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Preface: Welcome to the “Promised Land”

…And I saw a man who was standing in the gate. He looked as if he were bronze. In his hands, he had a string and a 
measuring stick…. The stick that the man had was 6 long cubits. But each cubit was a cubit plus the width of a hand. 
The man measured the wall. It was one stick high and one stick wide….

Ezekiel 40: 3–5

I have been involved in the field of genetic markers and quantitative trait loci since I began my doctorate 
under the direction of Prof. Morris Soller and Dr. Thomas Brody in 1977. In my doctorate thesis we 
grew 2000 tomato plants and used morphological and biochemical markers (isozymes). Since the early 
1980s, Dr. Soller was convinced that marker‐assisted selection was “just around the corner.” Now I can 
say without any exaggeration that we have arrived in the “promised land.” Marker‐assisted selection, 
now generally termed genomic selection, has become a reality over the last 5 years for most of the 
important farm animals, especially dairy cattle. However, genomic evaluation is still very much a “work 
in progress.” Although there is definitely sufficient material in the literature to justify a text of this nature 
for graduate students, I am quite sure that a similar text in 5 years will look quite different.

When writing a book of this nature, one is always confronted with the problem of what to assume 
is already known by the reader and what has to be explained. Generally with respect to biology, very 
little is required of the reader. Anyone with a B.A. or B.Sc. in biology should have no problem with 
any biological concepts presented. Specifically with respect to genetics, I am assuming that the 
reader has a basic understanding of quantitative genetics, such as could be obtained from the classic 
Quantitative Genetics of Falconer (1964), or Genetics and Analysis of Quantitative Traits by Lynch 
and Walsh (1998). With respect to mathematics, I am assuming that the reader is familiar with both 
differential and integral calculus and has a basic familiarity with matrix algebra. Applications of 
matrix algebra specific to animal breeding are explained in some detail, even though this information 
has become quite standard for any graduate student in applied genetics. Detailed explanation of the 
physics and chemistry of current technologies used to genotype large numbers of markers and 
whole genome sequencing is outside the scope of this book.

Finally I want to thank those people who made this book possible. I have already mentioned my 
teachers Morris Soller and Thomas Brody, and I would also add the late Ram Moav and Reuven 
Bar‐Anan. Also I thank my colleagues both in Israel and the United States, especially Micha Ron, 
Ephraim Ezra, Ignacy Misztal, George Wiggans, Paul VanRaden, and John Cole. I also thank my 
editors Justin Jeffryes and Stephanie Dollan, who I have yet to meet face‐to‐face, and last but not 
least my family, and especially my lovely wife Hedva, who has given me every support in this and 
in all my other endeavors.

Menachem Av, 5775
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1

Historical Overview1

Introduction

Genomic selection is based on the synthesis of statistical and molecular genetics that occurred 
during the last three decades. In this introductory chapter we will review the landmark breakthroughs 
that lead to this synthesis. The first section reviews the milestones in the synthesis of Mendelian and 
quantitative genetics. The next section reviews the early experiments of quantitative trait locus 
(QTL) detection using morphological and biochemical markers, beginning with Sax’s landmark 
experiment with beans (Phaseolus vulgaris). The following sections describe the development of 
DNA‐level markers starting with restriction fragment length polymorphisms (RFLPs) to single 
nucleotide polymorphisms (SNPs) and copy number variations (CNV). The final sections describe 
QTL detection and marker‐assisted selection (MAS) prior to genomic selection.

The Mendelian Theory of Genetics

Modern genetics is usually considered to have started with the rediscovery of Mendel’s paper in 
1900. The rediscovery of Mendel’s laws led to a rapid first synthesis of genetics, statistics, and 
cytology. Boveri (1902) and Sutton (1903), first proposed the “chromosomal theory of inheritance” 
that the Mendelian factors were located on the chromosomes. Using Drosophila, Morgan (1910) 
demonstrated that Mendelian genes were linked and could be mapped into linear linkage groups of 
a number equal to the haploid number of chromosomes. Hardy (1908) and Weinberg (1908) 
independently derived their famous equation to describe the distribution of genotypes in a 
segregating population at equilibrium. That is, the frequencies of genotypes for a locus with two 
alleles with frequencies p and 1 − p will be p2, 2p(1 − p), and (1 − p)2 for homozygotes for p‐allele 
and heterozygotes and homozygotes for the other allele, respectively.

In 1919 Haldane derived a formula to convert recombination frequencies into additive “map 
units” denoted “Morgans” or “centimorgans,” assuming a random distribution of events of 
recombination along the chromosome. The Haldane mapping function (Haldane, 1919) is based 
on the assumption of zero “interference” throughout the genome. That is, all events of recombi-
nation are statistically independent. In this case the number of events of recombination in any 
given chromosomal segment corresponds to a Poisson distribution. The map distance between 
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two genes in Morgans, M, which is a function of the frequency of observed recombination 
between them, R, is derived as follows:

	
M R

1

2
1 2ln 	 (1.1)

The Mendelian Basis of Quantitative Variation

Unlike the morphological traits analyzed first by Mendel and then by Morgan, most traits of 
economic interest in agricultural species display continuous variation, rather than the discrete 
distribution associated with Mendelian genes. Despite the early synthesis between Mendelian 
genetics and cytogenetics, there seemed to be no apparent connection between Mendelian genetics 
on the one hand and quantitative variation and natural selection on the other.

Experiments by Johanssen (1903) with beans demonstrated that environmental factors are a 
major source of variation in quantitative traits, leading to the conclusion that the phenotype for these 
traits is not a reliable indicator for the genotype. Yule in 1906 first suggested that continuous 
variation could be explained by the cumulative action of many Mendelian genes, each with a small 
effect on the trait. (Many different terminologies have been employed for these genes. I will use the 
term “QTL” throughout.) Fisher in 1918 demonstrated that segregation of QTL in an outcrossing 
population would generate correlations between relatives. Payne (1918) demonstrated that the 
X  chromosome from selected lines of Drosophila contains multiple factors, which influenced 
scutellar bristle number. Thus, by 1920, the basic theory necessary for detection of individual genes 
affecting quantitative traits was in place.

Detection of QTL with Morphological and Biochemical Markers

In 1923 Sax demonstrated with beans that the effect of an individual locus on a quantitative trait could 
be isolated through a series of crosses, resulting in randomization of the genetic background with 
respect to all genes not linked to the genetic markers under observation. Even though all of his markers 
were morphological seed markers with complete dominance, he was able to show a significant effect 
on seed weight associated with some of his markers.

During the next 50 years, there were relatively few successful experiments that found marker–
QTL linkage in plant and animal populations, and of these even fewer were independently repeated. 
A major problem was the relatively small size of most experiments. In most cases in which QTL 
effects were not found, power was too low to find segregating QTL of a reasonable magnitude 
(Soller et al., 1976).

In 1961 Neimann‐Søressen and Robertson proposed a half‐sib design for QTL detection in 
commercial dairy cattle populations. Although the actual results were disappointing, this was the 
first attempt to detect QTL in an existing segregating population. All previous studies were based 
on experimental populations produced specifically for QTL detection. This study was also ground-
breaking in other aspects. It was the first study to use blood groups rather than morphological 
markers, and the proposed statistical analyses—a χ2 (chi‐squared) test, based on a squared sum of 
normal distributions, and ANOVA—were also unique. This was the first study that attempted to 
estimate the power to detect QTL and to consider the problem of multiple comparisons when several 
traits and markers were analyzed jointly.
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Lewontin and Hubby showed in 1966 that electrophoresis could be used to disclose large 
quantities of naturally occurring enzyme polymorphisms in Drosophila. Almost all enzymes 
analyzed showed some polymorphism that could be detected by the speed of migration in an 
electric field. Studies with domestic plant and animal species found that electrophoretic 
polymorphisms were much less common in agricultural populations. During the 1980s there 
were a number of QTL detection studies in agricultural plants based on isozymes using crosses 
between different strains or even species in order to generate sufficient electrophoretic 
polymorphism (Tanksley et al., 1982; Kahler and Wherhahn, 1986; Edwards et al., 1987; Weller 
et al., 1988). It was clear, though, that naturally occurring biochemical polymorphisms were 
insufficient for complete genome analyses in populations of interest.

DNA‐Level Markers, 1974–1994

The first detected DNA‐level polymorphisms were RFLPs. Grodzicker et al. (1974) first showed 
that restriction fragment band patterns could be used to detect genetic differences in viruses. 
Solomon and Bodmer (1979) and Botstein et al. (1980) proposed RFLP as a general source of 
polymorphism that could be used for genetic mapping. Although RFLPs are diallelic, initial 
theoretical studies demonstrated that they might be present throughout the genome. Beckmann 
and Soller (1983) proposed using RFLP for detection and mapping of QTL. The first genome‐
wide scan for QTL using RFLP was performed on tomatoes by Paterson et al. (1988). In animal 
species, however, RFLP markers were homozygous in most individuals and therefore have not 
been as useful for QTL mapping.

A major breakthrough came at the end of the decade with the discovery of DNA microsatellites. 
Mullis et al. (1986) proposed the “polymerase chain reaction” (PCR) to specifically amplify any 
particular short DNA sequence. Using the PCR, large enough quantities of DNA could be gener-
ated so that standard analytical methods could be applied to detect polymorphisms consisting of 
only a single nucleotide. Since the 1960s, it has been known that the DNA of higher organisms 
contains extensive repetitive sequences. In 1989 three laboratories independently found that 
short sequences of repetitive DNA were highly polymorphic with respect to the number of 
repeats of the repeat unit (Litt and Luty, 1989; Tautz, 1989; Weber and May, 1989). The most 
common of these repeat sequences was poly(TG), which was found to be very prevalent in all 
higher species. These sequences were denoted “simple sequence repeats” (SSR) or “DNA 
microsatellites.”

Microsatellites were prevalent throughout all genomes of interest. Nearly all poly(TG) sites 
were polymorphic, even within commercial animal populations. These markers, unlike most 
morphological markers, were by definition “codominant.” That is, the heterozygote genotype 
could be distinguished from either homozygote. Furthermore, microsatellites were nearly always 
polyallelic. That is, more than two alleles were present in the population. Thus, most individuals 
were heterozygous. Relatively dense genetic maps based on microsatellites were generated 
nearly in all agricultural species (e.g., Ihara et al., 2004), and these markers were also used to 
detect and map segregating QTL. The  weaknesses of microsatellites are twofold: First their 
distribution throughout the genome is not sufficiently dense for determination of causative poly-
morphisms responsible for observed QTL. (The causative polymorphisms will be denoted 
“quantitative trait nucleotides” (QTN).) Second, due to the repeat structure of microsatellites, 
PCR amplification was generally not exact, and “stutter bands” with varying numbers of the 
repeat unit were generated. Various rules were developed to estimate the actual genotype from 
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the observed PCR product, but the analysis could not be fully automated. A technician still had 
to review each individual genotype, and error rates in genotype determination were in the range 
of 1–5%.

DNA‐Level Markers Since 1995: SNPs and CNV

Since 2000 “SNPs” (reviewed by Brookes (1999)) have supplanted microsatellites as the marker of 
choice for genetic analysis. An SNP is generally defined as a DNA base pair location at which the 
frequency of the most common base pair is lower than 99%. Unlike microsatellites, which usually 
have multiple alleles, SNPs are generally biallelic, but are much more prevalent throughout the 
genome, with an estimated frequency of one SNP per 300–500 base pairs. In human populations 
differences in the base pair sequence of any two randomly chosen individuals occur at a frequency 
of approximately one per 1000 kb (Brookes, 1999). Thus, SNPs can be found in genomic regions 
that are microsatellite poor. SNPs are apparently more stable than microsatellites, with lower 
frequencies of mutation. Beginning in 2005, methods were developed for automated scoring of first 
thousands and then hundreds of thousands of microsatellites per individual. Genotyping error rates 
are in the range of 0.05–0.01% with “BeadChip” technology (Weller et al., 2010). A detailed 
description of the technologies developed for high‐throughput SNP analysis is beyond the scope of 
the current text. For details, see Matukumalli et al. (2009).

QTL Detection Prior to Genomic Selection

Generally both natural and commercial populations are at linkage equilibrium for the vast majority 
of the genome. The exception is genomic sites that are closely linked on the same chromosome. 
Unlike genetic linkage within families that extends over tens of centimeters, population‐wide 
linkage disequilibrium (LD) extends in animals over less than 1 cM (Sargolzaei et al., 2008; Qanbari 
et al., 2010). Therefore, unless a segregating genetic marker is closely linked to a QTL segregating 
in the population with an effect on some trait of interest, no effect will be associated with the marker 
genotypes. Thus naturally occurring LD could not be exploited prior to the advent of high‐density 
genome scans. To detect the effect of a single QTL in outbred populations prior to high‐density 
genome scans, it was necessary to generate LD.

In an analysis of inbred lines we are confronted with the opposite problem. That is, a significant 
effect associated with a genetic marker may be due to many genes throughout the genome and not 
necessarily to genes linked to the genetic markers. In crosses between inbred lines it was necessary 
to devise an experimental design that isolates the effects of the chromosomal segments linked to the 
segregating genetic markers.

Experimental designs can be divided into designs that are appropriate for crosses between 
inbred lines and those designs that can be used for segregating populations. Most early analyses 
performed to detect QTL have been based on planned crosses, although studies on humans, large 
farm animals, and trees have used existing populations. For humans, most species of domestic 
animals, and fruit trees, it is impractical to produce the inbred lines. Instead, experimental designs 
were based on the analysis of families within existing populations. Three basic types of analyses 
have been proposed—the “sib‐pair” analysis for analysis of many small full‐sib families, the “full‐sib” 
design for analysis of large full‐sib families, and the “half‐sib” or “daughter design” analysis for 
large half‐sib families.
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MAS Prior to Genomic Selection

Prior to genomic selection, two MAS breeding programs were initiated in dairy cattle based on 
microsatellites in German and French Holsteins (Bennewitz et al., 2004b; Boichard et al., 2006). 
Both programs computed marker‐assisted genetic evaluations (MA‐BLUP) based on the algorithm 
of Fernando and Grossman (1989).

In the German program, markers on three chromosomes were used. The evaluations were distrib-
uted to Holstein breeders who used these evaluations for selection of bull dams and preselection of 
sires for progeny testing. The algorithm only included equations for bulls and bull dams, and the 
dependent variable was the bull’s daughter yield deviation (VanRaden and Wiggans, 1991; derivation 
and use of daughter yield deviations will be discussed in detail in Chapter 6). Linkage equilibrium 
throughout the population was assumed. To close the gap between the grandsire families analyzed 
in the German granddaughter design and the bulls in use in 2004, 3600 bulls were genotyped in 
2002. Until 2008, about 800 bulls were evaluated each year. Only bulls and bull dams were 
genotyped, since tissue samples were already collected for paternity testing. Thus additional costs 
due to MAS were low, and even a very modest genetic gain could be economically justified. This 
scheme was similar to the “top‐down” scheme of Mackinnon and Georges (1998) in that evaluation 
of the sons was used to determine which grandsires were heterozygous for the QTL and their linkage 
phase. This information was then used to select grandsons based on which haplotype was passed 
from their sires. It differed from the scheme of Mackinnon and Georges (1998) in that the grandsons 
were preselected for progeny test based on MA‐BLUP evaluations (Fernando and Grossman, 1989), 
which include general pedigree information in addition to genotypes.

The French MAS program included elements of both the “top‐down” and “bottom‐up” MAS 
designs. Similar to the German program, genetic evaluations including marker information were 
computed by a variant of MA‐BLUP, and only genotyped animals and nongenotyped connecting 
ancestors were included in the algorithm. Genotyped females were characterized by their average 
performance based on precorrected records (with the appropriate weight), whereas males were 
characterized by twice the “yield deviations” of their nongenotyped daughters (yield deviations will 
also be explained in Chapter 6). Twelve chromosomal segments, ranging in length from 5 to 30 cM, 
were analyzed. Regions with putative QTL affecting milk production or composition were assumed 
to be located on bovine chromosomes 3, 6, 7, 14, 19, 20, and 26; segments affecting mastitis 
resistance on chromosomes 10, 15, and 21; and chromosomal segments affecting fertility on chro-
mosomes 1, 7, and 21. Each region was found to affect one to four traits, and on an average three 
regions with segregating QTL were found for each trait. Each region was monitored by two to four 
evenly spaced microsatellites, and each animal included in the MAS program was genotyped for at 
least 43 markers. Sires and dams of candidates for selection, all male AI ancestors, up to 60 AI uncles 
of candidates, and sampling daughters of bull sires and their dams are genotyped. The number of 
genotyped animals was 8000 in 2001 and 50,000 in 2006.

Guillaume et al. (2008) estimated by simulation the efficiency of the French program. Breeding 
values and new records were simulated based on the existing population structure and knowledge of 
the variances and allelic frequencies of the QTL under MAS. Reliabilities of genetic values of 
animals less than 1 year old obtained with and without marker information were compared. Mean 
gains of reliability ranged from 0.015 to 0.094 and from 0.038 to 0.114 in 2004 and 2006, 
respectively. The larger number of animals genotyped and the use of a new set of genetic markers 
can explain the improvement of MAS reliability from 2004 to 2006. This improvement was also 
observed by the analysis of information content for young candidates. The gain of MAS reliability 
with respect to classical selection was larger for sons of sires with genotyped daughters with records.
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Summary

By 2005 dense genetic maps based on DNA‐level genetic markers were developed for nearly all 
economically important animal species. Numerous studies demonstrated that QTL affecting traits 
of economic importance could be detected via linkage to genetic markers. Theory was developed 
for MAS based on selection of a relatively small number of chromosomal segments, and several 
MAS breeding programs for dairy cattle were implemented in two countries. The “rules of the 
game” were to change dramatically in 2006 with the development of high‐throughput SNP chips, 
which will be discussed in detail in the next chapter.
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Types of Current Genetic Markers and 
Genotyping Methodologies

2

Introduction

Although a detailed description of DNA technology is outside the scope of this book, a brief discus-
sion of the types of markers that were used for marker‐assisted selection and the markers currently 
used for genomic selection has been included, as the characteristics of these markers affect the 
methodologies that have been developed for marker‐assisted and genomic selection. In the final 
section we briefly review the current state of complete genome sequencing, which in all likelihood 
is the “wave of the future.”

From Biochemical Markers to DNA‐Level Markers

As noted in the previous chapter, the first study to use biochemical markers (as opposed to morpho-
logical markers) to detect segregating QTL was the study of Neimann‐Sørensen and Robertson 
(1961), which used blood groups as genetic markers. During the 1960s it became clear that there 
was considerable variation in enzyme sequence that could be detected by electrophoresis. A number 
of studies were concluded during the 1980s using electrophoretic markers to detect segregating 
QTL in plant species (e.g., Weller et al., 1988). However, electrophoretic markers were not poly-
morphic in commercial animal species. In addition to blood group markers, polymorphisms were 
also found in milk proteins, and several studies were performed to detect QTL via linkage to these 
markers (e.g., Bovenhuis and Weller, 1994).

The first DNA‐level genetic markers found in animal species were restriction fragment length 
polymorphisms (RFLP). Although several studies were performed in plants to detect QTL via 
linkage to RFLP (Paterson et al., 1988), these markers were not found to be very polymorphic in 
domestic animal species. A major breakthrough occurred with the development of the polymerase 
chain reaction (PCR) (Mullis et al., 1986). Via the PCR it was possible to specifically amplify any 
particular short DNA sequence, provided unique primer sequences could be constructed. Thus large 
enough quantities of DNA could be generated so that standard analytical methods could be applied 
to detect polymorphisms consisting of only a single nucleotide.
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DNA Microsatellites

Since the 1960s it has been known that the DNA of higher organisms contains extensive repetitive 
sequences. In 1989 three laboratories independently found that short sequences of repetitive DNA 
were highly polymorphic with respect to the number of repeats of the repeat unit (Litt and Luty, 
1989; Tautz, 1989; Weber and May, 1989). The most common of these repeat sequences was 
poly(TG), which was found to be very prevalent in all higher species. These sequences were denoted 
“simple sequence repeats” (SSR) or “DNA microsatellites.” Microsatellites were prevalent 
throughout all genomes of interest. Nearly all poly(TG) sites were polymorphic in the number of 
TG repeats, even within commercial animal populations. These markers were by definition 
“codominant.” That is, the heterozygote genotype could be distinguished from either homozygote. 
Furthermore, microsatellites were nearly always polyallelic. That is, more than two different alleles 
were present in the population. Thus, most individuals were heterozygous.

During the 1990s genotyping costs per polymorphism were reduced from approximately 
$10 per genotype to about 1$ per genotype, due to development of machines specifically designed 
for this purpose, specifically the ABI DNA sequencer, which implemented nonradioactive analysis 
methods. In addition costs were reduced due to multiplexing of PCR, which runs several PCR in the 
same sample, and improved software for analysis. Dense genetic maps based on microsatellites 
were generated for most agricultural species, and genome scans for segregating QTL were performed 
for most agricultural animal populations of interest (reviewed by Weller (2007)).

Despite these advantages, microsatellites had several significant drawbacks, due chiefly to the 
prevalence of “stutter bands.” (These bands are generated by “mistakes” in DNA replication during 
the PCR, in which a unit of the repeat motif is either deleted or added. Thus instead of a single clear 
band for each allele, secondary bands are also generated.) First, although software was developed 
to determine genotypes from the banding pattern, genotyping could not be completely automated. 
It was still necessary for a qualified technician to review the software results and make corrections. 
Second, genotyping error rates were often unacceptably high (e.g., Weller et al., 2004). Finally the 
average density of microsatellites in the genome was not sufficient to capture population‐wide link-
age disequilibrium, which we will see is now the basis of genomic selection.

Single Nucleotide Polymorphisms

Since 1995 new classes of markers have also come into use. Chief among them are “single nucleotide 
polymorphisms” (SNP) (reviewed by Brookes (1999)). An SNP is generally defined as a base pair 
location at which the frequency of the most common base pair is lower than 99%. Unlike microsat-
ellites, which usually have multiple alleles, SNPs are generally diallelic, but are much more prevalent 
throughout the genome, with an estimated frequency of one SNP per 300–500 base pairs. In human 
populations differences in the base pair sequence of any two randomly chosen individuals occur at 
a frequency of approximately one per 1000 kb (Brookes, 1999). Thus, SNPs can be found in genomic 
regions that are microsatellite poor. SNPs are apparently more stable than microsatellites, with 
lower frequencies of mutation. Ranade et al. (2001) first described conditions for genotyping large 
numbers of individuals for any SNP and computational methods that allow genotypes to be assigned 
automatically.

Several companies developed genotyping platforms for high‐throughput genotyping of tens and 
even hundreds of thousands of SNPs simultaneously. By 2008 genotyping costs for SNPs were 
reduced to below $0.01 per genotype and are currently approximately $0.002 per genotype. 
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Currently the leading technology for high‐throughput SNP genotyping is “Infinium HD assay” 
(http://support.illumina.com/content/dam/illumina‐support/documents/myillumina/ 
67f59f89‐51ee‐44d6‐b1bb‐a53dcb5bd01e/infinium_hd_ultra_user_guide_11328087_revb.pdf). 
Based on this technology, “mid‐density BeadChips” have been developed for all the major 
agricultural animal species including 50–60 thousand markers. The “BovineHD BeadChip” 
(Illumina, Inc., San Diego, CA) was developed which includes 777,000 SNPs that span the entire 
cattle genome. A poultry array with over 580,000 markers has also been developed and is commer-
cially available (http://www.affymetrix.com/catalog/prod670010/AFFY/Axiom%26%23174%3B+
Genome%26%2345%3BWide+Chicken+Genotyping+Array#1_1). “High‐density” marker arrays 
with more than half a million markers are under development for other major agricultural species.

Copy Number Variation

DNA copy number variation (CNV) has long been associated with specific chromosomal rearrange-
ments and genomic disorders, but its ubiquity in mammalian genomes was not fully realized until 
2006. Copy number variants account for a substantial amount of genetic variation. Since many 
CNVs include genes that result in differential levels of gene expression, CNVs may account for a 
significant proportion of normal phenotypic variation (Freeman et al., 2006). A total of 1447 copy 
number variable regions, which can encompass overlapping or adjacent gains or losses, covering 
360 megabases (12% of the human genome), were identified (Redon et al., 2006). These sequences 
contained hundreds of genes, disease loci, functional elements, and segmental duplications. Notably, 
the copy number variable regions encompassed more nucleotide content per genome than SNPs, 
underscoring the importance of CNV in genetic diversity and evolution.

To date CNV has not been used significantly as a source of genetic polymorphism for detection 
or analysis of QTL. However, Maher (2008) proposed CNV as one of the reasons that only a small 
fraction of the total additive genetic variation in human height could be explained by genes detected 
in genome scans based on SNP.

Complete Genome Sequencing

The ultimate method for determining all variation in DNA is complete sequencing of the genome. 
The first DNA sequences were obtained in the early 1970s using laborious methods based on two‐
dimensional chromatography. Following the development of fluorescence‐based sequencing 
methods with automated analysis, DNA sequencing became easier and orders of magnitude faster. 
Several new methods for high‐throughput DNA sequencing were developed in the mid to late 1990s 
and were implemented in commercial DNA sequencers by the year 2000. In general these methods 
are termed “next‐generation sequencing.” Resequencing is necessary, because the genome of a 
single individual of a species will not indicate all of the genome variations among other individuals 
of the same species. All of these methods parallelize the sequencing process, producing thousands 
or millions of sequences concurrently. In ultrahigh‐throughput sequencing as many as 500,000 
sequencing‐by‐synthesis operations may be run in parallel.

These techniques have drastically lowered the cost of complete sequence of the genome. A $3‐billion 
project to sequence the human genome was founded in 1990 by the US Department of Energy and the 
National Institutes of Health and was expected to take 15 years. A “rough draft” of the genome was 
finished in 2000. Ongoing sequencing led to the announcement of the essentially complete genome on 
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April 14, 2003, 2 years earlier than planned. By 2015 complete genome sequencing costs have been 
reduced to several thousand dollars per individual.

The 1000 Genomes Project was launched in January 2008 to sequence the genomes of at least 
one thousand anonymous participants from a number of different ethnic groups within 3 years. 
McVean et al. (2012) reported on the completion of the sequencing of 1092 human genomes. The 
complete genome of an individual cow was first sequenced in 2009 (Bovine Genome Sequencing 
and Analysis Consortium et al., 2009). In 2012 the 1000 bull genomes project was initiated. 
Daetwyler et al. reported in 2014 on the complete sequencing of 234 bulls from different breeds to 
an average of 8.3‐fold genome coverage.

Summary

In this chapter we reviewed the major milestones in the development of methodologies for high‐
throughput genotyping of large numbers of markers per individual. Since the original discovery of 
microsatellites in 1990, which were the first class of polymorphisms that made genome scans 
possible, costs were reduced from $10 per genotype to $0.002 per genotype. Among the SNP chips 
that are currently available for cattle are arrays that genotype 3000, 8000, 54,609, 139,480, 640,000, 
and 777,000 markers. Through 2015 genotyping costs have continued to decrease, making possible 
complete genome analyses based on next‐generation sequencing methodologies at costs of several 
thousand dollars on the one hand and genotypes of several thousand markers at costs attractive to 
the individual farmer on the other.
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Advanced Animal Breeding Programs 
Prior to Genomic Selection

3

Introduction

Before considering how marker‐assisted selection (MAS) or genomic selection can be applied to 
animal breeding programs, it is necessary to understand the basic mechanics of animal breeding 
programs prior to MAS. All animal breeding programs are based on the principles of quantitative 
genetics, which will not be considered in details in this book. Advanced animal breeding programs 
can be divided into two groups: within‐breed selection and programs based on crossbreeding among 
different breeds. Within‐breed selection has been applied and studied most extensively for dairy 
cattle. Breeding programs based on crossbreeding are the norms for beef cattle, poultry, and swine. 
Crossbreeding programs can be further divided into those programs that are based on crossing two, 
three, or four breeds. The main advantages of crossbreeding schemes are twofold: utilization of 
heterosis and the fact that economic traits have different values in males and females. The disadvan-
tage is the cost of maintaining the pure lines.

In the next section we will describe the basic principles used to evaluate selection within a breed. 
In the following section we will apply these principles to the specific problems related to dairy cattle 
breeding and the major breeding schemes that have been applied or proposed. In the following sec-
tion we will also consider in more detail the advantages and limitations of crossbreeding programs, 
especially as related to MAS.

Within a Breed Selection: Basic Principles and Equations

The genetic gain due to selection within a breed per generation, Φ, will be a function of the selection 
intensity, i

s
; the accuracy of the evaluation, ac; and the additive genetic standard deviation, σ

g
. In most 

animal breeding schemes, the selection intensity and the accuracy of the evaluation will be different 
along the four paths of inheritance: sire to son, sire to daughter, dam to son, and dam to daughter. In 
general the genetic gain per generation along the four paths of inheritance can be computed by the 
following equation:

	 i i iis gac 	 (3.1)

where Φ
i
 is the genetic gain per generation for path i, i

si
 is the selection intensity for path i, ac

i
 is the 

accuracy of the genetic evaluation for path i, and σ
g
 is the genetic standard deviation, which will be 
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the same for all four paths of inheritance. The selection intensity is the difference between the mean 
of the individuals selected as parents and the general population mean in units of the standard 
normal distribution. If a fraction, p, of the population is selected to be parents of the next generation, 
then i

s
 can be computed as the density of the standard normal curve at the point of truncation divided 

by p (Falconer, 1964). The accuracy of the genetic evaluation is defined as the correlation between 
the genetic evaluation and the actual genetic value. Although the actual genetic value is unknown, 
the accuracy of the evaluation can be estimated as will be explained in Chapter 6, Section “Important 
Properties of Mixed Model Solutions.” The square of the accuracy is termed the “reliability” of the 
evaluation. The annual gain for the entire population is then computed as

	
y G G G G

ss sd ds dd

ss sd ds dd

	 (3.2)

where Φ
ss
, Φ

sd
, Φ

ds
, and Φ

dd
 are the genetic gains per generation along the four paths of inheritance 

and G
ss
, G

sd
, G

ds
, and G

dd
 are the generation intervals in years along the four paths.

Traditional Selection Schemes for Dairy Cattle

Dairy cattle are unique in that:

1.	 Males have nearly unlimited fertility via artificial insemination (AI), while females have very 
limited fertility.

2.	 Nearly all of the traits of interest are expressed only in females.

Since the mid‐1980s it has become possible to increase fertility of females by multiple ovulation 
and embryo transplant, although these techniques are still relatively expensive.

Considering these limitations, most genetic gains are obtained by selection of males, even though 
the males can only be genetically evaluated based on the production records of their female relatives. 
Therefore commercial dairy cattle programs have traditionally been based on either half‐sib or 
progeny test designs, described in detail by Owen (1975). Bulls reach sexual maturity of the age of 
1 year. The male generation intervals in commercial breeding programs are usually much longer 
than the biological minimum. A typical half‐sib breeding program is described in Figure 3.1, and a 
typical progeny test breeding program is described in Figure 3.2.

Both designs as described assume a total cow population of 100,000, but this is not a critical 
element of either design. Both designs have been applied to much larger populations. In the half‐
sib design, bull sires are selected based on the records of their daughters. These elite bulls are 
then mated to elite cows based on pedigree and their own production records. Of the 20 bull 
calves produced each year, about 10 are used for servicing the general cow population once they 
reach sexual maturity at the age of 1 year. Thus the bulls used for general service are selected 
based on the production records of the daughters of their sires, which are the half‐sibs of the bulls 
used for general service. In this design the maximum accuracy of sire evaluations is 0.5, assuming 
that no information is available on the dam of the sire. With information on the dam, the accuracy 
can be slightly higher, but will not account for the “Mendelian sampling” of the two parental 
genotypes by the son.
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Most advanced dairy cattle breeding programs are based on a progeny test of young sires based 
on a relative small sample of daughters. Sires with superior evaluations based on the first crop of 
daughters are returned to service. However, by the time daughter milk production records are 
available, these sires are 5 years old. As will be shown, theoretical studies demonstrate that the 
gain in accuracy obtained by the progeny test outweighs the loss incurred by increasing the 
generation interval.

In the progeny test design described in Figure 3.2, sires for general service are selected based on 
the production records of a sample of 50–100 daughters. Since the daughters completely reflect the 
additive genotype of the sire, it is possible with this design to approach an accuracy of unity for sire 
evaluations. With about 100 daughters, the accuracy of sire evaluations will be about 0.9. Thus the 
accuracy of the sire evaluations is nearly double by the progeny test scheme. Sires are used in 
general service only after their daughters complete their first lactation. As noted in the previous 
paragraph, by that time the sires are at least 5 years old.

20 Candidate 
bulls 

All other bulls
are culled 

100,000 Cows
20 Bulls (1500

daughters/bull) 

300 Elite cows 

3 Elite bulls 

Best 20 bulls of all
ages are selected 

Genetic
evaluations

at age 1 year

Figure 3.1  Typical half‐sib test breeding program.

6000
Daughters

60 Candidate
bulls 

100,000 Cows
20 Bulls 

300 Elite cows 

3 Elite bulls 

30,000
Cows

Records on
daughters

Best 20 bulls are
selected 

All other bulls are culled

Figure 3.2  Typical progeny test breeding program.
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The expected genetic gains in units of the genetic standard deviation by these two breeding 
schemes are summarized in Table 3.1, assuming that the breeding objective has a heritability of 
0.25. Both schemes assume equal selection along the dam‐to‐daughter path. As noted earlier, 
selection intensity is low, because most female calves produced must be used as replacement cows. 
Although there is no selection along the sire‐to‐daughter path in the half‐sib design, the expected 
annual genetic gain by this scheme is nearly equal to the genetic gain obtained by the progeny test 
design, because the mean generation interval is decreased.

Crossbreeding Schemes: Advantages and Disadvantages

“Heterosis” is generally defined as superiority of the hybrid over both parents (Strickberger, 1969). 
Moav (1966) defined five types of economic heterosis. That is, the economic value of the hybrid is 
greater than either parent. The main advantage of crossbreeding was termed by Moav (1966) 
“sire–dam” heterosis. Sire–dam heterosis is due to the fact that the values of the economic traits 
are different for males and females due to the more limited fertility of females in birds and 
mammals. Thus the economic value of traits related to female fertility in a “male” poultry broiler 
line is negligible, while the economic value of these traits can be of major importance in the 
“female” line. Therefore a cross between a male line with high growth rate but low female fertility 
and a female line with moderate growth rate but superior female fertility will result in greater 
economic value than either purebred line, even if the mean value of the progeny is at the biological 
mean for each of the individual traits.

In addition to “sire–dam” heterosis, heterosis is generally observed for the component traits 
included in profitability. Therefore to exploit heterosis, the parental lines are usually the result of 
crosses between four grandparental lines. Of course maintenance of the purebred lines is an extra 
cost that does not exist for selection programs based on selection within a single breed. Thus mod-
ern commercial poultry breeding programs are based on very large populations. Two companies 
currently control approximately 75% of the world broiler market. Key industry people agree that it 
takes a market share of 25–35% to enable basic breeders to make research investments of the size 
necessary to be competitive.

Table 3.1  Expected annual genetic gains in units of the genetic standard deviation for the half‐sib (HS) and progeny test (PT) 
designs for a trait with a heritability of 0.25.

Design Path Generation interval Proportion selected Selection intensity Accuracy Genetic gaina

HS Sire to son 4.8 0.05 2.0 0.8 1.6
Sire to daughter 2.5 1.00 0 0.6 0
Dam to son 4.8 0.0017 3.2 0.7 2.24
Dam to daughter 4.0 0.85 0.3 0.7 0.21
Total 16.1 4.05
Annual 0.2516

PT Sire to son 7.4 0.02 2.4 0.95 2.28
Sire to daughter (young)b 2.0 1.00 0 0.6 0
Sire to daughter (proven) 7.4 0.11 1.7 0.95 1.614
Dam to son 4.8 0.005 2.9 0.7 2.03
Dam to daughter 4.0 0.85 0.3 0.7 0.21
Total 22.5 5.796
Annual 0.2576

a Computed as selection intensity multiplied by accuracy for each path.
b 21% of the cows are mated to young sires, and the remaining 79% are mated to proven sires.
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Selection for the component traits included in the selection objective is performed within the pure 
lines. Expected gains due to additive genetic variance can be predicted from the principles of 
quantitative genetics. However, this is not the case for heterosis. This complicates implementation 
of MAS and genomic selection and partially explains why to date there has been less adaption of 
genomic selection in crossbreeding programs. For a more extensive discussion of economic aspects 
of crossbreeding and heterosis, see Weller (1994).

Summary

Traditional selection index based on phenotypic records and information on relationships is very 
efficient, provided that it is possible to obtain high selection intensities, the selection criterion has a 
relative high heritability, and the selection criterion can be measured on all candidates for selection. 
However, many situations exist in which these conditions are not met. In many important mamma-
lian species, such as cattle, the rate of genetic gain that can be obtained by traditional selection index 
methodology is limited, because the economic traits are expressed only in females, which have low 
fertility rates. Breeding schemes are based on genetic evaluations of males by their female relatives. 
It is in these situations that genomic selection can have a significant impact. With respect to 
crossbreeding programs, it is possible that genomic selection might help to limit some of the 
guesswork involved in exploiting heterosis.
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Economic Evaluation of Genetic Breeding Programs4

Introduction

In the previous chapter we described the basic methods of animal breeding programs prior to MAS 
and showed that advanced animal breeding programs are divided into two groups: within‐breed 
selection and programs based on crossbreeding among different breeds. Several times in this chapter 
we referred to the “breeding objective” without defining the concept. Clearly the breeding objective 
should be considered in economic terms.

Generally genomic selection breeding programs have been evaluated merely in terms of the 
increase in accuracy of genomic evaluations, as compared to genetic evaluations based on phenotypic 
records and pedigree. An exception is Schaeffer (2006) who presented an economic evaluation, but 
only for the specific case of the Canadian dairy industry.

In economic evaluation of any enterprise, both returns and costs should be considered. Until the 
advent of genetic marker technology, costs of animal breeding programs were generally considered 
negligible with respect to the gains obtained, and optimization was generally considered only in 
terms of maximizing gain. With genomic selection this is no longer the case, and costs can be quite 
significant, especially if genotyping costs are borne by breeding companies or individual farmers. 
Thus it is necessary to decide what level of expenditure in marker technology can be economically 
justified. In the first section we will consider the nontrivial question of who is the “client” for 
breeding programs, and in the next section we will consider the criteria for economic evaluation of 
breeding programs.

National economy versus competition among breeders

Economic evaluation of breeding programs must begin with the questions as to who is the “client” 
for breeding programs and who gains from genetic improvement. The economic entities involved in 
genetic improvement are farmers, food processing companies, breeding companies, governments, 
and the national economy. Although breeding companies generally try to convince farmers that the 
goal of animal breeding is to increase farmer profitability, this is rarely the case. In general, as 
shown by Moav (1973), due to competition among producers and breeding companies, the general 
public is the recipient of nearly all economic gain from breeding programs in the form of lower 
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prices or better products. Moav (1973) defined the “progress‐surplus‐bankruptcy cycle.” If higher 
productivity is confined to a small group of farmers, then it will not affect the supply curve, and 
profits of farmers will increase. However, in nearly all cases, many producers will take advantage 
of genetic improvement. In a free market situation this will result in increased production and 
lowering of the market price. At the lower market price the cost of production for the least efficient 
producers will be above the market price, and they will go bankrupt. Other more efficient producers 
will be able to increase their market share.

However, in practice there is rarely a completely free market for agricultural produce, due to 
government intervention, which takes various forms. Less efficient producers can be kept in the 
market by price supports or imposition of production quotas, although these forms of intervention 
are becoming less common and often violate international trade agreements. A more politically 
acceptable form of intervention is government support for agricultural research and extension 
services. In practice the border between research and extension is often blurred. This is especially 
true for dairy cattle breeding, including genomics. In many countries the costs of genetic evaluation 
and genomic analysis are covered by government research institutions, even though routine running 
of genetic evaluation programs is not “research.”

In some countries animal breeding, and especially dairy cattle breeding, is a quasigovernmental 
enterprise, and there is no competition within the country, although there generally is competition 
with breeding stock from foreign countries. In this case evaluation should be considered in terms of 
contribution to the national economy, that is, the effect of breeding on lowering the costs of 
production or increasing the quality of product.

In countries in which several breeding companies compete, evaluation of breeding programs 
should be considered in terms of increasing profit for the individual breeding companies. Although 
studies of this type have been performed, this type of analysis is problematic, because in most cases 
all competitors will incorporate more or less the same technology. Thus no one company will have 
an advantage over the other companies.

In addition to these two scenarios, it is also necessary to consider application of genomic selection 
by individual farmers. With the development of multiple ovulation and embryo transplant (MOET) 
in the 1980s, it became possible for the individual farmer to apply significant selection among dams 
within individual herds. Various studies performed economic evaluations of this and other fertility‐
related technologies to the individual farmer (e.g., Van Vleck, 1981, 1982). The general consensus 
was that application of MOET by the individual farmer could not be economically justified at the 
market costs during the 1980s. However, this is not the case for current genetic marker technologies, 
as will be seen in the following chapters.

Criteria for Economic Evaluation: Profit Horizon, Interest Rate, and Return on Investment

Considering the gain accrued to the national population, animal breeding programs differ from most 
other economic enterprises in three important aspects:

1.	 Due to biological limitations, especially the relatively long generation interval, animal breeding 
programs can only be evaluated over a long‐term period of at least 10 years.

2.	 Genetic gains are generally cumulative.
3.	 Unlike other agri‐technical gains, genetic gains are eternal. They do not “wear out,” and no 

additional investment is required for maintenance.
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Although genetic gains are permanent, the current value of these gains must be discounted as a 
function of time until the gains are achieved. Furthermore a breeding program is generally evaluated 
in terms of a profit horizon, under the assumption that gains obtained after the profit horizon have 
no current value. In order to simplify calculations the nominal value of genetic gains over the long 
term is generally considered to be a linear function of time, although, as shown by Weller (1994), 
this does not accurately reflect reality. Based on these assumptions, and assuming a lag time of 
several years until first gains are realized, Hill (1971) presented the following equation for the 
cumulative discounted returns of a breeding program, R:
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where

V  =  the nominal value of 1 year of genetic gain
r  =  1/(1 + d), where d  =  the yearly discount rate
T  =  profit horizon in years
t  =  the lag time until first returns are realized in years

To illustrate the huge value of genetic gain as compared to other investments, assume a discount 
rate of 8%, a lag of 5 years, and a profit horizon of 20 years. In this case, R = 32.58V!

Unlike genetic gain, costs of a breeding program are not cumulative, but begin immediately 
without any lag. Assuming equal costs for each year of the breeding program, cumulative costs, C, 
can be computed as follows (Hill, 1971):
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where C
c
 is the the annual costs of the breeding program, and the other terms are as described 

previously. Using the same values for r and T gives C = 9.82C
c
. Thus with these values, a breeding 

program will be profitable within 20 years even though annual costs are threefold the nominal value 
of the annual genetic gain.

Weller (1994) considered in detail the appropriate criteria for economic evaluation of breeding 
program. Four alternatives were proposed:

1.	 Assume that the discount rate and profit horizon are fixed, and compute aggregate profit until 
the profit horizon is reached.

2.	 Assume that the profit horizon is fixed, and estimate the discount rate necessary to achieve a net 
profit of zero at the profit horizon.

3.	 Assume the discount rate is fixed, and estimate the number of years required to achieve a net 
profit of zero.

4.	 Assume a fixed discount rate and a profit horizon of infinity, but compute profit from only a 
single cycle of selection.
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Weller (1994) presented calculations to optimize investment in breeding programs, although 
these equations require major simplifications of any true breeding program and have not been 
applied in practice.

Summary

In this chapter we considered the basic principles of economic evaluation of breeding programs, 
noting the important economic differences between these programs and nearly all other types of 
economic enterprises. Although various studies have attempted to calculate economic evaluation of 
MAS programs under situations of competition among a number of breeding companies, we showed 
that in most cases economic evaluation of breeding programs should be made in terms of their 
contribution to the national economy. Very few studies have actually attempted to economically 
optimize breeding programs. In most cases only two scenarios were compared. In addition there is 
not a clear consensus as to the appropriate criterion for economic evaluation of breeding programs, 
and four different criteria considered in the literature were presented.
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Least Squares, Maximum Likelihood, and Bayesian 
Parameter Estimation

5

Introduction

Variables are generally divided into two groups, fixed and random. Random variables are assumed 
to be sampled from a distribution with known parameters, while no such assumptions are made 
about fixed variables. Fixed variables are also denoted “parameters.” The most common method of 
parameter estimation is least squares estimation (LSE), which is based on deriving the parameter 
estimates that minimize the expectation of the sum of squared errors. Thus, by definition this method 
has minimum estimation error variance. LSE is described in detail in many statistic texts and will 
therefore be described only briefly in this book. We will consider in detail maximum likelihood 
(ML) and Bayesian estimation, because of their relevance to genomic selection, and the fact that 
they are generally not considered in detail in basic statistic courses.

A basic understanding of matrix algebra is required to understand the remainder of this text. See 
Searle (1982) for an extensive study of matrix algebra as applied to statistics. For a more abbreviated 
summary of topics required in this text, see Weller (1994). Throughout this text, we will use the 
conventions of denoting matrices in upper case bold type, vectors in lower case bold type, and 
scalar variables in italics. The identity matrix will be denoted I, a transpose of a matrix by an 
apostrophe, and the inverse of a matrix by the −1 power.

Least Squares Parameter Estimation

LSE is based on deriving the parameter estimates that minimize the expectation of the sum of 
squared errors. Thus, by definition this method has minimum estimation error variance. In matrix 
form a completely general model can be written as follows:

	 y ef 	 (5.1)

where y is the vector of observations, θ is the vector of parameters, f(θ′) is some function of θ, and 

e is the vector of residuals. The least squares solution, , is the vector that minimizes [y −  f( )]2 = e2. 
For a linear model, this equation can be written as follows:

	 y X e	 (5.2)
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where X is a matrix of coefficients of θ. Effects in linear models can take one of two forms—class 
or continuous. Discrete effects such as a specific herd, block, or sex are denoted “class effects.” 
Although the levels of these effects can be numbered, there is no relationship between the number 
of a specific herd and effect associated with it. For continuous effects a linear relationship is assumed 
between the value for the independent variable and the dependent variable. Each row of X 
corresponds to the coefficients of θ for a specific record in y. For class effects the elements in X will 
be either zero or one. For continuous effects, each element in X corresponds to the observed value 
for the independent variable.

The least squares solutions are solved by finding the parameter estimates that minimize the sum 
of squares of the residuals.

The residual sum of squares in matrix notation is computed as follows:

	 y X y X e e	 (5.3)

	 y y X y X X e e2 	 (5.4)

Setting the differential with respect to θ equal to zero and solving give

	 X X X y
1

	 (5.5)

These equations are termed the “normal equations” and are used extensively in modern statistics. 
If the observations are correlated or do not have equal variances or both, then the normal equations 
can be modified as follows:

	 X V X X V y1 1 	 (5.6)

where V is the variance matrix among the observations. V is a diagonal matrix with rows and columns 
equal to the number of observations. The diagonal elements of V are the variance of each observation, 
and the off‐diagonal elements are the covariances between the corresponding pair of observations. 
Solutions to these equations are called “generalized least squares” solutions, and minimize e′e, subject 
to the restriction of the known variance matrix. Solution of these equations requires the inverse of V, 
which is difficult to compute for large data sets.

If y is not a linear function of θ, then the least squares solution can generally not be derived 
analytically, although various iterative methods have been developed. Only effects on the mean of 
y are included in the model; thus effects on the variance of y or higher‐order moments cannot be 
estimated by least squares.

ML Estimation for a Single Parameter

ML is much more flexible than LSE but generally requires rather complex programming. There are 
three steps in ML parameter estimation:

1.	 Defining the assumptions on which the statistical model is based.
2.	 Constructing the likelihood function; this is the joint density of the observations conditional on 

the parameters.
3.	 Maximizing the likelihood function with respect to the parameters.
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The basic methodology for ML estimation of a single parameter will be illustrated using an 
example from a binomial distribution. Assume that from a sample of 10 observations, 3 are 
“successes” and the other 7 are “failures.” We wish to derive the ML estimate (MLE) of p, the 
probability of success. The binomial probability for this result as a function of p is

	
L

p p10 1

3 7

3 7
!

! !
	 (5.7)

where L is the probability of obtaining this result, conditional on p. L is denoted the “likelihood 
function.” The MLE for p is that value of p which maximizes L. The MLE is computed by differen-
tiating L with respect to p and solving for p, with this derivative set equal to zero. In practice it is 
usually easier to compute and differentiate the log of L. With respect to ML, this is equivalent to 
differentiating L, because a function of a variable and the log of the function will be maximal for the 
same value of the variable. The MLE of p is then derived as follows:

	 Log Log Log Log LogL p p10 3 7 3 7 1! ! ! 	 (5.8)

	

d L

dp p p

Log 3 7

1
0	 (5.9)

	
p

3

10
	 (5.10)

This is, of course, the proportion of successes derived in the sample. Thus, for this simple case, 
the MLE is the intuitive estimate value. From the earlier discussion, it should be clear why MLE 
must lie within the parameter space. A parameter estimate outside the parameter space will, by 
definition, have a likelihood of zero and can therefore not be the MLE.

For a continuous distribution, the likelihood is computed as the statistical density of the distribu-
tion, conditional on the sample. Statistical density, f(y), for a continuous variable, y, is defined as the 
ordinate of the distribution function for a given value of y. For example, assume that a sample was 
taken from a normal distribution. To obtain the MLE for the mean, it is necessary to compute the 
joint statistical density of the sample. For a single observation the likelihood will be

	
L

e y
2 22

22

/

	 (5.11)

where σ is the standard deviation, e is the base for natural logarithms and is approximately equal to 
2.72, μ is the mean, π is the ratio of the circumference and the diameter of a circle (~3.141), and y is 
the variable value. For a sample of n observations, the likelihood will be the product of the likelihoods 
for each individual observation. As in the previous case, the MLE for μ can be derived by computing 
the derivative of the log of the likelihood with respect to the mean and setting this function equal to 
zero. The derivative of Log L for a sample from a normal distribution is computed as follows:

	

L
eI yi

2 22

22

/

	 (5.12)
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Log L
eI yi

2 22

22

/

	 (5.13)

	

d L

d
yi

Log
	 (5.14)

where Π signifies a multiplicative series, parallel to Σ, and y
i
 is element i of y. Setting Σ(y

i
 − μ) equal 

to zero, we find that the MLE of μ is (Σy
i
)/n, the sample mean, which is again the intuitively correct 

result.
The MLE for the variance could be derived in the same manner and would again yield the intuitive 

result of the sample variance, that is, [Σ(y
i
 − μ)2]/n. Note that if the objective is to derive an estimate 

of the variance for the population, and not the sample, then division should be by n − 1, instead of n. 
Thus the estimate [Σ(y

i
 − μ)2]/n will be a biased sample of the population variance. This problem can 

be solved by application of “restricted maximum likelihood estimation,” generally denoted REML. 
For a detailed explanation of REML, see Lynch and Walsh (1998).

Although in the two examples given so far, ML has been used to derive estimates that could have 
been derived by other methods, for more complicated problems, ML estimation and Bayesian 
estimation are the only estimation methods that can utilize all the available data.

ML Multiparameter Estimation

ML can also be used to estimate several parameters simultaneously, for example, to estimate both 
the mean and variance in a normal distribution. In that case it is necessary to maximize the likelihood 
with respect to both parameters. This can be done by computing the partial derivatives of the log‐
likelihood with respect to each parameter and setting each partial derivative equal to zero. It is then 
necessary to solve a system of equations equal to the number of parameters being estimated. In 
general the likelihood function for the estimation of m parameters, (θ

1
, θ

2
, …, θ

m
), from a sample of 

n observations (y
1
, y

2
,…, y

n
) can be written as follows:

	

L p y y y

p y p y
n m

m m

1 2 1 2

1 1 2 2 1 2
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| , , , | , , ,  p y

p y

p y
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i
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|

1 2

1 2

	 (5.15)

where p(y
i
|θ) represents the probability of obtaining y

i
, conditional on the vector of parameters. 

If  the distribution is continuous, then p(y
i
|θ) will be replaced by f(y

i
|θ), that is, the density of y

i
, 

conditional on θ. Thus, ML can be applied to solve any problem that can be phrased in terms of this 
equation.

As an example we will consider the relatively simple case of ML estimation of the parameters for 
a QTL effect as estimated from a backcross (BC) design with a single genetic marker. This design 
is diagrammed in Figure 5.1. Two parental strains differing in both marker and QTL genotypes are 
mated to produce an F‐1. It is generally assumed that the two parental strains are homozygous for 
alternate alleles of both loci. Thus all F‐1 individuals will have the same heterozygous genotype. 
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The F‐1 is then mated to one of the parental strains. The genetic background for this cross is then 
three‐quarters of the recurrent parent and one‐quarter of the other parent. The BC progeny is divided 
into two groups, based on their marker genotypes. All loci not linked to the genetic marker under 
consideration should be randomly distributed among the marker genotype groups. With a single 
marker there are only two marker genotype groups for the BC design. We will assume that 
the  residuals are normally distributed with equal variances. The statistical density function for a 
single individual of genotype M

1
M

2
 will be

	
L

r e r ey y1

2 2

1
2 2

2
2 22

2

2

2

/ /

	 (5.16)

where y is the trait value, σ is the standard deviation, μ
1
 is the mean of individuals with the Q

1
Q

2
 

genotype, μ
2
 is the mean of individuals with the Q

2
Q

2
 genotype, and r is the recombination frequency 

between the marker and the QTL. Individuals with the M
2
M

2
 genotype will have the same likelihood, 

except that the QTL mean values will be reversed. The complete likelihood for a sample of 
individuals can be written as follows:

	
L f y M M f y M M

N

i

N

j

1 2

1 2 2 2, , 	 (5.17)

where f(y
i
, M

1
M

2
) and f(y

j
, M

2
M

2
) are the statistical densities for ith and jth observations with 

genotypes M
1
M

2
 and M

2
M

2
, respectively, and N

1
 and N

2
 are the number of individuals with the two 

genotypes, respectively.
To obtain the ML parameter estimates, the log of this function must be differentiated with respect 

to four parameters: μ
1
, μ

2
, σ, and r. The partial derivatives must then be equated to zero, and this 

system of four equations must be solved.

Parental strains

M2 Q2

M1 Q1

M2 Q2

M1 Q1

M2 Q2

M1 Q2

M2 Q2

M2 Q2

M2 Q2

M2 Q1

M2 Q2

M2 Q2

X

M1 Q1

M1 Q1

M2 Q2

M2 Q2

X

F–1

Non-recombinants
(frequency = 1– r) 

Recombinants
(frequency = r)

Backcross progeny

Figure 5.1  The backcross design.
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Although it is generally possible to write the likelihood function and differentiate Log L with 
respect to the different parameters, even for the relatively simple example given, it will not be 
possible to solve analytically the resultant system of equations. Iterative methods to derive solutions 
have been developed and will be considered in the following section.

Methods to Maximize Likelihood Functions

Numerous iterative methods have been proposed to maximize multiparameter likelihood function. 
Generally the initial solutions for all methods are selected arbitrarily or set to zero. Of all the 
methods proposed, only expectation–maximization (EM) is guaranteed to converge to a maximum, 
provided a maximum exists within the parameter space. However, even for EM, the convergence 
point may be only a local maximum.

Iterative maximization methods can be divided into three categories: derivative‐free methods, 
methods based on computation of first derivatives, and methods based on computation of second 
derivatives. For all derivative‐based methods, the parameter estimates of the ith iterate are computed by 
solving a system of equations equal in number to the number of parameters being estimated. These 
reduced equations are themselves functions of the parameter estimates from the previous iteration. 
Generally, iteration is continued until changes between rounds fall below a sufficiently small value.

Although this is the generally accepted criterion for approximate convergence, this is not 
necessarily the case. If the convergence is slow, it is possible that changes between consecutive 
rounds of iteration can be small, even if the estimates are not close to the actual solutions. 
Convergence is generally most rapid for second derivative methods, but the convergence is not 
guaranteed, even if there is a maximum within the parameter space.

Confidence Intervals and Hypothesis Testing for MLE

In addition to deriving parameter estimates, it is also important to determine the accuracy of the 
estimates. Generally the standard errors of the estimates are used for this purpose. The square of the 
standard error is denoted the “prediction error variance.” The following equation can generally be 
used to derive the prediction error variance (PEV) for MLE of a single parameter:

	

PEV
Log

1
2 2E d L d/

	 (5.18)

where  is the MLE of θ, and E[d2(Log L)/dθ2] is the expectation of the second derivative of L with 
respect to θ. This equation will be correct if the first derivative of θ is a multiple of the difference 
between the true parameter value and its estimate. Otherwise the prediction error variance will be 
slightly greater than the right‐hand side of this equation. Under a wide range of conditions, this 
equation will be “asymptotically correct”; that is, as the sample size increases, the difference 
between the left‐hand and right‐hand sides of the equation tends toward zero. The square root of 
the prediction error variance, the standard error of the estimate, can be used to determine the 
confidence interval of the estimate.

The prediction error variances for the multiparameter estimation problem can be derived in a 
manner parallel to that described in the previous equation. The parameter estimates and the first 
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derivatives will each consist of a vector with the number of elements equal to m, the number of 
parameters. The second derivatives and the prediction error variances will both be square m × m 
matrices. Using brackets to denote matrices and vectors, the matrix of prediction error variances can 
be computed with the following equations:

	

PEV
Log2

2

1

L
	 (5.19)

where the right‐hand side of the equation is the inverse of the matrix of second partial derivatives 
with respect to [θ]. The diagonal elements will be the prediction error variances of the estimates, 
and the off‐diagonal elements will be the prediction error covariances between the elements. These 
are needed to test hypotheses based on linear functions of the parameters.

Even if the prediction error variance is not computed, ML can still be used to test a hypothesis by 
a “likelihood ratio test.” In a likelihood ratio test the ML obtained under two alternative hypotheses 
are compared. In the null hypothesis, one or more of the parameters that are maximized in the alter-
native hypothesis are assumed fixed. For example, the mean is set equal to zero. The alternative 
hypothesis is termed the “complete” model, because MLE are derived for all parameters, while the 
null hypothesis is termed the “reduced” model, because some of the parameter values are fixed. 
Under the assumption that the null hypothesis is correct, the natural log of the ML ratio of the com-
plete and reduced models will be asymptotically distributed as (1/2)χ2, where χ2 is the chi‐squared 
statistic. The number of degrees of freedom (dof) will be equal to the number of parameters that 
are maximized in the alternative hypothesis but fixed in the null hypothesis. This ratio will have a 
χ2 distribution only if the null hypothesis is “nested” within the alternative hypothesis. Hypothesis 
is “nested” if some parameters that are fixed in the null hypothesis are set to their ML values in the 
alternative hypothesis, but all parameters that are fixed in the alternative hypothesis are also fixed in 
the null hypothesis.

Bayesian Estimation

Bayesian estimation differs from ML in that instead of maximizing the likelihood function, the 
“posterior probability” of θ, p(θ|y), is maximized as a function of the likelihood function multiplied 
by the “prior” distribution of θ. Bayes’ theorem in general terms for multiple parameters and obser-
vations can be written as follows:

	 p y y y p p y y ym n m n1 2 1 2 1 2 1 2 1 2, , , | , , , , , , | , , ,, , , m )	 (5.20)
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1
, θ

2
, …, θ

m
) 

is the “prior probability” of the parameters, and p(y
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) is the likelihood 

function. Similar to ML, it is possible to maximize the posterior probability or density function 
relative to the parameter values. Assuming that prior information of the parameters is available, 
Bayesian estimation, which makes use of this information, should be preferable to ML, which 
ignores any prior information on the parameters.

Instead of maximizing the posterior density, it is possible to define a “loss function” which 
determines the economic value “lost” by incorrect parameter estimation. Common examples are 
linear and quadratic loss functions. In the linear loss function, the value of the loss is a linear 



28	 Genomic Selection in Animals

function of the difference between the parameter estimates and their true values. In the quadratic 
loss function, the loss increases quadratically as a function of the difference between the parameter 
estimate and its true value. Minimizing the linear loss function is equivalent to maximizing the 
posterior density. Minimizing the quadratic loss function is equivalent to maximizing the mean of 
the posterior distribution.

Similarly a Bayesian test of alternative hypothesis is based on minimizing the expectation of the 
loss function. If a decision must be made between two alternative hypotheses, the economic value 
of the “loss” is determined for each incorrect decision. The expectation of the loss will be the 
probability of each incorrect decision (the type I and type II errors) multiplied by its economic 
value. The decision is then based on minimizing the expected loss.

There are two major drawbacks to Bayesian estimation. First, prior information on the parameters 
is often vague, and it is not possible to mathematically represent this information in terms of a 
statistical distribution function without additional assumptions, which cannot be verified. Second, 
if many records are included in the analysis, then the likelihood function tends to “overwhelm” the 
prior distribution of θ. In this case, the Bayesian estimates tend to converge to the MLE.

Parameter Estimation via the Gibbs Sampler

The Gibbs sampler is an algorithm to generate a sequence of samples from the joint probability 
distribution of two or more random variables. The purpose of such a sequence is to approximate the 
joint distribution and to approximate the marginal distribution of one of the variables, or some sub-
set of the variables, such as the unknown parameters. Gibbs sampling is applicable when the joint 
distribution is not known explicitly or is difficult to sample from directly, but the conditional 
distribution of each variable is known and is easy (or at least easier) to sample. Gibbs sampling is 
particularly well adapted to sampling the Bayesian posterior distribution, which is typically specified 
as a collection of conditional distributions.

The advantage of Gibbs sampling is that given a multivariate distribution, it is simpler to sample 
from a conditional distribution than to marginalize by integrating over a joint distribution. Suppose 
we want to obtain k samples of x = {x

1
, …, x

n
} from a joint distribution p(x

1
, …, x

n
). Denote the ith 

sample by x(i) = {x
1
(i), …, x

n
(i)}. We proceed as follows:

1.	 We begin with some initial value x(0) for each variable.
2.	 For each sample i = {1, …, k}, sample each variable x

j
(i) from the conditional distribution p(x

j
(i)|

x
1
(i), …, x

j − 1
(i), x

j + 1
(i − 1), …, x

n
(i − 1)). That is, sample each variable from the distribution of that 

variable conditioned on all other variables, making use of the most recent values and updating 
the variable with its new value as soon as it has been sampled.

The samples then approximate the joint distribution of all variables. Furthermore, the marginal 
distribution of any subset of variables can be approximated by simply examining the samples for 
that subset of variables, ignoring the rest. In addition, the expected value of any variable can be 
approximated by averaging over all the samples. An example application of the Gibbs sampler will 
be given in section “Estimation of Variance Components via the Gibbs Sampler” of Chapter 8.

Generally, the samples at the beginning are discarded (the so‐called burn‐in period), and then 
only every nth sample is used when averaging values to compute an expectation. For example, the 
first 1000 samples might be ignored, and then every 100th sample is retained, discarding all the rest. 
The reason for this is that (i) successive samples are not independent of each other and (ii) the 
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stationary distribution is the desired joint distribution over the variables, but it may take awhile for 
that stationary distribution to be reached.

Summary

In this chapter we describe in general terms the main statistical methodologies used for estimation of 
parameters, or fixed variables. Although least squares is used almost exclusively to estimate parameters, 
ML and Bayesian estimation methods are used to estimate both fixed and random variables. ML is 
much more flexible than LSE and guarantees that the estimates are within the parameter space. However, 
for models of interest, solutions can only be derived by iterative methods.

Bayesian methods are an extension of ML but differ from ML in that they require determination 
of the prior distribution of the parameters. This information is often lacking or vague. Of the methods 
considered in this chapter chiefly Bayesian methods have been used for genomic evaluations, and 
these methods will be considered in more detail in Chapters 15, 16, and 17.

In the following chapter we will consider methods for estimation of random variables in more 
detail, especially models that include both fixed and random variables, termed “mixed models.” 
The mixed model is the base from which nearly all methods of genomic evaluation are derived.
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Trait‐Based Genetic Evaluation: The Mixed Model6

Introduction

Hazel in 1943 formulated the principles of economic selection index. He asked the following 
question: “Assume that there are n traits for which breeding values can be estimated, and m traits 
with economic values. Assume further that the economic values of the m traits are linear functions 
of the trait values. What linear index of the n measured traits should be used to select individuals so 
as to maximize genetic progress on the economic scale?”

As noted in the previous chapter, random effects differ from fixed effects in that it is assumed that 
each observed random effect is sampled from an infinite population of possible effects with a known 
distribution. The basis of selection index theory is that polygenic breeding values for quantitative 
traits should be considered random, because these effects are “sampled” from a normal distribution 
of genetic values with a specific variance.

In genetic evaluation based on field records, it will also be necessary to include other effects, such as 
herd or block, in the model. These “nuisance” effects will generally be considered fixed. (The reasons 
for this have been discussed in detail by many sources (e.g., Henderson, 1984) and are beyond the 
scope  of this text.) Therefore, analysis models will include both fixed and random effects in addition to 
the residual. The models that include both fixed and random effects are termed “mixed models.”

We will first consider selection index theory, assuming the absence of fixed “nuisance” effects. 
We will then consider the general strategy for solving mixed models, based on the “mixed model 
equations” (Henderson, 1973). In general it will be assumed that random effects are sampled from 
a normal distribution with a mean of zero and a known variance. Therefore, estimates for random 
effects can only be derived if their variances are known. In the final sections we will consider 
methods for variance component estimation in mixed models, based on constant fitting and 
maximum likelihood and restricted maximum likelihood (REML).

Principles of Selection Index

Generally several traits have economic values in a species under selection. How then should selection 
be performed so as to economically maximize genetic improvement? We will start by assuming that 
for each individual there is a vector y, of length m, consisting of the individual’s breeding values for 
traits of economic importance and a vector x of n measured traits to be included in the selection 
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index. Although x and y may include the same traits, this does not have to be the case. Assume further 
that the “economic values” associated with y are linear functions of the trait values. We can then 
define a vector a, also of length m, consisting of the economic values of the traits in y. The aggregate 
economic breeding value, H, can then be computed as a′y. The units of y are trait units, and the units 
of a are monetary units/trait units, for example, dollars/kilogram milk. Thus H is a scalar in monetary 
units. H is the “optimum” selection index. By this we mean that for a given selection intensity, the 
response to selection will be greatest, in monetary units, if candidates for selection are ranked by H.

Since the elements of y are generally unknown, the goal is to derive the linear index, I
s
, of x, 

which is most similar to H. By “most similar” we mean either to maximize the correlation or to 
minimize the mean squared deviation between I

s
 and H. Specifically, if b is defined as a vector of 

index coefficients, then I
s
 = b′x, and the objective is to solve for b that maximizes the correlation 

between b′x and a′y. Of course, like H, I
s
 will be a scalar in monetary units.

To derive I
s
 we will define three additional matrices: P, the n × n phenotypic variance matrix of 

the traits in x; C, the n × m genetic covariance matrix between the measured traits in x and the breed-
ing values in y; and G, the m × m genetic variance matrix for the traits in y. The selection index 
coefficients are then derived from the following equation:

	 b P Ca1 	 (6.1)

Brascamp (1984) presents several methods to derive this equation. We will present only one 
method, based on minimizing the squared difference between I

s
 and H. This is also equivalent to 

maximizing the correlation between I
s
 and H and maximizing the expected mean breeding value of 

individuals selected based on I
s
. The derivation is simplified by assuming that both x and y are 

measured relative to their means. It is then necessary to minimize the following function:

	 I Hs

2 2
b x a y 	 (6.2)

The expectation of the left‐hand side of this equation can be computed as follows:

	 E Eb x a y b xx b b xy a a yy a
2

2 	 (6.3)

Since x and y are scored relative to their means, xx′ and yy′ will be the variance matrices for 
x and y, and xy′ will be the covariance matrix between them. Thus

	 E b x a y b Pb b Ca a Ga
2

2 	 (6.4)

with all terms as defined earlier. Differentiating with respect to b and equating to zero, we obtain

	 2 2 0Pb Ca 	 (6.5)

	 Pb Ca 	 (6.6)

Solving for b, we obtain the selection index equations. If all traits included in the aggregate 
genotype are also included in the index, then G = C, and

	 b P Ga1 	 (6.7)

This is the selection index equation most commonly presented.
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Of all possible linear indices of x, the selection index will have the highest correlation with H 
and the lowest squared deviation. In addition, selection of individuals on I

s
 will result in maxi-

mum expected mean value for H of the selected individuals, and genetic response to selection on 
I

s
 will be greater than for selection on any other linear index of x. These and a few other proper-

ties of the selection index are summarized by Henderson (1973). We will now describe some 
additional useful properties of selection index, based on Cunningham (1969), James (1982), and 
Lin (1978).

From the previous derivation, it should already be clear that the variance of the selection index 
can be computed as follows:

	 Is
2 1b Pb a C P Ca	 (6.8)

The variance of the aggregate breeding value will be a′Ga. The covariance between I and H can 
be computed as follows:

	 H Is Is, a yx b a Cb a CP Ca1 2 	 (6.9)

That is, the variance of the index is also equal to the covariance between I
s
 and H. Since this is the 

case, the correlation between H and I
s
, r

HI
, will be equal to Is H

2 2 0 5
/

.
. This correlation for the selec-

tion index is parallel to the “accuracy” of single‐trait genetic evaluation, given in Equation (3.1). 
Thus the response to selection on the index, Φ

I
, can be computed as follows:

	 I s HI H Isi r i 	 (6.10)

where i
s
 is the selection intensity and σ

H
 and σ

Is
 are the standard deviations of H and I

s
, respectively. 

As noted in Chapter 3, the selection intensity is the difference between the mean of the individuals 
selected as parents and the general population mean in units of the standard normal distribution. 
Φ

I
 will also be measured in monetary units. Thus the response to selection will be a direct function 

of the selection intensity and the standard deviation of the index.
Finally it is often of interest to compute the expected responses of the component traits to selec-

tion on the index. The genetic change for the ith trait due to selection on the index, ϕ
i
, is computed 

as follows:

	
i s giI Is s

i s

Is
Is

i si b i
g I i g ICov , Cov ,
2

s

IIs

	 (6.11)

where b
giI

 is the genetic regression of the ith trait on the index and Cov(g
i
,I

s
) is the covariance 

between the genetic value of the ith trait and the index. Cov(g
i
,I

s
) = Cov(g

i
, p′b) = [Cov(g

i
, p′)]b, 

where Cov(g
i
, p′) is the ith column of C. Thus the vector of correlated responses for all traits, ϕ, is 

computed as follows:

	

is

Is

Cb
	 (6.12)

If all traits included in H are included in the index, then C can be replaced with G.
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The Mixed Linear Model

As noted by Henderson (1973), selection index can be used to determine breeding values of ani-
mals, provided the population mean is known and no other effects bias the calculation. With field 
data this is rarely the case. The sample mean and the effects of other factors, such as herd or block, 
must be estimated from the data. These “nuisance” effects will generally be considered fixed effects, 
as opposed to genetic effects, which will be considered random.

As an example we will first consider the following simple mixed model used to derive breeding 
values of bulls for milk production:

	 Y H S eijk i j ijk	 (6.13)

where Y
ijk

 is the milk production record of cow k in herd i, H
i
 is the effect of herd i, S

j
 is the effect of 

the cow’s sire j on her production, and e
ijk

 is the random residual. The herd effect will be assumed 
to be a fixed effect, and the sire effect will be assumed to be random. In general terms the mixed 
model can be written in matrix notation as follows:

	 y X Zu e 	 (6.14)

where β is a vector of fixed effects, u represents the vector of random effects, X and Z are incident 
matrices, and e is the vector of random residuals. The additive breeding values are considered 
random effects, with a known variance matrix. Both u and e are assumed to have a normal distribu-
tion. Thus y has a multivariate normal distribution with a mean of Xβ and a variance V computed 
as follows:

	 V ZGZ R	 (6.15)

where G is the variance matrix of u and R is the variance matrix of the residuals. G A s
2, where 

A = the numerator relationship matrix among the sires, and s
2 = variance of the sire effect = ¼ of the 

additive genetic variance. The sire effect variance is equal to one‐quarter of the additive genetic 
variance, because each sire passes half of his genes to each daughter. When squared to compute the 
variance, the one‐half additive genetic effect becomes one‐quarter of the additive genetic variance. 
Both A and G are always symmetrical matrices, that is, G = G′ and A = A′.

The diagonal elements of A will be equal to unity, because an individual has all of its genes in 
common with itself. The off‐diagonal elements will reflect the fraction of genes that the two indi-
viduals, corresponding to the appropriate row and column of A, have identical by descent, for 
example, 0.5 for father and son and 0.25 for half‐sibs. The diagonal elements of A will be greater 
than unity for inbred individuals. This is because the genetic variance among a sample of inbred 
individuals will be greater than the variance among a sample of noninbred individuals.

As in the fixed model, the residuals will generally be assumed to be uncorrelated and have equal 
variance. In this case R I e

2, where I is the the identity matrix and e
2 is the residual variance.

The Mixed Model Equations

We will now differentiate between the vector of fixed effects, β, defined in Equation (6.14) and the 
solutions for the fixed effects which will be denoted as ˆ. Similarly the solutions to the random 
effects will be denoted û. Henderson (1973) showed that solutions for the random effects can then 
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be computed as GZ′V−1(y − ̂ ). However, the variance matrix, V = ZGZ′ + R, is not diagonal and 
therefore cannot be inverted for very large data sets. Solutions for β and u for large data sets can 
be derived by solving the following set of equations, denoted the “mixed model equations” 
(Henderson, 1973):

	

X R X X R Z

Z R X Z R Z G u

X R y

Z R y

1 1

1 1 1

1

1

ˆ

ˆ
	 (6.16)

where R−1 is the inverse of the residual variance matrix and G−1 is the inverse of the variance matrix 
for u. The left‐hand side of these equations consists of a square symmetrical matrix termed the 
“coefficient matrix” and ˆ û, the vector of solutions. As noted previously, for analysis of a single 
trait, it is generally assumed that the residual variances for each record are equal and uncorrelated. 
In this case, the residual variance matrix is equal to I e

2, and R I1 2/ e . Thus the mixed model 
equations can be simplified by multiplying both sides by e

2 as follows:

	

X X X Z

Z X Z Z G u

X y

Z ye
1 2

ˆ

ˆ
	 (6.17)

For the “sire model” given in Equation (6.13), X′X will be a diagonal matrix with rows and 
columns equal to the number of herds. The diagonal element of each row will be the number of 
records in the corresponding herd, and all off‐diagonal elements will be zero. Similarly, Z′Z will be 
diagonal with each diagonal element equal to the number of daughter records of each sire. X′Z will 
have rows equal to the number of herds and columns equal to the number of sires. Each element will 
be the number of records in the corresponding herd × sire combination. X′y will be a vector of 
length equal to the number of herds, and each element will be the sum of the record values in the 
corresponding herd. The length of Z′y will be the number of sires, and each element will be the sum 
of the records of all the daughters of the corresponding sire.

Henderson (1973) termed the solutions of random effects in the mixed model “best linear unbi-
ased predictors” (BLUP). Under the assumed variance structure, the random solutions in the mixed 
model equations, û, will be “best” in the sense that E(û − u)2 will be minimized, within the assumed 
constraints. Since the random effects are not parameters, their solutions were termed “predictors” 
rather than “estimates.”

Solving the Mixed Model Equations

Solutions to the mixed model equations can be obtained by multiplying the right‐hand side vector 
by the inverse of the coefficient matrix. An exact solution requires inverting the coefficient matrix, 
but for simple single‐trait models, such as in Equation (6.13), the coefficient matrix will be much 
smaller than V.

If many effects are included in the model, approximate solutions can be obtained by iteration. 
There are several iteration methods that can be applied to solve the mixed model equations. Gauss–
Seidel iteration is generally the method of choice, because it is relatively rapid and guaranteed to 
converge, provided the equations have a solution (Quaas and Pollak, 1980). The algorithm for 
Gauss–Seidel iteration is as follows: Define d

ij
 as an element ij of the coefficient matrix where i is 
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the row index and j is the column index, x
i
 the solution for row i, and r

i
 the ith row of the right‐hand 

side. Then the solution for x
i
 for the kth iteration is computed as follows:

	
x

r d x d x

di
k

i

j

ij j
k

j

J

ij j
k

ii

1

1
1

1

1

	 (6.18)

where J is the total number of columns. For the first round of iteration some initial guess for the 
values of x can be used, but generally x1 = 0 is assumed.

Gauss–Seidel iteration is guaranteed to converge to a solution, provided a solution exists. 
Convergence rate will depend on the ratio of diagonal to off‐diagonal elements. Thus, sire models 
may converge in less than 10 rounds of iteration, because the diagonal elements are generally very 
large compared to the off‐diagonal elements. Animal models, described later in the section: “The 
Individual Animal Model”, generally required hundreds of rounds of iteration to achieve approxi-
mate convergence. The method of “preconditioned conjugate gradient” generally converges much 
faster for complicated models than Gauss–Seidel or other methods of iteration (Tsuruta et al., 2001).

Computing the coefficient matrix still requires inverting G. For a sire model G A1 1 2/ s , and 
G A1 2 1 2 2

e e s/ . e s
2 2/  is a constant, which is generally assumed known. Henderson (1976) 

developed a simple algorithm to invert A from a list of individuals and their sires and dams. Thus, 
the only matrix that must be inverted is the coefficient matrix, which will be a square matrix of size 
equal to the number of effects included in the model.

Important Properties of Mixed Model Solutions

The prediction error variances (PEV) of the fixed and random effects can be estimated by inverting 
the coefficient matrix of the mixed model equations. This inverse can be partitioned into four sub-
matrices corresponding to the four submatrices in the mixed model equations. That is,

	

XR X XR Z

Z R X Z R Z G

C C

C C

1 1

1 1 1

11 12

21 22

1

	 (6.19)

The diagonal elements of C
11

 will correspond to the PEV for the fixed effect solutions, and the 
diagonal elements of C

22
 will correspond to the PEV for the random effect solutions. Solutions for 

fixed effects will have greater variance than the actual effects, while PEV of the random effect solu-
tions, which are regressed toward the mean, will be less than the variance of the effects. In general

	 Var Var PEVu u uˆ ˆ 	 (6.20)

where Var(u) and Var(û) are the variances of u and û and PEV(û) is the prediction error variance of û. 
Henderson (1973) also showed that the covariance of u and û is equal to Var(û). Thus, the regression 
of u on û is equal to unity. That is, if the actual difference between two random effects is equal to x, 
the expected difference between their solutions will also be equal to x. This is not the case for 
fixed effects. The ratio Var(û)/Var(u) is called the “reliability” of u and is equal to the square of the 
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correlation between û and u, which is termed the coefficient of determination. The square root of 
the reliability is denoted the “accuracy” of u.

Multivariate Mixed Model Analysis

The mixed model equations can also be used to analyze several correlated traits, for example, milk 
and butterfat production of cows. A multitrait sire model can be described as follows:

	 Y H S eijkl il jl ijkl	 (6.21)

where Y
ijkl

 is the production record of cow k in herd i for trait l, H
il
 is the effect of herd i on trait l, S

jl
 

is the effect of the cow’s sire j on trait l, and e
ijkl

 is the random residual associated with trait l. In this 
case it will generally be assumed that both the additive genetic effects and the residuals have a mul-
tivariate normal distribution. As in the univariate case, the distribution of each record will be given 
by the distribution of the random genetic effect times the residual effect distribution. For two 
correlated traits, x and y, the distribution of the residuals for each individual will be as follows:

	
2 12 2 2

1 2

x y e
/

	 (6.22)

where x
2 and y

2 are the residual variances for traits x and y, ρ = σ
xy

/σ
x
σ

y
 is the residual correlation, 

and φ is computed as follows:
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where μ
x
 and μ

y
 are the means for traits x and y and are equal to H

il
 + S

jl
 for each trait. The distributions 

for the genetic effects are computed in a similar manner.
The residual variance matrix in the mixed model equations will no longer be diagonal, but will 

be “block diagonal.” For two traits, the residual matrix will have the structure I ⊗ R
i
, where I is an 

identity matrix and R
i
 is a 2 × 2 matrix with elements as follows:

	
Ri

x xy

xy y

2

2
	 (6.24)

“⊗” denotes the “Kronecker product,” which means that each element of I is multiplied by R
i
. 

Similarly the variance matrix of the sire effect will be A ⊗ S, where S is a 2 × 2 matrix as follows:

	
S sx sxy

sxy sy

2

2

	

where sx
2  and sy

2  are the sire effect variances for traits x and y and σ
sxy

 is the covariance between 
them. Although both the residual and sire effect matrices can be easily inverted, the simplification 
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obtained in Equation (6.17) on multiplying by the residual variance is no longer possible. The total 
number of equations will be the number of level of effects times the number of traits.

The Individual Animal Model

Henderson (1973) first proposed that the mixed model equations could be used to estimate poly-
genic breeding values for all animals in a population accounting for all known relationships, via the 
“individual animal model” (IAM). A simple IAM is given below:

	 Y H a p eijk i j j ijk 	 (6.25)

where Y
ijk

 is record k of individual j in “herd” or “block” i, H
i
 is the fixed effect of herd i, a

j
 is the 

random additive genetic effect of individual j, p
j
 is the random permanent environmental effect for 

individual j, and e
ijk

 is the random residual associated with each record. A permanent environmental 
effect is required if individuals can have multiple records, because there will generally be an effect 
common to all records of each individual in addition to the additive genetic effect common to all 
records of the individual. In matrix notation this model can be written as follows:

	 y X Z a Z p e1 2 	 (6.26)

where Z
1
 is the coefficient matrix for the additive genetic effects, Z

2
 is the coefficient matrix for the 

permanent environmental effects, and a and p are the vectors of additive genetic and permanent 
environmental effects, respectively.

In a fixed model, the additive genetic and permanent environmental effects would be completely 
confounded, because each level of these two effects refers to the same individual. In the IAM these 
effects can be estimated separately, because both are assumed to be random and their variance struc-
tures are different. The variance matrix for the permanent environmental effect will be I p

2, where 

p
2 is the variance component of the permanent environmental effect. The variance matrix for the 

additive genetic effect will be A a
2, where a

2 is the additive genetic variance. After multiplying by 
the residual variance, the mixed model equations for this model are
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where e p
2 2/ .

In most cases not all individuals included in the population will have records. For example, if the 
trait analyzed is milk production, only females will have production records. Individuals without 
records, such as sires of cows, can be included in the analysis via the relationship matrix. Additional 
equations can be added for these individuals in the mixed model equations. For these animals all 
elements of the mixed model equations will be zero, except for those included in G−1. Thus in the 
IAM sire evaluations are derived via the relationship matrix.

The animal model as described would accurately reflect reality if the pedigree of all animals 
could be traced back to a group of unrelated animals with assumed equal genetic value. However, 
this is never the case. Various animals of different ages will be missing pedigree information. Thus 
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a fixed “genetic group” effect is usually included in the model to account for genetic trend not 
included in the known genetic relationships. Thompson (1979) and Robinson (1986) proposed a 
grouping strategy based on “phantom parents.” Each individual with unknown parents is assigned 
phantom parents. These phantom parents are then assigned into groups based on year of birth, sex, 
and whether the sire, dam, or both parents are unknown. The genetic evaluations are then computed 
as the sum of the additive genetic effects and the group effects of each individual. Westell et al. 
(1988) developed a simple algorithm to directly compute estimated breeding values that incorporate 
the group effects for each individual.

Even though this system of equations will generally be very large, it will also be quite “sparse,” 
that is, more than 90% of the total number of elements in the coefficient matrix will be equal to zero. 
These equations can also be solved by Gauss–Seidel iteration. As noted earlier, the number of 
iterations required for convergence is a function of the size of the diagonal elements in the coeffi-
cient matrix compared to the off‐diagonal elements. In sire models diagonal elements are generally 
quite large, because each sire has many daughters with records. This is not the case for animal 
models. In the IAM, the diagonal element consists only of the contribution of the inverse of the 
relationship matrix, plus the individual’s own records. Thus, many more iterations will be required 
in the IAM, as compared to sire models in which the diagonal elements are generally much greater 
than the off‐diagonal elements.

Theoretically it will still be possible to obtain PEV of the genetic evaluations of all animals via 
inversion of the coefficient matrix, but this will generally not be possible in practice. Relatively 
simple algorithms have been developed to derive approximate PEV which were shown by simulation 
to be very close to the true values (Misztal and Wiggans, 1988).

Yield Deviations and Daughter Yield Deviations

Animal model evaluations combine information from an animal and all relatives, but the algebra 
required to derive solutions can be explained easily without recourse to matrix algebra (VanRaden 
and Wiggans, 1991). Consider the following single‐trait animal model given in matrix notation:

	 y Mm Za ZA g Pp eg 	

where y represents the production record; m, a, g, and p are the vectors of effects for management 
group, random portion of additive genetic merit, unknown‐parent group, and permanent environment, 
respectively; M, Z, ZAg, and P are incidence matrices for these effects; and e is the residual variance. 
The matrix Ag relates animals to unknown‐ancestor groups, as described in the previous section.

The cow’s own information is summarized by her “yield deviation” (YD), a weighted average of 
yields adjusted for effects other than genetic merit and error. Defining m̂ and p̂ as the vectors of 
solutions for m and p, each cow’s YD is computed as the element of Z′(y – Mm̂ = Pp̂) for that cow 
divided by the corresponding diagonal element of Z′Z; that is, a weighted average of the cow’s 
yields adjusted for effects other than genetic merit and residual.

For each bull with daughter records in the analysis, the bull’s daughter yield deviation (DYD) is 
computed by summing over all daughters with records as follows:
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(6.28)
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where N is the number of daughters of each sire. For each daughter with records, q
prog

 equals 1 if 
progeny’s other parent is known and 2/3 if unknown, where w2

prog
 is the the number of lactations 

divided by the sum of the number of lactations and 2q
prog

( e a
2 2/ ), YD

prog
 is the daughter’s YD, and 

PTA
mate

 is the predicted transmitting ability of the cow’s dam, the bull’s mate. PTA is half of the 
animal’s breeding value. Thus a DYD is the weighted mean of the bull’s daughters’ YD corrected 
for the genetic merit of the daughters’ dams. (This definition of DYD is somewhat simplified, as 
compared to the definition of VanRaden and Wiggans (1991), based on the assumption that all lacta-
tion records are weighted equally.)

Analysis of DYD as the Dependent Variable

At present, and in the foreseeable future, only a small fraction of a commercial population will be 
genotyped for genetic markers. Analysis of the records of only those individuals that were genotyped 
will be problematic, because it will generally not be possible to estimate “nuisance” effects, such as 
herd or parity from the truncated sample of genotyped animals.

VanRaden and Wiggans (1991) wrote: “The DYD may be helpful in explaining evaluations and 
also as a dependent variable in statistical tests and calculation of conversions across countries.” 
Unlike a simple mean of the cows’ records or a simple mean of bull’s daughter records, YD and 
DYD are corrected for the other effects included in the model. However, unlike genetic evaluations, 
both YD and DYD are not regressed toward the mean, as a function of the trait heritability.

Analysis of DYD as the dependent variable has the advantage, compared to genetic evaluations, 
that the variance of DYD decreases with the number of actual records included in the bull’s DYD. 
Thus weighting DYD by the reliabilities of the genetic evaluations should yield “reasonable” results. 
That is, more weight would be given to DYD with lower variances. (The weighting factor of a 
record should be inversely related to the residual variance.)

Georges et al. (1995) first proposed that DYD should be used as the dependent variable in 
the analysis of the effects of genetic markers on quantitative traits in dairy cattle when only sires 
are genotyped, and the vast majority of published studies based on analysis of bull genotypes have 
used either DYD or “deregressed” genetic evaluations as the dependent variable. (Equations to 
computed deregressed genetic evaluations will be presented in Chapter 16.) It was assumed that 
effects estimated by analysis of genetic evaluations would be biased, due to the fact that the genetic 
evaluations are regressed toward the mean, while this would not be the case for DYD. This 
assumption was tested by Israel and Weller (1998). They found that estimates of candidate gene 
effects as derived from analysis of either DYD or sire genetic evaluations were underestimated, but 
less so by analysis of DYD.

A problem with the analysis of DYD as the dependent variable is the appropriate residual matrix 
structure. As noted previously for single‐trait analyses, it is generally assumed that the residual 
matrix is equal to the identity matrix times a constant. This will not be the case for DYD, since DYD 
of related bulls will have a positive covariance. Various studies have therefore assumed that a 
variance matrix equal to the relationship matrix among bulls times a constant. In addition the residu-
als will be a function of the number of daughter records per bull. The standard procedure to account 
for this is to weight the DYD by the reliabilities of the evaluations. Although this may be approxi-
mately correct, over the general range of sire reliabilities, it is not clear what should be done with 
bulls with thousands of daughters. These bulls should have residual variances approaching zero, and 
it is not clear how the generalized linear model should behave in this situation.
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Summary

Analysis of mixed models is much more complicated than analysis of fixed models. These models 
are preferred for genetic analysis, first because they utilize information on genetic variance and 
genetic relationships among animals that cannot be utilized by fixed models. Unlike estimation of 
fixed effects, random effect solutions are regressed toward the mean. That is, the variances of the 
solutions increase as a function of the quantity of information included in the analysis. This allows 
for accurate comparison of the genetic values of individuals with widely differing amounts of infor-
mation. For fixed model solutions the variances decrease as the amount of information increases. 
The most common models for genetic evaluation in dairy cattle are single‐ and multitrait animal 
models. The cow’s own information is summarized by her YD, a weighted average of yields adjusted 
for effects other than genetic merit and error. DYD are the weighted mean of the bulls’ daughters’ 
YD corrected for the genetic merit of the daughters’ dams. The vast majority of published studies 
based on analysis of bull genotypes have used either DYD or “deregressed” genetic evaluations as 
the dependent variable, and these models will be considered in detail beginning in Chapter 16.
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Maximum Likelihood and Bayesian Estimation of QTL 
Parameters with Random Effects Included in the Model

7

Introduction

Only fixed effects should be estimated by maximum likelihood estimation (MLE), while random 
effects should be “removed” by integration (Titterington et al.,1985). In the estimation of QTL effects 
from segregating populations, it will generally be necessary to include polygenic random effects in 
the model. In this chapter we will present likelihood equations for two QTL estimation designs 
that  require inclusion of random polygenic effects in the analysis model: the “daughter” and 
“granddaughter” designs. Although the likelihood equations cannot be solved analytically, they can 
be solved by iterative methods. In the last sections we will consider Bayesian estimation of the 
parameters of the granddaughter design, based on assumptions with respect to the prior distributions 
of the QTL parameters.

Maximum Likelihood Estimation of QTL Effects with Random Effects  
Included in the Model, the Daughter Design

Estimation of QTL effects with random polygenic effects included in the model will be illustrated 
using the “daughter design,” first proposed by Neimann‐Sørensen and Robertson (1961). The daughter 
design for a single family is illustrated in Figure 7.1. The daughters of a sire known to be heterozygous 
for a genetic marker are genotyped for the marker and scored for the quantitative trait. Since the dam 
genotypes are generally unknown and differ among individuals, the dam alleles for the marker locus 
and QTL are denoted M

x
 and Q

x
, respectively.

If we assume that only the same two QTL alleles are present in the dam population, with frequen-
cies of p and 1 − p, then the contrast between the two groups of progeny will be a(1 − 2r) + d(1 − 2r)
(1 − 2p), where a and d are the additive and dominance effects and r is the recombination frequency 
between the two loci. These parameters are confounded in a linear model analysis.

Even if a QTL is segregating in the population, a specific parent may be homozygous for the 
QTL. Therefore, most studies have been based on analysis of several heterozygous parents. Even 
if some of the individuals analyzed are heterozygous for a marker‐linked QTL, the linkage 
relationships may be different for different individuals. Thus, summed over all progeny groups, 
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there may be no effect associated with the segregating marker alleles. The appropriate linear 
model for the daughter design with multiple families is therefore

	 Y S M B eijkl i ij k ijkl	 (7.1)

where S
i
 is the effect of the ith parent, M

ij
 is the effect of the jth allele, nested within the ith parent, 

B
k
 is the effect of the kth herd, and e

ijkl
 is the random residual.

The progeny group inheriting sire allele M
1
 and the group inheriting sire allele M

2
 are compared. 

If the assumptions listed earlier hold, and if the distribution of dams between the two groups is 
random, then a difference between the two groups of progeny for the quantitative trait will be due 
to a QTL linked to M heterozygous in the sire. This assumes that marker allele origin can be 
determined for the daughters. Significance of a segregating QTL linked to the genetic marker can 
be tested by ANOVA. Under the null hypothesis of no segregating QTL, the ratio of the marker 
allele effect mean squares to the residual mean squares should have a central F‐distribution.

The likelihood function for the daughter design including a polygenic sire effect is (Weller, 2009)
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where K is the number of sires, P
v
 is the probability of sire QTL genotype v, c

j|i,v
 is the probability 

of progeny QTL genotype j conditional on the combination of sire QTL genotype v and progeny 
marker genotype i, L

i
 is the number of daughters with marker genotype i, y

ikl
 is the trait value for 

progeny l of sire k, with marker genotype i, and f (g
k
 −  g, g

2) represents the normal density function 
for the sire effects. This function has a mean of g and a variance of g

2, which will be equal to one‐
quarter of the additive genetic variance not explained by the segregating QTL. f (y

ikl
 − μ

j
 − g

k
, e

2) 

represents a normal density function with a mean of μ
j
 + g

k
 and a variance of e

2. e
2 includes the 

residual variance, and three‐quarters of the genetic variance not explained by the segregating QTL. 
The likelihood function is the joint density of the observations, integrated over g

k
, the polygenic sire 

effect, which is assumed to be random.
Although the integral cannot be solved analytically, it can be approximately solved by summation of 

each sire. Thus, the likelihood value can be approximately computed for any combination of parameter 
values. However, this model still does not include “nuisance” fixed effects, such as herd‐year‐season 
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M1 Q1

M2 Q2

Mx Qx

Mx Qx

Mx Qx Mx Qx

X

M2 Q2

Progeny (non-recombinants)

Figure 7.1  The daughter design.
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effects, which would have to be included in any analysis of field data. Therefore, it is not surprising that 
ML solutions have not been computed on actual data. Although instead of analyzing actual production 
records, it would be possible to analyze “yield deviations,” which are means of cow records corrected 
for fixed effects (VanRaden and Wiggans, 1991). For the granddaughter design it is necessary to include 
normal density distribution terms for both the sire and grandsire, and integrate over both terms, if the 
analysis is based on the actual production records.

The Granddaughter Design

Hoeschele and VanRaden (1993a, 1993b) derived Bayesian estimates of QTL parameters for the 
“granddaughter design” (Weller et al.,1990). Most studies that have attempted to estimate QTL 
effects in dairy cattle via linkage to microsatellites have used this design, diagrammed in Figure 7.2. 
Sons of grandsires heterozygous for the genetic markers are genotyped, and the daughters of these 
sons (i.e., the granddaughters of the original grandsire) are scored for the quantitative traits. It is 
assumed that both grandsire and son mates are random. The expectation of the contrast between the 
grandprogeny groups is only half as large as for the daughter design. However, the much greater 
number of phenotypic records can more than compensate for the reduction in the contrast.

This design has the advantage that for certain species, especially dairy cattle, the commercial 
population has the appropriate population structure, and records on quantitative traits of interest are 
recorded by the industry. Furthermore, it may be logistically easier to obtain biological material from 
AI sires which are located at a few AI centers, rather than cows that are scattered over a large number 
of herds. A segregating marker‐linked QTL can be detected with analysis by the following linear model:

	 Y GS M SO B eijklm i ij ijk l ijklm	 (7.3)

where GS
i
 is the effect of the ith grandparent, SO

ijk
 is the effect of the kth son with the jth marker 

allele, progeny of the ith grandparent, and the other terms are as defined for Equation (7.1). As in 
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M2 Q2
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Mx Qx

Mx Qx

Mx Qx

Mx Qx

X X

Mx Qx

M2 Q2

Mx Qx

Mx Qx

Mx Qx

Mx Qx

Mx Qx

M1 Q1

Granddaughters

Figure 7.2  The granddaughter design.
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the daughter design, a significant marker‐allele effect will be indicative of a linked QTL. Significance 
of this effect can be tested by ANOVA, with the marker mean squares in the numerator. However, 
this mean square will also include a component due to differences among sons. Thus, the 
denominator for the appropriate F‐statistic will be a function of both the sons and residual mean 
squares (Ron et al.,1994).

It is not possible with the granddaughter designs to estimate dominance at the QTL. Even if the 
actual QTL alleles are identified, and both grandsires and granddams are genotyped, the expectation 
of the effect of the sons that are heterozygous for the QTL will still be midway between the two 
homozygous groups.

As noted earlier for the daughter design, this model is generally not applied, because daughters 
have multiple records and it will not be possible to accurately estimate fixed effects. Generally 
either the genetic evaluations or the daughter yield deviations (DYD) of the sons (VanRaden and 
Wiggans, 1991) will be analyzed. In this case there is only a single record for each son, and the 
analysis model is as follows:

	 Y GS M eijk i ij ijk	 (7.4)

where Y
ijk

 is the genetic evaluations or DYD for son k of grandsire i that received grandpaternal 
allele j, and the other terms are as defined in the previous equation.

Determination of Prior Distributions of the QTL Parameters for the Granddaughter Design

In order to derive a prior distribution of QTL parameters, it is necessary to make assumptions about 
the relevant QTL parameters: the QTL genotype means and variances, the number of frequencies of 
QTL alleles, and the QTL location. Hoeschele and VanRaden (1993a) simplified the analysis 
somewhat by employing the following assumptions:

1.	 For each QTL only two alleles are segregating in the population.
2.	 All QTL were assumed codominant. Strictly speaking this assumption is not required for a 

granddaughter design, because only substitution effects are estimable.
3.	 The residual variance is independent of the QTL genotypes.

Under these assumptions, prior distributions must be derived for only three parameters: the QTL 
additive effect, the allele frequency, and the QTL location. No prior assumptions are required with 
respect to the residual variance, which is also estimated, and the total additive genetic variance 
including the segregating QTL, A

2, is assumed to be known without error.
Although the actual distribution of QTL effects is unknown, it is known that the total variance 

contributed by all QTL should be no larger than A
2. Most simulation studies have assumed that 

polygenic variance is due to a few QTL with relative large effects and numerous QTL with 
progressively smaller effects. Several mathematical models that generate this type of distribution 
have been proposed, and these models will be considered in Chapter 9. Hoeschele and VanRaden 
(1993a) assumed a prior exponential distribution of QTL effects. The exponential distribution has 
the form

	 f a e a	 (7.5)
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where a is the QTL additive effect and λ is the parameter of this distribution. The statistical density 
of this distribution is maximum with a = 0 and is equal to λ. The expectation of the distribution, that 
is, the expectation of a, is 1/λ.

Although the additive effect can have a value from zero to infinity, Hoeschele and VanRaden 
(1993a) imposed lower and upper bounds. A lower bound was imposed, because very small QTL 
cannot be detected by the sample sizes generally considered. An upper bound was imposed for two 
reasons. First, a very large additive effect will lie outside the permissible parameter space, determined 
by A

2. In this case the QTL will explain more than the total genetic variance, unless the allelic 
frequency is very low. Second, with values of λ that are appropriate for polygenic inheritance, the 
probability of sampling a very large effect tends toward zero and can therefore be ignored. Therefore, 
this density function must be divided by a constant to account for the extremes of the theoretical 
exponential distribution that are deleted from consideration. The value of this constant is e−λal − e−λau, 
where a

l
 and a

u
 are the lower and upper limits of a, respectively.

As noted earlier, Hoeschele and VanRaden (1993a) assumed only two alleles for each QTL 
segregating in the population. Thus, it is necessary to determine a prior distribution of the allelic 
frequency for only one allele. Hoeschele and VanRaden (1993a) assumed a uniform distribution over 
the range of zero to unity, subject to two restrictions. First, the frequency of the less frequent allele must 
be high enough, so that at least one of the sires included in the analysis is heterozygous for the QTL. 
This will be considered again later. Second, the variance contributed by each QTL must be no greater 
than A

2. Therefore, the joint distribution of the additive QTL effect, and allelic frequency, p, is

	
f a p

k f a p p a A,
if

otherwise

* 2 1

0

2 2

	 (7.6)

where k is the reciprocal of the integral of f(a, p) over the restricted space of a and p.
The prior distribution for the QTL location parameter was computed based on the assumption of 

a uniform distribution throughout the genome. Two situations must be considered: linkage between 
the QTL and the genetic markers and nonlinkage. In the case of a single marker, nonlinkage can be 
defined as r = 0.5, where r is the recombination frequency between the two loci. The joint prior 
density of a, p, and r can be represented as follows:
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Prob

Prob ,
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where f (r) is the density of the distribution of r if the marker and the QTL are linked. If r is measured 
in Morgans, then f (r) would have a uniform distribution. However, r is measured in recombination 
frequency, and r is therefore a nonlinear function of genetic map length for the commonly used 
mapping functions, such as Haldane or Kosambi. If g(r) is the assumed mapping function, so that 
δ = g(r), where δ is the map distance between the QTL and the genetic marker, then

	
f r

f g r
d

dr

rProb
	 (7.8)

where δ
r
 is the maximum linkage distance at which linkage can be detected in the same map units as δ.
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If the genome consisted of a single circular chromosome, then the probability of linkage would 
be (2δ

r
N

Q
)/L

t
, where N

Q
 is the detectable number of segregating QTL and L

t
 is the total genome 

length, with both δ
r
 and L

t
 measured in genetic map units. For example, if δ

r
 = 1 Morgan, and N

Q
 = 10, 

and L
t
 = 30 Morgans, then Prob(r = 0.5) = 1 − 10/30 = 0.67. The detectable number of QTL, N

Q
, was 

derived as follows:

	
N F

E V
Q

A

Q

*
2

	 (7.9)

where F is the fraction of the genome under analysis for QTL and E(V
Q
) is the expected variance 

due to a single detectable QTL, which is computed as follows:
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where p
a
 is the appropriate value of p for each value of a.

As noted earlier, in the granddaughter design, p will be estimated as the frequency of one of the 
QTL alleles within the sample of grandsires. The total number of alleles will be twice the number 
of grandsires, and at least one of the grandsires must be heterozygous for the QTL. Therefore, the 
lower and upper bounds for p are 1/2G and 1 – 1/2G, where G is the number of grandsires.

Setting a
l
 and a

u
 at approximately 0.2 and 1.1 genetic standard deviations, and 1/λ at 0.36 genetic 

standard deviations, N
Q
 = 10 for a complete genome scan of 10 grandsire families (Hoeschele and 

VanRaden, 1993a). With a heritability of 0.25, these limits for the additive effect are equal to 0.1 and 
0.55 phenotypic standard deviations. More than 200 sons per sire will be required to obtain power 
greater than 0.5 to detect a QTL of 0.1 phenotypic standard deviations (Weller et al.,1990).

With a single marker, and a genome divided into chromosomes of differing lengths, Prob(r = 0.5) 
will also depend on the length of the marked chromosome and the position of the marker along the 
chromosome. If the marker is located at one end of the chromosome, then the length of the chromo-
somal segment for which a QTL can be detected is only δ

r
, instead of 2δ

r
. The final calculations for 

Prob(r = 0.5) and f(r), considering any possible marker location and genome and any mapping 
function, are rather complicated and are given in Hoeschele and VanRaden (1993a).

With a marker bracket, Prior(a, p, r) becomes
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where r
1
 is the recombination frequency between one of the markers and the QTL, R is the 

recombination frequency between the two markers of the marker bracket, and

	
Prob 0 1r R

N

L
R Q
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	 (7.12)

with δ
R
 equal to the length of the marker bracket in map units, again assuming a uniform distribution 

for the QTL location. f(r
1
) is computed as f(r) for a single marker.
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Formula for Bayesian Estimation and Tests of Significance of a Segregating QTL  
in a Granddaughter Design

In order to derive Bayesian estimates for the QTL parameters, the prior density function is 
multiplied by the likelihood function. The likelihood function for the daughter design is given in 
Equation (7.2). This will be nearly the same function for the granddaughter design if the analysis 
is performed on DYD with a single record for each son. The only difference is that the residual 
variances of the DYD are not equal, but are a function of the number of daughters per son.

The posterior distribution of the QTL parameters given a single marker also consists of a 
discrete part, if the marker is not linked to a segregating QTL, and a continuous part, if a linked 
QTL is detected. The complete posterior distribution can be described as follows (Hoeschele and 
VanRaden, 1993a):
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where y and M represent the phenotypic and marker data, respectively. The posterior probability of 
no linkage is calculated as follows:
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where E[L(r = 0.5)] and E[L(r < 0.5)] are the expectations of the likelihood function with r = 0.5 and 
r < 0.5, respectively. E[L(r < 0.5)] is computed as follows:
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where L(y|M; r, p, a) is the likelihood function as computed previously. Similarly, E[L(r = 0.5)] 
is computed with r fixed at 0.5—that is, the expectation of the likelihood without a segregating 
QTL linked to the marker, which is a standard polygenic sire model. The posterior density of the 
QTL parameters is computed as follows:

	
f r p a L r p a
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where f(y|M) is the denominator of Equation (7.14). Assuming a uniform loss function, the point 
estimates for r, p, and a are derived by maximizing the statistical density, that is, the mode of the 
distribution. With a quadratic loss function, the parameter estimates are derived by maximizing the 
mean of the distribution.

Linkage of the genetic marker to a segregating QTL can be tested by comparing the posterior 
probabilities of r = 0.5 and the posterior probability that r < 0.5. If both errors are of equal economic 
value, then the hypothesis of r = 0.5 will be rejected if the posterior probability is less than half.
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Summary

Equations were presented to derive estimates of QTL parameters for daughter and granddaughter 
designs by maximum likelihood and Bayesian methodology. In both cases a single segregating QTL 
linked to a single genetic marker was assumed. Thus the specific methods presented cannot be 
directly applied to genomic selection in which it will be necessary to derive estimates for thousands 
of potential QTL estimated from a dense marker map. The main usefulness of the equations 
presented in this chapter is therefore first historical and second to give an example of the types of 
solutions that are possible using these methodologies. Thus these methods can serve as an 
introduction to the methods presented in Chapter 16 for genomic analysis based on dense marker 
maps covering the entire genome.
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Maximum Likelihood, Restricted Maximum Likelihood, 
and Bayesian Estimation for Mixed Models

8

Introduction

In the first section of this chapter we will demonstrate how solutions to the mixed model equations 
can be derived by maximum likelihood (ML). However, there are no simple algorithms for deriving 
ML parameter solutions for large mixed model systems. In practice solutions for fixed and random 
effects will be derived from the mixed model equations presented in Chapter 6, under the assump-
tion that the variance components (VC) are known without error. In the following sections we will 
consider methodologies for estimation of VC, including analysis of variance and ML methods. Only 
Henderson’s Method III yields unbiased estimates of VC. We will explain why estimates of VC 
derived by simple ML are biased and show how this bias can be corrected by application of 
“restricted maximum likelihood” (REML). (We should note that REML variance component 
estimates are still biased, but less so than simple ML estimates.) In the final section we will show 
how VC for the mixed model can be derived by Gibbs sampling (GS).

Derivation of Solutions to the Mixed Model Equations by Maximum Likelihood

For mixed models, the likelihood function is the joint density function integrated over the random 
effects (Titterington et al.,1985). We will illustrate this based on the simple mixed model for genetic 
analysis of dairy cattle including a fixed herd effect and a random sire effect. The statistical density 
function for this model assuming unrelated sires will be

	
f Y f s f Yijk

J

j

IK

ijk 	 (8.1)

where f(Y
ijk

) is the density function for individual k, from herd i, daughter of sire j; f(s
j
) represents 

the density function for sire j, which is the normal density function with a mean of zero and a 
variance of s

2; and f(y
ijk

) represents the normal density function for daughter k of sire j, which has 
a mean of s

j
 + h

i
 and a variance of e

2. The likelihood function is then computed by integrating with 
respect to the random sire effects as follows:
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ijk j 	 (8.2)
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The ML parameter solutions are those values of the fixed effects and variances that maximize the 
likelihood function.

Estimation of the Mixed Model Variance Components

In order to solve the mixed model equations, the variances of the random effects must be known. In 
practice these variance components (VC) must be estimated from the same data. Variance component 
estimation will be considered here in only very general terms. Various methods have been proposed 
to estimate VC. These methods can be grouped into “analysis of variance” type methods, “maximum 
likelihood” type methods, and Bayesian type methods, specifically Gibbs sampling (GS), first 
considered in Chapter 5. In analysis of variance type methods, VC are estimated by first computing 
solutions for the fixed and random effects. The VC are then estimated by their expectations, which are 
functions of the solutions. Until the 1980s, Henderson’s Method III was the most common method for 
variance component estimation. Although it was unbiased, it did not guarantee that the estimates 
obtained would be within the possible parameter space—that is, variances greater or equal to zero and 
correlations among VC within the range of −1 and 1. (There are additional conditions that must be met 
for a valid variance–covariance matrix but are beyond the scope of this text. See Henderson (1984).)

Unlike analysis of variance type methods, maximum likelihood (ML) and Bayesian methods 
require that the estimates be within the parameter space, since an estimate outside the parameter 
space has by definition a likelihood of zero. However, this property also means that the estimates 
cannot be completely unbiased. This can be explained as follows. Assume that the variance compo-
nent for a random effect tends toward zero. Since the ML estimate cannot be negative, because a 
negative variance component is impossible, only positive estimates will be obtained, and the 
expectation of the estimates will be greater than 0.

Maximum Likelihood Estimation of Variance Components

We will first describe maximum likelihood estimation (MLE) of VC and then describe the modifica-
tions required for restricted ML estimation (REML). Both methods are by necessity iterative, 
because the formulas used to estimate the VC are functions of the mixed model solutions, which are 
computed based on the previous estimates of the parameter values. The derivation given here closely 
follows Lynch and Walsh (1998). For a more detailed explanation, see Searle et al. (1992).

As in the previous chapter, ML estimates are derived by constructing the likelihood function 
(the joint density function of the observations), differentiating the log of this function with respect to 
the parameters, setting these differentials equal to zero, and solving for the parameter values in the 
resultant system of equations. For the mixed model, the parameters are the VC and the fixed effects. 
The likelihood function is the joint density of all observations after integrating over the random effects.

As assumed previously, the distribution of y in the mixed model is multivariate normal. Accounting 
for the fact that the means and variances in the mixed model can be different for each observation, 
this likelihood becomes

	

L
eN y

i

i i i
2 22

22

/

	 (8.3)

where N is the sample size and μ
i
 and i

2 are the mean and variance for observation i.



	 Maximum likelihood, restricted maximum likelihood and Bayesian Estimation� 53

For any series of values, x
1
 to x

n
,

	 [ ]e ex xi i 	 (8.4)

Therefore, after removing constants from the multiplicative sum, this equation becomes
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Since i
2 = |V|, where |V| is the determinant of V (Searle, 1982), this equation can be written in 

matrix notation as follows:

	
L eN2 2 1 2 1 2 1

/ / /V y X V y X 	 (8.6)

The natural log of the likelihood function is as follows:

	
Log XL

N

2
2

1

2

1

2
1ln ln V y X V y 	 (8.7)

For a mixed model in which the random effects are additive genetic effects, V is computed as 
follows:

	
V ZGZ R Z A Z Iu e

2 2	 (8.8)

In theory, ML estimates can now be derived by differentiating the right‐hand side of Log L with 
respect to β, u

2, and e
2 and setting these derivatives equal to zero. However, the ML solutions for β 

are themselves functions of the VC. Therefore an iterative solution will be necessary. Differentiating 
Log L with respect to β gives

	

Log L
y2 1X V X 	 (8.9)

Setting this derivative equal to zero and solving for β give

	
ˆ ˆ ˆX V X X V y1

1
1 	 (8.10)

where ˆ and V̂ are the estimates of β and V. Equation (8.10) is termed the “generalized least‐
squares solutions.” Generally it is not practical to solve for β using these equations because they 
require the inverse of the matrix V, which is of rank equal to the total number of observations and 
is not diagonal. Thus solutions are generally derived from the mixed model equations presented in 
Equation (6.16).
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As noted earlier, the solutions for β are functions of the estimates of the VC. Differentiating 
Log L with respect to the variance requires the derivatives of |V| and V−1. For any square matrix, M, 
the derivatives of |M| and M−1 with respect to a scalar x are computed as follows (Searle, 1982):
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where tr(.) is the trace of a matrix, computed as the sum of the diagonal elements. Using these equa-
tions, the derivative of Log L with respect to i

2, the vector of VC is
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where V
i
 = ∂V/∂ i

2 = I for i e
2 2 and V

i
 = Z′AZ for i u

2 2. Setting these equations equal to zero, 
ˆ = β, and rearranging, this equation becomes
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For i e
2 2 this equation becomes

	
tr ˆ ˆ ˆˆ ˆV y X V V y X1 1 1 	 (8.15)

and for i u
2 2 the Equation (8.14) becomes

	
tr ˆ ˆ ˆˆ ˆV ZAZ y X V ZAZ V y X1 1 1 	 (8.16)

The two equations are functions of both ˆ and V̂ 1, which appears on both sides of these equa-
tions. Furthermore, V̂ 1 is a nonlinear function of the VC. Thus iterative solutions are required to 
solve these nonlinear equations. The methods described in the previous chapter for iteration of 
nonlinear equations can be used.

Restricted Maximum Likelihood Estimation of Variance Components

The most common method for variance component estimation is restricted maximum likelihood 
(REML). REML differs from standard ML in that account is taken of the fact that the estimates of 
the fixed effects are not equal to their parameter values. The problem with standard ML estimation 
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can be explained by considering the MLE of the variance for a normal distribution derived in 
Chapter 5. This estimate is (1/N)Σ(y

i
 − μ)2. Thus, the estimate of the variance is a function of μ, the 

actual mean, which is unknown. For standard estimation of variance from a sample, this problem is 
solved by replacing μ by the sample mean, and dividing by N − 1, instead of N. Dividing by N − 1 
accounts for uncertainty in the value of the true mean. In mixed model variance component estima-
tion, a parallel problem is encountered in that MLE assumes that the fixed effect solutions are equal 
to the true values.

In REML this problem is solved by a linear transformation of the observations that removes the 
fixed effects from the model. Consider the general mixed model. Define a matrix K such that 
KX = 0. Then

	 y Ky KZu Ke* 	 (8.17)

Searle et al. (1992) show that K satisfies the following relationship:

	 P K KVK K
1

	 (8.18)

where

	
P V V X X V X XV1 1 1 1 1

	 (8.19)

so that

	 y V y y K KVK K Ky y Py* * *1 1
	 (8.20)

Substituting Ky for y, KX = 0 for X, KZ for Z, and KVK′ for V in Equation (8.14) gives the 
following REML variance component estimators:

	
tr ˆ ˆ ˆP y PPy	 (8.21)

for e
2 and

	
tr ˆ ˆ ˆPZAZ y PZAZ Py	 (8.22)

for u
2. As in the case of ML, these nonlinear equations can only be solved by iteration. Estimates of 

REML VC can be obtained by derivative‐based and derivative‐free methods (see Lynch and Walsh, 
1998, for a detailed explanation).

Estimation of Variance Components via the Gibbs Sampler

As noted in Chapter 5, GS is particularly well adapted to sampling the Bayesian posterior distribu-
tion, which is typically specified as a collection of conditional distributions. In the example given in 
the previous chapter for Bayesian estimation of the parameters of the granddaughter design, it was 
necessary to “integrate out” the random effects. This of course requires extensive computing.
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Estimation of VC via ML or REML still generally requires solutions to the mixed model equations 
at each iteration, and this is the main computational limitation to the application of REML. As noted 
by Van Tassell et al. (1995), estimation of VC by GS has several advantages:

1.	 No solution to the mixed model equations is needed.
2.	 When simple sparse matrix techniques are used, analysis of data files larger than those using 

REML may be possible.
3.	 GS yields direct and exact estimates of VC and breeding values and confidence intervals for 

those estimates.

For estimation of VC in the mixed model, the joint density of interest is the distribution of fixed 
effects, random effects, and VC, all given the data. The marginal densities of interest are the 
distribution of fixed effects, random effects, and VC, given the data.

Van Tassell et al. (1995) assumed a simple mixed model with n records; only a single fixed effect, 
the general mean; and an additive genetic effect with r levels. Prior distributions are needed to 
describe the Bayesian model completely. For the fixed effects, Van Tassell et al. (1995) assumed a 
“flat” prior (i.e., the distribution was assumed to be proportional to a constant), indicating no prior 
knowledge about these effects. The random effects were assumed to be normally distributed with a 
variance of A a

2, and residuals were also assumed to be normally distributed with a variance of I e
2 

where A is the numerator relationship matrix, as defined in Chapter 6, and the other terms are as 
defined previously.

Since VC can only have positive values, a continuous distribution with limits of zero and infinity 
should be used as the prior, for example, a chi‐squared distribution. Van Tassell et al. (1995) used 
the inverted gamma (IG) distributions as the priors for the additive genetic and residual. The density 
function conditional on two parameters is as follows:
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where i in i
2 refers either to the additive genetic or residual variance, i is a shape parameter 

describing the uncertainty of the knowledge about variance component i, i is the scale parameter 
that determines the expected value of variance component i, and i  is the gamma function for i, 
computed as follows:

	 i
tt e dti 1
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(8.24)

The values of i were chosen so that the expected value of the prior distributions was equal to the 
simulated value of the VC. α

i
 = 2.000001 was assumed, so that the variance of the prior was finite and 

the distribution was as flat as possible. With α
i
 < 2 the variance of the distribution is infinite. Thus even 

though the simulated values were used for i, the prior knowledge was assumed to be very vague.
After some rather complicated algebra the conditional densities for the fixed and random effects 

and the additive genetic and residual VC were calculated as follows:
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for individuals with records, and
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for individuals without records, and
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where ~ N(μ, σ2) indicates that the variable has a normal distribution with mean μ and variance σ2,  
~ IG(α, γ) indicates that the variable has an IG distribution with parameters α and γ, aii is the diago-
nal element i of A−1, a−1 is the row i of A−1 with aii removed, e a

2 2/ , u−i is the vector of random 
animal effects without element i, and the other terms are as defined previously.

The GS algorithm can be described as follows:

1.	 Calculate μ as the arithmetic mean of the observations.
2.	 Calculate u

i
 = h2(y

i
 = μ), i = 1, …, n, where h a a e

2 2 2 2/ .
3.	 Calculate (y − Xβ − Zu)′(y − Xβ − Zu) = Σ(y

i
 − μ − u

i
)2.

4.	 Generate e
2 from its IG density.

5.	 Generate μ from the density of β.
6.	 Calculate u′A−lu.
7.	 Generate a

2 from its IG density.
8.	 Calculate e a

2 2/ .
9.	 Generate u

i
, from its normal density, for i = 1, 2, …, n.

10.	 Repeat steps 3 through 9.

After a “burn‐in” of 100 rounds, 5000 iterations of GS loop were computed, and sums of squared 
from each 20th iteration were used to estimate the posterior density of the VC. To estimate the GS 
mean, the expected value of the VC, given the current value of the sum of squares and priors, was 
calculated and averaged. Based on the expected value of an IG variable:
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and
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where SSA and SSE are the additive genetic and residual sums of squares, respectively, and the 
other terms are as defined previously. The posterior density of the VC was calculated as the average 
of the conditional distribution of the VC.

In simulations of 400 animals, estimates of the means of the VC were unbiased, but estimates of 
the modes were biased for low heritabilities (Van Tassel et al.,1995). By GS it is possible to compute 
confidence intervals for the VC estimates without approximations or assumptions of normality, 
based on the observed distribution of the results from the retained iterations.

Summary

Methods were presented to estimate the parameters for the mixed model equations, chiefly VC, by 
ML, REML, and GS. The main interest in simple ML estimates is historic. It is now clear that these 
estimates are biased, because they do not account for uncertainty with respect to estimates of the 
means of fixed effects. REML estimates are also biased, but less so, and yield estimates that must 
lie within the possible parameter space. This last property is by no means trivial. GS is the most 
computing intensive but has the advantage that it is possible to compute confidence intervals for the 
variance component estimates without approximations or assumptions of normality.
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Distribution of Genetic Effects, Theory, and Results9

Introduction

A number of studies have used stochastic simulations to evaluate marker‐assisted selection (MAS) 
or genomic selection. Nearly all of these studies confronted the question of a mathematical model 
for the additive genetic variance that accounts for a finite number of QTL of sufficient magnitude 
for detection.

In this chapter we will first review the mathematical models that have been used to describe the 
polygenic variance, and then we will present formulas to calculate the effective number of QTL for 
a trait. In the next sections we will present results from very large human genomic studies which 
attempted to detect the individual QTL and show that detectable QTL explain only a small fraction 
of the total additive genetic variance. Recent studies show that the remainder of the genetic variance 
can be explained by many genes that are too small to identify even with very large studies. In the final 
sections we will compare these results to parallel studies with dairy cattle based on genetic linkage 
and population‐wide linkage disequilibrium (LD).

Modeling the Polygenic Variance

As noted in the first chapter, the traditional mathematical model for polygenic variance has been the 
“infinitesimal model.” That is, polygenic variance is assumed to be due to an infinite number of loci, 
each contributing an infinitesimal fraction of the total genetic variance. This model is mathematically 
tractable and apparently works very well, provided that no individual locus accounts for a very large 
fraction of the total genetic variance. However, the infinitesimal model cannot be applied to 
simulations of genomic selection models, which all postulate individual QTL large enough to be 
detected by linkage to genetic markers.

Nearly all of the simulation studies to be considered in this chapter, and a number of additional 
studies, have addressed the question of the appropriate mathematical model for polygenic variance 
with MAS. A number of studies have assumed a single segregating QTL on the background of the 
infinitesimal model for the remainder of the genetic variance (Gibson, 1994; Villanueva et al.,1999). 
These simulations are not relevant to genomic selection, which in all cases assumes that many 
segregating QTL can be detected.
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Most simulation studies have attempted to simulate all the additive genetic variance in terms of a 
finite number of loci, sampled from a theoretical distribution. Generally these studies have applied 
a distribution that postulates a few big QTL and many small ones. Zhang and Smith (1992, 1993) 
simulated a normal distribution of QTL effects, but they also considered a gamma distribution of 
QTL effects. Hayes and Goddard (2001), Meuwissen et al. (2001), and Weller et al. (2005) also 
assumed a gamma distribution of QTL effects. Some studies used a theoretical distribution to 
directly simulate the variance of each QTL, while other studies first simulated QTL effects and then 
either simulated allelic frequencies from a uniform distribution or assumed equal allelic frequencies. 
De Koning and Weller (1994) used a χ2 distribution to simulate the variances of QTL effects. 
Hoeschele and VanRaden (1993a) postulated an exponential distribution, while Mackinnon and 
Georges (1998) assumed double exponential distribution of allelic effects at each QTL. The 
exponential distribution has the form

	 f a e a	 (9.1)

where a is the allelic effect and λ is the parameter of this distribution. The expectation of the distri-
bution is equal to 1/λ. They assumed that all QTL were biallelic and simulated allelic frequency 
from a uniform distribution. The double exponential distribution has the following form:

	
f a e a1

2
	 (9.2)

Mackinnon and Georges (1998) simulated either two or four alleles for each QTL. The allelic 
frequencies were simulated by sampling from a uniform distribution and then dividing the sampled 
values by their sum, so that the sum of the allelic frequencies would equal unity. They assumed a 
heritability of 0.3, which was generated by simulating 5, 10, or 20 QTL. As the number of QTL 
increased from 5 to 20, it was necessary to increase λ from 6 to 12 to account for the total heritability 
of 0.3. With any of these theoretical distributions, there is no maximum value for QTL effect, 
although the probability of sampling a very large QTL becomes progressively smaller.

Hayes and Goddard (2001), Meuwissen et al. (2001), and Weller et al. (2005) assumed a gamma 
distribution for the distribution of QTL effects with scaling parameter α and shape parameter β. 
Defining x as the absolute difference between the substitution effects of the two paternal QTL 
alleles, g(x), the distribution of x for each trait is
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(9.3)

The mode of the gamma distribution is (β − 1)/α. If β < 1, the mode of the distribution will be at zero.
Lande and Thompson (1990) proposed the following deterministic distribution for the variances 

of the QTL:

	 a a a a a
2 2 31 1, , , , 	 (9.3)

The variances of the QTL generated by this model summed to infinity will equal a
2. The param-

eter α, which must be between 0 and 1, determines the relative magnitude of the individual loci. 
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Assuming additivity, α
a
 = 2p(1 − p)a for biallelic QTL, with a = the allelic substitution effect and 

p = allelic frequency. The first QTL in the series is the largest and has a variance of α
a
. Subsequent 

QTL are progressively smaller, and the total number of loci is infinite. As α tends toward 0, the 
biggest QTL explains a relatively larger effect of the total additive genetic variance. With α

a
 = 0.5, a 

single QTL explains half of the genetic variance. If the lth locus of series is the smallest QTL likely 
to be detected, then the maximum proportion of the additive genetic variance that can be detected 
is 1 − al.

The Effective Number of QTL

For the theoretical distributions considered in the previous section, the “effective number of loci” 
can be defined as the total additive genetic variance divided by the expectation of the individual 
QTL variances. Thus if QTL variances are generated by an exponential distribution, the effective 
number of loci will be equal to λ. Lande and Thompson (1990) defined a similar parameter for the 
distribution given in Equation (9.3):
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where N
E
 is the effective number of loci. Values of α

a
 equal to 1, 1/3, 2/3, 5/6, and 11/12 correspond 

to N
E
 of 1, 2, 5, 11, and 23, respectively. As the effective number of loci increases, the fraction of 

the total additive genetic variance that can be detected, 1 − al, decreases.

The Case of the Missing Heritability

Numerous studies have shown that human height has a heritability of 0.8–0.9. Since this trait is 
highly heritable and easy to measure, has a nearly normal distribution, and has been recorded on 
very large samples, this should be an ideal trait to determine the fraction of variance that can be 
attributed to QTL detectable by genomic scans.

Visscher (2008) summarized the results of three research groups that analyzed hundreds of 
thousands of genetic markers genotyped on a total of 63,000 people measured for height. After 
correction for other factors, the effect of each SNP was tested on height with a linear model. A total 
of 54 QTL influencing this trait were validated. The validation stage is important because, when 
over 500,000 variants are tested, as was done in the current studies, many will be statistically 
“significant” by chance. (The problem of multiple comparisons will be considered in more detail in 
the following chapter.) The studies were based on an analysis of 14,000–34,000 individuals in 
the test stage and 6000–20,000 in the validation stages. The average effect size per “increasing” 
allele was approximately 0.4 cm, or approximately 0.8 cm between the two homozygous classes. No 
large effects explaining several centimeters were found.

Despite the huge sample sizes and huge numbers of markers analyzed, the sum of effects 
accounted for only 5% of the variance for height. Similar results were found for autism and 
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schizophrenia, even though both diseases also have very high heritabilities. Maher (2008) gave 
several explanations for these disappointing results:

1.	 Markers used for whole genome analyses might not have been sufficiently dense to uncover 
most segregating QTL.

2.	 Heritability estimates may be inflated, but it is very unlikely that the “true” heritability may be 
much lower than the mean of many studies.

3.	 Most genetic factors affecting quantitative traits may be due to factors that are not “caught” by 
genome scans based on SNPs, such as copy number variation.

4.	 Some of the observed genetic effects may in fact be “epigenetic” effects—changes in 
gene expression that are inherited but not caused by changes in genetic sequence, for example, 
methylation of DNA.

The alternative explanation of classical quantitative genetics is that the naturally occurring 
variance in human height is due to a very large number of QTL, almost all of which have effects too 
small to be validated even by the very large sample sizes considered in these studies. For example, 
even with a sample size of 20,000 individuals, based on the stringent criterion of a type I error 
rate of 5 × 10−7 for the test of each SNP, the probability of detecting a QTL that explains 0.2% of the 
variance in two independent sample is only 0.81. For a sample half this size, the statistical power to 
detect a QTL of this size is reduced to 0.29 (Visscher, 2008).

Yang et al. (2010) estimated the proportion of variance for human height explained by 294,831 
SNPs genotyped on 3925 unrelated individuals using a linear model analysis and validated the 
estimation method with simulations based on the observed genotype data. They showed that 45% of 
variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is 
not “missing” but has not previously been detected because the individual effects are too small to 
pass stringent significance tests. They provide evidence that the remaining heritability is due to 
incomplete LD between causal variants and genotyped SNPs, exacerbated by causal variants having 
lower minor allele frequency than the SNPs explored to date.

Their analysis was based on the construction of a “pseudo” relationship matrix based on the 
similarities among individuals for SNP genotypes considering all 294,831 SNPs. This matrix was 
then used in an REML analysis to estimate the fraction of the total variance for height explained by 
genetic relationships accounted for by the SNPs. A total of 0.45 of the phenotypic variance could be 
attributed to the SNPs, with a standard error of 0.08, which is 10‐fold the variance explained 
considering only the SNPs with “significant” effects. Their results also suggest that the discrepancy 
between 80% heritability and 45% accounted for by all SNPs is due to incomplete LD between 
causal variants and the SNPs, possibly because the causal variants have lower minor allele frequen-
cies on average than the SNPs typed on the array.

Methods for Determination of Causative Mutations for QTL in Animals and Humans

Since all the models described previously postulate the existence of a few large QTL, it is reason-
able to ask if any of these have in fact been detected. It should first be noted that proving that a 
specific polymorphism is in fact the causative mutation, termed the quantitative trait nucleotide 
(QTN), is by no means trivial. Unlike major genes, individuals with a specific QTN genotype do not 
display a common phenotype. Glazier et al. (2002) noted that the most conclusive evidence that the 
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QTN has been found is a demonstration that replacement of the variant nucleotide results in 
swapping one phenotypic variant for another. Currently this is not possible for livestock species, but 
this situation may change in the near future with the development of CRISPR/Cas9 technology 
(https://www.neb.com/tools‐and‐resources/feature‐articles/crispr‐cas9‐and‐targeted‐genome‐
editing‐a‐new‐era‐in‐molecular‐biology). Methods developed to find QTN suitable for plants 
and model animals cannot be applied to most livestock species, because of the lack of inbred lines, 
the  long generation interval, the cost of each animal, and difficulty to produce transgenics or 
“knockouts.”

As noted by Mackay (2001), “The only option…is to collect multiple pieces of evidence, no 
single one of which is convincing, but which together consistently point to a candidate gene.” 
Methods to prove that a QTN has in fact been discovered were described in detail by Ron and Weller 
(2007). So far only four QTN that meet the criteria for QTN determination have been found for 
economic animal species: two in cattle, one in sheep, and one in swine.

Determination of QTN in Dairy Cattle

At least four QTN have been identified and verified by multiple studies in farm animals (Ron and 
Weller, 2007; Weller and Ron, 2011). Of these, two are in dairy cattle—DGAT1 and ABCG2 (Grisart 
et al., 2002; Winter et al., 2002; Cohen‐Zinder et al., 2005). The most significant effects for both 
genes are on fat and protein concentration, which have the highest heritabilities of all the traits 
routinely analyzed in dairy cattle. Both of these genes have effects on all the milk production traits. 
Unlike the situation for human height, each of these genes explains 50% of the variation in the trait 
with the greatest effect.

In 2002, two studies independently showed that a missense mutation, causing replacement of a 
lysine residue with alanine in exon VIII of the gene acyl‐CoA:diacylglycerol acyltransferase 
(DGAT1) is the QTN (Grisart et al., 2002; Winter et al., 2002). Discovery was aided by the fact that 
DGAT1 was an obvious physiological candidate. In addition to mapping to the putative QTL region, 
DGAT1 encodes a microsomal enzyme that catalyzes the final step of triglyceride synthesis, and 
mice lacking both copies of DGAT1 are completely devoid of milk secretion. Complete concord-
ance between this polymorphism and the QTL was found in three different dairy breeds.

The QTL near the middle of Bos taurus (BTA) chromosome 6 affecting protein concentration 
was first detected by Georges et al. (1995) in the US Holstein population. This QTL was then 
detected in several other Holstein populations including Finnish Ayrshire cattle (Velmala et al., 1999) 
and Norwegian cattle (Olsen et al., 2002). Ron et al. (2001) reduced the confidence interval to 4 cM 
centered on microsatellite BM143. Olsen et al. (2005) used physical mapping and combined linkage 
and LD mapping to determine that this QTL is located within a 420,000 bp region between the 
genes ABCG2 and LAP3.

In 2005, two research groups claimed to have found the QTN in two different genes. Schnabel 
et al. (2005) claimed that the QTN is located in a poly(A) sequence in the promoter region of the 
osteopontin gene, also denoted SPP1, while Cohen‐Zinder et al. (2005) claimed that the QTN is a 
missense mutation in exon 14 of the ABCG2 gene. Both studies based their claim on gene function 
and concordance of bulls with known genotypes. Both genes are differentially expressed in the 
mammary gland during lactation, as compared to the liver. Furthermore, antisense SPP1 transgenic 
mice displayed abnormal mammary gland differentiation and milk secretion (Nemir et al., 2000). 
More recent studies have provided additional evidence that the missense mutation in ABCG2 is in 
fact the causative mutation (e.g., Olsen et al., 2007).
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For both the QTL on BTA 6 and 14, the polymorphisms analyzed apparently do not account for 
the entire effect observed in these chromosomal regions (Bennewitz et al., 2004a; Kuhn et al., 2004; 
Cohen‐Zinder et al., 2005). The effect associated with the missense mutation in ABCG2 explains 
the entire effect observed on milk yield and fat and protein concentration, but does not explain the 
effects associated with fat and protein yield.

Many studies have found a QTL affecting all five milk production traits and somatic cell score 
(SCS) near the middle of BTA 20. Blott et al. (2003) claimed that a missense mutation in the bovine 
growth hormone receptor was responsible for the QTL affecting milk yield and composition on BTA 
20, but did not find concordance for the bulls heterozygous for the QTL. Thus, this polymorphism 
may be responsible for only part of the observed effect on BTA 20 or may be a physiologically 
neutral mutation in LD with the QTN.

Estimating the Number of Segregating QTL Based on Linkage Mapping Studies

Hayes and Goddard (2001) proposed to estimate the total number of segregating loci in outbred 
populations, M, based on the following algorithm. One individual will only be heterozygous for 
fraction, 2K, of the total number of genes segregating. Given the number of QTL found heterozy-
gous in each sire N

i
, an estimate of M is therefore N K/2 , where N  is the mean of N

i
. In order to 

calculate 2K, Hayes and Goddard (2001) assumed the distribution of gene frequencies is for a popu-
lation previously without selection for the quantitative trait, and with all genes neutral with respect 
to fitness. Clearly these assumptions are not correct, particularly if the population has undergone 
some artificial selection, in which case QTL with large effects are likely to be at extreme frequen-
cies. In this case 2K will be underestimated.

Distribution of gene frequencies will reflect the generation of new alleles by mutation and their 
loss by drift. The gene frequency probability density from this assumption is f(p) = K/(p(1 − p)) 
where p is the frequency of one allele. This calculates the gene frequency distribution accurately if 
the product of the mutation rate per locus and effective population size is small. The relevant part of 
the gene frequency distribution is from π ≤ p ≤ 1 − π, where π = 1/(2N

e
).

The value of p is the lowest possible gene frequency in a population of effective size N
e
. Again 

the effective population size as an approximation. All parents in the population are targets for 
mutation, but in modern livestock populations, mutations may only be exploited if they occur in 
elite breeding animals, as it is these animals which provide genetic material for the improvement of 
the population. The size of the elite population is likely to approximate the effective population size. 
The constant, K, is chosen so that
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Integrating this function and solving for K give the result:
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The mean heterozygosity of QTL is

	

2 1

1

1 p p K

p p
dp	 (9.7)



	 Distribution of Genetic Effects, Theory, and Results	 65

which can be approximated as 2K, or

	

1

1ln /
	 (9.8)

This is the mean heterozygosity among the loci that are segregating and depends only on N
e
. 

Hayes and Goddard (2001) calculated the total number of QTL segregating in the population with 
N

e
 = 50, 500, and 5000 (π = 0.01, 0.001, and 0.0001, respectively).
Pig data were from crossbreeding experiments between divergent breeds. Growth, carcass, and 

meat quality were analyzed. The three dairy experiments used a granddaughter design for QTL 
detection, with effects reported within grandsire families. Milk, fat, and protein yield and protein 
and fat percentage were analyzed. Overall, 50 significant QTL effects were reported.

For pigs a greater number of QTL within the range of 0.3–0.5σ
p
, where σ

p
 is the phenotypic stand-

ard deviation, were detected than QTL > 0.5σ
p
. The average QTL effect was 0.42σ

p
 ± 0.02σ

p
. For the 

dairy cattle, the number of QTL < 0.3σ
p
 was larger than for the pig data set. Dairy experiments 

generally have more power to detect small QTL than the pig experiments. The average QTL effect 
for dairy data was 0.32σ

p
 ± 0.03σ

p
. Both distributions were moderately leptokurtic, implying many 

QTL of small effect and few of large effect.
The number of segregating QTL for dairy cattle was predicted to be 49, 74, and 99 for N

e
 = 50, 500, 

and 5000, respectively. The world’s dairy population is increasingly dominated by the Holstein breed. 
In addition, widespread use of artificial insemination has reduced the number of bulls used to breed 
dairy sires worldwide. As a result, the current N

e
 of the world’s Holstein population is approximately 

50 (Goddard, 1992), but this is a recent phenomenon, and N
e
 was much larger in the past.

Results of Genome Scans of Dairy Cattle by Granddaughter Designs

Genome scans by the granddaughter design have been completed for Holsteins from Canada 
(Nadesalingam et al., 2001), the Netherlands (Spelman et al., 1996; Schrooten et al., 2000), France 
(Bennewitz et al., 2003; Boichard et al., 2003), Germany (Bennewitz et al., 2003; Kuhn et al., 2003), 
New Zealand (Spelman et al., 1996), and the United States (Georges et al., 1995; Ashwell et al., 
1996, 1997, 1998a, 1998b, 2001, 2004; Zhang et al., 1998; Ashwell and Van Tassell, 1999; Heyen 
et al., 1999); Finnish Ayrshires (Vilkki et al., 1997; Viitala et al., 2003; Schulman et al., 2004); 
French Normande and Montbeliarde cattle (Boichard et al., 2003); Norwegian cattle in Norway 
(Klungland et al., 2001; Olsen et al., 2002); and Swedish Red and White (SRB) (Holmberg and 
Andersson‐Eklund, 2004). Daughter design analyses have been performed for Israeli Holsteins 
(Mosig et al., 2001; Ron et al., 2004).

Most studies have considered the five economic milk production traits—milk, fat, and protein 
production and fat and protein concentration—although a number of studies have also considered 
SCS, female fertility, herd life, calving traits, health traits, temperament, conformation, and other 
traits. The April 27, 2015, release of the Cattle QTLdb contains 17,908 QTLs from 588 publications 
based on marker–QTL linkage analyses (http://www.animalgenome.org/cgi‐bin/QTLdb/BT/index). 
Those QTL represent 514 different traits, the overwhelming majority detected by granddaughter 
designs. Significant effects were found on all 29 autosomes, but most effects were found only in 
single studies and have not been repeated. Khatkar et al. (2004) performed a meta‐analysis, 
combining data from most of these studies for milk, fat, and protein production, fat and protein 
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concentration, and SCS which are summarized at (http://www.vetsci.usyd.edu.au/reprogen/QTL_Map/). 
They found significant across‐study effects on chromosomes 1, 3, 6, 9, 10, 14, and 20.

Results of Genome‐Wide Association Studies in Dairy Cattle by SNP Chips

The results of VanRaden et al. (2009) for the US Holstein population confirm that at least with respect 
to the QTN that have been detected, results of genome‐wide association studies (GWAS) do correspond 
to the results of daughter and granddaughter designs. The largest effect found for fat concentration was 
located on BTA 14 flanking the DGAT1 gene, with lesser effects on milk and fat yield. Similarly, the 
largest effect found for protein concentration was on BTA 6 flanking the ABCG2 gene. The US analysis 
of 5285 bulls revealed few other large effects. Markers on BTA 18 had the largest effects on calving 
ease, several conformation traits, longevity, and total merit (Cole et al., 2009).

Prediction accuracy was highest using a heavy‐tailed prior assuming that each marker had an 
effect on each trait (Bayes A), rather than assuming a normal distribution of effects as in a linear 
model, or that only some loci have nonzero effects (Bayes B). (Bayes A and Bayes B models will 
be explained in detail in Chapter 10.) Results validate quantitative genetic assumptions that most 
traits are due to the contributions of a large number of genes of small additive effect, rather than 
support the “finite locus model,” that is, only a small fraction of genes explain most of the genetic 
variance of quantitative traits.

Results of 912 Israeli Holstein bulls show that of the eight effects with the lowest probabilities 
for fat concentration under the null hypothesis of no effect associated with the marker, seven were 
located on BTA 14 in the vicinity of DGAT1. The SNP with the lowest probability was located at 
position 443,937 bp on BTA 14 and 1149 bp from the QTN (Grisart et al., 2002). Similarly, the 
SNPs with the most significant effects on protein concentration formed a bracket from 37,024,132 
to 37,454,409 bp on BTA 6. The ABCG2 QTN is located within this bracket, 36,301 bp from its 
higher end (Cohen‐Zinder et al., 2005). In both cases GWAS identified segregating QTL within 
distances less than 40 kbp from the QTN.

More recently effects derived from genome scans for US Holsteins, Brown Swiss, and Jerseys for 
33 traits—including milk, fat, and protein production, fat and protein percent, SCS, direct and 
maternal effect for stillbirth and calving ease, heifer and cow conception rate, productive life, net 
merit, and 19 conformation traits—are presented at https://www.cdcb.us/Report_Data/Marker_ 
Effects/marker_effects.cfm?Breed=HO. For Holsteins, effects greater than 0.1 genetic standard 
deviations of the trait analyzed were found for fat production, fat percent, protein percent, produc-
tive life, heifer conception rate, sire calving ease and stillbirths, and teat length. No more than a 
single effect of this magnitude was found for any of the traits analyzed. Similar effects on the milk 
production traits were found for Jerseys, but not for the secondary traits. For Brown Swiss only one 
effect of this magnitude was found for the trait fore udder attachment, but the number of bulls 
analyzed was much smaller. Furthermore, no additional effects accounting for larger fractions of the 
genetic variances than the identified QTN were found for any of the traits analyzed.

Summary

Various theoretical models have been proposed to model the genetic variance as a function of a 
finite number of QTL. Among the statistical distributions proposed are the exponential, the double 
exponential, the chi‐squared, and the gamma distribution. All of these studies assume that the 



	 Distribution of Genetic Effects, Theory, and Results	 67

additive genetic variance is due to a few rather large QTL and many small ones. Actual results from 
human height and disease traits demonstrate that only a very small fraction of the genetic variance 
can be explained by QTL with effects large enough to detect even if tens of thousands of individuals 
are genotyped. Based on these results several studies have suggested that a large fraction of the 
genetic variance is due to factors that cannot be detected by genome scans. More recent results with 
humans and cattle indicate that this is probably not the case. Rather, due to the multiple comparison 
problem, the majority of segregating QTL are just too small to be unequivocally detected even with 
very large sample sizes.

Although four QTN in animals were identified by 2007, virtually no progress has been made 
since then. This situation might change in the near future, due to huge reduction in costs for complete 
genome sequencing, the 1000 bull genomes project (http://www.1000bullgenomes.com/doco/
hayes_pag_1000bullgenomes_2013.pdf), and new methods for QTN detection and determination, 
which will be discussed in detail in Chapter 20. In general results from the GWAS published to date 
validate quantitative genetic assumptions that most traits are due to the contributions of a large 
number of genes of small additive effect.
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The Multiple Comparison Problem10

Introduction

As we already noted in Chapter 1, it is now possible using DNA‐level markers to obtain as many 
polymorphic markers as desired for any species of interest. The “multiple comparison problem” 
was noted briefly in the previous chapter. If the number of markers included in the analysis is large, 
two separate problems are encountered. First, the individual test type I error rate is no longer appro-
priate. For example, if 100 tests are performed, 5 should be “significant” at the 5% level purely by 
chance. The traditional approach to deal with multiple comparisons is to control the “family‐wise 
(or experiment‐wise) error rate” (FWER), instead of controlling the “nominal” or “comparison‐
wise error rate” (CWER). The FWER is controlled by setting the rejection threshold sufficiently 
strict, so that the probability that any of the null hypotheses tested are erroneously rejected is below 
a specified low level, usually 0.05. However, this severely reduces the power to detect true effects. 
Additional methods to deal with the problem of multiple comparisons will be considered.

A second problem with multiple marker analyses is that for those effects that are deemed 
“significant,” the estimated effects will be biased upward (Georges et al.,1995). The reason for this 
is that if the true effects are close to the critical value for significance, only those QTL with estimates 
greater than the true effects will meet the significance criterion. This problem will be considered in 
the last three sections of this chapter.

Multiple Markers and Whole Genome Scans

Lander and Botstein (1989) first considered the problem of multiple markers in detail. They presented 
analytical formula for two specific situations: a “sparse” map and a “dense” map. Kruglyak and 
Lander (1995) also considered the case of intermediate spacing. In the former they assumed that the 
markers were sufficiently far apart that the individual tests could be considered independent. In this 
case the FWER can be computed by the “Bonferroni correction” (Simes, 1986). The experiment‐
wise type I error rate is approximately equal to α

f
/M, where α

f
 = FWER, α

c
 = CWER, and M = number 

of markers. For example, if 100 tests are performed and an FWER of 0.05 is desired, the CWER or 
nominal error rate must be approximately 0.0005.
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This estimate can be marginally improved by observing that assuming statistical independence of 
the individual tests, the worst‐case scenario, the type I error probability equals (Šidák, 1967)

	 f c1 1
M

	 (10.1)

One can improve upon the simple Bonferroni/Šidák correction using the observation that the 
individual marker association tests are not statistically independent, but dependent to a degree 
which can be measured in terms of the pairwise haplotypic correlation between markers observed 
in the empirical data. An approach of this kind was used by Cheverud (2001) and Nyholt (2004), 
where an estimated effective number of tests was computed as follows:

	
M M

Me

Var
1 1 1 	 (10.2)

where M
e
 = effective number of test and Var(λ) = the variance of the eigenvalues of the pair correlation 

matrix of test. M
e
 is then used instead of M in a Šidák‐style correction. Other algorithms have all 

been proposed to estimate M
e
 (e.g., Moskvina and Schmidt, 2008).

In the dense map case, Lander and Botstein (1989) assumed that the markers are sufficiently 
close so that all “sites” along the chromosome are being tested for segregating QTL. In this case, 
the expected number of regions with a standard normal distribution value greater than the critical 
value for α

c
 under the null hypothesis of no segregating QTL anywhere in the genome, μ(Z ), can be 

computed as follows for either the backcross (BC) or F‐2 designs (Lander and Kruglyak, 1995):

	 Z N M Zc M G c2 2 	 (10.3)

where N
c
 = number of chromosomes, ρ

M
 = the expected rate of recombination per Morgan, 

M
G
 = genome length in Morgans, and Z = the standard normal distribution value for α

c
. For BC and 

half‐sib designs, ρ
M

 = 1, because recombination is followed only for a single chromosome. For a 
genomic scan of intermediate density, this equation can be modified as follows (Kruglyak and 
Lander, 1995):

	
Z C M Z v Z2 22

M G c 	 (10.4)

where Δ is the mean map distance between markers in Morgans and v(2Z ) represents a function 
of 2Z . For small values of Δ, v(2Z ) is approximately equal to e Z1 166. . For larger values of Δ, 
v(2Z ) is approximately equal to 1/(2Z 2Δ). As Δ approached zero, the intermediate density func-
tion approaches the dense map function, and as Δ increases, this equation approaches (N

c
 + m)α

c
, 

which can be compared to the sparse map function of α
f
 = mα

c
, given previously. The discrepancy 

between these two formulas is due to the fact that in Equation (10.4) it is assumed that each 
chromosomal interval is tested for a QTL, while the sparse map function of Equation (10.1) assumes 
that each marker is tested. Assuming that each chromosome has at least one marker, the number of 
chromosomal intervals including the chromosomal ends will be one more than the number of 
markers on each chromosome, or N

c
 + m.

For small values of μ(Z), μ(Z) tends to α. This is because with low μ(Z) it is very unlikely that more 
than a single region can have a Z‐value greater than the critical value. Lander and Botstein (1989) 
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present a similar formula for likelihood ratio tests. For a dense map scan of the bovine genome by the 
daughter design (C = 30 and G = 30), a CWER of approximately 5 × 10−5, comparable to a Z‐value of 
3.9, is required to obtain an FWER of 0.05. Requirement of such a stringent type I error results in a 
corresponding increase in the type II error. That is, many true effects will be missed.

Lander and Kruglyak (1995) proposed that, unless there is a reason to focus a priori on a specific 
chromosomal region, type I errors should be based on complete genome scans, even if the number 
of markers actually analyzed was limited. They maintain that even if the original marker spacing is 
quite wide, additional markers will be genotyped for those regions that display marginal significance. 
Thus, the whole genome is potentially under observation.

The problem of multiple comparisons is somewhat alleviated if those effects deemed “significant” 
are repeated on a second independent analysis. Since only these effects are considered in the second 
analysis, the number of comparisons is drastically reduced. However, this is not a viable option in 
most cases. For analysis of disease traits and generally for analysis of data on large animals, a 
second independent data set is not available. Two other methods that provide alternative solutions 
to the multiple comparison problem will now be considered.

QTL Detection by Permutation Tests

Churchill and Doerge (1994) proposed a method to empirically estimate FWER rejection thresholds 
that can be applied to a very wide range of experimental designs. Many different samples are 
generated from the actual data by “shuffling” the trait values with respect to the marker genotypes. 
Each individual genotyped is randomly assigned one of the trait values from the sample. Since the 
trait values for all individuals are now random with respect to marker genotypes, the null hypothesis 
of no linkage between the genetic markers and QTL is correct by definition. The test statistics 
computed from these “permutation samples” are then used to construct the empirical distribution of 
the test statistic under the null hypothesis. The appropriate rejection threshold for any desired 
comparison‐wise or experiment‐wise type I error can then be derived from the empirical distribution 
of the test statistic. This method has the advantage that no assumptions are required with respect to 
distributional properties of either the quantitative traits or the genetic markers. Rejection thresholds 
are computed based on the actual number and genomic distribution of markers genotyped. A disad-
vantage of this method is that thresholds must be computed anew by permutation for each data set 
analyzed.

Churchill and Doerge (1994) computed CWER and FWER based on permutation tests for simu-
lated data. The fact that no assumptions are made with respect to the distribution of the test statistic 
under the null hypothesis is especially important for computation of the FWER. As demonstrated in 
the previous section, to obtain a reasonable FWER for a complete genome scan, a very small CWER 
is required. At these very low probabilities, it is likely that minuscule divergence of the actual data 
distribution from the theoretical distribution may result in a significant divergence of the analytically 
computed probability from the actual probability for the specific data set analyzed.

QTL Detection Based on the False Discovery Rate

Benjamini and Hochberg (1995) proposed controlling the “false discovery rate” (FDR) as an alter-
native to controlling the FWER for the general problem of multiple testing. They defined the FDR 
as “The expected proportion of true null hypotheses within the class of rejected null hypotheses.” 
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Derivation of rejection thresholds based on controlling the FDR and important properties of this 
method will be described. We will then present examples based on actual data.

Assume that m multiple comparisons are tested. For each null hypothesis H
1
, H

2
, …, H

m
, a test 

statistic and the corresponding p‐values, P
1
, P

2
, …, P

m
, are computed. Let P

(1)
, P

(2)
, …, P

(m)
 be the 

ordered p‐values, and denote by H
(i)

 the null hypothesis corresponding to P
(i)

. If all null hypotheses 
are true, but K hypotheses, H

(1)
 to H

(K)
, are rejected, then the expectation of the number of hypoth-

eses rejected should be approximately equal to the actual number of hypotheses rejected for any 
value of K. If, in fact, some of the null hypotheses are false (i.e., actual effects are detected), then 
the expectation of the number of hypothesis rejected should be less than K. The expectation of the 
number of hypotheses rejected assuming that all null hypotheses are true is mP

(K)
. Defining q = mP

(i)
/i, 

Benjamini and Hochberg (1995) proved that the FDR can be controlled at some level q* by 
determining the largest i for which q* < mP

(i)
/i. That is, out of K hypothesis rejected, it is expected 

that the proportion of erroneously rejected hypotheses is no greater than q*. Illustrative examples 
and important properties of the FDR will now be considered.

Weller et al. (1998) was the first application of the FDR to the QTL detection. This was the 
method used in nearly all genome scans based on an analysis of thousands of markers to determine 
that many segregating QTL could be detected. Comparison of FDR and FWER will be illustrated 
using the example of Weller et al. (1998) for a granddaughter design analysis of the US Holstein 
population. A total of 1555 sons of 18 US grandsires were genotyped for 128 microsatellites. 
Daughter yield deviations (DYD) were analyzed by the following linear model for seven economic 
traits:

	 Y M eijk i ij ijkGS 	 (10.5)

where Y
ijk

 is the DYD (VanRaden and Wiggans, 1991) for kth son of the ith grandsire with paternal 
allele j, GS

i
 is the effect of the ith grandsire, M

ij
 is the effect of the jth marker allele, progeny of the 

ith grandsire and e
ijk

 is the random residual. For each marker–trait combination, an F‐statistic was 
computed for the paternal marker allele effect nested within grandsire. Thus, 896 comparisons were 
tested.

The comparisons with the 10 smallest p‐values are given in Table 10.1. Assuming uncorrelated 
tests, only two F‐values have an FWER less than 0.05. Using Lander and Kruglyak’s (1995) criterion 
of “suggestive linkage” (FWER < 0.5 for a complete genome scan), only four null hypotheses would 
be rejected. If all 10 hypotheses are rejected, q and thus FDR are still less than 0.25, even though 
the FWER = 0.811. Thus, seven or eight marker–trait combinations should represent “true” effects 
and can be expected to repeat on a second population sample. Unlike FWER, q = mP

(i)
/i is not mono-

tonic. For example, as i increases from 5 to 6 and from 9 to 10, q decreases. A decrease in q occurs 
when the increase in successive probabilities is low.

Results for q, FWER, and CWER, computed as the individual F probabilities, up to i = 30 are 
plotted in Figure 10.1. For i > 50, q and FWER are very close, with both close to unity. For i = 10, 
p is still less than 0.05. Thus in this case, the criteria of controlling the FDR at 0.5 and a CWER 
of 0.05 give similar results.

These results were compared to the p‐values computed from a typical permutation of the same 
genotype data against the trait data. The permutation results are plotted in Figure 10.2. Since the 
relationship between the markers and traits after permutation is random by definition, no null 
hypotheses should be rejected, and FDR and FWER would be similar. For the lowest F probability, 
FWER was 0.45, and q was 0.31. Thus, one hypothesis would be rejected with FWER controlled at 
0.5, but not with FDR controlled at any reasonable level. For i values greater than 5, the FWER is 



	 The Multiple Comparison Problem	 73

Table 10.1  Estimation of FDR for granddaughter design results.

I Trait Chromosome Marker F‐value p‐Value Expectationa FWER q

1 Fat % 14 15 11.157 10−8 10−5 10−5 10−5

2 Fat % 3 1 5.295 0.00003 0.025 0.024 0.012
3 Fat yield 14 15 4.146 0.00009 0.077 0.074 0.026
4 Protein % 2 4 5.279 0.00042 0.378 0.315 0.094
5 Protein % 3 8 4.246 0.00091 0.818 0.559 0.163
6 SCSb 22 1 3.819 0.00101 0.907 0.596 0.151
7 SCS 22 2 4.590 0.00124 1.112 0.671 0.159
8 Fat % 3 8 3.880 0.00194 1.734 0.823 0.217
9 Milk 7 3 3.466 0.00231 2.068 0.874 0.230

10 SCS 23 1 4.218 0.00242 2.166 0.885 0.217

a Expectation for the number of hypothesis rejected under the null hypothesis.
b Somatic cell score.
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Figure 10.1  The q value (—), FWER (…), and comparison‐wise type I error rate (CWER) (‐ ‐ ‐) for the analysis of the grand-
daughter design data.
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nearly equal to unity. By theory, the expectation of q is unity for all values of i, but this criterion is 
affected much more by random fluctuation than FWER. q is nearly equal to unity for i = 9 but then 
rises to nearly 1.5 before settling down to close to unity by i = 30. With i = 9, CWER is still 0.01, 
which is almost exactly the expectation by chance (0.01 × 896 comparisons). Thus, by the criterion 
of CWER < 0.01, 9 hypotheses would be rejected, as compared to 17 for the actual data. This illus-
trates the unreliability of the CWER criterion. The examples presented demonstrate the following 
important properties of the FDR:

1.	 If all null hypotheses are true, controlling FDR is equivalent to controlling FWER.
2.	 If some of the null hypotheses are false, then the FDR is smaller than the FWER. The difference 

between the two criteria increases with increase in the number of “false” null hypotheses 
(i.e., actual effects). Thus, any procedure that controls the FDR at a given level will also control 
the FWER at this level.

3.	 Unlike methods for controlling FWER, it is not necessary to assume that relationships among 
the test statistics are known. As demonstrated, the FDR can be readily controlled both for mul-
tiple linked markers and linked traits.

4.	 Even though P
(i)

 increases monotonically with i, q does not. Thus, it may be necessary sometimes 
to increase i to control the FDR at the desired level.

5.	 Although the true FDR is less than q, as i increases, the FDR approaches q. This will be true 
even if the hypotheses are correlated.

6.	 By controlling the FDR, the number of hypotheses rejected, that is, QTL detected, is a function 
of the actual number of segregating QTL in the population; this is not true if either the FWER 
or CWER is controlled.

7.	 The dilemma of the appropriate rejection criterion for a partial genome scan is solved. The FDR 
can be controlled at the same level whether the complete genome or only part of the genome has 
been analyzed.

8.	 Additional levels of contrasts such as multiple traits or multiple populations can be handled 
without the necessity of a proportional increase in the critical test value.

A weakness of the FDR is that it tends to fluctuate widely for low i if the total number of 
hypotheses tested is very large.

A Priori Determination of the Proportion of False Positives

Controlling the FDR can only be applied after the experimental results are obtained. Thus it cannot 
be used to determine a priori the power of a planned experiment. Southey and Fernando (1998) and 
Fernando et al. (2004) proposed estimating the expected proportion of false‐positive tests based on 
the assumed prior probabilities of true and false null hypotheses. For a single test, the expected 
proportion of false positives (PFP), E(q), can be computed as follows:

	
E q

P H

P H P H
o

o 1
	 (10.5)

where α is the nominal significance level (the type I error), P(H
o
) is the prior probability of the null 

hypothesis, P(Hα) is the prior probability of the alternative hypothesis, and (1 − β) is the power of 
the test. If multiple tests are performed, then this equation becomes
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E q

P H

P H P H
i oi

i oi i i1
	 (10.6)

where α
i
 is the significance level for test i, P(H

oi
) is the prior probability for the null hypothesis for 

test i, P(Hαi
) is the prior probability for alternative hypothesis i, and (1 − β

i
) is the power to reject this 

null hypothesis. If these probabilities are the same for all tests, then this equation reduces to

	
E q

m P H

m P H P H
o

o 1
	 (10.7)

where m is the total number of tests. Fernando et al. (2004) denoted E(q) the PFP. The problem with 
applying the PFP is that generally good estimates are not available for the prior probabilities. 
To  compute these probabilities, Southey and Fernando (1998) assumed that the population was 
genotyped for N

k
 intervals of equal lengths and that N

Q
 QTL of equal size were scattered throughout 

the genome. They further assumed that there was no more than one QTL per interval. Thus the prior 
probability of the alternative hypotheses is N

Q 
/N

k
, and the prior probability of null hypotheses is 

1 − N
Q
 /N

k
. They further assumed that these QTL explained all the genetic variance. With 10 QTL 

and heritability of 0.25, the probability of false positives was 0.3 with a significance level of 0.001 
if 1000 individuals were genotyped in a BC design. This can be compared to the value of 5 × 10−5 
required to obtain an FWER of 0.05 for a whole genome scan (Lander and Kruglyak, 1995).

Similar to the FDR, but unlike computation of the FWER, controlling the PFP is affected by the 
frequency of detectable QTL segregating in the population. However, unlike the FDR, the PFP is 
not affected by correlations among the tests even in extreme cases. Furthermore, this method can 
be used to plan an experiment in advance and answer the question: Is power sufficient to detect 
segregating QTL, provided they are present? However, in practice prior knowledge about the 
number, distribution, and effects of QTL is very vague. Similar to the Bayesian analysis of Hoeschele 
and VanRaden (1993a, 1993b) presented in Chapter 7, the assumptions made with respect to prior 
knowledge will affect the conclusions of the analysis.

Biases with Estimation of Multiple QTL

Smith and Simpson (1986) first noted that if multiple QTL are estimated as fixed effects, the 
estimated effects of those QTL that meet the “significance” criterion will be biased upward. This 
has been documented by simulation studies (Beavis, 1994; Georges et al.,1995) and is supported by 
results of an actual experiment (Eshed and Zamir, 1996).

Georges et al. (1995) simulated a half‐sib design but considered each family separately, so that 
the results are comparable to a BC design. The number of progeny in each family was varied from 
50 to 200, and the QTL effects were varied from 0.25 to 1 phenotypic standard deviation. In all 
cases the QTL was bracketed by two markers 20 cM distant. The simulated QTL position was 5 cM 
from one of the markers. ML interval mapping was used to estimate QTL effect and location, and 
significance was determined by a likelihood ratio test. As simulated QTL effect or sample size 
decreased, the fraction of QTL determined as “significant” (LOD score ≥ 3) decreased, and bias of 
the estimated effect increased. Bias was under 10% of the simulated effect only if more than 90% 
of the simulated effects were “detected.”
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Beavis (1994) found an approximately linear relationship between the ratio of estimated to 
simulated QTL effect and the power of detection. If power of detection was only 10%, then the 
estimated effect was approximately fourfold the simulated effect. Furthermore, even if the simulated 
QTL were of equal size, the distribution of “significant” effects was positively skewed if power of 
detection was low.

Further support for these simulation studies comes from the results of Eshed and Zamir (1996). 
They analyzed the complete tomato genome for QTL affecting five quantitative traits using 
chromosomal segment substitution lines. The background parent was Lycopersicon esculentum 
(common tomato), and the donor parent was Lycopersicon pennellii. Fifty substitution lines, each 
containing a single chromosomal segment from L. pennellii on the background of the L. esculentum 
genome, were analyzed. Of 250 line‐by‐trait combinations, 81 were significantly different from 
the control isogenic line (p < 0.05). The different substitution lines were then crossed to produce 
lines differing from the control each in two chromosomal segments. For those cases in which both 
L. pennellii chromosomal segments gave significant effects in the same direction, the effect esti-
mates for the double substitution lines were consistently less than the sum of the effect estimates 
in the single chromosomal segment substitution lines. Eshed and Zamir (1996) proposed that 
these results were due to epistasis. However, this result is expected even without epistasis, if the 
“significant” effect estimates in the single segment substitution lines were overestimated. 
The effects should not be overestimated in the double segment analysis, because these effects are 
no longer a selected sample.

Bayesian Estimation of QTL from Whole Genome Scans: Theory

It should be possible to obtain unbiased estimates of a selected sample of effects if Bayesian 
estimation methods are used, as described in Chapter 7. In order to estimate QTL as random effects, 
it is necessary to know, or at least estimate, the variance of the distribution of effects. Methods to 
derive reasonable estimates for these parameters were considered by Hoeschele and VanRaden 
(1993a) and are summarized in Chapter 7. Actual information on the distribution of QTL effects 
was lacking prior to completion of whole genome scans.

Hayes and Goddard (2001) derived a mathematical distribution for QTL effects by combining 
results from several genome scans. Since the direction of the QTL effect relative to genetic mark-
ers is arbitrary, the QTL effect was assumed to be always positive. Weller et al. (2005) used data 
from a whole genome daughter design scan to estimate the prior distribution of QTL effects. 
Following Hayes and Goddard (2001), the QTL were assumed to follow a gamma distribution 
with scaling parameter α and shape parameter β. Hayes and Goddard (2001) assumed a common 
distribution for all traits, while Weller et al. (2005) derived a separate distribution for each trait 
analyzed.

Defining x as the absolute difference between the substitution effects of the two paternal QTL 
alleles, g(x), the distribution of x for each trait is

	

g x
x e
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x

t
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0

1

	 (10.8)
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The mode of the gamma distribution is (β − 1)/α. If β < 1, the mode of the distribution will be at 
zero. A normal distribution is assumed for the residuals of the observed effects. Thus the ordinate 
of observed QTL effect, x̂i, given the actual effect, n(x̂i|x), will be

	

n x x ei
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x xi xˆ |
ˆ /1
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2
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where σ
x
 = the standard error (SE) of the estimated QTL effect. This value will vary as a function of 

the experiment size.
As noted by Hayes and Goddard (2001), although the QTL effect is assumed always to be 

positive, the residual can be either positive or negative. Thus the density for x̂i, f(x̂i), is computed as 
follows:
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The log‐likelihood for the distribution of the QTL effects, Log L(x), summed over all observed 
effects for each trait is

	
Log LogL x f x

i

I

i
1

ˆ 	 (10.11)

where I is the total number of estimated QTL effects per trait. Numerical integration was used to 
compute the density function, and Log L(x) was maximized relative to α, β, and σ

x
 for each trait by 

a grid search for the three parameters. The prediction error variances of the parameter estimates 
were estimated by the negative of the inverse of the matrix of second derivatives of Log L at its 
maximum. The matrix of second derivatives was estimated numerically.

Bayes A and Bayes B Models

Meuwissen et al. (2001) distinguished between “Bayes A” models, which assume a continuous 
prior distribution of QTL effects with a nonzero effect for all comparisons tested, and “Bayes B” 
model, in which a zero effect is assumed for the majority of the comparisons tested. Thus the model 
presented earlier can be considered a Bayes A model. The following Bayes B model, which considers 
the possibility that only a fraction of the marker contrasts were associated with segregating QTL, 
was also tested:

	

f x P n x x g x dx n x x g x dx Pi i i
ˆ ˆ ˆ| |

0 0 0

2 1 n x x dxi
ˆ | 	 (10.12)

where P = the fraction of marker contrasts associated with segregating QTL and the other terms are 
as defined previously.
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The likelihood of the individual QTL effects given the distribution of QTL effects for a given 
trait, L(y), was computed under the assumption that QTL genotype has been determined for 
each individual. For the daughter design, only the paternal allele is considered, and the progeny 
will be divided into two groups: the J

1
 individuals that received the positive paternal QTL allele 

and the J
2
 individuals that received the negative paternal allele. L(y) is then computed as 

follows:
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where x
i
 is the effect for QTL i, y

j
 is standardized record of individual j, J = J

1
 + J

2
 is the total number 

of individuals genotyped for the QTL, y
2 is the residual variance of the individual records, and the 

other terms are as described previously. Since the observations were normalized by subtraction of 
the mean of the two means, it is not necessary to include a mean effect in the likelihood. Since α and 
β are assumed known, this likelihood was maximized only relative to x

i
 and y.

Log L(y), the log‐likelihood, with terms including only constants deleted is computed as 
follows:
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Solutions were obtained by a one‐dimensional search with respect to x
i
. At each value of x

i
, the 

ML value for y was determined by solving for ∂[Log L(y)]/∂ y = 0 as follows:
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In the interval mapping QTL analyses, the genotype of each individual with respect to the QTL 
is not known with certainty. In this case L(y) is computed as follows:
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where p
j
 is the probability that the progeny received the positive paternal allele, given its marker 

genotype. This likelihood was solved for x
i
 and y by a two‐dimensional grid search.

The prediction error variances of the QTL estimates were estimated by two methods. First, from 
the inverse of the two‐by‐two matrix of second derivatives for x

i
 and y, as described for the 
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parameters of the gamma distribution, these were denoted “empirical” values because the second 
derivatives were derived numerically. The second method applied the assumption that the minor 
diagonal elements of the matrix of second derivatives of Log L(y) are small relative to the major 
diagonal elements. Under this assumption, 1/[∂2[Log L(y)]/ xi

2] will be approximately equal to the 
prediction error variance of x

i
. If the QTL genotype was assumed known without error, ∂2[Log 

L(y)]/ xi
2 is computed as follows:

	

2

2 2 2

1

4

Log L y

x x

J

i i y

	 (10.17)

For large values of x
i
, the first term on the right‐hand side of this equation tends to zero. Similarly, 

∂2[Log L(y)]/ y
2 can be derived by differentiating Equation (10.14) twice and substituting from 

Equation (10.15) as follows:
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which is the value of ∂2[Log L(y)]/ y
2 for a sample from a normal distribution. For both methods, 

SE estimates were derived as the square roots of the corresponding prediction error variances.

Bayesian Estimation of QTL from Whole Genome Scans: Simulation Results

The method was evaluated on a simulated daughter design genome scan with 1000 contrasts under 
the assumption that the true effects were sampled from a gamma distribution with α and β values 
equal to 1.99 and 0.90, respectively. For each contrast, an effect was simulated by random sampling 
from this gamma distribution, and a sample of 400 individual records was generated. Each individual 
had a 50% chance to receive the positive or the negative QTL allele. A random residual was 
generated by sampling from a normal distribution with mean zero and a standard deviation of 10. 
Thus the expected SE for the QTL effect for a balanced sample of 400 individuals will be equal to 
unity. The trait value for each individual was then computed as the residual +½ the QTL effect for 
individuals that received the positive allele and −½ the QTL effect for individuals that received the 
negative allele.

The least squares (LS) QTL effect was then estimated for each simulated QTL based only on the 
genotypes and trait records. If the absolute value of the t‐value was greater than 2.5 (a probability 
of 0.012 for comparison‐wise significance), then the QTL effect was also estimated by the Bayesian 
method, with the QTL genotypes assumed known.

There were 54 contrasts with t‐values greater than 2.5, as compared to 1000 * 0.012 = 12 expected 
purely by chance. Thus the FDR= 0.22. The LS estimates were highly biased, with a mean value of 
3.04, as compared to 1.45 for the simulated values. The mean of the ML estimates was 1.26, which 
is much closer to the simulated values. The standard deviation of the ML estimates was slightly 
higher than the LS estimates, although both standard deviations were considerably lower than the 
standard deviation of the simulated effects. The LS and Bayesian estimates for σ

y
 were both very 

close to the simulated value of 10. The R2 of the simulated values was more than fivefold for the 
Bayesian estimates, as compared to the LS estimates, but both were less than 0.1.
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Summary

With multiple markers, and the possibility of complete genome scans, comparison‐wise type I error 
rates for individual tests are virtually meaningless. Furthermore, estimates of QTL effects deemed 
“significant” would be biased. Four methods were presented to deal with the problem of multiple 
comparisons: computation of error rates for complete genome scans, permutation tests, controlling 
the FDR, and a Bayesian analysis based on prior information on the distribution of segregating QTL 
in the population. None of these methods completely solve the problem of multiple comparisons. 
Various solutions have been presented to analyze multiple pedigrees, covering the range from a 
separate analysis of each family to a joint analysis with the same allele segregating in all families, 
but again there is no uniformly “best” solution. In the last three sections, we described Bayesian 
methods to deal with bias in the estimation of QTL effects due to “selection” of the significant 
effects. These methods are computing intensive and require assumptions with respect to the 
distribution of QTL effects in the population.
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Linkage Mapping of QTL11

Introduction

As first demonstrated in 1923 by Sax, a simple linear model can be used to detect linkage between 
segregating QTL and genetic markers in crosses between inbred lines. However, this analysis cannot 
be used to accurately map QTL or to derive unbiased estimates of QTL effects. These objectives can 
be obtained by a technique denoted “interval mapping.”

Although the major thrust of this book will be estimation of QTL effects based on linkage 
disequilibrium (LD) mapping, LD mapping was derived based on interval mapping, which was first 
proposed in 1989 based on maximum likelihood (ML) methodology for crosses between inbred 
lines (Lander and Botstein, 1989). In 1992 methods were developed for application of linkage 
mapping via nonlinear regression. These methods were easier to apply than ML. Furthermore, 
by minor modifications it was also possible to apply these methods to daughter and granddaughter 
designs.

Interval Mapping by Nonlinear Regression: The Backcross Design

The nonlinear least squares method of QTL parameter estimation with two flanking markers was 
developed independently in 1992 by Haley and Knott and by Martinez and Curnow. We will 
illustrate the method using the backcross (BC) design, although the method has been adapted to 
most of the designs considered in the previous chapter with flanking markers. The BC design with 
two flanking markers is illustrated in Figure 11.1. For the BC progeny only the chromosome from 
the F‐1 parent is shown. There are eight possible gametic haplotypes (including the QTL): two 
nonrecombinants, four single recombinants, and two double recombinants. The following model 
can be defined:

	 Y p p eij i i ij1 21 	 (11.1)

where Y
ij
 is the production record of the jth individual with marker genotype i, μ

1
 is the mean for 

individuals with genotype Q
1
Q

2
, μ

2
 is the mean for individuals with genotype Q

2
Q

2
, p

i
 is the 
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probability that an individual with marker genotype i has genotype Q
2
Q

2
, and e

ij
 is the residual. This 

model can be simplified as follows:

	 Y p eij i ij1 2 1 	 (11.2)

p
i
 is a function of the recombination parameters and can be estimated for each of the four marker 

haplotypes—M
1
N

1
, M

1
N

2
, M

2
N

1
, and M

2
N

2
—as follows:
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where R is the recombination frequency between the two markers M and N, r
1
 is the recombination 

frequency between M and Q, and r
2
 is the recombination frequency between Q and N.

If r
1
 was known, it would be possible to substitute these values into Equation (11.2) and then 

solve as a simple linear regression, with μ
1
 as the y‐intercept and μ

2
 − μ

1
 as the slope. Since r

1
 is not 

known, Equation (11.2) can be considered as four separate equations, one for each marker haplotype. 

Parental strains

X

XF–1

Non-
recombinants

Backcross progeny
Single

recombinants

M1 Q1 N1

M2 Q2 N2

Double
recombinants

M2 Q2 N2

M2 Q2 N2

M1 Q1 N1

M1 Q1 N1

M2 Q2 N2

M2 Q2 N2

M1Q1 N1
M1 Q1 N2 M1 Q2 N1

M2 Q1 N2M1 Q2 N2

M2 Q1 N1

M2 Q2 N1

M2 Q2 N2

Figure 11.1  The backcross design with flanking markers.
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Assuming that R is known without an error, it is possible to solve for r
2
 in terms of R and r

1
 for the 

assumed map function. For example, for the Haldane function (Haldane, 1919), which assumes zero 
interference,

	 R r r r r1 2 1 22 	 (11.7)

	
r

R r

r2
1

11 2
	 (11.8)

This still leaves us with four equations, which are nonlinear functions of the QTL means and r
1
. 

The least squares solution for this model, which is nonlinear in r
1
 for all three parameters, will be 

the values that minimize the residual sum of squares as a function of RSS(r
1
), computed as 

follows:
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where Y rij ( )1  is the estimated value of Y
ij
 with recombination frequency of r

1
 between the QTL and 

the first marker and n
j
 is the number of individuals in marker class i.

The least squares solutions can be derived by a nonlinear least squares algorithm, such as PROC 
NLIN of SAS (SAS Institute Inc., 1999). The appropriate ratio for the F‐test is the model mean 
squares divided by the residual mean squares. The model sum of squares can then be computed as 
the total sum of squares less the residual sum of squares. In theory, the mean squares are derived by 
dividing the sums of squares by their degrees of freedom. Under the null hypothesis of no segregating 
QTL, this ratio should have an approximate central F‐distribution.

Interval Mapping for Daughter and Granddaughter Designs

For the granddaughter design, several studies have suggested analyzing either estimate breeding 
values (EBV) (Andersson‐Elkund et al.,1990; Cowan et al.,1992) or daughter yield deviations (DYD) 
(Hoeschele and VanRaden, 1993b) based on mixed models that include repeated records and fixed 
nuisance effects. As explained in section “Important Properties of Mixed Model Solutions” of 
Chapter 6, DYD are the daughter record means of each son adjusted for systematic environmental 
effects and merits of mates (VanRaden and Wiggans, 1991). The EBV or DYD is then analyzed by a 
linear model including only the effects associated directly with the genetic markers. EBV derived 
from a mixed model will be regressed toward the mean, and therefore estimates of QTL effects 
derived as described will be biased. In addition, the variances of either EBV or DYD will be a 
function of the quantity of information on the son. Thus, these studies have proposed to weight the 
evaluations by some function of their reliabilities, the coefficient of determination between the 
genetic evaluation and the actual genetic value. In the mixed model equations the coefficient matrix 
is multiplied by the inverse of the residual variance matrix. Therefore, for DYD, for which the vari-
ance decreases as the number of daughters increases, weighting by the reliabilities is approximately 
correct. However, for EBV derived from mixed model analyses, variances increase as the number of 
progeny increases. Therefore the effect of weighting by the reliability has an effect opposite to that 
desired. Sons with few daughters are multiplied by a smaller factor, even though their variance is less.
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An additional problem in the analysis of segregating families is the question of whether different 
families should be analyzed jointly or separately. In crosses between inbred lines, if each individual 
phenotyped is also genotyped, then the polygenic effect of each individual is completely confounded 
with the other factors that make up the random residual associated with each individual. This is not 
the case with the daughter design where all daughters of a sire have a common polygenic effect. 
The common polygenic effect will not affect QTL genotype estimates computed within a family. 
The common polygenic effects can then be considered part of the general mean.

Knott et al. (1994, 1996) proposed that the nonlinear regression method could be used to estimate 
QTL effects for multiple pedigrees. They assumed that only a single QTL was segregating in the 
chromosomal segment under analysis, but did not make assumptions with respect to the number of 
different alleles present in the population. Based on these assumptions, they assumed that QTL 
location was the same for all families but estimated a separate QTL substitution effect for each 
family. This model is amenable to analysis by nonlinear regression and does not require estimation 
of a common family polygenic effect. The disadvantage is that all families are assumed to be hete-
rozygous for the QTL, which will generally not be the case.

The analysis model is as follows:

	 Y p p eijk i ij i ij ijk1 21 	 (11.10)

where Y
ijk

 is the trait record for individual k of family i with marker genotype j, μ
1i
 and μ

2i
 are the 

means for progeny that received paternal QTL alleles 1 and 2 in family i, p
ij
 is the probability that a 

progeny of sire i with marker genotype j received paternal QTL allele 1, and e
ijk

 is the random 
residual. Although QTL location is assumed to be the same in all families, p

ij
 must be computed 

separately for each individual, because it will depend on which markers are informative in each 
progeny of each family. A marker will be “informative” only if the genotype of the progeny is dif-
ferent from the genotype of the sire. Otherwise it is not possible to determine which paternal allele 
was passed to the progeny. As noted also by Martinez and Curnow (1994), even if all markers to one 
side of the putative QTL location are uninformative in a specific individual, p

ij
 can still be calculated 

based on the recombination frequency between the assumed QTL position and the single linked 
marker. Thus, only individuals without any markers in linkage to the putative QTL location will be 
discarded from the analysis.

There are two main advantages of this method. First, data across families is combined to estimate 
the QTL location. This is especially important in daughter and granddaughter designs, because only 
some of the markers analyzed will be informative in each pedigree. Second, since an individual 
substitution effect is computed within each family, it is not necessary to estimate a common poly-
genic effect for each family. The main disadvantage of this method, as noted previously, is that each 
family is considered to be heterozygous for two different QTL alleles.

Computation of Confidence Intervals

For maximum likelihood estimation (MLE), the estimation error variance–covariance matrix can be 
estimated from the inverse of the ML matrix of second differentials. This is also the case for linear 
model estimation. The prediction error variance estimates can then be used to derive confidence 
intervals (CI) for all the parameters. This is not an option for interval mapping by the nonlinear 
regression method. Even for MLE this method of deriving CI has limitations. First, in some cases, 
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the likelihood function cannot be readily differentiated twice for all parameters, especially if 
multiple markers and QTL are included in the analysis. Second, estimation of CI by a linear function 
of the square roots of the prediction error variances assumes that the distributions of the parameter 
estimates are symmetric. This of course will not be the case for variances, which can only be 
positive, but will also not be the case for recombination parameters, especially if the putative QTL 
location is close to a marker or the end of the chromosome. Alternative methods to estimate CI, 
especially for QTL location, have also been proposed.

Lander and Botstein (1989) proposed estimating “support intervals” for QTL location, based on 
the likelihood ratio test. In a likelihood ratio test, the likelihood maximized over all parameters is 
compared with the ML obtained with some of the parameters fixed. If the null hypothesis is correct, 
the log of the ratio of the two likelihoods times 2 should have a χ2 distribution with degrees of 
freedom equal to the number of parameters fixed in the null hypothesis that are allowed to “float” 
in the alternative hypothesis. Similarly, the lower bound of the CI of 1 − α probability for any of the 
parameter estimates can be constructed based on the following statistic:

	

2
1 2 21/

maxn
o

L

L
	 (11.11)

where χ2
(1 − α/2)

 is the χ2 squared value for 1 − α/2 with one degree of freedom, L
max

 is the likelihood 
value with the likelihood maximized over all parameters, and L

o
 is the likelihood maximized 

over all parameters with θ fixed at θ
o
, which is a value for the parameter θ less than the ML value, 

but closest to its ML value that gives the appropriate χ2 value. Similarly the upper bound of the CI 
is determined by the same statistic with θ

o
 computed as a value of θ greater than the ML value that 

satisfies this equation.
Mangin et al. (1994) showed that for QTL location, this support interval underestimated the 

actual CI, especially for small QTL effects. They were able to derive a rather complicated test 
statistic that accurately estimates the CI for small QTL effects, but the distribution of this test 
statistic must be computed empirically. Furthermore, this method does not account the possibility 
that the QTL is outside the marker bracket. In this case there is still likely to be a maximum for QTL 
location within the marker bracket (Martinez and Curnow, 1992). It does account for the possibility 
that the CI is asymmetric, which will generally be the case, especially if the QTL is located near an 
end of the chromosome.

Simulation Studies of CIs

To obtain accurate estimates of the CI by simulation, it is necessary to generate a large number of 
samples. For example, if 1000 samples are generated, the 95% confidence limits are obtained by 
determining the 25 lowest and 25 highest estimates for each parameter. Thus the effective number 
of samples can be considered to be 50. In much smaller samples, the estimated confidence limits 
will vary widely.

Darvasi et al. (1993) estimated QTL parameter estimation error variances based on the inverse of 
the matrix of second differentials and by repeated simulation for the BC design with marker brack-
ets. The 95% CI was then estimated as ±2 estimation SE for each parameter. They also directly 
estimated the 95% CI for each parameter by repeated simulation. All methods were very accurate 
for estimation of QTL effect variances. Estimates based on the second differential matrix tended to 
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slightly overestimate SE for QTL means relative to the empirical estimates, especially for large 
spacing between markers. Neither the QTL effect nor marker spacing had any appreciable effect on 
CI for QTL means. The effect of sample size was quadratic, as expected. That is, doubling the 
sample decreased the CI by a factor of about the square root of two.

For QTL map location, the estimates based on the empirical 95% CI and four times the empirical 
standard error were generally similar. However, estimates based on the second differential matrix 
tended to underestimate the CI for small marker intervals and overestimate the CI for large marker 
intervals. Differences were in some cases more than twofold. Clearly, for this parameter the 
asymptotic properties of the second differential matrix do not hold. For the BC design and a single 
marker, the matrix of second differentials tended to overestimate error variance for all parameters, 
even though by theory the opposite should occur. It should be noted though that even for very large 
samples, the error variance estimated by the matrix of second differentials is correct only at the 
point of ML. The likelihood function can behave marked differently for other parameter values.

Mackinnon and Weller (1995) estimated parameter SE both empirically and by the matrix of 
second differentials for the daughter design for a single marker and also analytically computed the 
95% CI, as described earlier. In addition to QTL means, recombination rate, and the residual 
variance, they also estimated the QTL allele frequencies. CI estimates based on assuming that all 
other parameters were fixed tended to underestimate the SE derived by either repeat simulation or 
the matrix of second differentials. As for the BC design with a single marker, the matrix of second 
differentials tended to overestimate the SE, even though the opposite was expected. Discrepancies 
increased with decrease in sample size. CIs were largest for recombination rate. The standard error 
for r with a substitution effect of 0.5 was about 0.1 with 2000 individuals. For the BC design and a 
marker bracket of 50 cM, a similar SE was obtained with only 1000 individuals, although, in both 
cases, the number of QTL genotypes performed was the same.

Empirical Methods to Estimate CIs, Parametric and Nonparametric Bootstrap, 
and Jackknife Methods

In the “parametric bootstrap” method, parameter estimates are first derived by any of the methods 
considered. In the second step a large number of sample distributions of equal size to the actual data 
sample are then derived from the assumed theoretical distribution, assuming that the original param-
eter estimates are the parameter values. Parameter estimates are then derived for each sample. The 
CI for each parameter is then derived from the empirical distributions of the parameter estimates 
from the samples generated. The weakness of the parametric bootstrap method is that it assumes 
that both the theoretical distribution and the original parameter estimates are correct. If either of 
these assumptions is incorrect, then estimated CI can differ widely from the true values.

Efron and Tibshirani (1993) proposed empirical “bootstrap” methods to estimate CI in situations 
where analytical methods cannot be applied. In “nonparametric bootstrapping,” a large number of 
repeat samples of size equal to the actual data are generated by sampling with repeats from the 
original data. Thus, in a particular sample some of the actual records will appear more than once, 
while other observations will be missing. If the actual data consists of at least several hundred 
observations, it will be possible to draw a virtually unlimited number of different samples in this 
method. The parameter estimates are then derived for each sample, and, as in parametric bootstrap-
ping, the distribution of these estimates is used to derive empirical CI limits. This method is not 
strictly “nonparametric,” because assumptions about the distribution are still employed to derive 
parameter estimates for each sample. This method is more robust to violations of assumptions used 
to derive parameter estimates.
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“Jackknife” samples are derived from the original data sample by generating new samples 
consisting of the original data, with one observation deleted. Thus, unlike the empirical bootstrap, 
the number of jackknife samples that can be derived is only equal to the sample size. Bootstrap and 
jackknife sampling can be combined to analyze complex problems.

Visscher et al. (1996) applied the nonparametric bootstrap method to estimate CI for QTL 
location in a BC design with multiple markers and a single QTL segregating on the chromosome. 
Accuracy of the CI estimate was determined by the proportion of CIs that actually contained the 
QTL. They found that this method was able to estimate accurately the CI for QTL location, provided 
that the CI was less than two‐thirds of the entire chromosome. If the CI estimate was larger than 
two‐thirds of the chromosome, it tended to overestimate the actual CI. This is inevitable as the QTL 
effect and sample size become smaller. The estimated CI for QTL location approaches the 
entire  chromosome, and assuming the model is correct, the QTL must lie somewhere on the 
chromosome.

As noted previously by Mangin et al. (1994), the support interval or “LOD drop‐off” method of 
Lander and Botstein (1989) consistently underestimated the CI. Similar to the results of Darvasi 
et al. (1993), decreasing the marker spacing from 20 to 10 cM had virtually no effect on the estimated 
CI. The bootstrap method was also able to derive accurate CI for the other QTL parameters, such as 
QTL effect, and these were shown by Darvasi et al. (1993) to be “well behaved.” Weller et al. 
(2014a) found that the nonparametric bootstrap could yield a bimodal distribution if more than a 
single QTL was segregating on the chromosome.

Summary

Methods to estimate parameters of QTL effects have been derived for most experimental designs of 
interest, and these methods are able to derive virtually unbiased estimates, based on assumptions 
that do not necessarily reflect reality. For example, for daughter and granddaughter designs, the 
general assumption is that a single QTL is segregating within a chromosomal segment, but each 
individual has two different QTL alleles. This will not be the case if two linked QTL are segregating 
in the population. Although there are analytical methods to estimate CI of QTL parameters, these 
methods tend to be biased, especially for QTL location. Empirical methods have been developed, 
which apparently work better.
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Linkage Disequilibrium Mapping of QTL12

Introduction

Even for relatively large QTL effects and sample sizes, the minimal confidence interval for QTL 
location will still be quite large if only linkage mapping is applied. Confidence intervals can be 
dramatically reduced by application of linkage disequilibrium (LD) mapping, which is based on the 
premise that population‐wide LD exists in commercial animal populations. It is generally assumed 
that population‐wide LD for a QTL is due to the fact that each specific QTL polymorphism was 
introduced only once into the population by either mutation or migration. Thus the new allele was 
originally associated with a specific chromosome. The fact that a segregating QTL can be detected 
indicates that the frequency of the rare allele increased over time either due to selection or drift. 
With an increase in the number of generations since the occurrence of the mutation, the length of 
the haplotype still associated with the mutation decreases and will differ among individuals. Unlike 
linkage mapping that assumes a known series of crosses, simple equations cannot be derived to 
estimate QTL parameters and confidence intervals for LD QTL analysis. Methods to estimate LD 
between markers will be considered in the first section of this chapter, and studies that estimate the 
extent of LD in animal populations will be reviewed in the second section. In the third section we 
will consider basic principles of LD QTL mapping. In the fourth section we will consider joint 
linkage and LD mapping of QTL as applied to the granddaughter design, and in the final section we 
will consider multitrait and multiple QTL LD mapping.

Estimation of Linkage Disequilibrium in Animal Populations

The two main statistics used to measure linkage disequilibrium (LD) are D′ and r2. In both cases LD 
is measured between each pair of loci, which we will denote A and B. D′ is computed as follows:

	
D p q D

i

u

j

v

i j ij
1 1

	 (12.1)



90	 Genomic Selection in Animals

where u and v are the respective number of alleles at the two marker loci, p
i
 and q
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The r2, the squared correlation of the alleles at two loci, is the preferred measure of LD for 
biallelic markers. In this case we will denote the two alleles at the first locus as A and a and the two 
alleles at the second locus as B and b. Then r2 is computed as follows:
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where D = f (AB) − f (A)f (B) and f (AB), f (A), f (a), f (b), and f (B) are the observed frequencies of 
haplotype AB and of alleles A, a, B, and b, respectively. Neither measure of LD is completely 
independent of allelic frequencies.

Several studies have found that population‐wide LD exists in commercial animal populations, 
although there are conflicting reports as to its extent. This is in part due to the density and nature 
of markers analyzed and which statistic was used to estimate LD and the population of interest, as 
LD is a population‐specific measurement.

Farnir et al. (2000) analyzing 284 microsatellites and using the D′ measure of LD found that 
population‐wide LD in dairy cattle extended in some chromosomal regions for more than 10 cM, 
while Sargolzaei et al. (2008) concluded based on analysis of 5564 SNP markers that “useful” LD 
(r2 > 0.3) generally did not extend beyond 100 kb, or approximately 0.1 cM.

Both methods assume that the haplotypes between pairs of loci of all individuals are known 
without an error. Generally for individuals heterozygous for both loci, haplotypes can only be 
determined unequivocally if an appropriate pedigree of individuals is genotyped for these loci. 
In daughter or granddaughter designs, which consist of a relatively small number of half‐sib 
families, haplotypes can be determined for the patriarch of each family based on their progeny. 
The paternal haplotypes of the progeny can then be determined under the assumption of zero 
recombination, which is reasonable if the two loci are tightly linked. There is a very extensive 
literature for the determination of haplotypes for more complex pedigrees (e.g., Baruch 
et al., 2006; Weng et al., 2013).

Linkage Disequilibrium QTL Mapping: Basic Principles

LD between a single marker and a QTL can be detected by regression for a biallelic marker or 
ANOVA for a multiallelic marker. For a biallelic marker the simplest model will be the regression 
of the phenotype for the quantitative trait on the number of “+” alleles (0, 1, or 2) with one of the 
two alleles arbitrarily determined to be the “+” allele. This method was first used successfully for a 
quantitative trait in animals by Cohen et al. (2002). Since then this method has been applied in 
numerous cases in many species.
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Meuwissen and Goddard (2000) extended LD mapping of QTL to multiple marker loci based on 
haplotype analysis. Analysis of haplotypes will generally have greater statistical power than analysis 
of individual markers and also allows for mapping of the QTL within the haplotype. The basic 
assumption of the method is that for at least one of the QTL alleles, the chromosomal region in 
proximity to the QTL will be identical by descent (IBD) for most individuals that received this QTL 
allele. Thus the phenotypic values for the quantitative trait of individuals with the same haplotype 
in the vicinity of the QTL will be more highly correlated than individuals with different haplotypes. 
The basic analysis model can then be described as follows:

	 y Xb Zh e	 (12.4)

where y is the vector of records, b is the vector of fixed effects for which the data are to be corrected, 
h is a vector of random effects of the haplotypes, e is the vector of residuals, and X and Z are known 
incidence matrices for the effects in b and h, respectively. The variance of the residuals is Var(e) =  e

2R, 
where R is assumed to be an identity matrix. The variance of the haplotype effects is Var(h) =  h p

2H , 
where the matrix H

p
 yields the (co)variances of the haplotype effects up to proportionality and subscript 

“p” indicates that H
p
 depends on the assumed position of the QTL. The dimension of H

p
 is q*q, where 

q is the number of different haplotypes in the data set given the haplotype length.
Assuming multivariate normality, the residual log‐likelihood of the data under the above model is
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2] and b̂ is the generalized least‐squares estimate of b. Given a 

QTL position, p, that is, given H
p
, this likelihood is maximized to obtain estimates of the variance 

components h
2 and e

2. The elements of H
p
 are the probabilities that the two haplotypes corresponding 

to each row and column of the matrix received the same QTL allele IBD times h
2. That is, the 

covariance between two haplotype effects, h
i
 and h

j
, is

	 Cov , Prob IBD marker haplotypes hh hi j | 2	 (12.6)

where Prob(IBD|marker haplotypes) is the probability that the QTL locus is IBD given the marker 
haplotypes. Calculation of these probabilities is not trivial, but can be computed either by the 
“coalescence process” (Hudson, 1985) or the “gene dropping” method (Maccluer et al.,1986). Both 
methods require extensive computations.

In the gene dropping method, markers and QTL are simulated in a base generation of N
e
 individuals. 

All 2N
e
 base QTL alleles, which are called founder alleles, have a unique number. The following N

G
 

descendant generations are simulated by choosing at random parents from the previous generation and 
letting their N

e
 offspring inherit haplotypes or recombinant haplotypes according to Mendel’s rules and 

the recombination probabilities. Because all the founder QTL alleles have unique numbers, any two 
QTL alleles with the same number in generation N

G
 are IBD.

The IBD probabilities of a pair of haplotypes can be estimated within each simulation by dividing 
the number of times the QTL locus was IBD by the total number of times the haplotype pair was 
found. The estimates of the IBD probabilities of the haplotype pairs that belong to the same 
haplotype pair group are averaged within a simulation run, and these averages are accumulated 
across 100,000 repeated simulations.
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Applying this method to the simulated data, a QTL was correctly positioned within a region of 3, 
1.5, and 0.75 cM in 70, 62, and 68%, respectively, of the replicates using markers spaced at intervals 
of 1, 0.5, and 0.25 cM, respectively.

Joint Linkage and Linkage Disequilibrium Mapping

In a daughter or granddaughter design, paternal haplotypes of the final generation genotyped are 
identical to the haplotypes of their sires, except for recombination, while the maternal haplotypes 
can be considered a random sample from the population. For linkage mapping of daughter or grand-
daughter designs described previously, only the paternal haplotypes are analyzed. In order to utilize 
both haplotypes, Meuwissen et al. (2002) presented an algorithm for joint linkage and LD mapping. 
The first step is determination of haplotypes, which should generally not be a problem for daughter 
or granddaughter designs. Meuwissen et al. (2002) used a Gibbs sampling algorithm but included 
only those haplotypes that could be determined with near certainty.

Similar to the case in the previous section, IBD probabilities at the assumed QTL location must 
be computed between all pairs of haplotypes. The IBD probabilities at the QTL of the base 
haplotypes with the paternal haplotypes of the sons, and among the paternal haplotypes, are obtained 
from the following equation, which states that the IBD probability, P

IBD
(X(p);Y), of the paternal 

QTL allele of son X, X(p), with any other QTL allele, Y, equals

	
P X p Y r P S p Y r P S m YIBD IBD IBD; ; ;1 	 (12.7)

(Fernando and Grossman, 1989), where S(p) and S(m) denote the paternal and maternal alleles of 
the sire S, respectively, and r is the probability that the son inherited the paternal QTL allele of the 
sire. Hence, X(p) = S(p) with probability r, and X(p) = S(m) with probability (1 − r). The probability 
r was predicted from the paternal or maternal inheritance of the nearest informative markers that 
flanked the putative QTL position. The above equation is used recurrently to fill in the missing IBD 
probabilities at the QTL of paternal haplotypes of sires using the known IBD probabilities among 
the base haplotypes.

The next step is then to model the records as a function of the haplotype effects. In the case of the 
granddaughter design, the “records” analyzed will be the sons genetic evaluations or DYD, as 
explained previously. Since the sons are related through sires, Equation (12.4) was modified as 
follows:

	 y 1 Zh u e	 (12.8)

where μ is the overall mean, 1 is a vector of ones, u is a vector of random polygenic effects, and 
the other terms are as in Equation (12.4). The variance of the haplotype effects is as described, and 
the variance of the polygenic effects is A s

2, where A is the numerator relationship matrix 
and s

2 is the variance among the genetic evaluations or DYD. This model differs from the model 
of Equation (12.4) in that fixed effects, other than a population mean, are not included, while a 
polygenic effect is. As in the previous section, the most likely QTL location is determined by 
maximizing the residual log‐likelihood relative to the QTL position. The residual log‐likelihood 
will also be slightly different, because of the inclusion of a polygenic effect and the deletion of 
fixed effects other than a general mean.
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Using this method, Meuwissen et al. (2002) were able to map a QTL affecting twinning rate to a 
chromosomal region of less than 1 cM in the middle part of bovine chromosome 5. Olsen et al. 
(2005) used this method to map the large QTL on bovine chromosome 6 affecting protein concen-
tration to a region of 420 kb, approximately 0.5 cM. With linkage mapping via a granddaughter 
design, the confidence interval for QTL location was 7.5 cM. A few months later, Cohen‐Zinder 
et al. (2005) identified the causative polymorphism for this QTL as a missense mutation in the 
ABCG2 gene located within the region proposed by Olsen et al. (2005).

Multitrait and Multiple QTL LD Mapping

The method of joint linkage and LD mapping was extended by Meuwissen and Goddard (2004) to 
multitrait and multiple QTL analysis. Assuming that m traits are analyzed, the vector of m phenotypic 
records of animal i, y

i
, is modeled by

	
y X b u v ei i i

j
ji ij j iq q1 2 	 (12.9)

where y
i
 here is the (m′1) vector of daughter yield deviations (DYD) of sire i, X

i
b denotes the (m′1) 

vector of (nongenetic) fixed effect corrections for the traits of animal i, u
i
 = (m′1) vector of effects 

of the background genes (polygenic effect) on each of the traits, e
i
 = (m′1) vector of environmental 

effects on each of the traits, J denotes summation over all possible QTL positions on the 
chromosome, v

j
 = the (m′1) direction vector of the direction of the effects of the QTL alleles on 

different traits at position j, and q
ij1

 (q
ij2

) = the size of the QTL effect for the paternal (maternal) 
allele of animal i at position j along the direction v

j
.

The dependencies between the effects of the fitted QTL are reduced by assuming that there is 
only one QTL per marker bracket and that only the midpoints of the brackets are considered as 
putative QTL positions. The likelihood conditional on all unknowns was assumed to be multivariate 
normal. Equations for the complete joint posterior distribution are rather complicated and are given 
in Meuwissen and Goddard (2004). Parameters were estimated by Gibbs sampling. The method was 
applied to the QTL on bovine chromosome 14 also analyzed by Riquet et al. (1999). The quantitative 
trait nucleotide for this QTL was identified as a missense mutation in the gene DGAT1 (Grisart 
et al., 2002; Winter et al., 2002), which apparently affects all milk production traits but has the 
greatest effect on fat concentration. The QTL was mapped to a region of 0.04 cM, and the effects of 
the gene were accurately estimated as compared to previous studies. No indications for a second 
QTL affecting milk production traits were found on this chromosome, despite the results of Kuhn 
et al. (2004) who found that additional polymorphisms in DGAT1 also affect fat concentration.

Summary

Similar to linkage mapping, LD mapping was first developed to map specific QTL and estimate 
their effects. Although with application of LD mapping it is possible to map QTL to chromosomal 
intervals of less than a single map unit, its current relevance to genomic selection is very limited, as 
will be demonstrated in the coming chapters. Even though genomic selection is based on LD 
between genetic markers and QTL, determination of the effects and location of the specific genes 
underlying the economic traits are generally not considered as requirements for computation of 
genomic estimated breeding values.
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Marker‐Assisted Selection: Basic Strategies13

Introduction

In this chapter we summarize the literature dealing with marker‐assisted selection (MAS) prior to 
the introduction of high‐density marker panels including tens of thousands of markers. Most of the 
literature dealing with MAS prior to 2000 assumed that a relatively low number of chromosomal 
segments were assumed to contain QTL of interest, although some of the theory is independent on 
the number of markers included in the analysis.

We will first review the situations in which selection index is inefficient, and in the next section 
we will present the general considerations for MAS within a breed. In the following section we will 
consider the specific problems of MAS in segregating populations. Formulas to compute the opti-
mum selection index with phenotypic and marker information and to compare phenotypic selection 
and MAS for individual selection will be presented in the following section. MAS with traits 
expressed only in a single sex, and selection on juveniles will be considered in the next two sections. 
Optimization of MAS with family selection will be considered in the following section, and the 
reduction of selection gain with MAS due to sampling will be considered in the next section. 
Problems of MAS related to segregating problems will be considered in the next two sections. In the 
final sections we will consider genetic evaluations based on dense whole genome scans, and 
predicted genetic gains obtained in simulation studies.

Situations in Which Selection Index is Inefficient

The practical situations in which selection index is not efficient can be listed as follows:

1.	 Low heritability for trait included in the economic objective
2.	 Traits that cannot be scored on all individuals (males, juveniles, live animals, disease challenge)
3.	 Negative genetic correlations among traits
4.	 Nonadditive genetic variance (dominance, epistasis)
5.	 Epigenetic effects
6.	 Crossbreeding
7.	 “Cryptic” genetic variation
8.	 Introgression
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Many traits of major economic importance have been neglected in breeding programs because of 
low heritability. Prime examples are fertility traits and disease resistance. Selection index works 
best on traits with near normal continuous distributions. Thus, traits such as conception rate, number 
of progeny, or disease have received less emphasis in breeding programs. Selection index is less 
efficient when the trait is expressed only in one sex or only in mature individuals. Certain traits 
cannot be scored on live animals, such as carcass composition. In this case genetic values can only 
be estimated through records of relatives.

As shown by Falconer (1964) negative genetic correlations among traits included in the selection 
objective tend to build up over time. Nearly all commercial breeding programs include traits with 
negative genetic correlations. The effect of negative genetic correlations among traits included in 
the selection objective will be considered later in detail.

Clearly, selection index does not utilize nonadditive genetic variance, nor does it utilize epigenetic 
variance. “Epigenetics” refers to functionally relevant changes to the genome that do not involve a 
change in the nucleotide sequence. Examples of mechanisms that produce such changes are DNA 
methylation and histone modification, each of which alters how genes are expressed without altering 
the DNA base pair sequence of the individual. Epigenetic changes have been observed to occur in 
response to environmental effects and may “mutate” several times per generation or may be fixed 
for many generations.

Selection index theory does not provide an answer for crossbreeding among traits. The three 
main goals of crossbreeding are (i) utilization of heterosis, (ii) increased genetic variation, and 
(iii) introgression. The “classical” explanations for heterosis are elimination of inbreeding 
depression and overdominance at the level of the individual locus. Even in the absence of these 
“true” genetic effects, crossbreeding is often more profitable than selection within a single line. 
Moav (1966) defined five types of “economic” heterosis.

Different breeds are sometimes crossed to produce a population with increased genetic variance. 
Selection index can then be used to increase the economic value in future generations. However, 
desirable genes of individuals with overall inferior phenotypes can be lost through trait‐based 
selection. Generally only the economically best breeds will be considered as parental candidates. 
Again, some breeds with overall inferior phenotypes may carry some desirable genes, which will 
not be found by trait‐based selection. This is especially true of wild progenitors of domestic species. 
This “cryptic” genetic variation can be utilized via MAS.

Potential Contribution of MAS for Selection within a Breed: General Considerations

Potentially, MAS can increase annual genetic gain by:

1.	 Increasing the accuracy of evaluation
2.	 Increasing the selection intensity
3.	 Decreasing the generation interval

Most of the studies on MAS have dealt with increasing the accuracy of evaluation. Information 
on the individual genes affecting the trait of interest does increase the accuracy of the evaluation, 
but the effect decreases as the heritability increases. Assume that marker information is available for 
QTL affecting some of the traits included in the breeding objective. We will define m

s
 as the “net 

marker score,” which is the sum of the additive effects associated with the markers for a given 
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individual. With information on individual loci in addition to phenotypic trait values, Lande and 
Thompson (1990) proposed that selection index methodology can be used to construct an optimum 
linear selection index, I

s
, of the form

	 I b ms m sb yy 	 (13.1)

where by represents the index coefficients for the quantitative trait records, y, and b
m
 represents the 

index coefficient for m
s
. by and y are vectors, while b

m
 and m

s
 are scalars. That is, the marker infor-

mation can be considered the addition of a single trait to the selection index. The index coefficients 
can be computed based on the general selection index equations:

	 b V Cvp
1 	 (13.2)

where V
p
 is the phenotypic variance matrix for the recorded traits, C is the genetic covariance matrix 

between the recorded traits and the traits with economic values, and v is the vector of economic 
values. In the case of selection on phenotype and marker information, the marker score has no 
intrinsic economic value. Therefore, the coefficient of the net marker score in v, the vector of 
economic values, will be equal to zero. We will now consider in detail several situations of interest.

Phenotypic Selection versus MAS for Individual Selection

In the simplest case we will assume that for trait‐based selection individuals are selected based on a 
single phenotypic record and that for MAS individuals are selected based on the phenotypic record 
and their own marker information. Information from relatives is not considered. The phenotypic and 
genetic variance matrices are computed as follows:

	
V Gp

p m

m m

A m

m m

and
2 2

2 2

2 2

2 2
	 (13.3)

where p
2 and A

2 are phenotypic and genetic variances and m
2  is the additive genetic variance 

explained by the genetic markers. In terms of the additive genetic variance, these equations become

	
V Gp

m

m m

m

m m

and
1 12/h p

p p

p

p p
	 (13.4)

where h2 is the heritability and p
m
 is the fraction of the additive genetic variance associated with the 

genetic markers, that is, p
m
 =  m A

2 2/ . Inverting V
p
 and substituting into Equation (13.2) gives index 

coefficients of (p
m
 − pm

2 )(p
m
/h2 − pm

2 ) and (p
m
/h2 − pm

2 )2. The actual b‐values will be functions of the 
trait units. Therefore the ratio of the values has more intrinsic meaning. This ratio is computed as 
follows:

	

b

b

h

p
m

x m

1 1

1

2/
	 (13.5)
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where b
m
 and b

x
 are the index coefficients for marker and phenotypic information, respectively. 

From this equation it can be deduced that as the heritability of the selection objective tends toward 
unity, b

m
 tends to zero, regardless of p

m
.

The relative selection efficiency (RSE) of two different indices is defined as the ratio of their 
expected genetic gains (Weller, 1994). The economic value of genetic gain by phenotypic selection 
will be i

p
hσ

A
. Thus the RSE of a selection index including marker information to a selection 

index  based only on trait values for individual selection will be equal to (v′G′V
p
−1Gv)0.5/(hσ

A
). 

The elements of v, G, and V
p
 are given earlier. V

p
, a 2 × 2 matrix, can be easily inverted. Inverting 

this matrix and multiplying the vectors and matrices gives (Lande and Thompson, 1990)
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m
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h

p
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2

2
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1

1

.

	 (13.6)

As heritability tends to unity, so does RSE. For h2 = 0.25 and p
m
 = 0.5, RSE = 1.5. Thus, gains for 

individual selection through MAS can be quite significant. Equation (13.6) gives the added gain due 
to selection on an index including phenotypic information on the selection objective and marker 
information. If selection is based only on known QTL without information on the economic trait, 
then the RSE of MAS to trait‐based selection is (p

m
/h2)½. Thus, selection efficiency on markers 

alone will be greater than trait‐based selection if p
m
 > h2.

MAS for Sex‐Limited Traits

As noted previously, selection index is inefficient in situations in which the selection criteria cannot 
be scored on all individuals, for example, a sex‐linked trait. Selection efficiency can be increased by 
selection among individuals without phenotypic expression of trait in addition to among those with 
phenotypes. For example, milk production is expressed only in females. Therefore selection among 
males is based only on information from relatives. With only information on relatives, two full 
brothers will have the same genetic evaluation. Information on markers could be used to differentiate 
between them. Furthermore, in many animal species, although the traits of interest are expressed 
only in females, females have a low fertility rate, while males have a very high potential fertility 
rate. Thus, the selection intensities will also be different in the two sexes. For a trait expressed only 
in females, the RSE of MAS on both sexes relative to individual phenotypic selection of females 
will be

	

RSE m m

m

m

f
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h

p

h p

i

i

p
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where i
m
 is the selection intensity in males and i

f
 is the selection intensity in females. The first term 

of this equation is the same as the previous equation and refers to selection of females for which 
both marker and phenotypic information are available. The second term refers to selection on males, 
for which only marker information can be used.

In this case RSE can be significantly higher, as compared to situations in which the trait is 
expressed in both sexes. For example, if p

m
 = h2 and i

m
/i

f
 = 2, then RSE is doubled, relative to the 
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situation in the previous equation. As heritability tends toward unity, this equation tends to 

1 i i pf m m/ . The maximum RSE as p
m
 tends toward unity for any heritability is (1 + i

f
/i

m
)/h.

MAS Including Marker and Phenotypic Information on Relatives

With both marker and trait information on both the individual and his relatives, selection index 
theory can again be used to construct the optimum selection index, which will have the following 
form:

	 I b Z b m b Z b ms zf f mf f zw w mw w	 (13.8)

where Z
f
 is the mean family phenotype, m

f
 is the mean family marker score, Z

w
 is the phenotypic 

deviation of the individual from the family mean, m
w
 is the deviation of the individuals molecular 

score from the family mean, and the b’s are the appropriate index coefficients. As in individual 
selection it is assumed that the marker scores have no intrinsic economic values. We will further 
assume that the selection objective is measured in units of its economic value. In this case, the 
vector of economic weights will be [1 0 1 0]′.

We will define r
f
 as the fraction of genes identical by descent among family members (½ for 

full‐sibs, and ¼ for half‐sibs), n as the number of individuals in each family, and c2 as the residual 
correlation among family members. The values for the index coefficients can be derived based on 
selection index theory as follows (Lande and Thompson, 1990):
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where r
n
 = r

f
 + (1 − r

f
)/n, t = r

f
h2 + c2, t

n
 = t + (1 − t)/n, D

f
 = t

n
 − r

n
h2p, and D

w
 = 1 − t − (1 − r

n
h2p). The 

expression for RSE using information on relatives is quite complex and is given in Lande and 
Thompson (1990).

Maximum Selection Efficiency of MAS with All QTL Known, Relative to Trait‐Based  
Selection, and the Reduction in RSE Due to Sampling Variance

The maximum RSE that can be obtained for various selection schemes with p = 1 was also computed 
by Lande and Thompson (1990). Very large families are assumed for the combined individual and 
family selection schemes. The RSE computed for selection based on half‐sib or full‐sib records is 
much less than for individual phenotypic selection. With half‐sib selection, the maximum gain 
possible, as p tends toward unity, is 2[(1 − h2/4)/(1 + 2h2)]½. For h2 = 0.5, maximum RSE = 1.32, as 
compared to a RSE of 2 for individual selection with the same heritability.

In all of the previous equations, RSE was estimated under the assumption that QTL effects were 
estimated without error. However, if the sample size is finite, there will be sampling errors in the 
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estimated QTL effects. The loss in selection efficiency for MAS due to sampling error will be 
approximately equal to the following expression (Lande and Thompson, 1990):

	

2 1

1 1 2

2 2 2

2 2 2 2

h p N N p h

Nh p h p h p

m Q m

m m m

/
	 (13.10)

where N is the number of individuals analyzed and N
Q
 is the number of marker loci included in the 

selection index. The reduction in RSE will be less than 2% if at least a few hundred individuals are 
analyzed, for any combination of p

m
 and h2 (Lande and Thompson, 1990).

Marker Information in Segregating Populations

Even if segregating QTL are detected via linkage to genetic markers, there are two major problems 
that must be addressed if this information is to be included in actual breeding programs:

1.	 Linkage phase can be different in different individuals. Thus it will be necessary to determine 
the QTL alleles and phase for each candidate for selection.

2.	 Unless the markers are very tightly linked to the QTL, linkage relationships will break down 
in future generations.

To overcome both of these problems, a number of studies have assumed that the actual QTL have 
been identified, and the effects of the different alleles are known a priori. Once the QTL effect is 
determined, it is necessary only to genotype candidates for selection to determine their QTL geno-
types. So far only four QTN have been identified in commercial animal populations (Ron and 
Weller, 2007). More recent studies also indicate that the number of QTN that can be identified in 
dairy cattle is probably less than 10 (https://www.cdcb.us/Report_Data/Marker_Effects/marker_
effects.cfm?Breed=HO). Considering these limitations justifications for QTN determination were 
summarized by Weller and Ron (2011).

Inclusion of Marker Information in “Animal Model” Genetic Evaluations

Most studies that have evaluated MAS have generally assumed that the genome is first scanned to 
locate chromosomal regions containing QTL. Using additional markers, the QTL are progressively 
localized to smaller and smaller chromosomal regions, and finally the actual genes are identified. 
The identified QTL are then used in selection programs (Soller, 1994). Following this approach, 
or even localization of the QTL to a very small chromosomal segment, recombination in future 
generations is no longer a problem, but there is a significant time lag until QTL are utilized in 
breeding programs.

An alternative approach was presented by Fernando and Grossman (1989). Their model estimates 
breeding values of all individuals in the population, including information from genetic markers, 
but does not directly estimate the QTL effects. Instead, they modified a standard individual animal 
model so that in addition to the polygenic effect of each individual, two “gametic effects” are esti-
mated for the two parental marker alleles or haplotypes passed to each individual for each locus. 
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Rather than representing specific QTL alleles, these gametic effects include uncertainty with respect 
to the QTL allele received. Following the principles of selection index, selection based on the 
estimated breeding values including marker information should result in maximum genetic gain in 
the next generation, even though QTL information is incomplete.

Israel and Weller (1998) proposed a complete mixed model analysis of the population with a 
fixed genotype effect for all individuals, including individuals that were not genotyped. For these 
individuals the coefficients of the genotype effect are the probability of each possible QTL 
genotype, based on allele frequencies in the population, and known genotypes of relatives. 
However, when this model was applied to actual data from the Israeli Holstein population for the 
DGAT1 locus segregating QTL on chromosome 14 that affected milk production traits (Grisart 
et al., 2002), the QTL effect was strongly underestimated relative to alternative estimation methods. 
This bias is apparently due to the fact that the genotype probabilities tend to “mimic” the effect 
of relationships as the fraction of animals with inferred genotypes increases. Baruch and Weller 
(2008) were able to derive unbiased estimates of quantitative trait locus effects by the following 
modified “cow model”:

	 Y c h m q eijk i j k ijk	 (13.11)

where c
i
 = random effect of cow i, h

j
 = the effect of herd‐year‐season j, m

k
 = the fixed parity effect, 

q = the QTL substitution effect, and e
ijk

 = the random residual effect. This model differs from the model 
of Israel and Weller (1998) in that only cows with production records are included, and covariances 
among cow effects are assumed to be zero. That is, the relationship matrix is not included.

Although this method can be used to derive unbiased QTL estimates, it cannot be used to derive 
genetic evaluations, as animals without records, including all males, are not included.

Predicted Genetic Gains with Genomic Estimated Breeding Values: Results  
of Simulation Studies

In this section we present the results of simulation studies that assume a given accuracy for genomic 
estimated breeding values (GEBV) and further assume that GEBV are unbiased relative to the true 
genetic values. Simulation studies that evaluate GEBV will be presented in Chapter 17.

Most studies have compared genomic selection schemes with the conventional progeny test 
scheme diagrammed in Figure 3.2 (Bouquet and Juga, 2013). Two basic strategies have been 
proposed for incorporation of genomic selection into commercial breeding programs:

1.	 The “preselection” scheme entails using genomic information to preselect young males for a 
progeny test. All subsequent steps for the selection of males remain the same. This scheme 
increases the rate of genetic gain by increasing the selection accuracy of young male 
candidates.

2.	 In the “juvenile” schemes, AI sires for general service are selected based on GEBV among young 
genotyped males able to produce semen. Although the GEBV of young sires are less accurate 
than conventional breeding values estimated for progeny‐tested bulls, the loss in selection 
accuracy is compensated by a huge reduction in generation intervals, as the progeny testing step 
is eliminated. Thus this scheme is similar to the “half‐sib” selection scheme diagrammed in 
Figure 3.1, except that bulls are selected based on GEBV rather than only on pedigree.
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Large variations in predicted annual genetic gain were found across studies, as described by 
Pryce and Daetwyler (2012). Compared with conventional schemes, gains in annual genetic gain 
ranged from +9% for preselection schemes to more than +100% for juvenile schemes. Increases in 
genetic gain were largest for selection on low heritability traits, because genomic data added 
relatively more information to predict breeding values for these traits. Lillehammer et al. (2011) 
found that annual genetic gain was increased by 29, 40, and 70% in juvenile schemes for heritability 
values 0.30, 0.05, and 0.01, respectively.

With genomic evaluation, the accuracy of genotyped females should approach the accuracies 
obtained for genotyped males. In addition, GEBV of bull dams are expected to be less biased, 
because genomic information reduces the weight attributed to the cows’ own production records, 
which may be subject to preferential treatment. With a training population of sufficient size, large 
gains are expected from a more accurate selection of breeding cows, even when only a small propor-
tion is genotyped (Sørensen and Sørensen, 2009). They showed that allocating larger proportions of 
genotypings to females as opposed to males resulted in larger selection responses.

Finally, genomic selection schemes should reduce rates of increase in inbreeding. With GEBV 
the weight of family information in genetic evaluation is reduced by placing emphasis on Mendelian 
sampling information (Daetwyler et al., 2007; Dekkers, 2007). For example, two full brothers 
without progeny records will have equal genetic evaluations based only on pedigree but different 
GEBV based on their individual Mendelian samplings of their parents’ genotypes. The largest 
reductions in inbreeding rates due to the use of genomic selection were observed for traits of low 
heritability (Lillehammer et al., 2011) and when a large part of variance was explained by markers 
(deRoos et al., 2011). On the other hand, Buch et al. (2012) found that the annual rate of increase in 
inbreeding was slightly greater for juvenile scheme as compared to the standard progeny test but 
lower for the preselection scheme. This is due to the fact that the mean generation interval is lower 
for the juvenile scheme. Per generation both genomic selection schemes had lower inbreeding than 
the progeny test scheme.

Summary

Although trait‐based selection is very efficient in certain situations, in many practical cases, this is 
not the case, and these situations are summarized in this chapter. Formulas were presented that can 
be used to evaluate the relative efficiency of MAS, as compared to traditional trait‐based selection, 
for a number of situations of interest. In some cases the selection efficiency of MAS can potentially 
be more than 1.5 times traditional selection. As the situations considered approach reality, the 
formulas become more complicated, and more parameters must be considered. Most situations of 
real‐world interest cannot be evaluated analytically, and simulation of these scenarios is required. 
It should be noted though that even with the advent of high‐density marker panels the question of 
how to correctly weight marker information with pedigree and phenotypic information is still one 
of the central problems for practical application of MAS.
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Genetic Evaluation Based on Dense Marker 
Maps: Basic Strategies

14

Introduction

Current “mid‐density” SNP chips generally include over 50,000 genetic markers. A “high‐density” 
chip with more than 777,000 markers is also available (e.g., http://www.illumina.com/products/ 
bovinehd_whole‐genome_genotyping_kits.ilmn). As the number of markers increases into the tens 
of thousands, there will be population‐wide linkage disequilibrium (LD) between markers and 
closely linked QTL. Thus it should be possible to detect nearly all of the segregating genes with 
effects on the traits of interest. Based on this assumption, genetic evaluations based on this number 
of markers are termed “genomic evaluations.”

In this chapter we will consider the basic question related to genomic evaluation. For genomic 
evaluations the multiple comparison problem considered previously becomes more acute. A second 
problem is that most markers will have no measurable effect on the traits analyzed. There the 
“effects” estimated for most markers will be merely “noise.” Thus various strategies have been 
proposed to include only markers with actual effects in genomic evaluation algorithms.

We will also consider the question of whether marker effects should be considered fixed or 
random, and whether individual markers or haplotypes should be analyzed. We will then consider 
the criteria used to determine which markers should be included in the analyses. Finally we will 
describe how a genomic variance matrix can be constructed and the proposed methods for evaluation 
of genomic estimated breeding values (GEBV).

The Basic Steps in Genomic Evaluation

Goddard and Hayes (2007) proposed that genomic selection should be considered a three‐step 
process:

1.	 Use the markers to deduce the genotype of each animal at each QTL.
2.	 Estimate the effects of each QTL genotype on the trait.
3.	 Sum all the QTL effects for selection candidates to obtain their genomic EBV (GEBV).
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As explained in the previous chapter, nearly all recent studies have also proposed a fourth step: 
construction of a selection index that incorporates the direct genomic evaluations with information 
from pedigrees and phenotypic records.

Evaluation of Genomic Estimated Breeding Values

In general two methods have been proposed to evaluate the accuracy of GEBV. In the first method, 
first employed by Meuwissen et al. (2001), GEBV are computed from simulated data sets. In this 
case the simulated breeding values (BV) are known and can be compared to GEBV computed 
from the marker and phenotypic data of the simulated data sets. The advantage of this method is 
that the “true” genetic values are known, and any number of simulated data sets can be generated. 
The disadvantage is that we never know how accurately the simulation algorithm corresponds to 
actual data.

Goddard and Hayes (2007) proposed the following procedure to evaluate genomic selection 
methodologies. A prediction equation that uses markers as input and predicts BV is derived from a 
“discovery” data set where a large number of SNPs have been assayed on a sample of animals with 
phenotypes for all the relevant traits. Then the accuracy of the prediction equation is evaluated on an 
independent “validation” data set in which a second sample of animals are recorded for the traits and 
genotyped at least for the markers that are proposed to be used commercially. In the case of sires, the 
GEBV predicted in the validation data set based only on pedigree and marker data are compared to 
EBV for the same animals based on progeny test derived by standard BLUP evaluations.

Generally the basis for comparison of GEBV computed for young animals is the EBV of these 
animals computed based only on pedigree data. If both parents have EBV computed by an animal 
model, then the EBV of the young bulls will be the mean of their parent EBV. Selection candidates 
are genotyped for the markers, and the prediction equation estimated in the discovery data is used 
to calculate GEBV, but their accuracy is assumed to be that found in the validation sample. Criteria 
for evaluation of GEBV will be discussed in detail in Chapter 17.

Sources of Bias in Genomic Evaluation

Generally bulls with genetic evaluations based on their daughters will be genotyped. With respect 
to estimation of QTL effects in dense genome scans by linear models, there is one source of upward 
bias in the estimation of QTL effects, and two sources of downward bias:

1.	 If multiple QTL are estimated as fixed effects, the estimated effects of those QTL that meet the 
“significance” criterion will be biased upward due to selection. This has been denoted the 
“Beavis effect” (Beavis, 1994).

2.	 QTL effects estimated from genetic evaluations or daughter yield deviations (DYD) will be 
biased downward (Israel and Weller, 1998).

3.	 Unless the actual QTN has been detected, the QTL effect will be underestimated due to 
incomplete LD between the linked markers and the QTL.

With respect to the first problem, this is one of the main reasons that most recent studies have 
assumed that marker‐associated effects should be considered random. The problem of bias with 



	 Genetic Evaluation Based on Dense Marker Maps: Basic Strategies	 105

analysis of DYD or genetic evaluations as the dependent variable will be considered in detail in the 
following two chapters. With respect to the third problem, the proportion of the QTL variance 
explained by the markers, r2, is dependent on the LD between the QTL and the marker, or a linear 
combination of markers if haplotypes are analyzed. The extent of LD and hence r2 are highly 
variable across the genome, but r2 declines as the distance between the two loci increases. In Holstein 
cattle average r2 between loci 50 kb apart was estimated at 0.35 (Goddard et al.,2006). To obtain an 
average spacing of 50 kb requires 60,000 evenly spaced markers.

Marker Effects Fixed or Random?

At first glance, it would seem that effects associated with the markers could be considered as fixed. 
Only additive genetic variance is generally useful for within‐breed genetic improvement. Therefore, 
nonadditive genetic variance is generally ignored, both within loci (i.e., dominance) and among loci 
(i.e., epistasis). Thus, most models have assumed that the marker effect is a simple linear regression 
on the number of “+” alleles. Since generally there are only two alleles for each SNP, only a single 
contrast between these two alleles has to be estimated for each allele of each SNP. Furthermore the 
sample size will in any event be very large. Therefore there should be virtually no “shrinkage” of 
the SNP effects, due to regression toward the mean, in a standard BLUP model in which each SNP 
is considered a separate random effect.

However, despite these considerations, nearly all studies have assumed SNP effects to be random 
for the following reasons:

1.	 If the analysis model includes a single record for each animal genotyped, then the number of 
markers will generally be much larger than the number of records included in the analysis. In 
this case if the marker effects are considered to be fixed, the model will be “overparameterized.” 
That is, the number of effects estimated is larger than the number of records to be fitted, and 
infinitely many “solutions” will fit the data without error.

2.	 If the marker effects are fixed, it is not possible to account for covariances among the marker 
effects. Clearly with a dense marker map, more than one marker will be in linkage disequi-
librium with a segregating QTL. This will result in covariances among markers.

3.	 Most markers will have no effect on any given trait. Thus the effects estimated for these 
markers will be merely “noise.” This problem is greater if markers are considered fixed effects, 
in which case these “pseudo” effects are not regressed.

A few studies have nevertheless considered markers as fixed effects (Baruch and Weller, 2008, 
2009). Overparameterization is not a problem if the number of records is greater than the number of 
markers, and this can be achieved by including all animals with records in the analysis, even though 
the vast majority of animals do not have genotypes. For a fixed effect model, the genotypes for 
individuals that were not genotyped are replaced by the probabilities of each possible genotype, 
based on the known genotypes of relatives and allelic frequencies in the population. The problem 
that most markers do not affect any specific trait can be alleviated by preselection of markers, 
which can also solve the overparameterization problem. Strategies for analysis of all animals in the 
population with markers assumed to be random and all markers included in the analysis will be 
considered in detail in the following chapter.
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Individual Markers versus Haplotypes

The analysis models described so far computed individual effects for each marker. Since markers 
are not transmitted individually, but as part of chromosomal block, it would seem that analysis of 
haplotypes should yield more accurate genomic evaluations. Goddard (1992) proposed that it should 
be possible to increase the proportion of genetic variance captured at the QTL by using haplotypes 
of markers, rather than single markers, to identify the QTL alleles carried by each animal. However, 
in practice this is not the case, and no efficient method for genomic evaluation based on analysis of 
haplotypes has been described in the literature. It should also be noted that a genomic evaluation 
model based on analysis of haplotypes would be intrinsically more complicated, because for each 
haplotype segment there would be multiple possible haplotypes, and it is necessary to estimate an 
effect for each one.

Kolbehdari et al. (2006) developed a linear regression on haplotype model for mapping QTL in 
half‐sib designs. They compared haplotypes consisting of either two or four markers. Empirical 
power with four‐marker haplotypes was the same or greater than in two‐marker intervals, but the 
probabilities of type I errors were slightly greater, and the precision was lower (bigger absolute 
differences from the true position) with analysis of single markers compared to two‐marker inter-
vals. Thus on a practical level it does not seem that a significant gain can be obtained by analysis of 
haplotypes, as opposed to individual markers.

Total Markers versus Usable Markers

So far all analyses on actual data have not used all markers included on SNP chips. The main 
reasons why markers are deleted are as follows:

1.	 Low call rate. In analysis of actual data, it is generally found that genotypes cannot be reliably 
determined for most individuals in between 5 and 10% of the markers included in commercial 
BeadChips. Nearly all studies have set a minimum “call rate” for inclusion of markers in 
the analysis.

2.	 Lack of polymorphism. In any specific population analyzed a certain fraction of markers will 
all share the same homozygous genotype, or frequency of the second allele will be so low as 
to render the marker virtually useless. Most studies have required a 5% threshold for the minor 
allele frequency (e.g., VanRaden et al., 2009).

3.	 Marker redundancy. If markers are very closely linked, then the possibility exists that virtually 
no recombination has occurred between them. Thus all individuals in the population will have 
the same genotype for both markers, and information is lost if one of the markers is deleted 
from the analysis.

With mid‐density BeadChips that include 50,000–60,000 markers, generally only 75% are 
retained. With high‐density BeadChips that include up to 800,000 markers, less than half are 
retained, with most markers deleted due to redundancy. The BovineHD BeadChip (Illumina Inc., 
http://www.illumina.com/Documents/products/datasheets/datasheet_bovineHD.pdf) includes 777,962 
SNP, but only 311,725 markers were found to be useful for analysis (VanRaden et al., 2013b; Weller 
et al., 2013).
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Deviation of Genotype Frequencies from Their Expectations

An additional factor that is generally checked is deviation from expected Hardy–Weinberg frequency 
of genotypes. Denoting the two marker alleles A and B, according to Hardy–Weinberg equilibrium 
the expected frequencies of the three genotypes AA, AB, and BB should be p2, 2p(1 − p), and (1 − p)2, 
where p is the frequency of allele A. There are several common reasons that cause genotype 
frequencies to diverge significantly from these expectations:

1.	 Incorrect scoring of genotypes. For example, it may be easier to score heterozygotes than 
homozygotes. This would result in an observed preponderance of heterozygotes, even though 
the marker is actually in Hardy–Weinberg equilibrium.

2.	 Unequal viability of genotypes. The most common situation is “recessive lethals.” Human 
diseases such as cystic fibrosis and Tay–Sachs disease are examples. Unlike these diseases, 
which generally result in full‐term pregnancies, many other recessive lethals result in very 
early‐term abortions. Thus the only observed effect is the lack of homozygotes for the defective 
allele. An example in cattle is complex vertebral malformation, which generally results in early‐
term abortion, but in rare cases results in full‐term malformed calves (Thomsen et al., 2005). 
VanRaden et al. (2011b) used the lack homozygous haplotypes in dairy cattle as a test for the 
presence of recessive lethal alleles.

3.	 Sex chromosome location. If the marker is located on the section of the X chromosome that is 
not complementary to the Y chromosome, then there will be only one copy of the allele, and 
no heterozygotes will be found.

4.	 Copy number variation. If the gene is present in the genome in multiple copies and more than 
one copy is “called,” then the observed frequency of heterozygotes will be higher than expected. 
For example, if two copies are detected and assumed to be the same marker, then a homozygote 
will be called only if both copies are homozygous for the same allele.

Despite all these factors, significant deviations from Hardy–Weinberg expectations for markers 
correctly assigned to autosomes with high call rates are quite rare.

Inclusion of All Markers versus Selection of Markers with Significant Effects

VanRaden et al. (2009) found that major reduction in the number of markers included in the analy-
sis, compared to the approximately 40,000 markers retained, on the mid‐density BeadChip affected 
accuracy of evaluation only slightly. Furthermore, there is general agreement that most markers do 
not have measurable effects on any specific quantitative traits. It therefore seemed logical to assume 
that appropriate selection of markers should increase the accuracy of evaluation or at least result in 
no reduction. In this case genotyping and analysis costs could be significantly reduced.

Various studies have proposed computation of GEBV based on subsets of SNPs. Four basic strat-
egies have been proposed to select SNPs: random selection (Vazquez et al., 2010); equally spaced 
SNPs throughout the genome (Habier et al., 2009; VanRaden et al., 2009; Weigel et al., 2009; Moser 
et al., 2010; Vazquez et al., 2010; Zhang et al., 2011; Weller et al., 2014b); selection of SNPs with the 
greatest effects on the trait analyzed, as estimated from the analysis of all markers in the training set 
(Weigel et al., 2009; Moser et al., 2010; Vazquez et al., 2010; Zhang et al., 2011); and selection of 
markers based on principal component analysis (Pintus et al., 2012). Accuracies nearly equal to 
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analysis with all markers were obtained with subsets of markers, but in nearly all studies the 
accuracy of GEBV computed from subsets of markers was never significantly more than the accu-
racy of GEBV computed from analysis of all markers. An exception was Weller et al. (2014b) who 
selected markers based on their fixed additive effect on the bulls’ current genetic evaluations for 
each trait, as derived by analysis of all valid SNPs by the “EMMAX” algorithm (Kang et al., 2010). 
In this case the mean increase of the accuracy in the evaluations of young bulls between GEBV 
computed on selected subsets of 800 to 5000 markers and GEBV using all markers was 0.36. 
However, the proposed method requires information only available once the young bulls have 
daughters with records. A slight increase in accuracy was also obtained if markers were selected 
based on the change in their allele frequencies between young and old bulls.

Daetwyler et al. (2008) derived the following equation for the expected accuracy of the prediction 
of the additive genetic value (rgĝ) of an individual that can be achieved based on the measurement of 
n

P
 phenotypes assuming that n

G
 potential loci affect the trait of interest:

	
r

h

hgĝ

2

2 1
	 (14.1)

where h2 is the observed heritability and λ = n
P
/n

G
. In single‐step analyses the “phenotypes” are 

DYD or deregressed genetic evaluations. In this case, the “heritability” is the mean reliability of the 
evaluations, which will generally be close to 0.9. The actual number of loci affecting the trait is of 
course unknown, but for the accuracy of prediction to equal 0.75 requires λ = n

P
/n

G
 = 1.43. That is, 

the number of phenotypes should be approximately equal to 1.4 times the number of loci affecting 
the trait.

The Genomic Relationship Matrix

In Chapter 8 we introduced the numerator relationship matrix within the context of mixed model 
genetic evaluation. This is a symmetrical matrix with rows and columns equal to the number of 
animals included in the analysis. The elements of this matrix correspond to the fraction of genes 
identical by descent between the individuals represented by the corresponding row and column. For 
example, the element corresponding to the relationship between parent and offspring will generally 
have a value of 0.5. The diagonal elements of this matrix are generally equal to one, because an 
individual has all its genes in common with itself. However, for inbred individuals the diagonal 
value can be greater than one, because these individuals will have less genetic variation than outbred 
individuals.

Similar to the general relationship matrix, a genomic relationship matrix can be defined, in which 
elements will represent the overall covariances among the genotypes of individuals for all markers 
genotyped. All studies that have proposed methods for construction of the genomic relationship 
matrix have assumed that at each locus there are only two possible alleles, and the effects are addi-
tive, as described previously in this chapter.

Two caveats that must be considered are that the variance of each individual marker will be a 
function of the overall allelic frequencies, which will vary among markers, and that not all markers 
will have valid genotypes for all individuals. In addition the genomic variance matrix is generally 
divided by a constant, so that the values of the elements are comparable to the additive genetic 
matrix. Finally we should note that for genetic evaluation, the inverse of the relationship matrix is 
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required. Unlike the additive numerator relationship matrix, which can be easily inverted by an 
algorithm developed by Henderson (1976), there is no known algorithm to derive the inverse of the 
genomic relationship matrix. This question will be considered further in the following chapter.

Summary

The basic concepts and strategies for genomic evaluation based on high‐density SNP chips were 
discussed. We first considered the steps required to obtain genomic evaluations and the sources of 
bias in genomic evaluation and then considered the standard method for evaluation of genomic BV 
based on division of the population into training and validation subsets. We then dealt with the 
question of whether SNP effects should be considered fixed or random and explained why nearly all 
studies have assumed that SNP effects are random. We explained why nearly all algorithms for 
genomic evaluation have been based on analysis of individual SNPs, rather than haplotypes consist-
ing of several SNPs, and explained the criteria used to select “useful” SNPs. Numerous studies have 
considered genomic evaluation based on subsets of SNPs, but in nearly all cases these result in a 
reduction in accuracy of evaluation. In the final sections we considered the basic questions required 
for construction of a genomic variance matrix. In the next chapter we will explain the most common 
methods for genomic evaluation in detail.
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Genetic Evaluation Based on Analysis of Genetic Evaluations 
or Daughter‐Yield Evaluations

15

Introduction

Methods to compute genomic genetic evaluations can be divided into two groups, denoted single‐
step methods and multistep methods. In single‐step methods actual records are analyzed, and the 
effects of markers and the additive genetic variation not included in the marker effects are estimated. 
In multistep methods, discussed briefly in the previous chapter, genetic evaluations are first 
computed based on phenotypic data and pedigree. In the second step, the genetic evaluations of 
individuals with genotypes or a similar statistic is then analyzed as a function of the genetic markers. 
In the final step the direct genomic evaluations are generally incorporated into an index that includes 
pedigree information in addition to the direct genomic evaluations.

After a short discussion of the advantages and disadvantages of both types of analyses, this 
chapter will concentrate on methods proposed for multistep analysis, which are still the method of 
choice in most commercial evaluation systems. The following chapter will deal with single‐step 
methods in detail and compare the results between the two types of methods.

Comparison of Single‐Step and Multistep Models

As noted in the introduction, in single‐step methods actual records are analyzed, and the effects of 
markers and the additive genetic variation not included in the marker effects are estimated. 
“Nuisance” effects such as herd‐year‐season or sex are also included in the model. If a single‐trait 
animal model is employed, there will be an equation for the additive genetic effect of each animal, 
an equation for each marker, and equations for all levels of the fixed effects. Single‐step methods 
have four drawbacks:

1.	 They require much more extensive computing, due to the generally huge number of equations 
included in the analysis model.

2.	 Single‐step models must deal with the problem that the vast majority of animals with records 
do not have genotypes.

3.	 It is necessary to partition the genetic variance between the fraction associated with mark-
ers and the remainder that is independent of the marker effects. Although this factor can 
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theoretically be computed for historical data, it is unknown for animals that have not yet 
produced records.

4.	 Due to the huge numbers of equations, solutions can only be derived by iteration, and convergence 
to solutions can be a problem.

In multistep methods genetic evaluations are first computed based on phenotypic data and pedi-
gree. In the second step, the daughter yield deviations (DYD) or a similar statistic is then analyzed 
as a function of the genetic markers. Derivation of DYD will be explained in the following section. 
Thus in the analysis model for the second step, the only effects included are the marker effects. 
Advantages of the multistep system for genomic evaluation include no change to the regular evalu-
ations and simple steps for predicting genomic values for young genotyped animals. Furthermore, 
overall computing time will be considerably less than for single‐step methods.

Disadvantages include weighting parameters, such as variance components (Guillaume et al., 2008) 
or selection index coefficients (VanRaden et al., 2009), loss of information, and biased evaluations 
(Misztal et al., 2009; Aguilar et al., 2010). Furthermore, the extension to alternative analysis models 
such as multitrait evaluations or test‐day models is not obvious. Several problems exist in the use of 
DYD and yield deviations. These problems are weights (caused by different amount of information 
in the original data set), bias (e.g., caused by selection), accuracy (for animals in small herds), and 
collinearity (e.g., the yield deviations of two cows in the same herd). Furthermore, if genomic 
selection is used, the expectation of Mendelian sampling in selected animals is not zero, which can 
lead to biased evaluations (Patry and Ducrocq, 2010).

Although single‐step methodologies appear to be superior on theoretical considerations, 
differences in accuracy of prediction between the two methods on actual data are at best minimal. 
These results will be discussed in more detail in the following chapter.

Derivation and Properties of Daughter Yields and DYD

“Daughter yields” are means of the records of a cow corrected for fixed effects, such as herd‐year‐
seasons, but unlike genetic evaluations derived by mixed model methodology are not regressed 
toward the population means. Similarly, “DYD” are means of the records of the daughter of a sire 
corrected for fixed effects and also for merit of mates and account for unequal numbers of records 
among cows. Like daughter yields, DYD are not regressed toward the population mean as a function 
of the reliability of the evaluation. These statistics were originally derived as by‐products of genetic 
evaluations derived by the individual animal model (VanRaden and Wiggans, 1991).

In section “Important Properties of Mixed Model Solutions” of Chapter 6, we explained that the 
ratio Var(û)/Var(u) is called the “reliability” of u, where u is the actual breeding value and û is the 
estimated breeding value. The reliability is theoretically equal to the square of the correlation 
between û and u, that is, the coefficient of determination. For genetic evaluations derived by mixed 
model methodology, the variance of the evaluation increases, and the prediction error variance 
decreases as functions of the amount of information on which the evaluation is based, as demonstrated 
by Equation (6.20), which will be repeated here:

	 Var Var PEVu u uˆ ˆ 	 (15.1)

where PEV(û) is the prediction error variance of û which is equal to the corresponding diagonal 
elements of the inverse of the coefficient matrix. Although exact computation of the variances of the 
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genetic evaluations requires inversion of the coefficient matrix, algorithms to derive approximate 
values have been derived which do not require inversion of this very large matrix (Misztal and 
Wiggans, 1988; Misztal et al., 1991).

This is not the case for simple means, least squares means, yield deviations, or DYD. Variances 
of simple means and DYD decrease as the number of records on which the DYD is based 
increases. In a simple least squares analysis, the residual variance of the dependent variable is 
considered equal for all records. In a generalized least squares analysis, records are weighted 
by  the inverse of the residual variance matrix. That is, records with lower residual variances 
(i.e., records based on more data) are given greater weight. This is reasonable if records with 
more data do have lower variances, which is the case for DYD, but not genetic evaluations, as 
explained previously.

For this reason, for genomic evaluation by two‐step methodologies, the dependent variable is 
generally the DYD of the trait analyzed if sires are genotyped or yield deviations if cows are 
genotyped. Although DYD should then be weighted by their variances, these variances are difficult 
to compute, and DYD are usually weighted by some function of the reliability of the evaluations, as 
will be explained in the following section. It is assumed that this function is approximately 
proportional to the DYD variances.

Computation of “Deregressed” Genetic Evaluations

DYD are computed only for traits that are analyzed by a standard single‐trait animal model. 
Thus DYD are generally not computed if some other model is used for genetic evaluation. Also 
even if the basic traits are analyzed by a standard animal model, genetic evaluations for some 
traits are computed as function of the genetic evaluations for the basic traits. For example, fat 
and protein concentration are computed as functions of fat, protein, and milk yield; selection 
indices are generally computed as linear functions of several traits. In all of these cases “dere-
gressed” genetic evaluations are analyzed, instead of the DYD. Generally genetic evaluations 
are deregressed by division by a simple function of the reliability, DRP, as proposed by VanRaden 
et al. (2009):

	
DRP PA EBV PA

EDC

EDC
parents progeny

progeny

* 	 (15.2)

where EBV = estimated breeding value, PA = parent average EBV (in case the dam EBV has not 
been computed; the PA is replaced by the sire pedigree index, which is equal to ½*(sire 
EBV) + ¼*(maternal grandsire EBV)); and EDC = estimated daughter contributions. For each 
offspring i with a record, of the sire, EDC

i
 is computed as follows:
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where rel
i
 and rel

d
 are the reliabilities of the offspring and her dam, and k = (4 − h2)/h2, where 

h2 is the heritability. EDC
parents + progeny

 is then computed as the sum of EDC
i
 over all offspring of the 
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sire with records. Alternatively, EDC
parents + progeny

 can be estimated from the reliabilities of EBV 

of the sires as follows (Přibyl et al., 2013):
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where rel
s
 is the reliability of the sire. EDC

parents
 is computed in the same way, except that the reliability 

of the sire is replaced by the reliability of the PA. EDC
progeny

 is then computed as follows:

	 EDC EDC EDCprogeny parents progeny parents	 (15.5)

For sires with hundreds of daughters, EDC
parents

 will be negligible compared to EDC
parents + progeny

; 
EDC

progeny
 ≈ EDC

parents + progeny
, and DRP ≈ EBV. For sires with relatively few progeny, EDC

parents + progeny
/

EDC
progeny

 > 1.

Analysis of DYD as the Dependent Variable with All Markers Included as Random Effects

This method was first proposed by VanRaden (2008). If each individual is measured once for a trait 
and the inheritance of all alleles is known, then data vector y can be modeled as a general mixed 
model similar to Equation (6.14) and now repeated:

	 y xb Zu e	 (15.6)

where b is the mean (the only fixed effect in the model); x is a vector of 1’s; u are the marker effects, 
which are assumed to be random; Z is the matrix that relates marker effects to the individual records; 
and e is the random error vector with variance matrix R. As noted in the previous section, this model 
requires weighting the residuals as a function of the DYD reliabilities. Diagonals of R were 
computed as ( /( ) )1 1 2Rdau e , where R

dau
 is the bull’s reliability from daughters with parent 

information excluded and e
2 is the residual variance of the DYD not explained by the marker 

effects. All markers were assumed to be biallelic.
Let M be the matrix that specifies which marker alleles each individual inherited. Dimensions 

of M are the number of individuals by the number of markers. If elements of M are set to −1, 0, 
and 1 for the homozygote, heterozygote, and other homozygote, respectively, diagonals of MM′ 
count the number of homozygous loci for each individual, and off‐diagonals measure the number 
of alleles shared by relatives. Let the frequency of the second allele at locus i be p

i
, and let the 

matrix P contain allele frequencies expressed as a difference from 0.5 and multiplied by 2, so 
that column i of P is 2(p

i
 − 0.5). Z is then defined as M − P, so that mean values of the allele 

effects in Z = 0. VanRaden (2008) assumed that allelic frequencies would be computed from 
the  “base animals,” that is, animals with genotypes, but without ancestors with genotypes. 
Aguilar et al. (2010) investigated this question for single‐step models and concluded that 
assuming p

i
 = 0.5 resulted in optimal genomic evaluations. This question will be considered 

again in Chapter 17.
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VanRaden (2008) gives three different methods to derive genomic breeding values. In the first 
method the effects of the individual markers can be derived from the following equations:

	
Z R Z I u Z R y xb1 1 ˆ 	 (15.7)

where λ = the ratio e u
2 2/ , which equals the sum across marker loci 2Σp

i
(1 − p

i
) times the ratio 

e a
2 2/ , where a

2 is the total genetic variance and xb̂ are the solutions for the means of y. Genomic 
breeding values are then obtained as Zu^. As noted previously, R is a diagonal matrix; therefore 
R−1 is computed by inverting each diagonal element. Thus this method is computationally tractable, 
as it is not necessary to invert any large matrices, and u can be solved by standard iteration algorithms, 
such as Gauss–Seidel. However, iteration will be computing intensive, because, unlike standard 
mixed model equations, all elements will have nonzero values.

In the second method it is first necessary to compute the “genomic relationship matrix,” G. 
Similar to the additive genetic relationship matrix, this matrix describes the covariance among 
individuals, but in this case the covariance is computed relative to the sum of similarities among the 
marker genotypes. This matrix can be derived as follows:

	
G

ZZ
2 1p pi i

	 (15.8)

Division by 2∑p
i
(1 − p

i
) scales G to be analogous to the numerator relationship matrix A. Genomic 

estimated breeding values (GEBV) can then be derived by the selection index equation

	 u u CV y yE E1 	 (15.9)

where u is the vector of estimated genetic values, C is the covariance matrix between u and y, and 
V is the variance matrix of y. In this case, since DYD are analyzed and no fixed effects are included in 
the model, E(u) can be deleted. If DYD and genotypes are available on all individuals included in 
the analysis, C = G, and V = G + R( e a

2 2/ ), where a
2 is total additive genetic variance. Thus the 

GEBV can be computed as follows:

	
ˆ ˆa G G R y Xbe

a

2

2

1

	 (15.10)

where â are the estimated GEBV and Xb̂ are the solutions for the means of y, the vector of DYD. 
Note that the solution of this set of equations does not compute solutions for the individual marker 
effects. Also this method requires inversion of a matrix of rank equal to the number of animals 
included in the analysis. All elements of G will be nonzero; thus sparse matrix techniques cannot be 
applied to compute the inverse.

A third solution strategy presented by Garrick (2007) could be more efficient than the selection 
index, because G can be inverted just once and then additional traits with differing heritability or 
R processed using iteration:

	
ˆ ˆa R G R y Xb1 1

2

2

1

1e

a

	 (15.11)
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The matrix G may be singular, for example, if the number of markers does not exceed the number 
of individuals genotyped, but this will generally not be a problem.

Final GEBV are derived by the selection index as shown in Equation (13.1) which includes three 
factors: (i) the estimated direct genomic evaluations as described, (ii) the parent average EBV 
computed from the subset of genotyped ancestors using known relationships, and (iii) the parent 
average EBV for individuals with EBV for both parents, or pedigree indices of individuals without 
dam EBV.

Computation of Reliabilities for Genomic Estimated Breeding Values

In section “Important Properties of Mixed Model Solutions” of Chapter  6, we explained that 
reliabilities of genetic evaluations are computed as Var(û)/Var(u) and that Var(u) = Var(û) + PEV(û), 
where PEV(û) is the prediction error variance of û which are equal to the corresponding diagonal 
elements of the inverse of the coefficient matrix. Reliabilities of GEBV for bulls with DYD were 
obtained from

	

Diag e

a

G G R G
2

2

1

	 (15.12)

where Diag{.} are the diagonal elements of the matrix. As in Equation (15.10) computation of the 
reliabilities requires inversion of the matrix G R e a

2 2/ . Reliabilities obtained by this expression 
were compared to the bull reliabilities obtained by standard animal model evaluations. VanRaden 
et al. (2009) used the increase in reliability to evaluate the expected increase in genetic gain due to 
marker information.

Bayesian Weighting of Marker Effects

In Chapter 7 we described application of Bayesian methodology for a granddaughter design analysis. 
In Bayesian estimation of QTL effects, data on the prior distribution of QTL effects is included in the 
estimation of the effects. That is, smaller effects are regressed more toward the mean as compared to 
larger effects. In application of Bayesian methodology to genomic evaluation, three basic models 
have been proposed, denoted “Bayes A,” “Bayes B,” and “Bayes C.” Bayes A models assume a 
continuous prior distribution of QTL effects with a nonzero effect for all comparisons tested, while in 
“Bayes B” models a zero effect is assumed for the majority of the markers genotyped (Meuwissen 
et al., 2001). Although Bayes A models are easier to apply, Bayes B models are closer to reality. 
Kizilkaya et al. (2010) proposed a Bayes C model that assumes a common variance for all makers 
with nonzero effects estimated from the data, instead of the locus‐specific variance in Bayes B. Habier 
et al. (2011) proposed a modified Bayes C model, denoted “Bayes‐Cπ,” by treating the probability π 
that a marker has an effect as an unknown parameter, which is estimated from the data.

In the Bayes A analysis of VanRaden (2008), he assumed that the prior distribution was a simple, 
heavy‐tailed distribution generated from a normal variable divided by 1.25abs(s − 2), where s is the 
number of standard deviations from the mean and 1.25 determines departure from normality. 
Defining λ =  e a

2 2/ , the constant value of λ for all markers in Equation (15.7) is replaced by 
individual λ

i
 for each marker computed as λ

i
 = λ/1.25abs(s − 2). Unlike the model of Weller et al. (2005), 

the marker effect in this model can be either positive or negative.
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In the Bayes B analysis, VanRaden (2008) assumed that only 700 markers of 50,000 included in 
the analysis have nonzero effects. In this case λ

i
 was computed as follows:

	
i

q

m

q

m

f

f
1 err

QTL err

	 (15.13)

where q/m is the fraction of markers assumed to have effects on the trait analyzed, f
err

 is the density 
function for those markers that do not have effects, and f

QTL + err
 is the density function for those 

markers that do have effects on the trait analyzed.

Additional Bayesian Methods for Genomic Evaluation

The linear method of VanRaden (2008) is basically a BLUP method in which additional weight is 
put on the diagonals relative to off‐diagonal elements of the coefficient matrix. Thus, unlike simple 
least squares estimate, there is no problem of “overparameterization” even though the number of 
markers is greater than the number of individuals with DYD. Various other penalized regression 
methods have been proposed, for example, least absolute shrinkage and selection operator (LASSO) 
(Tibshirani, 1996), which adds l

1
 penalty functions to the traditional least squares. LASSO and its 

extensions including elastic net (Zou and Hastie, 2005) and adaptive LASSO (Zou, 2006) have been 
used in various QTL mapping or genomic selection studies (de los Campos et al., 2009; Legarra 
et al., 2011).

None of these two‐step Bayesian methods have been demonstrated to be significantly superior to 
the original method of VanRaden (2008), based on their ability to predict breeding values of young 
bulls with genotypes, but without daughter records. As will be seen in the following chapter, this is 
also the case for single‐step methods.

Ober et al. (2011) proposed a nonparametric kernel‐based method, which they tested on simulated 
data, assuming that all individuals of the training population had both phenotypes and genotypes. 
In the presence of dominance or epistasis for the QTL effects, their method was able to slightly 
outperform the method of VanRaden (2008).

Summary

The huge number of marker genotypes available in modern BeadChips, in the range of 50,000–
60,000 for “moderate‐density” chips, and the fact that only a small fraction of the population 
with records will be genotyped created new problems that were generally not considered in 
traditional methods for genetic evaluations. To solve these problems, two general strategies have 
been proposed to derive genomic genetic evaluations: Analysis of only individuals with 
genotypes, in this case the dependent variable is a function of the genetic evaluations based only 
on phenotypic data, and inclusion of marker data together with phenotypic data in a single‐step 
evaluation. The former method was denoted “multistep” evaluation and was discussed in 
detail.  We also considered the proposed variations of this method based on several different 
Bayesian models. However, none of these models are able so far to significantly increase the 
accuracy of genomic evaluations. In the following chapter single‐step methods will be described 
in detail.
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Genomic Evaluation Based on Analysis 
of Production Records

16

Introduction

In the previous chapter we explained that methods to compute genomic genetic evaluations can be 
divided into two groups, denoted single‐step methods and multi‐ or two‐step methods. Multistep 
methods, in which genetic evaluations are first computed based on phenotypic data, were described in 
detail in Chapter 15. In this chapter we will describe single‐step methods in detail. In these methodolo-
gies, the phenotypic records are the dependent variables, and the analysis model includes the polygenic 
effect, the effects of the individual markers, and all fixed effects, such as herd‐year‐season.

The major difficulties with application of single‐step methodologies derive from the fact that 
generally only a small fraction of the population will be genotyped. Furthermore, the genotyped 
individuals will generally be males without records for traits related to female fertility and milk 
production. Because of the generally huge number of records, overparameterization of the model is 
no longer a problem, even if marker effects are considered fixed. However, nearly all single‐step 
studies have also assumed that marker effects are random and algorithms are based on Henderson’s 
mixed model equations. Therefore we will first briefly review Henderson’s mixed model equations 
and then discuss the modifications required for single‐step genomic evaluation.

Single‐Step Methodologies: The Basic Strategy

In two‐step methodology as described in Equations (15.6) through (15.11), the dependent variables 
were a function of the genotyped animals’ estimated breeding values, and the model effects were 
the individual effects of each marker. Genomic evaluations were then computed by summing the 
individual marker effects. In single‐step methods, similar to the second method proposed by 
VanRaden (2008), the effects of the individual markers are incorporated through computation of a 
“genomic relationship matrix.” Computation of this matrix is given in Equation (15.8) and was 
described in detail in the previous chapter. Upon division by a constant, the scale of this matrix can 
be made equal to the numerator relationship matrix, A. If all individuals included in the analysis 
were genotyped and if the genomic variance matrix accounts for all additive genetic variance, it 
should only be necessary to replace the inverse of A with the inverse of the genomic relationship 
matrix. However, this is problematic for two reasons. First, as noted previously, only a small fraction 
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of the population will generally have genotypes; and unlike the standard relationship matrix, there 
is no simple algorithm to compute the inverse of the genomic relationship matrix. Both of these 
problems have been solved, and the solutions will be described in the following two sections.

Computation of the Modified Relationship Matrix when only a Fraction of the 
Animals are Genotyped: The Problem

At first thought it would seem that it should be possible to use the algorithm of VanRaden (2008) 
given in Equation (15.8) to compute the genomic relationships among animals with genotypes and 
the standard rules of Mendelian inheritance to compute relationships among nongenotyped animals 
and between genotyped and nongenotyped animals. Assume that the numerator relationship matrix 
is partitioned as follows:

	
A

A A

A A
11 21

12 22

	 (16.1)

where A
11

 refers to additive genetic relationships among animals without genotypes, A
22

 refers to 
genomic relationships among genotyped animals, and A

12
 and A

21
 refer to additive genetic relation-

ships between genotyped and ungenotyped individuals. Since the matrix is symmetrical, A
12

 = A21. 
In the first instance we will assume that A

22
 is replaced by G as computed by the method of VanRaden 

(2008). Then A
g
, the modified relationship matrix that accounts for relationships due to markers, is 

computed as follows:

	
A

A A

A Gg
11 21

12

	 (16.2)

Criteria for Valid Genetic Relationship Matrices

We will now explain why this solution cannot be applied in practice. Symmetric matrices can 
be divided into five groups: positive definite, negative definite, positive semidefinite, negative sem-
idefinite, and indefinite. Assume a symmetric matrix C and a vector x of length equal to the dimen-
sions of C, then C is “positive definite” if x′Cx > 0 for any vector x, other than x = 0. Similarly if 
x′Cx < 0 for any vector x, other than x = 0, then the matrix is “negative definite.” If x′Cx ≥ 0 for any 
vector x, other than x = 0, then C is “positive semidefinite,” and if x′Cx ≤ 0 for any vector x, other 
than x = 0, then C is “negative semidefinite.” If x′Cx > 0 for some vector x, but y′Cy < 0 for some 
vector y, then the matrix is “indefinite.” All eigenvalues of a positive definite matrix will be positive. 
If the matrix is positive semidefinite, then some eigenvalues will be zero. For an indefinite matrix, 
or a negative semidefinite matrix, some eigenvalues will be negative. Neither matrix can be a valid 
relationship matrix. This could potentially result in discrepancies that contradict the principles of 
quantitative genetics, as will be seen in the following example.

As shown by Legarra et al. (2009), the use of G potentially modifies covariances in ancestors and 
descendants of genotyped animals. For example, assume two full‐sibs in the genotyped animals 
whose genomic relationship is 0.6. By using A

g
, it is assumed that the average relationship among 

their daughters is 0.25, whereas in fact it is 0.3. It can be verified by small numerical examples that 
A

g
 is indefinite (i.e., some eigenvalues are negative and some are positive).
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Computation of the Modified Relationship Matrix when only a Fraction of the 
Animals are Genotyped, the Solution

Legarra et al. (2009) derived the following relationships for a population that includes both 
genotyped and ungenotyped individuals:

	 Var u A A A G A A A1 11 12 22
1

22 22
1

21	 (16.3)

	 Var u G2 	 (16.4)

	 Cov ,u u A A G1 2 12 22
1 	 (16.5)

where u1 and u2 are the breeding values for ungenotyped and genotyped individuals, respectively, 
and G is the genomic variance matrix as given in Equation (15.8). Note that in this case G ≠ A

22
. 

Based on these relationships, Legarra et al. (2009) define H, the covariance matrix of breeding 
values including genomic information as follows:
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Note that all elements of these equations other than G are either submatrices of A or of A−1, 
which can all be readily computed. However, solving the standard mixed model equations requires 
the inverse of H, which cannot be inverted in real time by standard inversion algorithms for popula-
tions of commercial size. Two solutions to solving the mixed model equations will be presented in 
the following two sections.

Solving the Mixed Model Equations without Inverting H

Replacing the standard numerator relationship matrix with H in the standard mixed model equa-
tions given in Equation (6.17) and ignoring the permanent environmental effect give the following 
system of equations:

	

X X X Z

Z X Z Z u

X y

Z yH 1

ˆ

ˆ
	 (16.7)

where α =  e g
2 2/ , where g

2 is the variance accounted for by the genetic markers. Misztal et al. 
(2009) proposed multiplying the second set of equations by H−1 to yield the following set of 
equations, which include H, but not H−1:
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HZ X HZ Z I u

X y

HZ y

ˆ

ˆ
	 (16.8)

This system of equations is not symmetric, and the matrix H may be indefinite. Therefore 
standard methodologies such as Gauss–Seidel iteration may not converge. The standard algorithm 
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for solving sparse systems with a nonsymmetric coefficient matrix is biconjugate gradient stabilized 
(Bi‐CGSTAB; Van der Vorst, 1992). This algorithm requires storing twice the number of elements 
in the coefficient matrix times a vector product per round of iteration.

Inverting the Genomic Relationship Matrix

Although there is no simple algorithm to invert H, the inverse can be computed as follows (Aguilar 
et al., 2010):

	
H A

G A
1 1

1
22

1

0 0

0
	 (16.9)

However, G is usually singular, due to collinearity among marker genotypes and, therefore, can-
not be inverted without additional steps. In the previous section we assumed that all genetic variance 
of the genotyped individuals can be explained by the genomic relationship matrix. This is clearly 
not the case if the matrix is derived from a mid‐density SNP chip of approximately 50,000 markers. 
The problem of singularity can be solved by partitioning the genetic variance for the genotyped 
animals into a fraction explained by markers and an unexplained fraction as follows:
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where λ scales differences between genomic and pedigree‐based information. Equations require the 
inverses of A, A

22
, and G. The first two can be computed by the algorithm of Henderson (1976). The 

inverse of G, which included only genotyped individuals, will have a rank of several thousand and 
can therefore be computed in real time by standard algorithms for matrix inversion. A drawback of 
this method is that there is no method to accurately estimate λ. Aguilar et al. (2010) proposed testing 
a range of values on a test data set.

Misztal et al. (2010) proposed an additional modification to Equation (16.10) as follows:
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1 1

1
22
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where τ is a scale factor for G 1 and ω is a scale factor for A22
1. Changes in both weights were inves-

tigated for final score for US Holsteins. While changes in τ had little influence on the accuracy and 
bias of prediction, values smaller than 1 for ω helped to reduce inflation of GEBV. Tsuruta et al. 
(2011) proposed values of 1.0 for τ and 0.7 for ω for analysis of linear type traits, but again these 
conclusions are based on optimization of results for a specific data set.

Estimation of Reliabilities for Genomic Breeding Values Derived by Single‐Step Methodologies

In section “Important Properties of Mixed Model Solutions” of Chapter 6, we explained that relia-
bilities of genetic evaluations are computed as Var(û)/Var(u) and that Var(u) = Var(û) + PEV(û), 
where PEV(û) is the prediction error variance of û which are equal to the corresponding diagonal 
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elements of the inverse of the coefficient matrix. In the previous chapter we showed that reliabilities 
for the multistep methodology can be computed from Equation (15.12). These equations require 
inversion of a matrix with rank equal to the number of animals included in the analysis. This is 
possible for multistep methodologies in which only the sires with genotypes are included in the 
analysis, but is not a viable option for single‐step methodologies, in which millions of animals 
are analyzed. Thus approximations have been derived which do not require complete inversion of 
the coefficient matrix.

A first approximation proposed by Ufford et al. (1979) was to invert the diagonal elements of the 
coefficient referring to animals. This method gave reasonable approximations for a sire model 
without relationships, but not for sire models with relationships or animals. Misztal and Wiggans 
(1988) proposed that for animal models reliabilities could be approximated as 1 − [α/(α + d

i
)], where 

α is the ratio of error variance to animal genetic variance and d
i
 is the amount of information for 

animals in units of effective number of records. For single‐step evaluations, d
i
 can be partitioned as 

d d di i i
r p g where di

r is the contribution from records (phenotypes), di
p is the contribution from pedi-

grees, and di
g is the contribution from genomic information. The diagonal elements of the inverse of 

the coefficient matrix for animals can be computed as follows:
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where CMii is the diagonal element of the coefficient matrix referring to animal i. Misztal et al. 
(2013) proposed that CMii can be approximated by the following formula:

	
CM r pii
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ii
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where Dr rdi  and Dp pdi . In this equation, G accounts for genomic information, and A
22

 
accounts for an adjustment to prevent double counting of the relationship information contained in 
G and A. Misztal et al. (2013) presented an algorithm to compute approximate reliabilities based on 
Equation (16.13). Correlations of the approximate reliabilities derived from this algorithm and 
actual reliabilities derived from the inverse of a simulated data set were 0.98.

Single‐Step Computation of Genomic Evaluations with Unequally Weighted Marker Effects

A deficiency of the single‐step algorithm described previously is that, unlike the multistep methodol-
ogy presented in Equation (15.7), effects are not computed for individual markers. Rather the model 
is based only on overall marker identity among individuals, without regard to which chromosomal 
regions actually contain segregating QTL of interest. Wang et al. (2012) proposed a single‐step 
algorithm that iteratively assigns weights to all markers, based on their solutions from the previous 
round of iteration. The animal breeding values are divided into those for genotyped (a

g
) and ungeno-

typed (a
n
) animals. As in the previous chapter, genomic breeding values are computed as Zu, where 

u is the vector of marker effects and Z is the matrix relating marker effects to animals. The variance 
of Zu is computed as follows:

	 Var u aZu ZDZ G2 2* 	 (16.14)
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where D is a diagonal matrix of weights for variances of SNP, a
2 is the total genetic additive, u

2 is 
the variance of the distribution for marker effects assuming they are identically distributed, and G* 
is a weighted genomic relationship matrix. The ith diagonal element of D, d

i
, is computed as 

follows:

	 d u p pi i i i
ˆ2 2 1 	 (16.15)

where ûi
2 is the solution for the ith marker effect and p

i
 is the allele frequency of the second allele of 

the ith marker. The joint (co)variance of a
g
 and u is computed as follows:
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Then G* can be computed as follows:
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where, as in the previous chapter, M is the number of markers. Then, based on the selection index 
theory, solutions for the marker effects can be derived as follows:

	
ˆ ˆ*u DZ G au
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2

2
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Since the terms on the right‐hand side of Equation (16.18) are themselves functions of û, these 
equations can only be solved iteratively. New values for û and weights are obtained in each round.

The number of iterations needed is empirical and data dependent. The most appropriate weights 
for markers were obtained after one round of iteration on a moderately sized data set of approxi-
mately 700,000 cows (Lourenco et al., 2014a). In most cases, some shrinkage of effects was obtained 
after the first round, and markers with very small effects had weights reduced to zero.

Summary

In single‐step methodologies, genomic breeding values are derived by solving modified mixed 
model equations in which the independent variables are the actual animal records and the dependent 
variables are fixed effects—the sum of additive genetic effects explained by genetic markers and the 
additive genetic effects not explained by markers. Although the proposed methods required much 
more computing resources than two‐step methods, genomic breeding values can be computed even 
for large commercial populations consisting of millions of records. Accurate approximate reliabili-
ties can also be computed for single‐step methods, and these methods can also be modified to selec-
tively weight markers with greater effects on the trait analyzed.



Genomic Selection in Animals, First Edition. Joel Ira Weller. 
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

125

Validation of Methods for Genomic Estimated 
Breeding Values

17

Introduction

Nearly all studies that have proposed methods for genomic evaluations have also attempted to 
validate the proposed methodology either on simulated or actual data. Both types of analyses have 
advantages and disadvantages, as will be described in this chapter. Nearly all studies have assumed 
that the basis for comparison of genomic evaluations is the parent average (PA) of genetic evalua-
tions derived by standard mixed model methodology. The main criteria for comparison are accuracy 
and bias of the evaluations. In addition to analyses of simulated populations, we will describe 
studies that have analyzed actual dairy cattle, poultry, and swine data. All the methods described in 
the previous chapters have been able to outperform PA on large data sets.

Criteria for Evaluation of Estimated Genetic Values

The two most important criteria for evaluation of estimated genetic values are accuracy and bias. On 
simulated data accuracy can be estimated by the correlation between the estimate and the actual 
breeding value. The coefficient of determination, that is, the correlations squared, should equal the 
“reliability” of the genomic evaluation, as explained in Chapter 6 for the mixed model.

On real data the true breeding values are not known. As noted previously, genomic estimated 
genetic values for young animals with genotypes, but without trait records or progeny records, are 
compared to standard estimated breeding values (EBV) on the same animals based on progeny 
records produced later. In this case the squared correlation between the two estimates should equal 
the reliability of the genomic evaluations divided by the reliability of the daughter‐based evalua-
tions (VanRaden et al., 2009). Generally statistics derived from genomic estimated breeding values 
(GEBV) are compared with the same statistics computed from parent average (PA). This is somewhat 
problematic, because if the current breeding value of the bull is based on relatively few records, or 
if the heritability of the trait is low, the contribution of the parents to the current genetic evaluations 
will still be significant. This will inflate coefficients of determination for both genomic and PA but 
will have a greater effect on PA (Weller et al., 2014b). This problem can be somewhat alleviated if 
genomic and PA evaluations are compared to the bulls’ current DYD. However, as noted previously, 
DYD are not computed for all traits.



126	 Genomic Selection in Animals

In the previous two chapters, formulas were presented to estimate genomic reliabilities for both 
two‐ and single‐step reliabilities. Thus the “realized” reliabilities can be also compared to the 
expected reliabilities.

Generally bias is measured by the regression of true genetic values on estimated genetic values. 
If evaluations are unbiased, then this regression should not be significantly different from unity. 
That is, the covariance of the estimated and true genetic values should equal the variance of the 
estimated genetic values. In other words if the difference in the estimated genetic evaluations of two 
animals is equal to 100 units, this should on the average be the difference between their actual breeding 
values. The common situation for biased evaluations is that this regression is less than unity. In this 
case the genetic evaluations of the top‐rated individuals will tend to be higher than their actual 
genetic values. If bulls with daughter records are compared to bulls with genotypes, but without 
daughter records, the top bulls with genomic evaluations may have evaluations higher than bulls 
with daughter records, but these evaluations will be biased upward, and selection of individuals for 
breeding will not be optimal.

Methods Used to Validate Genomic Genetic Evaluations

In Chapter 14 we discussed briefly methods for validation of genomic genetic evaluations. Two 
basic methods have been applied in the literature. In the first method, first applied by Meuwissen 
et al. (2001), simulated data sets are derived, and genomic breeding values are computed on the 
simulated data. This method has the advantages that the EBV can be compared to the “true” 
(simulated) breeding values and that any number of simulated data sets can be generated. The main 
disadvantage is that it is not known how accurately the simulation algorithm actually corresponds 
to actual data.

The second method, first applied by VanRaden et al. (2009), is based on analysis of actual data. 
The data is divided into “training” and “validation” data sets. Generally this is accomplished by 
dividing the population into old and young animals, respectively. (Although the validation set com-
prised young animals, only animals with their own trait records or records of progeny can be used 
for validation.) Prediction equations that use markers, phenotypic records, and pedigree information 
as input and predict genomic breeding values are derived from the training data set, in which a large 
number of markers have been assayed on a sample of animals. Then the accuracy of the prediction 
equation is evaluated on the validation data set, using only genotype and pedigree information to 
derive genomic breeding values. The genomic breeding values of the validation animals are com-
pared to standard breeding values for the same animals based only on pedigree and progeny records. 
The advantage of this method is that all the properties of actual data are intact. The disadvantages 
are that the number of actual data sets that can be analyzed is generally very limited and it is not 
possible to compare the EBV to the true breeding values.

Interbull, the international organization for validation of dairy bull genetic evaluations, validates 
GEBV by comparison of current deregressed EBV to GEBV derived from a truncated data set with 
all records of the last 4 years deleted (https://wiki.interbull.org/public/CoPAppendixVIII?action= 
print&rev=44). Based on the regression of current deregressed EBV on GEBV from the truncated 
data set, bias and increase in accuracy of GEBV as compared to PA are evaluated. Bias is estimated 
by the consistency of the genetic trend captured by GEBV and the consistency of variation of GEBV 
from the truncated data set and current EBV.
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Evaluation of Two‐Step Methodology Based on Simulated Dairy Cattle Data

VanRaden (2008) simulated marker and QTL inheritance for 50,000 biallelic markers and 100 
biallelic QTL on 30 equal‐length chromosomes. Predictions were tested with simulated genotypes 
for 2967 Holstein bulls and 766 Jersey bulls. The Holstein bulls included 1885 bulls born from 1995 
through 1997, 290 ancestor bulls included in computing predictions, and 792 younger bulls born 
from 2001 through 2002 for testing predictions. The Jersey bulls included 563 older bulls to compute 
predictions plus 203 younger bulls to test predictions.

Reliability for Holsteins averaged 0.66 for nonlinear predictions and 0.63 for linear predictions 
versus 0.32 for PA for net merit of young bulls. Four methods to compute allelic frequencies for 
the linear model analyses were compared: the simulated frequencies, the base population frequen-
cies (as explained in Chapter 15), simple frequencies estimated by counting alleles in genotyped 
bulls, and frequency of 0.5 for all markers. Differences in the reliabilities between these methods 
were all less than 1%. Corresponding accuracies of selection obtained as square roots of those 
values were 0.81, 0.79, and 0.56. Thus, linear genomic predictions had reliabilities that were 0.31 
greater than the reliability for PA for the younger Holstein bulls and 0.19 greater for the younger 
Jersey bulls.

Numerous studies have shown that accuracies of genomic evaluations are no higher than PA, if 
less than 1000 bulls are included in the training population (e.g., VanRaden et al., 2009; Weller 
et al., 2014b). Since thousands of bulls with genetic evaluations based on daughter records are avail-
able only for the largest dairy cattle populations, several studies have proposed generating training 
populations of cows with production records and genotypes. As genotyping costs decrease, 
genotyping of tens of thousands of cows has become economically feasible, even for relatively 
small populations.

Jiménez‐Montero et al. (2012) evaluated different female‐selective genotyping strategies in 
populations that have a limited number of sires but a large number of cows. Populations of 40,000 
cows were simulated, and 1000, 2000, and 5000 cows were selected for genotyping as training sets 
based on five different strategies. Genomic genetic evaluations were computed using the Bayesian 
Lasso algorithm (Chapter 15). The accuracy of the evaluations in the validation population using 
the two‐tailed strategies was better than the accuracy obtained using other strategies(0.50 and 0.63 
for the two‐tailed selection by yield deviations strategy in low‐ and medium‐heritability scenarios, 
respectively, using 1000 genotyped cows). All selection strategies resulted in biased evaluations. 
Increasing the number of cows genotyped to 5000 increased the accuracy by less than 10%. When 
996 genotyped bulls were used as the training population, accuracies were 0.48 and 0.55 for low‐ 
and medium‐heritability traits. Thus selective genotyping of cows for the training population can 
be more effective than genotyping a similar‐sized sample of bulls.

Evaluation of Multistep Methodology Based on Actual Dairy Cattle Data

VanRaden et al. (2009) used genotypes for 38,416 markers and August 2003 genetic evaluations for 
3576 Holstein bulls born before 1999 to predict January 2008 daughter deviations for 1759 bulls 
born from 1999 through 2002. Five milk yield traits, 5 fitness traits, 16 conformation traits, and net 
merit were analyzed. The official PA from 2003 and a 2003 PA computed from only the subset of 
genotyped ancestors were combined with genomic predictions using a selection index. Expected 
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genomic reliabilities were computed from Equation (15.12). Realized genomic reliabilities (RGR) 
were computed as follows:

	
RGR PA adjustment

dau

R

R

2

	 (17.1)

where R2 is the coefficient of determination between the genomic breeding value and the 2008 
breeding value based on daughter records, R

dau
 is the reliability of the 2008 DYD, and the PA 

adjustment = reliability of the PA−the coefficient of determination of the PA and the 2008 evalua-
tions divided by R R2 / .dau  Since the final genomic evaluations were computed from an index that 

included a contribution from the PA genetic evaluation, it was necessary to account for this in 
calculation of RGR. The gain from genomic evaluations is the difference between the realized 
genomic reliability and the reliability of traditional PA.

Combined predictions were more accurate than official PA for all 27 traits. The coefficients of 
determination were 0.05–0.38 greater with nonlinear genomic predictions (Bayes A method 
of VanRaden et al. (2009)) compared with those from PA alone. Linear genomic predictions had 
coefficients of determinations similar to those from nonlinear predictions but averaged just 
0.01 lower. For all traits the realized reliabilities of the genomic evaluations were about 10% lower 
than the theoretical reliabilities. Similarly, the realized reliabilities of the PA were generally lower than 
the published reliabilities. Averaged across all traits, combined genomic predictions had realized 
reliabilities that were 23% greater than reliabilities of PA (50 vs. 27%), and gains in information 
were equivalent to 11 additional daughter records.

Reduction of the number of markers by half had virtually no effect on the coefficients of 
determination for then genomic evaluations. Over the range of 1151–3576 predictor bulls, gains in R2 
for net merit were nearly linear with increasing numbers of predictor bulls, and gains for most other 
individual traits followed that same pattern. More recent results show that this trend appears to hold 
up to 10,000 predictor bulls. Regressions of 2008 evaluations on genomic evaluations of validation 
bulls were not computed in this study. Thus bias of the genomic evaluations was not estimated.

Colombani et al. (2013) computed GEBV for two reference populations consisting of 3940 
Holstein bulls and 1172 Montbeliarde bulls using the method of VanRaden (2008) denoted GBLUP; 
partial least squares regression (PLS); sparse PLS (sPLS) regression, a variable selection PLS 
variant; and two Bayesian methods—Bayes Cπ and Bayesian least absolute shrinkage and selection 
operator (LASSO). Milk yield, fat content, and conception rate were analyzed. In Holsteins correla-
tions were higher for Bayesian methods for fat content and were similar to GBLUP for milk yield 
and to GBLUP and PLS regression for the conception rate. Colombani et al. (2013) suggest that the 
higher correlations of the Bayesian methods for fat content are probably due to the effect of the 
DGAT1 gene (Grisart et al., 2002). Regression slopes of observed DYD on predicted DYD for 
Holsteins were less than unity for all methods in all traits but highest for standard BLUP.

Evaluation of Single‐Step Methodologies Based on Actual Dairy Cattle Data

Aguilar et al. (2010) analyzed US Holstein data for final score used for May 2009 official evalua-
tions. A total of 10,466,066 records were available for 6,232,548 cows. Pedigrees were available for 
9,100,106 animals, and 6508 bulls were genotyped for the mid‐density BeadChip, which included 
54,001 markers. Genetic evaluations were calculated for 2575 young bulls with no daughter records 
in 2004, but with daughter records in 2009.
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For PA, the coefficient of determination for the validation bulls was 0.24 and the regression was 
0.76 for deregressed genetic evaluations (Chapter 15). Coefficients of determination were approxi-
mately 0.1 higher for genetic evaluations. Thus PA overestimated the genetic evaluations by 27% as 
compared to evaluations based on daughter records. For the multiple‐step approach, the coefficient 
of determination increased to 40% and the regression to 0.86. The increase in coefficient of 
determination of 16% relative to the PA was slightly higher than the increase of 13% reported by 
VanRaden et al. (2009).

The coefficient of determination for the single‐step analysis for deregressed evaluations varied 
from 0.37 to 0.41, and the regression varied between 0.68 and 0.79 depending on the assumed 
allelic frequencies for the genetic markers in computations of the G matrix (Equation (15.8)). The 
highest coefficient of determination was obtained with an assumed allelic frequency of 0.5 for all 
markers. Coefficients of determination were 0.38 and 0.37 if frequencies were computed from base 
animals and all animals, respectively. As explained in Chapter 15, “base animals” are animals with 
genotypes, but without ancestors with genotypes. Regressions were highest, 0.79, with allelic 
frequencies computed by the method of Gianola et al. (2009), as compared to a regression of 0.76 
if allele frequencies of 0.5 were assumed.

Coefficients of determination were highest assuming that the G matrix accounted for all genetic 
variance. That is, λ = 1 in Equation (16.10). Regressions increased as λ decreased to 0.5, but coeffi-
cients of determination also decreased slightly. With λ = 0.6 the coefficient of determination was 0.4 
and the regression was 0.90. Thus a substantial increase in the regression was obtained with only a 
minor reduction in the coefficient of determination. With this value for λ results for the single‐step 
methodology have a coefficient of determination equal to the multistep methodology, but a regres-
sion of 0.9, as compared to 0.86 for the two‐step methodology. Of course it must be noted that these 
results are based on a single trait for a single data set, with λ set empirically at the optimal value.

Lourenco et al. (2014a) evaluated methods for derivation of GEBV for an Israeli Holstein dairy 
population of 713,686 cows and 1305 progeny‐tested bulls with genotypes. Inclusion of genotypes 
of 343 elite cows in an evaluation method that considers pedigree, phenotypes, and genotypes 
simultaneously also was evaluated. For each production trait, a multitrait animal model was used 
to compute traditional genetic evaluations for parities 1 through 3 as separate traits. On average, 
R2 was lowest for PA followed by the method of VanRaden (2008), Bayes C, single‐step methodology 
with all markers weighted equally, and single‐step methodology with differential marker weights 
(Wang et al., 2012).

Evaluation of Single‐ and Multistep Methodologies Based on Actual Poultry Data

Unlike dairy cattle, in poultry it is not possible to generate a validation population, consisting of a 
large number of sires genotyped each with many progeny. Instead the validation population consisted 
of animals with single records for the traits analyzed. Thus accuracy of the GEBV, the correlation 
between the estimated and actual breeding values, were computed as
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where û is the genetic evaluations of validation animals based on genotypes, but without records, 
u + e is the phenotypic records of these animals corrected for fixed effects, and h is the square root 
of heritability.
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Data of broiler chickens for two pure lines for three generations were analyzed (Simeone 
et al., 2011). The complete population included 183,784 and 164,246 broilers for the two lines, of 
which 3284 and 3098 broilers were genotyped for 57,636 SNPs. The validation population consisted 
of all third‐generation birds of which 799 individuals were genotyped from each line. The average 
accuracies of the validation population with standard mixed model evaluations for body weight at 
6 weeks, breast meat, and leg score were 0.46, 0.30, and less than 0. Accuracies with single‐step 
genomic evaluations were 0.60, 0.34, and 0.06, respectively, and 0.60, 0.36, and 0.09 for two‐step 
Bayes A methodology. On the low heritability trait of legs score the single‐step methodology was 
50% more accurate than the standard mixed model considering all animals of the third generation. 
A similar gain has not been demonstrated for dairy cattle, but it should be noted that PA evaluations 
are probably less reliable in poultry due to the lower number of progeny per sire.

Evaluation of Single‐ and Multistep Methodologies Based on Actual Swine Data

A swine data set consisting of 3534 animals from a single nucleus pig line with genotypes from the 
Illumina PorcineSNP60 chip and a pedigree including parents and grandparents of the genotyped 
animals for a total of 6473 animals was analyzed (Cleveland et al., 2012). Five traits with heritabili-
ties ranging from 0.07 to 0.62 were recorded, but the number of animals with records varied among 
the traits analyzed. Genomic breeding values were calculated using Bayes B with phenotypes and 
with deregressed breeding values and using a single‐step genomic BLUP approach with informa-
tion from both genotyped and ungenotyped animals.

In each analysis one‐sixth of the genotyped animals were randomly assigned to the validation set 
and the remaining genotyped animals to the training set. Each training set therefore consisted of 
2945 genotyped animals. For the animals in the validation set only genotype information and pedi-
gree were used to compute genomic genetic evaluations. Accuracy of the genomic breeding values 
for the validation animals was estimated as the correlation between genomic and high accuracy 
mixed model breeding values based on progeny records. Only 75 of the animals in the validation set 
with the highest reliabilities were used to estimate accuracy of the genomic breeding values, but no 
correction was made for the fact that the mixed model breeding values do not correspond com-
pletely to the true breeding values.

Genomic evaluations were also computed with the 509 youngest animals as the validation set and 
all older animals in the training set. Due to the low reliabilities of the young animals, accuracies 
were estimated using the 30 validation animals with the highest mixed model accuracies for each 
trait, but only the three traits with the highest heritabilities were analyzed.

The genomic breeding value accuracy increased with increased trait heritability and with 
increased relationship between training and validation. In nearly all cases, Bayes B using deregressed 
breeding values outperformed the other approaches, but the single‐step evaluation performed only 
slightly worse. Accuracies for the Bayes B methodology with the young boars included in the vali-
dation set ranged from 0.5 to 0.7 for the three traits with heritabilities of 0.38–0.62.

Evaluation of GEBV for Plants Based on Actual Data

Nearly all studies that have analyzed plant data have used methods described here as multistep, 
although for plants generally all individuals that were phenotyped were also genotyped. Thus, there 
is no justification for single‐step methodologies. In all cases the number of markers and individuals 
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genotyped was much lower than in the animal studies (reviewed by Nakaya and Isobe, 2012). Thus 
a number of studies have been able to apply standard BLUP to estimate marker effects. Other 
estimation methods have been used including Bayesian LASSO and ridge regression.

The ranges of accuracies in empirical studies were higher in plant studies than animal studies, 
despite the relative low numbers of markers and individual genotypes. In a few cases accuracies 
about 0.9 were obtained. Nakaya and Isobe (2012) suggest that this might be due to the lower 
genetic diversity caused by a small number of parental lines and a greater bottleneck in the breeding 
materials.

Summary

From the studies described in this chapter and additional studies not presented in detail, several 
important conclusions can be drawn. First, the major factor affecting the accuracy of genomic eval-
uations is the number of animals with genotypes used to derive genomic evaluations. Derivation of 
genomic evaluations with significantly greater accuracy than PA requires a training population of at 
least several thousand genotyped individuals. The number of markers included in the analysis over 
the range tested has only a very minor effect on accuracy. Thus very little gain can be expected by 
the introduction of high‐density DNA chips including up to 800,000 markers. Some bias is nearly 
always observed. Thus the young individuals with the highest genomic evaluations are inflated. 
However, this is generally the case also with PA. Differences in accuracy between single‐ and 
multistep methodologies were minimal, but single‐step methodologies might have an advantage in 
bias, and for genetic evaluation of young animals that were not genotyped.
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By‐Products of Genomic Analysis: Pedigree Validation 
and Determination

18

Introduction

The availability of high‐density SNP chips and more recently next‐generation whole genome 
sequencing has additional by‐products, in addition to genomic genetic evaluations. In this chapter we 
will review the application of genetic markers to pedigree validation and determination. Until the 
advent of microsatellites in the 1990s, parentage verification could only be performed based on blood 
groups, and costs were nearly prohibitive, except for specific animals of particular interest. Now with 
routine genotyping of hundreds of thousands of individuals for low‐ and medium‐density SNP chips, 
parentage verification is becoming a routine procedure for a large fraction of the commercial popula-
tion. Pedigree mistakes lower rates of genetic gain. Confirmation and correction of pedigrees can be 
considered a by‐product of genomic evaluation obtained at virtually no extra cost. As genotyping 
costs decrease, the gains obtained directly from pedigree correction may cover genotyping costs 
without considering gains due to genomic selection. This is clearly a “win–win” situation. We will 
first consider the effects of incorrect pedigree information on breeding programs. We will then review 
the history of pedigree validation prior to SNP chips and explain in detail the current state of the art 
for both pedigree validation and determination based on low‐ and medium‐density SNP chips.

The Effects of Incorrect Parentage Identification on Breeding Programs

Van Vleck (1970a, 1970b) demonstrated for sire models that incorrect identification of sires can bias 
estimates of heritability and genetic evaluations and reduce genetic progress due to selection. Israel 
and Weller (2000) estimated the effect of pedigree errors on estimated breeding value and genetic gain 
derived by a single trait animal model for a sex‐limited trait with a heritability of 0.25. These values 
correspond approximately to the three major milk production traits. Ten populations of 100,000 
milking cows were simulated with correct paternity identification for all animals, and 10 populations 
were simulated with 10% incorrect paternal identification. The initial populations consisted of 100,000 
unrelated individuals, and simulations were continued for 20 years. The BLUP genetic evaluations 
were computed every year by an animal model analysis for each complete population. Estimated 
breeding values for the populations with 10% incorrect paternity were biased, especially in the later 
generations. Genetic gains were 4.3% higher with correct paternity identification.
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Principles of Parentage Verification and Identification with Genetic Markers

Baring mutations and genotyping mistakes, a progeny and each parent must have one allele in 
common at each genetic marker. Weber and Wong (1993) found an average mutation rate for 
28 microsatellites on human chromosome 19 of 1.2 × 10−3 per locus per gamete per generation. This 
rate may have been inflated by somatic as opposed to germ‐line events. For all genetic markers 
considered, rates of genotype mistakes are always much higher than mutation rates.

Parentage is considered “confirmed” if the null hypothesis of correspondence by chance between 
the genotypes of the progeny and the putative parent can be rejected with sufficiently high 
probability. This probability is computed based on the allelic probabilities in the general population. 
For example, considering a single marker, if the progeny is heterozygous for alleles i and j, the 
probability that another random individual in the population could not be rejected as a parent will 
be 1 − (1 − p

i
 − p

j
)2, where p

i
 and p

j
 are the population probabilities for alleles i and j. If the progeny 

is homozygous for allele i, then this expression reduces to 1 − (1 − p
i
)2. If several markers are 

considered, then the overall probability for nonexclusion for individual i, Nx
i
, will be
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where p
k
 = sum of the frequencies of the two alleles of individual i for marker j and Π[*] represents 

the product of [*] from 1 through J, where J is the number of markers for which individual i and its 
putative sire were genotyped.

The probability to reject paternity (exclusion probability) for an erroneously recorded parent will 
increase with an increase in the “polymorphism information content” (PIC) of the marker, defined 
as the probability of obtaining a progeny for which allele origin of a single parent can be determined 
from a random mating (Botstein et al., 1980). If both parents and the progeny are genotyped, then 
PIC is computed as follows:
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where PIC
2
 = PIC with both parents genotyped, Na is the number of marker alleles segregating in 

the population, and p
i
 and p

j
 are the population frequency of the two progeny alleles. It can be easily 

seen that if only two alleles are segregating in the population, PIC
2
 will be maximum with p

i
 = p

j
 = 0.5.

If only a single parent and the progeny are genotyped, then PIC is computed as follows:
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where PIC
1
 = PIC with a single parent genotyped. For a given number of alleles, PIC will be maxi-

mum if the frequencies of all alleles are equal, that is, p
1
 = p

2
 =  = p

Na
 = 1/Na. For all numbers of 

alleles and all allelic frequencies, PIC
2
 > PIC

1
.

The probability that allele origin of the progeny can be determined for both parents is termed the 
“proportion of fully informative matings” (PFIM) (Haseman and Elston, 1972). PFIM is computed 
as follows (Gotz and Ollivier, 1992):
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where p
k
 is the combined probability of all alleles other than i and j in the population, and the other 

terms are as defined previously. With all alleles at equal frequency, this equation reduces to
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Paternity Validation Prior to High‐Density SNP Chips

Beginning in the 1940s parentage could be determined in cattle using blood group markers(Stormont 
et al., 1951), but the procedure was very expensive and was generally only applied to validate the 
parentage of AI sires (Stormont, 1967). Because of the limited number of markers and low informa-
tiveness of these markers, it was generally necessary to have the genotypes of both parents to obtain 
reasonable power to reject the hypothesis that correspondence was obtained by chance. Various 
studies found that the proportion of errors in sire identification varied from a few percent to as much 
as 22% (Christensen et al., 1982; Geldermann et al., 1986; Bovenhuis and van Arendonk, 1991).

With the advent of DNA microsatellites, it became possible to verify parentage of large numbers 
of animals as a by‐product of daughter and granddaughter designs conducted during the 1990s and 
2000s. With respect to parentage verification, microsatellites had the advantage that they were gen-
erally multiallelic (Glowatzki‐Mullis et al., 1995). Thus even if the progeny was heterozygous for a 
specific marker, there was generally a significant probability that the progeny would have no com-
mon allele for an incorrectly recorded parent. The disadvantage of microsatellites was that genotyp-
ing error rates were generally high, in the range of 5–10%. Thus, at least two discrepancies between 
the progeny and the putative parent were generally required to reject parentage (Weller et al., 2004).

Only a very few studies actually reported on the prevalence of parentage mistakes in commercial 
populations. Weller et al. (2004) analyzed a total of 6040 Israeli Holstein cows genotyped for 104 
microsatellites from 181 herds listed as progeny of 11 sires were. The frequency of rejected paternity 
was 11.7%. The effects of recorded sire, birth year, geographical region, herd, and inseminator on the 
frequency of paternity rejection were analyzed with linear and nonlinear models. Only the effects of 
inseminator and recorded sire were significant in all models tested that included these effects. The 
main causes of incorrect paternity recording appear to be inseminator recording mistakes and possi-
bly mistakes with respect to semen labeling at the AI institutes. Incorrect paternity recording due to 
multiple inseminations by different sires could explain at most 20% of the paternity mistakes.

The International Society for Animal Genetics (ISAG) proposed specific panels of microsatellites 
to validate parentage for all the major commercial animal species (e.g., Bredbacka and Koskinen, 
1999). Although microsatellites could efficiently validate parentage, due to the relatively high 
genotyping error rate, they could not be used to determine the actual parent from a list of candidates, 
unless the list was very limited.

Paternity Validation and Determination with SNP Chips

SNPs are nearly always biallelic. Thus exclusion of a putative parent is obtained only when one 
individual is homozygous for one allele and the other individual is homozygous for the other allele. 
The advantages of SNPs relative to microsatellites are that genotyping error rates are much lower 
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and the number of SNPs included on medium‐density SNP chips is much greater than the number 
of microsatellites generally available for analysis. A standard subset of approximately 100 SNP 
(Heaton et al., 2002) is included in almost all genotyping chips and has been accepted for interna-
tional parentage confirmation (International Committee for Animal Recording). By analysis of 
40,874 valid SNPs, Wiggans et al. (2009) found that the mean number of conflicts was 2.3 when 
pedigree was correct and 2411 when it was incorrect. Between 4 and 14% of US dairy cattle 
genotyped with the Illumina Bovine3K chip had incorrectly reported sires (Wiggans et al., 2012a).

Of the 576 Israeli Holstein bulls genotyped by the BovineSNP50 BeadChip (Weller et al., 2010), 
there were 204 bulls for which the father was also genotyped. The results of 38,828 valid SNPs were 
used to validate paternity, determine the genotyping error rates, and determine criteria enabling 
deletion of defective SNPs from further analysis. Based on the criterion of greater than 2% conflicts 
between the genotype of the putative sire and son, paternity was rejected for seven bulls (3.5%). The 
remaining bulls had fewer conflicts by one or two orders of magnitude. Excluding these seven bulls, 
all other discrepancies between sire and son genotypes are assumed to be caused by genotyping 
mistakes. The frequency of discrepancies was greater than 0.07 for 9 SNPs and greater than 0.025 
for 81 SNPs. The overall frequency of discrepancies was reduced from 0.00017 to 0.00010 after 
deletion of these 81 SNPs, and the total expected fraction of genotyping errors was estimated to be 
0.05%, as compared to genotyping error rates of 5–10% with microsatellites.

Validation of More Distant Relationships

As noted previously, baring mutations and genotyping mistakes, a parent and a progeny must have 
one allele in common for each genetic marker. However, this is not the case for more distant 
relationships, such as grandprogeny–grandparent or half‐sibs. However, related individuals should 
still have more alleles in common as compared to unrelated individuals.

Seroussi et al. (2013) proposed a method to validate maternity based on the genotypes of their 
sons and fathers. The method was applied to 789 Israeli AI bulls genotyped for the BovineSNP50 
BeadChip. They visualized the pairwise identity‐by‐state distances calculated using PLINK software 
in three dimensions (Purcell et al., 2007). Each of the 310,866 possible pairs of individuals 
(789*788/2) was represented by the three dimensional coordinates that correspond to the frequency 
of the three possible states of their SNPs’ alleles: no match (f 0), single match (f 1), or double match 
(f 2). Results were reduced to two dimensions using the transformations: x′ = 0.7071(1 + f 1 − f 2) and 
y′ = 1.2247(f 0). Bull‐by‐bull pairs were grouped according to their level of kinship, and canonical 
scores were calculated using discriminant analysis and the x′ and y′ features. Of the 474 pairs of 
recorded maternal grandsire–grandson with both individuals genotyped, the probability for 28 pairs 
to belong to the grandsire–grandson level of kinship was less than 5%, which postulates an error 
rate of around 3% per generation in pedigree determination.

VanRaden et al. (2013a) used three methods to validate and determine maternal grandsire and 
maternal great‐grandsires. In the first method, only the progeny and the putative maternal grandsire 
genotypes were used. The number of discrepancies was counted, with “discrepancy” defined as 
given previously. That is one individual homozygous for one allele and the other individual homozy-
gous for the other allele, even though there is only a 50% chance that the grandprogeny received 
either allele from its grandsire. In the second method, the genotype of the sire was also included in 
the analysis. This method also counts conflicts using heterozygous loci if the sire is homozygous, 
because the allele contributed by the dam is then known. The first and second methods were consid-
ered to have produced a confirmation if the potential maternal grandsire with the lowest fraction of 
discrepancies was the reported pedigree maternal grandsire.
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The third method imputes genotypes for all markers with missing genotypes and counts the 
haplotypes in common instead of individual SNP conflicts. (Methods for imputation of missing 
genotypes will be considered in detail in the next chapter.) The paternal haplotype is removed from 
the animal’s genotype (similar to the second method) to determine the maternal contribution. 
A match is declared if the maternal haplotype is the same as either of the two maternal grandsire 
haplotypes. Again there is only a 50% chance the grandprogeny received either of the grandsire’s 
haplotypes. In this method the correct maternal grandsire was considered confirmed if the bull with 
the highest fraction of matches was the recorded maternal grandsire.

The three methods were applied to 12,152 Holstein, 2265 Jersey, and 1605 Brown Swiss potential 
grandsires. The correct maternal grandsire was selected with frequencies of 61, 60, and 65%, 
respectively, with the first method; 95, 91, and 94% with the second method; and 97, 95, and 97% 
with the third method.

Pedigree Reconstruction with High‐Density Genetic Markers

With the advent of high‐density SNP chips, it became possible to reconstruct complete pedigrees if 
sufficient numbers of individuals are genotyped (Anderson and Garza, 2006; Hill et al., 2008; 
Gorbach et al., 2010). In natural populations, no pedigrees were recorded historically and reconstruc-
tion of the pedigree information from DNA may be a very cost‐effective breeding option (Pemberton, 
2008; El‐Kassaby and Lstibůrek, 2009).

In Equation (15.8) we presented the formula for construction of the genomic relationship matrix. 
Seroussi et al. (2013) calculated the genomic relationship for 789 bulls genotyped for the 
BovineSNP50 BeadChip. The average score observed for the entire third group of kinship (half‐sibs 
and grandparent–grandprogeny pairs) was 0.25, which matches the theoretical value. The number 
of misclassified pairs using this analysis, as compared to the pairwise identity‐by‐state distances 
calculated using PLINK software described previously, was reduced by 3.4 (7.8%).

Summary

Methods to verify recorded genetic relationships began in the 1940s with blood group markers but 
only became really cost effective with the advent of microsatellites in the 1990s. Estimates of the 
frequency of incorrect parentage recording range from a few percent to over 20%, with a mean near 
10%. Although SNPs are nearly always diallelic, the lower error rates, and the much greater number 
of markers genotyped, resulted in much more efficient pedigree validation, compared to microsatel-
lites. With the development of mid‐density SNP chips with approximately 50,000 markers, determi-
nation of actual pedigree relationships, even removed two generations, became possible. Since 
pedigree errors reduce rates of genetic gain, the ability to correct pedigree mistakes is a virtually 
zero cost dividend of genomic selection programs.
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and Effects on Genomic Evaluations
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Introduction

As noted in the previous chapters, low‐, medium‐, and high‐density BeadChips are now available 
for all the important agricultural species (e.g., http://support.illumina.com/array/kits.ilmn). Typically 
low‐density chips contain less than 10,000 SNPs, while medium‐density chips contain over 50,000 
SNPs, and high‐density chips contain close to 800,000 SNPs. Current costs per individual genotyped 
are in the range of $40, $90, and $200 for low‐, medium‐, and high‐density chips, respectively. (By the 
time this text reaches publication, these numbers will probably be lower.) Hundreds of thousands of 
cows have already been genotyped in the United States for low‐density chips, and similar situations 
exist in other farm animals. Various studies have proposed that the “missing” genotypes in low‐
density chips can be inferred based on the prevalence of haplotypes in the population. That is, the 
haplotype for a specific chromosomal location of the individual genotyped for the low‐density chip 
is compared to haplotypes prevalent in the population of individuals genotyped for the medium‐ or 
high‐density chip. By matching the low‐density haplotype to the corresponding haplotype for 
individuals genotyped for the medium‐ or high‐density chip, the SNPs missing in the low‐density 
chip can then be deduced, considering also pedigree and prevalence of haplotypes in the population, 
as illustrated in Figure 19.1.

This procedure has been termed “imputation.” Of course the same method can also be used to 
deduce specific missing genotypes on medium‐density chips and to correct “erroneous” genotypes—
that is, genotypes that conflict with Mendelian rules of inheritance, as explained in the previous 
chapter. In the first sections we will consider the different algorithms that have been proposed for 
imputation and explain why different strategies have been proposed for humans and farm animals. 
In the following sections we will compare these methods on actual cattle data, based on accuracy 
and speed, and in the final section we will consider how imputation affects genomic evaluation of 
farm animals.

Determination of Haplotypes for Imputation

As explained in the introduction all methods of imputation require determination of haplotypes. 
There are two general methods to determine haplotypes from genotypes: “statistical”‐ and 
“pedigree”‐based methods. In the first method, haplotypes of most individuals are determined based 



140	 Genomic Selection in Animals

on the frequencies of specific haplotypes in the population. In the second method, haplotypes of 
parents first are determined based on the genotypes of their progeny, which are then used to 
iteratively determine the genotypes of the progeny (e.g., Baruch et al., 2006). The first method is 
more computing intensive and is generally applied to human populations, in which the numbers of 
related individuals with genotypes are usually very limited.

Imputation in Humans versus Imputation in Farm Animals

The first algorithms for imputation were developed based on human populations. Analysis of 
human pedigrees is generally based on nuclear families of parents and a small number of full 
sibs, while farm animals generally have large half‐sib families. Furthermore, in humans the 
individual’s genotypes will be selected based on the inheritance of a specific syndrome in 
particular families. In farm animals the current situation is that nearly all sires used for artificial 
insemination are genotyped for medium‐ or high‐density BeadChips, while females, daughters 
of these sires, are genotyped for low‐density chips. This facilitates determination of haplotypes 
in the sires by pedigree‐based methods, and this information can then be used to determine the 
haplotypes of progeny.

3K

. . . . A . . . . . . . A . . . . . . . .

. . . . G . . . . . . . C . . . . . . . .

50K

C G A G A T C T C C T T C T T C T G T G C
C G A G A T C T C C C G A C C T C A T G G
C C A A G C T C T T T T C T T C T G T G C
C G A A G C T C T T T T C T T C T G T G C
C G A G A C T C T C C G G C C T T A T G C
T G G G A T C T C C C G G C C T C A T G G
C G A G A T C T C C C G G C C T T G T G C
C G A G A C T C T T T T C T T T T G T A C
C G A G A C T C T C C G G C C T C G T G C
C G A A G C T C T T T T C T T C T G T G C

Figure 19.1  Illustration of imputation based on common haplotypes for a specific chromosomal segment. Only two markers are 
assumed to be genotyped on the low‐density (3K) chip and 21 markers on the medium‐density (50K) chip. The two haplotypes of 
a single individual genotyped for the low‐density chip are shown in the top part of the figure, and the pair of haplotypes for five 
individuals genotyped for the medium‐density chip are illustrated in the lower part of the figure. Only the second haplotype listed 
for the medium‐density chip corresponds to the first haplotype of the individual genotyped for the low‐density chip and is 
indicated with a dotted line box. Three haplotypes of the medium‐density chip correspond to the second haplotype for the 
individual genotyped for the low‐density chip, and these are indicated with solid line boxes. All three have the same haplotype. 
Thus by imputation we can assume that the missing genotypes of the individual genotyped for the low‐density chip correspond to 
the second and third rows in the lower part of the figure.
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Algorithms Proposed for Imputation in Human and Animal Populations

For human populations several imputation methods based on various statistical models, such as the 
haplotype clustering algorithm (Scheet and Stephens, 2006), the hidden Markov model (Browning 
and Browning, 2007), the expectation maximization (EM) algorithm (Qin et al., 2002; Scheet and 
Stephens, 2006), and the Markov chain model (Li et al., 2010), have been proposed. Findhap, unlike 
the previous algorithms, which were developed to deal with human data, is a pedigree‐based 
algorithm developed for farm animals, especially dairy cattle (VanRaden, 2011). The principles of 
fastPHASE, BEAGLE, IMPUTE, and Findhap will now be discussed in detail.

fastPHASE uses a localized haplotype clustering algorithm (Scheet and Stephens, 2006). 
It assumes that haplotypes of individuals in the population tend to cluster into groups of closely 
related or similar haplotypes within a short region of a chromosome. This method allows member-
ships of clusters to vary along the chromosome based on a hidden Markov model. Missing genotypes 
are sampled on the basis of allele frequencies estimated from reference haplotypes, and then an EM 
algorithm is used to estimate parameter values to infer missing genotypes. The computing time of 
the fastPHASE algorithm increases linearly with the number of ungenotyped individuals and the 
number of haplotype clusters (Weigel et al., 2010).

BEAGLE is also a localized haplotype clustering‐based algorithm (Browning and Browning, 
2007). First, it gathers haplotype clusters at each marker and defines a hidden Markov model to find 
the most likely haplotype pairs based on the known genotypes of each individual. The most likely 
genotype at the missing genotype loci can then be deduced from final haplotype pairs. BEAGLE, 
unlike fastPHASE which estimates parameters for cluster configuration using an EM algorithm, 
uses empirical frequencies. Also, unlike fastPHASE, which relies on a fixed number of haplotype 
clusters to form underlying hidden states in the Markov chain, BEAGLE allows the cluster number 
to dynamically change to better fit localized linkage disequilibrium patterns (Pei et al., 2008).

The program “IMPUTE” is also a hidden Markov model‐based algorithm. Rather than simultaneously 
estimating missing genotypes and integrating over the unknown phase of SNP that are present in both 
the reference panels and the study sample, this algorithm estimates haplotypes at SNP that are present 
in both populations and then imputes genotypes in the study sample, assuming that these haplotype 
guesses are correct. Uncertainty about phasing is taken into account by iterating these steps in a 
Markov chain Monte Carlo framework. Thus, unlike many competing algorithms for which phasing 
accuracy does not depend on the size of the study sample, IMPUTE gains accuracy by using informa-
tion from both the reference panels and study sample during the phasing step. The computational 
feasibility of IMPUTE is enhanced by using only a subset of haplotypes at each iteration to build the 
conditional distribution of haplotypes of observed SNP for an animal in the study sample, given the 
animal’s genotype, the haplotypes of other animals in the study sample, and the haplotypes of animals 
in the reference panel. Rather than sampling these “conditioning states” randomly, this algorithm 
selects sets of haplotypes that are closest to the animal in question, based on the Hamming distance 
(i.e., the minimum number of substitutions required to change one haplotype into the other) between 
the current‐guess haplotype for this animal and for other animals in the population.

Findhap (VanRaden et al., 2011a) is designed to integrate the population with pedigree haplotyping. 
It is the only program designed specifically for farm animal populations. The steps in the algorithm 
are as follows:

1.	 Each chromosome was divided into segments with three progressively shorter lengths, long 
lengths to lock in identity by descent, and short lengths to fill in missing calls.

2.	 The first genotype was entered into the haplotype list as if it was a haplotype.
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3.	 Any subsequent genotypes that shared a haplotype were then used to split the previous 
genotypes into haplotypes.

4.	 As each genotype was compared to the list, a match was declared if no homozygous loci 
conflicted with the stored haplotype.

5.	 Any remaining unknown alleles in that haplotype were imputed from homozygous alleles.
6.	 The individual’s second haplotype was obtained by subtracting its first haplotype from its 

genotype, and the second haplotype was checked against remaining haplotypes in the list. If no 
match was found, the new genotype (or haplotype) was added to the end of the list. Unknown 
alleles in the genotype were stored as unknown alleles in the haplotype.

7.	 The list of currently known haplotypes was sorted from most to least frequent as haplotypes 
were found for efficiency so that more probable haplotypes were preferred.

In continued iterations, earlier created genotypes are matched again using haplotypes that 
occurred later. The first two iterations mainly focus on determination of haplotypes in the popula-
tion. Only the highest‐density genotypes are used in the first iteration, and then all genotypes are 
used in the second iteration. After haplotyping, haplotypes are matched by using both pedigree and 
population in the following two iterations. Known haplotypes of genotyped parents were checked 
first, and if either of the individual’s haplotypes was not found with this quick check, then checking 
restarted from the top of the sorted list.

Comparisons of Accuracy and Speed of Imputation Methods

The accuracy of imputing missing genotypes using different haplotype reconstruction methods has 
been mostly compared using real data in humans (Marchini et al., 2007; Pei et al., 2008; Nothnagel 
et al., 2009; Shriner et al., 2010; Weigel et al., 2010). Several studies have also been conducted for 
animal populations, based on simulated data and real dairy cattle data. Two studies based on real 
data and one study based on simulated data will be considered in this section. In the first two studies 
all animals were genotyped for medium‐density 50K BeadChip. A fraction of the genotypes of a 
sample of animals are “masked,” that is, assumed to be unknown, and the imputation program is 
applied to determine the masked genotypes. Accuracy of imputation is then computed as the fraction 
of correctly determined genotypes among the masked genotypes.

Weigel et al. (2010) evaluated the accuracy of fastPHASE 1.2 and IMPUTE 2.0 imputation in 
Jersey cattle, using reference panels comprising 2542 animals with 43,385 SNP genotypes and 
study samples of 604 animals for which genotypes were assumed known for 1, 2, 5, 10, 20, 40, or 
80% of loci. The mean proportion of genotypes imputed correctly ranged from 0.659 to 0.801 when 
1–2% of genotypes were available in the study samples, from 0.733 to 0.964 when 5–20% of 
genotypes were available, and from 0.896 to 0.995 when 40–80% of genotypes were available. 
When the proportion of masked genotypes was large, such as 98 or 99%, IMPUTE 2.0 was slightly 
more accurate, with gains in accuracy relative to fastPHASE 1.2 ranging from approximately 0.02 
to 0.07. However, IMPUTE 2.0 was significantly more accurate for scenarios in which 90 or 95% 
of genotypes were masked in the study sample.

Weng et al. (2013) compared the efficiency of fastPHASE, BEAGLE, and Findhap using Chinese 
Holstein cattle genotyped for the Illumina BovineSNP50 genotypes. A total of 2108 cattle were 
randomly divided into a reference population and a test population to evaluate the influence of 
the reference population size. Three bovine chromosomes, 1, 16, and 28, were used to represent 
large, medium, and small chromosome size, respectively. They randomly masked 20, 40, 80, and 
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95% of the genotypes on each chromosome in the test population, but did not mask genotypes in the 
reference population. This corresponds to the situation in commercial populations in which bulls are 
generally genotyped for the medium‐density chip and cows are genotyped for the low‐density chip.

The three methods showed comparable accuracy when the proportion of masked SNPs was low. 
However, the difference became larger when more SNPs were masked. BEAGLE performed the 
best and was most robust with imputation accuracies of greater than 90% in almost all situations. 
Differences in accuracy between BEAGLE and Findhap were less than 5% in all cases. fastPHASE 
was affected by the proportion of masked SNPs, especially when the masked SNP rate was high. 
Findhap ran the fastest, whereas its accuracies were lower than those of BEAGLE, but higher than 
those of fastPHASE. Computing times for Findhap ranged from 20 to 50 seconds per chromosome, 
while computing times for BEAGLE were 1.6–18.5 hours per chromosome if at least 80% of the 
markers were masked, and even longer for fastPHASE. Thus considering the huge difference in 
computing time, and the relatively small differences in accuracy, Findhap is clearly the current 
method of choice for dairy cattle.

VanRaden et al. (2013b) found that imputation to high‐density chips with Findhap gave 99.3% 
correct genotypes from medium density, 96.1% from 6K, and 93.7% from 3K, respectively, on a 
simulated chromosome. Thus imputation from medium‐ to high‐density chips is nearly completely 
accurate.

Effect of Imputation on Genomic Genetic Evaluations

There are only a few studies that attempted to estimate the effect of imputation on genomic 
evaluations. Chen et al. (2011) studied the effect of imputation from the Illumina Bovine3K 
BeadChip to the Illumina Bovine50K BeadChip. (It should be noted though that the 3K BeadChip 
has been replaced with the 9K BeadChip, so results are no longer relevant on a commercial level.) 
They analyzed German Holstein bulls, EuroGenomics Holstein bulls, and all genotyped animals of 
German Holstein breed using three imputation programs: Findhap, BEAGLE, and DAGPHASE 
(Druet and Georges, 2010, version 2.3). A total of 1369 youngest German Holstein bulls, born 
between September 2003 and December 2004, were chosen as validation animals. As found by 
Weng et al. (2013), Findhap was much faster than BEAGLE and DAGPHASE. Allele error rate for 
the EuroGenomics bull data set was 3.3% for Findhap, 2.7% for DAGPHASE, and 1.6% for Beagle, 
respectively.

Genomic evaluations based on imputed data were computed only for BEAGLE and Findhap. 
Phenotypic data from April 2010 Interbull evaluation were used to assess the loss in accuracy of 
genomic prediction using the imputed 54K genotypes of EuroGenomics data set. Equal regression 
coefficients were obtained with the imputed 54K genotypes compared to the actual genotype, 
indicating that the genomic evaluations derived from imputed genotypes were no more biased than 
the complete genotypes. On average, reliability of GEBV dropped by 6.5% for Findhap and 2.6% 
for BEAGLE, respectively. Again BEAGLE outperformed Findhap with respect to accuracy, but 
computing time was 700‐fold greater for BEAGLE.

VanRaden et al. (2013b) compared genomic genetic evaluations on animals genotyped with the 
high‐density bovine BeadChip to imputed genotypes derived from masking those markers not 
present on the medium‐density chip. They used imputed genotypes and August 2008 phenotypes to 
predict deregressed evaluations of US bulls proven after August 2008. Although 777,962 markers 
are included on the BovineHD BeadChip, only 311,725 markers were used for genomic evaluations, 
due chiefly to redundancies of markers. For 28 traits tested, the estimated genomic reliability 
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averaged 61.1% when using 311,725 markers, 60.7% when using 45,187 markers (i.e., the markers 
present on the medium‐density chip), and 29.6% for parent averages. Increasing the number of 
markers from 45,187 to 311,725 gave only a 0.4% point gain in average reliability of genomic 
predictions. These results correspond to the previous results of VanRaden et al. (2009) presented in 
Chapter 15 that reducing the number of markers relative to the medium‐density BeadChip had a 
very minor effect on the accuracy of genomic evaluations.

Summary

Over the last 5 years, imputation has become a standard technique for increasing the accuracy of 
genomic evaluations derived for individuals genotyped for low‐density SNP chips. Imputation has 
been found to be quite accurate for most situations of practical importance, and very efficient 
algorithms have been developed for animal populations, in which the numbers of paternal half‐sib 
are generally very large. Thus computing costs for imputation are currently insignificant with 
respect to the additional costs of genotyping large numbers of animals for medium‐density chips. 
This of course may change in the near future as genotyping costs continue to decline. Although 
imputation of medium‐density genotypes to high‐density genotypes is very accurate, it results in at 
best only a very minor gain in the accuracy of genomic evaluations.
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Detection and Validation of Quantitative Trait Nucleotides20

Introduction

As described in the previous chapters, all the methods currently used for genomic evaluation are 
based on population‐wide linkage disequilibrium (LD) between the genetic marker and the actual 
polymorphisms responsible for this variation, the quantitative trait nucleotides (QTN).

A huge number of genome‐wide association studies (GWAS) have been conducted in many 
species based on medium‐ or high‐density SNP chips (reviewed by Gondro et al. (2013)). In 
Chapter 9 we considered the question of the “missing heritability.” Human height has a heritability 
of approximately 0.9. Yet, despite the huge sample sizes and huge numbers of markers analyzed in 
GWAS for this trait, the sum of significant effects detected accounted for only 5% of the variance 
for height. Similar results were found for autism and schizophrenia, even though both diseases also 
have very high heritabilities. Maher (2008) gave several explanations for these disappointing results. 
Suggested explanations include that heritability estimates may be inflated, that a large fraction of 
the variance is due to copy number variations which are not detected in GWAS, the existence of 
gene‐by‐gene or gene‐by‐environment interactions, the common disease–rare variant hypothesis, 
and the possibility that inherited epigenetic factors cause resemblance between relatives.

However, it appears that the simplest explanation is the most correct. Yang et al. (2010) showed 
that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the 
heritability is not “missing” but has not previously been detected because the individual effects are 
too small to pass stringent significance tests.

Considering the huge number of candidate polymorphisms for a QTN, the fact that population‐
wide linkage disequilibrium (LD) can extend over several centimorgans (Farnir et al., 2000), and 
the biological limitations of research on farm animals, the question arises as to what constitutes 
proof that a QTN has in fact been determined.

As noted in Chapter 9, Ron and Weller (2007) presented a schematic strategy for QTN determi-
nation and verification in farm animals. In the current chapter we will first review methods to detect 
segregating QTL in animal populations based on GWAS. Strategies for QTL determination and 
validation will be considered in detail. We will also consider the question of what gains can be 
expected by QTN determination and finally review the current state of the art.
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GWAS for Economic Traits in Commercial Animals

In Chapter 10 we discussed the multiple comparison problem in relation to GWAS. Since thousands 
of tests are generally performed, the usual significance thresholds of 0.05 or 0.001 are meaningless. 
In order to obtain genome‐wide significance, much more stringent significant thresholds must be 
applied, as explained in Chapter 10. This is one of the reasons that so few significant QTL are gener-
ally detected in GWAS. Despite the generally disappointing results for GWAS to detect QTL in 
human populations, results have generally been somewhat more positive for animal populations, 
especially dairy cattle. GWAS for dairy cattle have generally been based on analysis of estimated 
breeding values (EBV) of bulls with progeny tests. Since reliabilities are generally in the range of 
80–90% for milk production traits, this is equivalent to a GWAS based on individual phenotypes for 
a trait with a heritability of 80–90%, similar to height in humans. In addition to analysis of individual 
markers, several studies have analyzed chromosomal segments. This greatly reduces the total 
number of tests and also reduces the problem that tests on closely linked markers are highly 
correlated. In this case the different haplotypes present in the population for each segment are 
determined, and the variance among EBV associated with the different haplotypes is determined 
(e.g., Cole et al., 2009).

Unlike the situation in most human analyses, the animals analyzed in GWAS are highly related. 
Thus the genotype effect associated with a specific marker or chromosomal segment will be confounded 
with the general polygenic variance, because animals with the same allele or haplotype will tend to be 
related. Thus in addition to the problem of multiple comparisons, it is also necessary to correct for 
common polygenic effects among relatives. Three basic solutions have been proposed:

1.	 Inclusion of a relationship matrix based on known relationships or a pseudo relationship matrix 
based on genotype similarity among the genotyped individuals. Kang et al. (2010) developed 
a program, EMMAX, which includes an identity‐by‐state matrix based on all genotyped 
markers in the GWAS model. This program also corrects for multiple comparisons.

2.	 Determination of marker effects from a model that computes genomic evaluations (Cole et al., 2009). 
This method also includes incorporation of a genomic relationship matrix in the model but differs 
from the previous method in that the effects of all valid markers are included in a single analysis.

3.	 The “a posteriori granddaughter design” (APGD) (Weller and Ron, 2011). This design differs 
from the original granddaughter design, described in Chapter 7, section “The Granddaughter 
Design,” proposed for analysis by microsatellites, in that with tens of thousands of markers, 
haplotypes of 50–100 markers can now be determined for each chromosomal segment 
throughout the entire genome. Due to the huge number of different haplotypes present in 
outbred populations, nearly all grandsires will be heterozygous for any specific chromosomal 
region. In this design the problem of confounding due to relationships among animals is 
solved, because the QTL effects are estimated within grandsire families. This design will be 
discussed in more detail in section “Determination of Concordance by the ‘APGD.’”

Detection of QTN: Is It Worth the Effort?

The arguments for and against QTN determination were summarized by Weller and Ron (2011). 
The arguments against extending significant effort toward determining QTN can be summarized 
as follows:
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1.	 The infinitesimal model appears to be approximately accurate for the traits of interest. This 
corresponds to the results found for human height (Yang et al., 2010) noted previously.

2.	 Even if a QTN is detected, it may not be useful in selection, either because the economically 
favorable allele is already at a high frequency in the population or because the net effect of the 
QTN on the selection index is zero. The favorable allele for ABCG2 that increases milk protein 
content and concentration is already at high frequency in all commercial dairy cattle popula-
tions (Ron et al., 2006). With respect to DGAT1 (Grisart et al., 2002; Winter et al., 2002), the 
allele that increases fat production lowers milk and protein production.

3.	 Current genomic evaluation methods based on LD are able to achieve reliabilities greater than 
0.7 for young animals without records or progeny.

4.	 Detection of QTN is expensive and time consuming.

The main points in favor of QTN determination are as follows:

1.	 Once the QTN is determined, this will yield useful information on gene function and QTL 
architecture. Although the two QTN determined in dairy cattle are both missense mutations, 
this is not the case for the two other QTN determined in other farm animal species (Ron and 
Weller, 2007).

2.	 Understanding the ties between genetic variation and functional characteristics of specific 
genes may contribute to drug discovery for both farm animals and human.

3.	 Although SNPs in close linkage to a major QTN will generally display highly significant effects, 
the effect will still be less than the effect obtained with the QTN (Cohen‐Zinder et al., 2005).

4.	 Population‐wide LD relationships change over time, which will reduce the efficiency of 
genomic selection.

5.	 Allelic frequencies for a marker in LD will not accurately reflect the allelic frequencies of 
the QTN.

6.	 If the QTN is determined, then selection and introgression can also be applied to other 
populations and breeds, including those populations which do not have effective genomic 
evaluation programs.

QTN Determination in Farm Animals: What Constitutes Proof?

Glazier et al. (2002) noted that the most conclusive evidence that the QTN has been found is a 
demonstration that replacement of the variant nucleotide results in swapping one phenotypic variant 
for another. Until recently this was not an option for advanced animal species. With the advent of 
ZFN, TALEN, and CRISPR/Cas9 technology, this has now become a possibility. Kang et al. (2014) 
reviewed the current status of gene editing technology in farm animals with emphasis on the pig, but 
ethical objections remain for application to farm animals. Therefore, similar to the situation in 
humans, all analyses to date have been based on analysis of existing populations.

Considering these limitations, how does one prove that a candidate polymorphism is in fact the 
QTN? As noted by Mackay (2001), “[t]he only option … is to collect multiple pieces of evidence, no 
single one of which is convincing, but which together consistently point to a candidate gene.” In the 
following sections we will consider the main criteria which have been proposed as proof that a QTN 
has been determined.
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Concordance between DNA‐Level Genotypes and QTL Status

As noted by Ron and Weller (2007), the most convincing proof of QTN determination in farm animals 
is “concordance,” that is, to demonstrate for a group of animals that their genotypes for the putative 
QTN correspond to their inferred genotypes for the QTL. Complete concordance is obtained only if:

1.	 All grandsires homozygous for the QTL are also homozygous for the putative QTN.
2.	 All grandsires heterozygous for the QTL are also heterozygous for the putative QTN.
3.	 The same putative QTN allele is associated with the positive QTL allele in all heterozygous sires.

Given these limitations, approximately 20 animals with QTL genotype determined are sufficient 
to reject the hypothesis of concordance by chance throughout the genome (Ron and Weller, 2007).

Determination of Concordance by the “APGD”

The APGD (Weller and Ron, 2011) not only allows for determination of segregating QTL but unlike 
other methods proposed for GWAS can also be used to determine QTL genotypes of the grandsires. 
That is, for a chromosomal region containing a segregating QTL, a significant contrast is expected 
between the two grandsire haplotypes only if the grandsire is heterozygous for the QTL. Thus the 
first two criteria for concordance can be tested by the magnitude of the within‐family contrast.

Weller et al. (2013) applied the APGD to 52 sire families, each with greater than or equal to 100 
genotyped sons with genetic evaluations based on progeny tests. The analysis was applied to the 
autosomal segment with the SNP with the greatest effect in the genomic evaluation of each of 
33 traits. The statistical model included the effects of sire and haplotype nested within sire. All traits 
except for two had a significant within‐family haplotype effect.

Weller et al. (2014a) applied the APGD to the entire genome. Of 617 haplotype segments 
spanning the entire bovine genome and each including approximately 5 × 106 bp, 5 cMorgans, and 
50 genes, 608 autosomal segments were analyzed. The statistical model of Weller et al. (2013) was 
used for each haplotype segment. For all 33 traits, there was at least one chromosomal region in 
which the nominal probability for the haplotype effect was less than 10−8, which corresponds to 
genome‐wide significance of less than 10−4 (Lander and Kruglyak, 1995). The Manhattan plot for 
net merit, the main US selection index, is given in Figure 20.1. Net merit had seven chromosomes 
with nominal probabilities of less than 10−8. For each of those putative QTL, at least one grandsire 
family had a within‐family contrast with a t‐value of greater than 3.

An updated search for QTL in the Holstein genome was conducted in 2015 using the APGD. 
The number of Holstein sires with at least 100 genotyped and progeny‐tested sons has increased 
from the previous 52 to 71 for a total of 14,246 sons. The bovine genome was divided into 621 
segments of approximately 100 markers each. There were 55 chromosomal regions that met the 
significance criterion of P < 10−15, as compared to 30 regions found by Weller et al. (2014a). All 
traits had at least one significant effect, except for protein yield, daughter stillbirth rate, and four 
conformation traits.

Confidence intervals (CI) of 90% were determined for all effects by application of a nonpara-
metric bootstrap (Visscher et al., 1996). The length of CI ranged from 2 to 15 chromosomal 
segments. In all cases, the CI included only part of the chromosome. No significant relationship 
between log probability of the effect and CI length was found, even though probabilities ranged 
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from 10−15 to 10−41 on chromosome 3 for protein percentage. At least six of the regions displayed a 
bimodal effect distribution in the bootstrap analysis, which indicates more than a single QTL 
segregating on the chromosome.

Results for yield traits were compared with those recently reported for Australian Holsteins, 
which found effects with nominal probabilities of less than 10−20 on six chromosomes (excluding 
effects on chromosome 14, which clearly result from DGAT1) when each SNP effect was estimated 
as a fixed effect. For US Holsteins, a nominal probability of less than 10−6 was found in our study 
for the same trait in nearly the same chromosomal location, except for the effect of fat percentage 
on chromosome 27.

Determination of Phase for Grandsires Heterozygous for the QTL

Even with application of the APGD design, it is generally only possible to determine either that the 
parent is homozygous or heterozygous for the QTL. If the parent is homozygous for the QTL, it will 
generally not be possible to determine with any certainty if the individual is homozygous for the 
“positive” or “negative” allele (Israel and Weller, 1998). Thus in testing for concordance generally 
individuals are scored only as either homozygous or heterozygous.

In order to determine phase of the putative QTN relative to the QTL effects for heterozygous 
sires, haplotypes for each QTL region can be determined using the PLINK software (http://pngu.
mgh.harvard.edu/purcell/plink/; Purcell et al., 2007). For sires for which haplotypes cannot be 
determined, phase can be determined by genotyping a sample of 5–10 sons for the putative QTN 
and linked markers. Since only very short chromosomal segments are considered, the frequency of 
recombination within the segment can be considered zero, which dramatically simplifies haplotype 
determination.
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haplotype segment. The dotted line at 4.3 corresponds to genome‐wide P = 0.05.
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Determination of Recessive Lethal Genes by GWAS and Effects Associated with Heterozygotes

With GWAS analyses performed on large numbers of individuals, lethal recessives may be 
discovered from haplotypes that are relatively common in the population, but never appear as 
homozygous. If the number of genotyped individuals is large, expected numbers of individuals 
homozygous for a specific haplotype will also be sufficiently large so that the hypothesis that the 
lack of homozygotes occurred by chance can be rejected with high power. For example, if 1000 
individuals are genotyped and the frequency of the haplotype is 0.1, then the expected number of 
homozygotes based on Hardy–Weinberg equilibrium should be 1000(0.1)2 = 10. If 10 homozygotes 
are expected in the sample, based on the frequency of the haplotype, then the probability of obtain-
ing zero homozygotes by chance based on the assumption of a Poisson distribution is 4.54 × 10−5. 
Again, since the entire genome is generally analyzed and each chromosomal segment contains 
several different haplotypes, significance criteria must account for a large number of multiple 
comparisons.

Based on this method, VanRaden et al. (2011a) discovered five new recessive defects in the US 
Holstein, Jersey, and Brown Swiss dairy cattle populations. They postulated that the lack of homozy-
gous live births would result in an observed reduction in daughter fertility for heterozygous sires, as 
measured by daughter pregnancy rate or cow conception rate. In field data an early‐term abortion 
will generally be scored as nonconception. Of 11 haplotypes with sufficient power to reject the 
hypothesis of zero homozygotes by chance, five also showed a significant reduction of fertility for 
heterozygous sires. Thus although recessive lethals are generally considered major genes, with 
respect to their “pleiotropic” effects on fertility, they could be considered QTL.

Determination of the causative polymorphism is simpler in this case, because any polymorphism 
which is homozygous in live individuals can be rejected. For the three lethals found in Holstein, 
causative mutations have been identified for HH1 and HH3, but not HH2 (McClure et al., 2014).

Verification of QTN by Statistical and Biological Methods

Concordance alone cannot be considered as proof positive that the QTN has been determined. If a 
specific chromosomal segment containing the QTN is conserved, then more than a single polymor-
phism could display complete concordance. However, so far this has not been shown to be the case. 
Ron and Weller (2007) summarized additional types of evidence, both statistical and biological, that 
have been used to verify QTN identity. They proposed the following criteria for functional confir-
mation of a putative QTN:

1.	 The gene has a known physiological role in the phenotype of the quantitative trait.
2.	 “Knockout” mutations in this gene affect the trait, even in other species.
3.	 The gene is preferentially expressed in organs related to the quantitative trait—for example, 

the mammary gland for milk production traits.
4.	 The gene is preferentially expressed in developmental stages related to the phenotype—for 

example, at the onset of lactation for milk production traits.
5.	 The putative QTN is validated by functional assays, for example, demonstrating either unequal 

production of the alternative alleles or differences in gene and protein function. For example, 
expression of recombinant DGAT1 protein differing only at the K232A mutation demonstrates 
that this mutation affects the V

max
 of the enzyme in a direction that is in agreement with the 

observed phenotypic effect (Grisart et al., 2004).
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Of the four validated QTN discovered so far in commercial animal populations, none meet all five 
criteria, but all meet at least two. Statistical methods for QTN validation include demonstrating that:

1.	 The effect of the putative QTN accounts for the entire effect observed by interval mapping, in 
this case application of the APGD.

2.	 No other polymorphisms in LD with the QTL have significant effects in models that also 
include the effect of the putative QTN.

3.	 The same QTN is detected in diverse populations.
4.	 Signatures of selection correspond to the effect associated with the QTN (Glick et al., 2012).

The missense mutation in ABCG2 apparently meets all four criteria (Cohen‐Zinder et al., 2005). 
The first two criteria may not hold if more than a single polymorphism within the gene affects the 
gene function. This is apparently the case with DGAT1, in which polymorphisms in the promoter 
also affect fat concentration (Bennewitz et al., 2004a).

Summary

Methods were described to determine and validate QTN for commercial animal species. The “gold 
standard” used to validate QTN in laboratory organisms, demonstration that replacement of the 
variant nucleotide results in swapping one phenotypic variant for another, cannot as yet be applied 
to commercial species. As noted by Mackay (2001), “The only option…is to collect multiple pieces 
of evidence, no single one of which is convincing, but which together consistently point to a 
candidate gene.” For farm animals the most convincing proof is concordance between QTL 
genotypes and the causative polymorphism, although additional validation is also necessary.

Although to date only four QTN in farm animals can be considered verified (Ron and Weller, 
2007), it is likely that this number will increase dramatically in the near future with complete 
genome sequencing of large numbers of animals (e.g., Daetwyler et al., 2014).
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Future Directions and Conclusions21

Introduction

Genomic evaluation is still a highly dynamic field, and additional discoveries and new ideas will 
probably transform the discipline in the next few years. The last 20 years has seen a reduction in 
genotyping costs from individual markers from approximately $10 per microsatellite genotype in the 
early 1990s to $0.0005 currently for individual SNP genotypes on high‐density BeadChips. At least 
11 countries currently have commercial genomic evaluation programs for dairy cattle: Australia, 
Ireland, New Zealand, France, Germany, the Netherlands, Denmark, Sweden, Finland, the United 
States, and Canada with programs that began between 2008 and 2011 (Smaragdov, 2013). Two large 
consortiums have been established: the North American consortium currently with 25,500 bulls that 
includes the United States, Canada, the United Kingdom, and Italy; and the European consortium 
with 30,000 bulls that includes UNCEIA (France), Viking Genetics (Denmark, Sweden, and Finland), 
DHV‐VIT (Germany), CRV (the Netherlands, Flanders), Poland, and Spain.

In the next few years complete genome sequencing costs will probably be in the range of a 
thousand dollars per individual. In the United States and other advanced countries, genotyping of 
cows for the low‐density chip is becoming nearly as routine as milk protein and somatic cell score 
analysis. On the other hand, progeny testing of large numbers of young bulls is becoming obsolete. 
AI companies are marketing young bulls for general service, based on their genomic evaluations. 
In this final chapter we will consider how these changes will affect the future of animal breeding 
and attempt to look into our crystal ball for future developments, remembering that since the 
destruction of the temple, prophecy is given only to deaf mutes, the insane, and young children.

More Markers versus More Individuals with Genotypes

By 2015, more than 700,000 Holstein cows and 27,000 US Holstein bulls with genetic evaluations 
based on daughter records have been genotyped (https://www.cdcb.us/Genotype/cur_density.html). 
Numbers are significantly smaller for Jerseys and Brown Swiss. Genomic reliabilities of young 
bulls based only on pedigree and genotypes have reached approximately 70% for milk production 
traits, as compared to 85–90% after a standard progeny test. Bias is insignificant for Holsteins but 
may still be a problem for the smaller breeds (Wiggans et al., 2011). Based on simulation studies, it 
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is unlikely that increasing numbers of animals genotyped will significantly increase genomic 
reliabilities. Similarly, as noted in previous chapters (VanRaden et al., 2009), increasing the number 
of markers beyond the approximately 45,000 usable markers on medium‐density chips will have 
only a minimal effect on accuracy or bias of evaluations.

Computation of Genomic Evaluations for Cow and Female Calves

The most immediate challenge is to incorporate the huge numbers of cow genotypes into routine 
genomic evaluation systems. Cow genomic evaluations derived by direct incorporation of cow 
genotypes into two‐step methodologies developed for sire analysis result in biased evaluations, due 
chiefly to the much lower reliabilities of cow evaluations. Wiggans et al. (2012b) proposed a double 
adjustment of genomic cow evaluations to make them comparable to both evaluations of bulls and 
comparable with traditional evaluations of nongenotyped cows. With these adjustments the regres-
sion of genomic cow evaluations on parent averages are nearly equal to unity. Mean reliabilities of 
approximately 70% for cows genotyped for the Illumina BovineLD BeadChip have already been 
obtained in the United States (Wiggans et al., 2013).

Börner and Reinsch (2012) found by simulation studies of a population of 100,000 cows that 
genomic selection is the method of choice when maximizing the genetic gain per year, but genotyp-
ing females may not allow for a reduction in overall breeding costs. Thus, the economic justification 
of large‐scale genotyping of females remains questionable.

Improvement of Genomic Evaluation Methods

Although numerous improvements have been proposed in genomic evaluation methods since the 
first practical methods for genomic evaluation on actual data were tested in 2008, gains in reliabili-
ties have been at best minimal. It is possible that in the next few years single‐step methods will 
become the industry standard, despite the major increase required in computer resources and the 
very limited gains in accuracy and bias. One major reason is incorporation of cow data, which is 
straightforward for single‐step methods. The Agricultural Research Service of the USDA has 
attempted to implement single‐step methodology for routine analysis of dairy cattle data, but 
convergence problems were encountered (G. R. Wiggans, personal communication, face‐to‐face 
discussion in 2013 in Beltsville, MD).

Bayesian methods that selectively weight specific markers, although applied in several 
countries, do not seem to be the wave of the future. Recently, Fernando et al. (2014) proposed a 
single‐step Bayesian methodology that combines information from both genotyped and ungeno-
typed animals. The advantages of this method include that it is not necessary to guess the optimal 
weights for G−1 and A

22
−1 as required by the single‐step method of Aguilar et al. (2010), there is 

differential shrinkage of marker effects, it is convenient to draw inference on individual marker 
effects based on the posterior distribution, and empirical results from other experiments as prior 
information can be readily incorporated into the analysis. However, this model has not as yet been 
tested on actual data.

So far nearly all methods proposed have considered only additive genetic effects. In the future 
methods that also consider dominance and epistasis, variance may be applied (e.g., Toro and Varona, 
2010; Ober et al., 2011; Wellmann and Bennewitz, 2012; Zeng et al., 2013). To date these models 
have only been applied to simulated data sets.
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Long‐Term Considerations

By 2015, genomic evaluation has only been applied at most for 7 years, slightly more than the mean 
value for a single generation in cattle. Thus genetic changes in commercial populations due to selec-
tion so far have not been a problem and have not been seriously addressed to date for genomic 
selection. Kemper et al. (2015) estimated that the age of the QTL mutations for milk production 
traits in dairy cattle varies from perhaps 2000 to 50,000 generations old. Toro and Varona (2010) 
found in simulated populations that the efficiency of genomic selection is eroded after a few genera-
tions of selection. Over time three major changes will occur that should impact the efficiency of 
genomic evaluation as currently applied:

1.	 Frequencies of favorable QTL allele will increase due to selection.
2.	 New QTLs will “appear” either due to mutation or drift.
3.	 Population‐wide linkage disequilibrium (LD) between markers and QTL will be degraded.

These changes will now be discussed in detail. Favorable alleles of the QTL with the greatest effects 
will reach fixation. This has apparently occurred for the ABCG2 allele that increases protein concen-
tration in most commercial populations (Cohen‐Zinder et al., 2005). The expected change in gene 
frequency per generation, Δq, resulting from mass selection is computed as follows (Falconer, 1964):

	
q iq q

p

1 	 (21.1)

where i = selection intensity, q = allele frequency prior to selection, p = phenotypic standard devia-
tion, and α = the allele substitution effect. For example, with an overall selection intensity = 1 for a 
specific trait, q = 0.5, and α/σ

p
 = 0.2, then, Δq = 0.05.

Glick et al. (2012) analyzed haplotype trends of 917 Israeli Holstein bulls genotyped for the 54K 
BeadChip born between 1984 and 2008. Of the haplotypes analyzed, 6735 (38%) had nominally 
significant Δq values (p < 0.05). Of these haplotypes, 49% increased in frequency. For 7 of the 20 
haplotypes with the largest positive ( / ( ))q q q1  values and frequency greater than 0.25, the mean 
frequency between 2004 and 2008 was greater than 0.9. These loci will not be useful for further 
selection, as the economically favorable allele has nearly reached fixation.

Although mutation rates are so low that their effect can be considered negligible over the next 
century, “new” QTL will appear due to the increase of the frequencies of rare positive alleles in the 
population. That is, the frequency of very rare positive allele will hardly be affected by current 
selection strategies, as can be seen from Equation (21.1). However, if the frequencies of these alleles 
do increase, either due to selection or random drift, then Δq values will increase. This is one 
explanation why heritabilities have not decreased for milk production traits despite 50 years of 
selection (deKoning and Weller, 1994). Assuming that the effect of a QTL is additive and only two 
effective alleles are segregating in the population, then the variance due to the QTL will be 
2(1 − q)qα2. Similar to Equation (21.1) this expression is maximum with q = 0.5. As the frequency of 
a rare allele increases, genetic variance due to the locus also increases.

Population‐wide LD relationships between markers and segregating QTL will change. Since 
selection is on the marker alleles, and not directly on the QTL, and since LD tends to decay over 
generations, the effectiveness of genomic selection based on LD relationships averaged over bulls 
born over an extended time period should decline.



156	 Genomic Selection in Animals

Bastiaansen et al. (2012) evaluated three methods to compute GEBV: the standard multistep 
method (VanRaden, 2008), a Bayesian method, and a partial least squares regression method. The 
reference population consisted of 500 genotyped individuals, with all individuals from a single gen-
eration, or 100 individuals from each of four generations. Differences in long‐term selection response 
were small. Under selection, applying the first method led to lower inbreeding and a smaller reduc-
tion of genetic variance, while a similar response to selection was achieved. After 10 generations of 
selection, all methods of genomic evaluation gave accuracies in the range of 5–15%. Thus, for 
genomic selection to be practical continuous reevaluation of marker effects over time is required.

Kemper et al. (2012) investigated by simulation if “genotype building” is an appropriate strategy 
for long‐term selection response for a complex trait in dairy cattle. Plant breeders often use a 
targeted strategy to build a predefined genotype, based on techniques such as backcrossing and gene 
stacking or pyramiding to introgress desirable genes into an elite variety. They found that an ideal 
genotype was difficult to achieve, even under simulation conditions, and concluded that selection 
on overall GEBV with a constraint on coancestry is the most flexible selection strategy. Similarly, 
30 years ago Weller and Soller (1981) found that the optimal strategy for combining several loci into 
a single strain was random mating and mass selection on those individuals with the greatest number 
of desirable alleles.

Weighting Evaluations of Old versus Young Bulls

As all young sires produced by AI studs now have genomic evaluations, the young bulls with the 
highest evaluations are now released for general service, while there is little incentive to progeny test 
young bulls with inferior evaluations. Thus the number of AI sires produced per year with genetic 
evaluations based on progeny records will decrease. With current multistep genomic evaluation 
methods, the evaluations of bulls are weighted only with respect to the accuracy of the evaluation, 
that is, the effective number of daughters. Thus older bulls are generally given greater weights. From 
the considerations given in the previous section, young bulls, which reflect more accurately the 
current genomic status of the population, should be given greater weight. The fact that older bulls do 
not accurately reflect the current genomic status of the population will become more problematic in 
the future, as the fraction of relatively young bulls out of total bulls with genotypes decreases. So far 
this problem has not been addressed by current genomic evaluation methods, which assume that QTL 
effects associated with SNPs are constant over time. The fact that older bulls do not accurately reflect 
the current genomic status of the population might explain the results of Lourenco et al. (2014a) who 
found that decreasing the number of generations included in the pedigree may result in more accurate 
genomic evaluations. This problem will also not be solved by single‐step methodologies that also 
give equal weight to all SNPs regardless of the animals’ ages.

Direct Genetic Manipulation in Farm Animals

In the previous chapter we considered methods to determine the actual polymorphisms responsible 
for the observed genetic variation in quantitative traits. We noted that once the specific quantitative 
trait variants have been identified, these factors can then be included in breeding programs as fixed 
effects. With the advent of ZFN, TALEN, and CRISPR/Cas9 technology, the possibility also exists 
to actually change genotypes of embryos. This technology has already been extensively applied to 
model organisms, such as Drosophila (Bassett et al., 2013). Kang et al. (2014) reviewed the current 
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status of gene editing technology in farm animals with emphasis on the pig. Using ZFN, TALEN, 
and CRISPR/Cas9, the epigenome of a locus of interest can now be modified to alter regulatory 
pathways, which lead eventually to dramatic changes of the phenotype of the animal. However, at 
present there is significant ethical opposition to application of these technologies to farm animals.

Velogenetics: The Synergistic Use of MAS and Germ‐Line Manipulation

In this final section, we will consider combination of genomic evaluation with germ‐line manipula-
tion, as first proposed by Georges and Massey (1991) for MAS. Spontaneous oocyte maturation and 
ovulation do not begin until puberty. For cattle this is at the age of close to 1 year. However, waves 
of oocyte growth are seen even in utero. Activation of primordial follicles starts at 140 days of 
gestation. Georges and Massey (1991) considered the theoretical possibility to grow, mature, and 
fertilize prepubertal oocytes in vitro. This procedure could possibly reduce the generation interval of 
cattle to as little as 3–6 months, as compared to the normal biological minimum of close to 2 years. 
By using in vitro fertilization of fetal oocytes by selected progeny‐tested sires, annual responses in 
milk yield could be doubled compared to conventional progeny testing. They term this procedure 
“velogenetics” and propose the following breeding scheme, updated for genomic evaluation:

1.	 Selection of “bull granddams” based on genomic evaluations.
2.	 Selection of fetal “bull dams” based on genomic evaluations.
3.	 In vitro fertilization of fetal oocytes with semen of elite sires.
4.	 Selection among juvenile male calves based on genomic evaluations.
5.	 Selected young sires at the age of 1–2 years are mated to cows of commercial population.

Step 3 of this protocol is not possible at present, but until very recently, it was also considered 
impossible to clone mature mammals and to find QTN for mammalian species.

Summary

In this final chapter, we attempted to look into the future and elaborated on the challenges that 
genomic selection will face over the next generation and briefly considered how methodologies for 
genomic evaluation can be adapted to meet these challenges. In the final sections of this chapter we 
considered expected technological advances which may have major effects on future breeding 
programs, including new techniques for direct genetic manipulation in farm animals, and in vitro 
fertilization of fetal oocytes. As usual, the story has just begun.
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