
provide sensible starting values of the variance parameters; however, most commonly 
it signals a misspecified model. 

Two variants of maximum likelihood estimation are available for mixed Iinear models: 
genuine maximum likelihood (ML) (also known as full information maximum 
likelihood or FIML) and restricted maximum likelihood (REML) estimation. From 
a theoretical point of view, REML estimates are unbiased, whereas ML estimates often 
have less variance; the weighting of these properties is not straightforward, but in 
practice the difference is usually negligible compared with the standard errors of the 
estimates. Both variants give 'asymptotically correct' values (ie when the number of 
observations at alllevels of the hierarchy grows very large) and enable a full mixed 
model statistical inference. Therefore the choice between the two is essentially a 
technicality and a matter of taste; in the authors' experience, REML is the more 
common ly used. AIl results shown in this chapter are based on REM L estimation. 

Before proceeding with the statistical inference based on the likelihood function, it 
is worth mentioning an estimation approach based on the ANOVA table. It is simpIer 
to implement and offered by more software packages. By and large, this approach is 
obsolete by today's standard, but in balaneed dataset!l it will give the same estimates 
for the variance components and similar statistical tests for fixed and random 
parameters as the REML analysis. A dataset is balanced when every combination of 
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predictor values ('treatments') occurs the same number of times in the data. While this 
is frequently the case in experimental, factorial designs, it is rarely so in observational 
studies (in particular, ifthe data contain continuous predictors). The idea ofthe method 
is to compute variance components as linear functions of the mean squares of the 
ANOVA table, suitably chosen to make the variance component estimates unbiased. 
Therefore, c1osed-form expressions are available and they require little calculation 
beyond the ANOVA-table. Thus, the method is an add-on to a fixed effects analysis 
rather than a 'real' mixed models analysis, and here in lies its drawback: not ali aspects 
of the statistical inference are managed correctly, eg standard errors are not readily 
available. 

One particular example of an ANOVA-based method is still in quite common use 
- estimation of the lee for a 2-level structure from a one-way ANOVA using the 
formula: 

MSM-MSE 
P - -M-S-M-+-(~m--~l )-M-S-E Eq 21.11 

where m is the (average) number of observations per group. If the groups are ali of 
the sam e size (balanced data), this gives the same value as computing the lee from 
likelihood-based variance components using Eq 2l.4. When the data are unbalanced, 
the !ikelihood-based estimate is preferred. For the 2-level somatic cell count data, the 
above formula yields p=0.076; Eq 2l.4 gives a value of 0.079. 

21.4.2 Inference for fixed part of model 

Although not evident from the material presented in Example 21.2, the reference 
distribution for fixed parameters is not the same as in linear models. Generally, the 
statistical inference is no longer exact but approximate, and the approximations are 
only 'asymptotically exact'. When the number of observations grows very large 
(at ali hierarchical levels), the reference distribution approaches a standard normal 
distribution - thus one option for the reference distribution. However, with small or 
moderate numbers of observations at some of the hierarchicallevels, a standard normal 
distribution might be too liberal as the re ference, because it overestimates the degrees 
offreedom. Some software program s offer a finite sample approximation (Satterthwaite 
approximation) based on a t-distribution with a degree offreedom reflecting the design 
and the parameter under consideration. With a reference distribution in place, tests and 
confidence intervals are computed in the usual manner, eg a 95% confidence interval 
of /31 ±t(0.975,df)SE(f31)· 

Approximate tests computed from the estimate and its SE are usually termed Wald tests 
(see section 6.4.2), and a multiple version exists for tests involving several parameters, 
eg for several indicator variables of a categorical variable. Tests based on comparing 
the attained value of the likelihood function (not the restricted likelihood from REML) 
in models with and without the parameter(s) ofinterest are possible as weil but usually 
offer !ittle advantage over Wald tests, and we leave them to the next section. Example 
2l.6 illustrates the inference of fixed effects in the sec data. 
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Example 21.6 Fixed effects for 2-level somatic cell count data 
data=scc40 _ 21evel 

The parameters of -c_heifer-, -t_dim- and -t_season- ali have finite sample reference 
t-distributions with about 2,150 degrees of freedom, which corresponds roughly to the 
residual degrees of freedom at the cow/test level. The Wald tests indicate both the effects 
of heifer and days in milk are clearly significant. A multiple Wald test for -t_season- gives 
F=2.07 which is non-significant in F(3, 2167) with a P-value of 0.10. 

The finite sample reference distribution for -h_size- is (38.1) or ~t(38) (based on the 
Satterthwaite approximation), refiecting that it is a herd-level predictor, and that the 40 herds 
would leave only 38 degrees of freedom for the herd-level residual. Therefore, the effect 
of -h_size- is estimated with considerably less precision than the other predictors, and not 
surprisingly, it shows up clearly non-significant. The finite sample reference distribution for 
the constant has similar degrees of freedom, refiecting the previously noted fact that it refers 
to a herd mean value. 

21.4.3 Inference for random part of model 

Even though the software usually outputs both variance parameters and their SEs, the 
latter should not be used to construct Wal d-type confidence intervals or tests, because 
the distribution of the estimate can be highly skewed. 

Variance parameters can be tested using likelihood-based (likelihood ratio) tests, 
although we usually retain random effects corresponding to hierarchical level s 
despite their non-significance (unless the variance is estimated to be zero). To 
illustrate, a likelihood ratio test in Eq 21.9 for the hypothesis HO:O'h=O is calculated as 
G2=-2(lnLfull-InLred) where the full and reduced models refer to the model s with and 
without the herd random effects, and L refers to values of the likelihood function. 
Either ML or REML likelihood functions might be used. Generally, the value of G2 

is compared with an approximate X2-distribution with the degree s of freedom equal to 
the reduction in number of parameters between the two models. Snijders and Bosker 
(1999) note that reference X2-distributions are conservative when testing a variance 
parameter being equal to zero, and recommend halving the P-value obtained from 
the X2-distribution to take into account that the alternative hypothesis is one-sided 
(Ha:O'h>O). 

F or random effect parameters, symmetric confidence intervals are usually inappropriate. 
Two alternative methods are suggested in the literature: bootstrapping (Goldstein, 
1995, section 3.5) and profile-likelihood intervals (Longford, 1999). Bootstrapping 
is a general statistical technique primarily aimed at estimating standard errors and 
calculation of confidence intervals in situations too complex for analytical methods to 
be manageable; however, bootstrap confidence intervals require specialised software 
(eg MLwiN). In brief, a profile-likelihood confidence interval (with approximate 95% 
coverage) includes the values (0'*) of the parameter, for which twice the log-likelihood 
with the parameter under consideration fixed at the particular value (ie 0-=0'*), drops 
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less than 3.84 (the 95% percentile inX2(1» from twice the log-likelihood value of the 
model. If your software allows you to fix a variance in the model, a crude search for 
such parameter values is simple to carry out. Example 21.7 illustrates the inference for 
random parameters in the sec data. 

Example 21.7 Herd random effect for 2-level somatic cell count data 
data=scc40 _ 21evel 

The table below gives values for twice the log likelihood function (based on REML) for 
various somatic cell count model s in this chapter and likelihood-ratio test statistics for model 
comparisons (comparing ali models with the one presented in Example 21.2). 

Model 21nL G2 df P-value 

no herd random effect -7346.93 97.01 1 0.000 

model from Example 21.2 

random slope of -t_dim­

random slope of -c_heifer-

-7249.92 

-7243.90 

-7244.13 

6.02 

5.79 

2 

2 

0.049 

0.055 

The table shows strong evidence against the hypothesis of no (random) variation between 
herds, and it also shows that extensions of the model with random slopes for -t_dim- and 
-c_heifer- are both borderline significant. 

A 95% confidence interval for O"r was obtained by the profile-likelihood method and a crude 
search of parameter values around the estimate of 0.149. For example, fixing 0"[ at a value of 
0.25 gave a 21nL value of -7252.90, which is still within 3.84 of the model's value (-7249.92); 
therefore, the value 0.25 belongs to the 95% confidence interval. The resulting interval was 
(0.085,0.269), which is asymmetric and more appropriate than the symmetric interval: 
0.149±1.96*0.044=(0.063,0.235). 

21.4.4 Residuals and diagnostics 

Residuals and diagnostics play asimilar, crucial role for model-checking in mixed 
model s as they do in ordinary linear models. The mechanics and interpretations are 
analogous (see sections 14.8 and 14.9). Moreover, the additional model assumptions for 
the random effects should be evaluated critically together with the other assumptions. 
Mixed models contain additional 'residuals' - one set per random effect in the model. 
These residuals are, in reality, predicted values of the random variables in the model 
(sometimes called best linear unbiased predictors (BLUPs». They inc1ude not only 
the effects for the hierarchical levels but also the random slopes, ie in a model with 
random intercepts and slopes, there are two sets of residuals at the corresponding 
level. Langford and Lewis (1998) recommend inspecting first the residuals at the 
highest hierarchical level, and then gradually work downwards. Thus, before looking 
at individual cows being influential or not fitted well by the model, we examine the 
same questions for the herds. This is because several of the cows being flagged could 
stem from the same herd, so the 'problem' might be with the herd rather than with the 
individual cow. 
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Example 21.8 Residuals and diagnostics for somatic ceU count data 
data=scc40 _2level 

We present here the residuals and diagnostics for the 10 most extreme herd random effects 
(the analysis of cow-level residuals and diagnostics follows similar lines as in Chapter 14). 
The computations were done using the MLwiN software. The normal plot of the standardised 
residuals did not indicate any serious deviations from the normal distribution (not shown). 

herd raw standardised deletion 
number residual residual residual leverage DFITS 

40 -0.831 -2.426 -2.599 0.113 0.405 

7 -0.787 -2.310 -2.454 0.117 0.389 

8 -0.445 -1.299 -1.311 0.114 0.204 

15 -0.403 -1.137 -1.141 0.083 0.151 

39 -0.370 -1.067 -1.069 0.103 0.158 

35 0.516 1.489 1.513 0.103 0.224 

34 0.523 1.696 1.740 0.202 0.365 

32 0.600 1.733 1.780 0.103 0.264 

6 0.666 1.983 2.064 0.130 0.344 

18 0.688 2.546 2.753 0.300 0.712 

Herd 18 stands out somewhat with the highest values of residuals, leverage and DFITS. 
The magnitude of the residuals is hardly anything to worry about, but the influence seems 
appreciable. When analysing the data without this herd, the effect of -h_size- increases by 
more than 50% and approaches significance. Herd 18 turns out to have the smallest value of 
-h_size-, but the largest value of -Unscc-. 

Unfortunate1y, we need to dampen the reader's enthusiasm (faced with the pro spect 
of a multilevel residual analysis); currently, residuals and diagnostics are available 
to a varying degree with different software for mixed models. Also, they are not 
straightforward to compute directly from the parameters of the model. Although 
unsatisfactory from a scientific point of view, this tends to imply, in praetice, that you 
confine yourselfto the model-checking available in the software being used. Example 
21.~ presents herd-level residuals and diagnostics for the SCC data. 

21.4.5 Box-Cox transformation for Iinear mixed models 

In section 14.9.5, we discussed the Box-Cox method of choosing the 'best' power (A) 
transformation of our data to match the assumptions of a linear model. We assumed 
the method to be implemented in available software and did not go into details with 
how the optim al A was calculated. A Box-Cox analysis is however, to oUf knowledge, 
not readily available elsewhere for mixed models, so we give the necessary details to 
enable the analysis for transformation of the outcome. 
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Recall that we confine the analysis to a set of 'nice' A,-values, eg for a right-skewed 
distribution, we might search for the be st value among A,=l, 1/2, 1/3, 1/4, O, -1/4, 
-1/3, -1/2, -l, -2. Among these A,=l corresponds to no transformation, A,=O to natural 
log transformation, and A,=-l to reciprocal transformation. Finding the approximate 
optimal A-value involves the following steps: 

l. compute the mean of the ln Y -values and denote this value by ln Y ; also denote 
the total number of observations as n, 

2. for each candidate A,-value, compute for each observation i the transformed 
value 

Y;(-1) = {(Y;-1 -1)/ A for Ic:;t O 

ln y; for Ic = O 

and analyse these }'(A)-values by the same mixed model as the untransformed 
values, and record the model's attai ned log-likelihood value, InUA), 

3 compute the value of the profile log-likelihood function as 

pl(A)=lnL(-1)+n(A-I)lnY Eq21.12 

and plot the function to identify approximately the A, where pl(A,) is maximal. This 
is the optimal power transformation of the outcome. An approximate 95% 
confidence interval for A, consists ofthose A,-values with a value ofpl(A,) within 
3.84 of the optimal pl-value. 

We demonstrate the procedure in Example 21.9 using the SCC data. 

Recall (from Chapter 14) that the optimal Box-Cox value does not guarantee 'well 
-behaved' residuals (at all hierarchical levels), and that transformation could shift 
problem s from one model assumption to another (eg from skewed residuals to 
heteroscedasticity). Therefore, even after transformation, all the residuals should be 
examined. lfwell-behaved residuals at some hierarchicallevel cannot be achieved by 
transformation, one might tum instead to model s with non-normal random effects; such 
models are currently only available within the Bayesian framework for hierarchical 
model s (section 23.4). 

21.5 REPEATED MEASURES AND SPATIAL DATA 

We have already touched upon why repeated measures and spatial data structure s are 
not completely satisfactorily modelled by the hierarchical mixed model s presented so 
far (section 20.2). For example, considering repeated measures on animals over time as 
a 2-level hierarchical structure (tests within animals) does not take time ordering ofthe 
tests into account in the random part of the model. Where animals within a herd can be 
interchanged without altering the meaning of the data, observations over time cannot. 
Generally, one would expect two adjacent measures to be more highly correlated than 
two very distant ones. The hierarchical mixed model s we have discussed so far assume 
correlations are the same between any pairs ofmeasures (section 21.2.1). This pattem 
or structure of the correlations is call ed compound symmetry or exchangeable, and 
our first step in extending the mixed model class towards more realistic repeated 
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Example 21.9 Box-Cox analysis for somatic cell count data 
data=scc40 _ 2level 

The data contain n=2,178 observations and the mean (natural) logaríthmic cell count is 
4.7569865. The following table and graph give a Box-Cox analysis: 

A. 1 0.5 0.33 0.25 O 

InL for Wol) -17224.41 -9807.93 -7551.10 -6543.36 -3624.96 

pl(A) from (21.11) -17224.41 -14988.29 -14492.78 -14313.90 -13985.68 

A. -0.10 -0.25 -0.33 -0.5 -1 

InL fory(A) -2553.74 -1043.18 -281.48 1246.43 5188.00 

pl(A) from (21.11) -13950.53 -13994.08 -14061.23 -14294.64 -15533.43 

Fig. 21.3 Profile-likelihood function for Box-Cox analysis of SCC data 
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Table and figure indicate the optimal value of A to be dose to, but slightly less than, zero, but a 
95% CI for A does not indude zero; the large number oflowest-level observations causes the 
CI to be very narrow. With the optimal transforrnation so dose to the log-transforrnation, the 
Box-Cox analysis supports our choice of analysing the log somatic cell counts. 

measures and spatial model s is to consider altemative, more appropriate correlation 
structures. 

21.5.1 Correlation structure 

To conveniently display the dependence between measurements (YIo ... 'ym) on the same 
animai (in the repeated measures context), or more generally among a set of correlated 
measurements, we introduce the covariance matrix cov(Y) and the correlation matrix 
corr(Y) - (mxm)-matrices holding ali the covariances, or correlations, between pairs of 
measurements: 
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var(l; ) 

cov(l;, ~) var(r2 ) 

COV(r) = cov(l;, r j ) COV(r2 , r;) var(r; ) 

cov(l;,rm ) COV(r2 ,rJ COV(r;,rJ var(rJ 

corr(l;,rJ 

corr(r) = corr(l;, r;) corr( 1; , r; ) 

corr(l;,rJ corr(V2 , rm ) corr(r;,rJ 

The matrices are symmetric, so for clarity, the values above the diagonal have been 
left blank. 

Table 21.2 lists some of the more common correlation structure s for repeated measures 
in the case ofm=4 repeated measures on the same animaI. For simplicity, we show only 
the correlation matrix in ali cases except the last one but, ifvariances are assumed to be 
equal «(]2), the covariances are simply the correlations multiplied by (]2. 

The first two correlation structure s are well known and included mainly to familiarise 
the read er with the display. Recall that the correlation p in the compound symmetry 
structure can be expressed in terms of the variance components (J~ and (]2 as 
p=(Ji I( (Ji+(]2) (Eq 21.4). 

The simplest structure showing the desired decay in correlation with increasing 
distance between observation is ar(l). However, in practice the decline of correlations 
is often too strong (fast), and the two slightly more complicated correlation structure s 
with additional parameters (arma(l,l) and Toeplitz) are often useful as weil. The 
un structure d correlation structure s are included here mainly for completeness because, 
with long series of repeated measures, the number of parameters involved grows so 
large that they become difficult to estimate and interpret. 

In our discussion so far, we have paid little attention to the actual recording or 
measurement times of the measurements. First, you need to ensure that these are 
properly entered into the model. For example, it makes a difference with most 
correlation structures whether recordings were taken at times (1,2,3,4), at times 
(3,4,5,6) or at times (1,2,5,6). Second, the autoregressive and Toeplitz structure s 
are most meaningfuI if the measures are equidistantly spaced in time (eg monthly 
recordings). This is by far the simplest situation for building repeated measures models 
(something worth considering when designing a study involving repeated measures!). 
The data could have non-equidistant recordings either within each animai or between 
animals so that measures are taken at different times and with different intervals for 
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different animals. Such data structure s raise the need to incorporate into the matrices 
the actual recording times. 

Table 21.2 Repeated measures correlation structures for four repeated measures 
per animai 

Name Correlation structure Interpretation 

uncorrelated or 

cnrr(Y) ~ [i ,] 
uncorrelated (for normal 

independent 1 data: independent) 
O 1 observations 
O O 

compound symmetry, 

co~Y)~[;, 
J 

hierarchical, mixed model 
or exchangeable (same correlation between 

ali pairs of observations) 
p 

p 3 p 2 
P 

ar(1), or first order 

corr(Y)~ [i, J 
repeated measures 

autoregressive 1 or time-series model 
p 1 with power decay of 

p 3 p 2 
P correlations 

arma( 1 ,1), or first 

con{y)~[~ ,] 
extended repeated 

order autoregressive 1 measures or time se ries 
moving average r 1 model with power decay 

yp2 rp r 

Toeplitz, or stationary 

corr(Y) ~ [~' J 
repeated measures with 
unconstrained correlations 

P2 Pl at different spacings 
P 3 P 2 Pl 

unstructured 

=(y)~[~" l: 
repeated measures wi th 
entirely unconstrained 

Pl3 P 23 correlations 
P l4 P 24 P 34 

unstructured wi th [6' J 
repeated measures, 

inhomogeneous cov(Y)= 0":2 
0"2 unconstrained variances 

2 
variances, or non- 0"23 

0"2 and correlations 
stationary 

0"13 3 

0"14 0"24 0"34 
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For non-equidistant repeated measures or spatial data, denoted by du' the distance 
between observations i and i'. With repeated measures, the dii' would be the difference 
between the recording times of observation i and r, and for spatial data the distances 
would be actual physical distances (eg between herds), Table 213 lists some examples 
of correlation structure s defined from such distances. The models are isotropic because 
only the distances, not the actuallocations i and r are used, 

Table 21.3 Spatial (or non-equidistant repeated measures) correlation structures 

Name 

power, or 
exponential 

power, or 
exponential, 
with nugget 
effect 

Gaussian 

linear 

Correlation structure 

corr(Y;,Y;,) = pdii' 

= e·drr/B 

corr(~,~, ) 

_d 2, 

corr(l'í, l'í) = e "/8) 

(Y y) {l -peL if pdu' < 1 
corr i' i' = O li if pdu' ~ 1 

Interpretation 

power decay with 
distance; note the 
relationship: p=e·1/8) 

power decay with 
distance, close 
observations not fully 
correlated 

exponential-quadratic 
decay with distance 

linear decay with distance 

Note The power structure is the extension ofar(1) to non-equidistant data. 

21.5.2 Mixed models with complex cor relation structures 

Reca11 that, in the linear mixed model (Eq 21.8): 
Y=XfJ+ Zu + é' 

we assumed the components of é' to be independent, and modelled the hierarchical 
structure using the Zu part of the model. Now we will a110w dependence corresponding 
to a particular correlation structure within some sets of é'-values. In the repeated 
measures context, each set contains alI the repeated measures for an animaI, and in the 
spatial context, each set contains a particular group of observations for which we want 
to model a spatial correlation (eg herds within a certain region), 

The statistical analysis of such 'extended' mixed models evolves along the same 
lines as previously discussed, only with additional variance parameters to be 
estimated. Therefore parsimonious model s for cov(Y) are recommended, to avoid 
overspecification of the model and unexpected impacts of the covariance structure on 
the other parameters. The choice of correlation structure can be formalised by using 
likelihood ratio statistics to test nested correlation-structure models against each other. 
For example, the compound symmetry and ar(1) model s can be tested against both 
arma( 1,1) or Toeplitz models, but they cannot be tested against each other. Models with 
the same number of parameters can be compared in model s fit by their log-likelihood 
values (the higher log-likelihood model is generally preferred). Model selection criteria 
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such as the AIC or BIC (Chapter 15) could also prove useful here. Example 21.10 
examines different correlation structure s for the full SCC data. 

Example 21.10 Repeated measures analysis for somatic cell count data 
data=scc _ 40 

Several correlation structures were examined for the full 40-herd somatic cell count data, 
using the same fixed effects as in the previous examples. The model is now a 3-level model 
with tests within cows within herds. 

Correlation Estimated p -21n likelihood 

Modellcorrelation structure 

compound symmetry 

ar(1 ) 

non-equidistant power 

arma(1,1 ) 

Toeplitz 

parameters 

1 

2 

10 

1 month 2 months 

0.541 0.541 39004.73 

0.661 0.437 38563.57 

0.673 0.453 38574.30 

0.657 0.578 37802.21 

0.657 0.578 37795.72 

The table illustrates how the different structure s adapt to the data. In term s of statistical 
significance, the Toeplitz model is no better than the arma( l, l) model, which in tum is clearly 
preferable to the structures with only one parameter. The estimated correlations for tests one 
and two time steps (for the non-equidistant structure considered equivalent to 30 days) apart 
shows the deficiency of the one-parameter models. The compound symmetry structure does 
not allow for a smaller correlation for two time steps, and the autoregressive-type structures 
produce too rapidly decaying correlations. 

For comparison with the results ofthe 2-level data, we also present a table of estimates for the 
fixed effects and the two variance components from the arma(l, 1) model: 

Coef SE t P 

h_size (*100) 0.627 0.306 2.05 0.047 

c_heifer -0.777 0.040 -19.22 0.000 

t_season:;:: spring 0.034 0.022 1.54 0.125 

t_season:;:: summer 0.039 0.027 1.57 0.117 

t_season:;:: fali -0.007 0.023 -0.32 0.752 

t_dim (* 100) 0.328 0.014 24.08 0.000 

constant 4.516 0.154 29.25 0.000 

In addition, the estimated corre1ation parameters (also with SEs) were: 
y = 0.657 (0.008) and p = 0.880 (0.006) 

and the variance components were: 

= 0.104 (0.028) and (I2 = 1.378 (0.027) 

95% CI 

0.009 1.245 

-0.857 -0.698 

-0.009 0.078 

-0.010 0.087 

-0.052 0.037 

0.301 0.354 

4.205 4.827 
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We conclude with some additional remarks about the consequences of using a 
hierarchical mixed model for repeated measures data. First, the general mixed model 
approach allows us to test the adequacy of compound symmetry relative to some of 
the 'genuine' repeated measures structures. In our example, the compound symmetry 
structure fitted the worst of all structure s examined. However, with the large dataset and 
an average of 6.8 observations per cow, we were not surprised to find clear evidence 
against the equal correlations assumption. For a smaller series of repeated measures, 
for example, m=2 to 4, there might be little evidence of decreasing correlation with 
distance in time, and therefore a compound symmetry structure might work quite 
weIl. Note also that the correlation structure applies to the unexplained variation after 
adjusting for fixed effects, and ifthere are strong time-level predictors, the errors might 
show little autocorrelation. It is also interesting that the compound symmetry analysis 
will tend to give a too liberal inference for predictors at the time level (including 
interactions with time). The theory of repeated measures models in factorial designs 
also tells us that for predictors at the animaI level, the choice of correlation structure 
is less critical. 
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SAMPLE PROBLEMS 

l. Using the reu _cc data, explore multi level models for the log calving to conception 
intervals. 
a. As a start, draw a diagram of the hierarchical structure. Include in the diagram 

the predictors -heifer- and -ai- by indicating at which level they reside. 
b. Build a 2-level model with fixed effects of the two predictors as well as cow 

random effects. 
i. Which fixed effects are significantly different from zero? 

c. Tum your attention to the variance parameters. 
i. Compute the proportion ofvariance residing at the two levels (lactation and 

cow) of the model. 
ii. Give aIso the intra-class correlation coefficient (lee) for two observations 

on the same cow. 
iii. If a cow has a long calving-to-conception interval in one lactation, is it 

likely that she will have a long one in the subsequent lactation? 
d. Add herd random effects to the model. 

i. How do the estimates for -heifer- and -ai- change? 
ii. Does the residual variance change much? 
iii. Recompute the lee for lactations within a cow. 
iv. Compute also the lee oftwo observations on different cows in the same herd 

e. Test the significance of each of the two random effects using likelihood ratio 
test statistics. 

2. Again using the reu_cc data, examine the validity of model assumptions. 
a. Refit the 3-level model from Problem l with -heifer- and -ai- as fixed effects. 

l. Examine graphically the normality ofresiduals at all three levels (lactation, 
cow, herd), preferably (depending on your software) using the standardised 
residuals. 

ii. Plot (standardised) residuals against predicted values, preferably (depending 
on your software) at all three levels, to detect any signs of 
heteroscedasticity. 

b. Repeat the steps from a. with -cc- as the outcome instead of -lncc-, and comment 
on any differences noted. 

c. Tum next your attention to transformation of the outcome (-cc-). 
i. Carry out a Box-Cox analysis to determine approximately the optimal 

power transformation. 
ii. Analyse the data us ing the selected optimal transformation, and compare 

the results and residuals with the previous analysis of -lncc-. 
d. Add the log calving to first service interval (-lncfs-) to the model as a fixed 

effect, us ing again -lncc- as the outcome. 
i. Notice the changes in model estimates, and compute a statistical test for the 

effect of -lncfs-. 
ii. Examine the residuals from the model, in particular at the lowest level, and 

note any problems with the model's assumptions. 
iii. Plot -lncc- against -lncfs-, and try to understand the model's behaviour 

when add ing -lncfs- as a predictor. 
3. Explore random slopes mode l s for the pig data. 
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a. Build a 2-level model for the average daily gain (-adg-) with random farm 
effects and fixed effects of the predictors -sex-, -pn-, -worms- and -ar2-. 
i. Examine which fixed effects are necessary in the model (explore also 

interaction terms). 
ii. Assess the significance of the farm random effects, and compute the ICC 

for pigs in the same farm. 
b. Add farm random slopes for -pn- (and include also the covariance term). 

i. Do the random slopes seem to improve the model? - compute a likelihood 
ratio test to quantify your impression of the estimates. 

c. Add farm random slopes for -ar2- (again including the covariance term). 
i. Do the random slopes se em to improve the model? - compute a likelihood 

ratio test to quantify your impression of the estimates. 
ii. Compute the total variance of observations with ar2=0 and ar2= I. 
iii. Confirm by another method (eg simple descriptive statistics) that the data 

show different variations at the two levels of ar2. 
iv. What do you conclude about the effect of ar2 on the mean value and 

variation of average daily weight gains? 
4. Explore repeated measures models for milk yields in the somatic cell count data. 

a. Draw a diagram of the hierarchical structure of the scc _ 40 dataset, including 
the predictors -t_ dim-, -t_ season-, -t_lnscc-, -c _ heifer-, and -h _ size-o 

b. Build an in iti al hierarchical mixed model for -ecm- with random effects of 
herds and cows (and thus a compound symmetry correlation structure), as weil 
as fix ed effects ofthe above predictors. 
i. Examine whether the relationship between -ecm- and the predictors 

-t_lnscc- and -t_ dim- can be modelled as linearto a reasonable approximation 
(our main focus in this exercise is not on the fixed effects). I f not, extend the 
fixed part of the model suitably. 

ii. Examine whether the fixed part of the model should contain interaction 
terms. 

iii. Compute the + for two observations on the same cow, and explain why 
the correlation structure of the model might be inadequate for these data. 

C. Fit a model with an autoregressive correlation structure for the repeated 
measures on the same cow. 
l. Compare the fit of this model with the previous (compound symmetry) 

model; note that you cannot test the two models against each other but you 
might use the value of the log-likelihood or the AIC. 

ii. Compute the estimated correlation between two tests one month apart. 
Repeat for tests two months apart. 

d. Fit other correlation structure s to the repeated measures on the sam e cow 
(depending on the capabilities ofyour software). 
i. Compare the models using likelihood ratio tests (for nested model s) or the 

log-likelihood and Arc values (for non-nested models). 
ii. Compare the estimated correlations for tests one and two months apart. 
iii. Which correlation structure seems to be preferable (balancing the data fit 

and model parsimony)? 
iv. What impact did the choice of correlation structure have on the fixed 

effects? 
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22 

MIXED MODEL S FOR DISCRETE DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 

1. Understand the differences between linear mixed models (continuous data) and 
generalised linear mixed model s (GLMMs) (discrete and continuous data) and the 
role of the link function in the latter. 

2. Fit random effects logistic and Poisson models. 

3. Use a latent variable approach to compute the intra-cluster correlations for 
binary outcomes. 

4. Use either quasi-likelihood or maximum likelihood methods for fitting GLMMs. 

5. Assess the statistical significance of both fixed and random effects in GLMMs. 

6. Evaluate residuals (except at the lowest level) to assess the adequacy of a GLMM 
that you have fit. 

7. Compute a dispersion parameter to adjust for over- or underdispersion in 
GLMMs that you have fit using quasi-likelihood methods. 
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22.1 INTRODUCTION 

In both theory and practice, it has proven more difficult than one might have anticipated 
to generalise the mixed model s approach from continuous to discrete data. One effect 
of these difficulties is the existence of a wide variety of generalisations of mixed models 
to discrete data, some ofthem only for a particular type of discrete data (usually binary) 
and some of them within wider frameworks. In this chapter, we review the model class 
most ana10gous to linear mixed models: the generalised linear mixed models. In order 
to fully appreciate this analogy, the reader is encouraged to review mixed models first 
(Chapter 21). 

Our main focus here will be on binary data (logistic regression with random effects, 
section 22.2) but the random effects extension applies to a flexible class of discrete 
models which include multinomial and Poisson regressions. A Poisson regression with 
random effects is presented in section 22.3. As in Chapter 21, our mixed model s will 
reflect a hierarchical structure but it is also possible to build models for other data 
structures. However, (and this goes generally for mixed model s for discrete data) the 
statistical analysis is more difficult than for continuous data, reguires more care and 
choices by the researcher (of which the choice of software is an important one). This 
field is still growing and advancing but we attempt to give the applied researcher a 
snapshot of its present state. 

We will use two binary data examples to illustrate the methods: one on pneumonia in 
pigs and another on first service conception risks in cows. The first dataset, pig_ adg, 
stems from a 2-level hierarchy (pigs within farms) and we will consider only a single 
pig-Ievel, dichotomous predictor. These data will also be used in Chapter 23 to illustrate 
some of the altemative methods to deal with clustering for discrete data. The sec ond 
dataset, reu_cfs, contains a 3-level hierarchy (lactations within cows within herds) and 
two lactation-Ievel predictors. 

22.2 LOGISTIC REGRESSION WITH RANDOM EFFECTS 

We consider again the examp1e of animaI disease observed in several herds (eg the pig­
pneumonia data). The logistic regression analogue of Eg 21.2 for the probability Pi of 
the ith animaI being diseased is: 

10git(Pi) = 130 + f3l X li + ... + f3k X ki + uherd(i) Eq 22.1 

where uherd(i) is the random effect of the herd (which contains animaI i), assumed to be 
uherd(i) ~ N(O, (}'~), the X;s are the predictor values for the ith animaI, and the relationship 
between the probability Pi and the binary outcome yt is unchanged: p(yt=I)=Pi' The 
only change from the ordinary logistic regression model is the herd random effects 
term. Example 22.1 shows that adding random effects can have an appreciable impact 
on the model. 
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Example 22.1 Random effects logistic model for pig-pneumonia data 
data=pig_adg 
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Data on both atrophic rhinitis and enzootic pneumonia were recorded on 341 pigs at slaughter. 
CausaIly, it was assumed that atrophic rhinitis might increase the risk of pneumonia, through 
destruction of the pig's air-filtering mechanism (nasal tlltbinates). The atrophic rhinitis 
score was converted to a dichotomous variable (..ar.,.gl-) indicating the presence/absence 
of an atrophic rhinitis score greater than L Similarly, the Iung score was converted to a 
dichotomous variable (-pn-) representing the presence/absence of pneumonia. 

The unconditional association between -pn- and -ar.,.gl- was: 

ar_91 

pn 

Total 

1 

O 

1 O Total 

109 

66 

175 

17 

89 

166 

186 

155 

341 

Odds ratio = 1.909 
95% CI :: (1.212,3.010) 

Chi-sq = 8.687 
P-value = 0.003 

These statistics indicate a moderate but c1early significant association between -pn- and 
-ar_gI-. However, we have ignored the fact that the pigs came from IS farms, and the 
prevalence of -pn- actually varied from 17% to 95% across farms. Consequently, it appears 
that we should be concemed about farm effects. The logistic regression with random effects 
(Eq 22.1) gave the estimates: 

constant 

Coef 

0.437 

0.020 

SE 

0.258 

0.301 

z 
1.69 

0.07 

p 

0.091 

0.948 

95% CI 

-0.069 0.943 

-0.571 0.610 

In addition, the estimated variance ofherd random effects (with SE) was: 
0'~=0.879 (0.434) 

We shall later see how to compute the significance of the random effect (it is highly 
significant). The regression coefficient for -ar.,.g 1- should be compared with the log of the 
simple odds ratio (ln1.909=0.647). Accounting for the herd effects reduces the association 
considerably, and it is no longer significant. In other words, the farms had both a clustering 
and confounding effect. 

22.2.1 Analogies and differences to a Iinear mixed model 

We have seen that a mixed logistic regression model adds the random effects to the 
fixed effects, both on a logistic scale. So, bearing the logistic scale in mind, we build 
the model s in a similar way to linear mixed models and they might include multiple 
random effects and possibly random slopes as weIL The statistical analysis also has 
strong similarities in the way confidence intervals and tests are computed. 
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The 2-level model (Eq 22.1) has a correlation structure similar to its linear mixed 
model analogue, with equal correlations between animals within the same herd and 
independence between herds. However, we have to be carefui here: the correlations 
within a herd are the same only for animals with the same fixed effects. In our example, 
aU -ar _g 1- positive animals within a herd are equaUy correlated, and the same for aU 
-ar_gl- negative animals. This difference between animals with different predictor 
values may seem strange and is usuaUy smaU in practice (unless the predictor has a 
very strong effect). It is one of the many consequences of modelling the fixed and 
random effects on the logit scale. Nevertheless, the model is perfectly valid as a method 
to account for correlation (or c\ustering) between animals in the same herd. 

The interpretation of fixed effects in a linear mixed model was essentially unaffected 
by the added random effects. Again, the modeUing on the logit scale complicates the 
interpretation of models such as Eq 22.1. In a strict sense, the model has a 2-step 
interpretation which is perhaps be st understood by imagining how data would be 
generated by the model. For an animai i in the jth herd, we would first select the herd 
random effect (uj) according to its N(O, a;) distribution and compute Pi from the fixed 
effects and the selected urvalue. We would then select the outcome y; as positive with 
probability Pi or negative with probability l-Pi' A common shorthand for this 2-step 
interpretation is that Eq 22.1 is 'conditional on' the random effects. This interpretation 
of the model means that when exponentiating a regression coefficient (for -ar _g 1- in 
the example) to obtain the odds-ratio (ie exp(0.437)=1.55), the odds-ratio refers to 
comparing pigs with and without atrophic rhinitis in a particular herd (corresponding 
to a selected herd random effect, no matter the actual urvalue). Frequently this is 
called a subject-specific (in our example, a herd-specific) estimate, as opposed to a 
population-averaged estimate, which would refer to the odds-ratio for comparing 
pigs with and without atrophic rhinitis from any herd in the population of herds. 
Therefore, ifwe think of the odds ratio as the answer to questions such as 'how much 
is the risk increased?' (in our example, the risk of pneumonia for an 'ar' -pig versus 
a healthy pig), the subject-specific estimate answers the farmer's question and the 
population-averaged estimate answers the slaughterhouse's question (where pigs are 
submitted from many different herds). That these two questions have different answers 
chaUenges our intuition, but is an incontestable fact. However, the answers are usually 
c\osely related, though (see section 23.3 for further discussion of subject-specific and 
population-averaged estimates). 

22.2.2 Interpretation of variance parameter( s) 

In Eq 22.1, the herd random effect variance a; has no direct interpretation in terms of 
the probabilities of disease. The equation shows that it refers to the variation between 
herds of the disease probabilities on a logit scale. We can still interpret ai qualitatively: 
a value of zero means no variation between herds (and therefore no c\ustering) and a 
large positive va1ue means a high degree of c\ustering. However, the (correct) statement 
that the logits of probabilities vary within ±1.96lJh across herds with a probability of 
95%, is not very intuitive. 
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In linear mixed models, the variance parameters could be interpreted as variance 
components, but in models of discrete data, we have problems with this interpretation. 
If we compare Eq 22.1 with the linear mixed model (Eq 21.2), the error term or Ci is 
missing in the logistic equation. This is because the distribution assumption is on the 
ori gin al scale - in our example lj - bin(1,p;), so that the errors in the model stem from 
the binomial (binary) distribution instead of a normal distribution. Recall that in this 
binary distribution the variance equals p;(1-p;). Now the total variance in the data, 
var( lj), is no longer just the sum of the error variance and the random effects variance, 
as they refer to different scales. Even worse, the total variance is not constant because 
the binomial variance vari es withp, so a single decomposition of the variance does not 
exist. Several recent papers have reviewed computation of variance components and 
intra-class correlation coefficients (JCCs, sometimes also denoted variance partition 
coefficients) in mixed logistic regression, and a number of different methods have been 
suggested (Goldstein et al, 2002a; Browne et al, 2003; Rodriguez and Elo, 2003; Vigre 
et al, 2003). We confine ourselves to explaining a simple approximation method based 
on latent variables (latent variables were introduced in Chapter 17). 

The simplest approach to getting both the individual and herd variances on the same 
(logistic) scale is to associate with every animai i a latent continuous measure, Z;, of 
the 'degree' of sickness. The observed binary outcome lj is then obtained simply as 
whether the degree of sickness exceeds a certain threshold. In formulae, if we denote 
the threshold by!, then lj=l if Zi>!' and Y,.==O when Zi"St. Sometimes this may seem a 
plausible theoretical construct, and some times less so. Mathematically speaking, any 
model for Zi is then translated into a model for the binary outcomes. In particular, Eq 
22.1 is obtained exactly when t=0 and 

Zi = /Jo + /JIXli + ... + /JkXki + uherd(i) + Ci Eq 22.2 

where the fixed effects and the herd effects are exactly as before, and where the error 
term s Ci are assumed to follow a so-call ed logistic distribution with mean zero and 
variance n2/3. (The logistic distribution is similar in shape to the normal distribution, 
and for most practical purposes, it is equivalent to assume either ofthese distributions.) 
Eq 22.2 is a linear mixed model for Zi! Therefore, computation ofvariance components 
and lCCs for Zi-variables follows the rules ofChapter 21 (se e Example 22.2): 

var(Zi) = var(Uherd(i)) + var(c;) = <7; + n2/3 

. To summarise, the latent variable approach allows interpretation in terms of variance 
components and lCCs by fixing the error variance at n2/3 (Example 22.2). We should 
keep in mind that the strict interpretation is for the latent variables, and the values are 
only approximate for the binary outcomes. In particular, as noted, the variances and 
correlations are not constant for the binary outcomes but depend on the predictors; this 
dependence has disappeared for the latent variables. Experien<;e with different methods 
for computing lCCs indicates that the latent variable lCC tends to be somewhat larger 
than the true lCC for the binary outcome (see the above-cited papers). 
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Example 22.2 Variance components and ICC for the pig-pneumonia data 
data=pig_adg 

Based on the model presented in Example 22.1, we calculate a total vanatlOn of 
0.879+3.290=4.167, and an ICC (and proportion ofvariance at the herd level) of 

p = 0.879/4.167 = 0.21. 

Intra-herd correlations ranging from 0.04 to 0.42 (with most values <0.2) have been observed 
for a number of infectious diseases of animals (Otte and Gumm, 1997). 

22.3 POISSON REGRESSION WITH RANDOM EFFECTS 

A Poisson regression model with exposure n and herd random effect u can be written: 
ln(A;) = Po + PIX Ii + ... + fJkXk; + uherd(i)' 

Eq 22.3 

The random effect is added to the fixed effects in a similar way as for logistic regression 
(see Example 22.3). 

22.4 GENERALISED LINEAR MIXED MODEL 

The examples of mixed models in the first two sections extend to a larger class 
of model s called generalised linear mixed mode\s (GLMMs). These models are 
constructed similarly to those already shown by adding random effects to generalised 
linear models. We, therefore, set out to present the class of generalised linear models. 

22.4.1 Generalised linear model 

Generalised linear model s (GLMs) were developed in the 1970s to provide a common 
framework for a wide range of statistical models, including both continuous and 
discrete distributions, with similar model-building and analysis to linear models based 
on the normal distribution (McCullagh and Nelder, 1989). The comerstone ofGLMs is 
the link function: the idea that linear modelling ofpredictors should be allowed to take 
place on a different scale from the scale of the observations. The link function makes 
that transition between the observation's mean and the linear modell ing. This idea may 
have been triggered by realising the problem s of linear modell ing of the observation 's 
mean for bounded distributions. For example, modelling disease probabilities as a 
linear function of predictors mayeasily lead to predicted values outside the allowed 
range of probabilities (ie between O and 1). In logistic regression, we model instead the 
logit(p)=ln[p/(l-p)] as a linear function ofpredictors. In GLM terminology, the logit 
function is the link function. The logit function, which maps the unit interval (O, l) onto 
the entire real axis is shown on the left of Fig 22.1. Intuitively, this is like 'stretching' 
the interval. The graph on the right shows its inverse function, logir1(s)=es/(l+eS

). 
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Example 22.3 Random effects Poisson model 
data=tb Jeal 
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In Examples 18.1 and 18.3, Poisson and negative-binomial models were fit to data on the 
incidence of new TB cases in cattle and cervid herds in Canada. The simple Poisson model 
(Example 18.1) was clearly inappropriate due to overdispersion. Below are the results from 
a random effects Poisson model with random herd effects which were assumed to have a 
normal distribution. 

log likelihood = -143.56 

Coet SE Z P 95% CI 

type_2 -0.395 0.333 -1.19 0.236 -1.047 0.257 

type_3 -0.239 0.487 -0.49 0.623 -1.193 0.715 

type_5 -0.110 0.801 -0.14 0.891 -1.680 1.460 

sex -0.339 0.208 -1.63 0.103 -0.747 0.069 

age_1 2.716 0.747 3.64 0.000 1~252 4.180 

age_2 2.466 0.725 3.40 0.001 1.044 3.888 

constant -10.716 0.872 -12.29 0.000 -12.425 -9.007 

logpar (offset) 

In addition, the estimated variance ofherd random effects was 

q~==1.685 (0.587). 

Compared with the negative binomial model, the type of animaI remains completely 
insignificant while the coefficients for sex and age groups have generally moved slightly 
away from the null and their P-values have gone down. The random effects Poisson model 
fits the data substantially better than the negative binomial model because the log-likelihood 
is -143.6 compared with -157.7; the models are not nested (so a likelihood ratio test does 
not apply) but they have the same number of parameters (so log-likelihood values can be 
compared directly). 

Fig. 22.1 Logit function (left) and inverse logit function 
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In theory, the link function can be arbitrary, but in practice, it is restricted to a few 
common choices for each distribution of Y. For binarylbinomial data, two occasional1y 
encountered alternatives to the logit function are the so-cal1ed probit function (inverse 
cumulative probability for the standard normal) and the complementary log-log 
function. The statistical in ference using logit and probit links is usual1y similar, but 
parameter estimates are scaled roughly by the factor ff/.J3 (ie logistic regression 
estimates are numerically larger than those from a probit regression). For count data 
(and a Poisson or negative binomial distribution), the (natural) log is the most common 
link function but one might also encounter the identity function (ie no transformation). 
Also for ordinal data (and a multinomial distribution), the logit is the most common 
link. No formaI statistical procedure exists to select the 'best' link function. We would 
usually use the most common one for the data type at hand, or perhaps (especial1y if the 
model showed lack of fit) try some of the alternatives and choose the one that gives the 
best fit to the data. 

For the sake of completeness, we summarise the discussion by listing ali the components 
of a generalised linear model: 

1. a link function, 
2. a distribution of the outcome Y, 
3. a set of explanatory variables (in a design matrix X), linked to the mean of the i th 

observation, ,ui=E(Yj), by the equation: 
link(u;) = flo + fl1Xli + ... + f1k Xki Eq 22.4 

4. an assumption of independence between the outcomes. 

Unless you are already familiar with GLMs, we recommend that you take some time to 
revisit the chapters on binary data (Chapter 16) and count data (Chapter 18), and assure 
yourselfhow the models fit into the GLM framework. 

In previous chapters you have gone through the statistical analysis of several GLMs, 
so we will not repeat ali the details here. It might be worthwhile, though, to note some 
major differences from linear models. The most obvious difference is that in a GLM 
with a non-identity link, al1 parameters are obtained on a transformed scale, and in order 
to give meaningfui interpretations, we need to backtransform our results to the original 
scale, using the inverse link function. Model-specific rather than general methods are 
used, eg the odds-ratio for logistic regression. 

Moreover, comparing Eqs 22.4 and 21.1, we note again that the error term Ci is 
missing. This is because the distribution assumption is on the original scale and not 
on the transformed scale. In many GLMs (inc\uding logistic and Poisson regression), 
the variance is not a separate parameter but a function of the mean. This implies that 
estimation of the mean and variance in GLMs are mutually dependent. Sometimes 
the actual data show more or less variability than expected by the variance formula; 
this is called over- or underdispersion. It is possible to incorporate an additional over/ 
underdispersion parameter into the models (see section 22.5.5). 

Estimation in GLMs is generally based on the likelihood function (ie estimates are 
maximum likelihood estimates), unless the additional dispersion parameter is included, 
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in which case there is no longer a genuine likelihood, and we talk instead about quasi­
likelihood estimates. The difference between the two likelihoods and estimation 
principles is of little practical importance for GLMs but becomes more of an issue with 
GLMMs (section 22.5). Statistical inference is approximate (unless special procedures 
for exact inference are used) and to a large extent, based on the (quasi)-likelihood 
function or equivalently the deviance (which is essentially just another name for twice 
the log-likelihood function). 

22.4.2 Generalised linear mixed model 

Turning a GLM into a GLMM is straightforward: add the desired random effects on the 
transformed scale specified by the link function in the same way as we did in the logistic 
and Poisson regressions. Using the vector-matrix notation introduced in section 21.2.2, 
the resulting equation for the linear predictor specifying the modelling of fixed and 
random effects becomes: 

link(u) = XfJ + Zu Eq 22.5 

where u is the set of random effects and Z is the design matrix for the random part of 
the model. The random effects are assumed normally distributed with mean zero but 
possibly involving some non-zero correlations. Among the four assumptions listed in 
section 22.4.1, Eq 22.5 replaces Eq 22.4 but the other three assumptions are still valid, 
although 2. and 4. are now conditional on the values of the random effects (section 
22.2). Also the discussion of correlation structure and interpretation of fixed effects 
and variance parameters from section 22.2 carries over to GLMMs, except that the 
latent variable approach for computing variance components and ICCs only works for 
binary/binomial data. Example 22.4 introduces the data and model we use to illustrate 
statistical methods for GLMMs. 

22.4.3 Other random effects models 

Mixed models with the random effects on an original scale (instead of the transformed 
scale as in a GLMM) do exist, and we briefty menti on two ofthem here. 

The beta-binomiaI model has been used extensively in veterinary epidemiology 
(eg Donald et al, 1994). As indicated by the name, it is a model for binomial data 
incorporating beta-distributed random effects for probabilities. One major advantage 
of this model is that the likelihood function is given by a relatively simple and explicit 
formula (which is not the case for GLMMs), and therefore the model is numericaIly 
simpier to compute than GLMMs. As one ofits drawbacks, it is a 2-level model and has 
no natural extension to several hierarchicallevels. Furthermore, it does not, in a natural 
way, aIlow for predictors at the lowest level; it is essentially a model for grouped or 
replicated binary data. 

The negative binomiaI distribution was introduced in Chapter 18 as an extension of 
a Poisson distribution with overdispersion. Overdispersion meant that, in addition to 
y - Poisson(A.), there is random variation in the mean (A.) according to some distribution 
(and hence, the var(Y) is greater than the mean). Such variation may be attributed to 
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Example 22.4 Generalised linear mixed modes (random effects logistic 
regression) for first service conception data 
data=reu _ cfs 

In a study of reproductive measures, the success or failure of first-service conceptíon 
(-fscr-) was one ofthe outcomes evaluated. The study comprised 3,027lactations distributed 
on 1575 cows in 50 herds on Reunion Island. The data were analysed ín a 3-level random 
effects logistic regression model (ie with random effects of cows and herds). Strictly 
speaking, the different lactations of each cow were repeated measures over time, and one 
might question whether the compound symmetry correlation structure in a hierarchical 
mixed model is adequate (sections 21.5 and 22.6). However, the very short series ofrepeated 
measures per cow (1.9 observations on the average) does not realistically allow any more 
complex modelling. The model contained two dichtomous, lactation-level predictors: -heifer­
(primiparous vs multiparous) and -ai- (artificial insemination vs natural breeding). 

Coet SE Z P 95% CI 

ai -1.017 0.130 -7.80 0.000 -1.273 -0.762 

heifer -0.064 0.097 -0.66 0.510 -0.254 0.126 

constant 0.577 0.129 4.47 0.000 0.324 0.829 

In addition, the estimated variances of the cow and herd random effects were, respectively: 

0-; = 0.262 (0.120) and ul = 0.089 (0.039) 

Our first impression of these estímates is that there is no effect of parity and a clear, negative 
effect of artificíal insemination on the conception rates. Both the random effects seem small 
but their significance is dífficult to assess. The ICCs between two observations from the 
same cow (pc) and between two observations on different cows in the same herd (Ph) can be 
estímated using the latent variable approach (sections 21.2.1 and 22.2.2): 

(l . f ) 0.262 + 0.089 O 096 P actatIons o same cow 2/ . 
0.262 + 0.089 + It 3 

and 

p (lactations of different cows ín same herd) 0.089 0.024 
0.262 + 0.089 + 1t

2/3 

'inter-subject variability' - a heterogeneity between subjects not accounted for by 
the Poisson model. If A has a gamma distribution with shape parameter lia and scale 
parameter afJ, (equivalently: mean fJ, and variance afJ,2), then y is a negative binomial 
distributed with meanfJ, and variance fJ,+afJ,2, as shown in Eq 18.9. This distribution may 
also be called a compound or mixture Poisson model. Note that these random effects 
cannot be used for modelling of a hierarchical structure, because they are already 
incorporated into the negative binomial distribution and because they are at the lowest 
(subject) level. However, if the clustering in the data that made a Poisson distribution 
inadequate in reality might have derived from a known hierarchical structure, a Poisson 
regression with corresponding random effects might be preferable to a negative 
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binomial regression because it directly models the structure. In Example 22.3 it was 
noted that the random effects Poisson model fit the data much better than the negative 
binomial model. 

22.5 STATISTICAL ANALYSIS OF GLMMs 

Despite the apparent simplicity of model s such as Eq 22.1 and Eq 22.3, analysis of 
GLMMs is not straightforward, even in the logistic and Poisson regression settings. 
In contrast to most other model s in the book, even the estimation of parameters is 
not c\ear-cut. A number of different methods exist, and in some situations, they give 
appreciably different results. No definitive answer exists at this point as to which 
method is preferable. We outline briefly the methods available and indicate if, and 
where, they are discussed in this text. 

1. Maximum likelihood estimation (section 22.5.2): the likelihood function 
involves an integral over each random effect, which must be approximated by 
a summation and therefore makes ML estimation computationally demanding 
for large models. 

2. Quasi-likelihood or iterative weighted least squares estimation (section 
22.5.1): existing algorithms for linear mixed model s and GLMs are combined 
to produce slightly different variants of an algorithm, which is fast and 
computationally simpIer than ML estimation. 

3. Bootstrap methods (not discussed further): algorithms added to the quasi­
likelihood methods intended to remove bias, which lends these algorithms 
extra computational demands and complexity, and requires specialised 
software (MLwiN). 

4. Bayesian MCMC (Markov chain Monte Carlo) estimation (section 23.4): 
based on an entire ly different statistical approach (Bayesian statistics) and 
simulation-based estimation. This is a field which has seen rapid development 
during the last decade. 

Ali results shown so far in this chapter have been from maximum likelihood estimation. 
But how does one determine which method is be st, in general, for one's own data? The 
standard answer is to use simulation, ie generate artificial data from a model with known 
values of ali parameters and then compare the results of different methods with those 
known values. Such simulation studies are regularly published in statisticaljoumals (eg 
Browne and Draper 2003), and you could als o carry out your own simulation study for 
the data structure at hand (Stryhn et al, 2000). 

22.5.1 Quasi-likelihood estimation 

A quasi-Iikelihood function could be thought of as a substitute for a (real) likelihood 
function whenever the latter does not exist or is too difficult to compute. In the early 
1990s, when computers were much less powerful, several algorithms employing an 
iterative weighted least squares scheme were developed to maximise quasi-likelihood 
functions for GLMMs. These algorithms are referred to by many different acronyms, 
typically containing the letters QL (for quasi-Iikelihood) or ILS (for iterative and least 
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squares), and usually in combination with a G for generalised or a W for weighted or 
an R for reweighted or restricted. The main idea of the iterative weighted least squares 
methods is to compute an 'adjusted' variate on the scale given by the link function (eg 
logistic scale) in each step of the iteration. Technically, the adjusted variate is obtained 
by a Taylor expansion of Yaround the current estimated mean, but one may think of it 
as a continuous version of the discrete outcome. Estimation for this adjusted variate is 
carried out using estimation procedures for linear mixed model s (weighted REML or 
ML estimation). The procedure continue s until convergence ofthe parameter estimates. 
Again, for the technically interested reader, some common options in the procedure are 
mentioned below: 

first or second order Taylor expansion, the latter being considered more 
accurate whenever the procedure converges, 
ML or REML estimation for the adjusted variate, the latter being the more 
common ly used, 
MQLorPQLformoftheadjustedvariate(M=marginal,P=predictiveorpenalised), 
the former being computationally more robust by omitting estimates of random 
effects in the linear predictor, but the latter being considered more appropriate 
for subject-specific inference (section 22.2.1). 

The three options can be combined arbitrarily (depending on the facilities of the 
software package used). Algorithms of this type are available in many general 
statistical package s plus the specialised hierarchical or muItilevel software (see section 
21.4). Example 22.5 shows results from one of these algorithms. 

Example 22.5 Quasi-likelihood estimation of a GLMM 
data=reu _ cfs 

A quasi-likelihood estimation (second order, PQL, REML) of the first-service conception data 
performed using MLwiN software gave the estimates: 

Coef SE Z P 95% CI 

ai -0.995 0.123 -8.12 0.000 -1.235 -0.755 

heifer -0.064 0.093 -0.69 0.490 -0.247 0.119 

constant 0.567 0.123 4.47 0.000 0.326 0.809 

In addition, the estimated variances of the cow and herd random effects were, respectively: 

a} = 0.153 (0.080) and 0'; = 0.088 (0.034) 

All the estimates and SEs are in close agreement with those from Example 22.4, except the cow 
level variance which is only about 60% of the previous value. We interpreted the disagreement 
about this value as a bias of the quasi-likelihood estimation procedure; asimulation study 
confirmed that with these data the quasi-likelihood procedure would consistently giv e too low 
cow-Ievel variance estimates (Stryhn et al, 2000). 
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A long list of (statistical) papers from the 1990s discuss the different version s of 
algorithms and their implementation in software packages (eg Zhou et al, 1999). For 
well-behaved data, the different variants of the algorithms give very similar results 
(taking into account the standard errors of the estimates). One should whenever 
possible use the 'best' possible of the above options (second order, REML, PQL). 
More importantly, any 'strange-Iooking' estimates or standard errors should cause the 
model to be examined carefully and the results to be confirmed with other models or 
estimation methods. 

Early simulation studies showed that estimates from some ofthe iterative least squares 
algorithms for GLMMs could be markedly biased towards the null. The bias might 
affect both fixed and random effect parameters, but the latter are particularly sensitive. 
The general consensus seems to be that particular caution should be exercised if: 

the number of replications at a hierarchical level is 'small' (eg less than 5), 
the corresponding random effect is 'large' (eg the variance exceeds 0.5). 

In our example, the number of cow-level replications was inde ed small, with only an 
average of 1.9 observations per cow. 

22.5.2 Maximum likelihood estimation 

Maximum likelihood (ML) estimation in GLMMs would, at first sight, seem to be our 
first choice, because of the overall strengths of the method (good statistical properties 
of the ML estimates) and the access to likelihood-based inference (eg likelihood ratio 
tests). However, ML estimation has for many years had the reputation ofbeing unfeasible 
for any GLMM beyond the simplest 2-level models, due to the massive and difficult 
computations required. Recent advances in computer power and software have changed 
this judgement; the ML analyses of this chapter used the powerful Generalised Linear 
Latent And Mixed Models (glIamm) macro for multilevel modelling implemented in 
Stata (Rabe-Hasketh et al, 2002). It is likely that, within a few years, ML estimation 
will become the standard estimation approach for ali but huge GLMMs. Even if the 
method's numerical side now looks promising, we outline why computation of the 
likelihood function is so difficult and give some cautions (complex procedures always 
have pitfalls, even if the complexities are hidden in the software). 

For simplicity, consider the 2-levellogistic regression model (Eq 22.1) and let us begin 
by focusing on a single herd - herd l. Given the value of Ul (the random effect ofherd 
l), the conditionallikelihood of the observations from that herd is binomial, 

Ll (PluJ = iJl=IP;' (1- Pj-Y' 

and the full (sometimes denoted marginal) likelihood for those animai s is obtained by 
integration over the distribution of the random effect Ul: 

Eq 22.6 
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The integration weights the possible values of Ul according to their likelihood in a 
normal distribution with mean zero and standard deviation ah. Integrals such as Eq 
22.6 cannot be solved analytically, and therefore a numerical integration or quadrature 
becomes necessary, approximating the integral by a weighted sum of values of the 
integrand (ie the function being integrated) at a number of selected quadrature points. 
In such a scheme, you need to decide on the number of quadrature points and the way 
they are selected. Generally, increasing their number improves both accuracy and 
calculation time. Also, it is generally recommended that an adaptive approximation 
method be used, where the quadrature points (and their weights) are successively 
adapted to the integrand. 

So far we have dealt only with observations from one herd. Observations from different 
herds are independent, so the fulllikelihood function for the entire dataset is obtained 
as a product of terms such as Eq 22.6 over the total set of herds. We trust it is not 
necessary to write out the equation to make the point that, not only computing, but also 
maximising, a quadrature approximation to such a multiple integral with respect to the 
fixed and random effects parameters of the model is a formidable task. Extension to 
multiple levels and/or multiple random effects at the same level rapidly increases the 
complexity of the problem. 

To summarise, a few recommendations and cautions for the use of ML estimation for 
GLMMs: 

ML estimation might be computationally unstable or the approximation of the 
likelihood function may be insufficient; it is highly recommended, therefore, 
that the stability ofresults be checked by try ing different starting values of the 
algorithm and/or different variants of the numerical integration procedure, 
such as a different number of quadrature points as weil as adaptive 
procedures, 
ML estimation should always be compared with other approaches (either 
quasi-likelihood estimation or other approaches for clustered data), and 
caution should be exercised if major differences appear, 
ML estimation in GLMMs may be impractical for model selection (because 
of computational demands); it is then considered legitimate to use 
computationally simpier methods for (part ot) the model selection and confirm 
the results by running selected model s also by ML estimation. 

In Example 22.6, we examine the stability of the quadrature beh ind the ML estimates. 

22.5.3 Statistical inference 

Statistical inference in GLMMs is generally only approximative (asymptotically 
correct when the number of observations at ali hierarchical level s is large). Fixed 
effects parameters are usually assessed by Wald-type confidence intervals and tests, 
however likelihood-based inference (profile likelihood CIs and likelihood ratio tests, 
see section 21.4) may be preferable, in particular when the parameters are highly 
correlated or not weil determined. (As in GLMs, Wald-type statistics are useless for 
parameters that are 'out of bounds', eg in logistic regression when one category of a 
predictor has no cases.) However, likelihood-based inference is only feasible when 
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Example 22.6 Checking maximum likelihood estimation of a GLMM 
data=reu _ cfs 

513 

In Example 22.4, ML estimation was used to fit a random effects logistic regression model 
to the Reunion Island first-service conception risk data. This model was refit using a range 
of number of quadrature points in the estimation procedure. The fixed and random effects 
estimates from each estimation were: 

Number of quadrature points 

Estimate 6 8 10 12 

ai -1.017 -1.017 -1.017 -1.017 

heifer -0.064 -0.064 -0.064 -0.064 

constant 0.576 0.577 0.577 0.577 

cowvariance 0.262 0.262 0.262 0.262 

herd variance 0.090 0.089 0.089 0.089 

This model seems very stable as the estimates changed very little as the number of quadrature 
points was increased. 

ML estimation is used. Reference distributions are most common ly 'asymptotic', ie 
the standard norma l or X2-distributions. The resulting inference may be too liberal if 
replication is sparse at the level of the parameter of interest (Stryhn et al, 2000), and 
some software package s give the option of us ing similar approximations as for linear 
mixed models using t- and F-distributions. In general, no clear guidelines can be given 
about the accuracy of approximative inference in GLMMs. As in linear mixed models, 
Wald-type statistics are inappropriate for variance parameters, which should therefore 
'be assessed by likelihood-based inference (Example 22.7) or altemative procedures 
such as bootstrapping. 

Example 22.7 Statistical inference in a GLMM 
data=reu _ cfs 

The tests and confidence intervals given for the fixed effects in Example 22.4 are 'asymptotic'; 
for example, the 95% CIs are computed as P± 1.96*SE(p). Both predictors vary (potentially) at 
the lowest level and even if some variation may reside at higher levels (in particular, the cow 
level) there would seem ample replication to justify inference based on the standard normal 
distribution. 

To compute tests for the random effects ofthe model, we note the log-likelihood value of the 
fitted model (-2010.85) and refit the model without the random effect ofinterest. The models 
without cow random effects and herd random effects had log-likelihood values of (-2014.11) 
and (-2017.93), respectively, so that the correspondingX2-statistics with l dfwere 6.52 and 
14.2, and thus both significant. Recall from section 21.4.3 that P-values should be computed 
as half the tail probability from the X2( l )-distribution to account for the one-sided altemative 
hypothesis. It is perhaps interesting to note that the herd random effect was c1early the most 
significant of the two; this is not at ali obvious from the estimates and standard errors. 



514 MIXED MODELS FOR DISCRETE DATA 

22.5.4 Model-checking 

The standard tools for model-checking, residuals and diagnostics, are even less 
developed and accessible for GLMMs than for linear mixed models (section 21.4.4). 
The main new point for GLMMs (compared with linear mixed models ) is that, because 
the model has no normally distributed error terms at the lowest level, the corresponding 
residuals and diagnostics at that level are difficult to assess. As an extreme example, in 
a binary model ali the lowest-level residuals are dichotomous and cannot be expected 
to conform to a normal distribution. In this case, the residuals at the lowest level are 
not very informative. Unfortunately, the problems with the lowest-Ievel residuals could 
penetrate to the higher levels if there is little replication. Reference distributions and 
points for residuals and diagnostics are therefore difficult to use rigorously, and one 
is advised instead to look for data points that are extreme in some way relative to the 
rest of the data. Example 22.8 discusses the residuals from our 3-level Reunion Island 
data. 

GLMM analogues of some of the special statistics for discrete data, such as the Hosmer­
Lemeshow test for goodness of fit in a logistic regression model, are not available. 
However, quasi-likelihood estimation procedures alIow for estimation of an over/ 
underdispersion parameter as in a GLM. This parameter gives an indication ofhow the 
distribution specified as part of the GLMM fits to the data (section 22.5.5). 

22.5.5 Over- and underdispersion in GLMs and GLMMs 

Overdispersion has been menti one d in a number of places in this book; this section 
summarises both estimation and interpretation of over- and underdispersion. Adataset 
is said to contain overdispersion (underdispersion) if the variance in the data is larger 
(smaller) than expected from its mean and the assumed probability distribution (with 
an inherent relation between the mean and variance), see sections 18.5.3, 18.5.5 and 
20.3.2 for examples involving the Poisson and binomial distributions. To begin with, it 
follows that over- and underdispersion are always relative to an assumed probability 
distribution/model. Changing (improving) the model may cause the anomalous 
dispersion to vanish. It also folIows that over- and underdispersion are only meaningfui 
for distributions where the variance is determined by the mean - and therefore, not for 
the normal distribution. 

Interpretation of over- and underdispersion 
StrictIy speaking, overdispersion means lack of fit - that the distribution just does not fit 
the data. It may be caused by omission of an important factor affecting the data such as a 
clustering in the data (associated with the level s of that factor). Such c\ustering may be 
attributable to unobservable quantities, for example herd effects caused by management 
factors or litter effects caused by genetic and environmental factors. Another common 
cause of overdispersion is positive correlation between observations, eg in a series 
of measurements over time. Before proceeding with any statistical methods for 
overdispersion, make sure that the overdispersion is not caused by a simple oversight 
and cannot be remedied by improving the model. 
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Underdispersion is possible as weil but less common in praetice. It can result from a 
negative correlation between observations, the standard example being competition in 
a group of animals for a limited reSOUfce (eg feed). Because underdispersion means 
a better fit than expected to the data of Ouf model, we often tend not to worry much 
about it, maybe it was just 'good luck'. By ignoring an appreciable underdispersion 
and pretending the dispersion to be as predicted by OUf model (when it is in reality 
smaller), Ouf statistical inference becomes conservative - which may be considered the 
appropriate approach for 'a case ofgood luck'. Underdispersion (as weH as very smaH 
values of one-sided test statistics) may however also indicate something strange to be 
going on in the data. There are some (in)famous examples of data manipulation that 
were revealed by very strong underdispersion (ie the data fit too weH to the hypothesis 
examined!). In general, if strong over- or underdispersion is present in the data, one 
should always explore the data (residuals) and search for possible explanations. 

Example 22.8 Residuals from a 3-level GLMM 
data=reu _ cfs 

The 3-level logistic regression of Example 22.4 (Reunion Island first-service conception 
data) has residuals at ali three hierarchicallevels but the lowest-Ievel residuals are of little 
use in this case so we disregard them completely. A normal (Q-Q) plot for the 1,575 cow­
level standardised residuals is given in Fig 22.2. The plot shows a curious pattem, far from 
a straight !ine but instead with three separate, almost straight, lines. One must rea!ise that 
with typicaIly only l-3 observations per cow and only foUf different sets of predictor values, 
the cow-level residuals cannot realistically be expected to look like a normal distribution 
sample. With cIoser scrutiny, each approximately !inear part of the graph correspond to cows 
with the same response pattem. For example, the lower part of the plot corresponds to cows 
without any first-service conceptions in the dataset and the upper part of the plot to cows that 
conceived at first service in alllactations. It seems almost impossible to assess from the plot 
whether there are problems with the model assumptions at the cow level. 

Fig. 22.2 Normal plot for cow-Ievel residuals of 3-level model for Reunion 
Island data 
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Example 22.8 (continued) 

Fig. 22.3 shows the herd-Ievel residuals depicted in a normal plot and plotted against the 
herd-Ievel predicted values (inc1uding cow-Ievel predictors). The normal plot is somewhat 
skewed due to lack of herds with strongly positive residuals; however, when comparing 
with the lower tail of the distribution, you can see that only two negative residuals are more 
extreme than in the upper tail. The plot against the fitted values shows a grouping of predicted 
values at the lower end of the scale but no particular patterns in the residuals. 

Fig. 22.3 Normal plat (left) and plat against predicted values for herd level 
residuals of 3-level model for Reunion Island data 
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The residuals shown in this example were cornputed using MLwiN. 

Over- and underdispersion in a GLM 
Assuming that the anomalous dispersion is not caused by model deficiencies (as 
discussed above) and therefore corresponds to a 'natural' dispersion, a dispersion (or 
scale) parameter ifJ can be introduced into a GLM to incorporate the dispersion into the 
model. For our two main discrete distributions, this amounts to assuming: 

Y~bin(n,p): E(Y)=np and var(Y)=ifJnp(l-p) 
y ~ Poisson(A): E( y) = A and var( y) = ifJ A Eq 22. 7 

Thus, ifJ> l corresponds to overdispersion, ifJ <l to underdispersion and ifJ = l to the 
variance following exactly the relationship of the distribution. When adispersion 
parameter is assumed, the distributions are no longer truly binomial or Poisson 
distributions; therefore, no likelihood function is available for the model, and one must 
resort to quasi-likelihood estimation. 

Overdispersion is detected by calculating goodness-of-fit staÍlsÍlcs for the model, 
either the deviance G2 or the Pearson x2-statistic. Under the true model (ifJ = l) both are 
expected to approximately follow a X2-distribution with degree s of freedom (dt) equal 
to the number of observations minus the number of estimated parameters (which in Eq 
22.4 would be k+l). Note For binomial data, the approximation requires replication 
- that the binomial denominators ni> l, see section 16.11.1 for a discussion of binomial 
versus binary data. If the data are binary and no grouping corresponding to a common 
linear predictor for several observations is possible, the values of X2 and G2 are 
meaningless, and overdispersion cannot be modelled. ) 
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If these statistics are significantly larger than expected, overdispersion exists and rjJ 
must be estimated. The simplest estimate applies to a model where rjJ is constant across 
the entire dataset (thus, in our example independent of the binomial denominators n;), 
where one simply calculates rjJ =X2/df. Estimation of ifJ based on G2 is less useful, in 
particular in binomial model s with small denominators. AU other parameter estimates 
are unchanged com,l2ared with a model with rjJ = l, but the estimated standard errors 
are multiplied by ..jrjJ, and Z- and x2-statistics are divided by Ji and rjJ, respectively. 
This procedure is valid regardless of the value of rjJ but caution should be exercised 
with values below l. As discussed above, values <1 may be ignored and distributional 
dispersion assumed instead. In Example 22.9, we revisit overdispersion in a binomial 
dataset. 

Example 22.9 Overdispersion for artificial binomial data 

To illustrate, we retum briefly to the artificial data ofsection 20.3.2 with 10 herds of20 cows 
each and 100% clustering of a binary outcome in herds, which gave the proportions: 

O O O O O 1.0 1.0 1.0 1.0 1.0 

The Pearson statistic is X2=200, so that rjJ=200/(1O-1)=22.22. Note that the calculation 
is based on the 10 group s corresponding to the herds. The variance of these proportions 
is 0'2=0.278 and the expected variance from a binomial distribution (20,0.5) is 
0.5*0.5/20=0.0125. It is seen that rjJ approximates the ratio between the actual and expected 
variances very closely (0.278/0.0125=22.24). For this particular setting, where the 
overdispersion can be attributed to clustering in herds, it would seem more appropriate to 
extend the model with herd effects instead of modell ing the overdispersion. See also section 
23.2.2 about using overdispersion factors to account for clustering. 

Over- and underdispersion in GLMMs 
GLMMs also allow for an additional dispersion parameter (rjJ), which, as noted 
before, can only be estimated using quasi-likelihood methods. With random effects 
in the model to take into account any hierarchical clustering, the interpretation of 
overdispersion is more difficult, although additional (unrecognised) clustering may be 
a possibility. 

It is commonly experienced in GLMMs that the dispersion parameter is estimated at a 
value below I (underdispersion); see Example 22.10 for one such case. Asimulation 
study has indicated values of rjJ in the range 0.8-1 to be a possible artifact generated by 
the quasi-likelihood estimation procedure (Jacob, 2000). Facing a value in this range, 
one would usually be content to fix rjJ at I (most software will aUow you to do this). 
Generally, the presence of a dispersion parameter in the model may affect the variance 
parameters considerably; in our experience it is preferable to fix rjJ at 1 whenever that 
seems sensible, in order to facilitate interpretation of the model. Values of rjJ clearly 
below 0.8 are definitely suspect and the model should be seriously mistrusted, unless 
verified by other analyses. One model deficiency that has been shown to generate 
serious underdispersion is autocorrelated errors in a repeated measures model 
(Goldstein et al, 2002b). 
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Example 22.10 Dispersion parameter in a GLMM 
data=reu _ efs 

Quasi-likelihood estímatíon (Example 22.5) produeed a value of ~=0.932 (0.032) for the 
3-1evellogistíe model. Despite the fact that it is about three standard errors away from l, we 
do not take this value to indieate problems wíth assuming a binarylbinomial distribution for 
the varíanee. 

22.6 REPEATED MEASURES AND SPATlAL DATA 

The linear mixed model approach of incorporating correlation structures into the 
model's error component (c) runs into the serious problem in GLMMs that the linear 
predictor (Eq 22.5) does not contain an error component! The reason is that a GLM(M) 
models the mean and variance on different scales: the mean on the scale given by the 
link function but the variance on the observation scale. This makes it more difficult 
to incorporate the correlation structure s discussed for linear mixed model s into a 
GLMM and is one of the reasons why no general GLMM-type class ofmodels exists 
for repeated measures and spatial structures. Instead, model s are, to a large extent, 
developed specificaIly for the most interesting data types: binary and count data. 
The literature in this field is large, rapidly developing, and beyond the scope of this 
book. We give a few notes and references to what has been done within the GLMM 
framework. Note als o that the generalised estimating equations approach (section 23.3) 
can be used for repeated measures and spatial data structure s with discrete outcomes. 

The standard hierarchical mixed model with random effects corresponding to the 
unit of the repeated measures is valid, provided one is will ing to assume a compound 
symmetry correlation structure. This was exactly the type of model used for the 
conception data from Reunion Island. To detect violations of compound symmetry may 
require much more data than in the continuous case because the information content is 
lower in discrete data - something that certainly is true for binary observations. 

A GLMM with a correlation modelled at the original scale (Barbosa and Goldstein 
2000) and a multivariate multilevel logistic model (Yang et al, 2000) have been 
developed, but both require specialised software. Quasi-likelihood estimation software 
may allow specification of a repeated measures or spatial model for the adjusted variate 
computed in each step of the iteration (section 22.5.1). This will lead to repeated 
measures or spatial correlation structure s (Gotway and Wolfinger 2003), although 
covariance parameters specified in this way may have no direct interpretation in the 
discrete model. 
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SAMPLE PROBLEMS 

1. For a 2-levellogistic regression problem, see Sample Problem lin Chapter 23. 
2. Using a dataset on preweaning mortality in piglets (prewmort), explore 3-level 

random effects logistic regression models. 
a. Consider the prewmort data, with -lmort- (a binary indicator for preweaning 

mortality in a litter) as the outcome and -quarter- (of the year), -sow_tx-, 
-sow ~arity and -herdtype- as predictors. 
i. Draw a diagram of the hierarchical structure, including the predictors. 

b. Fit a 3-levellogistic model with fixed effects of the predictors as weil as sow 
and farm random effects. 
i. Which fixed effects are significantly different than zero? 
ii. Modify the fixed part of the model to include only significant terms and, if 

necessary, relevant interaction terms. 
iii. Interpret the fixed effects in terms of odds ratios. 
iv. Give the subject-specific interpretation of the odds ratios, and explain the 

difference to a population-averaged interpretation. 
c. Tum your attention to the variance parameters. 

i. Use the latent variable approach to compute the proportion of variance 
residing at the three level s (litter, sow and farm) of the model. 

ii. Still using the latent variable approach, compute also the intra-class 
correlation coefficients (lCCs) for two observations from the same sow, and 
for two observations from the same herd. 

d. Maximum likelihood estimation is required to carry out tests for variance 
parameters; skip this point ifyour software does not allow for a 3-level model. 
i. Assess the significance of each of the two variance parameters using 

likelihood ratio tests (recall, that since variances can only be positive the 
P-value is computed as half of the tail probability obtained from the chi­
square distribution). 

e. Quasi-likelihood estimation is required to estimate an additional dispersion 
parameter; skip this point if your software does not allow it. 
1. Compute an additional over- or underdispersion parameter to assess the 

data's compliance with the binomial variance assumption. Does it seem 
reasonable to assume a binomial variation? 

ii. If you did item d as weil, compare the parameter estimates from maximum 
likelihood and quasi-likelihood estimation, in particular assess whether the 
latter estimates would seem to be biased towards the null. 

f. Your software should allow you to compute 'residuals' (estimated random 
effects) at the sow and farm levels, and preferably also corresponding 
standardised residuals. 
i. Inspect the herd level (standardised) residuals for the presence of extreme 

herds and use a normal plot to assess the residual 's agreement with a normal 
distribution. Compute als o any further model diagnostics at the herd level 
that your software may offer, and draw conclusions about the model's fit at 
the herd level. 

ii. Same question for the sow level (standardised) residuals. Recall that a 
close agreement with a normal distribution cannot be expected (why?). 
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ALTERNATIVE APPROACHES TO 
DEALING WITH CLUSTERED DATA 

OBJECTIVES 

After reading this chapter, you should be able to: 
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l. Understand the uses, advantages and limitations of simpIer methods to deal 
with clustering, such as fixed effects and stratified modelling, correction factors, 
robust variance estimation and aggregation of hierarchicallevels. 

2. Understand the differences between population-averaged and subject-specific 
modelling. 

3. Use generalised estimating equations for analysing clustered data, in particular 
repeated measures data. 

4. Understand the basic differences between Bayesian and classical (likelihood­
based or frequentist) statistical approaches. 

5. Use a Bayesian hierarchical model with non-informative priors and Markov chain 
Monte Carlo estimation for analysing clustered data. 
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23.1 INTRODUCTION 

ALTERNATIVE APPROACHES TO 
DEALlNG WITH CLUSTERED DATA 

The previous two chapters have presented mixed models (ie models containing both 
fixed and random effects) as an approach for dealing with the problem of eiustering 
(Jack ofindependence among observations) in a dataset. As noted, these mixed models 
are very ftexible and can handie any number of levels of hierarchical c1ustering as 
weil as more complex data structures. However, some unresolved issues remain. As 
discussed in section 22.6, the mixed model s approach is not as successful with repeated 
and spatial structure s for discrete data as it is for continuous data. AIso, mixed models 
are limited by their common assumption of normally distributed random effects; in 
practice, you will encounter data that c1early do not meet that assumption. From a more 
philosophical point ofview, one might argue that, in our analyses, we should only make 
the absolutely necessary distributional assumptions and for 'nuisance effects', rely on 
robust procedures that are less affected by the peculiarities of the data. This would 
follow the trend in modem statistics toward non- and semi-parametric procedures, as 
seen for example in survival analysis. Finally, complex mixed model s might be difficult 
to fit due to the size of the data or to numerical difficulties. Consequently, simpier 
alternatives are valuable, if for no other reason than to confirm the results ofthe mixed 
model analysis. 

This chapter first reviews a number of methods to de al with c1ustering which are 
easier to imp lement than mixed models. In some situations, these simpier methods 
might be adequate and more eas ily carried out by an investigator. Following these 
simple approaches, we give a short introduction to two other large model c1asses or 
statistical approaches that can deal with c1ustering: generalised estimating equations 
(GEE) and Bayesian estimation using Markov chain Monte Carlo (MCMC) methods. 
More precisely, the GEE approach was devised specificaIly to deal with c1ustered or 
other complex data structures, whereas the Bayesian and MCMC approach gives an 
aItemative view on all aspects of statistics, of which models for c1ustered data are 
only one example. To illustrate the methods, we will use two previously encountered 
datasets throughout: the somatic cell count data (scc _40) from Chapter 21 and the pi g­
pneumonia data (pig_ adg) from Chapter 22. 

23.2 SIMPLER METHODS 

23.2.1 Fixed effects and stratified modelling 

In a number of examples throughout this book, group (eg herd) identifiers have 
been inc1uded as fixed effects in regression-type models, primarily to account for 
confounding due to factors at the group level (section 13.8 also discussed stratified 
(Mantel-Haenszel) analysis to control confounding). We have already shown in section 
20.4.2 how these same approaches can also be used to de al with the issue of c1ustering 
within groups and have discussed their advantages and disadvantages, and the choice 
between taking group effects as fixed or random (section 21.2). Only a few summary 
remarks are given here. 
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Recall that herd random effects have an interpretation in terms of a population (the 
variance of which we esti mate) and that fixed effects are specific to the actual herds 
in the study - and might, therefore, be more appropriate if there is little interest (or 
sense) in the population interpretation. In other cases, variance estimates might be 
one of the primary outcomes of interest in an investigation. Perhaps the most severe 
restriction of fixed effects modell ing is that it does not allow for group (herd) level 
predictors. Technically, fixed effects analyses are usually much easier to carry out. In 
particular, facing limited model-checking facilities for mixed models in some software, 
you might be tempted to bas e part of the model-checking on the fixed effects versions 
of a mixed model, although, strictly speaking, this is incorrect. AIso from a technical 
aspect, it should be kept in mind when using fixed effects model s for discrete data 
(Example 23.1), that estimating a large number of group (herd) parameters might 
adversely affect maximum likelihood estimation procedures. Mantel-Haenszel-type 
stratified analyses are limited to binary outcomes and a single within-group predictor; 
for multifactorial problems. 

Example 23.1 Fixed effects and stratified models for pig-pneumonia data 
data=pig_ adg 

Recall that the binary outcome is the presence of pneumonia and Ouf sole predictor is 
-ar_g 1-, a dichotomous variable indicating the presence of atrophic rhinitis. An ordinary 
logistic regression model gave a value for its regression coefficient (with SE) of 0.647 (0.220), 
but adding herd random effects reduced the value to 0.437 (0.258). The fixed effects model 
esti mate is 0.365 (0.268) and appears to adjust reasonably weH for both herd confounding and 
clustering; no adverse effect of estimating 15 herd parameters is apparent. The same can be 
said of the Mantel-Haenszel estimate (of the log odds ratio) of 0.346 (0.261). 

23.2.2 Factors to correct for clustering 

This section summarises two ways of correcting an analysis in which clustering has 
not been taken into account in the model. These involve an estimate of the intra­
class correlation coefficient (leC) (sections 20.3.3 and 21.2.1) or an estimate of the 
overdispersion (section 22.5.5), and using one of these to adjust the standard error 
(SE) of regression coefficients. Note that these methods rely on the simplistic premise 
that clustering affects only the SEs of estimates (and, generally, when not taken into 
account, leads to SEs that are too small). Our previous examples, including those of 
simulated data in Chapter 20, have shown that this is not always the case. Therefore, not 
ali uncorrected analyses might be 'repaired' by increasing the SEs, and the researcher 
must pay particular attention to the requirements for these correction factors to be 
meaningfuI. 

Using a correction factor assumes a 2-level structure (eg animals within herds). 
Example 20.1 shows how the effect of clustering on the variance of herd means 
depends on both the lCC and the herd size. If both of these are the same in ali herds, 
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an analysis involving only herd-Ievel factors, but ignoring c\ustering in herds, might be 
corrected by inflating the standard errors of regression coefficients by the square root 
of the variance inflation factor, assuming you have a value for the lee. In practic e, 
herds are rarely of the same size and the lee is only constant between herds in special 
cases. One such case is norrnally distributed data, but then, you might as well use a 2-
levellinear mixed model (which with today's software, should not pose any numerical 
problems). The method might be acceptable as an approximation even without these 
condition s (Donner, 1993), but the validity of the approximation is difficult to assess. 

Generalised linear model s (GLMs) allow for an additional dispersion (or scale) 
parameter (rjJ) to take into account if the 'natural dispersion' in the data does not match 
the distribution used (eg binomial or Poisson, see Eq 22.7). As before, for a 2-level 
model with only herd-Ievel predictors, this might be used to adjust for the inflation in 
variance at the herd level. In principle, this correction is valid for un equal herd sizes 
as weIl. Let's look at the binomial example to see how that would work. Denote by 
y; and ni the number of positive outcomes and the total number of animals in herd i, 
respectively. Then the model's assumptions are: 

E(Y;) = niPi and var(Y;) = rjJ niPi (l-Pi) Eq 23.1 

Here rjJ is assumed to be independent of the group sizes nj, and c\early that is not 
necessarily true! It makes us reali se that using an overdispersion parameter assumes 
a particular forrn of the variance inflation across groups. For grouped binomial data, 
other possibilities exist, eg the Williams method (Coli ett, 2002) which also affects 
the parameter estimates. For moderately varying herd sizes, the two methods do 
not differ much (they are identical for equal herd sizes). Also, the two models for 
grouped binary data that we have discussed in this book - a random effects logistic 
regression and a beta-binomial distribution - have vary ing variation inflations across 
groups. Both the beta-binomial distribution and the Williams procedure assume 

var(Y;) = [l+(ni-l)rjJ] niPi (l-Pi) 
and in the random effects model the inflation depends also on the probability Pi' We 
illustrate the methods by the pig-pneumonia data (Example 23.2) although it does not 
directly fit into the framework (because the predictor -ar _gl- is not at the herd level). 

The advantages of the simple overdispersion approach are its numerical simplicity 
and that it does not assume a parametric forrn of the random effects. You can also 
use ordinary regression model diagnostics after fitting the model. The size of the 
overdispersion parameter provide s an estimate of the severity of the c\ustering 
problem. The disadvantages are a potential problem in estimating rjJ (when there is 
sparse replication), assuming the overdispersion to be constant when group sizes (nJ 
differ strongly, the lack of likelihood-based inference and its limitation to grouped 
(binomial) data. As noted in the introduction, us ing overdispersion more generally to 
compensate for non-modelled hierarchical c1ustering is not recommended., particularly 
because there is little reason to believe that the only effect of c\ustering is to increase 
the standard errors. 
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In order to have the predictor (-ar~l-) at the group level, we must redefine the group s 
- instead of herds they should be the groups of pigs within herds with the same predictor 
value. That is, there are two groups (ar-positive and ar-negative) in each herd for a total of 
2*15=30 groups. Ali ar-positive group s have the same predicted value by the model, and 
overdispersion means that these 15 counts of pn-positive pigs disperse more than we would 
expect from their predicted value; the same principle applies to the ar-negative animals. In the 
presence of c\ustering in herds, these counts would indeed show overdispersion. Therefore, the 
overdispersion parameter does take into account extra variation ari sing from herd c\ustering. 
What the model and approach does not take into account, and this is c\early unsatisfactory, is 
that we would expect strong correlation between the two counts from the same herd. 

Estimation in this grouped dataset gives the Pearson' X2=78.24 with 28 df, and thus an 
overdispersion value of ~=X2/df=2. 794. Further, the regression coefficient is unchanged at 
0.647 and the SE has been increased to 0.368 (computed as 0.220*·h.794). The method fails 
to adjust for the confounding and/or c\ustering in the data. It is interesting to note that the 
Williams method applied to the same data gives the value 0.424 (0.362) and thus, seems to 
perform better here; however, we do not go into details with this method. 

23.2.3 Robust variance estimation 

In a 'usual' regression model (linear, logistic etc), the SEs of the coefficients in the 
model are based upon the assumption that the model is true in ali respects and that the 
errors are independent and follow the appropriate distribution (Gaussian for a linear 
model) or binomially distributed (for a logistic model). If these assumptions are met 
and you had an infinite sample, the estimated fJ would be correct and you would have 
an SE of zero. 

There is an alternative approach to computing the variance (and hence the SE) of fJ that 
is referred to as robust variance estimation, or Huber-White variance estimation, or 
'sandwich' variance estimation (so called because, in matrix notation, the formula for 
the variance matrix of the fJs looks like a sandwich). These estimates are less sensitive 
to the assumptions on which a model-based estimation is built but they also have a 
slightly different interpretation. The SEs simply estimate the expected variability in 
the fJs if repeated samples of the same size as the dataset were drawn from the original 
population, and thus, are somewhat analogous to bootstrap SEs (Guan 2003). As such, 
they are more robust to violations of any of the assumptions on which the model is 
based and usually (but not necessarily) produce larger SEs (and hence, wider CIs) for 
parameters than the usual variance estimates. While robust SEs might also be computed 
for discrete data, the 'robustness' is less obvious with discrete data because model 
misspecifications might affect not only the variances but also the estimates themselves. 
The robust variance estimate can also be allowed to vary across clusters, which is 
important when dealing with clustered data, because it relaxes the assumption of 
independence to require only independence of observations across clusters, not within 
clusters. A more complete discussion of alternative variance estimation procedures 
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(including sandwich estimators and others) can be found in Hardin and Hilbe (2001). 

The advantages ofrobust variance estimation are that it is simple to use (ifimplemented 
by your software) and does not require specific assumptions about the nature of the 
clustering. For linear models, it provides SEs that are robust to different violations 
of the model assumptions (eg distribution of errors and heteroscedasticity). One 
disadvantage of this approach is that it provides no information about the magnitude or 
ori gin of clustering. Further, it has no impact on the point estimates of the parameters, 
which might be considered particularly critical for non-normal data, and the SEs differ 
in their interpretation from usual SEs. Finally, it might also be said that robust variance 
estimation is part of the generalised estimating equations (GEE) approach to c1ustered 
data (section 23.3) which offers more control over the modell ing without requiring 
additional assumptions. We illustrate the robust variance method by two examples: 
discrete data (Example 23.3) and continuous data (Example 23.4). 

Example 23.3 Robust variance estimation for pig-pneumonia data 
data=pig_ adg 

The regression coefficient for -ar~l- is not affected by employing robust variance 
procedures, only its SE. Cluster-specific robust variance estimation, us ing farms as clusters, 
increased the SE to 0.276. We previously noted the inadequacy, for this example, ofmethods 
that do not affect the regression coefficient. 

23.2.4 Aggregation of levels 

The hierarchical structure in adataset might contain many levels, as shown in the 5-level 
structure of Fig. 20.1. However, sometimes we decide to exclude some levels from our 
analysis, and in this section, we give a few comments related to two common scenarios. 
In order to estimate the variation and the random effects at the different levels, a certain 
minimal amount of replication is necessary at all levels. This is intuitively obvious 
because, if, for example, all batches contained only a single litter, then there would be 
no way of distinguishing between batch and litter effects. Another potential problem 
for the estimation procedure is a strongly variable replication at one of the hierarchical 
levels (eg if some batches contain only one litter while others contain up to 10 litters). 
To detect such problems, it is worthwhile to compute the range and average of the 
number of replications at each hierarchical level. There is no definitive rule as to the 
minimal replication but, whenever the average number of replicates is less than 2 andi 
or more than half of the units are unreplicated, problems can be anticipated. To illustrate 
the arbitrariness of such a rule, the Reunion Island dataset, analysed extensively in 
Chapter 22, had on average only 1.9 lactations per cow but no numerical problems were 
encountered. If some levels need to be omitted in the hierarchy, it is useful to keep those 
at which principal predictors reside and those showing a lot ofvariation in a null model 
or based on descriptive statistics. 
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Example 23.4 Robust variance estimation for somatic cell count data 
data=scc _ 40 
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We show the set of estimates and SEs for the model with four predictors used in Chapter 21, 
both for simple linear regression (ignoring the 3-level hierarchy) and with robust variance 
estimates c1ustered on cows. For convenience, the values from Chapter 21 (mixed model, 
repeated measures) are restated as well. 

Model Linear regression Mixed; arma(1, 1) 

Variable ~ SE Robust SE ~ SE 

h_size (*100) 0.898 0.057 0.127 0.627 0.306 

c_heifer -0.743 0.021 0.044 -0.777 0.040 

t_season=spring 0.105 0.028 0.030 0.034 0.022 

t_ season=summer 0.121 0.029 0.035 0.039 0.027 

t_ season=fa II 0.016 0.030 0.031 -0.007 0.023 

t_dim (*100) 0.314 0.013 0.015 0.328 0.014 

constant 4.318 0.041 0.079 4.516 0.154 

Considerable increases in robust SEs are seen, mostly for the cow and herd level variables. 
(When clustering on herds, the SEs for -h _ size- and the constant further increase to 0.365 and 
0.195, respectively.) The parameter estimates for -t_dim-, -c_heifer- and even -h_size- are 
in reasonable agreement between linear regression and the mixed model. The conspicuous 
difference in -t_ season- estimates of the linear and mixed models is essentially due to cow 
effects - the sampling periods of the cows in the dataset are not equally distributed over the 
year. 

For discrete data, in particular binary data, it is not un common to encounter problems 
with high correlation and strong underdispersion at the lowest level. As discussed in 
section 22.5.5, the prope r statistical procedure in such cases is not c1ear; we discuss this 
by way of Example 23.5. 

23.3 GENERALISED ESTIMATING EQUATlONS 

Generalised estimating equations (GEE) were introduced in two papers by Liang 
and Zeger in 1986, as a set of estimating equations to obtain parameter estimates for 
discrete and continuous repeated measures data. The idea has proven not only durable 
but also extendable to include other data structures (eg spatial data), statistical inference 
accompanying the estimates, as weil as many variants of estimating equations. A recent 
(statistical) monograph (Hardin and Hilbe, 2003) is devoted entirely to GEE methods, 
which today are one of the most popu\ar approaches in the health and bio\ogica\ 
sciences. 
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Example 23.5 Aggregation of the lowest level for pig-seroconversion data 
data=ap2 

Vigre et al (2003) observed that seroconversion to Actinobacillus pleuropneumoniae was 
strongly clustered in batches of pigs in multi site production systems. On average, each 
of the 36 batches of pigs consisted of about 30 pigs, and in 17 batches more than 90% of 
the pigs seroconverted, in four batches between 50% and 85% of the pi gs seroconverted, 
and in the remaining 15 batches no pigs seroconverted. A 3-levellogistic regression model 
(with predictors at ali levels) had an dispersion parameter of (b=0.2, indicative of serious 
underdispersion and which could be interpreted as a very poor fit of the binary model. AIso, 
the 3-level analysis showed some numerical instability when fitted using quasi-likelihood 
estimation. It was therefore decided to aggregate the data to the batch level by defining a 
batch as positive if at least one pig seroconverted, and as negative if otherwise. The mean 
pig's age at slaughter was computed for each batch as weil, and the data were analysed by a 2-
level model usíng this batch-Ievel predíctor. From a biologícal perspective, it was considered 
perfectly acceptable to designate batches as seroconverted or not, given the strong clustering 
in batches, so the 2-level model was preferred to a 3-level model with its obvious estimation 
problems and dífficult interpretatíons ofthe variance components. 

The sc ope of this textbook means we cannot do justice to this concept; however, we 
will describe the original (and probably still most popular) GEE method to obtain 
population-averaged estimates for clustered data. This method is based on correlations, 
in a working correlation matrix. We menti on that recently, an alternative variant for 
binary data based on alternating logistic regression (Carey et al, 1993), has received 
renewed attention and been favoured for binary data (Hardin and Hilbe, 2003; we draw 
repeatedly from this reference throughout the section without specific mention). 

23.3.1 Population-averaged versus subject-specific modelling 

The distinction between population-averaged (PA) and subject-specific (SS) 
modelling for clustered data was introduced in section 22.2.1 where generalised linear 
mixed models (GLMMs) were referred to as subject-specific. Here we give more details 
and examples (largely following Diggle et al, 2002), in particular for the PA approach. 
Our first remark, however, is that the PA and SS interpretations of regression coefficients 
are equivalent for linear models. This is not due to the usual normal distribution 
assumption but to the fact that the linear predictor is modelled on the original scale; 
in the terminology of GLMs, the link function is the identity function and there is no 
shift of scale. Therefore, the proper reference for Ouf discussion is a GLM, and we 
also assume a 2-level structure. In the original context of repeated meaSUfes, the data 
consisted of several observations (eg over time) on different subjects. In the context of 
Ouf usual hierarchical clustering, we might instead have our subjects clustered in group s 
(eg animals in herds). To avoid any confusion of this double use of 'subjects', we shall 
refer to the upper level of the structure simply as clusters or groups. 

The difference between the PA and SS approaches is in the way the clustering or 
group ing of the data is dealt with. As previously seen, subject-specific (or cluster-
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spec ifi c ) models include a random effect for each cluster in the linear predictor of the 
model. The assumptions for the random effects (ie their distribution and correlation) 
imply a particular form of the distribution of the set of observations within a cluster, 
including their correlation structure. Population-averaged or marginal model s involve 
only the marginal means, ie the expected values for a particular set of predictors 
averaged across the population of clusters, and do not include specific effects for each 
cluster. PA models might therefore dispense with the assumptions for the distribution of 
the set ofvalues within a cluster. To show the difference between the two types ofmodel 
in simple formulae, denote by Y our observations and by u the random effects for the 
clusters (in an SS model). Then GLMs of SS and PA types are based on the equations: 

subject-specific: link [E(YI u)] = Xpss + u 
population-averaged: link [E(}')] = XpPA Eq 23.2 

where, as before, Xp is our shorthand for the fixed part of the model, and E(Ylu) is the 
mean of Y conditional on the value of u (as discussed in section 22.2.1). As indicated 
by the notation in Eq 23.2, the SS and PA regression parameters are not identical 
(unless there is no clustering or link). Generally the PA parameters are closer to the 
null ('attenuated') than their SS counterparts. The difference depends on the amount of 
clustering and is often small relative to estimation error. For a logistic regression model, 
we have the approximation: . 

PPA "" pss / ~ l + 0.3460'~ Eq 23.3 

where (j~ is the (herd) cluster variance. For example, for PA parameters to be more than 
10% lower than SS parameters, we need a; 2:0.68. 

The selection of the most appropriate model type (SS or PA) depends on the predictor(s) 
being examined. Consider, as an example, a clinical trial of the effect of a treatment 
(compared to a placebo) on the risk of a cow developing milk fever. The study is carried 
out in multiple herds and the breed of the cow (Holstein versus Jersey) is also recorded. 
The final model includes term s for the two dichotomous variables: treatment and breed. 
The pSs for treatment in a subject-specific model estimates the effect ofthe treatment in 
a particular herd on the risk of milk fever (compared with the risk in the same cow if 
she was not treated). This makes biological sense for cows staying in the same herd. On 
the other hand, the pPA gives the effect (assumed decrease in prevalence ofmilk fever) 
of introducing a programme for treatment against milk fever across ali herds. Thus, 
interest has been shifted from the individual herd to effects across herds. The parameters 
for breed are interpreted similarly, but the SS interpretation for breed would se em of 
less interest for herds with cows of a single breed (it refers to the altered risk of milk 
fever if all cows were replaced by cows of another breed), and the PA estimate seems 
more appropriate by comparing breeds across herds. Note also that an SS interpretation 
would become almost meaningless for herd-Ievel predictors that are inherent in the herd 
(eg related to its location). This problem with an SS interpretation of a predictor that is 
unchangeable for the subject is more common in repeated measures data where subjects 
are individuals, for example, with predictors such as sex or race/breed. 
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Our main example of a statistical method based on PA estimation is GEE (next section); 
another example is the beta-binomial model briefly discussed in section 22.4.3. 

23.3.2 Generalised estimating equations for population-averaged model 

Let us initially explain the meaning of 'estimating equation'. When using maximum 
likelihood estimation, the parameters are chosen to maximise the log-likelihood 
function. In practice, maximising a function involves computing the (partial) 
derivatives of the function with respect to its parameters and equating these to zero. 
These would be the estimating equations for ML estimation (and the derivatives of the 
log-likelihood function is called the score function). Except for very simple cases, the 
equations do not have an explicit solution and must be solved iteratively. The approach 
we are going to take here involves GLMs and a partially specified model, so that no 
likelihood function is available. Nevertheless, estimation is based on iterative solution 
of similar generalised estimating equations. 

The population-averaged model in Eq 23.2 can be estimated by using the GEE method, 
using only assumptions about the marginal mean and variance (and information about 
the grouping of the data). Even if no assumptions ab out the form of the correlation 
of the data within the groups are made, the estimating equations involve a working 
correlation matrix containing the estimated correlations among individuals within 
a cluster, in each cycle of the iterations. This matrix can be given different forms 
(independent, compound symmetry, autoregressive, unstructured etc as in section 
2l.5.1) to tailor the estimating algorithm toward one's perception of the data structure. 
Because the matrix is not part of the model, its form is not as crucial as in a fully 
parametric model. Theoretically, the GEE method gives asymptotically unbiased 
estimates even ifthe working correlation matrix is misspecified (it might, however, lead 
to loss in efficiency). Several options are available for variance estimation but generally 
it is recommended that the robust (or empirical) variance esti mate (section 23.2.3), also 
asymptotically unbiased, be used. 

As to the choice ofworking correlation structure, you should first and foremost be guided 
by your understanding of the data. For hierarchically clustered data (eg pigs in farms), 
anything but a compound symmetry (or exchangeable) correlation structure would 
seem unreasonable. Particular caution should be exercised with negatively correlated 
binary data. In this case, an ordinary logistic model with robust standard errors, section 
23.2.3) has been recommended (Hanley et al, 2000). For repeated measures data, one 
would usually choose a structure that allows for decreasing correlations with distance 
in time. It might also be tempting to try an unstructured correlation to see what patterns 
the data show when not constrained by a particular structure. However, large correlation 
structures imply estimation of a large number of 'working parameters' and numerical 
problems might be encountered especially in unbalanced datasets. Recently a criterion 
(QIC) similar to Akaike's information criteria has been developed to guide the choice of 
correlation matrix (Pan, 2001). We illustrate the G EE method in Example 23.6 (discrete 
data) and Example 23.7 (continuous data). 
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A GEE analysis with a compound symmetry structure for the working correlation matrix and 
robust standard errors gave a regression coefficient of 0.354 (0.216). For comparison with 
the previous random effects estimate (0.437), we might compute its PA counterpart using 
Eq 23.3: pPA "" 0.437/ .JI + 0.346 * 0.879 - 0.383. Thus, the difference between the two 
estimates is not entire ly due to their different interpretations; however, relative to the SEs, the 
difference is smal!. The working correlation matrix had a correlation of 0.18 (between pigs in 
the same farm), which is quite similar to p=0.21 computed in Example 22.2. 

The advantage of the GEE method (and many ofits generalisations) is that it has robust 
theoretical properties with few model assumptions. It is als o computationally feasible 
for large datasets and can be fit with a wide range ofworking correlation structures. It 
is one of the few general methods for use with discrete repeated measures and spatial 
data. 

One drawback of the GEE method is its basic limitation to a single level of clustering 
(however, the alternating logistic regression approach allows for two levels). ln 
situations in which you have multiple levels of clustering (eg multiple observations 
within cows, within herds), it might be possible to obtain reasonable estimates 
for predictors below the herd level by allowing for clustering at the cow level and 
assuming that the herd effects will be incorporated into the within-cow correlations. A 
second drawback, because the model is not fully specified, is that a standard likelihood­
based inference is not available; however, alternative methods for model selection and 
model-checking have been developed in recent years. Finally, we should remember 
that PA models provide estimates of coefficients with slightly different interpretations 
than mixed (SS) models. 

23.4 BA YESlAN ANALYSIS 

Little known outside statistical science, there exist two different approaches to 
statistical inference, which have different concepts and philosophical bases and will, 
in general, lead to different results. The rivalry between the two schools has persisted 
over decades, with neither of them emerging as the clear winner. Many statisticians 
cling to the middIe ground believing that each of the two approaches has its weaknesses 
and strengths which make eae h of them attractive in particular situations. However, 
most (introductory) statistics courses are taught within the non-Bayesian (classical, 
likelihood-based, frequentist) framework with no reference to the Bayesian view. 

Bayesian analysis has gained in popularity in recent years, and has for example been 
applied to complex problems in veterinary epidemiology such as risk assessment or 
comparison of diagnostic tests without a gold standard (eg Hanson et al, 2003) and to 
the analysis of multilevel data (Doho o et al, 2001). The scope of practical Bayesian 
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Example 23.7 Generalised estimating equations for somatic cell count data 
data=scc _ 40 

We analysed these data using linear mixed models for repeated measures in Example 
21.1 O. Because of the lack of link function, the SS and PA parameters coincide. The 
difference of the GEE approach lies therefore, entirely in the estimation method. The table 
shows parameter estimates from GEE analyses clustered at the cow level with compound 
symmetry, autoregressive (ar(l)) and unstructured working correlation matrices. The table 
also gives values of the working correlations one and two time steps apart; the values for the 
unstructured correlation were obtained by averaging the corresponding values in the matrix. 
Some software implementations ofGEE (eg in SAS) will fit stationary (Toeplitz) structures 
without excluding incomplete sets of repeated measures; the results were elo se to those 
shown for the unstructured correlations. 

Working correlation matrix structure 

Compound symmetry Autoregressive Unstructured 

Variable 13 SE 13 SE 13 SE 

h_size (*100) 0.826 0.123 0.799 0.124 0.755 0.121 

c_heifer -0.777 0.042 -0.755 0.042 -0.772 0.041 

t_season=spring 0.015 0.023 0.054 0.024 0.031 0.022 

t_ season=summer 0.026 0.026 0.060 0.026 0.033 0.024 

t_season=fall -0.022 0.025 0.003 0.025 -0.010 0.023 

Cdim (*100) 0.336 0.014 0.315 0.014 0.327 0.013 

constant 4.415 0.074 4.424 0.074 4.454 0.072 

P (1 month) 0.555 0.671 0.647 

P (2 months) 0.555 0.451 0.592 

These values should be compared to those of Example 23.4. The parameter estimates 
for -c _ heifer- and -t_ dim- are in reasonable agreement between ali models, inc1uding 
the uncorrected analysis. This may be said also for -h _ size- when considering its large 
SE (from the Iinear mixed model). For -t_season-, the GEE estimates adds further to the 
disagreement already seen in Example 23.4. The best agreement with the mixed model is 
achieved by the unstructured correlations, but in particular the estimates obtained by the 
autoregressive correlation structure differ markedly. These data demonstrate that choice of 
working correlation structure is not always of minor importance for the fixed effects, even in 
a large dataset. The correlations show good agreement with the mixed model estimates, and 
still indicate both the compound symmetry and autoregressive structure s to be inadequate. 
The comparison of SEs between the GEE, mixed model and uncorrected analysis follow the 
hierarchicallevels. The herd level SEs are inflated relative to the uncorrected analysis but not 
to the level of the mixed model; this is no surprise because GEE does not take into account 
herd-level clustering. The cow-level variable (-c_heifer-) has similar SEs ofGEE and mixed 
model analysis, and both larger than the uncorrected analysis, and the test-level SEs are 
similar in aU analyses. 

In summary, there is good agreement between the GEE and linear mixed models analysis, but 
the former is limited by its lack of likelihood-based inference (eg for choosing a correlation 
structure) and standard errors for correlation parameters. 
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in ference has been increased widely by the invention and recent advances of a 
simulation-based tool for stat isti cal inference: Markov chain Monte Carlo (MCMC) 
estimation. Mixed models analysis by the Bayesian approach is entirely based on 
MCMC methods. 

We hope the reader will bear with us for the inevitable inadequacy of a few pages' 
introduction to a full, new statistical approach. Our aim can only be to give !ittle more 
than a superficial impression of the ideas and steps involved in a Bayesian analysis 
of clustered data. Recent textbooks on applied Bayesian analysis in the health and 
biological sciences (eg Congdon, 2001, 2003) would be the proper starting point. 
Most Bayesian analyses require specialised software, and the standard choice is the 
(free) BUGS programme developed by the Medical Biostatistics Unit in Cambridge 
(http://www.mrc-bsu.cam.ac.uk/bugs/). BUGS is short for Bayesian analysis using 
Gibbs sampling, which is a particular type of MCMC analysis. The analyses of this 
section were carried out using the MLwiN software (version 1.2). 

23.4.1 Bayesian paradigm 

Bayesian methodology owes its name to the fundamental role that Bayes' theorem (see 
Eq 23.4) plays in it. In Bayesian reasoning, uncertainty is attributed not only to data but 
also to the parameters. Therefore, all parameters are modelled by distributions. Before 
any data are obtained, the knowledge about the parameters of a problem are expressed 
in the prior distribution of the parameters. Given actual data, the prior distribution and 
the data are combined into the posterior distribution of the parameters. The posterior 
distribution summarises our knowledge about the parameters after observing the data. 
The major differences between classical and Bayesian inference are outlined in Table 
23.1, and will be detailed in the sections that follow. 

Table 23.1 Bayesian versus classical approaches to statistics 

Concept Classical approach Bayesian approach 

parameter constant distribution 

prior information on none prior distribution 
parameters 

base of inference likelihood function posterior distribution 

parameter value (ML) estimate statistic of posterior distribution, 
eg median, mode, mean 

parameter range confidence interval probability range of posterior 
distribution 

hypothesis statement test Bayesian factors 

Let us briefty indicate the way the prior and the data are merged, and denote by Y the 
data, by e the parameter (vector), and 

L( 11 e) - the likelihood function, 
f(e) - the prior distribution for e, 
f( el y) - the posterior distribution for e 
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where the fOs are either probability functions (discrete data) or probability densities 
(continuous data). With these definitions, Bayes' theorem says: 

f(81y) = const(Y) L(ll8) f(8) Eq 23.4 

where const( y) is a constant depending on Ybut not on 8. Thus, the posterior distribution 
for 8 is essentially constructed by multiplying the likelihood and the prior, and is a sort 
of compromise between the two. In complex models, the constant depending on Y in Eq 
23.4 is virtually impossible to calculate; therefore, simulation methods such as MeMe 
have had a great impact on Bayesian analysis. 

23.4.2 Statistical analysis using the posterior distribution 

Even if it might seem awkward to discuss the posterior before the prior distribution, 
let us see a simple example of Bayesian analysis (Example 23.8) before turning to the 
discussion ofhow to choose the prior distribution. The net result of a Bayesian analysis 
is a distribution, and the analysis might, therefore, be conveniently summarised by a 
graph (Fig. 23.1). Point estimates and confidence intervals are not truly Bayesian in 
spirit, but values such as the mean, median or mode, and intervals comprising a certain 
probability mass of the posterior (sometimes called credibility intervals) might be 
calculated from the posterior distribution. The two most commonly used point values 
are median and mode, the latter also called a maximum a posteriori (MAP) estimate. 

23.4.3 Choice of prior distributions 

Generally, it can be said that the strength and weakness of Bayesian methods lie in the 
prior distributions. In highly multidimensional and complex problem s, it is possible to 
incorporate model structure by means of prior distributions; such an approach has been 
fruitful, for example, in image analysis. The posterior of one analysis can also be taken 
as the prior for a subsequent study, thereby enabling successive updates of the collected 
and available information (empirical Bayes method). On the other hand, the choice of 
prior distributions might seem open to a certain arbitrariness, ev en if subjectivity in 
the prior does not contradict the Bayesian paradigm. In the past, priors have often been 
chosen in a particular form allowing for explicit caJculation of the posterior (conjugate 
priors) but, with access to MeMe methods, these have decreased in importance. 

A common choice of prior (in particular among less-devoted Bayesian researchers) 
is a non-informative (fiat or diffuse) prior, which gives minimal preference to any 
particular values for 8. As an extreme case, ifwe take p(8) == l in Eq 23.4, the posterior 
distribution is just the likelihood function. So, for example, maximising the posterior 
(MAP estimate ) yields exactly the maximum likelihood estimate. Therefore, we would 
by and large expect Bayesian inference with non-informative priors to be similar 
to likelihood-based inference. To take p(8) constant is not always possible, but an 
altemative is a normal distribution with mean zero and a very large variance, effectively 
making values in a large interval around zero equally probable. For a variance parameter, 
where values below zero are impossible, a standard non-informative distribution is a 
gamma distribution for the inverse of the vari an ce. 
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Assume that we test 10 animals for a disease with highly variable prevalence. In one scenario 
five of the animaI s tested positive; in another, eight animals tested positive. What information 
have we obtained about the disease prevalence in these two scenarios? 

Recall that ali Bayesian analyses involve a priori distribution, in this case for the disease 
prevalence P. Assume (somewhat unrealistically) that we had no particular prior information 
(due to the high variability of the disease) so that a priori ali values of p would seem equally 
likely. Then we could choose a uniform distribution on (0,1) as our prior; this is an example of 
an non-informative prior (section 23.4.3). The probability density ofthe uniform distribution 
is constant (I). The likelihood function for observing the number of positive animaI s out of 
10 are the probabilities of the binomial (10, p). Therefore, if we observe Y positive animals, 
the posterior distribution has density: 

!(PIy) = const(Y) * pY (l_p)lO-Y * 1 = const(Y) pY (l_p)lO-Y 

This probability density corresponds to a beta-distribution with parameters (Y+ 1,10-Y+1). 
Fig. 23.1 shows the beta-distributions with parameters (6,6) and (9,3) corresponding to 
observed values of Y=5 and Y=8, respectively. 

Fig. 23.1 Posterior distributions after 5 and 8 out of 10 animals tested positive 
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If we wanted to summarise our knowledge about p after the testing into a single value, we 
could use the mean, median or mode of the distribution; for the two beta-distributions, they 
equal (0.5, 0.5, 0.5) and (0.75, 0.764, 0.8), respectively. These values can be compared with 
the usual estimates P=0.5 and P=0.8; the agreement of the mode and maximum likelihood 
estimate is no coineidence! If we wanted to summarise our knowledge about P into a 95% 
interval, we could choose the interval with endpoints equal to the 2.5% and 97.5% percentiles 
of the distribution; for the two beta-distributions they are (0.234,0.736) and (0.482,0.940). 
These intervals might be compared with the (exact) binomial confidence intervals of 
(0.187,0.813) and (0.444,0.975). The confidence intervals are wider than the credibility 
intervals. 
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23.4.4 Markov ehain Monte Carlo (MCMC) estimation 

Note This section uses a notation somewhat inconsistent with the rest of the book in 
order to stay reasonably in line with the usual notation in the field. 

Markov eh ain s 
A Markov chain is a process (or sequence) (XO,xI,x2, ... ) of random variables which 
satisfies the Markov property (below). The variables take values in a state space which 
can be either finite (eg {O, l}), discrete (eg {O, I ,2,3 ... }) or continuous (eg an interval, 
possibly infinite). The value of Xo is the initial state of the chain, and the steps of the 
chain often correspond to evolution over time. The Markov property is astrong 
assumption about the probability distribution of the process (X(): 

distribution of(Xt,Xt+j,Xt+2, ••• ) given (Xo,X}, .. X() = 

distribution of(Xt,Xt+j,Xt+2, ••• ) given only X( Eq 23.5 

In words, the future (of the process) depends on the past only through its present state. 
Thus, the chain has a 'short memory'. Some examples of Markov chains are processes 
describing games, population sizes and queues. Examples ofnon-Markov processes are 
periodic phenomena and growth curves. Our interest here is in homogeneous chains in 
which development does not change over time. For such chains the Markov condition 
(Eq 23.5) implies that whenever the chain has reached state x, it evolves from there as 
if it was restarted with xo=x. The importance ofhomogeneous chains is that under some 
further, technical conditions they converge to limiting distribution s as time runs. That 
is, distr(x() ~ n as time runs, where n is the limiting (or stationary) distribution (and in 
this case not the number 3.1415926 ... ). This implies for example that p(x(=x) ~ n(x). 

The simplest example of a homogeneous Markov chain has state space {O,l}. The 
states O and I could, for example, correspond to disease state s (healthy/sick) or system 
states (busy/idle). The transitions from one state to the next are govemed by a transition 
matrix 

where POO + POl = l and PIO + Pl! = l 

For example, from state O the process continues to state l with probability POl (and stays 
in state O with probability Poo). This chain has a stationary distribution whenever all 
probabilities are non-zero, and n(l)= Pol/(POI+PlO). 

Markov ehain Monte Carlo estimation 
The idea ofMarkov chain Monte Carlo estimation is simple, yet surprising. Suppose we 
were interested in a particular distribution n, but that quantities from this distribution 
were difficult to calculate because its analytical form is unknown (the distribution 
we have in mind is a posterior distribution from a complicated model). Suppose 
furthermore, that we were able to devise a Markov chain (~) such that distr (Xf) ~ n. 
Then, in order to calculate statistics from n , we could run our Markov chain for a long 
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time, for example, up to time step T (where Tis large), to make the distribution ofallX{ 
for t 2: T a good approximation to n. Then in order to calculate, for example, the mean 
of the distribution n we could simply average over a sample of observations from the 
chain after time T. In a formula this would appear as: 

1 s=T+n 

E(í'l")~~ IXI 

I=T+! Eq 23.6 

Note that our sample from (X;) is nothing like an independent sample (it is n successive 
values from a Markov chain which will be correlated). Despite the correlation, we can 
still use the formula to estimate E(n); however, our precision will be less than if we 
had an independent sample, and very much so if there is strong correlation in the chain. 
Other statistics than the mean might be computed from the limiting distribution as weil. 
The initial part of the chain, Xo, .. . ,xT is called the burn-in period. 

Apparently the flaw of this idea is the necessity to construct a Markov chain with n as 
the limiting distribution, when we haven't even got an analytical form for n! But that 
tums out to be possible for many multidimensional statistical models where n is known 
only up to a proportionality constant (such as const(Y) in Eq 23.4). To construct a 
Markov chain one needs to specify its transition mechanism (in the example above, the 
transition matrix P), whereas the starting value is of minor importance. There are two 
major, general techniques for doing this: Gibbs sampling and Metropolis-Hastings 
sampling (technically, Gibbs sampling is a special case of Metropolis-Hastings 
sampling but usually is considered to be a separate method). One major practical 
complication involved in MCMC estimation is the length ofthe bum-in period, in order 
to make estimation from Eq 23.6 valid. Constructed Markov chains might converge 
rapidlyor very slowly to their limiting distribution, sometimes so slowly that the chain 
is useless for estimation purposes. Therefore it is cruci al to have tools for monitoring 
the convergence and the required length ofbum-in periods. The MCMC software will 
provide some diagnostics tools for monitoring. We will not go into details with these 
or with the construction of the Markov chains, only mention that Gibbs sampling is 
feasible for linear mixed model s with conjugate priors, whereas Metropolis-Hastings 
sampling can be applied generally but might result in highly correlated and very slowly 
converging chains. 

We illustrate the MCMC techniques on the two recurring datasets of (Examples 23.9 
and 23.10). Ali prior distributions were taken as non-informative using the default 
values of the software. 

The two examples demonstrated that good agreement between likelihood-based and 
Bayesian estimation with non-informative priors can be achieved (without asserting 
this to always be the case). One additional advantage of the Bayesian approach is that 
the models can quite easily be extended to include, for example, non-normal random 
effects (provided that Markov chains can be constructed with good convergence). 

This section included only examples with non-informative priors. As previously 
mentioned, the real strength of the Bayesian approach lies in its ability to combine 
informative priors and data; however, such model s are beyond our present scope. 
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Example 23.9 Bayesian MeMe analysis of pig-pneumonia data 
data=pig_adg 

A Metropolis-Hastings chain with a bum-in of 10,000 samples and the estimation based on 
100,000 subsequent samples gave the following results of the posterior distribution for the 
regression coefficient of -ar_gl-: 

median = 0.436, mode = 0.434, standard deviation = 0.260,95% inter val = (-0.070,0.948) 

The median (or mode) and standard deviation are almost identical to the esti mate and SE 
of the previous (likelihood-based) GLMM analysis. The MeMe analysis also gave a value 
(median) ofthe farm variance (J'~ of 0.990 (0.658). The estimate is somewhat higher than the 
ML estimate, and the standard deviation is about 1.5 times the SE. 

Example 23.10 Bayesian MeMe analysis of somatic cell count data 
data=scc40 _ 21evel 

Two MeMe analyses were carried out using the 2-level somatic cell count dataset (the full 
dataset was not used to avoid the complications ofrepeated measures correlation structures). 
One analysis used Gibbs sampling (the recommended method for linear mixed model s), the 
other used Metropolis-Hastings sampling (for fixed parameters). In theory, both procedures 
are valid provided convergence of the chains. In the table below, we restate for convenience 
also the linear mixed model estimates from Example 21.2. 

Method Mixed model Bayesian and MCMC 

option REML estimation Gibbs sampling Metropolis-Hastings 

Variable 13 SE 13* SE# 13* SE# 

h_size 0.408 0.377 0.405 0.387 0.384 0.394 

c_heifer -0.737 0.055 -0.737 0.056 -0.738 0.055 

t_ season=spring 0.161 0.091 0.161 0.091 0.159 0.090 

t_ season=summer 0.002 0.086 0.001 0.086 0.000 0.086 

t_season=fall 0.001 0.092 0.002 0.092 0.000 0.091 

t_dim 0.277 0.050 0.278 0.050 0.277 0.050 

constant 4.641 0.197 4.641 0.202 4.647 0.206 

herd variance 0.149 0.044 0.150 0.048 0.151 0.049 

error variance 1.557 0.048 1.558 0.048 1.558 0.048 
'median of posterior distribution 

#standard deviation of posterior distribution 

The Gibbs sampled chain converged more rapidly and showed less correlation, so only 
20,000 samples were used for estimation after a bum-in of 10,000 samples. The Metropolis­
Hastings chain showed high correlation for some of the fixed parameters and therefore, 
estimation was extended to 100,000 samples. Overall, the agreement between the three 
sets of estimates is very good. The only noteworthy disagreements are in the herd-Ievel 
parameters. The Metropolis-Hastings estimate for -h_size- is somewhat off the other two 
estimates, but the chain for this parameter was extremely highly correlated and thus, the 
posterior distribution not estimated weIl. AIso the posterior distributions for -h _ size- and the 
constant show slightly higher standard deviations than the SEs from REML estimation. 
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A variety of approaches for dealing \Vith clustered data has been presented in this and 
previous chapters. We conclude \Vith a comparative table of estimates for the pi g­
pneumonia data (Example 23.11), and a summary table for the methods covered. Table 
23.2 gives only a very briefsummary; consult the respective sections for details. 

Example 23.11 Summary of analyses for pig-pneumonia data 
data=pig_adg 

Variable Model ~ SE The estimates and SE show reasonable 

ar_g 1 logistic 0.647 0.220 
agreement between the stratified, fixed 
and random effects models as weH as 

overdispersion 0.647 0.368 GEE and Bayesian estimation. These 

robust variance 0.647 0.276 five approaches would seem acceptable 

fixed effects 0.365 0.268 
choices for analysis. 

stratification 0.346 0.261 

GLMM 0.437 0.258 

GEE 0.354 0.216 

Bayesian 0.438 0.260 

TabJe 23.2 Summary of approaches for cJustered data 

Properties/Features 

Method to account for adjusted adjusted >1 level of esti mate Comments on scope or 
clustering SE r3 clustering of ps use of method 

linear mixed model yes yes yes yes 

GLMM yes yes yes yes subject-specific model 

fixed effects yes yes no no restrictions in predictors 

stratification yes yes no no specific designs 

overdispersion factor yes no no no restricted range of GLMs 

robust SE yes no no no mainly continuous data 

GEE yes yes (no) (yes) PA (marginal model) 

Bayesian mixed models yes yes yes yes different statistical 
approach 

Note The G EE method yields correlations as part of the working correlation matrix. and the altemating 
logistic regression version of GEE for binary data allows for two level s of clustering. 
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SAMPLE PROBLEMS 

1. Compare simple and more complex methods for taking a 2-level structure into 
account for binary data on first service conceptions on Reunion Island. 
a. In order to reduce the data to a 2-level structure, use only the first lactation of 

each cow in the reu _ cfs data. 
b. Fit logistic regression models with -heifer- and -ai- as fixed effects, whereby: 

i. ignoring herd 
ii. inc\uding herd as a fixed effect 
iii. using robustvariance estimates 
IV. using GEE estimation with compound symmetry working correlation 

matrix 
v. using herd random effects and maximum likelihood estimation 
vi. using herd random effects and quasi-likelihood estimation. 

c. Compare the estimates offixed effects obtained by the different procedures as 
weH as the values related to the c\ustering. 
i. Which estimates have subject-specific and population-averaged 

interpretations, respectively? 
ii. Compare also the estimates to those obtained in the 3-level analyses in 

Chapter 22. 
d. Summarise your experience with these data by c\assifying each of the above 

approaches i.-vi. as either unacceptable, acceptable for descriptive purposes, or 
acceptable for statistical inference. 

2. Explore GEE estimation for continuous repeated measures data, using the milk 
yields in the somatic cell count data. 
a. Set up the 'standard' GEE procedure (based on the working correlation matrix) 

for -e cm-with cowsas subj ectsandsuitablychosen (see SampleProblem2I.4 )fixed 
effects of -t_lnscc-, -t_ dim-, -t_season- and -c _ heifer-. 
l. Which are the proper distribution and link function for the model when 

viewed within the generalised linear model framework? 
ii. Does GEE estimation for this model give estimates with subject-specific or 

marginal interpretation? (caution: this is a trick question!) 
b. Run the GEE procedure with different working correlation structure s, as 

specified below, and for each of these record the fix ed parameters and the 
'working parameters' in the correlation matrix: 
i. compound symmetry structure 
ii. autoregressive (first order) structure 
iii. stationary or Toeplitz structure 
iv. unstructured correlations 
v. any other structure of interest to these data that your software offers. 

c. Compare the values obtained by the different GEE estimations, and compare 
them also with the values obtained in Sample Problem 21.4. 
i. Do the regression coefficients agree reasonably wel\? 
ii. Do the standard errors of regression coefficients agree reasonably wel\? 
iii. Do the correlation parameters agree reasonably well, and do both approaches 

(linear mixed model and GEE estimation) suggest a similar correlation 
structure for the repeated measures within a cow? 

IV. How would you expect the GEE estimation with cows as subjects to 
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perform for a herd level predictor (eg -h _ size-)? Confirm your conjecture 
by running a model that inc1udes -h_size-. 

3. Using the previously analysed data and model (Sample Problem 22.2) forpreweaning 
mortality, explore Bayesian estimation by MCMC procedures. 
a. Set up of a Bayesian hierarchicallogistic regression model. 

i. Inc1ude fixed effects of -sow _tx-, -sow ~arity- and -quarter- (three dummy 
variables to represent the four categories), wi th non-informative prior 
distributions for the regression coefficients (eg the default values of your 
software). 

ii. Inc1ude random effects of sows and herds, with non-informative prior 
distributions for the variances (eg the default gamma distributions for the 
in verse variances). 

iii. If you are familiar with the model diagrams used in the WinBugs software, 
draw a diagram ofthe model. 

b. Fit the model using the default MCMC method (typicaIly Metropolis-Hastings 
sampling) and reasonably low values for the bum-in period (eg 1,000 samples) 
and the monitoring (estimation) chain length (eg 5,000 samples). 
i. Evaluate the trajectories for convergence and autocorrelation in each 

component of the chain. Do any of the parameters cause concem? 
ii. If needed, try to improve the estimation by increasing the bum-in period 

and/or the monitoring chain length. 
iii. Compare the posterior distribution obtained for each parameter with the 

previously obtained estimates and confidence intervals, using the median 
(or mode) of the posterior as a point value and a central 95% interval of the 
posterior distribution. 

IV. Explore the dependence of the estimates on the prior distributions by 
changing these to become more or less informative than the default 
settings. 

c. As an altemative to logistic regression, probit regression was briefty mentioned 
in section 22.4.1 and in this last ('advanced') part of the problem we give the 
opportunity of exploring this model in practice. Recall that probit regression 
differs from logistic regression solely by the link function. Most software for 
GLM(M)s allows you to use either the logit or probit links. Furthermore, some 
software for Bayesian analysis using MCMC (eg MLwiN) offers a potentially 
more efficient MCMC method (Gibbs sampling) for a probit regression model, 
using the model's connection to the normal distribution (Browne, 2002). 
l. Fit a usual (non-Bayesian) 3-level probit regression model with the 

same effects as before. 
ii. Compare the parameter estimates to those of the logistic regression model, 

using the rough rule that probit regression estimates (regression 
coefficients and random effect standard deviations) are scaled down by a 
factor of ff/.J3 = 1.81 relative to logistic regression. 

iii. Set up the Bayesian 3-level probit regression model with non-informative 
priors for all parameters, and run the MCMC estimation. 

iv. Evaluate as previously the convergence of the chain, and compare with the 
chain for the logistic regression model. 

v. Compare the posterior distributions with the non-Bayesian estimates. 
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24 

META-ANALYSIS 

OBJECTIVES 

After reading this chapter, you should be able to: 

l. Choose among various options (including meta-analysis) for summarising data from 
a collection ofpublished studies. 

2. Carry out a literature review and data-extraction process to provide data suitable for 
a meta-analysis. 

3. Calculate summary estimates of effect, evaluate the level of heterogeneity among 
study results and choose between using fixed- and random-effects models in your 
analysis. 

4. Present the results ofyour meta-analyses graphically. 

5. Evaluate potential causes ofheterogeneity in effect estimates across studies. 

6. Evaluate the potential impact of publication bias on your study results. 

7. Determine ifyour results have been heavily infiuenced by an individual study. 
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24.1 INTRODUCTION 

When making decisions about animai health interventions, we would like to use ali of 
the information available in order to make the most informed decision. Unfortunately, 
the information in the literature is often inconclusive and could be conflicting. For 
example, the introduction of the use ofrecombinant bovine somatotropin (rBST) in the 
United State s in 1994 initiated a substantial discussion ofthe potential effects of the use 
of the drug on the risk of clinical mastitis in dairy cows. If, in 1998, you carried out a 
review of ali randomised clinical trials of rBST which reported risk ratios (or the data 
required to calculate a risk ratio) for clinical mastitis, you would have found 20 studi es 
(representing 29 groups ofcows) (Doho o et al, 2003b). The point estimates of the risk 
ratio (RR) in those studies ranged from 0.67 (ie a reduction in risk) to 4.87 (a substantial 
increase in risk) (see Example 24.1). However, the effect was not statistically significant 
in 28 of the 29 group s studied. This might have led you to conclude that there was no 
effect of rBST on the risk of mastitis. Nonetheless, you might be left wondering if the 
variation in results was more than would be expected due to chance variation and what 
the power of each study to detect an effect was. 

Similarly, if you carried out an evaluation of the effects of rBST on milk production 
(measured as 3.5% fat-corrected milk), you would have found data on 28 groups of 
cows in 19 different studies (Dohoo et al, 2003a). The point estimates ranged from a 
loss of 0.7 kg/day to a gain of 10.6 kg/day. Although there was a wide range of point 
estimates, the vast majority were over 3 kg/day and 23 of the 28 groups had statistically 

Example 24.1 Individual point estimaíes of risk ratio for effect of rBST on 
clinical mastitis 

data=bst_ mast 

Twenty studies, containing data from 29 separate group s of cows had sufficient data to be 
able to calculate the risk ratio of the effect of rBST on clinical mastitis. The individual point 
estimates from each of the 29 group s were: 

study group RR study group RR study group RR 
1 1 0.83 6 11 1.00 15 21 1.19 

1 2 0.91 7 12 0.96 15 22 1.26 

2 3 1.08 8 13 0.95 16 23 1.40 

3 4 1.30 8 14 1.31 16 24 0.67 

3 5 0.90 9 15 1.45 16 25 1.11 

4 6 1.75 10 16 1.02 17 26 4.87 

4 7 1.45 11 17 1.40 18 27 2.60 

4 8 0.83 12 18 1.80 19 28 4.00 

4 9 1.35 13 19 1.73 20 29 1.37 

5 10 2.50 14 20 1.91 
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significant increases in production. Consequently, while it was clear that there was an 
effect, you might be interested in what the average effect was and why it varied from 
study to study. 

If you wanted to carry out a more formai review of the available data on the effect of 
rBST on mastitis risk, there are several approaches that you could take, and we discuss 
each of these in tum. 

Study-by-study assessment 
The first possible approach would be to consider each study individually and to 
subjectively take into account the unique circumstances of each study. However, you 
would soon find that each of the individual studies had very limited power to detect a 
moderate effect ofrBST and the precision of each estimate of the RR was low. It is also 
likely that, with so much data available, you would like some form of summary estimate 
of the effect derived from aB of the studi es. 

Narrative review 
The sec ond approach would be to carry out a traditional narrative review in which you 
qualitatively assess each of the studies individually and then subjectively combine the 
conclusions from each study into an overall conclusion. If there are a limited number 
of studies to be reviewed, this might be the best approach, although it has several 
limitations. First, it is subjective in nature and thus prone to reviewer bias. In deriving 
an overall esti mate of effect, there is also a tendency to weight all studies equally, and as 
will be seen later, they should not all receive equal weight. Finally, this type of review 
might fail to detect meaningfui effects which were not statistically significant in any 
individual study due to the lack of power of those studi es. 

Pooled analysis 
A third approach would be to contact the authors of all of the individual studi es and 
request the original data from each study. These could then be pooled into a single 
dataset and reanalysed, taking into account the clustered nature of the observations 
(within study and within herds in each study). This would provide an excellent overall 
estimate of effect but is very time consuming and expensive. 

Meta-analysis 
The fourth option would be to carry out a meta-analysis based on the results from each 
of the individual studies. A meta-analysis has been defined as: "The statistical analysis 
of a large collection of analysis results from individual studi es for the purpose of 
integrating the findings" (Glass, 1976). It is a formai process for combining results from 
a number of studies that is being used increasingly in human medicine and, to a more 
limited extent, in veterinary medicine. Meta-analyses have been used most commonly 
to combine results from a series of controlled trials and this chapter will focus on 
that application. However, they can also be used to combine results from a series of 
observational studies as was done in a recently published meta-analysis of the effects 
of disease on reproductive performance in dairy cows (Fourichon et al, 2000). For a 
discussion of some of the specific issues related to this latter application, see Chapter 32 
ofRothman and Greenland (1998) or Egger et al (200 l). A more complete description of 
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meta-analyses can be found in journal articles (Dickersin and Berlin, 1992; Normand, 
1999), textbooks (Egger et al, 200 l; Sutton et al, 2000; Petitti, 1999) or at the website of 
the Cochrane Collaboration (Cochrane Collaboration, 2001). The las t reference relates 
to an international organisation set up to help health-care professionals make informed 
decisions through the use of systematic reviews of health research. 

24.2 OBJECTIVES OF META-ANALYSIS 

The objectives of a meta-analysis are to provide an overall esti mate of an association 
or effect based on data from a number of scientific studies and to explore reasons for 
variation in the observed effect across studies. It accomplishes this by imposing a 
systematic methodology on the review process. Because it combines data from multiple 
studi es, there is a gain in statistical power for detecting effects. When computing an 
overall estimate of effect, it takes into account both the individual study estimates and 
the precision ofthose estimates (standard errors) so that the results from each study are 
weighted appropriately. 

Meta-analyses can be used to review eXlstmg evidence prior to making clinical 
or animal-health policy decisions, or as a precursor to further research by better 
quantifying what is already known, and identifying gaps in the scientifk literature. A 
meta-analysis might be combined with a traditional narrative review and hence, should 
be thought of as complementary to that review process. 

24.3 META-ANALYSIS PROCESS 

The steps involved in carrying out a meta-analysis are: 
l. specify the question to be answered 
2. define inclusion/exclusion criteria for studi es to be included in the review 
3. find alI of the relevant studies 
4. evaluate study quality and select relevant studies 
5. extract the relevant data from each study 
6. conduct the analysis 
7. interpret the results. 

24.3.1 Specifying the question 

When specifying the question to be answered, you need to keep in mind what is most 
important from a clinical or animal-health policy objective, rather than letting data 
availability drive the study objective. It is often more desirable to address a more 
general question, which will broaden the eligibility characteristics for studies to be 
included in the review, rather than to address a very specific, but restrictive, question . 

... far better an approximate answer to the right question, which is often vague, 
than an exact answer to the wrong question, which can always be made 
precise. 

Tukey (1962) quoted in Dickersin and Berlin (1992) 
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For example, a review of the ability of fl blockers to reduce the short-term risk of 
myocardial infarction was based on studies in which 12 different drugs had been used 
(Freemantle et al, 2002) rather than focusing on a single specific drug. This enhanced 
the generalisability of the results. 

24.3.2 Define the inclusion/exclusion criteria 

The first step in determining what studies are to be included in the meta-analysis is the 
decision about what outcome(s) is to be evaluated. Obviously, only studies reporting 
the outcome of interest can be included. In general, issues related to the internal and 
external validity of each study will also need to be considered. Some specific issues 
which you might also want to consider when deciding what studies should be included 
in the meta-analysis include (but are not limited to): 

study design issues 
should only randomised controlled tri als be considered or should other 
forms of studies (historical control trials, observational studies) be 
included? 
should the review be restricted to double-blind studies? 

should only studies which control for potential confounders (eg animai age) be 
included? 
other study characteristics 

should a minimum study size criterion be employed? 
should studies be limited to those carried out in aspecific geographic 
region? 

logistic concems 
should the review be limited to studies published in aspecific language(s)? 
should only studi es for which complete reports are available be used? 

24.3.3 Find the studies 

The literature review on which a meta-analysis is based must be both complete and well­
documented. The most common ly used approach to ensuring that ali published studies 
are found is to carry out computer-based literature searches of the major electronic 
databases (eg Medline, Agricola, Index Veterinarius and the Veterinary Bulletin) and 
to follow this with a review of the reference lists in ali of the papers identified through 
the computer-based search. The search process, including the names and date ranges 
of ali databases searched along with the search strategy (eg keywords used) must be 
documented. When selecting studies for inclusion, any exclusions not already specified 
in the inclusion/exclusion criteria need to be documented. 

One of the difficult issues to address is whether or not the review should include 
unpublished studies. The potential effects of publication bias are discussed in section 
24.4.5, but identifying and obtaining results from unpublished studies is a difficult task. 
In some cases, databases of funded research projects could be used to identify studies 
that have been conducted, but not published. Alternatively, personal contact with 
investigators working in the field might identify unpublished studies. 
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24.3.4 Evaluation of study quality 

There are two general approaches to the evaluation of study quality. The first is to 
establish a checklist of criteria that must be met for a study to be included. For example, 
while a meta-analysis might be based only on randomised controlled trials (ie the 
eligibility criterion), other issues of study design (eg double blinding, specific formai 
method of randomising treatment allocation, clear criteria for eligibility of subjects in 
the tria!) could also be evaluated. If a study does not meet all ofthese additional criteria, 
you might decide to exclude it from the meta-analysis. However, if very stringent 
criteria are set, you might end up excluding most studi es. 

The second approach is to evaluate study design issues and assign a quality score to 
the study. This quality score can be used to weight the studies in the meta-analysis (ie 
poor quality studies receive less weight when estimating the summary effect). This 
introduces a degree of subjectivity to the meta-analysis so should be carried out with 
caution and the method of assigning the quality score clearly defined. Altematively, 
you can evaluate the quality score as a potential source ofvariation in study results (do 
poor-quality studi es have more dramatic results than high quality studies?). 

24.3.5 Extraction of the relevant data 

The layout and presentation of results in epidemiologic studies is highly variable. This 
is particularly true for observational studies, but it is even an issue when reviewing 
randomised controlled trials. The two fundamental pieces of information that you need 
from each study are the point esti mate of the outcome( s) of interest and a measure of 
the precision ofthat estimate (SE or CI). In some cases, these are not presented directly, 
but sufficient data are available to allow you to compute the required information. For 
example, in the rBST studies referred to above, the primary outcome for most studies 
was a measure of productivity, but the number of cows in each study group which had 
one or more clinical cases of mastitis was also reported. From these data, the risk ratio 
for mastitis and its CI could be computed and used in the meta-analysis. 

For outcomes measured on a binary scale (eg occurrence of clinical mastitis), you need 
to decide if you will extract and record a relative measure of effect (eg risk ratio - RR) 
or an absolute measure (eg risk difference - RD). It is generally more meaningfui to use 
relative measures for summarising effects. The summary esti mate can then be applied to 
specific populations in which the overall risk of disease is known (or can be estimated) 
to compute an absolute effect ofthe intervention. Regardless of which measure of effect 
is used, you should record the frequency of disease (eg risk) in the control group as this 
might be a source ofheterogeneity of study results (see section 24.4.4). 

Before starting the data-extraction process, you need to develop a template on which 
to record ali of the fundamental information about the study, including any information 
required in the evaluation of the quality of the study or to evaluate as a possible cause 
of heterogeneity among study results. If resources permit, it is desirable to carry 
out duplicate data extraction (ie data extracted independently by two investigators) 
followed by acomparison of the two datasets to identify and resolve any differences. 
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When carrying out the data extraction, it is also important to watch for duplicate 
reporting ofresults. In some cases, data from an individual study might be published in 
multiple locations (eg acompany report and a peer-reviewed journal publication) but 
must only be included in the meta-analysis once. Example 24.2 describes the literature 
review and data-extraction process for the meta-analysis of rBST. These data are used 
for aU subsequent examples in this chapter. 

Example 24.2 Literature review and data extraction for meta-analysis 

The meta-analysis of the effects of rBST on dairy cattle productivity and health was carried 
out by an expert panel of the Canadian Veterinary Medical Association at the request of 
Health Canada. The data for the meta-analyses were obtained through the following process. 
A literature review of three electronic databases covering the period 1984 to 1998 identified 
a total of 1,777 references related to rBST. A review of the ütles identified 242 manuscripts 
that potentially contained results from randomised clinical trials or were relevant reviews of 
the subject. These were all reviewed by the panel members and 60 identmed as useful for 
the review. These were combined with 26 unpublished study reports provided as part of the 
company's submission in support of the request for registration ofthe drug. From an ofthese 
reports (n=86), 53 studies (representing 94 distinct groups of cows) were found to contain 
original data from randomised controlled trials. Estimates of effect (n=546) on the various 
outcomes of interest were obtained and used in the meta-analyses. 

Only data relating to milk production (3.5% fat-corrected milk) and the risk of clinical 
mastitis are presented in this chapter. A more detailed description of the methods used and 
estimates of effects on other parameters can be found in the panel's report (Dohoo et al, 1999) 
or subsequent manuscripts (Dohoo et al, 2003a,b). 

24.4 ANALYTlCAL PROCEDURES IN META-ANALYSES 

There are a number of important issues to be addressed when carrying out the analyses 
for a meta-analysis review. These include: 

• whether to base the analysis on a fixed- or random-effects model 
• how to compute the summary estimate 
• how to present the data 
• an evaluation of possible reasons for heterogeneity of study results (ie why 

different studies produce different estimates ) 
• a search for evidence of publication bias 
• an evaluation of the influence that individual studies have on the outcome. 

24.4.1 Fixed versus random effects models 

A fixed-effects model is based on the assumption that the effect of the factor being 
investigated is common across studies and that any variation among studies is due only 
to random variation and can be written as: 
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Eq 24.1 

where r; is the effect estimate from each study, fl is the overall (average) effect and a; 
is the known variance (SP) from each study. 

A random-effects models assumes that a distribution of effects exists, resulting in 
heterogeneity among study results. It is most common to assume that the study effects 
have a normal distribution and they can be written as: 

~ - N(p;,an 
fl; - N(P, a 2 

) Eq 24.2 

where r;, fl and a; are as in Eq 24.1, fl; are the random effects for each study and cr is the 
between-study variance. Random-effects models generally produce a point estimate of 
the summary effect that is similar to that obtained from fixed-effects model, but which 
has a wider confidence interval than a fixed-effects model. 

A statistical test ofheterogeneity (referred to as a Q statistic) can be used to detennine 
if the variability in the individual study estimates of effect is greater than would be 
expected due to chance (Egger et al, 2001). The fonnula for this statistic depends on 
the weighting procedure selected for producing the summary esti mate (section 24.4.2), 
but in aU cases it is expected to have a X2 distribution with k-l df (where k is the number 
of studies). This test has relatively low power for detecting heterogeneity when the 
number of studies is small, so the possibility of heterogeneity of effects should not be 
ruled out simply because the test yields a non-significant P-value. You might want to 
relax the P-value required for assessing heterogeneity (eg 0.1 instead of 0.05). 1fthere is 
any evidence ofheterogeneity, potential causes of that variability should be investigated 
(section 24.4.3). An estimate of the variance of the (assumed) nonnally distributed 
study results can also be obtained. 

Results from fitting both fixed- and random-effects models of the effect of rBST on 
milk production are shown in Example 24.3. 

24.4.2 Summary estimate 

Regardless of whether a fixed- or random-effects model is used, a system of weighting 
study results based on the precision of their estimates must be employed to compute the 
weighted average summary effect. The most commonly used procedure is to weight the 
estimates by the inverse of their variance (see Egger et al, 2001 for relevant fonnulae). 
This procedure is applicable for pooling results from model s of continuous (Iinear 
regression, ANOVA) and discrete (logistic, Poisson regression) data. Ali examples used 
in this chapter are based on this approach. 

Altemative approaches based on the Mantel-Haenszel procedure or an approach 
attributable to Peto are available (Eg ger et al, 200 l). The forrner might be better than 
the inverse variance approach if data are sparse (such as in studies where the outcome is 
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Example 24.3 Fixed- vs random-effects models 
data=bst_milk, bst_mast 

551 

Both fixed- and random-effects models were fit to both the milk production data and mastitis 
data from the meta-analysis of the effects of rBST on dairy cow productivity and health. In 
ali models, the inverse variance approach (section 24.4.2) was used to assign weights to the 
study results. 

Milk production (28 studies): 

Pooled 
estimate 95% CI 

Method (kg/day) SE Z P Lower Upper 

Fixed 4.465 0.159 28.078 0.000 4.153 4.777 

Random 4.434 0.297 14.911 0.000 3.851 5.016 

The Q statistic for heterogeneity was 79.9 with 27 degrees of freedom (P=O.OOO) indicating 
there was strong evidence of heterogeneity among study results. Potentíal reasons for this 
heterogeneity will be explored in Examples 24.5 and 24.6. As expected, the point estimates 
for the summary effect were quite similar, but the random-effects model produced wider 
confidence intervals. 

Based on the random-effects model, the estimate of the between-study variance was 
1.42 (SD=1.2) suggesting that 95% of the effects ofrBST should!ie between 4.4-2*1.2=2.0 
kg/day and 4.4+2'" 1.2=6.8 kg/day. 

Mastitis (29 studies): 

Pooled 
estimate 95% CI 

Method (RR) Z P Lower Upper 

Fixed 1.271 4.016 0.000 1.131 1.429 

Random 1.271 4.016 0.000 1.131 1.429 

SEs have not been computed because the analysis is carried out on the lnRR scale. The Q 
statistic for heterogeneity was 16.4 with 28 degrees of freedom (P=0.96) suggesting there was 
no evidence of heterogeneity among study results. Note Because Q <df, the between-study 
variance is assumed to be zero and the results from the fixed- and random-effects models are 
identical. 
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a relatively rare event). The latter is applicable to studies in which odds ratios or time­
to-event outcomes are being pooled. 

The most commonly used random-effects model is the DerSimonian and Laird model 
(DerSimonian and Laird, 1986) in which the study effects are assumed to follow a 
normal distribution, with the variance of that distribution being estimated from the data. 
It is most commonly used with inverse variance weighting, but could altematively be 
based on Mantel-Haenszel weights. If the heterogeneity statistic (Q) is less than its df, 
then the variance of the distribution is assumed to be zero and this model produces 
results identical to a fixed-effects model. 

24.4.3 Presentation of results 

One of the most important outputs from a meta-analysis is a graphic presentation of the 
results with the most common ly used format referred to as a forest plot which displays 
the point estimate and confidence interval of the effect observed in each study along 
with the summary estimate and its confidence interval. Fig. 24.1 shows a forest plot 
for the effects of rBST on the risk of clinical mastitis and the elements of the plot are 
described in Example 24.4. 

ln some cases, it might be desirable to order the individual studies according to some 
criteria such as year of completion (to see if there is a trend over time) or quality score 
(to see ifstudy quality affects the observed effects). 

24.4.4 Evaluating heterogeneity 

There are a variety of possible causes of heterogeneity of study results. Heterogeneity 
might be due to real differences among studi ed populations in their response to 
treatment or due to differences in study protocols. 1fthere is evidence ofheterogeneity, 
the summary effect must be interpreted with caution because it represents an average 
effect, rather than a specific effect which is applicable to any given population. When 
heterogeneity is observed, it is important to try to determine its cause. 

Two approaches to investigating causes of heterogeneity are to carry out stratified 
analyses or use meta-regression techniques. In a stratified analysis, the data are 
stratified according to a factor thought to influence the treatment effect, and separate 
meta-analyses carried out in each ofthe strata. The disadvantage to this approach is that 
individual strata might contain relatively few studies. Example 24.5 presents a stratified 
(by parity group) meta-analysis of the effects of rBST on milk production. 

The sec ond approach is to carry out a meta-regression with one or more factors that 
might influence study results included as predictors. A meta-regression is simply a 
weighted regression of the study results on the factors ofinterest (weights equal to the 
inverse variance of each study's results are most common ly used). If the number of 
studies is limited, factors might be investigated one at a time, or if there are sufficient 
data, a multivariable regression model could be built. Example 24.6 shows a meta­
regression ofthe effects ofrBST on milk production on parity group, daily drug dosage 
and duration oftreatment (with each factor investigated individually). 
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Example 24.4 Forest plot 
data=bst_ mast 

Fig. 24.1 shows a forest plat of the risk ratios for the effect of rBST on the risk of clinical 
mastitis. 

Fig. 24.1 Forest plot 
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ln these plots, each horizontalline represents the results from a single study (or distinct group 
of cows within a study). Each line is labelled with a unique label (the group number). The 
length of the line represents the 95% confidence interval for the parameter estimate from 
the study. Note Some lines have been truncated at 6 or 0.3. The centre of the shaded box on 
each line marks the point estimate of the parameter from that study, and the area of the box 
is proportional to the weight assigned to the study in the meta-analysis. Studies with large 
boxes have had astrong infiuence on the overall estimate. The dashed verticalline marks the 
overall estimate of the effect. The <> at the bottom of the dashed line shows the confidence 
interval for the estimate of the overall effect. The solid vertical line marks the value where 
rBST would have no effect (ie RR= 1). 

As you can see, there was considerable variability among the individual study point estimates 
of the RR and only one ofthem was statistically significant (CI excludes l). However, as seen 
in Example 24.2, this variability was not greater than what would be expected due to chance 
(given the generally small size of most of the studies). Group 22 had the large st infiuence on 
the summary result (ie largest weighting). 
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Example 24.5 Stratified meta-analysis 
data=bst_ milk 

Separate meta-analyses of the effect ofrBST on milk production (kg milk/day) were carried 
out for each ofthe three parity groups: (primiparous, multiparous and no separation by parity) 
(ie studies which did not stratify on the basis of age). 

Parity group Number of groups Estimate Heterogeneity P 

Primiparous 6 3.303 0.01 

Multiparous 7 4.360 0.68 

No separation by parity 15 5.060 <0.01 

Parity seems to account for some of the heterogeneity among studies, but the results are 
not clear eut. Within the groups of multiparous cows, there was no longer any evidence of 
heterogeneity. However, there was still heterogeneity among the studies based sole ly on 
primiparous cows. You might have expected groups in which data from ali parities were 
combined to have an effect intermediate to the other two groups, but this was not the case. 
However, the number of studies within each group was quite small, so the summary effects 
must be interpreted with caution. 

24.4.5 Publication bias 

When carrying out a meta-analysis, you need to consider whether or not it is Iikely 
that there are studies that have been completed, but for which the resuJts have not been 
published. Study results that are not statistically significant or which are unfavourable 
to the sponsor of the study might be less likely to be published than significant, 
favourable results. Unfortunately, it is often very difficult to obtain unpublished study 
results. However, if you have any indication that unpublished results constitute a 
substantial portion of data available, then you should make an effort to obtain them. On 
the other hand, one argument against including unpublished results in a meta-analysis 
is that those results have not been pe er reviewed and thus, do not have one of the key 
components in assuring data quality. 

There are three general approaches to dealing with the problem ofpublication bias. The 
first, as described above is to contact investigators directly to obtain unpublished results, 
or to at least determine how many unpublished results there are. A second approach is 
to estimate how many studies with 'nul\' results (ie no observed effect) would have to 
exist before a summary effect from your meta-analysis would become non-significant. 

The third approach is based on an evaluation of the relationship between study results 
and their precision. A funnel plot displays each study's estimated effect plotted against 
its SE. If publication bias is a problem, there will likely be a number of studies with 
large effects and large SEs but an absence or shortage of studies with large standard 
errors and small or no effects. These latter studies are the ones not published due to 
publication bias. Fig. 24.2 shows a funnel plot for the rBST -mastitis meta-analysis in 
Example 24.7. 
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Example 24.6 Meta-regression for evaluating causes of heterogeneity 
data=bst_ milk 

Separate meta-regressions were carried out to evaluate the effects of parity group, duration of 
treatment and daily dosage on the effects of rBST on milk production. 

No of studies = 28 
Parity cr2 esti mate = 1 .186 

Coet SE Z P 95% CI 

parity=2+ 1.966 0.718 2.74 0.006 0.558 3.37 

parity=combined 1.210 0.833 1.45 0.146 -0.422 2.843 

constant 3.068 0.609 5.04 0.000 1.874 4.262 

Duration cr2 estimate = 1.072 

duration -0.008 0.004 -2.11 0.035 -0.015 -0.001 

constant 6.081 0.827 7.35 0.000 4.461 7.702 

Dosage cr2 esti mate = 1.471 

daily dosage 0.047 0.033 1.43 0.152 -0.017 0.111 

constant 3.013 1.037 2.91 0.004 0.981 5.045 

Both parity group and study duration were significant predictors of the observed study 
effects. The parity effects had an overall significance ofP=0.02 and the coefficients mirrored 
the effects seen in the stratified analyses (Example 24.5). For each additional day in study 
duration, the effect of rBST decreased by 0.008 kg/day. There was a trend towards greater 
treatment effects with increasing daily dosage, but this was not statistically significant. The 
al are the estimates of the between-study variance after adjustrnent for the predictor in the 
meta-regression. In each of the analyses, the estimate of the between-study variation (al) lay 
between 1.0 and 1.5. 

There are a number of statistical tests based on the principle of the funnel plot. These 
evaluate the relationship between study results and their SEs using a rank correlation 
(Begg's test: Segg and Mazumdar, 1994) or a linear regression approach (Egger's 
test: Egger et al, 1997, or meta-regression). If an association exists, you conclude 
that publication bias might be influencing your results. However, the tests are not 
appropriate where you are looking for either positive or negative effects because they 
would not be able to detect a shortage of study results in the 'middIe' ofthe funnel. 

24.4.6 Inftuential studies 

As in most regression-based models, it is important to determine if individual studies 
are having a profound influence on the summary estimate derived from a meta-analysis. 
If they are, you need to determine whether or not this is warranted. It might well be 
that one study was much larger than the others and consequently provides a much 
more preci se estimate of the effect. In this situation, you need to evaluate that study to 
determine if it was of sufficiently high quality that you can accept the results. 
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Example 24.7 Publication blas 
data=bst_ mast 

A funnel plot (lnRR vs SE of InRR) was generated from the rBST -mastitis data. 

Fig. 24.2 Funnel plot 
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If publication bias was a serious concem, we would expect a substantial number of studies 
with large SE and large effects (either positive or negative) to appear on the graph and 
relatively few studies with small effects (ie around the null value of O) but large SE. There is 
little evidence ofpublication bias in these data. 

One way to evaluate the effects ofindividual studies is to sequentiaIly delete the studies 
from the meta-analysis and determine how the estimate of the summary effect changes 
(Example 24.8). The revised point estimates can alI be plotted in an influence plot (see 
Fig.24.3). 

24.5 USE OF META-ANALYSIS 

As indicated, the most common use of meta-analysis is for summarising data from 
a series of controlled trials. They have been used less in veterinary medicine than 
in human medicine because we seldom have multiple trials of a single product (or 
closely related group of products) on which to base a meta-analysis. However, with the 
increasing desire of the profession to have reliable field-based evidence of the efficacy 
of products used, the avaiIability of clinical-triaI data will increase. 

Meta-analysis can also be used in research programmes. They might either serve as a 
'definitive study' by combining the results from many previous studies or they can be 
used to help design future studi es by providing the be st estimate of effect for use in 
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Example 24.8 Influential studies 
data=bst_ mast 

An influence plot was generated to determine the effect of removíng índividual studies from 
the meta-analysis of rBST on the risk of clinical mastitis. 

Fig. 24.3 Influence plot 
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No índividual study (group of cows) had an undue influence on the summary effect estimate. 
Omitting Group 5 had the largest effect and in this case the In(RR) rose from 0.24 to 0.27 
(equivalent to a rise in RR from 1.27 to 1.31). This is a relatively small change, indicating that 
no individual study had a particularly large influence on the summary RR estimate. 

sample-size calculations. If a series of studies is being conducted, the resuIts of a meta­
analysis can also provide a 'stopping rule' by identifying when sufficient evidence of 
the efficacy of a product exists to warrant halting research on it. A meta-analysis might 
also identify factors that strongly infiuence study results (ie contribute to heterogeneity) 
and guide future research into those effects. 

Meta-analysis can also be used to help guide policy decisions. For example, the meta­
analysis of the effects of rBST on dairy cattle health and production was one of the 
pieces of information used by Health Canada when making a decision regarding the 
registration of the drug for use in Canada (in this case the decision was to not register 
the drug). 
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SAMPLE PROBLEMS 

l. A new treatment (treatment X) has been developed to aid in the treatment of Staph. 
aureus mastitis in dairy cows. The manufacturer claims that when used in 
conjunction with conventional antibiotic dry-cow therapy, the product increases 
the treatment success rate. There have been seven clinical trials carried out and they 
are summarised below. Your assignment is to: 
a. Come up with the be st possible estimate of the effect of this treatment. 
b. Determine if the estimate of effect depends on whether the investigators took 

the age of the cow into consideration in the analyses. 
c. Determine ifthe estimate of effect depends on whether it was used in conjunction 

with cloxacillin or a cephalosporin-based dry-cow product. 

Clinical trial 
l. This was a trial carried out in 162 Staph. aureus infected cows with 510f 82 cows 

that received treatment X in addition to cloxacillin being Staph aureus negativ e at 
calving while 27 of 80 cows receiving only cloxacillin were negative. 

2. In this 116-cow study in which the antibiotic used was cloxacillin, the logistic 
regression output was as follows (outcome was 'cure' ofinfection): 

Factor Coet SE 

Tx X -0.27 . 0.37 

age -0.03 0.001 

3. The logistic regression output from this 158-cow study in which the antibiotic used 
was cephalosporin was (outcome was 'cure' ofinfection): 

Factor 

TxX 

age 

OR 

1.6 

0.9 

CI 

0.85-2.95 

0.85-0.94 

4. In this 54-cow study, cephalosporins were used along with treatment X and 19 of 
28 cows that got Tx X eliminated Staph. aureus while only 8 of 26 control cows 
did. 

5. The logistic regression output from this 145-cow study in which the antibiotic 
cloxacillin was used (outcome was 'cure' ofinfection): 

Factor 

TxX 

age 

Coet 

0.87 

-0.06 

CI 

0.21-1.53 

-0.09 - -0.03 
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6. The logistic regression output from this 71-cow study in which the antibiotic used 
was cephalosporin was (outcome was 'cure' ofinfection): 

Factor OR 

TxX 3.07 

age 0.8 

CI 

1.17-8.03 

0.7-0.9 

7. This was a trial carried out in 44 Staph. aureus infected cows with 17 of 23 cows 
that received treatment X in addition to cloxacillin being Staph. aureus negative at 
calving while 5 of21 cows receiving only cloxacillin were negative. 
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ECOLOGIC AND GROUP-LEVEL STUDIES 

OBJECTIVES 

After reading this chapter, you should be able to: 

1. List the three major categories of variable used in ecologic models. Describe their 
attributes and apply these to a specific research question. 

2. Describe the constructs of a linear model at the individual and group level and the 
constraints on estimating incidence rate ratios at the group level. 

3. Describe how within-group misclassification, group-level confounding and group­
level interaction can effect causal inferences. 

4. Describe the basis of the eco log ic and atomistic fallacies. 

5. Identify scenarios where ecologic studies are less likely to produce cross-level 
inferential errors. 

6. Describe the rationale for using non-ecologic group-level studies in epidemiologic 
research. 
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25.1 INTRODUCTION 

The initial part of this chapter deals with studies in which groups of subjects are 
sampled, and analyses are conducted at the group level when the researcher wishes to 
make inferences to individuals. These are called ecologic studies. The primary analytic 
feature of an ecologic study is that we do not know the joint distribution of the risk 
factor(s) and the disease within each group. In other words, although we know the 
proportion exposed and the risk or rate of cases within each group, we do not know the 
proportion of exposed cases, typically because we lack individuallevel data on the risk 
factor, the disease, or both (Rothman and Greenland, 1998). 

For example, in an ecologic study of the role of selected micro-organisms as potential 
causes of respiratory disease (BRD) in pens of feedlot cattle, we would know the pen­
level incidence of BRD and the pen-level frequency of infection with each organism; 
however, we would not know the joint distribution of BRD and each organism. The 
lack of this piece of information can lead to inferential problems. Thus, given a 
positive association between infection with a micro-organism and higher rates of BRD, 
it is possible that the animals developing BRD are those that are not infected with the 
organism in question. 

Ecologic studies might be called exploratory if there is no direct measure of the 
exposure of interest or if there is no specific exposure variable being studi ed. For 
example, if a study portrayed the rate of disease (eg E coli O 157 in humans) by 
administrative area on a map, we might use previous knowledge of local features (eg 
cattle density) to explain the observed spatial variation in rates of disease, even though 
there was no direct measurement of this factor in the study. Ecologic studies might be 
called analytic if the exposure factor is measured and inc\uded in the analysis. 

In general, ecologic studies can be conducted using the same approaches as used for 
studying individuals; namely by: 

l. comparing the frequencies of exposure and disease among a number of group s 
at a given point in (or during a limited period 01) time, similar to cross-sectional 
studies, or 

2. estimating the changes in both exposure and disease frequencies during agiven 
period in one or more groups (often in just one group) as in cohort or case­
control studies, or 

3. a combination of the two types. 

If the groups are small, the analysis should account for the different precision of 
disease rates by group. Spatial analysis might require adjustment for spatial correlation. 
Temporal studies might need to adjust for a lag period and inferences might need to take 
account of changes in diagnostic standards. Studies that inc\ude an extended period of 
time might have to account for and try to separate the age, period, and cohort effects 
on the outcome. This leads to an identifiability problem as these three components 
are interlinked and cannot be assessed independently (Osmond and Gardner, 1989; 
Robertson et al, 1999 for a discussion). Studies that combine both among-group and 
temporal approaches might provide a more thorough test of the hypothesi s than either 
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approach alone. We begin our discussion by as king ourselves why we might study 
groups, especially ifwe want to make inferences to individuals? 

25.2 RA TIONALE FOR STUDYING GROUPS 

Particularly in veterinary medicine, the group (eg the herd) is of ten the samp!ing 
unit as weil as the unit of interest; these are not ecologic studi es (Carver et al, 2002). 
The aggregate level, for example, litters of animals, hives of bees, sea-pens of fish, 
flocks/barns of poultry, mobs of sheep etc is often of more interest than the elements 
or components (ie individual piglets, bees, chickens, fish, sheep etc) of the group. The 
recent increase in the use of spatial statistics of ten focuses on even larger aggregates 
such as cities, districts, watersheds, and so forth. Providing the variables are 
measured at the group level and any inferences are directed towards this level 
this poses no particular problems. See section 25.7 for further discussion of non­
ecologic group-level studies. It is often the intent, however, to make inferences about 
individuals based on the results from the group-level analysis, and in doing this, one 
must be very carefui (reasons for this are discussed subsequently). Nonetheless, the 
major advantages of studying groups are: 

Measurement constraints at the individual leve10ften, it is difficult to measure 
exposure at the individual level (eg level of pollutants, dietary intake) so an average 
for the group might suffice. ln other circumstances, the variation in diet within an 
individual might be large, whereas the group average might adequately reflect exposure 
to specific nutrients for the purposes of the study. 

Exposure homogeneity 1fthere is !ittle variation in exposure among individuals within 
a group, it might be difficult to assess the exposure's impact on them. For example, if 
ali animals within a group are managed the same, one might need to study group s to 
observe the apparent effect of different management schemes. Hence, us ing groups 
with a wider variation in level or type of exposure than exists within groups would be 
helpfuI. 

Interest in group-level effects These arise naturally if one is studying the impact of 
area-wide programmes, or area-wide exposures. For example, in many circumstances 
vaccines, different rations, types of housing, and treatments (eg water or feed-based 
antimicrobials) can only be delivered, or implemented practically, at the group level. 
Hence, farms or groups are of interest. 

Simplicity of analysis Often it appears to be easier to display and present group-level 
rather than individual-level data. However, group-level analyses might hide serious 
methodological problems if we are attempting to make inferences to individuals (see 
section 25.4). 
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25.3 'fyPES OF ECOLOGIC VARIABLE 

The categorisation of variable types within ecologic studies is still dynamic (see Diez­
Roux, 1998a,b and McMichael, 1999, for a discussion). For OUT purposes, we will use 
three categories: aggregate, environmental and global variables. 

25.3.1 Aggregate variable s 

Aggregate variables are summaries of measurements made on individuals within 
the group such as: the proportion exposed, the average age, average nutrient intakes 
etc. They can relate to the predictor variables, the outcome variable, or both. When 
a disease is the outcome, it is usually measured using rate s because most group s are 
open; if closed, then a risk-based approach can be used. This type of variable is also 
called a derived variable. The type of derived variable used in eco log ic studies is 
that which is form ed, at least in part, by aggregating individual observations to form 
a summary variable (usually the mean) for the group (eg proportion exposed, feed 
conversion ratio, average daily gain, average somatic cell count, disease rate, mortality 
rate etc). 

25.3.2 Environmental, or contextual, variables 

Usually these are physical characteristics of the group such as local weather, level 
of pollutants in the area, or herd characteristics such as bulk-tank somatic cell count, 
characteristics of water supply (eg deep weil versus surface water), and management 
strategy (eg teat-dipping strategy or colostrum-feeding protocol). The key feature of 
these variables is that they have an analogue at the individuallevel (eg the colostrum­
feeding protocol might state that every calf gets a litre of colostrum within four hours 
of birth; whereas the individuallevel factor would indicate whether this particular calf 
received that amount of colostrum within that time period). Often we do not actually 
measure these variables at the individual-level because of practical constraints and for 
analysis, we assign the same value of the variable to every individual within the group. 
This approach becomes especially tenuous as the within-group variance in that factor 
increases. For example, a farmer might say that ali calves get adequate colostrum, but 
in fact, only a small proportion actually receives it in the appropriate time or mann er so 
serious misclassification results. In addition, it might weil be that there is an interaction 
between the factor at the individual level (eg titre to agent x) and the contextual 
variable for the same factor (eg percentage of animals with a protective titre), as in 
herd immunity and these need to be identified for proper inference. 

25.3.3 Group, or global, variables 

These variables reflect a characteristic of groups, organisations or places for which 
there is no analogue at the individuallevel (eg population density). Global variables 
include farmer characteristics, and herd characteristics or management strategies such 
as herd size, open versus closed herd policy, density ofhousing, reproductive strategies, 
and some disease prevention programmes. 
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25.4 IssuEs RELATED TO MODELLING APPROACHES IN ECOLOGIC STUDlES 

We begin by noting that, at the group level, both predictor and outcome ecologic 
variables often are measured on a continuous scale, even though factors might be 
dichotomous at the individual level; this is particularly true when aggregate variables 
are used. As menti one d, if the outcome at the group level is c1assified as dichotomous 
(eg disease present or absent) and the inferences are at the group level, the study is not 
an ecologic study and can be pursued with the same features and constraints as ordinary 
observational studies (Chapters 7-10). With aggregate variables, because the outcome 
reflects the average rate or risk for the group, a natural scale for modelling group level 
variables is the linear regression model (as outlined in Chapter 14) in which we regress 
the grouped outcome variable on the grouped exposure variables. Some prefer to use a 
Poisson model (see Rothman and Greenland, 1998, pp 464-465 for other examples of 
analytic approaches. Ducrot et al, 1996, also discuss these in the context of veterinary 
medicine). 

As an example of the linear model approach, we can imagine the continuous outcome 
y representing the risk or rate of disease (eg 0.15 per animal-year for the first group) 
modelled as a linear function of the exposure (eg 0.3 of the calves in the first group j 
do not receive early adequate colostrum) and perhaps adjusting for the effects of one 
or more confounders (eg the average age of calves in each group). The model could be 
specified as: 

where Xl is the proportion receiving adequate colostrum and X2 is the average age. 
Environmental or global variables might be entered and analysed as either dichotomous, 
ordinal or continuous variables. The linear model would provide an incidence rate 
difference (IDo) from the exposure which is estimated as Pl' conditional on the other 
variables in the model. In many analyses the outcome might need to be transformed to 
better meet the assumptions of the linear model, and a weighted regression might be 
needed to account for the different levels of precision by group (because of differences 
in the number of study subjects). The outcome often should be weighted by the group 
size, the reciprocal of the within-group variance, or some function relating to the 
within-group homogeneity of exposure. 

A 'nice' feature of a linear model is that if the rate (or risk) difference is constant across 
group s at the individuallevel, assuming no other biases, the rate difference at the group 
level will be of the same magnitude. In contrast, if the rate ratio is constant at the 
individual level, a logit model of the outcome will not produce unbiased estimates at 
the group level (Rothman and Greenland, 1998, p 468). 

Associations between predictors and dichotomous outcomes at the individuallevel are 
usually based on ratio measures. However, a problem with using ratio measures at the 
group level in linear models is that, for aggregate variables, these estimates often force 
us to extrapolate our inferences to groups with no exposure and to group s with 100% 
exposure; rarely do we have these group s in our data. For example, from a simple 
linear model Po is the rate in non-exposed (X=O) group s and P l +Po is the rate in exposed 
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groups (X=l). Hence, the incidence rate ratio at the group level is: 

IRG = Po + PI = l + A 
Po Po Eq 25.1 

Hence, valid inferences about ratio measures requires totally exposed and non-exposed 
groups. 

As in linear model s (Chapter 14) issues of confounding and interaction are de alt with 
by including these variables in the model. Control of individuallevel confounders in ·an 
ecologic analysis, however, is less successful than it is in an individual analysis because 
control is performed by us ing average or proxy data, hence attenuating associations. 
Also, risk factors in ecologic analysis tend to be more highly correlated with each other 
than they are at the individuallevel making it difficult to isolate the effect ofindividual 
risk factors. When other variables are included in the model, the previous estimation 
method for IRa must be extended to account for their effect. ln order to accomplish 
this, we usually set the value ofthese variables (that is the Xjs) to their mean as shown 
in Eq 25.2. 

(/30 + /31 + I /3X ) 
IRG = ---===='=--

/30 + I/3X Eq 25.2 

where )' pX is the sum of the products of the other coefficients in the model and the 
mean v~es of the other Xvariables. 

Some researchers prefer to use standardised outcomes, such as (standardised morbidity/ 
mortality ratios (SMRs) to control confounding and they regress these standardised 
outcomes on the group level explanatory variables. Typically age, sex, and breed are 
included in the SMR. However, this approach does not prevent confounding unless the 
explanatory variables are also standardised in the same manner, and usually sufficient 
data to achieve this are not available. 

Interaction is usually modelled in the same manner as with individual analyses using 
a product term (eg XI *X2). However creating this term based on group means is not 
equivalent to taking the average of the term s created at the individuallevel. Thus, this 
approach has a different (often lower) level of ability to detect an interaction. One 
particular type of interaction that is important to identify is a contextual effect where 
the group-level factor modifies the same factor's effect at the individual level. To 
identify this contextual effect, we create a cross-product term between the factor at the 
group and the individual level and test its significance. 

25.5 IssuEs RELATED TO INFERENCES 

The major inferential problem s that arise are because of heterogeneity of exposure 
and of confounders within the group. Thus a finding, at the group level, that exposure 
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increases (or decreases) the risk of disease by, for example, three times, does not mean 
that this is true at the individual level. Indeed, it might not mean that the exposed 
subjects are the ones having the highest individual risk of becoming cases. This error 
in inference is termed the ecologic fallacy (see section 25.7.2 for atomistic fallacy). 
In addition, even without the ecologic fallacy, the group-level bias almost always 
exaggerates the magnitude of the true association away from the null, but occasionalIy 
it reverse s the direction of the association. 

We now examine the three major causes of ecologic bias - within-group bias, group­
level confounding and group-level interaction - in more detail. 

25.6 SOURCES OF ECOLOGIC BlAS 

25.6.1 Within-group bias 

Within-group bias can be caused by confounding, selection bias or misclassification. 
Here we discuss only misclassification of individual-level exposure and its effects on 
observations at the group level. 

If aggregated exposure variables are used, the exposure level of gro'ups is defined 
by combining individual exposure observations. Imperfect exposure classification of 
individuals in tum leads to errors in the estimates ofboth the individuallevel association 
and the group-level association. As noted in Chapter 12, non-differential exposure 
misclassification at the individuallevel biases the observed association toward the null, 
but, in ecologic studies, it biases the association away from the null. The effect of this 
bias on the rate ratio derived from an eco log ic linear regression model can be predicted 
if the necessary data are known as indicated in Eq 25.3: 

IR-l 
IRo = 1 + Se + Sp * IR - IR Eq 25.3 

where Se is the individual-level sensitivity, Sp is the individual level specificity, and 
IR the true individual-level incidence rate ratio. The IDG is also biase d by the factor 
(Se+Sp-l). This bias can be quite large as shown in Example 25.1. Also, when exposure 
(or disease) prevalence of groups is based on a small sample of individuals within each 
group, measurement error at the individual level is compounded by sampling error 
(hence the earlier referral to extreme values of outcomes with small group sizes). For 
more details on this bias, see Brenner et al (1992). 
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Example 25.1 The effect of individual-level exposure misclassification on 
group-level results 

We begin with the correctly classified study population in two farms (j=1,2) in Table 25.1. 

Table 25.1 Correctly classifled populatlon structures 

Farm 1 Farm 2 

Non- Non-
Correctly classified Exposed exposed Totals Exposed exposed Totals 

Number of cases 50 40 90 100 30 130 

Animai-time (t j) 200 800 1000 400 600 1000 

Rate (lj) 0.250 0.050 0.090 0.250 0.050 0.130 

Group proportion 
exposed 0.20 0.40 

The data in bold typeface are the numbers one would use for the analysis at the group level 
if there was no misclassification. Note that in Farm l, 20% of the animai-time is exposed 
(200/1000), while in Farm 2, this is 40% (400/1000). At the individuallevel, the IR=5 and the 
ID=0.20. The regression coefficients for the group level analysis are obtained by solving the 
two equations for the two unlmowns: 0.09=PO+Pl*0.2 and 0.13=Po+P1*OA which gives the 
following model Y=O.050+0.2x. The IDG=0.20 and 

IRa = 1+ 0.2 = 1+4 = 5 
0.05 

Based on an exposure sensitivity of 0.8 and an exposure specificity of 0.9, and using the 
general approach shown in section 12.6, we would ob serve the data shown in Table 25.2. 

Table 25.2 Misclassified population structure 

Farm 1 Farm 2 

Incorrectly Non- Overall Non- Overall 
classified Exposed exposed rate Exposed exposed rate 

Number of cases 44 46 90 83 47 130 

Animai-time (t j) 240 760 1000 380 620 1000 

Rate (lj) 0.183 0.061 0.090 0.218 0.076 0.130 

Group proportion 
exposed 0.24 0.38 

At the individuallevel, (based on the misclassified data pooled over the farms) the IR=3.04 
and the ID=O. 13 7. Here, the exposure misclassification leads to biased estimates of the 
proportion of animai-time exposed on each farm; the difference between these becomes 
smaller and hence, the apparent effect of exposure becomes larger. Using the same approach 
to obtain the regression coefficients, the model is Y=0.0214+0.286X At the group level, the 
misclassified IRG is 14.3 and the IDG is 0.29. Thus, a non-differential misclassification at the 
individuallevel has biased the group IRG and IDG away from the null at the group level. 
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25.6.2 Confounding by group 

If the background rate of disease in the unexposed individuals varies across groups, 
this sets up a group-level correlation of exposure and outcome. Such confounding can 
arise from the differential distribution of extraneous individual-level risk factors across 
group s (note that these risk factors need not (although they can) be confounders at the 
individuallevel (ie within groups)), or from the occurrence of group-level confounders 
(ie here the covariates are associated with both exposure and disease at the group level). 
Example 25.2 explains this phenomenon. 

Example 25.2 The effects of confounding on group-level results 

In this example, E j is the exposure of interest at the individuallevel and E2 is the potential 
individual-level confounder (both binary). At the group level, these are represented by the 
varíablesXj andX2, respectively (for símplicíty, we omit subscripts for farms), both measured 
on the continuous scale (bold typeface in table). Consider these data from three farms: 

Farm A E2+ E2- E2 pooled 

El + El - El + El" E1+ Ee 

Cases 52 74 5 7 57 81 

ta 260 740 260 740 520 1480 

la 0.20 0.10 0.02 0.01 0.11 0.055 

IRa 2 2 2 

X1 =p(E1 + )=0.26 X2=p(E2+)=0.50 Y=p(O+ )=0.068 

Farm B E2+ E2" E2 pooled 

E1+ E1" El + E1• E1+ E1" 

Cases 56 52 8 8 64 60 

tb 280 520 420 780 700 1300 

lb 0.20 0.10 0.02 0.01 0.09 0.046 

IRb 2 2 2 

X1=p(E1+)=0.35 X2=p(E2+)=0.40 Y=p(O+)=0.062 

Farm C E2+ E2- E2 pooled 

E1+ E1- El + El" El + El -

Cases 60 30 14 7 74 37 

tc 300 300 700 700 1000 1000 

Ic 0.20 0.10 0.02 0.01 0.74 0.037 

IRc 2 2 2 

X1 =p(E1 + )=0.50 X2=p(E2+)=0.30 Y=p(O+)=0.056 

(continued on next page) 
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Example 25.2 (continued) 

Examining these data from the individual's perspective, we observe that the true (individual) 
IRs for EJ and E2 are 2 and 10, respectively. Both ratios are constant across farms so there is 
no interaction at the individuallevel. AIso, there is no confounding by EJ or E2 within farms 
(as El and E2 are independent). However, because the prevalence of E2 varies by farm, this 
results in an association of farm with Y that is independent of E l' Consequently, the group­
level estimate of the effect of El (ie using Xl) may be biased. At the farm level a simple 
linear regression of Y of Xl yields Y=0.080-0.049X1 and the ecological estimate of IRa is 
(0.031/0.080)=0.39 suggesting that exposure is sparing. Controlling for exposure 2 in the 
analysis does not prevent the bias with the equation being Y=0.038+0.000XI+O.060X2• The 
IDo is zero, and using the mean prevalence of exposure for X2 of 0.40, when Xl changes 
from O to l we have 

IRa = 1+ (.038 + .000 +.4 * .06) 2.00 
(.38 +.4 * .06) 

This adjustment brings the IRa for exposure l to the null value suggestíng 'no effect.' 
Unfortunately, because we rarely have sufficient information to know whether or not the 
group and individuallevel results agree, relating group findings to individuals is fraught with 
difficulties. 

25.6.3 Effect modification (interaction) by group 

In a linear model, bias will occur at the group level if the rate difference at the individual 
level varies across groups. We should recall that although we use a logit scale (usually) 
at the individuallevel, we often use a linear model at the group level. This introduces 
a non-linearity into the comparison of the results which might evidence itself as 
interaction in the linear scale. Such variation can arise from the differential distribution 
of individual level effect modifiers across groups, or due to effect modification by a 
group-level factor (Example 25.3). 

25.6.4 Summary of confounding and interaction at the group level 

To summarise the previous discussion, cross-level (ie ecologic) bias will not occur if: 
the incidence rate difference, within groups, is uniform across groups, and 
if there is no correlation between the group-level exposure and the rate of the 
outcome in the unexposed. 

The only (but huge) drawback to these criteria is that individual-Ievel data are required 
to evaluate them and these data rarely are available. 

On the other hand, if individual-Ievel effect modifiers are differentially (ie unequally) 
distributed across groups, ecologic bias will occur as a result of the consequent group­
level effect modification. If extraneous risk factors are differentially distributed across 
groups, ecologic bias will occur as a result of group-level confounding, regardless 
of whether the extraneous risk factor is a confounder at the individual level or not. 
Controlling for the extraneous risk factor in the ecologic analysis will generally remove 
only part of the bias. 
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Example 25.3 Effect modification by group 

Consider the following data from three farms: 

Cases 

Animai-time (t) 

I 

IR 

ID 

Xl = p(E+) 

y= p(D+) 

Farm A 

E+ E-
120 30 

1000 1000 

0.12 0.03 

4.0 

0.09 

0.5 

0.075 

Farm B 

E+ E-
120 36 

800 1200 

0.15 0.03 

5.0 

0.12 

0.4 

0.078 

571 

Farm C Total 

E+ E- E+ E-

120 42 360 108 

600 1400 2400 3600 

0.20 0.03 0.15 0.03 

6.7 5.0 

0.17 0.12 

0.3 

0.081 

First let's examine the data from the perspective of the individual. We observe that the effect 
of the exposure E (as denoted by IR, or the ID) varies by farm. Thus some farm-level factor 
is interacting with the exposure E, and with a large enough sample, this might be declared 
as significant interaction on either the additive or the multiplicative scale (see Chapter 13). 
Note, that there is no confounding by any group (ie farm-level) factor at the individuallevel 
because p(D+IE-)=0.03 in ali three farms. Thus, farm per se is not a cause of disease at the 
individual level. Also, because there is no confounding, the crude IR of 5.0 provides an 
unbiased esti mate of the effect at the individuallevel. There is, however, interaction because 
some factor at the farm level is making the impact of exposure (whether measured by IR or 
ID) to vary, across farms, and this effect increases as the prevalence of E+ decreases. 

An ecologic analysis at the farm level would only use the aggregated summary data (bold 
typeface) from the table. The ecologic linear regression of YonXyields: 

y = 0.09 - 0.03X 
and the ecologic estimate of IRo would be: 

1 + (-0.03/0.09) = 0.67 

Clearly this is not anywhere near the individual-level IR of 5. Thus, the effect modification 
by group has led to an ecologic bias that actually reversed the direction of the association at 
the individuallevel. 

It is c\ear we need to be carefui when making inferences about individuals based on 
group-level analyses; yet, group-level analyses will continue to be used. So, how can 
we help avoid some ofthese problems? Weil, the misc\assification issue is be st resolved 
by reducing the level of errors, but the bias away from the null is still a reality and need s 
to be considered in ali group-level studies. With respect to confounding and interaction, 
agai n these are real problems. But, both the confounding and effect modification 
examples used here are taken from scenarios where group-level analyses are unlikely 
to be rewarding because most of the variation is at the individual level. Because the 
outcome varies !ittle across group s, research should focus on the individuallevel. 
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In general, ecologic bias will be less of a problem when: 
1. The observed range of exposure level across group s is large. Linear regression 

analysis of ecologic data is especially sensitive to problems of limited among­
group exposure variation. If this is the situation you are faced with, consider 
using other model forms, such as exponential and log-additive models; 

2. The within-group variance of exposure is small; therefore in selecting study 
populations minimi se the within-group and maximise the among-group 
exposure variation (sometimes using smaller, more homogeneous, groupings 
helps accomplish this); 

3. Exposure is a strong risk factor and varies in prevalence across groups (hence 
the group-to-group variation in incidence is large), and 

4. The distribution of extraneous risk factors is similar among group s (ie little 
group-level confounding). 

Despite the pitfalls, a recent editorial reminds us that we should continue our struggle 
to gain valid knowledge from group level studies (Webster, 2002). While the biases 
discussed very likely occur frequently, the effects might be small and need not prevent 
us making valid inferences to individuals. In this regard, we should treat these potential 
biases in the same manner we do in individual-Ievel studies; try to understand, quantify 
and minimi se them. 

25.7 NON-ECOLOGIC GROUP-LEVEL STUDlES 

A number of epidemiologists have noted that our discipline initially focused on group s 
as the unit of interest and only recently has it shifted that emphasis to individuals. In 
general, it is their view that we should strive to refocus on groups. If the individual is 
really the level of interest then multilevel inodels (Chapters 21-23) allow us to include 
core information from higher levels of organisation, and investigate any contextual 
effects. However, there is als o a need to focus inferences on groups per se (McMichael, 
1995, 1999; Diez-Roux, 1998a,b). 

In thinking about studying group s and whether we should be making inferences to 
groups or individuals, Rose (1985) stated that it is helpfuI to distinguish between two 
questions. 

1. What is the etiology of a case? 
2. What is the etiology of incidence? 

Both questions emphasise that there is more than one cause of a giv en disease or 
condition. The first question ab out causes of cases requires that we conduct our study 
at the individuallevel. With individual animals as our principal or only level of interest 
we identify causes of disease in individuals. In this context, within a defined population 
(group), the use of the ratio measures of association to identify potential causes, and 
measure their strength, assumes a heterogeneity of exposure within the study population. 
In the extreme, if every subject is exposed to a necessary cause, then the distribution 
of case s (in individuals) would be whoIly determined by individual susceptibility 
determined by the other components of the sufficient causes (for example, a genetic 
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component, not the widespread (albeit essential) exposure). In general, Rose notes that 
the more widespread or prevalent a risk factor is, the less it explains the distribution of 
cases within that population. Hence we might even conc1ude that a prevalent necessary 
cause was of little causal importance - it might even be considered normal background 
exposure. 

In addition to this inferential problem, when we focus on individuals, we often treat 
any group-level factors that are present as nuisance variables, whether through using a 
fixed effect or a random effect modelling approach. In this context, we have not tried 
to explain the group-to-group variation, just deal with it. As was discussed in Chapter 
23, in choosing the appropriate aggregation level to study, it is useful to examine 
the proportion of variance that can be attributed to the individual and to the group 
because this is a useful guide for focusing future investigations. Even if our focus is 
on individuals, it is also useful to investigate if the effect of an exposure factor on 
individuals depends on that, or other factors, at the group level (the contextual effects). 
Herd immunity is one example where we know this to be a real biological phenomenon; 
the prevalence of disease in a group might have a similar important effect on the nature 
of the disease (eg timing and/or dosage offirst exposure) in individuals. 

To address the question about causes of incidence in populations, we must investigate 
the determinants of group or population means (eg why is the disease more common in 
group 'A' than in group 'B'?). To do so, we need to study the characteristics of group s 
to identify factors that act causaIly by shifting the distribution of disease of the entire 
group. For their success, group-level studi es require either a large variance of exposure 
levels across groups, a large study size (ie number ofgroups), or a combination of the 
two. Obtaining a sufficient number of groups (eg herds) to give a study reasonable 
power has often been a practicallimitation of group-level studies. Nonetheless, in both 
herd-health management, and veterinary public-health activities, we have a particular 
need to know the determinants of incidence, be they groups, herds or geographic areas, 
in order to help prevent disease in the population. 

25.7.1 The group as the aggregate-scale ofinterest 

Virtually ali epidemiologists are aware ofthe hierarchical organisation ofthe populations 
we study. These levels of organisation range from subcellular units, to cells, organs, 
body system s, individuals, aggregates of individuals (households of people, families, 
litter mates, pen s and herds of non-human animals ), neighbourhoods, states, nations 
etc. The key point is that each higher level of organisation subsumes all the properties 
oflower levels, but has additional unique properties ofits own (Susser, 1973; Krieger, 
1994; Diez-Roux, 1998a; Ducrot et al, 1996). From this, it would se em cruci al that 
risk-factor identification is conducted in the light of the appropriate population level 
context, but with an awareness of risk factors at other levels of organisation. Moving 
beyond the primarily biolögic individual-based explanations of disease causation does 
not imply denying biology, but rather involves viewing biologic phenomenon within 
their global and environmental contexts. 

A natural level of aggregation as the unit of interest for veterinarians is the farm (or 
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kennel) as veterinary clinicians are often required to be responsible for the health care 
ofall animals within that farm. The reason(s) we emphasise aggregates ofanimals as the 
unit of concem could in large part reffect the relative economic value of the individual; 
the single fish in a sea pen, the broiler chicken in a poultry house, or a single sheep in 
a mob is of little economic importance to the group, and therefore to its owner. The 
same is true to a decreasing extent of individual pigs and beef cattle. Individual dairy 
cattle are of more relative economic value and perhaps because of this, the maj ori t y 
of epidemiologic studies in dairy cattle have tende d to focus on individuals. Studies of 
health problems in horses and companion animals are usually focused at the individual 
level, and a logicallevel on which to aggregate them for population approaches is not 
easily apparent. However, an obvious need when considering population control in pet s 
is to move beyond the simple individual-animal-oriented approach of spaying the pet 
or constraining contact, to examining the social and biological contexts of domestic 
and feral pets. Similarly in vaccination programme s, if we are principally vaccinating 
(or prophylactically medicating) the low-risk group, we will have little impact on 
the disease in the population, ev en when a significant proportion of the population is 
vaccinated. 

The previous ideas relating to focusing on levels beyond the individual would suggest 
that when researching, for example, food safety issues, while it might be necessary to 
include features of individual micro-organisms such as E. coli 0157, and/or factors 
which inffuence its survival at the individual/farmlflock level, one must also understand 
the operation of modem farms and modem meat-processing plants, as weil as the 
impact of the industry structure, and the centralisation offood processing that has been 
under way recently in the food industry. The same comments apply to researching 
large-scale disease outbreaks in the food-animal industries su ch as BSE in cattle; 
regardless of its origin, one cannot deny that the spread of this disease was aided and 
abetted by the structure of the animai feed-stuff industries. Wing, 1998, as an example, 
has commented on the need to work at the large scale in resolving many of our current 
important problem s, especially those relating to farming and the environment. 

In addition to the need to conduct research at the population level to help resolve 
endemic diseases, collective experience has been that disease control programme s for 
contagious or exotic diseases need to be directed more at the population than at the 
individual level. Despite our most advanced tests for identifying infected individuals, 
at the end stages of many national-level infectious disease control programmes, the 
optimal strategy for disease control is almost always to focus control on groups not 
individuals. 

25.7.2 The group as the level ofinference 

The desired level of inference links to the level of analysis. In some studies the intent 
is to identity causal factors of cases by investigating individual-Ievel risk factors, 
whereas in others it might be to make inferences about causal factors of incidence by 
focusing on the group level. However, as noted in earlier sections, if one is trying to 
make inferences about one level (a lower level) from data collected at a higher level, 
then such cross-level inferences are open to considerable bias. If we are interested in 
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the interaction between animai-level and group-level variables, then that aspect can 
be studied using analyses aimed at individuals but with an appropriate group-level 
variable (eg prevalence of disease) included to allow the interaction to be identified. 

Previously, we examined some of the features that can help us avoi d the ecologic 
fallacy when making inferences about the effect of an exposure on individuals when 
we use group level or ecologic studies. In that context, correct meant the group-level 
findings were consistent with the findings at the individual level. However, despite 
our discussion on this point, given the pervasiveness of reductionism in biomedical 
science, it is likely that the atomistic fallacy (using data from lower levels to make 
inferences about higher levels ) is undoubtedly the more common of the two errors. We 
certainly risk making this error if our explanations of disease in populations are based 
primarilyon what we know about disease in individuals. However, !ittle is written 
about this fallacy. The difference in our assessments of these errors likely reflects the 
prevailing scientific view about what constitutes valid causal inferences. It seems that 
ecologic fallacies are viewed as serious problems because the association s, while true 
at the aggregate level, are not true at the individual level; whereas in the atomistic 
fallacy, the facts at the cellular or individuallevel are deemed to be correct, regardless 
of how correct, or useful (or useless) that knowledge is for efficient and effective 
disease prevention in populations. 

In addition to the atomistic fallacy, a long-held axiom is that if one is interested in 
populations one must study populations (McMichael, 1995). This axiom arises in part 
because the physical, chemical, biological and sociological/managerial properties 
at the higher level likely differ from those at the lower level, and in part because 
there are a host of sociological/managerial factors and some biological factors which 
operate principally at the group level. A simple physical-chemical example is that the 
properties of oxygen and hydrogen tell us very little about the properties of water. 
AIso as Schwartz (1994) observes, we should not confuse characteristics of a group 
with that of its individuals, "a hung jury might be indecisive but its members might be 
anything but indecisive." 

In our research endeavours, we should not look at group-level studies as only crude 
attempts to uncover individual-Ievel relationships. Many criticisms of ecologic studi es 
are based on the questionable assumption that the individual level of analysis is the 
most appropriate (Schwartz, 1994). In fact, the he alth status of an individual, is itself 
an aggregated measure, because it is body cells/systems, not individuals that become 
diseased. The threshold for disease being present in an individual usually is based on a 
set of criteria, some quantitative, some qua!itative. Most often, as epidemiologists, we 
define the cutpoint(s) for 'having the disease' and then ignore the tremendous variance 
in severity and effects of that disease in most of our studies (because these are not our 
primary interest). ln a similar vein, we need to study disease at the group level, where 
a herd might be categorised as diseased or not and we might ignore the proportion of 
animals with disease (eg if one is attempting to estab!ish disease-free groups, then 
this approach is workable). However, in other studies the dichotomisation of disease 
presence or absence (or presence beyond a specified cutpoint) might be too crude an 
approach because one is forced to discard valuable information about the extent or 
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severity of disease at the herd level. In this situation, it might be preferable to retain the 
level of disease (or outcome ) as a quantitative statement about disease frequency, even 
though there is no intent on making inferences below the group level. 

In order to optimally interpret some of our group-level studies, a major issue is to 
differentiate the causal inferences we make about associations at the group level from 
inferences we might make relative to the effect of that same (or apparently similar) 
variable at the individuallevel (Schwartz, 1994; Diez-Roux, 1998a). For example, if 
variable Xl at the individual level indicates seroconversion to a specific agent, then 
X2=(~/n) at the group level inherently carries more information than just the 
proportion that seroconverted; by its nature a group with a low level of X 2 likely 
has different dynamics of infection than one with a high level of X2• For example, as 
noted, it could influence the timing of initial exposure to an agent, and this is often an 
important factor in the type of syndrome that might result. 

In conc1usion, it is c1ear that there are numerous problem s in using aggregated data to 
make inferences about events in individuals. Multilevel analyses allow us to inc1ude 
important factors from higher levels of organisation when studying individuals, 
inc1uding contextual effects. However, appropriately designed studies that focus on 
groups are needed to identity factors of importance in the distribution of heaIth and 
disease in populations. 

SELECTED REFERENCES/SUGGESTED READING 

1. Brenner H, Greenland S, Savitz DA. The effects of non-differential confounder 
misc1assification in ecologic studies. Epidemiology 1992; 3: 456-459. 

2. Carver DK, Fetrow J, Gerig T, Krueger T, Bames HJ. Hatchery and transportation 
factors associated with early pouIt mortality in commercial turkey flocks. Poult 
Sci 2002; 81: 1818-1825. 

3. Diez-RouxAV. Bringing context back into epidemiology: Variable s and fallacies in 
multilevel analyses. Am J Pub HIth 1998a; 88: 216-222. 

4. Diez-Roux AV. On genes, individuals, society and epidemiology. Am J Epidemiol 
1998b; 148: 1027-1032. 

5. Ducrot C, Legay J, Grohn Y, Envoldsen C, Calavas D. Approach to complexity in 
veterinary epidemiology; example of cattle reproduction. Natures-Sciences­
Societies, 1996; 4: 23-33. 

6. Greenland S. Divergent biase s in ecologic and individual-Ievel studies. Stat 
Med 1992; 11: 1209-1223. 

7. Greenland S, Morgenstem H. Ecological bias, confounding and effect 
modification. IntJ Epidemioll989; 18: 269-274. 

8. Greenland S, Robins J. Ecologic studies: Biases, misconceptions, and counter 
examples.Am J Epidemiol 1994; 139: 747-760 

9. Krieger N. Epidemiology and the causal web: Has anyone seen the spider? Soc Sci 
Med 1994; 39: 887-903. 

10. McMichael AJ. The health of persons, populations, and planets: epidemiology 



ECOLOGIC AND GROUP-LEVEL STUDlES 577 

comes full circle. Epidemiology 1995; 6: 633-636. 
ll. McMichael AJ. Prisoners of the proximate: loosening the constraints on 

epidemiology in an age of change. Am J Epidemiol 1999; 149: 887-897. 
12. Morgenstem, H. Ecologic studies in Rothman KJ and Greenland S. Modem 

epidemiology, 2 ed. Philadelphia: Lippincott-Raven, 1998. 
13. Osmond C, Gardner MJ. Age, period, and cohort models. Non-overlapping cohorts 

don't resolve the identification problem. Am J Epidemiol1989; 129: 31-35. 
14. Robertson C, Gandini S, Boyle P. Age-period-cohort models: a comparative study 

of available methodologies. J Clin Epidemiol1999; 52: 569-583. 
15. Rose G. Sick individuals and sick populations. P.A.H.O. Epidemiological 

Bulletin 6: 1-8, 1985. 
16. Rothman KJ, Greenland S. Modem epidemiology, 2d ed. Philadelphia: Lippincott­

Raven, 1998. 
17. Schwartz, S. The fallacy of the ecological fallacy: The potential misuse of a concept 

and the consequences. Am Jour Pub Hith 1994; 84: 819-824. 
18. Susser M. Causal Thinking in the health sciences: concepts and strategies of 

epidemiology. Oxford University Press, Toronto, 1973. 
19. Webster T. Commentary: Does the spectre of ecologic bias haunt epidemiology? Int 

J Epidemiol2002; 31: 161-162. 
20. Wing S. Whose epidemiology, whose health. Int Jour Hith Serv 1998; 28: 241-

252. 



578 ECOLOGIC AND GROUP-LEVEL STUDlES 

SAMPLE PROBLEMS 

l. Using dataset feedlot, ascertain if there are any significant associations between 
the serological data and the occurrence of BRD or the weight gain of calves in the 
first 28 days in the feedlot. The variables in this dataset are shown below: 

Variable 

group 

tag 

province 

brd 

brsvpos 

brsvsc 

bvdpos 

bvdsc 

ibrpos 

ibrsc 

pi pos 

pisc 

phcypos 

phcysc 

phaggpos 

phaggsc 

hspos 

hssc 

wtO 

wt28 

group identification 

eartag number 

province of feed lot 

Description 

bovine respiratory disease (Y/N)? 

arrival titre to brsv positive? 

seroconversion to brsv ? 

arrival titre to bvd virus positive? 

seroconversion to bvd? 

arrival titre to ibr virus positive? 

seroconversion to ibr virus? 

arrival titre to pi3 virus positive? 

seroconversion to pi3 virus? 

arrival titre to Ph (now Mh)? 

seroconversion to Ph cytotoxin? 

arrival titre to Ph (now Mh) agglutinins positive? 

seroconversion to Ph (now Mh) agglutinins? 

arrival titre to Hs positive? 

seroconversion to Hs ? 

arrival weight (kg) 

28 day weight (kg) 

a. You might investigate whether or not you need to control for group effects, 
province of origin, or arrival weight in both ofthese models. (For this exercise 
we will ignore intervening variables, although you might examine the 
associations with just the viral agent titre data, and then add the bacterial agent 
titre data. For the weight gain model you might run the model with and without 
-brd-. We will also ignore the assessment of model fit!) 

b. What do you conclude about the role of specific agents as potential causes of 
BRD? 

c. What do you conclude about the role of specific agents as causes of change in 
weight gain ? 

2. Now, create a summary dataset based on the mean values of -brd- , the province of 
origin, the arrival and 28-day weight, and the mean proportion positive on arrival 
and the mean proportion seroconverting for each of the organisms listed in the 
dataset. Before creating the group-level file create a new variable for weight gain 
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for each calf. Then obtain the average ofthis for the group level file. 
a. With the proportion developing BRD as the outcome, ascertain if arrival weight, 

province of origin and any of the serologic variables are associated with 
BRD. If you enter -brd- into the final model, does it alter the coefficients of the 
other variables? Is this what you might expect? 

b. Is the average of the weight gain by group similar to the difference between 
the average arrival weight and the average weight at day 28? Why do you think 
they are/(are not) similar? 

c. Regress the average of the weight gain on province and the serological variables 
to ascertain ifthere are any significant associations with weight gain. Is arrival 
weight a confounder? 

3. Retum to the questions at the end of Chapter 20 assessing the role of atrophic 
rhinitis in pigs and their lung scores and weight gain. Compare the results you 
obtained from the individual-Ievel and the group-level analyses. 
a. Is there a rational explanationlinterpretation of the group level results? 
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26 

ASTRUCTUREDAPPROACH 
TO DATA ANALYSIS 

OBJECTIVES 

After reading this chapter, you should be able to: 

581 

l. Conduct a detailed analysis of acomplex dataset arising from an epidemiologic 
study with a minimum of wasted time and a maximum probability of avoi ding 
serious errors in the analysis. 

2. Congratulate yourself on getting through ali of the material in this text, provided 
you didn't skip directly to this final 'substantive' chapter. 
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26.1 INTRODUCTION 

When starting into the analysis of acomplex dataset, it is very helpfui to have a 
structured approach in mind. In this chapter, we provide one template which, we trust, 
will be applicable in most situations. Others, with experience in data analysis, might 
have different approaches and we would not suggest that what is presented below 
is either the 'only' approach, or necessarily the 'best' one - as with model s, every 
approach is imperfect but some are useful. However, for individuals getting started in 
veterinary epidemiology, the following will serve as a template which can be used to 
guide their initial efforts in data analysis. 

For most, there is astrong tendency to want to jump straight into the sophisticated 
analysis which will provide the ultimate answer for your study. This rarely works out, 
but, in order to satisfy your curiosity ... go ahead and try it anyway. Just don't waste 
more than an hour on it and ignore whatever results you get, as they will inevitably be 
wrong. Having thus satisfied that primal urge to take the short cut to the end, you can 
proceed with a structure d approach to the analysis. 

We will work through the process in a logical sequence, starting with the handling of 
data-collection sheets and ending with keeping track of results. However, bear in mind 
that data analysis is an iterative process which often requires that you back up several 
steps as you gain more insight into your data. 

However, before you start any work with your data, it is essential that you constmct 
a plausible causal diagram of the problem you are about to investigate. This will 
help identify which variables are important outcomes and predictors, which ones are 
potential confounders and which might be intervening variables between your main 
predictors and outcomes. Keep this causal diagram in mind throughout the entire 
data-analysis process. Note With large datasets, it will not be possible to inc1ude ali 
predictors as separate entities. This can be handled by inc1uding blocks ofvariables (eg 
farm-management practices) in the diagram instead oflisting each variable. 

26.2 DATA COLLECTION SHEETS 

It is important to establish a permanent storage system for all original data collection 
sheets (survey forms, data-collection forms etc) that makes it easy to retrieve individual 
sheets if they are needed during the analysis. If animals (or groups of animals ) in the 
study have identification numbers, this makes a convenient way to store (and later 
retrieve) individual files. Some things to consider when dealing with the file are as 
follows. 

• Do not remove originals from this file. If you need to take aspecific sheet for 
use at another location, make a photocopy of the sheet. 

• Never ship the original to another location without first making copies of all 
forms. (You don't want to lose your whole study because the post office or 
courier loses your package). 
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• Set up a system for recording the insertion of data collection sheets into the 
file so that you know how many remain to be collected before further 
work begins. 

• Once all of the forms have been collected, before you do anything else, scan 
through all sheets to get an impression for their completeness. 1fthere are omissions 
in the data-collection sheet (ie forgetting to complete the last page of a 
questionnaire), retuming to the data source to complete these data will more likely 
be successful if it is done soon after data were initially collected rather than weeks 
or months later (after data analysis has begun). 

26.3 DATA CODlNG 

Some issues related to data coding have already been discussed in Chapter 3, in 
particular, the advisability of hav ing a space to allow for coding directly on the data­
collection sheet. Some other issues to consider when coding your data are as follows. 

As noted in Chapter 3, assign a specific number to all missing values. Be sure that 
this specific number is not a legitimate value for any ofyour responses. 
If you have 'open' questions, scan the responses and develop a list of needed codes 
before starting coding. 
Maintain a master list of ali codes assigned. 
Use numeric codes. In general, avoid the use of string variables except for 
rare instances where you need to capture some textual information (eg a comment 
field). 
Only code one piece of information in a single variable. Never make compound 
codes! For example, if you have recorded both the sex and breed of cats in a study, 
it might be tempting to code them as l =male, domestic shorthair, 2=female domestic 
shorthair, 3= male Siamese, etc. Do not do this. Create separate variables for sex 
and breed. (In fact, sex might be coded in two variable s male/female and neuteredI 
intact). 
For all types of data, note any obvious outlier responses (eg an individual cow's 
milk production reported as 250 kg/day) and correct them on the datasheet. 
Use a different coloured pen so your coding notations can clearly be differentiated 
from anything previously recorded on the data collection sheets. 

26.4 DATA ENTRY 

Some of the issues to consider when entering your data into a computer file are as 
follows. 

• Double-data entry, followed by comparison of the two files to detect any 
inconsistencies, is preferable to single-data entry. 

• Spreadsheets are a convenient tool for initial data entry, but these must be used 
with extreme caution; because it is possible to sort individual columns, 
it is possible to destroy your entire dataset with one inappropriate 'sort' 
command. 
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• Custom data entry software programs provide a greater margin of safety and 
alIow you to do more data verification at the time of entry. One such program in 
the public domain is EpiData (http://www.epidata.dk/). 

• If you expect large quantities of multilevel data (eg every lactation for each dairy 
cow from several herds over several years), using hierarchical database software 
can make data entry and retrieval more efficient. Altematively, you can set up 
separate files for data at each level (eg a herd file, a cow file etc and merge the files 
after data entry. 

• As soon as the data-entry process has been completed, save the original data 
files in a safe location. In large, expensive trials it might be be st to have a copy of 
all originals stored in another location. 

• If the data entry program which you use does not have the ability to save your 
data in the format of the statistical package that you are going to use, there are 
a number of commercially available software programs geared specifically to 
convert data from one format to another. 

• If you use a general purpose program (eg spreadsheet) to enter your data, as 
soon as the data are entered, convert them to files usable by the statistical 
program that you are going to use for the analysis. Do all of the analyses in 
that statistical program (ie don't start doing basic statistics in the spreadsheet). 
You are going to need the statistical program eventually, and it will be a lot 
easier to keep track of all of your analyses if they are alI done there. This will 
also simplify the process of tracking modifications to the data. 

26.5 KEEPING TRACK OF FILES 

It is important that you have a system for keeping track of all your files. Some 
suggestions that will help you do this are: 

• Assign a logical name with a two-digit numerical suffix (eg calfD l). Having a 
two-digit suffix allows you to have 99 versions which still sort correctly when 
listed alphabetically. 

• When data manipulations are carried out, save the file with a new name (ie the next 
available number). Do not change data and then overwrite the file. 

• Keep a simple log of files created (Table 26.1) with some very brief information 
about the contents of the file. 

Table 26.1 Example of data of files created in a study on calf septicemia 

File Name Date Description # Obs. # Vars. 
created 

calf01.wb3 27/09/97 original calf data entry by Glen, QP 275 41 
format, 1 record per calf 

calf01.dta 28/09/97 original file - Stata format 275 41 

calf02.dta 30/09/97 breed codes expanded 272 47 

three records with invalid lOs dropped 

etc ... 
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You are often faced with keep ing track of a bewildering array of variables in adataset 
from an epidemiologic study. We are not advocating studies with huge numbers of 
predictors (in fact we discourage such studies), but even a relatively focused study can 
give rise to a large number of variables once transformed variables, and/or recoded 
categorical variables, have been created. To help keep track of these variables, we 
recommend the foUowing. 

• Use short (but informative) names for variables and have aU related variables 
start with the same name. For example, the foUowing might be a logical set of 
variable names for information relating to the age of a dog. 

age = the ori gin al data (in years) 
age_ct = age after centring by subtraction of the mean 
age_ctsq = quadratic term (age_ct squared) 
age _ c2 = age categorised into 2 categories (young vs old) 
age _ c3 = age categorised into 3 categories. 

Long name s can often be shortened, but kept recognisable, by removing 
vowels (eg ftmg as a short form for ftooring). 

• In some cases, adding a single letter prefix might help keep group s of variables 
to gether. For example, a series of bacteriological results might be named 
b_ecoli, b_staphau, b_strepag etc. 

• If the statistics program you use is 'case sensitive' (ie differentiates between 'd' 
and 'D'), use ONLY lower-case letters. 

• At some point you will want to prepare a master list of aU variables with some 
very basic information. It should be possible to have the statistical program 
prepare this listing (or one similar to it). 

26.7 PROGRAM MODE VERSUS INTERACTIVE PROCESSING 

Some statistical programs can be used in an interactive mode where individual 
functions are carried out by either selecting items from menus or typing in a command. 
While very useful for exploring your data and trying out analyses, this interactive mode 
should not be used for any of the 'real' processing and/or analysis ofyour data because 
it is very difficult to keep a clear record of steps taken when using programs in this 
manner. Consequently, it is difficult, or impossible, to reconstruct the analyses you have 
completed. 

The alternative is to use the program in 'program mode' in which you compile the 
commands necessary to carry out a series of process ing steps or analyses into a program 
and then run the program. These program files can be saved (again, a logical naming 
convention is required) and used to reconstruct any analyses you have carried out. 
Nearly aU of the program s used in the analyses presented in the examples in this text 
were carried out using these types of program. These program s are shown in Chapter 
27. 
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26.8 DATA EDITING 

Before beginning any analyses, it is very helpfui to sp end some time editing your data. 
The most important components of this process are labelling variables and values 
within variables, formatting variables and correctly coding missing values. 

• All variables should have a label attached to them which more full y describes 
the contents of the variable. While variable names are often quite short (eg < 8 
or <16 characters), labels can be much longer. Note With some computer 
programs, the labels are stored in a separate file. 

• Categorical variables (hopefully they are all numeric) should have meaningfui 
labels attached to each of the categories. For example, sex could be coded as l or 
2, but should have labels for 'male' and 'female' attached to those values. 

• The number that was assigned to all missing values needs to be converted into 
the code used by your statistics program for missing values. 

• Some program s will allow you to attach 'notes' directly to the dataset (or to 
individual variables within the dataset). These explanatory notes can be 
invaluable in documenting the contents offiles. 

26.9 DATA VERIFICATION 

Before you start any analyses, you must verify that your data are correct. This can be 
combined with the following two processes (processing your outcome and predictor 
variables) because both involve going through all ofyour variables, one-by-one. 

• If you have a very small dataset, you might want to print the entire dataset (make 
sure it aligns all values for one variable in one column) and review it for obvious 
errors. However, this is rarely feasible for datasets from epidemiologic studies. 

• For continuous variables: 
determine the number of valid observations and the number of missing 
values 
check the maximum and minimum values (or the five smallest and five 
large st) to make sure they are reasonable (if they are not, find the error, correct 
it and repeat the process) 
prepare a histogram of the data to get an idea of the distribution and see if it 
looks reasonable. 

• For categorical variables: 
determine the number of valid observations and the number of missing 
values 
obtain a frequency distribution to see if the counts in each category look 
reasonable (and to make sure there are no unexpected categories). 

26.10 DATA PROCESSING - OUTCOME VARIABLE(S) 

While you are going through the data verification process, you can also start the 
processing of your outcome variable. To do this you will need to review the stated 
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goals of the study to determine the format(s) of the outcome variable(s) which best 
suits the goal(s) of the study. For example, you might have conducted a clinical trial 
of a vaccine for the control of infectious salmon anemia (ISA) in farmed salmon, and 
have recorded daily mortalities from ISA for the duration of the study. From this single 
mortality variable, you could compute the mean daily mortality rate, the cumulative 
mortality over the study, the peak mortality ob serve d, whether or not the sea cage in 
which the salmon were house d met some set of criteria for having an 'outbreak' ofISA, 
or the time interval from when the fish were transferred to salt water to the onset of an 
outbreak. Which you choose to analyse will depend on the goals ofthe study. Once you 
have identified the appropriate outcome variable(s), consider the following. 

• If the outcome is categorical, is the distribution of outcomes across categories 
acceptable? For example, you might have planned to carry out a multinomial 
regression of a three-category outcome, but if there are very few observations in one 
of the three categories, you might want recode it to a two-category variable. 

• If the outcome is continuous, does it have the characteristics necessary to 
support the analysis planned? 

If linear regression is planned, is it distributed approximately normally? If 
not, explore transformations which might normalise the distribution. 
Note It is the normality of the residuals which is ultimately important, 
but if the original variable is far from normal, and there are no very strong 
predictors, it is unlikely that the residuals will be normally distributed. 
If it is a rate (or count) and Poisson regression is planned, are the mean and 
variance of the distribution approximately equal? If not, consider negativ e 
binomial regression or altemative analytic approaches. (As above, the 
assumption of equality of the mean and variance applies to the residuals, but 
should be approximately true in the original data, unless there are one or 
more very strong predictors, if this is to be the case.) 
If it is time-to-event data, what proportion of the observations are censored? 
You might also want to generate a simple graph of the empirical hazard 
function to get an idea what shape it has. 

26.11 DATA PROCESSING - PREDICTOR VARlABLES 

It is important to go through all predictor variables in your dataset to determine how 
they will be handled. Some issues to consider include the following. 

Are there many missing values? If there are, you might have to abandon plans to 
use that predictor, or conduct two analyses, one on the subset in which the 
predictor is present and one on the full dataset (by ignoring the predictor). 
What is the distribution of the predictor? 

If it is continuous, is there a reasonable representation over the whole range 
of values? If not, it might be necessary to categorise the variable (see 
comments about evaluating the relationship between predictors and outcome 
in section 26.13). 
If it is categorical, are all categories reasonably well represented? If not, you 
might have to combine categories. 
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26.12 DATA PROCESSING - MULTILEVEL DATA 

If your data are multilevel (eg lactations within cows within herds), it is necessary to 
evaluate the hierarchical structure of the data. 

What is the average (and range) number of observations at one level in each 
higher level unit? For example, what is the mean, minimum and maximum 
number of lactations per cow in the dataset? Similarly, what are those values for 
the number of cows per herd? 
Are animals uniquely identified within a hierarchical level? It is often useful to 
create one unique identifier for each observation in the dataset. This will help 
identify specific points when evaluating outliers, influential observations etc. 
This can either be done by creating a variable that consists of a combination of 
the herd and animai identifiers, or simply assigning a unique sequential number 
to each unit in the dataset. 

26.13 UNCONDITIONAL ASSOCIATIONS 

Before proceeding with any multivariable analyses, it is important to evaluate 
unconditional associations within the data. 

• Associations between pairs of variables can be evaluated using the following 
techniques. 

Two continuous variables - correlation coefficient, scatterplot, simple linear 
regression 
One continuous and one categorical variable - one-way ANOVA, simple 
linear or logistic regression 
Two categorical variables - cross-tabulation and r. Cross-tabulations are 
particularly useful for identifying unexpected observations (eg case s of 
mastitis in males). 

• Associations between predictors and the outcome variable(s) need to be 
evaluated to: 

Determine if there is any association at all, as it might be possible to ignore 
predictors with virtually no association with the outcome at this stage (see 
Chapter 15) 
Determine the functional form (eg is it linear?) of the relationship between 
any continuous predictor and an outcome (discussed in Chapters 15 and 
16) 
To get a simple picture of the strength and direction of the association 
between predictors and outcome, to aid in the interpretation of results of the 
complex statistical models you will subsequently build. 

• Associations between pairs of predictors need to be evaluated to determine if 
there is a potential for collinearity problems (highly correlated predictors). 

• Special attention needs to be paid to potential confounding variables. Evaluate 
the associations between these variables and the key predictors of interest 
and the outcome. This will provide some insight into whether or not there is any 
evidence of confounding in your data (ie particularly if there is astrong 
association with both the key predictor and the outcome ). 
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You are now ready to proceed with the more substantial analysis ofyour data. However, 
before starting, it is wise to set up a system for keeping track of your results. A few 
points to keep in mind to facilitate this process are as follows. 

Carry out your analyses in substantial 'blocks'. For example, if computing 
descriptive statistics, do so for aU variables, not just one or two. (Eventually 
you will need descriptive statistics for aU of them, so you might as weU keep 
them together.) 
Most statistical packages allow you to keep a 'log' file which records aU of the 
results from a set of analyses. 

Give these log files the same name as the program file (except with a 
different extension) 
If you are doing some analyses in interactive mode, make sure you keep a 
complete log file as it will be the only record of what you have done. 

A 3-ring binder (2 or 4 rings in Europe) is a very convenient way to store 
printouts of all analytical work. Label and date aU printouts and describe briefly 
what each contains on the first page of the printout. This will simplify finding 
results later. 

FoUowing the steps outlined above will not guarantee that you obtain the best possible 
results from your analyses. However, the process will minimi se the number ofmistakes 
and lost time that affect aU researchers that are just starting to develop experience 
with data analysis (and some of us who have been doing it for years). As you gain 
experience, you might choose to modify some of the items described above as you 
identify more efficient ways to conduct your analyses. 

Good luck! 
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DESCRIPTION OF DATASETS 

Ali datasets used in the examples and sample problems in this text are provided for 
pedagogical purposes only. They are provided so that the reader can (in conjunction 
with the program files listed in Chapter 28) recreate the examples inc1uded in the text, 
or compute solutions for sample problems provided. Contributors have made data 
available to the readers of this text on this understanding and consequently, this is the 
only use for which they are provided. 

In some cases, datasets have been modified since the initial publication ofresults from 
the study which generated the data. In many cases, only a subset ofthe original data (ie 
a subset ofvariables or a subset ofobservations) are inc1uded. Consequently, the reader 
should not expect to be able to duplicate results obtained in the original publication. 

In the descriptions that follow, unless otherwise spec ifi ed, ali variables coded O or l 
(0/1) have the following meaning: 

O = no, absent or negative 
l = yes, present or positive 

All datasets can be downloaded from the Veterinary Epidemiologic Research website 
(http://www.upei.ca/ver). Datasets are directly accessible to Stata using Stata's internet 
commands (eg net from http://www.upei.ca/ver/data - see Stata documentation for 
details) or as zip files in a variety of statistics program formats (see website for 
details). 

The authors extend their sincere thanks and appreciation to the contributors of these 
datasets. 
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Name 

Study type 
# of records 
Unit ofrecord 
Contributor 

Reference 

ap2 

single cohort 
1,114 
pig 
Hftkan Vigre 

DATASETS 

Vigre H, Dohoo IR, Stryhn H, Busch ME. Intra-unit correlations in seroconversion to 
Actinobacillus pleuropneumonia and Mycoplasma hyopneumoniae at different level s 
in Danish multi-site pig production facilities. Prev Vet Med 2003; accepted. 

Brief description 
Data were collected on 1,114 pigs from 35 batches produced on six fanns that employed 
an 'all-in, all-out' production process. Pigs were weighed and blood sampled at the 
time of transfer from the weaner bam to the finisher barn (approximately 70 days of 
age) and again six weeks later (shortly before slaughter). Blood samples were tested for 
antibodies to Actinobacillus pleuropneumonia (Type 2), Mycoplasma hyopnueumonia, 
the influenza virus and the porcine respiratory and reproductive syndrome viru s 
(PRRS). Two of the objectives of the study were to detennine when seroconversion to 
the various agents occurred and at which level of the population (eg pig, batch or herd) 
most of the variation in seroconversion occurred. 

(continued on next page) 
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Table of variables 

Variable 

farmJd 

batch_id 

litUd 

pigJd 

parity 

vacc_mp 

seas_fin 

age_t 

w_age_t 

age_t6 

w_age_t6 

dwg_fin 

ap2_t 

infU 

prrs_t 

ap2_t6 

infU6 

prrs_t6 

ap2_sc 

Description 

farm identification 

batch identification number 

litter identification number 

pig identification 

farrowing number of sow 

batch vaccinated against M. hyopneumoniae 

season pigs in finishing unit 

pig age at transfer from weaning to finishing unit 

weight at age_t 

age plus approx. 6 weeks 

weight at age_t6 

daily weight gain between age_t and age_t6 

serological reac. against A. pleuropneumoniae 
serotype 2 at age_t 

serological reac. against M. hyopneumoniae at 
age_t 

serological reac. against influenza virus at age_t 

serological reac. against PRRS virus at age_t 

serological reac. against A. pleuropneumoniae 
serotype 2 at age_t6 

serological reac. against M. hyopneumoniae at 
age_t6 

serological reac. against influenza virus at age_t6 

serological reac. against PRRS virus at age_t6 

seroconversion to ap2 during the finishing period 

593 

Codes/units 

0/1 

0= summer 
1 = winter 

days 

kg 

days 

kg 

gm 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

beeCultra 

single cohort 
487 
animai 
Greg Keefe 

DATASETS 

Keefe GP, Dohoo IR, Valcour J, Milton RL. Assessment of ultrasonic imaging of 
marbling at entry into the feedlot as a predictor of carcass traits at slaughter. J Anim 
Sci 2003; submitted. 

Brief descr.iption 
Data were collected on 487 cattle at the time that they entered a feedlot for 'fattening' 
prior to slaughter. Data consisted of demographic information plus readings obtained 
from an ultrasonic evaluation of the animaI. Ultrasound measurements of backfat 
thickness, loineye area and the percentage of intramuscular fat ('marbling') were 
obtained. The objective of the study was to determine ifultrasound examination of the 
animai at the time of entry into a feedlot was able to predict final carcass grade (AAA, 
AA or A). Carcass grade depends primarilyon the amount of intramuscular fat in the 
carcass at the time of slaughter. 

Table of variables 

Variable 

farm 

id 

grade 

breed 

sex 

bckgrnd 

implant 

backfat 

ribeye 

imfat 

days 

carc_wt 

Description 

farm id 

animai id 

carcass grade 

breed (known or estimated) 

gender 

animai backgrounded 

horrnone implant used 

backfat thickness 

area of rib eye muscle 

intramuscular fat score 

fattening period 

carcass weight 

Codes/units 

1 =AAA 
2 =AA 
3=A 

multiple 

O = female 
1 = male 

0/1 

0/1 

mm 

sq cm 

% of area 

days 

kg 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

meta-analysis 
29 
group of cows 
lan Dohoo 
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Dohoo IR, Leslie KE, DesCöteaux L, Fredeen A, Shewfelt W, Preston A et al. A 
meta-analysis review of the effects of rBST. 2. Effects on animai health, reproductive 
performance and culling. Can J Vet Res 2003; in press. 

Brief description 
On request from Health Canada, the Canadian Veterinary Medical Association 
established an expert panel to review the production and health effect of recombinant 
bovine somatotropin (rBST) in dairy cattle. The panel carried out a meta-analysis of 
all available literature and evaluated a wide range of production and health effects. 
The data in this file consist of risk ratios for clinical mastitis that were associated with 
the use of rBST. Data from 29 distinct groups of cows, from 20 separate studies are 
included. The precision of the point estimate is included in the form of95% confidence 
limits. 

Table of variables 

Variable 

study 

group 

parity 

studLyr 

rr 

cilow 

cihigh 

dur 

dose_day 

Description 

study number 

cow group number 

parity group 

year of study 

risk ratio 

lower 95% confidence limit 

upper 95% confidence limit 

duration of treatment 

daily dosage 

Codes/units 

1 = primiparous 
2 = ali ages combined 
3 = multiparous 

days 

mg/day 
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Name 

Study type 
# of records 
Unit of re cord 
Contributor 

Reference 

meta-analysis 
28 
group of cows 
lan Dohoo 

DATASETS 

Dohoo IR, Leslie KE, DesCöteaux L, Fredeen A, Dowling P, Preston A et al. A meta­
analysis review of the effects ofrBST. 1. Methodology and effects on production and 
nutrition related parameters. Can J Vet Res 2003; in press. 

Brief description 
On request from Health Canada, the Canadian Veterinary Medical Association 
established an expert panel to review the production and health effect of recombinant 
bovine somatotropin (rBST) in dairy cattle. The panel carried out a meta-analysis of 
alI available literature and evaluated a wide range of production and health effects. The 
data in this file consist of change in level of milk production (fat-corrected milk) that 
were associated with the use of rBST. Data from 28 distinct group s of cows, from 19 
separate studies are included. The precision of the point estimate is included both in the 
form of 95% confidence limits and the SE of the point esti mate. 

Table of variables 

Variable 

study 

group 

parity 

studLyr 

diff 

cilow 

cihigh 

se 

ncows 

dur 

dose_day 

Description Codes/units 

study number 

cow group number 

parity group 1 = primiparous 
2 = ali ages combined 
3 = multiparous 

year of study 

difference in milk production 

lower 95% confidence limit for difference 

upper 95% confidence limit for difference 

standard error of difference 

number of cows in study 

duration of treatment days 

daily dosage mg/day 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

bvd test 

single cohort 
2,162 
cow 
Ann Lindberg 

597 

Lindberg A, Groenendaal H, Alenius S, Emanuelson U. Validation of a test for dams 
carrying foetuses persistently infected with bovine viral-diarrhoea virus based on 
determination ofantibody levels in late pregnancy. Prev Vet Med 2003; 51: 199-214. 

Brief description 
Blood or milk samples were collected from 2,162 pregnant cows at various stages 
of lactation. Following the birth of their calf, the status of the calf with regard to 
persistent infection (PI) with the bovine viral diarrhea (BVD) virus was determined. 
The blood and milk samples were tested using an ELISA to determine levels of BVD 
virus antibodies in the cow. A variety of cutpoints were then examined to determine 
which gave the best combination of sensitivity and specificity for detecting PH calves. 
Logistic regression was used to evaluate the effects of other factors (particularly stage 
oflactation) on the estimated sensitivity and specificity ofthe test. 

(continued on next page) 



598 DATASETS 

Table of variables 

Variable Description Codes/units 

cow_id cow identification 

breed breed 1 = red and white 
2 = black and white 
3 = be ef 
4 = other 

parity parity group 1 = primiparous 
2 = ali ages combined 
3 = multiparous 

pregmon pregnancy month at test 

season calving season 1 = winter 
2 = spring 
3 = summer 
4 = autumn 

spec type of specimen 0= milk 
1 = blood 

calfst calf status 0/1 

od optical density 

co_5 test result dichotomised at 0.5 0/1 

co_6 test result dichotomised at 0.6 0/1 

... etc ... 

co_15 test result dichotomised at 1.5 0/1 

co_16 test result dichotomised at 1.6 0/1 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

calf 

retrospective cohort 
254 
calf 
Jeanne Lofstedt 

599 

Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J Vet 
IntMed 1999; 13: 81-88. 

Brief description 
These data come from a retrospective analysis of the medical records from all diarrheic 
calves which were presented to Atlantic Veterinary College, PEl, Canada between 1989 
and 1993. The ultimate objective of the study was to develop a logistic model which 
would predict whether or not the calfwas septic at the time of admission (septic calves 
have a much poorer prognosis than non-septic calves and are not usually worth treating, 
given economic considerations). 

There are 254 observations (records) and 14 variables in the dataset (cali). The original 
dataset had far more variables (inc\uding a lot oflaboratory data) but this dataset contains 
only a sub set of the demographic data and the physical examination data collected. All 
observations were determined on the day of admission, except for the outcome (sepsis) 
which was based on all data available at the time of death or discharge. 

(continued on next page) 



600 

Table of variables 

Variable 

case 

age 

breed 

sex 

attd 

dehy 

eye 

jnts 

post 

pulse 

resp 

temp 

umb 

sepsis 

Description 

hospital case number 

age at admission 

breed 

sex 

attitude of calf 

% dehydration 

uveitis/hypopyon clinically evident 

swollen joints clinically evident 

posture of ca If 

pulse rate 

respiratory rate 

rectal temperature 

swollen umbilicus clinically evident 

sepsis (outcome) 

Codes/units 

days 

coded 1-9 

DATASETS 

O = female 1 = male 

O = bright, alert 
1 = depressed 
2 = unresponsive, comatose 

0/1 

number of joints affected 

O = standing 
1 = sternal 
2 = lateral 

beats per minute 

breaths per minute 

0/1 

0/1 



DATASETS 

Name 

Study type 
# of records 
U nit of record 
Contributor 

Reference 

calCpneu 

cohort 
24 
calf 
Iver Thysen 

601 

Thysen I. Application of event time analysis to replacement, health and reproduction 
data in dairy cattle research. Prev Vet Med 1988; 5: 239-250. 

Brief description 
These published data were used in one of the early publications in the veterinary 
literature discussing the use of survival analysis techniques. The data consist of 
mortality records from 24 calves that were housed in one of two housing systems: 
continuous housing, or batch (ie aB-in aB-out) housing. 

Table of variables 

Variable 

calf 

stock 

days 

died 

Description 

calf id 

stocking method 

time to death or censoring 

died 

Codes/units 

days 



602 

Name 

Study type 
# of records 
Unit of re cord 
Contributors 

Reference 
None 

colostrum 

single cohort 
180 
calf 
Gilles Fecteau 

Brief description 

DATASETS 

Data on the colostrum fed to 180 calves were collected from several dairy herds 
in Quebec. Herd identification was recoded to be the single large herd in the study 
compared to an amalgamation of small herds. The bacterial load in the colostrum 
was determined and the quantity of colostrum fed to the calf recorded. Calves were 
followed for three weeks and their health status over that period recorded as healthy 
(no illness), mild illness or serious illness (including death). The objective of the study 
was to determine ifbacterialload in colostrum affected calfhealth. 

Table of variables 

Variable 

herd 

calUd 

health 

qt Y 

log tot 

Description 

herd of origin 

calf identification 

health score 

quantity of colostrum 

natural log of total bacterial load 

Codes/units 

o = collection of small herds 
1 = large herd 

0= healthy 
1 = mild iIIness 
2 = serious illness 

litres 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributors 

Reference 

survey (cross-sectional) 
2454 
cow 
John VanLeeuwen, Greg Keefe 

603 

VanLeeuwen J, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence ofinfection 
with Mycobacterium avium subspecies paratuberculosis, bovine leukemia virus, and 
bovine viral diarrhea virus in Maritime Canada dairy cattle. Can Vet J Res 2001; 42: 
193-198. 

Brief description 
These data were collected as part of a prevalence survey of four infectious diseases 
of dairy cattle in eastern Canada. 30 herds in each of three provinces (Prince Edward 
Island, Nova Scotia and New Brunswick) were randomly selected from lists of all 
dairy herds participating on a milk-production monitoring program. Within each herd, 
approximately 30 animals were randomly selected and blood samples collected. These 
samples were tested for antibodies to: Neospora caninum, Mycobacterium avium (subsp. 
paratuberculosis) and enzootic bovine leukosis virus. ln addition, a group of non­
vaccinated heifers were bled and tested for bovine viru s diarrhea virus, but these test 
results are not included in this dataset. Sampling weights were computed as the inverse of 
the product of the probability of a herd being selected and the probability of a cow being 
selected within a herd. 

(continued on next page) 
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Table of variables 

Variable 

prov 

herd 

cow 

lact 

dim 

johnes 

leukosis 

neospora 

tot_hrd 

prob_hrd 

tot_cow 

tot_smpl 

prob_cow 

prob_smp 

weight 

Description 

province 

herd identification number 

cow identification number 

lactation number 

days in mil k 

Johne's test result 

leukosis test result 

neospora test results 

total herds in province 

probability of herd being selected 

total cows in herd 

total cows sampled in herd 

probability of cow being selected 

overall probability of a cow being 
selected 

sampling weight 

Codes/units 

days 

0/1 

0/1 

0/1 

DATASETS 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 
None 

daisy 

single cohort 
162 
cow 
Wayne Martin 

Brief description 

605 

These data are based on real cow-reproduction data but have been modified in order 
to demonstrate a number of points related to linear regression. Consequently, they 
are now fictional data. They consist of data ab out the occurrence of a number of 
disease condition s which occur in the early post-partum period, along with measures 
of reproductive performance such as the interval from calving to first estrus, interval 
to first breeding and the calving to conception interval (ali measured in days). The 
objective of the studies based on these data is to evaluate the effect ofvarious diseases 
on reproductive performance. 

Table of variables 

Variable Description 

farmnum farm identifier 

cownum cow identifier 

firstest first observed estrus 

firstbrd postpartum to first breeding 

calvcon postpartum to conception 

age age 

culled cow removed from the herd 

dayscull postpartum to cow removal 

endomet endometritis 

mastitis mastitis 

metritis metritis 

milkfev milk fever 

ovar cystic ovarian disease 

pyomet pyometritis 

retpla retained fetal membranes (placenta) 

Codes/units 

days 

days 

yrs 

0/1 

days 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

elisaJepeat 

experimental 
40 
milk sample 
Javier Sanchez 

DATASETS 

Sanchez J, Dohoo IR, Markham RJF, Leslie KE, Conboy G. Evaluation of the 
repeatability of a crude adult indirect Ostertagia ostertagi ELISA and methods of 
expressing test results. Vet Parasitol2002; 109: 75-90. 

Brief description 
Forty individual cow milk samples were repeatedly tested (six times) using a crude 
Ostertagia antigen indirect ELISA. Results were recorded both as raw optical den sit y 
(OD) values and values adjusted based on the readings for the positive and negative 
controls in the plate. 

Table of variables 

Variable Description Codes/units 

id sample identification 

raw1 raw OD - sample #1 

raw2 raw OD - sample #2 

... etc ... 

raw6 raw OD - sample #6 

adj1 adjusted OD - sample #1 

adj2 adjusted OD - sample #2 

... etc ... 

adj6 adjusted OD - sample #6 



DATASETS 

Name 

Study type 
# of records 
U nit of record 
Contributors 

Reference 

fec 

single cohort 
2,250 
monthly fecal egg count 
Ane Nodtvedt, Javier Sanchez, lan Dohoo 

607 

Nodtvedt A, Dohoo IR, Sanchez J, Conboy G, DesCöteaux L, Keefe GP et al. The 
use of negative binomial modelJing in a longitudinal study of gastrointestinal parasite 
burdens in Canadian dairy cows. Can J Vet Res 2002; 66: 249-257. 

Brief description 
Monthly (in some herds less frequently) fecal egg samples were collected from 
lactating age dairy cows (n=313) in 38 herds over a period of l year. The data were 
collected as part of a multifaceted study into parasitism in lactating dairy cows which 
inc\uded a longitudinal epidemiologic investigation and a controlJed trial of the effects 
of deworming at calving with eprinomectin. The effects offactors at the sampling-day, 
cow and herd levels on fecal egg counts were evaluated. 

Table of variables 

Variable Description Codes/units 

province Canadian province 1 = PEl 
2 = Quebec 
3 = Ontario 
4 = Saskatchewan 

herd herd identifier 

cow unique cow identifier 

visit visit number 

tx eprinomectin treatment at calving 0/1 

fec fecal egg count eggs/5 gm 

lact lactation O = primiparous 
1 = multiparous 

season season 1 = oct-dec 99 
2 = jan-mar 00 
3 = apr-jun 00 
4 = jul-sep 00 

pasUact lactating cows have access to 0/1 
pasture 

man_heif manure spread on heifer pasture 0/1 

manJact manure spread on cow pasture 0/1 
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Name 

Study type 
# of records 
Unit ofrecord 
Contributor 

References 

feedlot 

case-control 
588 
animaI 
Wayne Martin 

DATASETS 

1. Martin, SW, Harland, RJ, Bateman, KG, Nagy, É. The aSSOCIatIOn of titres 
to Haemophilus somnus and other putative pathogens, with the occurrence of 
bovine respiratory disease and weight gain in feedlot calves. Can J Vet Res 1998; 
62: 262-267. 

2. Martin, SW, Nagy, É, Shewen, PE, Harland, RJ. The association of titres to 
bovine coronavirus with treatment for bovine respiratory disease and weight gain 
in feedlot calves. Can J Vet Res 1998; 62: 257-261. 

Brief description 
This dataset represents the combined data from a number of studies on the role of 
specific micro-organisms as causes of bovine respiratory disease (BRD). Typically 
these beef cattle enter feedlots in the fall of the year and approximately 30% will 
develop BRD. The general strategy for the studi es was to bleed all of the animals on 
arrival at the feedlot and again 28 days later (since most of the occurrence of BRD 
occurs in that time period). For analyses, we used all of the samples from cases and an 
approximately equal number from controls. In some of the smaller groups we used all 
samples and hence in these the study design was essentially a single cohort. The studi es 
were conducted at essentially the same feedlots in different years, but depending on 
their size, one feedlot could have numerous groups of calves on the study in any given 
year. 

The titres were recorded in a quantitative manner but have been dichotomised in this 
dataset. 

Note At the time these data were collected, one of the important bacteria was called 
Pasteurella hemolytica and it is referred to as such in this dataset. Elsewhere in the 
text it is referred to by its newer name Mannheima hemolytica. 

(continued on next page) 
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Table of variables 

Variable Description Codes/units 

group group identification 

tag eartag number 

provínce province of feed lot 1 = Alberta 
2 = Ontario 

brd clinícal bovíne respiratory dísease (case-control) 0/1 

brsvpos arríval titre to brsv 0/1 

brsvsc seroconversíon to brsv during study 0/1 

bvdpos arrival títre to bvd virus 0/1 

bvdsc seroconversíon to bvd duríng study 0/1 

íbrpos arríval títre to íbr vírus 0/1 

íbrsc seroconversíon to íbr vírus duríng study 0/1 

pípos arríval títre to pí3 virus 0/1 

písc seroconversíon to pí3 virus duríng study 0/1 

phcypos arríval titre to Ph cytotoxín 0/1 

phcysc seroconversíon to Ph cytotoxín during study 0/1 

phaggpos arríval títre to Ph agglutinins 0/1 

phaggsc seroconversion to Ph duríng study 0/1 

hspos arrival títre to Hs 0/1 

hssc seroconversion to Hs duríng study 0/1 

wtO arríval weíght kg 

wt28 28-day weíght kg 



610 

Name 

Study type 
# of records 
Unit of record 
Contributors 

References 

fish_morts 

cross-sectional 
236 
sea-cage 
Larry Hammell, lan Dohoo 

DATASETS 

l. Hammell KL, Dohoo IR The epidemiology of hemorrhagic kidney syndrome 
- infectious salmon anemia in Atlantic salmon in Atlantic Canada. Bristol, 
England: Society for Veterinary Preventive Epidemiology and Preventive 
Medicine, 1999. 

2. Hammell KL, Dohoo IR Challenges of investigating mortality patterns and 
management factors associated with ISA V outbreaks in eastern Canada. Paris, 
France: O.l.E., Risk Analysis in Aquatic AnimaI Health, 2000. 

3. Hammell KL, Dohoo IR. Mortality patterns in Infectious Salmon Anemia virus 
outbreaks in New Brunswick, Canada. Journal of Fish Diseases 2003; accepted. 

Brief description 
Following the introduction of infectious salmon anemia virus to the Bay of Fundy 
(Canada), an epidemiological investigation ofrisk factors for the disease was initiated. 
At the time the study was started, the etiology of the mortalities was not known 
and cages were designated as 'outbreaks' or not, based on the pattern of mortalities 
observed in the cage. One of the risk factors identified as being associated with an 
increased risk of elevated mortalities was the feeding of dry (as opposed to wet- or 
moist-) feed. These data are a very small sub set of the original data collected. They 
describe mortalities in 236 cages from 16 different sites over a period of just a few days 
(depending on the number of days between dives for collection of dead fish). 

Table of variables 

Variable 

cage_id 

days 

morts 

fish 

feed 

Description 

cage id 

time since last dive 

number of dead fish retrieved 

estimated number of fish in cage 

dry feed (compared to wet) 

Codes/units 

days 

o =wet 
1 = dry 



DATASETS 

Name 

Study type 
# of records 
U nit of record 
Contributors 

References 

isa risk 

cross-sectional 
182 
sea cage 
Larry Hammell, lan Dohoo 

611 

l. Hammell KL, Dohoo IR The epidemiology of hemorrhagic kidney syndrome 
- infectious sal mon anemia in Atlantic salmon in Atlantic Canada. Bristol, 
England: Society for Veterinary Preventive Epidemiology and Preventive 
Medicine, 1999. 

2. Hammell KL, Dohoo IR Challenges of investigating mortality patterns and 
management factors associated with ISAV outbreaks in eastern Canada. France: 
O.LE., Risk Analysis in Aquatic AnimaI Health, 2000. 

3. Hammell KL, Dohoo IR. Mortality patterns in infectious salmon anemia virus 
outbreaks in New Brunswick, Canada. Journal of Fish Diseases 2003; accepted. 

Brief description 
Following the introduction of infectious salmon anemia virus to the Bay of Fundy 
(Canada), an epidemiological investigation ofriskfactors for the disease was initiated. 
At the time the study was started, the etiology of the mortalities was not known 
and cages were designated as 'outbreaks' or not, based on the pattern of mortalities 
observed in the cage. A large number of risk factors were evaluated and this dataset 
consists of the records for 182 cages which had complete data on a subset of those 
factors (see list below). While the factors listed below were all fixed factors (ie didn't 
change during the study period), the data were used to compute a time-vary ing factor: 
whether or not there had been another positive cage (net-pen) at the site. This was used 
in survival models of the time to the occurrence of an outbreak. 

Table ofvariables 

Variable 

sitepen 

site 

net-pen 

datestrt 

apr01_97 

date 

case 

cummrt96 

size 

par 

numcage 

Description 

(1 OOO*site )+cage identifier 

site identifier 

cage identifier 

date fish first put in cage 

April1 1997 

date of outbreak OR censoring 

case (outbreak) 

cum. mort. during 1996 

cage size 

initial population at risk in cage (number of fish) 

number of cages at site 

Codes/units 

0/1 

0=<10,000 
1 = >10,000 



612 DATASETS 

Name 

Study type cross-sectional 
# ofrecords 1,071 
Unit of record fish 
Contributors Carol McClure, Larry Hammell 

Reference 
McClure C, Hammell KL, Stryhn H, Dohoo IR, Hawkins LJ. Application of 
surveillance data in the evaluation of infectious salmon anemia diagnostic tests. Dis of 
Aquatic Org 2003; submitted. 

Brief description 
Following the identification of the infectious salmon anemia virus in the Bay of 
Fundy (Canada), a lot of fish were tested using a variety of diagnostic tests. It was 
realised that tests often gave conflicting results and the available data were used to 
provide a preliminary evaluation of the operating characteristics of each test. Fish that 
were derived from sea cages (net-pens) that had a confirmed outbreak of ISA were 
considered to be 'gold standard positive. ' Fish sampled from sites which did not have 
any outbreaks of ISA (in any cages) during the study period were considered 'gold 
standard negative.' Other fish sampled were not included in this study. Test results from 
a total of 1071 fish that had multiple tests performed and which could be classified as 
positive (n=264) or negative (n=807) were included in the dataset. 

Table of variables 

Variable 

id 

date 

site 

cage 

su bm 

fish 

dz 

histo 

histo_np 

ifat1 

ifat1 _np 

ifat2 

ifat2_np 

pcr 

vi 

Description 

case identification 

submission date 

site identification 

cage identification 

submission identification 

fish number for each case 

disease status (clinical) 

histology 

histo neg/pos (pos=susp+pos) 

IFAT laboratory 1 

IFAT-lab1 neg/pos (pos is ~ 1) 

IFAT - laboratory 2 

IFAT-lab2 neg/pos (pos is ~ 2) 

PCR 

virus isolation 

Codes/units 

0= negative 
1 = suspicious 
2 = positive 

0/1 

O-4 

0/1 

O-4 

0/1 

0/1 

0/1 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 
None 

Brief description 

Iympho 

clinical trial (fictional) 
300 
dog 
lan Dohoo 

613 

These data are from a fictional clinical trial of two treatments for lymphosarcoma 
in dogs. The study was (hypothetically) conducted as a multicentre (n=7 clinics) 
controlled triai. Dogs meeting the eligibility criteria for entry into the trial (n=300) 
had the tumour surgically removed (only dogs with tumours which could be surgically 
removed were eligible) and then were random ly ass igne d to one of fOUf treatment 
groups: no treatment, radiation only, chemotherapy only and both radiation and 
chemotherapy. Dogs were randomly assigned within each centre, so the total number 
of dogs on each treatment group are not exactly equal for all treatments. Each dog was 
followed from the time of treatment until it died from a relapse of the lymphosarcoma 
or was lost to follow-up (eg died of other causes, owner moved away from the study 
site) and the time to theoccurrence of either of those was recorded. 

Table of variables 

Variable 

dogid 

age 

rad 

chemo 

died 

months 

Description Codes/units 

the dog's study identification number 

age of dog in years when it was diagnosed with yrs 
Iymphosarcoma 

whether or not the dog received radiation 0/1 
therapy 

whether or not the dog received chemotherapy 0/1 

whether the dog died or was lost to follow-up 0/1 

the number of months after the start of therapy mo 
before the dog died or was lost to follow-up 



614 

Name 

Study type 
# of records 
Unit of record 
Contributors 

Reference 

nocardia 

case-control 
108 
herd 
Lynn F ems, lan Dohoo 

DATASETS 

Fems L, Dohoo IR, Donald A. A case-control study ofNocardia mastitis in Nova Scotia 
dairy herds. Can Vet J Res 1991; 32: 673-677. 

Brief description 
This dataset contains a sub set of the data obtained from a case-control study of Nova 
Scotia dairy herds with and without Nocardia mastitis. There had been adramatic 
increase in the incidence ofNocardia mastitis in Canada since 1987 and this study was 
carried out to identify risk factors associated with the occurrence this disease. A total 
of 54 case herds and 54 control herds were visited for data-collection purposes during 
the summer of 1989. 

(continued on next page) 



DATASETS 

Table of variables 

Variable 

id 

casecont 

numcow 

prod 

bscc 

dbarn 

do ut 

dcprep 

dcpct 

dneo 

dclox 

doth 

Description 

herd identification number 

case/control status of herd 

number of cows milked 

Codes/units 

o = control 
1 = case 

average milk production for the herd kg/cow/day 

average bulk-tank SCC over the first 'OOOs of cells/ml 
6 month s of 1988 

type of barn dry cows kept in 

type of outdoor area used for dry 
cows 

method of teat end preparation prior 
to dry cow therapy administration 

1 = freestalI 
2 = tiestall 
3 = other 

1 = pasture 
2 = yard/drylot 
3 = none 
4 = other 

1 = no prep. 
2 = washed only 

615 

3 = washed and disinfected 
4 = dry cow therapy not 
used 

percent of dry cows treated with dry- % 
cow therapy 

dry-cow product containing 0/1 
neomycin used on farm in last year 

dry cow product containing 0/1 
CI oxaci Ili n used on farm in last year 

Other dry cow products used (eg 0/1 
penicillin or novobiocin based) used 
on farm in last year 



616 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 
None 

pgtrial 

clinical trial 
319 
cow 
JeffWichtel 

Brief description 

DATASETS 

A clinical trial of the effect of prostaglandin administration at the start of the breeding 
period was carried out in three North Carolina dairy herds. On each of the three farms, 
the producer determined when he was ready to start breeding cows in his herd and at 
that time, cows were randomly assigned to receive a single injection of prostaglandin 
or a placebo. These cows were then followed (up to a maximum of346 days) unti l they 
conceived (confirmed by rectal examination) or were culled. In add iti on to evaluating 
the effect of treatment on reproductive performance, three other factors were considered 
(parity, body condition score and herd). 

Table of variables 

Variable 

herd 

cow 

tx 

lact 

thin 

dar 

preg 

Description 

herd identification number 

cow identification number 

treatment 

lactation number 

body condition 

days at risk 

pregnant or censored 

Codes/units 

0/1 

0= normal 
1 = thin 

days 

0= censored 
1 = pregnant 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

References 

cross-sectional 
341 
pig 
Theresa Bernardo 

617 

l. Bernardo TM, Dohoo IR, Donald A, Ogilvie T, Cawthorne R. Ascariasis, 
respiratory disease and production indices in selected PEl swine herds. Can J Vet 
Res 1990; 54: 267-273. . 

2. Bernardo TM, Dohoo IR, Ogilvie T. A critical assessment of abattoir surveillance 
as a screening test for swine ascariasis. Can J Vet Res 1990; 54: 274-277. 

3. Bernardo TM, Dohoo IR, Donald. Effect of ascariasis and respiratory disease on 
growth rate s in swine. Can J Vet Res 1990; 54: 278-284. 

Brief description 
These are data on the growth performance and abattoir findings of pigs from a selection 
of Prince Edward Island, Canada farms. The data were collected to study the inter­
relationships among respiratory diseases (atrophic rhinitis and enzootic pneumonia), 
ascarid levels and daily weight gain. Atrophic rhinitis score was determined by splitting 
the snout and measuring the space ventral to the turbinates. An adjustment to the score 
was made if the nasal septum was deviated. Lung scores were recorded on a scale of 
O to 3 (negative to severe pneumonia) and then converted to either the presence or 
absence of pneumonia. Parasite burdens were evaluated using fecal egg counts, counts 
of adult worms in the intestine and visual assessment of the liver for ascarid tracks. 
Production data were recorded by monitoring the pigs on the farms of origin from birth 
through to slaughter. 

(continued on next page) 



618 

Table of variables 

Variable 

farm 

pig 

sex 

dtm 

adg 

mm 

ar 

lu 

pn 

epg5 

worms 

ar2 

Description 

farm identification number 

pig identification number 

sex of the pig 

days to market (ie from birth to slaughter) 

average daily weight gain 

measurement of snout space 

atrophic rhinitis score 

lung score for enzootic pneumonia 

DATASETS 

Codes/units 

O = female 
1 = castrate 

days 

gm 

mm 

O-5 

0= negative 
1 = mild 
2 = moderate 
3 = severe 

pneumonia (lu>O) 0/1 

fecal gastrointestinal nematode egg count eggs/5 gm 
at time of slaughter 

count of nematodes in small intestine at 
time of slaughter 

liver score (based on number of parasite 
induced 'white spots') 

severe atrophic rhinitis (ar>4) 

0= negative 
1 = mild 
2 = severe 

0/1 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

cross-sectional 
69 
farm 
Dan Humik 

619 

l. Humik D, Dohoo IR, Donald A W, Robinson NP. Factor analysis of swine farm 
management practices on Prince Edward Island. Prev Vet Med 1994; 20: 135-146 

2. Humik D, Dohoo IR, Bate LA. Types offarm management as risk factors for swine 
respiratory disease. Prev Vet Med 1994; 20: 147-157. 

Brief description 
A cross-sectional study ofpig farms in Prince Edward Island (Canada) was carried out 
to investigate risk factors for respiratory diseases (enzootic pneumonia and pleuritis). 
The prevalence of each disease was determined at slaughter from routine evaluations 
of thoracic viscera. Data on risk factors were collected by the investigator during visits 
to each farm. Data on a wide variety of factors were collected and the challenge was 
to sort out relationships among these factors and between them and the respiratory 
diseases given a very limited sample size. 

(continued on next page) 



620 DATASETS 

Table of variables 

Variable Description Codes/units 

farm_id farm identification 

pneu pneumonia prevalence 

pncode pneumonia - categorical (3 levels) 0<10% 
1 = 10-40% 
2 >40% 

pleur pleuritis prevalence 

plcode pleuritis - categorical (3 levels) 0=0% 
1 = 0-8% 
2>8% 

num number of pigs examined at slaughter 

size herd size 

growth average daily gain gm/day 

cmpfd pigs fed complete mixed feed 0/1 

suppl supplement added to feed 0/1 

prmx premix fed 0/1 

strmed starter ration medicated 0/1 

selenium selenium added to feed 0/1 

dryfd feed fed dry (vs wet) 0= wet 
1 = dry 

flrfd pigs fed on floor 0/1 

rooms number of separate rooms in barn 

m3pig air volume per pig m3 

shipm2 density (pigs shipped per m2) pigs/m2 

exhaust exhaust fan capacity (proportion of 
recommendation) 

inlet air inlet size (proportion of 
recommendation) 

maninit manual adjustment of air inlets 0/1 

mixmnr manure mixed between pens 0/1 

straw straw bedding used 0/1 

washpns frequency of pen washings (per yr) 

strdnst floor space - starter hogs (sq m) m2 

grwdnst floor space - grower hogs (sq m) m2 

fnrdnst floor space - finishing hogs (sq m) m2 

(continued on next page) 
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Table of variables 

Variable Description Codes/units 

Iqdmnr manure handled as aliquid 0/1 

floor floor slaUed 0/1 

sldprtn solid partitions between some pens 0/1 

hlfsld half-solid partitions between some 0/1 
pens 

pigwtr pigs per water nipple 

numpen number of pens 

mixgrp pigs from multiple groups mixed 0/1 

hldbck slow growing pigs held back from 0/1 
slaughter 

dstfrm distance (km) to nearest hog farm km 

hmrsd ali pigs home raised 0/1 

nmbsrc number of sources of pigs 

mnlds only minimal disease pigs raised 0/1 

vet veterinary visits per year 

feedsis feed salesman visits per year 

neighbr neighbour visits per year 

pigprdc pig producer visits per year 

trucker trucker visits per year 

you owner works in barn 0/1 

family family members work .in barn 0/1 

hrdhlp hired help works in barn 0/1 

exprnce years of experience yrs 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

prew_mort 

cross-sectional 
6552 
litter 
Jette Christensen 

DATASETS 

Christensen J, Svensmark B. Evaluation of producer-recorded causes of preweaning 
mortality in Danish sow herds. Prev Vet Med 1997; 32: 155-164. 

Brief description 
These data are a subset of 16 herds from adataset collected by Jette Christensen in 
Denmark to study factors affecting preweaning mortality in pigs. These data have three 
levels in the hierarchy (litters (n=6552) within sows (n=3162) within farms (n=16)): 

The key outcome of interest is preweaning mortality with alitter classified as having 
preweaning mortality or not if one or more piglets died before weaning. 

Table of variables 

Variable 

herd 

sowid 

litter 

Imort 

herdtype 

year 

month 

quarter 

sow_parity 

sow_tx 

dead 

Isize 

n 

stillb 

Description 

unique herd id 

unique sow id 

unique litter id 

prewmort in litter 

herd type 

month 

quarter of year 

parity of sow 

sow required treatment (2d befo re to 7d after 
farrowing) 

number of dead piglets in litter 

litter size 

number at risk in litter 

number stillborn 

Codes/units 

0/1 

O = production 
I = breeding herd 

jan = I dec = 12 

I = jan-mar 
2 = apr-jun 
3 = jul-sept 
4 = oct-dec 

0/1 
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Name 

Study type 
# of records 
Unit of record 
Contributors 

Reference 

single cohort 
2509 
lactation 
Emmanuel TilIard, lan Dohoo 

623 

Dohoo IR, TilIard E, Stryhn H, Faye B. The use of multilevel models to evaluate 
sources ofvariation in reproductive performance in dairy cattle in Reunion Island. Prev 
Vet Med 2001; 50: 127-144. 

Brief description 
These data were collected as part of an ongoing research programme into dairy cattle 
fertility being carried out on Reunion Island (a French overseas department located in 
the Indian ocean) by researchers with ClRAD (Centre de Coopération Intemationale 
en Recherche Agronomique pour le Développement). Two separate datasets have been 
compiled. This one contains data about the calving to conception interval, while the 
sec ond had data on the interval from calving to first service. The data have a 4-level 
hierarchy (lactations (n=2509) within cows (n=1345) within herds (n=50) within 
geographic regions (n=5)). 

Table of variables 

Variable 

region 

herd 

cow 

obs 

lact 

cc 

Incc 

heifer 

ai 

Description 

geographic region 

herd number 

unique cow number 

unique observation number 

lactation number 

calving to conception interval 

calving to conception interval - log 
transformed 

calving to first service interval - log 
transformed and centred 

age 

type of insemination at first service 

Codes/units 

days 

o = multiparous 
1 = primiparous 

O = natural 
1 = ai 
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Name 

Study type 
# of records 
Unit of record 
Contributors 

Reference 

single cohort 
3027 
lactation 
Emmanuel TilIard, lan Dohoo 

DATASETS 

Dohoo IR, Tillard E, Stryhn H, Faye B. The use of multilevel model s to evaluate 
sources of variation in reproductive performance in dairy cattle in Reunion Island. 
Prev Vet Med 2001; 50: 127-144. 

Brief description 
These data were collected as part of an ongoing research program into dairy cattle 
fertility being carried out on Reunion Island (a French overseas department located in 
the Indian ocean) by researchers with ClRAD (Centre de Coopération Intemationale 
en Recherche Agronomique pour le Développement). Two separate datasets have been 
compiled. This one contains data on the interval from calving to first service. The data 
have a 4-level hierarchy lactations (n=3027) within cows (n= 1575) within herds (n=50) 
within geographic regions (n=5)]. 

A second dataset containing only the first recorded lactation within each cow was saved 
as reu cfs llact. 

Table of variables 

Variable 

region 

herd 

cow 

obs 

lact 

cfs 

Incfs 

fscr 

heifer 

ai 

Description 

geographic region 

herd number 

unique cow number 

unique observation number 

lactation number 

calving to first service interval 

calving to first service interval - log 
transformed 

first service conception 

age 

type of insemination at first service 

Codes/units 

days 

0/1 

O = multiparous 
1 = primiparous 

O = natural 
1 = ai 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

References 

matched case-control 
112 
individual (person) 
Tine Hald 

625 

l. Molbak K, Hald DT. An outbreak of Salmonella typhimurium in the county of 
Funen during late summer. A case-controlled study. Ugeskr Laeger 1997; 159(36): 
5372-5377. 

2. Hald DT. Salmonella in pork: Epidemiology, control and the public he alth impact. 
Copenhagen: Royal Veterinary & Agric. Univ. 2001. 

Brief description 
The data are from an investigation of an outbreak of Salmonella in Funen County of 
Denmark in 1996. The data consisted of 39 cases of Salmonella typhimurium phage 
type 12 and 73 controls matched for age, sex and municipality of residence. Data on 
numerous food exposures were recorded and a small subset of those data are included 
in the dataset -sal outbrk-. 

(continued on next page) 
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Table of variables 

Variable 

match-grp 

date 

age 

gender 

casecontrol 

eatbeef 

eatpork 

eatveal 

eatlamb 

eatpoul 

eatcold 

eatveg 

eatfruit 

eateggs 

s It_a 

dlr_a 

dlr_b 

Description 

case-control pair identifier 

interview date 

age 

gender 

case-control status 

ate beef in previous 72 hours 

ate pork in previous 72 hours 

ate veal in previous 72 hours 

ate lamb in previous 72 hours 

ate poultry in previous 72 hours 

ate cold sliced meats in previous 72 hours 

ate vegetables in previous 72 hours 

ate fruit in previous 72 hours 

ate eggs in previous 72 hours 

ate pork processed at slaughterhouse A 

ate pork marketed by wholesaler A 

ate pork marketed by wholesaler B 

DATASETS 

Codes/units 

yrs 

O = male 
1 = female 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 



DATASETS 

Name 

Study type 
# of records 
U nit of record 
Contributors 

Reference 

longitudinal 
14,357 
test-day observations 
Jens Agger and Danish Cattle Organization, Paul Bartiett, 
Henrik Stryhn 

627 

Stryhn H, Andersen JS, Bartiett PC, Agger JFA. Milk production in cows studies by 
linear mixed models. Proc. of symposium in applied statistics, Copenhagen, January 
200l. Proceedings (ed. Jensen NE. Linde P): 1-10. 

Brief description 
These data are a very small subset of a large mastitis dataset collected by Jens Agger 
and the Danish Cattle Organization. This dataset contains records from 14,357 test-day 
observations in 2,178 cows from 40 herds. Milk weights (production records) were 
collected approximately monthly, and only records from a single lactation for each cow 
were included in this dataset. Factors that may have affected the somatic cell count 
(SCC) were also recorded. The major objective of this study was to determine if the 
relationship between the somatic cell count and milk production varies for cows with 
different characteristics (age, breed, grazing or not etc). 

A subset of these data called -scc40 _ 2level- was created by only taking the first 
observation for each cow, thereby reducing the dataset to two level s (herds and cows). 

Table of variables 

Variable 

herdid 

cowid 

test 

h_size 

c_heifer 

t_season 

Description 

herd id 

cow id 

approximate month of lactation 

average herdsize 

parity of the cow 

season of test day 

days in mil k on test-day 

log somatic cell count on test day 

Codes/units 

o to 10 

1 = heifer 
O = multiparous 

I = jan-mar 
2 = apr-jun 
3 = jul-sep 
4 = oct-dec 

days 
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Name 

Study type 
# of records 
Unit of record 
Contributor 

Reference 

smpltype 

longitudinal 
1114 
pig 
Hakan Vigre 

DATASETS 

Vigre H, Dohoo IR, Stryhn H, Busch ME. Intra-unit correlations in seroconversion to 
Actinobacillus pleuropneumonia and Mycoplasma hyopneumoniae at different level s 
in Danish multisite pig production facilities. Prev Vet Med 2003; submitted. 

Brief description 
These data are derived from the -ap2- dataset. In addition to the original data, this 
dataset contains indicator variables (made up) that identify those pigs that were part of 
a: simple random sample, systematic random sample, stratified random sample, cIuster 
sample and multistage sample. 

Table of variable s 

Variable Description Codes/units 

farm_id farm identification 

pig_id pig identification 

barn_ord order of pigs in barn (as they were walked 
down an alley) 

parity farrowing number of the sow (categorised) 1 = 1 
2=2 
3 = 3-4 
4 = 5+ 

dwg_t daily weight gain to approx 65 days gm/day 

smp_srs pig in the simple random sample 0/1 

smp_syst pig in the systematic random sample 0/1 

smp_strat pig in the stratified (by parity) sample 0/1 

smp_clust pig in the cluster (by herd) sample 0/1 

smp_ms pig in the multistage sample (psu=herd) 0/1 



DATASETS 

Name 

Study type 
# of records 
Unit of record 
Contributors 

References 

tb real 

retrospective cohort 
134 
animaI group s 
lan Dohoo, Fonda Munroe 

629 

l. Munroe FA, Dohoo IR, Mcnab WB. Estimates of within-herd incidence rates of 
Mycobacterium bovis in Canadian cattle. Prev Vet Med 2000; 45: 247-256. 

2. Munroe FA, Dohoo IR, Mcnab WB, Spangler L. Risk factors for the between-herd 
spread of Mycobacterium bovis in Canadian cattle and cervids between 1985 and 
1994. Prev Vet Med 1999; 41: 119-133. 

Brief description 
A retrospective eva1uation of aH (n=9) outbreaks of tuberculosis in domestic animai s 
(dairy and beef cattle, cervids and bison) in Canada between the years of 1985 and 
1994 was carried out to investigate risk factors for the spread of tuberculosis within and 
between herds. Detailed records from the epidemiologic investigation of aH outbreaks 
(inc1uding records on aH contact herds) were review ed and a summary of each outbreak 
prepared. This dataset contains data only from herds in which tuberculosis was 
observed. In each herd, the most probably date on which the infection entered the herd 
was determined and the number of new cases arising within the herd determined from 
the herd testing results. The number of animals in each age, sex and type group was 
determined and the number of animai days at risk was computed. The effects of age 
(three groups), sex (two groups), and animai type (five groups) on the incidence rate of 
new infections was investigated. Note To meet confidentiality and regulatory concems, 
these data have deliberately been falsified. 

Table of variables 

Variable 

obs 

farm_id 

type 

sex 

age 

reactors 

par 

Description 

observation number 

farm identification 

type of animai 

sex 

age category 

number of pos/reactors in the group 

animai days at risk in the group 

Codes/units 

1 = dairy cattle 
2 = beef cattle 
3 = cervid 
4 = other 

1 = female 
2 = male 

1 = 0-12 mo 
2 = 12-24 mo 
3 = >24 mo 



630 



631 

28 

PROGRAM FILES 

This chapter contains the program files used for the analyses presented in ali of the 
examples in this text. With the exception of a few examples in Chapters 21 and 22, 
ali examples were worked out using Stata®, Version 7. Consequently, virtualiy ali 
of the program files are Stata -do- files. Most examples in Chapter 21 were analysed 
using SAS® (primarily Proc Mixed) and the SAS program file s are presented. Some 
examples in Chapters 21 and 22 were analysed using MLwiN® but this program was 
used interactive ly, so program files are not available for those exercises. 

During the production of this text, Version 8 of Stata was released. However, to 
maintain consistency through out the book, Version 7 was used for ali examples. In 
a few instances, the syntax of Stata commands changed between Versions 7 and 8. 
Consequently, if you use Version 8 (or subsequent versions) to run these programs, you 
may need to add the statement: 

version 7 
at the start of each program. In the same light, the graphics capabilities of Stata were 
extended greatly between Versions 7 and 8. If you are running Version 8, you will either 
need to add the version statement shown above to any program containing the -graph­
command, or replace it with the command -gr7-. 

Ali ofthe -do- files (and SAS program files) used in the book will be available from 
the textbook's website (http://www.upei.ca/ver . In addition, -do- files used to generate 
many of the Figures which are not contained in Examples will be available through the 
Veterinary Epidemiologic Research website. 

Ali of the program files assume that the data are stored in a folder on your c: drive 
called: 

c:\ver\data 
The data files are also all available from the Veterinary Epidemiologic Research 
website. They can either be downloaded from the site, or accessed directly from within 
Stata using Stata's -net from- capabilities (see Stata documentation for details). 

Most of the -do- files are relatively short and straightforward to foliow. A few, which 
simulate data prior to analysing them, are much longer and more complex. In addition, 
these programs save data files in a specified location which you may have to change if 
the specified folder does not exist on your computer. 
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1 INTRODUCTION AND CAUSAL CONCEPTS 

There are no program files for this chapter. 

2 SAMPLING 

* Example 2.2 Analysis of stratified data 
* open the Dairy Disease dataset 

use "c:\ver\data\dairy~dis.dta", clear 
* compute the prevalence treating the sample as a simple random sample 

svyset, clear 
svyprop neospora 

* compute the overall prevalence treating the sample as a stratified sample 
svyset strata prov 
svyprop neospora 
svyprop neospora, by(prov) 

* Example 2.3 Analysis of weighted data 
* open the Dairy Disease dataset 

use "c:\ver\data\dairy ~dis.dta", clear 

PROGRAM FILES 

* compute the prevalence treating the sample as stratified and taking weights into account 
svyset, clear 
svyset strata prov 
svyset pweight weight 
svyprop neospora 

* Example 2.4 Analysis of multistage sampled data 
* open the Dairy Disease dataset 

use "c:\ver\data\dairy~dis.dta", clear 
* compute the prevalence treating the sample as stratified and taking weights into account 
* and considering the primary sampling unit. 

svyset, clear 
svyset strata prov 
svyset pweight weight 
svyset psu herd 
svyprop neospora 

* Example 2.5/2.6 Sample size calculations 
* sample size if steers randomly allocated to treatments 

sampsi .15 .10, p(.8) 
* sample size iftreatment applied at the farm level 

sampsi .15 .10, p(.8) 
sampclus, rho(O.3) obs(50) 

* note this program generates slightly different answers than the hand calculations in the 
* text due to using a slightly different formula 



PROGRAM FILES 

* Example 2.7 Power calculation by simulation 
set more off 
set seed 123456 

* open the pig_ adg dataset 
use "c:\ver\data\pig_adg.dta", clear 

* generate a new variable for the presence/absence ofworms 
gen w2=worms>0 

* regress adg on w2, se and farm 
xi:regress adg w2 sex i.farm 

* compute predicted values for each observation and determine the standard error of 
* prediction 

predict pred, xb 
* set up a file to hold the results from the simulation 

tempname memhold 
postfile 'memhold' beta z pval us ing "c:\ver\ch2\ex2 _7 Jslt.dta", replace 

* set up loop to repeat the analyses many times 
local i=O 
while 'i'<IOOO { 

* generate a new outcome variable adg_new that is normally distributed with a mean at the 
* predicted value and a std. dev. of 46.905 

gen rand=invnorm(uniform()) 
gen adg_new=pred+46.905*rand 

* regress adg_ new on the same set of predictors 
quietly xi:regress adg_new w2 sex i.farm 

* obtain the regression coefficient and compute its z statistic and P-value 
matrix V =e(V) 
matrix B=e(b) 
scalar beta=B[ I, l] 
scalar z=B[ I, 1]/sqrt(V[ 1,1]) 
scalar pval=2*( l-normprob(abs(z))) 

* post the beta, z and pval to the results file 
post 'memhold' (beta) (z) (pval) 

* repeat the loop 
drop rand adg_ new 
local i = 'i'+1 

* stop the process of posting results to a file 
postclose 'memhold' 

* open the file that captured the results 
use "c:\ver\ch2\ex2_7 Jslt.dta", clear 

* compute and display the power 
count ifpval<0.05 
scalar power=r(N)/1 OOO 
display" " 
display "Power is " %8.3f scalar(power) 

633 

* compare the computed power to a simple calculation based on the mathematical formulae 
* presented 

sampsi 500 507.7, sd(46.9) nl(l14) n2(227) 
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3 QUESTIONNAIRE DESIGN 

There are no program files for this chapter 

4 MEASURES OF DISEASE FREQUENCY 

* Example 4.3 Confidence intervals for risks and rates 
* open the dairy disease dataset 

use c:\ver\data\dairy_dis, elear 
* drop all but the herd= l data 

keep ifherd==l 
* reformat the Johne's and leukosis variables 

formatjohnes leukosis %6.4f 
* compute the approximate confidence intervals 

ci leukosis 
cijohnes 

* compute the exact binomial confidence intervals 
ci leukosis, binomial 
ci johnes, binomial 

* compute incidence rate s and exact confidence intervals 
gen age=lact+2 
ci leukosis, poisson exposure(age) 
ci j ohnes, poisson exposure( age) 

* elear the data to prevent the original file being overwritten 
elear 

* Example 4.4 Indirect standardisation 
* open the standardisation dataset 

use "c:\ver\data\stdize.dta", elear 
* compute indirect standardised rates 

PROGRAM FILE S 

istdize totcases hy type using "c:\ver\data\stdize_ind.dta", by(region) rate(rate 0.06) print 

* Example 4.5 Direct standardisation 
* open the standardisation dataset 

use "c:\ver\data\stdize.dta", elear 
* compute indirect standardised rates 

dstdize cases hy type, by(region) using("c:\ver\data\stdize _ dir.dta") 

5 SCREENINCIDIAGNOSTIC TESTS 

* Example 5.1 Measuring agreement - quantitative test resuIts 
* open the elisa Jepeat dataset 

use "c:\ver\data\elisaJepeat.dta", elear 
* coefficient ofvariation 
* compute the mean and SD and coef. ofvariation of the 6 raw and 6 adjusted values 

egen raw_avg=rmean(rawl-raw6) 
egen raw _sd=rsd(rawl-raw6) 
gen raw _ cv=raw _ sd/raw _ avg 



PROGRAM FILE S 

egen adL avg=nnean( adj l-adj6) 
egen adLsd=rsd(adjl-adj6) 
gen adLcv=adLsd/adLavg 

* compute the average cv for the raw and adjusted values 
sum raw _ cv adL cv 

>I< Pearson correlation coefficient 
corr raw 1 raw2 adj 1 adj2 
* concordance 

concord rawl raw2 
concord adj 1 adj2, g( ccc) gap( 6) saving("c:\ver\ch5\fig5 _l.gph", replace ) 

>I< Limits of Agreement plot 
concord adj I adj2, g(loa) 11(" ") 12("Difference Between Values") /* 

>I< / saving("c: \ ver\ch5\fig5 _2 .gph" , replace) pen(11121 ) 

>I< Example 5.2 Agreement between two dichotomous tests 
>I< open the isa-test dataset 

use "c:\ver\data\isa_test.dta", clear 
>I< compute McNemar's chi-square for assessing the positive proportions 

mcc ifatl_np ifat2_np 
>I< compute kappa using the dichotomised IFAT results (2 labs) 

kap ifatl_np ifat2_np 
>I< compute the confidence interval for kappa 

kapgof ifat 1_ np ifat2 _ np 

>I< Example 5.3 Agreement among ordinal test results 
>I< open the isa-test dataset 

use "c:\ver\data\isa_test.dta", clear 
>I< set up the agreement (weight) matrix 

kapwgtisa_wt 1 \0.71 \0.3 0.71 \00.3 0.71 \000.3 0.71 
kapwgt isa_wt 

>I< compute the weighted kappa 
kap ifatl ifat2, wgt(isa_ wt) tab 

>I< Example 5.4 Sensitivity, specificity and predictive values 
>I< open the bvd-test dataset 

use "c:\ver\data\bvd_test.dta", clear 
>I< make a copy of the data, keep only the blood samples 

pre serve 
keep if spec== 1 

* dichotomise the test results 
gen pos=od>0.92 if od~=. 

* compute the relevant test characteristics 
diagt calfst pos 

>I< restore the original (full) dataset 
restore 

>I< Example 5.7 Parallel and serial interpretation 
* open the isa-test dataset 

use "c:\ver\data\isa_test.dta", clear 
>I< cross-tabulate IFAT and peR by VI 

635 
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bysort dz:tab ifatl_ np per, row col 
* generate results for series interpretation 

gen series=O ifpcr-=. & ifatl_np-=. 
replace series= I if ifatl_ np== I & pcr== l 
tab dz series, row 

* generate results for parallel interpretation 
gen parallel=O ifpcr-=. & ifatl_np-=. 
replace parallel=1 if(ifatl_np==1 I pcr==I) & parallel==O 
tab dz parallel, row 
drop series parallel 

* Example 5.9 Cutpoints 
* open the bvd-test dataset 

use "c:\ver\data\bvd_test.dta", clear 
* limit the data to blood samples only 

preserve 
keep if spec== I 

* compute Se and Sp at various cutpoints 
diagt calfst co_5 
diagt calfst co_6 
diagt calfst co_7 
diagt calfst co_8 
diagt calfst co_9 
diagt calfst co_1O 
diagt calfst co_II 
diagt calfst co_l2 
diagt calfst co_13 
diagt calfst co _14 
diagt calfst co _15 

* restore the data 
restore 

* Example 5.10 ROC and sensitivity specificity curve 
* generating a graph of sensitivity and specificity vs cutpoints 
* open the BVD _test dataset 

use "c:\ver\data\bvd_test.dta", clear 
* ROC curve 
* generate parametric and non-parametric ROC curves 

rocfit calfst od, cont(15) 
* graph the two curves 

rocplot, conf pen(l2222) saving("c:\ver\ch5\fig5 _ 4.gph", replace ) gap(6) 
* sensitivity vs specificity curve 

PROGRAM FILES 

* determine the range of OD values and determine the width of an interval that is I % or the 
range 
sum od 
scalar min=r(min) 
scalar max=r(max) 
scalar intvl=(max-min)/1 00 

* set up loop to compute the sensitivity and specificity at each of the 100 cutpoints 
gen pos=. 
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gen cp=. 
gen se=. 
label var se "Sens iti vit y" 
gen sp=. 
label var sp "Specificity" 
local i=O 
while 'i'<IOO { 

} 

local cut=(min + 'i'*intvl) 
quietly replace pos=od>' cut' 
quietly diagt calfst pos 
local sen=r(sens) 
local spe=r(spec) 
quietly repI ace cp='cut' if _n=='i'+ I 
quietly replace se='sen' if _n=='i'+ I 
quietly replace sp='spe' if _n=='i'+ I 
local i = 'i'+1 

graph se sp cp, ylab(O 20 40 60 80100) xlab(O .5 1 1.5 2 2.5) b2("Cut-point") /* 
* / II ("Sensitivity/Specificity") gap( 6) saving("c:\ver\ch5\fig5 _ 5.gph" , replace) 

* ExampIe 5.11 Generating likelihood ratios at a number of cutpoints 
* open the BVD _test dataset 

use "c:\ver\data\bvd _ test.dta", clear 
* obtain the categories used for cutpoints 

egen od_cat=cut(od), at(0.5 .7.91.1 1.3 l.5 l.7 l.9 2.14) 
* derive likelihoods 

tab od _ cat calfst , col 

* Example 5.12 Estimating Se and Sp using logistic regression 
* open the bvd-test dataset 

use "c:\ver\data\bvd_test.dta", clear 
* fit the logistic regression model in 0+ animals 

xi: log it co _ \o pregmon i.season if calfst== l 
* compute predicted values 

predict xb, xb 
* list predicted values for cow calving in fali, and 7 pregnant 

sort season pregmon calfst 
quietly by season pregmon calfst: gen temp= _n 
list calfst pregmon season xb ifpregmon==7 & season==4 & temp==l & calfst==1 

* fit the logistic regression model in 0- animals 
xi: logit co _ \o pregmon i.season if calfst==O 

* compute predicted values 
quietly drop xb temp 
predict xb, xb 

* list predicted values for cow calvin g in fali, and 7 pregnant 
sort season pregmon calfst 
quietly by season pregmon calfst: gen temp=_n 
list calfst pregmon season xb ifpregmon==7 & season==4 & temp==1 & calfst==O 
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6 MEASURES OF ASSOCIATION 

* Example 6.2 Confidence intervals for measures of association 
* eompute direet and test-based estimates of CI for ineidenee rate data 

iri 60 157284 1750 
iri 601572841750, tb 

* eompute exaet and test-based CI for ineidenee risk data 
esi 6015741 359, exaet 
esi 6015741 359, tb 

* eompute Comfield's test-based and Woolf's CI for odds ratios 
esi 6015741 359, or 
esi 6015741359, orwoolf 
esi 60 15741359, ortb 
eei 6015741359, exaet 

7 INTRODUCTION TO OBSERVATIONAL STUDlES 

There are no program files for this chapter. 

8 COHORT STUDlES 

There are no program files for this chapter. 

9 CASE-CONTROL STUDlES 

There are no program files for this chapter. 

10 HYBRID STUDY DESIGNS 

There are no program files for this chapter. 

11 CONTROLLED TRIALS 

There are no program files for this chapter. 

12 VALIDITY IN OBSERVATIONAL STUDlES 

There are no program files for this chapter. 

13 CONFOUNDER BlAS: ANALYTIC CONTROL AND MATCHING 

There are no program files for this chapter. 

PROGRAM FILE S 
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14 LINEAR REGRESSION 

* Example 14.1 Simple linea r regression 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* show ANOVA table from regressing calvcon on age 

reg calvcon age 

* Example 14.2 Multiple Iinear regression 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* regress calvcon on age, metritis and ovar 

reg calvcon age metritis ovar 

* Example 14.3 Testing the significance of multiple predictors 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* regress calvcon on age, retpla, metritis and ovar 

reg calvcon age retpla metritis ovar 
test retpla metritis ovar 

* Example 14.4 Rescaling predictor variables 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* rescale age using age-2 

gen age_sc = age - 2 
* regress calvcon on re-scaled age to make constant interpretable 

reg calvcon age_sc 

* Example 14.6 Hierarchical indicator (dummy) variables 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* change ali ages greater than 8 to 8 

replace age=8 if age>8 
* regress calvcon on age coded using regular dummies 

xi: reg calvcon Lage 
* create hierarchical dummy variables (this will be done one at a time) 

drop ifage==. 
gen hage3=age>=3 
gen hage4=age>=4 
gen hage5=age>=5 
gen hage6=age>=6 
gen hage7=age>=7 
gen hage8=age>=8 

* regress cal vc on on age coded using hierarchical dummies 
reg calvcon hage3 hage4 hage5 hage6 hage7 hage8 

* Example 14.7 Centring variables (collinearity) 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
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* generate a quadratic term without centring 
gen age_sq=age"2 

* build the quadratic model and compute vrF 
reg calvcon age 
reg calvcon age age_s q 
vif 

* generate a quadratic term using centred variable 
sum age 
gen age_ct= age-4.34 
gen age _ ct_ sq=age _ ct"2 

* build the quadratic model and compute vrF 
reg calvcon age_ct 
reg calvcon age_ct age_ct_sq 
vif 

* Example 14.8 Interaction 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* create an interaction term between ovar and metritis 

gen ovarmet=ovar*metritis 
reg calvcon metritis ovar ovarmet 

* Example 14.9 Interaction - dichotomous variables 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* create an interaction term between retpla and metritis 

gen rpmet=retpla*metritis 
reg calvcon retpla metritis rpmet 

* Example 14.10 Interaction - dichotomous and continuous variables 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* create the interaction term for ovar and firstest 

gen ovarest=ovar*firstest 
* fit the regression model 

reg calvcon ovar firstest ovarest 
*obtain the predicted means 

predict pcalvcon, xb 
* create a separate outcome for those with and without ovar 

gen ovar! =pcalvcon if ovar==! 
gen ovarO=pcalvcon if ovar==O 

* graph the results 

PROGRAM FILE S 

graph ovarO ovar! firstest, xlab ylab c(.III1) llt("Days to Conception") gap(4) /* 
*/ sa("c:\ver\ch!4\fig!4_2.gph", replace) 

* Example 14.11 Interaction - two continuous variables 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", clear 
* create the interaction term to demonstrate how firstbrd effect varies by age 

gen agebrd=age*firstbrd 
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reg cal vc on age firstbrd agebrd 
* obtain the predicted means 

predict p, xb 
* obtain a new categorical variable for age 

egen age_c4=cut(age), at(2, 4,6,8, 15) 
* plot ages 2-3 4-5 6-7 and 8 or more versus p 
* show s how effect offirstbrd varies by age 

gen p2=p ifage_c4==2 
gen p4=p ifage_c4==4 
gen p6=p ifage_c4==6 
gen p8=p if age _ c4==8 
sort firstbrd 

* produce the graph 
graph p2 p4 p6 p8 firstbrd iffirstbrd<220, xlab ylab c(llll) pen(\ III) /* 

*/ IIt("Days to Conception") gap(4) sa("c:\ver\ch14\figI4_3.gph", replace) 

* Example 14.12 Inferring causation 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", c1ear 
gen farm I =farmnum== 1 

* fit a regression model 
reg calvcon farm I age metritis ovar firstbrd 

* refit the model without intervening variables 
reg calvcon farm l age metritis 

* Example 14.13 Examining homoscedasticity 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", c1ear 
gen farm I =farmn um== l 

* fit a regression model 
reg calvcon farm I age metritis ovar firstbrd 
* obtain predicted calvcon 

predict pcalvcon, xb 
* obtain standardised residuals 

predict stdres, rstan 
* produce graph and test for heteroscedasticity 

ksm stdres pcalvcon, lowess t I title("Homoseedasticity Plot, Lowess residual smoother") /* 
*/IItitle(" ") 12title("Standardised residuals") ylab gap (4) /* 
* / b2title(" ") b I title("Predicted Calving-Conception Interval (days )") xlab /* 
*/ sa("c:\ver\ch 14\figl 4_ 4.gph", replace) 

reg calvcon farm I age metritis ovar firstbrd 
hettest 

* Example 14.14 Assessing normality of residuals 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", c1ear 
gen farm l =farmnum== l 

* fit a regression model 
reg calvcon farml age metritis ovar firstbrd 

* obtain predicted cal vc on 
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predict pcalvcon, xb 
* obtain standardised residuals and test them statistically 

predict stdres, rstan 
swilk stdres 

* generate a normal probability plot 

PROGRAM FILES 

qnorm stdres, tltitle("Q-Q Plot of Residuals") lltitle(" ") xlab ylab gap(4) /* 
* / l2title("Standardised residuals") b l title("Inverse normal distribution") /* 
*/ b2title(" ") sa("c:\ver\ch14\fig14_5a", replace) 

* generate a histogram 
graph stdres, histogram bin(l2) tltitle("Histogram ofStudentized Residuals") /* 

*/lltitle(" ") l2title("Proportion of case s") ylab gap(4)xlab /* 
*/ sa("c:\ver\ch14\fig14_5b", replace) 

* generate a combined graph 
graph using "c:\ver\ch14\figI4_5a" "c:\ver\chI4\fig14_5b", sa("c:\ver\chI4\fig14_5.gph", 
replace) 

* Example 14.15 Assessing linearity of age-calvcon relationship 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", elear 
gen farm l =farmnum== l 

* Fit a regression model 
reg calvcon farm l age metritis ovar firstbrd 

* obtain standardised residuals 
predict stdres, rstan 

* produce graph with lowess smoother 
ksm stdres age,lowess ylab gap(4) lltitle(" ") l2title("Standardised residuals") /* 

*/ b2title(" ") bltitle("age") xlab sa("c:\ver\ch14\fig14_6.gph", replace) 

* Example 14.16 Transformations 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", elear 
gen farm l =farmnum== l 

* first evaluate Box-Cox transformations 
boxcox calvcon farm l age metritis ovar firstbrd 

* generate residuals from the model fit 
predict resid, residuals 

* graph and test the residuals (note: the graphs and the test results are not displayed 
* in the text - they are ineluded here for additional information) 

qnorm resid, tltitle("Q-Q Plot of Residuals") lltitle(" ") ylab xlab gap(4) /* 
*/ l2title("Raw residuals") b2title(" ") bltitle("Inverse normal distribution") 

swilkresid 
* determine the optimal skewness correction 

InskewO c=calvcon 

* Example 14.17 Robust standard errors 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", elear 
gen farm l =farmnum== l 

* fit the regression model with robust SE 
reg calvcon farml age metritis ovar firstbrd, robust 
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* Example 14.18 Other diagnostic parameters 
* open the dataset daisy.dta 

use "c:\ver\data\daisy.dta", c1ear 
gen farm l =farmnum== l 

* fit the regression model with robust SE 
reg calvcon farml age metritis ovar firstbrd, robust 

* obtained desired statistics 
predict pcalvcon, xb 
predict residuals, re 
predict stdres, rsta 
predict studres, rstu 
predict cooks, cook 
predict lever, lever 
predict dfits, dfits 

* obtain descriptive summary statistics 
summ stdres studres cooks lever dfits 

* drop the cases with no 'calvcon' 
drop if calvcon==. 

* listing the 5 biggest and 5 smallest residuals 
sort stdres 
list cownum calvcon age firstbrd residuals studres stdres in 1/5 
list cownum calvcon age firstbrd residuals studres stdres in -5/-1 

* listing the leverage cases 
sort lever 
list cownum calvcon age metritis ovar firstbrd lever stdres in -5/-1 

* listing the infiuential cases 
sort dfits 
list cownum calvcon age metritis ovar firstbrd cooks dfits in 1/5 
list cownum calvcon age metritis ovar firstbrd cooks dfits in -5/-1 

* checking for infiuential values offirstbrd 
predict dbfirbrd, dtbeta(firstbrd) 
sort dbfirbrd 
list cownum calvcon firstbrd dbfirbrd in 1/5 
list cownum cal vc on firstbrd dbfirbrd in -5/-1 

15 MODEL-BUILDING STRATEGIES 

* Example 15.1 Correspondence analysis 
* Risk factors for swine respiratory disease 
* open the calf septicemia dataset 

use "c:\ver\data\pig_farm.dta", c1ear 
* categorise several predictor variables 

egen inlet_c=cut(inlet), at(O l 250) icodes 
egen size_c=cut(size), at(O 1000 15003000) icodes 
egen expmce_c=cut(expmce), at(O 10 20 60) icodes 
egen exhaust_c=cut(exhaust), at(O 1 1.3 2.5) icodes 

* carry out a multiple correspondence analysis of 8 variables 
mca pncode inlet_c size_ c expmce_c exhaust_c hldbck fioor hmrsd, d(2) 
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* Example 15.2 Regression model validation - 1 
* open the calf septicemia dataset 

use "c:\ver\data\pig_farm.dta", elear 
set more off 

* log transform -pneu- and rescale size 
gen lnpneu=log(pneu) 
replace size=size/lOOO 
* fit a forward selection model 

sw regress lnpneu num-expmce, pe(0.05) 
fitstat 

* fit a backward elimination model 
sw regress lnpneu num-expmce, pr(0.05) 
fitstat 

* Example 15.3 Regression model validation - 2 
* open the calf septicemia dataset 

use "c:\ver\data\pigjarm.dta", elear 
* log transform -pneu-

gen lnpneu=log(pneu) 
* generate a random number 

set seed 153 
gen rand=uniformO 

* fit a model based using a forward selection procedure 
* and using only 60% of the data 

sw regress lnpneu num-expmce ifrand<=0.75, pe(0.05) 
* compute predicted values 

predict pv 
* compute the correlations between predicted values and observed 
* for the estimation subset and the validation subset 

corr pv lnpneu if rand<=O. 75 
corr pv lnpneu if rand>O. 75 

* Example 15.4 Regression model validation - 3 
* open the calf septicemia dataset 

use "c:\ver\data\pigjarm.dta", elear 
* log transform -pneu-

gen lnpneu=log(pneu) 
* fit the backward's selection model from Example 15.2 

regress lnpneu hidbek size exhaust expmce floor 
* compute the IQR for each of the continuous predictors 

codebook size exhaust expmce 

16 LOGISTIC REGRESSION 

* Example 16.1 Comparing logistic regression models 
* open the Nocardia dataset 

use c:\ver\data\nocardia, elear 
* fit the full model and save its log-likelihood value 

logit casecont dcpct dneo delox 

PROGRAM FILE S 
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Irtest, saving(full) 
* fit the redueed model and save its log-likelihood 

logit easeeont depet 
Irtest, saving(red) 

* eompare the redueed to the full model 
Irtest, using( full) 

* fit the null model and save its log-likelihood 
logit easeeont 
Irtest, saving(null) 

* eompare the full and null model s 
Irtest, using( full) 

* refit the full model and eompute a multiple Wald's test 
* of dneo and dclox 

logit easeeont depet dneo dclox 
test dneo dclox 

* Example 16.2 Interpreting logistic regression coefficients 
* open the Noeardia dataset 

use e:\ver\data\noeardia, clear 
* fit a model eontaining depet, dneo dclox and dbarn (2Ievels) 

xi:logit easeeont depet dneo dclox i.dbarn 
* refit the same model to get odds ratio estimates 

xi:logistic easeeont depet dneo dclox i.dbarn 
Irtest, saving( full) 
test _Idbarn_2 _Idbarn_3 
xi:logistic easeeont depet dneo dclox 
Irte st, using( full) 

* Example 16.3 Effects of factors on the probability scale 
* open the Noeardia dataset and fit the model 

use "e:\ver\data\noeardia.dta", clear 
logit easeeont depet dneo dclox 

* ereate predieted probabilities as -dcpet- goes from O to 100% 
* do separately for herds using neomyein and cloxaeillin 

prgen depet, gen(pneo) neases(lOl) x(dneo 1 dclox O) 
prgen depet, gen(pclox) neases(lOl) x(dneo O dclox l) 

* plot the probability of Noeardia mastitis as a funetion of -depet­
graph pneopl pcloxpl pneox, s(op) b2("Dry-cow treatrnent (%)") /* 
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*/ l2("Prob. ofNoeardia mastitis") xlab(O 25 50 75 100) ylab (O .3 .6 .9) keyl(symbol(o) /* 
*/ "neomyein") key2(symbol(p) "cloxaeillin") saving(fig16_2, replaee) 

* Example 16.4 Assessment of confounding 
* open the Noeardia dataset and fit a full model 

use "e:\ver\data\noeardia.dta", clear 
logit easeeont depet dneo dclox 
* refit the model without -depet- to see if it is a "eonfounder" for -dneo­

logit easeeont dneo dclox 

* Example 16.5 Assessment of interaction 
* open the Noeardia dataset and fit a full model 
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use "e:\ver\data\noeardia.dta", c1ear 
logit casecont depet dneo dclox 

* refit the model including an interaction term between -dneo- and -dclox­
gen neoclox=dneo*dclox 
logit casecont depet dneo dclox neoclox 

* Example 16.6 Evaluating continuous independent variables - l 
* open the Noeardia dataset and fit simple model with -numeow­

use e:\ver\data\noeardia,c1ear 
logit casecont numcow 

* generate Pearson residuals and plot them against numcow 
predict r , res 
graph r numcow, xlab ylab 11(" ") 12("Pearson Residuals") gap(4) /* 

*/ saving(c:\ver\chl 6\figl 6_ 4, replace) 

* Example 16.7 Evaluating continuous independent variables - 2 
* open the Nocardia dataset and fit simple model with -numcow­

use e:\ver\data\noeardia,c1ear 
* create a categorical variable for numcow (4Ievels) 
* cutpoints chosen to match those used by -lintrend- (below) 

egen numcow4=cut(numcow), at(O,32,42,55,999) 
xi:logit case cont i.numcow4 

* generate a plot of log odds of outcome vs categories of -numeow-

PROGRAM FILES 

lintrend casecont numeow, g( 4) plot(log) saving( c:\ver\chI6\fig 16_5, replace) xlab ylab 

* Example 16.8 Evaluating continuous independent variables - 3 
* open the Noeardia dataset 

use "c:\ver\data\noeardia.dta", c1ear 
* fit a quadratic model of -numcow- to -casecont­

gen numcow _ ct = numeow-75 
gen numcow _ ct_ sq=umcow _ ct"2 
eorr numcow _ct numeow _ ct_sq 
logit casecont numcow _ct numcow _ ct_ sq 

* ereate orthogonal polynomia1s (power=2) and use them 
orthpoly numcow, degree(2) gen(numcow _op l numeow _ op2) 
sum numcow numcow _ op l numeow _ op2 
corr numcow _ op l numcow _ op2 
logit casecont numcow _ op l numcow _ op2 

* use fractional polynomials in the model 
fraepoly logit casecont numcow, degree(2) 

* Example 16.9 Evaluating continuous independent variables - 4 
* open the Nocardia dataset 

use "c:\ver\data\nocardia.dta", c1ear 
* generate a smoothed curve of log odds of 
* -casecont- on -numcow-

ksm casecont numcow, logit ylab xlab 12("Log odds of -easeeont-") /* 
*/ saving(c:\ver\chl 6\figl 6_5, replace) 
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* Example 16.10 Evaluating continuous independent variables - 5 
* open the Noeardia dataset 

use "e:\ver\data\noeardia.dta", clear 
* fit linear splines for the herd sizes O-70 >70 

mkspline numeow _ sp l 70 numeow _ sp2=numeow 
sort numeow 
list numeow numeow_spl numeow_sp2 in 88/93 
logit casecont numeow_spl numeow_sp2 

* Example 16.11 Residuals and covariate patterns 
* open the Noeardia dataset and fit a model with -depet-, -dneo-, and -dclox­

use "e:\ver\data\noeardia.dta", clear 
logit casecont depet dneo dclox 
* eompute residuals on the basis of I per eovariate pattem 

prediet pv, p 
prediet eov, num 
predict res, res 

* use -glm- to fit the same model and 
* eompute residuals on the basis of l per individual observation 

glm casecont depet dneo dclox, family(binomial) link (logit) 
prediet glmres, p 
listblck id casecont depet dneo dclox eov pv res glmres if id==86 
listblek id casecont depet dneo dclox eov pv res glmres if id==22 

* Example 16.12 Goodness-of-fit tests 
* open the Noeardia dataset and fit a model with -depet-, -dneo-, and -dclox­

use "e:\ver\data\noeardia.dta", clear 
logistie case cont depet dneo dclox 

* eompute the Pearson and devianee ehi-square statistics 
lfit 
ldev 

* eompute the Hosmer-Lemeshow ehi-square with 5 group s 
Ifi t, g( 5) table 

* Example 16.13 Predictive ability of the model 
* open the Noeardia dataset and fit a model with -depet-, -dneo-, and -dclox­

use "e:\ver\data\noeardia.dta", clear 
logit casecont depet dneo dclox 

* eompute the sensitivity and specificity of the model at a eutoff of 0.5 
Istat 

* generate a graph of sens. and spec. vs eutoffs 
Isens, s( op) saving("e:\ver\eh 16\fig 16_6", replace ) 

* generate an ROC eurve for the model 
lroe, saving("e:\ver\eh 16\fig 16_7" , replaee) 

* Example 16.14 Identifying important observations - 1 
* open the Noeardia dataset and fit a model with -depet-, -dneo-, and -dclox­

use "e:\ver\data\noeardia.dta", clear 
logit case cont depet dneo dclox 

* eompute residuals on the basis of l per eovariate pattem 
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predict pv, p 
predict cov, num 
predict res, res 
predi ct rst, rst 

* graph standardised residuals vs herd id 

PROGRAM FILES 

graph rst cov, s([cov]) xlab(l 5 10 15202530) ylab saving("c:\ver\chI6\figI6_8",replace) 
* list the observations with the 2 large positive residuals 

sort rst 
listblck cov casecont dcpct dneo delox pv rst in -2/-1 

* Example 16.15 Identifying important observations - 2 
* open the Nocardia dataset and fit a model with -dcpct-, -dneo-, and -dclox­

use "c:\ver\data\nocardia.dta", elear 
logit casecont dcpct dneo delox 

* compute residuals and other diagnostics on the basis of l per covariate pattern 
predict pv, p 
predict cov, num 
predict res, res 
predict rst, rst 
predict lev, hat 
predict db, db 
predict dx2, <Ix 
predict ddev, ddev 

* list the 4 covariate patterns with the largest leverage 
preserve 
collapse (mean) casecont dcpct dneo delox pv lev db dx2 ddev (count) id, by(cov) 
sort lev 
format casecont %6.2f 
listblck cov id casecont dcpct dneo delox pv lev in -4/-1 

* list the 4 covariate patterns with the largest delta betas 
sort db 
listblck cov id casecont dcpct dneo delox pv db in -4/-1 
* list the 4 covariate patterns with the largest dx2 and ddev values 

sort dx2 
listblck cov id casecont dcpct dneo delox pv dx2 in -4/-1 
sort ddev 
listblck cov id casecont dcpct dneo delox pv ddev in -4/-1 

* Example 16.16 Conditionallogistic regression 
* open the Salmonella outbreak dtaset dataset 

use "c:\ver\data\sal_outbrk.dta", elear 
* fit conditional and ordinary logistic regressions 
* with -slt_ a_as the sole predictor 

elogit casecontrol sit_a, group(match_grp) or 
logistic casecontrol slt_ a 
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17 MODELLING MULTINOMlAL DATA 

* Example 17.1 Simple multinomial regression model 
* open the beefultrasound dataset 

use c:\ver\data\beeC ultra.dta, clear 
* fit a simple multinomiallogistic model 

mlogit grade sex, b( I ) 
mlogit grade sex, b(l) m 
tab grade sex, col chi 

* Example 17.2 Multiple multinomial regression model 
* open the beefultrasound dataset 

use "c:\ver\data\beeC ultra.dta", clear 
* fit a multiple multinomiallogistic model and test the significance of sex 

mlogit grade sex backfat ribeye imfat care _wt, b(l) 
test sex 
Irtest, saving( full) 
mlogit grade backfat ribeye imfat care _wt, b(l) m 
Irtest, using( full) 

* compute predicted probabilities 
mlogit grade sex backfat ribeye imfat earc _wt, b(1) 
prediet pA pAA pAAA, P 
sort id 
list id grade sex imfat pA pAA pAAA in 1/20 

* Example 17.3 Adjacent category model 
* open the beef ultrasound dataset 

set more off 
use "c:\ver\data\beeC ultra.dta", clear 

* first define constraints 
constraint define I [AA]sex=0.5*[A]sex 
constraint define 2 [AA]backfat=0.5*[A]backfat 
constraint define 3 [AA]ribeye=0.5*[A]ribeye 
constraint define 4 [AA]imfat=0.5*[A]imfat 
constraint define 5 [AA]carc_wt=0.5*[A]carc_wt 

* fit constrained model 
mlogit grade sex backfat ribeye imfat care_wt, b(l) constraint(1-5) 

* LRT of uneonstrained vs constrained models 
mlogit grade sex backfat ribeye imfat carc_wt, b(l) 
Irtest , saving( une ) 
mlogit grade sex baekfat ribeye imfat care_wt, b(1) constraint(l-5) 
Irtest, using( unc) 

* Example 17.3b Continuation ratio model 
* open the beef ultrasound dataset 

use e:\ver\data\beeCultra.dta, clear 
* first ereate the two new outcome variables 

gen gr2=(grade==2) 
replace gr2=. if grade>2 
gen gr3=(grade==3) 
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* fit the logistic models and store the log-likelihoods 
logit gr2 sex backfat ribeye imfat carc _ wt 
scalar 112=e(1l) 

* fit the logistic model s and store the log-likelihoods 
logit gr3 sex backfat ribeye imfat carc _ wt 
scalar ll3=e(1l) 
display 112 + 113 

* Example 17.4 Proportional odds model 
* open the beefultrasound dataset 

use c:\ver\data\beeC ultra.dta, clear 
* fit a proportional odds model 

ologit grade sex backfat ribeye imfat carc _ wt , table 
* compute predicted values for all individuals 

capture drop pA pAA pAAA 
predict pAAA pAA pA, p 

* list the relevant variables for the first 5 observations 
sort id 
listblck id grade sex backfat ribeye imfat carc_ wt in 115 
listblck id pAAA pAA pA in 115 

* generate smoothed values ofpredicted probabilities 
capture drop pAsm pAAsm pAAAsm 
ksm pAAA imfat ifimfat>3 & imfat<6, bw(.3) gen(pAAAsm) 
ksm pAA imfat ifimfat>3 & imfat<6, bw(.3) gen(pAAsm) 
ksm pA imfat if imfat>3 & imfat<6, bw(.3) gen(pAsm) 
lab var pAAAsm "Grade AAA" 
lab var pAAsm "Grade AA" 
lab var pAsm "Grade A" 

* graph the smoothed predicted values against imfat 
sort imfat 

PROGRAM FILES 

graph pAAAsm pAAsm pAsm imf at, c(L[l] L[-] L[.]) s(iii) gap(3) pen(lll) /* 
*/ ylab xlab 12("Probability of grade") saving(c:\ver\chl 7\figl 7 _1.gph, replace) 

* testing the proportional odds assumption with likelihood ratio and Wald tests 
omodellogit grade sex backfat ribeye imfat carc _wt 
brant, detail 

18 MODELLING COUNT AND RATE DATA 

* Example 18.1 Poisson regression - fitting the model 
* open the tb Jeal dataset 

use c:\ver\data\tbJeal.dta, clear 
* fit the Poisson model and conduct overall goodness-of-fit tests 

xi: poisson reactors i.type sex i.age, exp(par) 
poisgof 
poisgof, pearson 
xi: poisson reactors i.type sex i.age, exp(par) irr 

* compute the mean number of cases per 10000 days for the whole population 
gen ir= 10000*reactors/par 
sum ir 
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* compute the number offewer cases expected in males than females 
di 2.898 * 0.696 

* Example 18.2 Poisson regression - examining the model 
* open the tb Jeal dataset 

use c:\ver\data\tbJeal.dta, clear 
* tit the Poisson model and conduct overall goodness-of-fit tests 

xi: poisson reactors i.type sex i.age, exp(par) 
poisgof 
poisgof, pearson 

* retit the model using -glm- to get a wider range of diagnostic parameters 
xi: glm reactors i.type sex i.age, Inoff(par) fam(poisson) link(log) 

* compute predicted values, residuals and Cook's distance 
predict mu 
predict dev, dev 
predict pear, pearson 
predict cook, c 
predict ans, a 
format mu dev pear cook %6.3f 
sort dev 
* list the largest and smallest residuals and the largest Cook's distances 

listb\ck obs type sex age par reactors mu dev cook in 1/5, noobs 
listb\ck obs type sex age par reactors mu dev cook in -S/-I, noobs 
sort cook 
listb\ck obs type sex age par reactors mu dev cook in -S/-I, noobs 

* generate a normal probability plot of Anscombe residuals 
qnorm ans 

* Example 18.3 Negative binomial regression 
* open the tb Jeal dataset 

set more off 
use c:\ver\data\tbJeal.dta, clear 

* tit the negative binomial model and conduct overall goodness-of-tit tests 
xi: nbreg reactors i.type sex i.age, exp(par) 

* retit the model using -glm- to get a wider range of diagnostic parameters 
xi: glm reactors i.type sex i.age, Inoff(par) fam(nbinomial 1.740375) link(log) 

* esti mate the amount of overdispersion 
sum reactors 
di 1.46* 1.74 

* compute predicted values, residuals and Cook's distance 
predict mu 
predict dev, dev 
predict pear, pe ars on 
predict cook, c 
predict ans, a 
format mu dev pear cook %6.3f 
sort dev 
* list the largest and smallest residuals and the largest Cook's distances 

Iistb\ck obs type sex age par reactors mu dev cook in 1/5, noobs 
listb\ck obs type sex age par reactors mu dev cook in -S/-I, noobs 
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sort cook 
listblck obs type sex age par reactors mu dev cook in -5/-1, noobs 

* compute the deviance chi-square goodness-of-fit (sort-of by manually) 
gen dev_sq=dev/\2 
sum dev_sq 
di 134*0.7415 
di chi2(127, 99.36) 

* Example 18.4 Zero inftated negative binomial regression 
* open the fecal egg count dataset 

use "c:\ver\data\fec.dta", clear 
set more off 

* fit a zero-inflated model 
xi:zinb fec i.lact i.season i.province past_lact man_heifman_lact iftx==O, /* 

*/ inflate(i.lact i.herd) cl(cow) nolog 

PROGRAM FILES 

* refit the model with regular standard errors to allow the computation of the Vuong statistic 
xi:zinb fec i.lact i.season i.province past_lact man_heifman_lact iftx==O, /* 

*/ inflate(i.lact i.herd) nolog vuong 

19 MODELLING SURVIVAL DATA 

* Example 19.2 Actuarial and Kaplan-Meier survival functions 
* open the calf pneumonia dataset 

use "c:\ver\data\calCpneu.dta", clear 
* generate an actuariallife table (survival and hazard) 

ltable days died, interval(15) 
ltable days died, interval(15) hazard 

* generate a Kaplan-Meier estimate of the survival function 
stset days, f( died) 
stslist 

* Example 19.3 Comparing survival functions 
* open the calf pneumonia dataset 

use "c:\ver\data\cal(pneu.dta", clear 
* compute and graph the Kaplan-Meier survival functions 

stset days, f( died) 
sts graph, by(stock) noborder sa(c:\ver\chI9\fig19.6.gph, replace) 
sts test stock, detail 
sts test stock, w 
sts test stock, tw 
sts test stock, peto 

* Example 19.4 Cox proportional hazards model 
* open the prostaglandin trial dataset 

use "c:\ver\data\pgtrial.dta", clear 
* fit a Cox proportional hazards model 

stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr 

* refit the model to obtain hazard ratios 
stcox 
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* Example 19.5 Time varying covariates 
* open the ISA risk factor dataset 

use "c:\ver\data\isa_risk.dta", elear 
* compute a time variable for # of days sinc e Apr. I st 

gen days=date-aprO l_97 
stset days, f(case) id(sitepen) 

* compute the days to the first outbreak at each site 
gen days2=days if case== I 
sort site 
quietly by site: egen first_da=min(days2) 

* list the data for 3 netpens before modification 
sort site netpen _d_tO 
listb1ck site netpen _tO _t _d if site==19 & netpen>=39 & netpen<=56 

* list the data after modification for a time varying covariate 
stsplit pos, after(time=first_ da) at(O) 
replace pos=pos+ I 
sort site netpen _d _tO 
listb1ck site netpen _tO _t _d pos if site== 19 & netpen>=39 & netpen<=56 
stcox pos 

* Example 19.6 Time varying covariates - continuous 
* open the prostaglandin dataset 

use "c:\ver\data\pgtrial.dta", elear 
* fit a model with treatment as a tvc 

stset dar, f(preg) 
stcox tx, tvc(tx) texp(logU)) 

* Example 19.7 Schoenfeld residuals 
* open the pgtrial dataset 

use "c:\ver\data\pgtrial.dta", elear 
* fit the Cox proportional hazards model and save the Schoenfeld and scaled /* 

*/ Schoenfeld residuals 
stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr sca(sca*) sch(sch*) 

* generate a smoothed graph of scaled Schoenfeld residuals vs log(time) 
stphtest, log plot(lact) yline(O) 12("Scaled Schoenfeld - lactation") /* 

*/11(" ") b2(" ") bl("Time (log scale)") xlab(l 52050100300) /* 
*/ gap(4) sa(c:/ver/chI9/figI9_14.gph, replace) 

stphtest, detaiIlog 

* Example 19.8 Independence of censoring 
* open the pgtrial dataset 

use "c:\ver\data\pgtrial.dta", elear 
* fit the Cox proportional hazards model with -tx- as a time varying covariate 

stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr tvc(tx) texp(lnU)) 

* recode censoring to assume complete positive correlation 
preserve 
repi ace preg=l ifpreg==O 
stset dar, f(preg) 
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xi: stcox i.herd tx lact thin, nohr tvc(tx) texp(lnCt)) 
restore 

* recode censoring and dar to assume complete negative correlation 
preserve 
replace dar=400 if preg==O 
replace preg= l if preg==O 
stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr tvc(tx) texp(lnCt)) 
restore 

* Example 19.9 Cox goodness-of-fit tests 
* open the prostaglandin trial dataset 

set more off 
use "c:\ver\data\pgtrial.dta", clear 

* fit a Cox proportional hazards model 
stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr mg(mgale) 
stcoxgof, gr(5) 
drop mgale 

* repeat for model with tx as TVC 
xi: stcox i.herd tx lact thin, nohr mg(mgale) tvc(tx) texp(lnCt)) 
stcoxgof, gr(5) 

* Fig 19.15 a and b Evaluating overall fit - Cox model (2) 
* open the prostaglandin trial dataset 

set more off 
use "c:\ver\data\pgtrial.dta", clear 

* fit a Cox proportional hazards model 
stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr mg(mgale) 

* compute modified Cox-Snell residuals 
predict cs, csnell 
replace cs=cs+O.693 if preg==O 
label var cs "Modified Cox-Snell residuals" 

* re "stset" the data and fit the new Cox model 
stset cs, f(preg) 
sts gen ch=na 
sort cs 

PROGRAM FILE S 

graph ch cs cs, c(ll) s( .. ) xlab(O l 234) ylab(O l 234) t1("no time varying covariate") /* 
*/12("Cumulative hazard") gap( 4) pen(ll) sa("c:\ver\ch 19\fig19 _16a.gph", replace) 

* repeat for model with tx as TVC 
use "c:\ver\data\pgtrial.dta", clear 

* fit a Cox proportional hazards model 
stset dar, f(preg) 
xi: stcox i.herd tx lact thin, nohr mg(mgale) tvc(tx) texp(lnCt)) 

* compute modified Cox-Snell residuals 
predict cs, csnell 
replace cs=cs+O.693 ifpreg==O 
label var cs "Modified Cox-Snell residuals" 

* re "stset" the data and fit the new Cox model 
stset cs, f(preg) 
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sts gen ch=na 
sort cs 
graph ch cs cs, c(ll) s( .. ) xlab(O I 234) ylab(O l 234) /* 

* / ti ("Treatment as a time varying covariate") 12("Cumulative hazard") gap( 4) pen(ll) /* 
*/ sa("c:\ver\ch19\fig 19 _16b.gph", replace) 

* combine the two graphs 
graph using "c:\ver\ch I 9\figl 9 _16a.gph" "c:\ver\ch 19\null.gph" /* 

*/ "c:\ver\ch19\fig 19 _16b.gph", sa("c:\ver\chI9\fig19 _16.gph", replace) 

* Example 19.10 Exponential model 
* open the prostaglandin trial dataset 

set more off 
use "c:\ver\data\pgtrial.dta", clear 

* rescale the lactation variable 
gen lact2=lact-l 

* fit an exponential model 
stset dar, f(preg) id(cow) 
xi: streg i.herd tx lact2 thin, nohr dist(exp) 

* derive a step function estimate of the baseline hazard 
sum_t 
stsplit day, at(l (5)346) 
gen dayl = O<=day & day<20 
gen day2= 20<=day & day<40 
gen day3= 40<=day & day<80 
gen day4= 80<=day & day<120 
gen day5= 120<=day 
xi: streg i.herd tx lact2 thin day2 day3 day4 day5, nohr dist(exp) 
gen hO=expCbLcons] + _b[day2]*day2 + _b[day3]*day3 +/* 

*/ _b[day4]*day4 + _b[day5]*day5) 
graph hO day if day<=200, c(J) sei) sort 11(" ") 12("Baseline hazard") /* 

*/ b2(" ") bl("Time (days)") xlab ylab sa("c:\ver\chI9\figI9 _20.gph", replace) 

* Example 19.11 Weibull model 
* open the prostaglandin trial dataset 

set more off 
use c:\ver\data\pgtrial.dta, clear 

* rescale the lactation variable 
gen lact2=lact-1 

* fit a Weibull model (no time varying covariates) 
stset dar, f(preg) ide cow) 
xi: streg i.herd tx lact2 thin, nohr dist(weib) 

* modify the model making -tx- a TVC with log(time) 
* results not shown in book 

stsplit day, at(l (l )346) 
stset dar, f(preg) ide cow) 
gen tx_day=tx*day 
gen tx _Inday=tx*(log( day)) 
xi: streg i.herd tx lact2 thin txJnday, dist(weib) tr 
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* Example 19.12 Lognormal model 
* open the prostaglandin trial dataset 

use "c:\ver\data\pgtrial.dta", clear 
* rescale the lactation variable 

gen lact2=lact-1 
* fit a lognormal model (results as TR) 

stset dar, f(preg) id(cow) 
xi: streg i.herd tx lact2 thin, dist(lognorrnal) tr 

* results as coefficients 
streg 

* modify the model making -tx- a TVC with log(time) 
* results not shown in book 

stsplit day, at(l (l )346) 
stset dar, f(preg) ide cow) 
gentx_day=tx*day 
gen tx _Inday=tx*(log( day» 
xi: streg i.herd tx lact2 thin tx_Inday, dist(lognorrnal) tr 

* Example 19.13 Multiple failure time data 
* the first section of this program generates hypothetical data 
* the second section analyses those data 
* generate some hypothetical multiple failure time data 
* first generate the basic dataset with survival times 
* capture log close 
* log using "c:\ver\ch19\ex19 _13gen.log", text replace 

clear 
set obs 2000 
set more off 
genid=_n 
gen e=1.5 
mdpoixe 
replace xp=5 ifxp>5 
gen X=L n> l OOO) 

* expand the dataset so there is l record per event 
expandxp 
sort id 
quietly by id: gen evnum= _n 
gen outcome=(xp>O) 

* make the last event a censoring event (if more than l event) 
* sort id evnum 
* quietly by id: replace outcome=O if _ n== _N & _n> l 
* generate days to outcome 

gen days=round((l OO*uniforrn()), l) 
quietly by id:replace days=days[_ n-l ]+round(( 40*uniforrn()), l) if _ n==2 
quietly by id:replace days=days[_ n-l ]+round((30*uniforrn()), 1) if _ n==3 
quietly by id:replace days=days[_n-l]+round((20*uniforrn()),1) if _n==4 
quietly by id:replace days=days[_ n-l ]+round(( lO*uniforrn()), 1) if _ n==5 
replace days=round((0.8*days ),1) ifX==1 
replace days=days+ l if days==O 
quietly by id: replace days=days+ l if days==days[_ n-I] & _n> 1 

PROGRAM FILES 
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* compute the final exit time for each subject 
sort id evnum 
quietly by id: gen exit=days[_N] 

* display a bit of the data and save the file 
format id evnum days exit outcome %S.Of 
listblck id evnum days exit outcome in 1/10 
* save "c:\ver\ch19\ex19 _13.dta", replace 
* generate Anderson-Gill data 

use "c:\ver\ch19\ex19 _13.dta", clear 
sort id evnum 
gen start=O 
quietly by id: replace start=days[_ n-l] if _n> 1 
gen end=days 
stset end, f(outcome) id(id) enter(start) exit(exit) 
format id evnum days exit outcome _tO _t _d %S.Of 
listblck id evnum start end exit outcome _tO _t _d in 1/1 O, noobs 
save "c:\ver\ch19\ex19 _13ag.dta", replace 
* generate PWP data 

use "c:\ver\ch19\ex19_13.dta", clear 
sort id evnum 
gen start=O 
gen end=days 
quietly by id: replace end=days-days[_ n-l] if _n> l 
stset end, f(outcome) enter(start) exit(exit) 
format id evnum days exit outcome _tO _t _d %S.Of 
listblck id evnum start end exit outcome _tO _t in 1/10, noobs 
save "c:\ver\ch19\ex19_l3pwp.dta", replace 
* generate WLW data 

use "c:\ver\ch19\ex19 _13.dta", clear 
sort id evnum 
quietly by id: gen last= _ n== _N 
expand (6-evnum) ifiast 
sort id evnum 
quietly by id: replace evnum=_n 
gen start=O 
gen end=days 
replace outcome=O if evnum>xp 
stset days, f( outcome ) 
format id evnum days exit outcome _tO _t _d %S.Of 
listblck id evnum start end outcome _tO _t _d in 1/20, noobs 
save "c:\ver\ch19\ex19 _13wlw.dta", replace 

* Example 19.13 Multiple failure time data - analysis of data 
* open the hypothetical dataset 

capture log close 
log using "c:\ver\ch19\ex19 _13mev.log", text replace 

* fit an Anderson-Gill model to the data 
use "c:\ver\ch19\ex19_13ag.dta", clear 
stset end, f(outcome) id(id) enter(start) exit(exit) 
stcox X, nohr efron robust nolog 
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* fit a Prentice Williams Peterson (conditional risk set) model 
use "c:\ver\ch 19\ex19 _13pwp.dta", clear 
stset end, f(outcome) enter(start) exit(exit) 
stcox X, nohr efron robust nolog 

* fit Wei, Lin, Weissfeld model to the data 
use "c:\ver\chI9\exI9_13wlw.dta", clear 
stset days, f( outcome ) 
stcox X, nohr efron strata(evnum) cluster(id) nolog 
log dose 

* Example 19.14 Individual frailty models - hypothetical data 

PROGRAM FILE S 

* the first part of this program generates hypothetical data the second part analyses those data 
* part l - generating survival data constant hazard with individual frailty 

dear 
set obs 1000 
set seed 12345 
set more off 
gen id=_n 
gen haz=O.OI 
gen day=. 
gen fail=O 
gen failday=. 
local i = 1 
while 'j' <= 100 { 
display day 
gen rand=uniformO 
quietly replace day='i' 
quietly replace haz=.02 if day>=20 & day<40 
quietly replace haz=0.005 if day>=40 & day<60 
quietly replace haz=0.0025 if day>=60 
quietly replace failday='i' ifrand<haz & fail==O 
quietly replace fail= 1 if rand<haz & fail==O 
drop rand 
local i = 'i'+ 1 } 
replace failday= 100 if fail==O 
save "c:\ver\chI9\exI9_14.dta", replace 

* Example 19.14 Individual frailty models - analysis of data 
* open the hypothetical dataset 

use "c:\ver\chI9\exI9_14.dta", clear 
stset failday, f(fai!) 
sts gen bh=h 
ksm bh failday, gen(bhsm) bw(O.I) 
label var bhsm "Empirical smoothed hazard" 

* fit a Weibull model and generate the hazard function 
streg, dist(weib) 
stcurve, haz outfile("c:\ver\chI9\temp.dta", replace) 
merge using "c:\ver\chI9\temp.dta" 
rename hazl haz_weib 
label var haz weib "Wei bull hazard" 
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drop _merge 
* fit a log-normal model and generate the hazard function 

streg, dist(lognormal) 
stcurve, haz outfile("c:\ver\ch 19\temp.dta", replace) 
merge using "c:\ver\ch 19\temp.dta" 
rename hazl haz_logn 
label var haz Jogn "Log-normal haz ard" 
drop _merge 

* fit a Weibull - gamma model and generate the uncond. hazard 
streg, dist(weib) fr(gamma) 
stcurve, haz outfile("c:\ver\ch 19\temp.dta", replace) uncond 
merge using "c:\ver\ch 19\temp.dta" 
rename haz I haz fr 
label var haz fr "Weibull / Gamma hazard" 
drop _merge 

* graph the various frailty functions 
sort t 
graph bhsm haz _ weib haz Jogn haz Jr _t, pen( 1111) xlab ylab /* 

*/ 12("Hazard") gap(5) b2(" ") bl("Time") s(iiii) c(J[I]lU 1[-]1[.]) /* 
*/ sa("c:\ver\ch I 9\figl 9 _21.gph", repI ace) 

* Example 19.15 Weibull model- Gamma frailty 
* open the prostaglandin trial dataset 

set more off 
use "c:\ver\data\pgtrial.dta", clear 

* rescale the lactation variable 
gen lact2=lact-1 

* fit a Weibull model (no time varying covariates) 
stset dar, f(preg) ide cow) 
xi: streg i.herd tx lact2 thin, nohr dist(weib) fr(gamma) 

* Example 19.16 Weibull model- shared gamma frailty 
* open the prostaglandin trial dataset 

set more off 
use "c:\ver\data\pgtrial.dta", clear 

* rescale the lactation variable 
gen lact2=lact-1 

* fit a Weibull model (no time varing covariates) 
stset dar, f(preg) ide cow) 
streg tx lact2 thin, nohr dist(weib) fr(gamma) shared(herd) 

CHAPTER 20 INTRODUCTlON TO CLUSTERED DATA 

* Example 20.1 Clustering in a continuous data model 
* the first part of this program file generates the simulated data 
* the second part analyses the data 
* Part 1 - simulation 

clear 
pause on 
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set seed 12345 
* create 100 herds and set herd size s 

set obs 100 
gen nc=round(( 40+ lO*invnorrn(uniforrnO», 1) in 1/50 
replace nc=round((200+50*invnorrn(uniforrnO»,I) in 51/100 
sort ne 
gen herd=_n 

PROGRAM FILES 

* for each herd compute herd average milk production compute herd level milk production 
gen milk_h= 30 + 7*invnorrn(uniforrn()) 
save "c:\ver\ch20\ex20 _l_herds.dta", replace 

* build adataset with -X- as a herd level variable first assign -X- as a herd level variable to 
* 1/2 the herds 

gen rand=uniforrnO 
sort rand 
gen X=Cn>50) 
drop rand 

* expand the dataset to 1 record per cow 
expand ne 

* generate individual cow milk production values 
gen milk=milk_h + (5*X) + 8*invnorrn(uniforrn()) 
replace milk=(milk*-l) ifmilk<O 
save "c:\ver\ch20\ex20_1_herd.dta", replace 

* build adataset with -X- as a cow level variable 1/2 animals in each herd have X=l 
use "c:\ver\ch20\ex20 _1_ herds.dta", elear 

* expand the dataset to 1 record per cow 
expand ne 

* assign cows to be -X- (0/1) 
gen rand=uniforrnO 
sort herd rand 
drop rand 
quietly by herd: gen X=Cn>0.5*nc) 

* compute cow level milk production (5kg higher if X = 1) 
gen milk=milk_h + (5*X) + 8*invnorrn(uniforrn()) 
save "c:\ver\ch20\ex20 _1_ cow.dta", replace 

* Part 2 - analysis 
* open the simulated data with -X- as a herd level variable 

use "c:\ver\ch20\ex20 _1_ herd.dta",elear 
* fit an ordinary linear regression 

reg milk X 
* fit a linear mixed model with herd as the eluster 

xtreg milk X, i(herd) re 
* collapse the data to the herd level and fit an ordinary reg. 

collapse (mean) milk X, by(herd) 
regmilkX 

* open the simulated data with -X- as a cow level variable 
use "c:\ver\ch20\ex20 _1_ cow.dta",elear 

* fit an ordinary linear regression 
reg milkX 

* fit a linear mixed model with herd as the eluster 
xtreg milk X, i(herd) re 
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* Example 20.2 C1ustering in a binomial model 
* the first part of this program file generates the simulated data 
* the second part analyses the data 
* Part 1 - simulation 

clear 
pause on 
set seed 12345 

* create 100 herds and set herd sizes 
set obs 100 
gen nc=round« 40+ 1 O*invnorm(uniform())), l) in 1/50 
replace nc=round«200+50*invnorm(uniform())), l) in 51/100 
sort ne 
gen herd=_n 

* for each herd compute logit of disease prevalence 
gen logit_disJl=(-1.4) + invnorm(uniform()) 
save "c:\ver\ch20\ex20 _2_ herds.dta", replace 

* build adataset with -X- as a herd level variable 
gen rand=uniformO 
sort rand 
gen X=Cn>50) 
drop rand 

* add the effect of -X-
replace logit_ dis Jl=logit_ dis Jl + (0.69*X) 

* expand the dataset to l record per cow 
expand ne 

* assign cows to be diseased (0/1) 
gen disJl=exp(\ogit_ disJl )/(1 +exp(\ogit_ disJl» 
gen Y=uniformO<disJl 
save "c:\ver\ch20\ex20 _ 2 _ herd.dta", replace 

* build adataset with -X- as a cow level variable 1/2 animals in each herd have X=l 
use "c:\ver\ch20\ex20_2_herds.dta", c\ear 

* expand the dataset to l record per cow 
expand ne 

* assign cows to be -X- (0/1) 
gen rand=uniformO 
sort herd rand 
quietly by herd: gen X=Cn>0.5*nc) 
drop rand 

* add the effect of -X-
replaee logit_disJl=logit_disJl + (O.69*X) 

* assign eows to be diseased or not (0/1) 
gen disJl=exp(\ogit_ disJl )/(1 +exp(\ogit_ disJl» 
gen Y=uniformO<disJl 
save "c:\ver\eh20\ex20 _ 2 _ cow.dta", replace 

* Part 2 - analysis 
* open the dataset -X- as a herd level variable 

use "c:\ver\ch20\ex20_2_herd.dta", c\ear 
pre serve 
eollapse (mean) Y X ne, by(herd) 
graph Y,bin(20) xlab ylab 11(" ") 12("Proportion ofherds") /* 
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* / gap( 4) b 1 ("Prevalence of disease") b2(" ") /* 
*/ sa("c:\ver\ch20\fig20.2.gph", replace ) 

restore 
* fit an ordinary logistic regression 

logitY X 

PROGRAM FILES 

* fit a random effects model with herd as the cluster (note results in text differ slightly since 
* they were obtained using -gllamm- in Version 8 of Stata) 

xtlogit Y X, i(herd) 
* open the dataset -X- as a cow level variable 

use "c:\ver\ch20\ex20_2_cow.dta", clear 
* fit an ordinary logistic regression 

logitY X 
* fit a a random effects model with herd as the cluster (note results in text differ slightly since 
* they were obtained using -gllamm- in Version 8 of Stata) 

xtlogit Y X, i(herd) 

* Example 20.3 Fixed effects Iinear regression model 
set more off 

* open the simulated data from Example 20.1 
use "c:\ver\ch20\ex20 _1_ cow.dta", clear 

* fit a fix ed effects linear regression model 
xi:reg milk X i.herd 

* ExampJe 20.4 Stratified analysis and fixed effects logistic regression model 
set more off 

* open the simulated data from Example 20.2 
use "c:\ver\ch20\ex20_2_cow.dta", clear 

* carry out a stratified analysis 
cc y X, by(herd) 

* fit a fixed effects logistic regression model 
xi:logit Y X i.herd 

21 MIXED MODELS FOR CONTINUOUS DATA 

The program files for this chapter are SAS® program files (ali other chapters are Stata" program 
(-do-) files. 

* Example 21.1 Variance components and random effects 
libname ver 'c:\ver\data'; 
proc mixed data=ver.scc40 _ 2level; 

class herdid; 
model t_lnscc=/s; 
random herdid; 

run; 

* Example 21.2 Mixed model estimates for 2-level somatic cell coont data 
libname ver 'c:\ver\data'; 
proc mixed data=ver.scc40 _ 2level covtest; 
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class t_season herdid; 
model tJnscc=c _ heifer t_ season t_ dim h_size / ddfm=satterth s cl; 
random herdid; 

run; 
* calculation of ICC from formula 21.10; 

proc glm data=ver.scc40 _ 2level; 
class herdid; 
model Unscc=herdid; 

run; 

* Example 21.4 Random sIo pes of -t_dim- for somatic cell count data 
libname ver 'c:\ver\data'; 
proc mixed data=ver.scc40 _ 21evel covtest; 

class t_season herdid; 
model Unscc=c _ heifer t_season t_ dim h_size / ddfm=satterth s; 
random intercept t_dim / type=un subject=herdid; 

run; 

* Example 21.5 Random slopes of -c_heifer- for somatic cell count data 
libname ver 'c:\ver\data'; 
proc mixed data=ver.scc40 _ 21evel covtest; 

class t_season herdid; 
model t_Inscc=c_heifer t_season t_dim h_size / ddfm=satterth s; 
random intercept c_heifer / type=un subject=herdid; 

run; 

* Example 21. 7 Herd random effect for 2-level somatic cell count data 
libname ver 'c:\ver\data'; 

* model with no herd effect; 
proc mixed data=ver.scc40 _ 21evel; 

class t_season herdid; 
model t_Inscc=c heifer t_season t_dim h_size; 

run; 
* analysis to demonstrate 0.25 within the profile likelihood CI; 

proc mixed data=ver.scc40 _ 21evel covtest; 
class t_season herdid; 
model t_Inscc=c_heifer t_season t_dim h_size; 
random herdid; 
parms (0.25) (l) / eqcons= l; 

run; 

* Example 21.9 Box-Cox analysis for somatic cell count data 
libname ver 'c:\ver\data'; 
data boxcox; 

set ver.scc40 _ 2level; 
scc=exp(Unscc ); 
do lambda=-1 ,-0.5,-0.33,-0.25,-0.1 ,0,0.25,0.33,0.5, l; 
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iflambda ne O then y=(scc**lambda-l)/lambda; 
else y=t_Inscc; 
output; 

end; 
proc sort; 

by lambda; 
run; 
ods listing close; *remove to see alI the analyses; 
proc mixed data=boxcox; 

class t_season herdid; 
model y=c_heifer t_season t_dim h_size; 
random herdid; 
ods output fitStatistics=fits; 
by lambda; 

run; 
ods listing; 
data profile; 

set fits; 
if index( descr," -2"»0; 
n=2178; 
Insccmean=4.7569865; 
logl=-O .5*value; 
proUogl=logl+n*(lambda-1 )*Insccmean; 
drop descr; 

proc print data=profile; 
var lambda logl proUogl; 

run; 
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* Example 21.10 Repeated measures analysis for somatic cell count data 
libname ver 'c:\ver\data'; 
proc mixed data=ver.scc_ 40 covtest noclprint=15; 

class t_season herdid cowid test; 
model t_Inscc=c_heifer t_season t_dim h_size / ddfm=satterth s cl; 
random herdid; 
repeated test / subject=cowid type=cs; 

run; 
proc mixed data=ver.scc_ 40 covtest noclprint=15; 

class t_season herdid cowid test; 
model Unscc=c_heifer t_season t_dim h_size / ddfm=satterth s cl; 
random herdid; 
repeated test / subject=cowid type=ar(1); 

run; 
proc mixed data=ver.scc _40 covtest noclprint= 15; 

class t_season herdid cowid test; 
model t_Inscc=c_heifer t_season t_dim h_size / ddfm=satterth s cl; 
random herdid; 
repeated / subject=cowid type=sp(pow)(t_dim); 
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run' , 
proc mixed data=ver.scc _ 40 covtest noclprint= 15; 

class t_season herdid cowid test; 
model t_lnscc=c_heifer t_season t_dim h_size / ddfm=satterth s cl; 
random herdid; 
repeated test / subject=cowid type=arma( I, I); 

run; 
proc mixed data=ver.scc_ 40 covtest noclprint=15; 

class t_season herdid cowid test; 
model t_lnscc=c_heifer t_season t_dim h_size / ddfm=satterth s cl; 
random intercept / subject=herdid; 
repeated test / subject=cowid(herdid) type=toep; 
* note: more efficient coding, to save computing time; 

run; 

22 MIXED MODELS FOR DISCRETE DATA 

* Example 22.1 Random effects logistic 
* open the pig respiratory disease dataset 

use c:\ver\data\pig_adg, clear 
* compute a dichotomous variable for ar greater than I 

gen ar_gl=ar>l 
* determine the unconditional association between pn and ar~l 

cc pn ar_gl 
* logistic regression with random farm effects 

glIamm pn ar_gl, fam(binom) link(logit) i(farm) trace adapt 

* Example 22.3 Random effects Poisson 
* open the tb Jeal dataset 

set more off 
use "c:\ver\data\tbJeal.dta", clear 

* fit a random effects model - normal herd variance - glIamm 
gen logpar=log(par) 
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xi:gllamm reactors i.type sex i.age, fam(pois) link(log) off(logpar) adapt trace i(farm_id) dots 

* Example 22.4 Random effects logistic regression 
* open the reu _ cfs dataset 

set more off 
use "c:\ver\data\reu _ cfs.dta", clear 

* fit a random effects logistic model- 3 level s (herd, cow, lactation) using gIlamm 
glIamm fscr ai heifer, fam(bin) link(logit) adapt trace i( cow herd) dots 

* Example 22.6 Checking ML estimation 
* open the reu _ cfs dataset 

set more off 
capture log close 
log using "c:\ver\ch22\ex22 _ 6.log", text replace 
use "c:\ver\data\reu_ cfs.dta", clear 



666 PROGRAM FILES 

* fit a random effects logistic model - varying # of quadrature points 
glIamm fscr ai heifer, fam(bin) link(logit) adapt trace i( cow herd) dots nip(6) 
glIamm fscr ai heifer , fam(bin) link(logit) adapt trace i( cow herd) dots nip(8) 
glIamm fscr ai heifer , fam(bin) link(logit) adapt trace i( cow herd) dots nip( I O) 
glIamm fscr ai heifer , fam(bin) link(logit) adapt trace i( cow herd) dots nip( 12) 

* Example 22.7 Likelihood ratio tests for random effects logistic regression 
* open the reu _ cfs dataset 

set more off 
use "c:\ver\data\reu_cfs.dta", clear 

* fit reduced random effects logistic model s using glIamm 
glIamm fscr ai heifer, fam(bin) link(logit) adapt trace i(herd) dots 
glIamm fscr ai heifer, fam(bin) link(logit) adapt trace i(cow) dots 

* Example 22.9 Overdispersion parameter for artificial binomial data 
* generate the data 

clear 
set obs 10 
generate pos=O 
replace pos=20 if _ n>5 

* analyse data by generalised linear model 
glm pos, fam(binomial 20) link(logit) 

23 ALTERNATIVE APPROACHES TO DEALING WITH CLUSTERED DATA 

* Example 23.1 Fixed effects model - pig respiratory diseases 
* open the pig respiratory disease dataset 

use c:\ver\data\pig_adg, clear 
* compute a dichotomous variable for ar score greater than l 

gen ar_g l =ar> 1 
* fit a fixed effects model for pn 

xi: logit pn ar_gl i.farm 

* Example 23.2 Overdispersion factor - pig respiratory diseases 
* open the pig respiratory disease dataset 

use c:\ver\data\pig_adg, clear 
* compute a dichotomous variable for ar score greater than l 

gen ar_g 1 =ar> l 
* compute group identifiers 

gen group=ar _g l * 100+farm 
* collapse data to group level 

collapse ar_gl (sum) pn (count) n=pn, by(group) 
* fit a generalised linear model for pn with overdispersion factor 

glm pn ar _g I, fam(bin n) link(logit) scale(x2) 

* Example 23.3 Robust standard errors - pig respiratory disease 
* open the pig respiratory disease dataset 

use c:\ver\data\pig_adg, clear 
* compute a dichotomous variable for ar greater than l 
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gen ar ~g I =ar> I 
* fit the simple model with robust SE clustered on farm 

logit pn ar~gl, cluster(farm) 

* Example 23.4 Robust standard errors - somatic cell counts 
* open the somatic cell count dataset 

use "c:\ver\data\scc_1 O.dta", clear 
* compute a dichotomous variable for heifer 

gen c~heifer=(cJ)rty3==I) 
* fit a multiple linear regression (ignoring clustering) 

xi: reg t~lnscc h~sz c~heifer i.t~seas t~dim 
* fit a multiple linear regression with robust SE clustered on cows 

xi: reg t~lnscc h~sz c~heifer i.t~seas t~dim, robust cluster(cowid) 
* fit a multiple linear regression with robust SE clustered on herds 

xi: reg Unscc h~sz c~heifer i.t~seas t~dim, robust cluster(herdid) 

* Example 23.6 - GEE pig respiratory disease data 
* open the pig respiratory disease dataset 

use c:\ver\data\pig~adg, clear 
* compute a dichotomous variable for ar greater than 1 

gen ar ~g l =ar> 1 
* run GEE estimation with compound symmetry working correlation structure 

xtgee pn ar~gl, i(farm) fam(bin) link(logit) robust 
xtcorr , compact 

* Example 23.7 GEE - somatic cell count data 
* open the sec dataset 

use c:\ver\data\scc ~ 10, clear 
* compute a dichotomous variable for heifer 

gen c ~ heifer=( c J)rty3== I) 
* run GEE estimation with compound symmetry working correlation structure 

667 

xi: xtgee Unscc h~sz c~heifer i.t~seas t~dim, i(cowid) fam(gaus) link(ident) corr(exch) robust 
xtcorr, compact 

* run G EE estimation with autoregressive (ar l) working correlation structure 
xi: xtgee Unscc h ~ sz c ~ heifer i.t~seas t~ dim, i( cowid) t(test) fam(gaus) link(ident) corr(arl) 
robust 
xtcorr, compact 

* run GEE estimation with unstructured working correlation structure 
xi: xtgee Unscc h~sz c~heifer i.t~seas t~dim, i(cowid) t(test) fam(gaus) link(ident) corr(unst) 
robust 
xtcorr, compact 

24 META-ANALYSIS 

* Example 24.3 - Fixed and random effects meta-analyses 
* open the rBST - milk dataset 

use "c:\ver\data\bst~ milk.dta", clear 
* meta-analyses of milk production 

meta diffse 
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* open the rBST - mastitis dataset 
use "c:\ver\data\bst_mast.dta", clear 

* meta analyses of mastitis data 
meta rr cilow cihigh, ci eform 

* Example 24.4 - Forest plot 
* open the rBST - mastitis dataset 

use "c:\ver\data\bst_mast.dta", clear 
* create a study label variable 

gen str20 sl="Group = "+string(group) 
* fit both fixed and random effects model s and 
* generate a forest plot from the fixed effects model 

PROGRAM FILES 

meta rr cilow cihigh, ci eform graph(f) id(sl) cline xline(l) xlab(0.33 0.5 0.75 124) /* 
*/ ltrunc(0.3) b2("Risk ratio - clinical mastitis") rtrunc(6) /* 
*/ sa("c:\ver\ch24\fig24_l.gph", replace) 

* Example 24.5 - Stratified meta-analysis 
* open the rBST - milk dataset 

use "c:\ver\data\bst_ milk.dta", clear 
* meta-analyses of milk production - primiparous 

meta diff se if parity== I 
* meta-analyses of milk production - all 

meta diff se if parity==2 
* meta-analyses of milk production - multiparous 

meta diff se if parity==3 

* Example 24.6 - Meta-regression 
* open the rBST - milk dataset 

use "c:\ver\data\bst_milk.dta", clear 
* meta-regression analysis. 

xi: metareg diffi.parity ifse~=., wsse(se) bsest(mm) 
test _Iparity_2 _Iparity_3 
metareg diff dur if se~=. , wsse( se) bsest( mm) 
metareg diff dose _ day if se~=. , wsse( se) bsest( mm) 

* Example 24.7 - Publication bias 
* open the rBST - mastitis dataset 

use "c:\ver\data\bst_mast.dta", clear 
* generate a funnel plot 
* compute Begg's and Egger's tests for publication bias 

metabias rr cilow cihigh, ci gr(b) t2("Clin Mast - Risk") /* 
*/ saving("c:\ver\ch24\fig24 _ 2.gph",replace) 

* Example 24.8 - Influential studies 
* open the rBST - mastitis dataset 

use "c:\ver\data\bst_ mast.dta", clear 
* create a study label variable 

gen str20 sl="Group = "+string(group) 
* derive estimates of the log(rr) and its SE 

gen lnrr=ln(rr) 
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gen selow=(\nrr-ln(cilow))/1.96 
gen sehigh=(ln( cihigh )-lnrr )/1. 96 
gen seavg=(selow+sehigh)/2 

* generate an influence plot 
metainflnrr seavg, id(sl) t2("Clin Mast - Risk") 1* 

*1 saving("c:\ver\ch24\fig24 _ 3.gph",replace) 

25 ECOLOGIC AND GROUP LEVEL STUDlES 

There are no program files for this chapter. 

26 A STRUCTURED APPROACH TO DATA ANALYSIS 

There are no program files for this chapter. 

669 



670 



671 

GLOSSARY AND TERMINOLOGY 

There is considerable variation in terminology and methods of presenting data among 
epidemiology texts and other information sources. In general, the terminology and 
data layouts used in this book will conform to those used in Modem Epidemiology, 2d 
edition (Rothman and Greenland, 1998). 

GT.1 DATA LAYOUT 

The outcome variable is listed in the rows of the table, the predictor variable is listed 
in the columns. 

Risk calculations (2X2 table) 

Exposure 

Exposed Non-exposed 

Diseased a1 ao m1 

Non-diseased b1 bo mo 

n1 no n 

where: 
al the number of subjects that have both the disease and the risk factor. 
ao the number of subjects that have the disease but not the risk factor. 
b l the number of subjects that have the risk factor but do not have the disease. 
bo the number of subjects that have neither the disease nor the risk factor. 
ml the number of diseased subjects. 
mo the number of non-diseased subjects. 
nl the number of exposed subjects. 
no the number of non-exposed subjects. 
n the number of study subjects. 

ln general, no distinction is made between values derived from a sample and population 
values as it is usually easy to determine what is being referred to from the context. ln 
select situations where the distinction is necessary, upper-case letters (eg A I) will be 
used for population values and lower case (eg al) for samp\e values. 

Rate calculations (2X2 table) 
Here, subject-time replaces the number of non-diseased. 

Number of cases 

Animai-time at risk 

Exposed 

Exposure 

Non-exposed 
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where: 
aj the number of cases of disease in the exposed group. 
ao the number of cases of disease in the non-exposed group. 
t] the animai-time accumulated in the exposed group. 
to the animai-time accumulated in the non-exposed group. 
t the total animai-time accumulated by the study subjects. 

Diagnostic tests (2X2 tables) 
Gold standard layout 

Positive 

Disease positive 

Disease negative 

a 

Test result 

Negative 

b 

d 

Note The marginals are the same as for risk calculations; the inner cell values are denoted as a, b, c, d. 

Test comparison layout 

Test 2 positive Test 2 negative Total 

Test 1 positive 

Test 1 negative 

Total 

Correlated data 
Matched-pair case-control data layout 

Control pair 

Exposed Non-exposed 

Exposed t u 

Case pair Non-exposed v w 

Control totals t+v = b1 u+w = bo 

Case totals 

t+u = a1 

v+w = ao 

Note Ifpair-matching is used in a cohort study, the same format is used but the case (rows)-control(columns) 
status is replaced by exposed (rows) non-exposed (columns) and the exposure status is replaced by disease 
status. 

Significant digits 
Throughout the text, data are often presented with more significant digits than normally 
would be warranted. This is done for clarity and to avoid rounding errors. 
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GT.2 MULTIVARIABLE MODEL S 

In general, multivariable models will be presented as follows, with explicit subscripting 
(eg for observation number) used only if absolutely necessary for clarity: 

outcome = Po + p]X] + P2X2 + ... + PkXk 

where the outcome may be a variety of parameters (eg for logistic regression outcome = 

ln(p/l-p) and k is the number ofparameters in the model (exc1uding the intercept). 

In some situations, pX or fl will be used to represent the entire right-hand side of the 
model (ie the linear predictor) to simplify presentation: 

pX = Po + P lXI + P2X2 + ... + P kXk 

The terms predictor, exposure, risk factor and independent variable will all be used to 
designate factors that 'cause' the outcome ofinterest, although in general we prefer to 
use one of the first two terms. These will be designated X. 

The terms outcome and dependent variable will both be used for the response, but the 
former term is used most commonly. These will be designated Y. 

GT.2.1 Multilevel models 

N ote F or the sake of simplicity, a single index notation will be used for all multilevel data. 
The subscript i denotes the individual (lowest level) observation. In the example above, 
Uherd(i) refers to the herd containing the ith individual. 1fthere are 40 herds, u could have 
one of 40 values. An altemative notation, used in some texts, has multiple indices such as 
Uj + Glj where j refers to the herd and i to the ith individual in the jth herd. 

GT.3 GLOSSARY 

Terms related to formulae and methods 

a 

AFe 

AFp 

AFT 

AIC 

AP 

AUC 

81C 

BLUP 

number of cases 

attributable fraction in the exposed group 

attributable fraction in the population 

acce1erated failure time 

Akaike's Information Criteria 

apparent prevalence 

area under ROC curve 

Bayesian Information Criteria (Schwartz Bayesian Criteria) 

best linear unbiased predictor 
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BUGS 

c 

eee 
chi2 

Cl 

corr (y) 

cov (y) 

covar 

Bayesian analysis using Gibbs sampling 

constant (eg baseline hazard) 

cost of sampling 

concordance correlation coefficient 

chi-square (Xl) 

confidence interval 

correlation matrix of Y 

covariance matrix of Y 

covariance 
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covar (+)/covar(-) covariance in test positive (+)/negative (-) sample results 

cp 

ep 
CV 

D 

D­

D+ 

DB 

deff 

df 

e 

E 

E­

E+ 

EV 

exp 

F(t) 

fit) 

f(B) 

fiBIy) 

cutpoint 

Mallow's statistic 

coefficient of variation 

distance between point i and i' 

outcome events (failures) during the interval (actuarial life table) or number of 
events at time ~ (KM life table) 

deviance statistic (-2*lnL) 

minimum number diseased 

duration 

disease 

subjects not having a specified disease/condition 

subjects having a specified disease/condition 

delta-beta 

design effect 

degrees of freedom 

2.71828 (natural number) 

expected value (eg E(Y) = expected value of y) 

exposure factor 

subjects not exposed 

exposed subjects 

extraneous variable 

expected cell number 

exponential function (ie exp(x) = ex) 

failure function 

probability density function 

prior distribution for B (Bayesian analysis) 

posterior distribution for B (Bayesian analysis) 
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FNF 

FPC 

FPF 

GEE 

GLM 

GLMM 

het) 

ho(t) 

Hj 

H(t) 

HR 

Hs 

HSe 

HSp 

I 

le 

lCC 

ID 

IDG 

IQR 

IR 

lRG 

ls 

j 

J 

k 

false negativ e fraction 

finite population correction 

false positive fraction 

likelihood ratio statistic 

generalised estimating equations 

generalised linear model 

generalised linear mixed model 

leverage 

hazard function 

baseline hazard function 

distribution of host ülctor and/or subject time in stratumj 

cumulative hazard function 

hazard ratio 

standard population distribution of host factor 

herd sensitivity 

herd specificity 

observation counter 

incidence rate 

expected incidence rate 

intra-class correlation coefficient 

incidence rate difference 

incidence rate difference based on group means 

directly standardised rate 

indirectly standardised rate 

interquartile range 

incidence rate ratio 

incidence ratio based on group-level data 

standard population incidence rates 

designated for strata 

designator for categories 

designator for covariate patterns in adataset 

designator for time intervals (actuariallife table) or time points (KM life table) 

sampling interval in systematic random sample 

total number of j 

cutpoint for herd-level testing (number of positives required for positive herd 
classification) 

number ofpredictors in a model (not including intercept) 
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KM 

ln 

InL 

log 

LR 

LRT 

m 

MCMC 

ML 

MSE 

n 

n' 

N 

o 

obs 

OR 

ORa 

OR(ABC) 

OR(ABqD) 

ORe 

OR) 

ORMH 

ORsf 

P 

P 
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Kaplan-Meier (life table or survival model) 

subjects at risk offailure at the start of the time interval (actuariallife table) 

allowable error (one-half the length of a confidence interval) 

likelihood function (eg L(J18) 

null or baseline likelihood function 

likelihood function from full model 

likelihood function from reduced (smaller) model 

natural log 

ln (likelihood function) 

natural log (also ln) 

likelihood ratio 

likelihood ratio based on defined cutpoint(s) 

likelihood ratio for defined category of result 

likelihood ratio test 

number of matched controls per case 

number of observations in a covariate pattem 

number of samples in a pooled sample 

number of subjects per cluster (group) 

Markov chain Monte Carlo 

maximum likelihood 

mean square error 

number 

sample size 

adjusted sample size 

population size 

odds 

observed cell number 

odds ratio 

odds ratio - adjusted 

odds ratio for factor ABC 

odds ratio for factor ABC conditional on D 

odds ratio - crude 

stratum-specific odds ratio 

Mantel-Haenszel adjusted odds ratio 

odds ratio of sampling fractions 

probability as in p(D+IE+) or p(Y=I) 

proportion as in ln(p/l-p) 
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p 

Pi 

p 

P 

PA 

par 

par 

PAR 

PD 

PE 

pl(A) 

PISe 

PISp 

PP V­

PR 

PSU 

PV 

PV­

PV+ 

q 

ri 

R 

R2 

RD 

REML 

ROC 

RR 

shape parameter for Weibull distribution 

probability of surviving intervalj (actuariallife table) or survival at time t.i (KM 
life table) 

P-value 

prevalence 

population average 

population at risk 

parameter 

population attributable risk 

prevalence difference 

prediction error 

profile likelihood function 

pooled-sample sensitivity 

pooled-sample specificity 

positive predictive value of a negative test 

prevalence ratio 

primary sampling unit 

predictive value 

negative predictive value 

positive predictive value 

l-p 

risk of event during intervalj (actuariallife table) or at time t.i (KM life table) 

quasi-likelihood under the independence model information criterion 

correlation coefficient (p also used) 

squared corre1ation (R2 also used) 

raw residual 

average number of subjects at risk during a time interval (actuariallife table) or 
at time t.i (KM life table) 

standardised residual 

studentised residual 

incidence risk 

coefficient of determination (,.1 also used) 

risk difference (also know as attributable risk) 

restricted maximum likelihood 

Pearson residual 

standard population incidence risk 

receiver operating characteristics 

risk ratio (altematively known as relative risk) 
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SD 

SE 

Se 

SecorlSpcorr 

Senew/Spnew 

Se;Spp 

Se/Sps 

sj 

sjT+/sfT­

Si 

SMR 

so 

Sp 

sr 

SS 

Set) 

M 

o 
0-1.tj 

t or T 

Ts 

TR 

TP 

TVC 

var 

VIF 

x 
y 

Z 

standard deviation 

standard error 

sens iti vit y 

GLOSSARY AND TERMINOLOGY 

corrected Se/Sp based on cross-sectional validation 

Se/Sp of current test adjusted for Se/Sp ofreferent test 

Se/Sp in parallel interpretation of test results 

Se/Sp in series interpretation of test results 

sampling fraction 

sampling fractions for cross-sectional validation 

value of latent variable for individual i 

standardised morbidity/mortality ratio 

sampling odds 

specificity 

sampling risk 

subject spec ifi c 

survivor function 

length of period 

time of event (KM life table) 

time span in the interval (actuarial life table) 

animai-time 

standard population animai-time at risk 

time ratio 

true prevalence 

time varying covariate 

variance 

variance infiation factor 

subjects withdrawn during interval (censored observations) (actuariallife table) 
or censored observations at time 0 (KM life tabi e) 

predictor variable or design matrix of predictors 

outcome variable or vector of outcome values 

design matrix for random effects 

extraneous variable, factor or confounder 

standard normal deviate 

standard normal deviate for a/2 Type I error 

standard normal deviate for one-tailed fl Type II error 

Note Acronyms are not italicised in Arial font (tables and figures). 
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Symbols 

a level of significance (Type I error) 

frai I ty factor 

fl Type II error (power= l-fl) 

XWald 

B 

Bo 

p 

Pce 

(J 

(J2 

r 

regression coefficient or vector (1 * n) of coefficients 

coefficient from proportional hazards model 

coefficient from accelerated failure time model 

chi-square statistic 

X2 test for homogeneity 

Wald chi statistic 

error (or vector (I * n) of error values 

dispersion parameter in GLM(M) 

power transformatioh 

hazard 

mean 

random group effect 

3.14159 (natural number) 

a specified or assumed value 

null specified value 

correlation - intra-class correlation coefficient (r also used) 

confounder-exposure correlation 

standard deviation 

variance 

random slope variance for fll 

herd variance 

regional variance 

distribution of survival times 

cutpoint for proportional odds 

approximate symbo I or distributed as (eg Y ~N(O, 1» 

approximately equal to 

division 

multiplication symbol 

# number 
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Terms related to location and animal-health problems 

AID autoimmune disease 

AVC 

BRD 

BRSV 

BSE 

BVD 

BVDV 

d 

EBL 

ELISA 

IBR 

IFAT 

ISA 

Map 

Mh 

mo 

MUN 

OD 

Ont. 

OVC 

PCR 

PEl 

PI 

ppb 

ppm 

yr 

Atlantic Veterinary College, at University ofPrince Edward Island, Canada 

bovine respiratory disease 

bovine respiratory syncytial virus 

bovine spongiform encephalopathy 

bovine viral diarrhea 

bovine viral diarrhea virus 

day(s) 

enzootic bovine leukosis 

enzyme-linked immunosorbent assay 

infectious bovine rhinotracheitis (Herpes 1) 

indirect fluorescent antibody test 

infectious salmon anemia 

Mycobacterium avium subsp paratuberculosis 

Mannheimia hemolytica 

month(s) 

milk urea nitro gen 

optical density 

Ontario (large province in Canada) 

Ontario Veterinary College at University of Guelph, Ontario 

polymerase chain reaction 

Prince Edward Island (smallest province in Canada) 

persistently infected (eg with BVDV) 

parts per billion 

parts per million 

year(s) 

GT.4 PROBABILITY NOTATION 

E(Y) = expected vaIue of Y 

p(D+) = probability ofhaving the disease ofinterest 

p(T+ID+) = probabiIity of being test positive given the animaI had the disease of 
interest 

p(D+IE+) = probabiIity ofhaving the disease ofinterest in an exposed group 
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p(D+IT+) = probability of having the disease of interest given the animai was test 
positive 

eZ = the number of combinations of k items from nitems 

GT.5 NAMING VARIABLES 

Variable names in the text will be set between pairs of dashes (eg -vamame-) but 
the dashes will not be included in tables and figures or if the variable is used in an 
equation. 

Modifications ofvariables will generally (but not always - you wouldn't expect us to 
be totally consistent, would you?) be named by adding a suffix to the original variable 
name. For example: 

vamame ct 
vamame_sq 
vamame c# 
vamame ln 

centred version of the variable 
squared version of the variable 
a categorical version of -vamame- with n = # categories 
log transformed version of the variable 

Indicator variables will usually be named by appending the category value (or left­
hand end of the category range ifit is a continuous variable). For example, a variable 
representing herd size (-numcow-) broken into four categories (O-29, 30-59, 60-89, 
90+) would result in the following four variables: 

-numcow 0-
-numcow 30-
-numcow 60-
-numcow 90-

Note Unless otherwise specified, values falling exactly on the dividing point will fall 
in the upper category. 
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