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Preface

The massive quantity and diversity of scientific research papers dealing with several
aspects of fish migration hinder undergraduate and graduate students to find an easy
introduction to the subject. Furthermore, the access to some of the seminal books and
papers is also difficult. Therefore, when we planned the structure of this book, we
aimed at covering the aspects we considered essential for undergraduate and graduate
students to be introduced to the study of fish migrations, and to provide college
professors and scientists with another complementary tool for their work. Indeed,
as far as we are aware, this is the first book to cover all fish migratory tactics, i.e.,
potadromy, diadromy and oceanodromy, since the 1980°s.

The book is divided in three parts. It was clear for us that the first part ought to
revise the history of fish migration research, the definitions and concepts, as well as the
challenges that fish migration scientists must consider in the future. In the second part,
the book focuses on the general patterns and processes of each life history, but without
focusing on any particular species or family, and it also briefly explores their conservation
status. The most common techniques used to study fish migration are described in the
third part of this book, and examples on the use of each technique are described for each
migratory tactics, if suited for the technique and available in the literature.

We also claim that this book is not an end on itself. We are convinced that the
momentum that exists in fish migration research, either on basic or more complex
aspects of fish migration, plus the advances in technology and the growing perception
on the importance to protect migratory fish species and their habitat, will force a
continuous revision of this book through the years to come.
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Finally, and above all, we would like to thank all authors for their outstanding
contributions, and also for the time that they invested in this endeavor in detriment
of personal and professional commitments. The reviewers’ contributions were also
relevant, their suggestions undoubtedly improved the quality of this book.

September 2015 Pedro Morais
CIIMAR - Centro Interdisciplinar de Investigagdo Marinha e Ambiental
Universidade do Porto

Portugal

and

CIMA - Centro de Investigacdo Marinha e Ambiental

Universidade do Algarve

Portugal

Francoise Daverat

IRSTEA - Institut National de Recherché en Sciences et Technologies pour
I’Environnement et I’ Agriculture, France
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CHAPTER 1

History of Fish Migration
Research

Pedro Morais*** and Francoise Daverat?

David Starr Jordan published ‘The history of Ichthyology’in 1902, and dated the origin
of Ichthyology back to Aristotle (383—322 BC) with the publication of ‘The history
of animals’ (Aristotle ca. 350 BC). However, Jordan (1902) and others after him
(Wheeler 1987) elected Petri Artedi (1705—1734) as the father of Ichthyology. Wheeler
(1987) enumerated a series of facts highlighting the significance of Artedi’s work to
ichthyology: (i) revision of previous literature on fishes, (ii) clarification of fish species
synonyms, (iii) presentation of a synopsis on how to deal with genera, (iv) accurate
description of more than 70 European fish species, (v) introduction of a polynomial
classification system. This classification system is considered Artedi’s most important
achievement, because it is the precursor of the binomial system proposed and used
consistently by Carolus Linnaus after the 10th edition of ‘Systema Natura’ published
in 1758 (Wheeler 1987). Artedi’s book ‘Ichthyologia cluding opera omnia the piscibus’
was published posthumously in 1738, after his premature death, which includes
two unpublished works ‘Bibliotheca Ichthyologica’ and ‘Philosophia Ichthyologia’
(Wheeler 1987). Carolus Linnaeus was the editor of Artedi’s seminal book and acquired
almost all of his knowledge on fishes from Artedi’s work (Jordan 1902).

However, before Artedi’s book, a few seminal books were published during four
years in the 16th century on Mediterranean Sea fishes, namely the books of Pierre
Bellon in 1553, Salviani in 1554, and of Guillaume Rondelet in 1556 (Jordan 1902).
As a matter of interest, the identification (or misidentification) and distribution of
sturgeons in Europe and northern Africa were at the center of a heated debate during
the 16th century, as the one led by the Portuguese Renaissance man André de Resende
with the publication of ‘De Antiquitatibus Lusitaniae’ in 1593 (Resende 1593;

' CIMA-Centro de Investigagdo Marinha e Ambiental, Universidade do Algarve, Portugal.

2 CIIMAR-Centro Interdisciplinar de Investigagdo Marinha e Ambiental, Universidade do Porto, Portugal.

3 IRSTEA-Institut National de Recherché en Sciences et Technologies pour I’Environnement et
I’ Agriculture, France.
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Rosado Fernandes 1991, 1996). In the late 17th century, the book ‘Historia Piscium’
was published in 1686, a work that was initiated by Francis Willughby and concluded
by John Ray, and was considered by Georges Cuvier as the precursor of modern
ichthyology (Kusukawa 2000). In 1777, Francesco Cetti published the ‘Storia naturale
della Sardegna’, where he described a putative migratory route for the Atlantic bluefin
tuna into the Mediterranean, and before their arrival to spawn around Sicily, and which
had a tremendous economic importance in Sicily at that time (Cetti 2000).

In Jordan’s review, there is no mention of studies on migratory fishes
(Jordan 1902), since during the 19th century most ichthyologists were naturalists
dedicated to classify and list the species existing in their countries or in certain areas
of interest. However, these lists might contain special references to migratory fish,
as it was in the case of sturgeon in Portuguese rivers (Pimentel 1894 in Almaga and
Elvira 2000; Baldaque da Silva 1895 in Almaga and Elvira 2000), which are now of
paramount importance to understand the long-term fluctuations of populations and the
influence of anthropogenic impacts. Despite the apparent absence of relevant studies
on migratory fish during the 19th century, there were already a few ichthyologists
carrying out influential works on anatomy, compared anatomy and palacontology
during the 19th century (Lee 1893, 1894; Jordan 1902). Also, at this time, Australia,
Canada, Norway, United Kingdom and the United States were the only countries to
possess a comprehensive literature on commercial fisheries, other than faunistic lists
and anatomical studies (Herdman and Dawson 1902; Jordan 1901, 1902).

In 1916, and regarding fish migration studies, Alexander Meek (1865-1949)
stated the following: “During the last two decades especially, the problems of
migration have been investigated with gradually increasing energy, and the results
has been an accumulation of valuable knowledge, which, I hope, is already sufficient
to bring out and to establish general principles” (Meek 1916, p. vii). At the end of
the 1940’s, George S. Myers affirmed that Meek’s book was the most influential
work on fish migration up to then (Myers 1949). So, it is often claimed that the study
of fish migrations was officially established as a discipline of ichthyology with the
publication of ‘The migrations of fish’ by Alexander Meek (Meek 1916). However, it
is interesting to mention that Aristotle (ca. 350 BC) already recognized the existence
of fish migration, namely into the Euxine Sea (the archaic name of Black Sea) for the
purposes of reproduction and feeding.

Meek (1916) made an incredible effort to compile information about several
migratory fish species and families, and described the patterns of migration and
distribution whenever the available information allowed it. It is interesting to note that
he did not restrict his review to cover only the most emblematic migratory species,
as salmons or eels. Indeed, during the early 20th century, Meek (1916) demonstrated
that there was already a clear perception of the importance of tracking and studying
oceanodromous species, as elasmobranchs and tunas. It was also clear for Meek
(1916) that tides, ocean circulation and phylogeny could explain species life history
patterns, or at least clarify parts of it. The three aspects that were just mentioned are
still debated and the core of many research projects during the 21st century (e.g.,
Parenti 2008; Robins et al. 2012; Trancart et al. 2012), thus revealing Meek’s vision.
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Meek (1916) also had the same concern on migratory species conservation as
scientists and managers have nowadays, focusing mainly on pollution and fishery
management. If the conservation of species and biodiversity would not be a sufficient
reason to protect migratory species, he also highlighted their economic importance to
reinforce his point of view. As an example, we quote three passages illustrating some
of Meek’s concerns and recommendations:

“The history of some of our rivers bears eloquent testimony to the fact that
contamination by sewage and trade effluents may reach such a degree as to
totally prevent anadromous fishes like the salmon ascending to the spawning
grounds. ... The Thyne is clearly approaching the limit of contamination, for
every year reports are made as to a heavy death-rate of spawning migrants in
the river opposite Newcastle. ... The growth of the cities and towns on the banks
and the multiplication of industries have converted the tidal portion of the river
into an open sewer” (p. 123);

“While, therefore, the summer phase of such a school as that of the
Northumberland plaice could be regulated by the Fisheries Committee of that
county, it is clear that the regulation of Fisheries cannot be done in a parochial
manner, but requires not merely National, but International, legislation to make
it effective” (p. 397);

“The evidence we already possess indicates that some of the species become
winter migrants to the coast or shallow water during the years of immaturity, and
they retain the habit of assembling in shallow water when they reach maturity.
Even from an economic standpoint it is desirable to obtain a full knowledge of
the distribution and migrations of the young of the important family Gadidae”
(p. 245).

After the publication of ‘The migrations of fish’ (Meek 1916), there were a few
other books published in English literature during the 20th and 21st centuries covering
several aspects of fish migration. Among these books, we highlight those of Roule
(1933), Hasler (1966), Harden Jones (1968), Nakamura (1969), McCleave et al. (1984),
McKeown (1984), McDowall (1988) and Lucas and Baras (2001).

In 1933, Louis Roule published ‘Fishes. Their journeys and migrations’, which
was described by Robert M. McDowall as a description of fish migration using very
“colourful terms” (McDowall 1988). This book is not as comprehensive as the one
of Meek (1916), nor influential. Roule (1933) only presents, in his “colourful terms”,
the migration patterns of a few emblematic species, among which are included the
European eel Anguilla anguilla, the Atlantic salmon Salmo salar and the shads
Alosa alosa and Alosa fallax. We would classify Roule’s (1933) book as a science
dissemination book, where he colorfully described some aspects of migratory fish’s
life histories. The following passage is illustrative of the dual characteristic of Roule’s
(1933) book:

“Yet the journey always take the same course. The salmon arrive at intervals, each
apparently its own master, yet they all behave in exactly the same way and follow
the same road. What do they find, what signpost like that upon our roads, that
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they manifest a preference, so definite and so lasting? The direct and immediate
reason for their choice certainly does not reside in the fish alone. Where would
he find, within himself, one strong enough to make him adopt a certain course
of action? Many of the salmon, coming for the first time, cannot have any idea
where their journey will take them. Even those who have been there before can
hardly recognize the things and places they have seen on a previous occasion”
(Roule 1933, pp. 48-49).

It is easy to recognize two fundamental questions presented by Roule (1933),
homing and orientation. Just these two topics generate a profusion of works and
discussions on fishes from several habitats, along several stages of their life cycle
and with distinct life history strategies, until the present times (e.g., Huntsman 1937,
Hasler et al. 1958; Hasler 1960; Rommel Jr. and McLeave 1972; Scholz et al. 1976;
Quinn 1980; Quinn and Brannon 1982; Levin et al. 1992; James et al. 2007; Skov
et al. 2010; Leonard et al. 2012). The physiological aspects involved in diadromous
migrations were also a topic of interest for many decades now, and the lifetime work
of Maurice Fontaine on migratory fish physiology, and particularly his insights on
the endocrine processes underlying fish migrations, were influential (Fontaine 1954).

Later, in 1966, Arthur D. Hasler published ‘Underwater guideposts: homing of
salmon’, a thorough review on salmon migration strategies, generally taking into
account his experience with Pacific salmon species (Hasler 1966). Hasler (1966)
based his general description of salmon’s life cycle considering two major hypothesis
to explain salmon’s homing: (a) odor cues that allows salmons to find their way
home within the natal river basin, (b) sun-compass (sun azimuth and altitude) which
guide salmons toward the natal river basin after completing their oceanic life phase.
However, Hasler (1966) recognizes that these two hypothesis cannot explain every
aspect of salmon’s migration, and suggests that other cues might aid in navigation,
as stellar and inertial cues.

Just two years later, in 1968, Frederick Robert Harden Jones published the next
major publication on fish migration, which was classified by Parrish (1968) as “one
of the most important post-war additions to the literature on fish biology and will
probably remain the most complete work on the subject of fish migration for many
years to come”. Since Meek’s book, there was a tremendous development in the study
of fish migration, which was summarized in Harden Jones’ book ‘Fish migration’
(Harden Jones 1968). Harden Jones updated the knowledge on the life history patterns
of some migratory species, all of them already presented in the books of Meek
(1916) and Roule (1933) (i.e., salmon, trout, eel, herring, cod and plaice), and he
also describes the mechanisms used by fish during their migrations and a few useful
methods to study fish migration. So, at the end of the 1960’s, the recognized and/or
hypothesized mechanisms used by fish to start, orientate and end a migration journey
included the reaction to some of the following external stimuli- chemical cues, water
current, magnetic/electrical cues, temperature, celestial cues (solar or stellar) and
topography. Harden Jones (1968) also revised a series of techniques used to infer fish
migration or fish stock origin, which were obviously fewer than today, some of which
were already abandoned for this particular purpose and replaced by other techniques.
Harden Jones (1968) mentioned several techniques to infer fish migration, like the use
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of scales and otoliths as ‘certificates of origin’ through the comparative analyses of
their microstructure and shape. Nowadays, the microchemical composition of these
structures receives far more attention to study these topics (e.g., Borcherding et al.
2008; Elsdon et al. 2008; Daverat and Martin 2016), than microstructure or shape
analyses (Quinn et al. 1999; Begg and Brown 2000). At that time, morphometric
analyses were done using few morphological traits, for example Harden Jones (1968)
refers to a study that used three morphological traits to distinguish between three
stocks of landlocked sockeye salmon. Nowadays, with the advances of geometric
morphometric software and new statistical techniques, scientists compare dozens
of variables (e.g., landmarks and contours, besides just meristic and morphometric
variables) to develop such types of studies (Saborido-Rey and Nedreaas 2000;
Sequeira et al. 2011; Turki-Missaoui et al. 2011; Trella et al. 2013). Among the
restricted number of techniques available at the end of the 1960’s, fish tagging and fish
marking were one of the most used techniques to infer fish migration, ever since the
end of the 19th century (Harden Jones 1968). The main concept of these techniques
are maintained till today, however numerous technological leaps took tagging into a
completely new realm (e.g., acoustic and radio tags, pop-up satellite archival tags) (see
Chapters 12 and 13 for more details) (Begout et al. 2016; Schaefer and Fuller 2016).

In 1969, Hiroshi Nakamura published a book dedicated solely to tunas, entitled
‘Tuna: distribution and migration’ (Nakamura 1969). This book, because of its
specificity, complements perfectly the broader scoped book of Harden Jones (1968),
by analyzing in detail the life histories of these oceanodromous species, and is still a
reference book almost 50 years later (e.g., Couto et al. 2016).

In 1984, James D. McCleave, Geoffrey P. Arnold, Julian J. Dodson and
William H. Neill edited a book entitled ‘Mechanisms of migration in fishes’
(McCleave et al. 1984), with contributions of some conference delegates that met
in Italy in 1982. The editors distinguished the processes occurring during fish
migration in different environments—ocean, coastal areas and estuaries, rivers.
The book was divided in four sections, ‘Migration in the open ocean’, ‘Migration
in coastal and estuarine waters’, ‘Migration in rivers’ and another entitled ‘Special
topics’, which presented works on fish learning, orientation, behavior, bioenergetics.
Most contributions were based on a species case study, though the topics covered
were still investigated in the 2010’s. Here are some examples of these contributions
that might be of interest to many of today’s researchers: ‘Advection, diffusion,
and drift migrations of larval fish’ (Power 1984), ‘Behavioral enviroregulation’s
role in fish migration” (Neill 1984), ‘Influence of stock origin on salmon migratory
behaviour’ (Brannon 1984), ‘The orientation of fish and the vertical stratification
at fine- and micro-structure scales’ (Westerberg 1984), ‘Patterns, mechanisms and
approaches to the study of migrations of estuarine-dependent fish larvae and juveniles’
(Miller et al. 1984), ‘Fish migration by selective tidal stream transport: first results
with a computer simulation model for the European continental shelf” (Arnold and
Cook 1984), ‘Migration in coral reef fishes: ecological significance and orientation
mechanisms’ (Ogden and Quinn 1984), ‘Mechanisms of fish migration in rivers’
(Northcote 1984), ‘Bioenergetic considerations in fish migration’ (Weihs 1984).

Also in 1984, Brian A. McKeown published a book entitled ‘Fish migration’,
which is the first, to our knowledge, covering potamodromous, diadromous and
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oceanodromous fish migrations (McKeown 1984). He also included a small chapter
entitled ‘Littoral migrations’, and used some examples that in the face of current
knowledge are not regarded as migrations, but rather as tidal, daily or ontogenetic
movements, or are included in one of the mentioned migration strategies. The main
focus of McKeown’s book is on the processes involved during migration, rather
than on updating the knowledge on the migration strategies of the most emblematic
migratory species (McKeown 1984). Thus, McKeown (1984) focused his attention
in four main chapters: ‘Orientation’, ‘Bioenergetics’, ‘Physiology’, ‘Ecology and
evolution’. Undoubtedly, the chapter ‘Physiology’ is the most comprehensive, which
clearly reveals McKeown’s expertise (e.g., McKeown and Peter 1976; McKeown et
al. 1980).

Three years later, in 1987, the American Fisheries Society edited a book ‘Common
strategies of anadromous and catadromous fishes’, with contributions of many scientists
that participated in a conference the previous year (Dadswell et al. 1987). This book
starts with two influential papers, ‘The occurrence and distribution of diadromy among
fishes’ by McDowall (1987) and ‘Evolution of diadromy in fishes’ by Gross (1987).
Both scientists revisited these topics (McDowall 1988; Gross et al. 1988; McDowall
1997), and these papers are still among the most well-known in fish migration research.
In this book, we can find several papers on fish life history patterns (e.g., Boreman
and Lewis 1987; Bruton et al. 1987; Loesch 1987), migration tactics (e.g., McCleave
and Wippelhauser 1987; Healey and Groot 1987; Weihs 1987), physiology (e.g., Dutil
etal. 1987; McCormick and Saunders 1987; McEnroe and Cech Jr. 1987), recruitment
(e.g., Chadwick 1987; Moriarty 1987; Rothschild and DiNardo 1987) and reproduction
(e.g., Kedney et al. 1987; Maurice et al. 1987), yet the opening papers of McDowall
(1987) and Gross (1987) are those that clearly stand out, even today.

Four years after McKeown’s book (1984), Robert M. McDowall published a
book entitled ‘Diadromy in fishes’. Although McDowall (1988) does not cover the
life histories of oceanodromous and potamodromous fishes, his book is undisputedly
a stepping-stone for fish migration research. The potential of McDowall’s book was
recognized at that time by Harden Jones (1989) and confirmed by the vast literature
that still cites McDowall’s book. McDowall’s (1988) book is very stimulating, and he
presents a series of interesting hypotheses. McDowall (1988) suggests that there is a
relationship between the frequency of anadromous and catadromous species along a
latitudinal gradient with the productivity of marine habitats. So, according to McDowall
(1988), there are more anadromous species at higher latitudes because marine habitats
are more productive there, while the frequency of catadromous species increases
towards the tropics because aquatic productivity is higher in freshwater habitats than
in marine habitats. This hypothesis was also published in 1988 by Mart R. Gross,
Ronald M. Coleman and Robert M. McDowall (Gross et al. 1988). However, some
breaches to this hypothesis were detected by Bloom and Lovejoy (2014), which suggest
that predation, competition and even geological history may be, at least, as relevant
as productivity in explaining the origins of diadromy. McDowall (1988) also tried to
elucidate other patterns and proposed that diadromy is predominant in phylogenetically
primitive families (e.g., lampreys, sturgeons, anguillid eels, several salmoniform
families), that diadromy is widespread in some divergent phylogenetic lineages within
families (e.g., shads, herrings, mullets, gobies), and that diadromy is intermittent or a
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minor characteristic in some other families (e.g., flounders, sculpins, scorpionfishes).
McDowall (1988) also highlighted the fact that diadromy might be facultative in
some species, i.e., polytypic species—populations that comprise migratory and non-
migratory stocks. This phenomenon might also be a result of a landlocked process,
either natural or due to anthropogenic influence. Those landlocked populations that are
able to succeed might reacquire the ability to migrate once the opportunity for migration
is restored, even if the population is landlocked for some generations. McDowall
(1988) hypothesized that it is likely that landlocked populations of diadromous
species might be at the base of some speciation processes, but he also made it clear
that this speciation mechanism had to be evaluated with phylogenetic analysis prior
to establishing any relationship between similar species. In 2001, McDowall (2001)
revisited this topic, and added that the dispersive capacity of diadromous species,
together with the facultative life history stages that some diadromous species have,
could lead to diversification and speciation in diadromous fishes.

Finally, and already in the 21st century, Martyn C. Lucas and Etienne Baras
published an outstanding book ‘Migration of freshwater fishes’ (Lucas and Baras
2001). In this book, they revised and updated the fish migration concepts, the types
of migration associated with freshwater fish (i.e., feeding, refuge-seeking, spawning),
the stimulus that trigger fish migration, the cues used by fish during migration, the
methods used to study fish migration and some aspects regarding migratory freshwater
fish conservation. Additionally, Lucas and Baras (2001) also summarized the main
migration strategies of species belonging to 57 orders and families of fishes that
migrate within freshwater habitats, or that might use freshwater habitats during a
specific period of their life.

References

Almaga CF and Elvira B (2000) Past and present distribution of Acipenser sturio L., 1758 on the Iberian
Peninsula. Boletin Instituto Espafiol de Oceanografia 16: 11-16.

Aristotle (circa 350 BC) A History of Animals. Book VIII. Translated by D’ ArcyWentworth Thompson.
http://classics.mit.edu/Aristotle/history _anim.8.viii.html. Accessed December 28, 2014.

Arnold GP and Cook PH (1984) Fish migration by selective tidal stream transport: first results with a
computer simulation model for the European continental shelf. pp. 227-261. In: McCleave JM,
Arnold GP, Dodson JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New
York and London.

Begg GA and Brown RW (2000) Stock identification of haddock Melanogrammus aeglefinus on Georges
Bank based on otolith shape analysis. Transactions of the American Fisheries Society 129: 935-945.

Begout M-L, Bau F, Acau A and Acolas M-L (2016) Methodologies for investigating diadromous fish
movements: conventional, PIT, acoustic and radio tagging and tracking. pp. 214-250. In: Morais P and
Daverat F (eds.). An Introduction to Fish Migration. CRC Press, Boca Raton, FL, USA (this book).

Boreman J and Lewis RR (1987) Atlantic coastal migration of stripped bass. pp. 331-339. /n: Dadswell
MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies
of Anadromous and Catadromous Fishes. American Fisheries Society Symposium 1.

Brannon EL (1984) Influence of stock origin on salmon migratory behaviour. pp. 103—111. /n: McCleave
JM, Arnold GP, Dodson JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press,
New York and London.

Bruton MN, Bok AH and Davies MTT (1987) Life history styles of diadromous fishes in inland waters
of Southern Africa. pp. 104—121. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson
RA and Cooper JE (eds.). Common Strategies of Anadromous and Catadromous Fishes. American
Fisheries Society Symposium I.


http://classics.mit.edu/Aristotle/history_anim.8.viii.html
http://vetbooks.ir

10 An Introduction to Fish Migration

Cetti F (2000) Storia naturale di Sardegna: a cura di Antonello Mattone e Piero Sanna. Ilisso. 452p. Available
at www.sardegnacultura.it/documenti/7_49 20060407114902.pdf. Accessed October 5, 2014.
Chadwick EMP (1987) Causes of variable recruitment in a small Atlantic salmon stock. pp. 390—401.
In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common

Strategies of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

Couto A, Baptista M, Furtado M, Sousa LL and Queiroz N (2016) Oceanodromous fish migrations.
pp. 123-146. In: Morais P and Daverat F (eds.). An Introduction to Fish Migration. CRC Press, Boca
Raton, FL, USA (this book).

Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (1987) Common strategies
of anadromous and catadromous fishes. American Fisheries Society Symposium I. 561p.

Daverat F and Martin J (2016) Microchemical and schlerochronological analyses used to infer fish migration.
pp. 149-168. In: Morais P and Daverat F (eds.). An Introduction to Fish Migration. CRC Press, Boca
Raton, FL, USA (this book).

Dutil J-D, Besner M and McCormick SD (1987) Osmoregulatory and ionregulatory changes and associated
mortalities during the transition of maturing American eels to a marine environment. pp. 175-190.
In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common
Strategies of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor D, Thorrold SR and
Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes:
hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual
Review 46: 297-330.

Fontaine M (1954) Du determinisme physiologique des migrations. Biological Reviews 29: 390-418.

Gross MR (1987) Evolution of diadromy in fishes. pp. 14-25. In: Dadswell MJ, Klauda RJ, Moffitt CM,
Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies of Anadromous and Catadromous
Fishes. American Fisheries Society Symposium 1.

Gross MR, Coleman RM and McDowall RM (1988) Aquatic productivity and the evolution of diadromous
fish migration. Science 239: 1291-1293.

Harden Jones FR (1968) Fish Migration. Edward Arnold (Publishers) Ltd., London. 325p.

Harden Jones FR (1989) There and back again. Nature 340: 276.

Hasler AD (1960) Guideposts of migrating fishes. Science 132: 785-792.

Hasler AD (1966) Underwater Guideposts: Homing of Salmon. The University of Wisconsin Press, Madison,
Milwaukee, and London. 155p.

Hasler AD, Horrall RM, Wisby WJ and Braemer W (1958) Sun-orientation and homing fishes. Limnology
and Oceanography 3: 353-61.

Healey MC and Groot C (1987) Marine migration and orientation of an ocean-type chinook and sockeye
salmon. pp. 298-312. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and
Cooper JE (eds.). Common Strategies of Anadromous and Catadromous Fishes. American Fisheries
Society Symposium I.

Herdman WA and Dawson RA (1902) Fish and Fisheries of the Irish Sea and Especially of the Lancashire
and Western Sea-Fisheries District. George Philip & Son Ltd., London. 98p.

Huntsman AG (1937) Migration and homing of Pacific salmon. Science 86: 55-56.

IATTC (Inter-American Tropical Tuna Commission) (2014) http://www.iattc.org. Accessed May 23rd 2014.

James NC, Cowley PD, Whitfield AK and Kaiser H (2007) Choice chamber experiments to test the attraction
of postflexion Rhabdosargus holubi larvae to water of estuarine and riverine origin. Estuarine, Coastal
and Shelf Science 77: 143-149.

Jordan DS (1901) The fish fauna of Japan, with observations on the geographical distribution of fishes.
Science XIV: 545-567.

Jordan DS (1902) The history of Ichthyology. Science XVI: 427-456.

Kedney GI, Boulé V and Fitzgerald GJ (1987) The reproductive ecology of threespine sticklebacks breeding
in fresh and brackish water. pp. 151-161. In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL,
Rulifson RA and Cooper JE (eds.). Common Strategies of Anadromous and Catadromous Fishes.
American Fisheries Society Symposium 1.

Kusukawa S (2000) The Historia Piscium (1686) Notes and Records of the Royal Society of London
54: 179-197.

Lee FS (1893) A study of the sense of equilibrium in fishes. I. Journal of Physiology 15: 311-348.

Lee FS (1894) A study of the sense of equilibrium in fishes. Part II. Journal of Physiology 15: 192-210.


http://www.iattc.org
www.sardegnacultura.it/documenti/7_49_20060407114902.pdf
http://vetbooks.ir

History of Fish Migration Research 11

Leonard G, Maie T, Moody KN, Schrank GD, Blob RW and Schoenfuss HL (2012) Finding paradise: cues
directing the migration of the waterfall climbing Hawaiian gobioid Sicyopterus stimpsoni. Journal
of Fish Biology 81: 903-920.

Levin LE, Belmonte P and Gonzalez O (1992) Sun-compass orientation in the characid Cheirodon pulcher.
Environmental Biology of Fishes 35: 321-325.

Loesch JG (1987) Overview of life history aspects of anadromous alewife and blueback herring in
freshwater habitats. pp. 89—103. /n: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson
RA and Cooper JE (eds.). Common Strategies of Anadromous and Catadromous Fishes. American
Fisheries Society Symposium 1.

Lucas MC and Baras E (2001) Migration of Freshwater Fishes. Blackwell Science, Great Britain. 420p.

Maurice KR, Blye RW and Harmon PL (1987) Increasing spawning by American shad coincident with
improved dissolved oxygen in the tidal Delaware river. pp. 79-88. In: Dadswell MJ, Klauda RJ,
Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies of Anadromous
and Catadromous Fishes. American Fisheries Society Symposium I.

McAllister DE, Craig JF, Davidson N, Delany S and Seddon M (2001) Biodiversity Impacts of Large Dams.
UNEP & United Nations Foundation & IUCN. 68p.

McCleave JD and Wippelhauser GS (1987) Behavioral aspects of selective tidal stream transport in juvenile
American eels. pp. 138-150. /n: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and
Cooper JE (eds.). Common Strategies of Anadromous and Catadromous Fishes. American Fisheries
Society Symposium I.

McCleave JD, Arnold GP, Dodson JJ and Neill WH (eds.) (1984) Mechanisms of Migration in Fishes.
NATO conference series. IV Marine Series, Vol. 14. Plenum Press, New York and London. 574p.

McCormick SD and Saunders RL (1987) Preparatory physiological adaptations for marine life of salmonids:
osmoregulation, growth, and metabolism. pp. 211-229. /n: Dadswell MJ, Klauda RJ, Moffitt CM,
Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies of Anadromous and Catadromous
Fishes. American Fisheries Society Symposium 1.

McDowall RM (1987) The occurrence and distribution of diadromy among fishes. pp. 1-13. /n: Dadswell
MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies
of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

McDowall RM (1988) Diadromy in Fishes. Timber Press, Portland, Oregon. 308p.

McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis.
Reviews in Fish Biology and Fisheries 7: 443-462.

McDowall RM (2001) Diadromy, diversity and divergence: implications for speciation processes in fishes.
Fish and Fisheries 2: 278-285.

McEnroe M and Cech Jr. JJ (1987) Osmoregulation in white sturgeon: life history aspects. pp. 191-196.
In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common
Strategies of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

McKeown BA (1984) Fish Migration. Croom-Helm, London. 224p.

McKeown BA and Peter RE (1976) The effects of photoperiod and temperature on the release of prolactin
from the pituitary gland of the goldfish, Carassius auratus L. Canadian Journal of Zoology
54: 1960-1968.

McKeown BA, Jenks BG and Van Overbeeke AP (1980) Biosynthesis and release of prolactin from the
pituitary gland of the rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology
65: 705-709.

Meek A (1916) The Migrations of Fish. Edward Arnold, London. 427p. + xviii.

Miller JM, Reed JP and Pietrafesa LJ (1984) Patterns, mechanisms and approaches to the study of migrations
of estuarine-dependent fish larvae and juveniles. pp. 209-225. In: McCleave JM, Arnold GP, Dodson
JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New York and London.

Moriarty C (1987) Factors influencing recruitment of the Atlantic species of anguillid eels. pp. 483—491.
In: Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common
Strategies of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

Myers GS (1949) Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia
1949: 89-97.

Nakamura H (1969) Tuna: Distribution and Migration. Fishing News Ltd., London. 76p.

Neill WH (1984) Behavioral enviroregulation’s role in fish migration. pp. 61-66. In: McCleave JM, Arnold
GP, Dodson JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New York
and London.


http://vetbooks.ir

12 An Introduction to Fish Migration

Northcote TG (1984) Mechanisms of fish migration in rivers. pp. 317-355. In: McCleave JM, Arnold GP,
Dodson JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New York and
London.

Ogden JC and Quinn TP (1984) Migration in coral reef fishes: ecological significance and orientation
mechanisms. pp. 293-308. /n: McCleave JM, Arnold GP, Dodson JJ and Neill WH (eds.). Mechanisms
of Migration in Fishes. Plenum Press, New York and London.

Parenti LR (2008) Life history patterns and biogeography: an interpretation of diadromy in fishes. Annals
of the Missouri Botanical Garden 95: 232-247.

Parrish BB (1968) Fish migration. Nature 220: 1008—1009.

Power JH (1984) Advection, diffusion, and drift migrations. pp. 27-37. In: McCleave JM, Arnold GP, Dodson
JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New York and London.

Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon
fry. Journal of Comparative Physiology 137: 243-248.

Quinn TP and Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon
smolts. Journal of Comparative Physiology 147: 547-52.

Quinn TP, Volk EC and Hendry AP (1999) Natural otolith microstructure patterns reveal precise homing
to natal incubation sites by sockeye salmon (Oncorhynchus nerka). Canadian Journal of Zoology
77: 766-775.

Resende A (1593) De Antiquitatibus Lusitaniae. Matinus Burgensis academis typographus. Evora. 259p.
Available at www.bdalentejo.net/BDAObra/BDADigital/Obra.aspx?1D=240#. Accessed November
23,2014.

Robins PE, Neill SP and Giménez L (2012) A numerical study of marine larval dispersal in the presence
of an axial convergent front. Estuarine, Coastal and Shelf Science 100: 172—-185.

Rommel Jr. S and McLeave JD (1972) Oceanic electric fields: perception by American eels? Science
176: 1233-1235.

Rosado Fernandes RM (1991) André de Resende e o seu Asturjdo africano (o Angulo amazi do De
Antiquitatibus Lusitaniae). Humanitas XLIII-XLIV: 355-368. Available at www.uc.pt/fluc/eclassicos/
publicacoes/ficheiros/humanitas43-44/21 Rosado_Fernandes.pdf. Accessed February 4, 2014.

Rosado Fernandes RM (1996) Asantiguidades de Lusitania/André de Resende; introdug@o, tradugdo e
comentario. Fundagdo Calouste de Gulbenkian. Lisboa. 660p. Available at www.bdalentejo.net/
BDAObra/BDADigital/Obra.aspx?ID=265. Accessed October 17, 2014.

Roule L (1933) Fishes. Their Journeys and Migrations. George Routledge & Sons Ltd., London. 270p.

Saborido-Rey F and Nedreaas KH (2000) Geographic variation of Sebastes mentella in the Northeast
Arctic derived from a morphometric approach. ICES Journal of Marine Science: Journal du Conseil
57: 965-975.

Schaefer KM and Fuller DW (2016) Archival and pop-up satellite archival tags: designs, attachments, data
analyses, and applications in studies of large-scale movements of fish. pp. 251-289. In: Morais P and
Daverat F (eds.). An Introduction to Fish Migration. CRC Press, Boca Raton, FL, USA (this book).

Scholz AT, Horrall RM, Cooper JC and Hasler AD (1976) Imprinting to chemical cues: the basis for home
stream selection in salmon. Science 192: 1247-1249.

Sequeira V, Rodriguez-Mendoza R, Neves A, Paiva R, Saborido-Rey F and Gordo LS (2011) Using body
geometric morphometrics to identify bluemouth, Helicolenus dactylopterus (Delaroche, 1809)
populations in the Northeastern Atlantic. Hydrobiologia 669: 133—141.

Skov C, Aarestrup K, Baktoft H, Brodersen J, Bronmark C, Hansson L-A, Nielsen EE, Nielsen T and
Nilsson PA (2010) Influences of environmental cues, migration history, and habitat familiarity on
partial migration. Behavioral Ecology 21: 1140—-1146.

Trancart T, Lambert P, Rochard E, Daverat F, Coustillas J and Roqueplo C (2012) Alternative flood tide
transport tactics in catadromous species: Anguilla anguilla, Liza ramada and Platichthys flesus.
Estuarine, Coastal and Shelf Science 99: 191-198.

Trella K, Podolska M, Nedreaas K and Janusz J (2013) Discrimination of the redfish (Sebastes mentella)
stock components in the Irminger Sea and adjacent waters based on meristics, morphometry and
biological characteristics. Journal of Applied Ichthyology 29(2): 341-351.

Turki-Missaoui O, M’Hetli M, Kraiem MM and Chriki A (2011) Morphological differentiation of introduced
pikeperch (Sander lucioperca L., 1758) populations in Tunisian freshwaters. Journal of Applied
Ichthyology 27: 1181-1189.


www.bdalentejo.net/BDAObra/BDADigital/Obra.aspx?ID=240#
http://www.bdalentejo.net/BDAObra/BDADigital/Obra.aspx?ID=265
http://www.bdalentejo.net/BDAObra/BDADigital/Obra.aspx?ID=265
http://www.uc.pt/fluc/eclassicos/publicacoes/ficheiros/humanitas43-44/21_Rosado_Fernandes.pdf
http://www.uc.pt/fluc/eclassicos/publicacoes/ficheiros/humanitas43-44/21_Rosado_Fernandes.pdf
http://vetbooks.ir

History of Fish Migration Research 13

Weihs D (1984) Bioenergetic considerations in fish migration. pp. 487-508. /n: McCleave JM, Arnold
GP, Dodson JJ and Neill WH (eds.). Mechanisms of Migration in Fishes. Plenum Press, New York
and London.

Weihs D (1987) Hydromechanics of fish migration in variable environments. pp. 254-261. In: Dadswell
MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA and Cooper JE (eds.). Common Strategies
of Anadromous and Catadromous Fishes. American Fisheries Society Symposium I.

Westerberg E (1984) The orientation of fish and the vertical stratification at fine- and micro-structure scales.
pp- 179-203. In: McCleave JM, Arnold GP, Dodson JJ and Neill WH (eds.). Mechanisms of Migration
in Fishes. Plenum Press, New York and London.

Wheeler A (1987) Peter Artedi, founder of modern ichthyology. Proceedings of the Fifth Congress of
European Ichthyologists (1985). pp. 3-10.


http://vetbooks.ir

CHAPTER 2

Definitions and Concepts
Related to Fish Migration

Pedro Morais*** and Francoise Daverat®

The definition of migration is much more than a semantic issue, as pointed out by
Hugh Dingle in his book ‘Migration: the biology of life on the move’ (Dingle 1996).
Dingle (1996) and Dingle and Drake (2007) advocated that the definition ought to
focus on individuals and on its behavioral aspects, even though migration can be
described regarding its population outcomes. Therefore, taking this framework into
account, Dingle (1996) considered that the definition proposed by J. S. Kennedy, in
1985, is the one that best describes migration across taxa. Thus, migration is defined
as a persistent, undistracted and straightened-out movement, achieved through the
animal’s locomotory means or by actively seeking a transport medium (e.g., air or water
currents), during which individuals remain undistracted by the resources they might
find during migration by temporarily inhibiting ‘station-keeping responses’, and that
might be repeated later in life (see J. S. Kennedy’s definition in Dingle 1996, p. 25).
For Dingle (1996), Kennedy’s definition is the best definition of migration because (a)
it emphasizes the organism’s behavior and (b) it is predictive and not only descriptive,
in the sense that it enumerates behavioral traits that a truly migratory animal should
fulfill to be considered as such.

In the particular case of migratory fish, the lexicon and definitions associated with
their study evolved during the 20th century. Essentially, there were two very distinct
definitions, the one from Meek (1916) and then the one from Myers (1949), which
had some refinements and ended in the definitions proposed by McDowall (1997).

The adjectives anadromous and catadromous were already used previously to
Meek’s book (1916), but he gave these adjectives a broader meaning than before.
However, Meek’s definitions were rather dubious and prone to confusion, because
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anadromous and catadromous were used to define the directions of the migration, and
not the migratory pattern as a whole. For example, and using Meek’s own words, “the
migration of the salmon when it leaves the river for the sea is catadromous, and when
it returns is anadromous” (Meek 1916, pp. 18). Meek (1916) continued to develop
his ideas and wrote “...all degrees of anadromous migration from mid-ocean to the
upper limits of streams may take place and corresponding catadromous migrations”
(pp. 18-19). However, Meek (1916) mentioned that “the terms cannot be applied to
indicate migrations with relation to current” (pp. 19), so he also used the adjectives
denatant and contranatant for this purpose — “denatant, swimming or drifting or
simply migrating with the current, contranatant, swimming or migrating against the
current” (pp. 19).

The definitions proposed by Meek (1916) for the adjectives anadromous and
catadromous were not consensual, to the point that some American ichthyologists
continued to use the previous narrower definitions (Myers 1949). Aware of this
problem, Myers (1949) considered that “the most practical system of classifying
fish migrations would seem to be one based principally upon the physical type of
route and direction followed, and this method is implicit in the already well accepted
terms anadromous and catadromous”. Thus, Myers (1949) proposed the following
definitions: diadromous — “Truly migratory fishes which migrate between the sea and
fresh water”; anadromous — “diadromous fishes which spend most of their lives in the
sea and migrate to fresh water to breed”; catadromous — “diadromous fishes which
spend most of their lives in fresh water and migrate to the sea to breed”; amphidromous
— “diadromous fishes whose migration from fresh water to the sea, or vice-versa, is
not for the purpose of breeding, but occurs regularly at some other definite stage of
the life-cycle”; potamodromous — “truly migratory fishes whose migrations occur
wholly within fresh water”; oceanodromous — “truly migratory fishes which live and
migrate wholly in the sea”.

Myers’ (1949) definitions were broadly accepted at that time, and are still accepted
in its wider sense until today. Regarding diadromy in particular, McDowall (1988)
considered that “the terms anadromy, catadromy and amphidromy are exclusive,
specialised forms of diadromy that seem to cover all possibilities” (pp. 22). Despite
this, McDowall (1988) mentioned the works of several scientists that complemented
Myers’ definitions, which were clearly summarized in a paper he published in 1997
(McDowall 1997). Thus, for McDowall (1997), diadromous migration must: a) occur
regularly, b) be physiologically-mediated movements between two biomes, freshwater/
brackish water and the sea, ¢) occur at predictable times, d) occur during a characteristic
life history phase in each species, e) involve the majority of a species’ population, f)
be usually obligatory, and g) occur in opposite directions, i.e., one migration from
freshwater/brackish water to the sea, and another in the opposite direction. Thus, based
on this definition, McDowall (1997) proposed the following definitions for anadromy,
catadromy and amphidromy:

Anadromy: “diadromous fishes in which most feeding and growth are at sea prior
to migration of fully grown, adult fish into fresh water to reproduce; either there
is no subsequent feeding in fresh water, or any feeding is accompanied by little
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somatic growth; the principal feeding and growing biome (the sea) differs from
the reproductive biome (fresh water)”.

Catadromy: “diadromous fishes in which most feeding and growth are in fresh
water prior to migration of fully grown, adult fish to sea to reproduce; there
is either no subsequent feeding at sea, or any feeding is accompanied by little
somatic growth, the principal feeding and growing biome (fresh water) differs
from the reproductive biome (the sea)”.

Amphidromy: “diadromous fishes in which there is migration of larval fish to
sea soon after hatching, followed by early feeding and growth at sea, and then a
migration of small postlarval to juvenile fish from the sea back into fresh water;
there is further, prolonged feeding in fresh water during which most somatic
growth from juvenile to adult stages occurs, as well as sexual maturation and
reproduction; the principal feeding biome is the same as the reproductive biome
(fresh water)”.

Regarding potamodromy and oceanodromy, McDowall (1988) considered that the
essential difference between diadromous and non-diadromous migrations resides in the
absence of osmoregulation during potamodromous and oceanodromous migrations.
This observation is misleading, since potamodromous have to go under physiological
(e.g., to store energy reserves — Bronmark et al. 2014) and also morphological
adaptations prior to migration (see Chapter 4 for more details — Thurow 2016). The
same holds true for oceanodromous fish, for example, only fish species with warm
muscles, as tunas and some sharks, are capable of long-distance migrations due to
the greater cruising speeds that this physiological adaptation concedes, and then take
advantage of seasonal available resources in distant locations (Watanabe et al. 2015).

Migratory fish often exhibit a philopatric behavior, i.e., the return to their natal site,
a term often called ‘homing’ or ‘homing behavior’, and observed for potamodromous
(Rakowitz et al. 2009), anadromous (Dittman and Quinn 1996; Stepien and Faber
1998), catadromous (Hunter et al. 2003) and oceanodromous fish (Hueter et al. 2004;
Jorgensen et al. 2009; Feldheim et al. 2013). However, it is important to highlight
that philopatry is not a required behavior to classify a fish species as migratory
(e.g., Waldman et al. 2008). Indeed, Dingle and Drake (2007) considered that the most
emblematic examples of migration (across all taxa) may be the exception rather than
the rule. This statement probably holds true for migratory fish species as well, as an
increasing number of studies are showing that some of them display alternative life
history strategies (or life history plasticity), and not a unique or predominant life history
(examples: anadromous fish — brown trout Salmo trutta (Limburg et al. 2001), European
eel Anguilla anguilla, Japanese eel Anguilla japonica, American eel Anguilla rostrata
(Daverat et al. 20006), steelhead Oncorhynchus mykiss (Moore et al. 2014); amphidromous
fish — Inanga Galaxias maculatus (Chapman et al. 2006), Rhinogobius spp. (Tsunagawa
and Arai 2008); catadromous fish — European flounder Platichthys flesus (Morais
etal. 2011; Daverat et al. 2012); potamodromous fish — oopu nakea Awaous stamineus
(Hogan et al. 2014), roach Rutilus rutilus (Brodersen et al. 2014); oceanodromous
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fish — spiny dogfish Squalus acanthias (Campana et al. 2009)). Probably, the first
cases of alternative life histories in fish that were noticed where those from landlocked
diadromous fish populations. Interestingly, these landlocked populations might mimic
migratory behavior in the new landlocked environment (Néslund 1992; Barriga et al.
2007) and they might undertake diadromous migrations once the barriers are eliminated
(McDowall 1988).

Life history plasticity is defined as the “ability of a single genotype to produce
multiple phenotypes in response to variation in the environment” (Pfennig et al. 2010),
and it can be displayed by a population in two distinct ways. All individuals within
a population exhibit a single life history strategy different from the most common
for the species, or assumed as so (Morais et al. 2011), and this locally predominant
life history might even differ within the same metapopulation (Morais, unpubl.
data), or along the species distribution range (Daverat et al. 2012). There is also the
hypothesis that individuals within a population display different life history strategies,
with individuals forming resident and migratory contingents (Tzeng et al. 2003;
Nims and Walther 2014; Gahagan et al. 2015; Gillanders et al. 2015). The simultaneous
existence of contingents within a population is classified as partial migration
(Jonsson and Jonsson 1993; Secor 1999). Partial migration is probably caused by
a trade-off between maximizing fitness (growth, reproduction) with the resources
available locally throughout the year and the risks associated with being resident
(intraspecific competition, predation), and the energetic and physiological demands
associated with undertaking a migratory journey to minimize predation and
intraspecific competition to explore distant available resources (Chapman et al.
2012). Partial migration and fish life history plasticity should also be analyzed taking
into consideration the conditional strategy hypothesis, which states that genetically
monomorphic individuals decide on a tactic, depending on their status (size, sex,
age) or condition (energy reserves), to acquire higher fitness, and since each tactic
has unequal fitness, the one that produces better fitness will dominate (Gross 1996).
Complementarily, fish personality traits should also be included among the status
factor, and boldness in particular, since it can influence the migratory behavior of an
individual (Chapman et al. 2011b). The existence of contingents within a population,
or the existence of a portfolio of life history strategies displayed by a species along
their distribution range, probably results from a successful evolutionary process to
maximize individual fitness and consequently to enable a population with increased
resilience and stability (Geffen 2009; Perrier et al. 2014; Gahagan et al. 2015), and
probably providing species with an extraordinary adaptative and evolutionary tool
that enables them to persist in varied and unpredictable environments (Pfennig et al.
2010; Chapman et al. 2011a; Daverat et al. 2012; Kerr and Secor 2012; Dodson et al.
2013; Crozier and Hutchings 2014; Valladares et al. 2014). Thus, it is clear that fish
life history plasticity is a complex phenomenon and a powerful evolutionary driver,
which must be studied taking into consideration different spatial and time scales to
encompass the influence of evolution and local adaptations, and that can enlighten us
on the patterns, processes, mechanisms and evolution of migratory fish.
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CHAPTER 3

Trends and Challenges in Fish
Migration Research

Pedro Morais*** and Francoise Daverat®

Research on fish migration has always been a topic of great interest, and the number
of papers published on fish migration, and registered in Scopus database, reflect that
interest: 6624 papers published until August 2014. The number of papers published
increased significantly since 1995. The average increase of papers published between
1990 and 1995 and between 2008 and 2013 was 518%, from 70.3 + 5.9 papers to
434.7 + 50.6 papers (Fig. 3.1A). The number of papers published before 1996 might
be slightly underestimated, due to the reduced coverage of the used bibliographic
database before that year. Though, the increasing trend is obvious after 1995 and
certainly reveals the main trends that have occurred since then.

Most papers were published by US and Canadian scientists, which account for
26.6 and 9.7% of all country affiliations. The top-10 countries published over two
thirds of all papers, 69.7% to be more precise (Fig. 3.1B). The number of papers
published by country (overall top-20 countries) in 2013 are more correlated with
nominal Gross Domestic Product, or GDP, than with GDP per capita, which explains
the huge publishing discrepancy between continents. The contribution of the top-25
countries for the total number of papers published by continent is the following: North
America — 36.3%, Europe — 35.4%, Asia — 9.1%, Oceania — 5.3%, Africa — 0.8%.

The distribution of fish migration papers by journals is more even, probably
because there is no journal dedicated solely to fish migration research, and also due
to the multidisciplinary topics and techniques involved in fish migration research.
The top-10 publishing journals published 28.4% of all papers, of which Journal of
Fish Biology (6.0%), Canadian Journal of Fisheries and Aquatic Sciences (3.2%)
and Environmental Biology of Fishes (3.1%) are the top-three publishing journals
(Fig. 3.1C).

' CIMA-Centro de Investigagdo Marinha e Ambiental, Universidade do Algarve, Portugal.

2 CIIMAR-Centro Interdisciplinar de Investigagdo Marinha e Ambiental, Universidade do Porto, Portugal.
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I’ Agriculture, France.
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Figure 3.1. Evolution of the number of papers published on migratory fish from 1980 till 2013, and
recorded in Scopus database (A). The total number of papers published, and recorded in Scopus database,
between 1961 and 1979 is represented by a black square in Fig. 3.1A. The top-10 publishing countries
(B) and journals (C) on fish migration during this period are also shown. Legend: JFB — Journal of Fish
Biology, CJFAS — Canadian Journal of Fisheries and Aquatic Sciences, EBF — Environmental Biology
of Fishes, TAFS — Transactions of the American Fisheries Society, MEPS — Marine Ecology Progress
Series, Hb — Hydrobiology, ICESIMS — ICES Journal of Marine Sciences, NAJFM — North American
Journal of Fisheries Management, FR — Fisheries Research, PO — PLOS ONE. This bibliographic research
was done in Scopus, and the keywords used were the following: “fish migration” and anadromous, or
anadromy, or catadromous, or catadromy, or amphidromous, or amphidromy, or diadromous, or diadromy,
or oceanodromous, or oceanodromy, or potamodromous, or potamodromy, or plasticity, or contingents,
or ‘life history’, or ocean, or sea, or river, or conservation, or fisheries, or management, or physiology, or
phylogeny or cues, or methodology, or patterns, or processes, but excluding from the output the keywords
‘zebrafish’, ‘zebrafish’ and ‘Danio rerio’. Only papers published in English were considered in this analysis.
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The main keywords used in papers about fish migration reflect the enormous bias
between the number of papers published in different countries and continents. If such
a thing would exist, the ‘typical’ fish migration paper would be on the physiological
aspects of Salmonidae spawning migrations in North American rivers, and it would
result from the cooperation between US and Canadian scientists (Fig. 3.2). Salmonid
species are definitely the most studied species, namely the Pacific salmons and
trouts Oncorhynchus spp. (e.g., Oncorhynchus tshawytscha, Oncorhynchus mykiss,
Oncorhynchus nerka), the Atlantic salmon Salmo salar and the brown trout Salmo
trutta. Other species are also among the main keywords used, as the European eel
Anguilla anguilla or the Atlantic cod Gadus morhua. Cyprinidae and Clupeidae are
also among the most studied families of migratory fish species (Fig. 3.2).
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Figure 3.2. Wordle™ representation of the most commonly cited keywords in fish migration studies between
1980 and 2013, according to Scopus database.

Papers on the ecology of migratory fish species covered a series of topics
through the years since 1980, like ‘life history’, ‘population dynamics’, ‘population
structure’, ‘habitat use’ and ‘growth, development and aging’. In terms of migratory
fish’s conservation, the keywords ‘fishery management’ and ‘dams’ are the most
commonly cited, and in the case of ‘dams’ mainly due to the problems associated
with the destruction and blocking of salmonids spawning habitats — although dams
are not an exclusive problem of salmonids. Regarding, the techniques used to study
fish migration, tagging, telemetry and otoliths have been the most frequently used
since 1980 (Fig. 3.2).

As for future research topics, we are convinced that the number of studies linking
climate change and migratory fish will gain increased relevance, since there are
concerns that climate change may exceed the capacity of developmental, genetic, and
demographic mechanisms that species have evolved to deal with environmental change
(Ozgul et al. 2009; Chevin et al. 2010, 2013; Bernhardt and Leslie 2013). Therefore,
much of the focus has to be put into migratory fish conservation and management
(e.g., Lassalle and Rochard 2009; Hague et al. 2011; Koehn 2011; Finstad and Hein
2012; Beatty et al. 2014). Thus, climate change pressure on migratory fish populations
will further enhance the need to investigate this topic, as it might be a triggering
mechanism for the dispersal of populations, in order to escape unfavorable habitats and
colonize new favorable habitats. Indeed, fish migration and fish life history plasticity
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are considered fundamental mechanisms explaining fish species distribution after
glaciation events. Therefore, it is possible that at least some migratory fish may display
resilience to climate change (Valladares et al. 2014), in opposition to resident or non-
migratory fish species. It is important to recall that ecological resilience is dependent
of rapid phenotypic change, which occurs through both ecological and evolutionary
processes (Ozgul et al. 2009), and combines the resistance to increasingly frequent
and severe disturbances and is expressed through the capacity for recovery and self-
organization and the ability to adapt to new conditions (Bernhardt and Leslie 2013).
This adaptive capacity is, in its turn, the expression of a combination of traits, namely
phenotypic plasticity, species range shifts, and microevolution (Bernhardt and Leslie
2013; Chevin et al. 2013). Therefore, the complexity linking climate change and
migratory fish calls for a transdisciplinary research effort to support wise conservation
policies. In fact, conservation measures as assisted colonization, or displacement of
endangered species, are being considered if populations cannot adapt fast enough
to the rate of habitat favorability change or if they cannot disperse quickly enough.

As we celebrate the 100th anniversary of Alexander Meek’s seminal book ‘The
migration of fish’ (Meek 1916), the differences between the techniques and proxies
currently used to study fish migration and those used in the early 1900’s are tremendous.
Certainly whatever the predictions that we might make on the future of fish migration
research, all of them will be less ambitious than those the future holds for us. Yet, we
are sure that technical advances will pave the way for reaching previously unattainable
data, shedding light to novel insights and, above all, exploring new questions. For
example, the increasing miniaturization of electronic components used in electronic
tags, long-lasting and smaller batteries, combined with new physiological sensors and
lower production costs will certainly continue to revolutionize fish tagging studies
(Cooke et al. 2013). Also, newer and more sensitive analytical techniques, either
when using fish otoliths or tissues as proxies to infer fish migration and habitat use,
will evolve with technological progress and interdisciplinary approaches (Campana
and Neilson 1985; Campana 2005). Indeed, it is incredible to recall the technological
advances achieved regarding electronic tracking of fish movements and migration,
since the rise of echo-sounders use during the 1930°s and 1940’s (Harden Jones 1968).
Otoliths are another extraordinary example on the advances achieved to study fish
migration since the late 1960’s. Harden Jones (1968) states that otoliths were used
as certificates of origin, in the sense that similar otolith shapes would correspond to
specimens with equal origin, and that was basically it. The daily deposition of otolith
growth rings was described by Giorgio Panella only in 1971 (Panella 1971), and
otolith microchemistry only began to rise after the mid-1980’s with the seminal works
of Richard L. Radtke and colleagues and also of John M. Kalish (Radtke and Targett
1984; Kalish 1989; Radtke 1989; Radtke and Morales-Nin 1989). Yet so much has
been accomplished since the mid-1980’s.

As a concluding remark, and in our opinion, fish migration research will continue
to evolve due to technological progress, but it also has to rely on cooperation
between developed and developing countries to tighten the gaps on both fundamental
research and conservation efforts. In this sense, one of the best examples is the
work accomplished by the Inter-American Tropical Tuna Commission (IATTC),
currently with 21 members and four cooperating non-members from North and South
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America, Asia, Oceania, Africa and Europe (IATTC 2014). It is also clearer that
fruitful conservation efforts require effective and long-term environmental awareness
programs, targeting all segments of the population and involving stakeholders
(e.g., fishermen, fisheries industry, dam managers, water agencies, regional and national
legislators). The outcomes are not immediate, but they will certainly flourish in the
future. One of the most emblematic examples on environmental awareness activities
related with fish migration was the celebration of the ‘World Fish Migration Day’ on
May 24th 2014, where 50,000 people participated in 273 events, from 53 countries
in all continents (WFMD 2014). It is certainly due to public and media perception
and pressure that, in some countries, it is possible to dismantle weirs and dams that
hinder the migration of diadromous or potamodromous fish (McAllister et al. 2001;
Arthington et al. 2003; Doyle et al. 2005; Brown et al. 2013). The same holds true
for oceanodromous fishes, since it is only possible to ban or to put on halt certain
targeted or non-targeted fisheries, to recover the stocks of over-exploited species, with
the involvement of all parties, including the public and media (Tolotti et al. 2015).
However, in some situations, economic pressure is so overwhelming that environmental
awareness and conservation impetus are not sufficient to hinder the conservation
impetus of migratory fish (Dugan et al. 2010; Tolotti et al. 2015). So, diadromous and
potamodromous fish conservation also has to rely on newer and efficient technologies to
harvest energy in hydroelectric power plants, in the sense that fewer of them will have
less impact, because fish passages and fish hatcheries do not compensate the long-term
impacts of dams and weirs (Brown et al. 2013). While in the case of oceanodromous
species, it is essential to improve fishing gears to avoid the accidental capture of
endangered and protected oceanodromous species and others (Tolotti et al. 2015). Also,
learning from previous experiences, either positive or negative, is fundamental for
developing wiser water and fishery management plans (Ferguson et al. 2011; Tolotti
et al. 2015). Despite all economic pressures (fisheries, water development plans) that
world migratory fishes are subject to, we are still confident that the future will be
beneficial for migratory fish species if fundamental and applied research continues in
developed countries, if it expands to developing countries in a consistent manner, but
only if encompassed by public awareness programs and media pressure.

References

Arthington AH, Lorenzen K, Pusey BJ, Abell R, Halls AS, Winemiller KO, Arrington DA and Baran E
(2003) River fisheries: ecological basis management and conservation. /n: Welcomme RL and Petr
T (eds.). Proceedings of the Second International Symposium on the Management of Large Rivers
for Fisheries. Cambodia. FAO. pp. 21-60.

Beatty SJ, Morgan DL and Lymbery AJ (2014) Implications of climate change for potamodromous fishes.
Global Change Biology 20: 1794—-1807.

Bernhardt JR and Leslie HM (2013) Resilience to climate change in coastal marine ecosystems. Annual
Review of Marine Science 5: 371-392.

Brown JJ, Limburg KE, Waldman JR, Stephenson K, Glenn EP, Juanes F and Jordaan A (2013) Fish
and hydro power on the U.S. Atlantic coast: failed fisheries policies from half-way technologies.
Conservation Letters 6: 280-286.

Campana SE (2005) Otolith science entering the 21st century. Marine & Freshwater Research 56: 485-495.

Campana SE and Neilson JD (1985) Microstructure of fish otoliths. Canadian Journal of Fisheries and
Aquatic Sciences 42: 1014-1032.


http://vetbooks.ir

Trends and Challenges in Fish Migration Research 25

Chevin L-M, Collins S and Lefévre F (2013) Phenotypic plasticity and evolutionary demographic responses
to climate change: taking theory out to the field. Functional Ecology 27: 967-979.

Chevin L-M, Lande R and Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment:
Towards a predictive theory. PLOS Biology 8: ¢1000357.

Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, Eiler J, Holbrook C and Ebner
BC (2013) Tracking animals in freshwater with electronic tags: past, present and future. Animal
Biotelemetry 1: 5.

Doyle MW, Stanley EH, Orr CH, Sellec AR, Sethib SA and Harbor JM (2005) Stream ecosystem response
to small dam removal: lessons from the Heartland. Geomorphology 71: 227-244.

Dugan PJ, Barlow C, Agostinho AA, Baran E, Cada GF, Chen D, Cowx IG, Ferguson JW, Jutagate T,
Mallen-Cooper M, Marmulla G, Nestler J, Petrere M, Welcomme RL and Winemiller KO (2010)
Fish migration, dams, and loss of ecosystem services in the Mekong basin. AMBIO 39: 344-348.

Ferguson JW, Healey M, Dugan P and Barlow C (2011) Potential effects of dams on migratory fish in the
Mekong river: Lessons from salmon in the Fraser and Columbia rivers. Environmental Management
47: 141-159.

Finstad AG and Hein CL (2012) Migrate or stay: terrestrial primary productivity and climate drive anadromy
in Arctic char. Global Change Biology 18: 2487-2497.

Fontaine M (1954) Du determinisme physiologique des migrations. Biological Reviews 29: 390-418.

Hague MJ, Ferrari MR, Miller JR, Patterson DA, Russell GL, Farrell AP and Hinch SG (2011) Modelling
the future hydroclimatology of the lower Fraser River and its impacts on the spawning migration
survival of sockeye salmon. Global Change Biology 17: 87-98.

Harden Jones FR (1968) Fish Migration. Edward Arnold (Publishers) Ltd., London. 325p.

IATTC (Inter-American Tropical Tuna Commission) (2014) http://www.iattc.org. Accessed May 23rd 2014.

Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on
otolith composition. Journal of Experimental Marine Biology and Ecology 132: 151-178.

Koehn JD (2011) Climate change and Australian marine and freshwater environments, fishes and fisheries:
introduction. Marine & Freshwater Research 62: 981-983.

Kusukawa S (2000) The Historia Piscium (1686). Notes and Records of the Royal Society of London
54:179-197.

Lassalle G and Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread
over Europe, North Africa and the Middle East. Global Change Biology 15: 1072—1089.

McAllister DE, Craig JF, Davidson N, Delany S and Seddon M (2001) Biodiversity impacts of large dams.
UNEP & United Nations Foundation & IUCN. 68p.

Meek A (1916) The Migrations of Fish. Edward Arnold, London. 427p. + xviii.

Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T (2009) The dynamics
of phenotypic change and the shrinking sheep of St. Kilda. Science 325: 464—467.

Panella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173: 1124-1127.

Radtke RL (1989) Strontium-calcium concentration ratios in fish otoliths as environmental indicators.
Comparative Biochemistry and Physiology Part A: Physiology 92: 189-193.

Radtke RL and Morales-Nin B (1989) Mediterranean juvenile bluefin tuna: life history patterns. Journal
of Fish Biology 35: 485-496.

Radtke RL and Targett TE (1984) Rhythmic structural and chemical patterns in otoliths of the Antarctic fish
Notothenia larseni: Their application to age determination. Polar Biology 3: 203-210.

Tolotti MT, Filmater JD, Bach P, Travassos P, Seret B and Dagorn L (2015) Banning is not enough: The
complexities of oceanic shark management by tuna regional fisheries management organizations.
Global Ecology and Conservation 4: 1-7.

Valladares F, Matesanz S, Guilhaumon F, Aratujo MB, Balaguer L, Benito-Garzén M, Cornwell W, Gianoli
E, van Kleunen M, Naya DE, Nicotra AB, Poorter H and Zavala MA (2014) The effects of phenotypic
plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology
Letters 17: 1351-1364.

WEMD (World Fish Migration Day) (2014) World Fish Migration Day 2014-Report. World Fish Migration
Platform. The Netherlands. 8p.


http://www.iattc.org
http://vetbooks.ir

This page intentionally left blank


http://vetbooks.ir

PART 2

Life Histories of
Migratory Fishes


http://vetbooks.ir

This page intentionally left blank


http://vetbooks.ir

CHAPTER 4

Life Histories of

Potamodromous Fishes
Russell E. Thurow

Definitions of potamodromy, potamodromous migrations and
movements

Potamodromous fishes move and complete their life cycle entirely within freshwater.
Myers (1949) proposed the term potamodromous to distinguish freshwater migratory
fishes from diadromous fishes, which migrate between the sea and freshwater and
oceanodromous fishes that migrate wholly within the sea. Diadromous fishes include
anadromous, catadromous and amphidromous fishes (see Chapter 2, Morais and
Daverat 2016). Despite its historical precedence, potamodromous has not been
broadly accepted. Three other terms, ‘non-anadromous’, ‘resident’, and ‘inland’ are
more commonly substituted in the fisheries literature. Unfortunately, these three
terms have multiple definitions, as well as regional connotations which may confound
their application to a broad geographic area (Gresswell et al. 1997). Consequently,
potamodromous provides a more precise and more broadly applicable definition of
fishes that remain wholly within freshwater.

Although potamodromous fishes are widespread among freshwater fish
assemblages, the significance of potamodromy has received far less attention than
diadromy (Northcote 1998). Unlike diadromy, no global analysis of potamodromous
species has been undertaken, and it is limited by the difficulties in amassing information
for inconspicuous and little-studied species, especially in the tropics (Flecker et al.
2010). Potamodromous fishes were included in a group-by-group review by Lucas and
Baras (2001) of the migration and life cycle characteristics of species representative
of families of fishes exhibiting migration in fresh and brackish water environments.
Lucas and Baras (2001) explained that information was limited for some groups of
freshwater fishes mostly found in tropical freshwater regions. This was partly because

USDA-Forest Service-Rocky Mountain Research Station, 322 East Front Street-Suite 401, Boise, Idaho
83702, USA.
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of a paucity of information concerning spatial ecology at the species level; some of
these groups (Cichlidae, Characiformes and Siluriformes) are very speciose, totaling
over 5,000 species and representing nearly 50% of all fish species in freshwater
(Lucas and Baras 2001). Flecker et al. (2010) reported that in both the tropics and
temperate zone, potamodromy is likely the most common form of migration in stream
fishes. Similarly, Lucas and Baras (2001) observed that in many large tropical rivers,
more than 95% of the migratory fishes are potamodromous.

Migration and movements between biomes on a daily, seasonal, or annual basis,
represents a fundamental aspect of the ecology of populations and individuals (Hobson
1999). Despite residing only in freshwater, for a variety of reasons, potamodromous
fishes move and migrate various distances throughout their life cycle. As Dingle and
Drake (2007) observed, our understanding of the movements of organisms has been
hindered by imprecise and ambiguous terminology. As a result, it may be useful to
begin by defining the terms movement and migration.

Movement may be defined as the act of changing locations or positions. In
potamodromous fishes, these movements are most commonly associated with seeking
essential resources (i.e., food) and they may be in response to other organisms (i.e.,
seeking cover from predators). For example, a potamodromous sculpin Cottus spp.
residing in a pool may suddenly move and change ‘position’ to consume an aquatic
insect larvae on the stream substrate. This same sculpin may change its ‘location’ in
the same pool by moving beneath a boulder to escape an avian predator. Dingle (1996)
observed that most movements occur within a relatively well defined area or home
range. An organism travels or moves within its home range to acquire the resources it
needs to survive. The size of the home range will tend to vary depending on the habitat
and the size and movement abilities of the organism (Dingle 1996). Consequently,
the sculpin in our example above, will have a much smaller home range compared
to the average home range size (mean home range of 146 ha) for a 70-100 cm long
muskellunge Esox masquinongy (Miller and Menzel 1986).

Movements and associated behaviors within a home range have also been termed
‘station keeping’ and perhaps the most prominent example is foraging (Kennedy 1985;
Dingle 1996). Foraging is a repetitive and meandering movement that focuses on
locating resources (food, cover, or mates). Foraging characteristically occurs on short
timescales and small spatial scales within the home range (Dingle and Drake 2007). In
our examples above, depending in part on food availability, the much larger and faster
swimming muskellunge will potentially forage within a much larger area compared
to the sculpin. A specialized form of foraging, that includes to-and-fro movements,
is the diel vertical movement of fishes such as alewife Alosa pseudoharengus to
consume zooplankton (Janssen and Brandt 1980). Another example of a ‘station
keeping’ behavior is the territorial behavior that results in agonistic encounters between
individuals. McNicol et al. (1985) reported frequent agonistic interactions between
young-of-the-year brook trout Salvelinus fontinalis, in a second-order woodland stream.

Migration differs substantially from the often repetitive movements within home
ranges described above. Home range movements are primarily in response to local
resources. Migration is considered a more specialized type of movement, often,
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but not necessarily occurring at larger temporal and spatial scales. Dingle (1996)
emphasized that migration differs from other types of movements both qualitatively
and quantitatively. Unlike the sculpin, muskellunge, and alewife movements described
above, Dingle (1996) observed that migration is not a proximate response to resources
nor does it serve to keep an organism in its habitat. Rather, migration results in fishes
moving from one habitat and relocating to another habitat outside their home range.
Dingle (1996) observed that the most distinctive feature of migration is that migrants
do not respond to sensory cues from resources (e.g., food or shelter) that would
typically elicit responses. For example, during their annual migration to spawning
sites, adult walleye Stizostedion vitreum vitreum may feed or temporarily seek shelter.
However, unlike the above referenced foraging movement of a muskellunge within its
home range, the presence of an abundant food source or suitable cover will not cause
migrating walleye to stop. Their upstream migration ceases only when adult walleye
arrive at their spawning location (i.e., Crowe 1962).

Migration involves two levels, the behavioral level that applies to individuals and
the ecological level that applies to populations (Dingle and Drake 2007). Therefore,
a broad conceptual understanding of migration encompasses both its mechanism
and its function. Northcote (1978) distinguished migration from other types of
fish movements and suggested four main features: (1) resulting in an alternation
between two or more well-separated habitats; (2) occurring with regular periodicity
(often seasonal) within the individual lifespan; (3) involving a large fraction of the
population; and (4) being directed rather than a random wandering or passive drift.
Decades later, Dingle and Drake (2007) suggested that migration represents four
different but overlapping concepts which are very similar to those of Northcote (1978).
The concepts of Dingle and Drake (2007) are also applicable to potamodromous
fishes: (1) a type of locomotory activity that is notably persistent, undistracted, and
straightened out (i.e., fall downstream migrations of adult westslope cutthroat trout
Salmo clarkia lewisii to overwintering areas in large pools) (Bjornn and Mallet
1964); (2) a relocation of the animal that is on a much greater scale, and involves
movement of much longer duration, than those arising in its normal daily activities
(i.e., spring upstream migrations of mature walleye to spawning areas) (Crowe 1962);
(3) a seasonal to-and-fro movement of populations between regions where conditions
are alternately favorable or unfavorable (i.e., summer upstream migrations of brook
trout seeking cold water refugia (Petty et al. 2012) followed by fall downstream
migrations to more suitable overwintering habitats) (Chisholm et al. 1987); and (4)
movements leading to redistribution or dispersal within a spatially extended population
(i.e., downstream drift of newly hatched white sucker Catostomus commersoni larvae
to areas with higher zooplankton production) (Corbett and Powles 1986). Dingle and
Drake (2007) explained that migration of types 1 and 2 relate to individual organisms,
while types 3 and 4 explicitly concern populations. Further, type 1 migration describes
a process, whereas the other three migrations describe the outcomes (for individuals
or populations) of migration by individuals.

Baker (1978) proposed that the sum of all migrations and movements during
an organism’s lifetime be termed a ‘lifetime track’. An organism’s lifetime track
is essentially the time series of its successive locations throughout its lifetime
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(Dingle and Drake 2007). Technological advances in tracking devices now allow
biologists to more explicitly monitor a fishes’ lifetime track. Hanson et al. (2007),
for example, applied a whole-lake acoustic telemetry array to closely monitor the
three-dimensional position of largemouth bass Micropterus salmoides across multiple
temporal and spatial scales. Between November 2003 and April 2004, the authors
simultaneously monitored 20 largemouth bass with transmitters (equipped with
pressure and temperature sensors) at 15 second intervals with sub-meter accuracy.
A fishes’ lifetime track is influenced by its size, life history traits, ability to migrate,
geographic range, and habitat. Dingle (1996) emphasized an important concept when
he observed that the composite of movements, migrations, and stationary elements
that form the lifetime track is determined by natural selection. The dynamics of fish
populations are in turn influenced by the migrations and movements of the individual
fishes it contains (Dingle 1996).

A strategy can be defined as a genetically determined life history type or behavior
which has evolved because it maximizes fitness of individuals and populations
(Gross 1987). Fitness can be defined as lifetime reproductive success. As Gross et al.
(1988) summarized, the importance of food intake for growth, decreased mortality,
increased fecundity, and improved breeding success is well documented. Gross et al.
(1988) compared the distribution of diadromous fishes to global patterns in aquatic
productivity and concluded that food availability is an important factor determining
both where migratory fishes occur and their direction of movement.

Migration and movements are very widespread strategies in potamodromous
fishes (Northcote 1978) and ultimately result in fish switching habitats. Salmonids, for
example, change habitats many times during their growth and development, and each
change within and across life stages involves migration (Thorpe 1988). Early studies
of fish migration relied on external marks to track individuals between habitats in an
effort to characterize timing and duration. As Lucas and Baras (2001) observed, the
relative inadequacy of early techniques used to investigate the migration of freshwater
fishes contributed to the idea that many freshwater fishes exhibit very little movement,
which is now viewed as a misplaced paradigm (Gowan et al. 1994). Fisheries biology
is moving from descriptive studies to more mechanistic approaches that strive to
understand the ecological and evolutionary importance of migration. Cooke et al.
(2008), for example, advanced understanding of sockeye salmon Oncorhynchus
nerka migration through the integration of disciplines including physiology, behavior,
functional genomics, and experimental biology.

Understanding habitat connectivity and the characteristics of essential habitats
utilized by potamodromous species, throughout their often complex life histories, is
essential to their effective conservation. Such knowledge can effectively be directed
to conserve the habitats that are critical for various species life stages (e.g., Myers
et al. 1987). In this chapter, we include a broad spatial and temporal spectrum of
migrations and movements by potamodromous fishes; ranging from short-distance
(~ 1-2 meter) diel movements of juvenile bull trout Salvelinus confluentus seeking
winter concealment in interstitial areas of stream substrates (Thurow 1997), to very long
distance (> 650 km) spawning migrations of adult Colorado pikeminnow Ptychocheilus
lucius over several months (Irving and Modde 2000).
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Taxonomic and biogeographic distribution of potamodromous fishes

Taxonomists currently list 33,592 identified fish species worldwide with 217 new
species added in 2015 as of August 3, 2015 (Eschmeyer and Fong 2015). In 2006,
27,977 species of fish were identified and about 43% (11,952) were considered strictly
freshwater species (Nelson 2006). If 40% of currently known fish species worldwide
reside strictly in freshwater, then it is likely that more than 13,000 fish species meet our
definition as potamodromous fishes. Flecker et al. (2010) observed that, collectively,
potamodromous species can represent a substantial proportion of fish biomass even
in the largest freshwater ecosystems. In South America, for example, potamodromous
fishes are dominated by large pimelodid catfish and characins, many of commercial
importance. In Africa, potamodromous species include characins, siluroids, cyprinids,
and mormyrids that move from lakes to tributaries and upstream swamps to spawn. In
Asia, among the best known potamodromous fishes are pangasiid catfish and cyprinids,
such as some barbs, as well as members of the genus 7or that are known to ascend
Himalayan streams (Welcomme 1985).

Ross (2013) reported that the freshwater fish fauna of North America is the most
diverse and thoroughly researched temperate fish fauna in the world. As a result of
the abundance of literature describing North American freshwater fishes, this chapter
will focus on well-studied potamodromous fishes within North America.

Worldwide, potamodromous fishes represent at least 31 orders of fishes. Thirteen
of those orders are not native to North America. These include: Atheriniformes,
Ceratodontiformes, Characiformes, Gonorynchiformes, Gymnotiformes,
Mugiliformes, Osteoglossiformes, Pleuronectiformes, Rajiformes, Scorpaeniformes,
Synbranchiformes, Syngnathiformes, and Tetraodontiformes. North American
potamodromous species are extremely diverse and represent 18 distinct orders:
Lepisosteiformes (gars), Amiiformes (bowfin), Hiodontiformes (mooneye),
Clupeiformes (alewife), Osmeriformes (smelt), Percopsiformes (trout-perch,
cave fishes, and pirate perch), Acipenseriformes (sturgeons, and paddlefishes),
Cypriniformes (minnows, carp, and suckers), Siluriformes (catfishes), Esociformes
(pikes and pickerels), Salmoniformes (whitefish, trout, and salmon), Scorpaeniformes
(sculpin); Perciformes (bass, sunfish, perch, cichlids, and drums), Gadiformes
(burbot), Atheriniformes (silversides), Cyprinodontiformes (top minnows, killifish,
and pupfish), Gasterosteiformes (sticklebacks), and Petromyzontiformes (lamprey)
(Eschmeyer 2013).

Within North America, these 18 orders represent 29 families of fish that reside
wholly within freshwater. An additional two families (Clupeidae and Osmeridae)
were formerly anadromous, but have been introduced, as alewife and rainbow smelt
Osmerus esperlantus, respectively, and are now landlocked within the freshwaters of
the Great Lakes and other North American waters (Scott and Crossman 1973). Adding
to this diverse list of potamodromous species is the potential for several anadromous
species to develop potamodromous populations. Northcote (1997), for example,
described four North American species of Pacific salmon that now have permanent
freshwater residence. Three species, pink salmon Oncorhynchus gorbuscha, coho salmon
Oncorhynchus kisutch, and Chinook salmon Oncorhynchus tshawytscha developed
potamodromous populations after introductions to the Great Lakes (Scott and Crossman


http://vetbooks.ir

34 An Introduction to Fish Migration

1973). Sea lamprey Petromyzon marinus also established potamodromous forms after
introductions to the Great Lakes (Clemens et al. 2010). Potamodromous populations
develop naturally in landlocked sockeye or kokanee Oncorhynchus nerka, as well as in
landlocked salmon or Ouananiche; the freshwater form of Atlantic salmon Salmo salar.
Boucher (2004) reported that prior to 1868 landlocked salmon occurred naturally in
four Maine River Basins. After extensive stocking, Maine supported one of the largest
sport fisheries for landlocked salmon in the world with fisheries in 176 lakes and about
464 km of rivers and streams (Boucher 2004). Outside North America, other
anadromous salmonid forms of Oncorhynchus including masu salmon Oncorhynchus
masou, and Biwa trout Oncorhynchus rhodurus also develop potamodromous
populations (Northcote 1997). Other formerly anadromous species such as white
sturgeon Acipenser transmontanus have similarly developed potamodromous forms
after becoming landlocked above dams and impoundments in the Columbia and
Kootenai Rivers (Jager et al. 2001). Some landlocked fish populations may reacquire
former life history strategies after being ‘unlocked’ (see Chapter 2).

Key characteristics of potamodromous fishes

The 18 orders of North American potamodromous fishes represent thousands of diverse
fish species that exhibit a variety of life stages, life history strategies, and associated
movements. Despite this diversity, all of the North American potamodromous fishes
persisting in riverine or lacustrine environments share some common life stages and
life history strategies.

Life stages

Schlosser’s (1991) provided a useful synthesis of freshwater fish life stages. Fish
vary dramatically in size and behavior, from embryo to larvae, then to juvenile and
subsequently to sub-adult and to adult (Fig. 4.1). For more detailed descriptions of
the life stages of a variety of North American fishes, see Scott and Crossman (1973).
Life begins when fertilized eggs are either buried within substrates, broadcast over
the surface of substrates, broadcast into the water column, or attached to plant
material. Eggs mature after an incubation period lasting anywhere from a few days
(i.e., Cypriniformes) to several months (i.e., Salmoniformes) when they hatch to
produce a free embryo phase (Schlosser 1991). During the brief free embryo phase,
potamodromous fishes rely on energy sources provided entirely by an egg yolk sac.
For a thorough review of yolk sac absorption, see Heming and Buddington (1988).
In some groups (i.e., Salmoniformes, Petromyzontiformes) the yolk-sac embryos
remain hidden in the substrate and do not emerge until the yolk sac is completely
absorbed (Schlosser 1991). In others (i.c., walleye) hatched embryos begin feeding
before the yolk sac is absorbed, after which fry disperse into open water (Scott and
Crossman 1973). As soon as the free embryo phase is complete, the fish begin feeding
on external energy sources, and at this point they are termed larvae. The larval phase
is variable in length and ends after completion of the axial skeleton and development
of a fully formed organ system and fins (Schlosser 1991). When fully formed the
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Figure 4.1. Common life stages of North American potamodromous fishes in riverine and lacustrine
environments (revised from Thurow 1982).

larvae become juveniles (Schlosser 1991). During the juvenile stage, fish undergo a
number of seasonally favorable periods with rapid growth, followed by seasonally
unfavorable periods with reduced growth until sexual maturity is reached (Schlosser
1991). In North American temperate streams, these favorable and unfavorable periods
frequently involve migration between summer and winter habitats. Depending on
the species, the juvenile life stage may encompass months or years (Schlosser 1991).
Juveniles ultimately develop into sub-adults, the life stage immediately prior to
sexually mature adults. After sexual maturity is attained, adults complete spawning
migrations to locate appropriate sites for egg deposition and re-initiation of the life
cycle (Schlosser 1991). In iteroparous species, surviving adults return to repeat spawn
in alternate or consecutive years (Schlosser 1991).

Life-history strategies

Within these general life stages, tremendous diversity occurs in the specific life-
history characteristics of the different fish species. For example, substantial variation
occurs in spawning migrations; seasonal occurrence of eggs, young, and adults; and
feeding habitats. Consequently, no single life history definition is all inclusive and,
as Northcote (1997) observed, one may wish to further define the life history forms
of potamodromous fishes. Riverine reproductive migrations of salmonids have been
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applied to partition them into four main life history forms: fluvial (spawn and rear in
large rivers and streams), fluvial-adfluvial (spawn in tributaries and rear in streams,
rivers, and tributaries), lacustrine-adfluvial (spawn in lake tributaries and rear primarily
in lakes), and allacustrine (spawn in lake outlets and rear primarily in lakes) (Varley
and Gresswell 1988) (Fig. 4.2). These various life stages and life history types may
be applied to begin describing the diverse types of migrations; including reasons for
migrations, migration timing, and the ways fish migrate.

Fluvial
---------------- Fluvial-adfluvial

_____ Lacustrine-adfluvial
— — — Allacustrine

Inlet River

Outlet * \ ur i

River
Tributaries

Figure 4.2. Potamodromous salmonid life history forms (adapted from Varley and Gresswell 1988). Ovals
and arrows represent migration paths between spawning and rearing areas in rivers, tributaries, and lakes.

Types of migration

Potamodromous fishes exhibit complex life cycles and habitat-use patterns that are
integrated with the diversity of their various life stages and associated body sizes
(Northcote 1984; Schlosser 1991). Northcote (1984) explained that migratory behavior
arises from spatial, seasonal, and ontogenetic separation of optimal habitats for growth,
survival, and reproduction. Schlosser (1991) described the basic migrations of stream
fishes among three types of habitat (feeding, overwintering, and spawning). Northcote
(1997) examined riverine populations of 34 species of salmonids in detail, and he
summarized potamodromy as a cyclic sequence of three types of migrations (trophic,
refuge, and reproductive) between three respective habitats (feeding, overwintering,
and spawning) (Fig. 4.3).

Migration is known to be an important tactic for thermoregulation of coldwater
species (Petty et al. 2012). Consequently, refuge migrations by potamodromous fishes
may be of two primary types; migrations by fish seeking overwinter refuge habitat
and refuge migrations by fishes seeking cover or thermoregulation during non-winter
periods. The three types of migration outlined by Schlosser (1991) and Northcote
(1997) were adopted by me and I revised destination habitat types to include both
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Figure 4.3. Generalized movements (Feeding, Reproductive, and Refuge Migrations) by North American
potamodromous fishes with emphasis on patterns of migration between essential feeding, spawning, and
refuge habitats (revised from Schlosser 1991 and Northcote 1997). Legend: Larvae-Larv, Juvenile-Juv,
Sub-Adults-Sub-Ad, Adults-Ad.

overwintering refuge and non-winter refuge habitats. One can therefore summarize
potamodromy as a cyclic sequence of migrations (feeding, refuge and reproduction)
among four types of habitat (feeding, winter refuge, non-winter refuge and spawning)
(Fig. 4.3).

After hatching, most potamodromous fishes migrate during each of the four
subsequent mobile life stages (larvae, juvenile, sub-adult, and adult) (Figs. 4.1, 4.3).
The diversity of destination habitats and movement patterns by potamodromous fishes
inriverine and lacustrine systems reflect seasonal habitat preferences, as well as shifts
in preferred habitats as fishes develop among life stages (Northcote 1984; Schlosser
1991). This broad temporal and spatial scale of movement can be illustrated by a series
of examples from each of the four major life stages summarized in Table 4.1. After
larval fish emerge, some may drift passively with stream or lake currents (Brown and
Armstrong 1985). Others may begin feeding, even before their yolk sac is absorbed
(i.e., walleye noted above).

After fish attain the juvenile stage, the diversity of movements may further
increase. If there is an abundant food supply, if cover is adequate (i.e., water depth,
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overhead cover) and if other rearing conditions are favorable (i.e., suitable water
temperatures), juveniles may establish a home range and move within that range
until winter when they will complete a refuge migration to overwintering refuge
habitat (Schlosser 1991). However, juveniles may migrate to feeding and or non-
winter refuge habitats outside a home range if food or cover is lacking, or if water
temperatures increase above the suitable range (Petty et al. 2012). The scale and
number of movements are also influenced by the longevity of the life stages. Female
lake sturgeon Acipenser fulvescens, for example, may not attain sexual maturity until
an age of approximately 20 years (Threader and Broussaeu 1986). Consequently,
juvenile lake sturgeon may complete numerous migrations to a series of feeding, non-
winter refuge, and winter refuge habitats (Threader and Broussaeu 1986). As Northcote
(1997) observed, preferred habitats are not necessarily the same ones occupied during
the previous year migrations. The locations of preferred habitats may change as the
fish grow, age, and have different habitat requirements (Schlosser 1991). In their final
life stages, both sub-adult and adult fishes also complete annual migrations to a series
of feeding and winter refuge habitats (Schlosser 1991), as well as non-winter refuge
habitats (Petty et al. 2012).

Gerking (1959) defined homing as “the return to a place formerly occupied instead
of going to other equally probable places”. The effects of homing or fidelity to the
same habitats are addressed below. Longer lived species, such as the lake sturgeon
(maximum age of 154 years) (Scott and Crossman 1973), have the potential to complete
hundreds of annual feeding and refuge migrations. To add to this complexity of
movements, adults of all species also complete reproductive migrations to appropriate
spawning habitats (Schlosser 1991). Since many potamodromous species, such as
Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri, are iteroparous, surviving
adults complete spawning migrations over multiple years which further increases the
complexity of migrations (Thurow et al. 1988). If repeat spawning adults return to
the same spawning site, this ‘homing’ behavior will reduce the number of different
spawning habitats an individual fish migrates to. If fish do not have high fidelity to the
same spawning site, this will add further spatial complexity to spawning migrations.

As Northcote (1997) observed, the apparent simplicity of a table or figure used
to summarize movements of potamodromous fishes is deceiving. Within each of the
four mobile life stages, many types of movements are repeated and a large diversity
of habitats may be utilized over very large temporal and spatial scales. Examples of
feeding, refuge, and spawning migrations are provided below. Temporal and spatial
scales of migration between these habitats are directly influenced by the species life
histories and habitat requirements. Flathead catfish Pylodictis olivaris, for example,
may not require expansive stretches of river in order to complete critical life stages,
so they tend to have relatively smaller home ranges and exhibit more localized
movements (Daugherty and Sutton 2005). Alternatively, alligator gars Atractosteus
spatula and other long-lived, large-bodied, and highly mobile species, as sturgeon
Acipenser spp. and paddlefish Polydon spp., tend to have large home ranges (Minns
1995) and complete extensive migrations because habitats used for reproduction,
refuge, and feeding are dispersed. Diel movements or other movements within home
ranges, which are of more restricted spatial and temporal scale, are addressed later.
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Feeding migrations

Migrations to preferred feeding habitats, with either more abundant or more suitable
prey, may be completed by all four mobile life stages (larvae, juveniles, sub-adults,
and adults). Larval Colorado pikeminnow drifted from spawning areas in the lower
Yampa River downstream to shallow, productive nursery habitats in the Green River
(Tyus and McAda 1984). The authors observed that this larval life history strategy,
which likely benefited the Colorado pikeminnow formerly, could be implicated in its
decline in the lower Colorado River, where dams may have blocked migration routes
and degraded nursery habitats. Similarly, newly hatched white sucker larvae drifted
downstream on a feeding migration to areas with higher zooplankton production
(Corbett and Powles 1986).

Juveniles of many species migrate to preferred feeding areas. In Lake Erie, yearling
walleye migrated from a known nursery area and traveled primarily north toward the
Western Basin during their first year, and in succeeding years moved progressively
toward the extreme western end of the lake. Marked juvenile walleye migrated an
average of 40 km from the nursery area and one juvenile migrated more than 320 km
(Wolfert 1963).

Wang et al. (2007) monitored movements of adult walleye across Lake Erie and
suggested these migrations may be a response to spatial patterns in prey abundance
(soft-rayed prey preferred cooler temperatures). Knight et al. (1984) and Knight and
Vondracek (1993) observed shifts in walleye diets according to the availability of
prey, and confirmed that adult walleyes prefer to feed on soft-rayed fish (i.e., spottail
shiner Notropis hudsonius, and clupeids (i.e., alewife) rather than on spiny-rayed fish
(i.e., yellow perch Perca flavescens)). Clupeids and spiny-rayed fish are fast-growing
forage fish that become invulnerable to walleye predation after one growing season,
whereas smaller soft-rayed fish of all ages are easily caught and digested by walleyes
(Knight and Vondracek 1993).

Surviving adults also migrate to feeding or refuge habitats after spawning. The
distance that iteroparous forms migrate, their post-spawning condition, and the quality
of the habitats they migrate to, likely influence their ability to survive and repeat
spawn (Brown and Mackay 1995). Brown and Mackay (1995) reported cutthroat
trout post-spawning mortality of less than 14%, but noted that other researchers
have observed much higher (60%) post-spawning mortality rates. This relatively low
spawning mortality may have been a result of shorter migrations to spawning areas in
their watershed, compared with cutthroat trout migrations in the other studied basins
(Brown and Mackay 1995).

Refuge migrations

Refuge migrations occur for a variety of purposes, including seasonal refuge from
severe conditions, such as extreme low temperatures during winter or low water and
dissolved oxygen deficit in floodplains during the dry season (Flecker et al. 2010).
Refuge migrations may be of two primary types: (1) migrations by fish seeking
overwinter refuge habitat; (2) migrations by fish seeking refuge habitats during non-
winter periods.
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Non-winter refuge migrations: As water temperature increase in spring, mature bull
trout begin migrating from overwintering refuge habitats, at lower elevations, toward
spawning areas, at higher elevations (Swanberg 1997). Spawning does not commence
for several months, and between spring and late summer, adult bull trout migrate to
and stage in thermally suitable refuge habitats for varying periods of time (Swanberg
1997). As water temperatures increased in mid-June, adult bull trout sometimes
exhibited rapid upstream migrations to higher elevation habitats (Schill et al. 1994).
Movements related to the seeking of thermal refugia have also been reported for other
potamodromous species. Brook trout migrated upstream in summer while seeking
cold water refugia (Petty et al. 2012). Stevens and Dupont (2011) observed westslope
cutthroat trout, rainbow trout Oncorhynchus mykiss, and mountain whitefish Prosopium
williamsoni moving into cooler Coeur d’Alene River side channels as main-river
water temperatures increased. Movements and aggregations of salmonids seeking
coldwater refugia in streams have also been documented for brook trout (Baird and
Krueger 2003) and rainbow trout (Kaya et al. 1977; Ebersole et al. 2001; Sutton et al.
2007). Lake dwelling brook trout (Biro 1998) and lake trout Salvelinus namaycush
(Snucins and Gunn 1995) have been similarly observed moving into cooler water
areas as water temperatures rose in lakes.

Potamodromous fishes may also exhibit high fidelity to suitable summer refuge
habitats. Individual smallmouth bass Micropterus dolomieu returned to the same
5 km reach of summer habitat (Langhurst and Schoenike 1990). Daugherty and Sutton
(2005) similarly observed flathead catfish homing to summer habitats.

Winter refuge migrations: Overwinter ecology of stream-dwelling fishes is perhaps
the least understood aspect of their life history. Many fishes occupy different habitats
in winter than in summer. As water temperatures decline, fish move from summer
habitat into suitable overwintering areas, often at much lower elevations (Bjornn and
Mallet 1964). These lower elevation overwintering habitats may provide more benign
conditions such as warmer water temperatures, less anchor ice, and more opportunities
to escape predators. The distances fish move also seem to be influenced by the proximity
of suitable overwintering habitat (Chapman and McLeod 1987). For example, at the onset
of winter, stream-dwelling salmonids in the Intermountain West (northwestern USA)
typically adopt two overwintering strategies, migration to more suitable overwinter
habitats or concealment within their home range if the local habitat is suitable (Thurow
1997). Chapman and McLeod (1987) suggested juvenile salmonids seek overwintering
areas in the most upstream locations near summer rearing areas. After locating suitable
overwinter habitat, juvenile salmonids typically select areas of low water velocity
and enter concealment cover (Edmundson et al. 1968; Cunjak 1988; Thurow 1997).
In contrast, adult fishes often overwinter in deep water habitats. For example, adult
westslope cutthroat trout migrated more than 100 km downstream to overwinter
in large, deep pools (Bjornn and Mallet 1964). Similarly, as water temperatures
declined below 16°C in autumn, smallmouth bass migrated long distances downstream
(69—87 km) from summer habitats to overwintering habitats in deep pools (Langhurst
and Schoenike 1990). Munther (1970) and Paragamian (1981) similarly observed
adult smallmouth bass moving into deep pools as temperatures cooled, but neither
described long-range movements. Langhurst and Schoenike (1990) suggest the paucity
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of deep pools near summer habitat may have been the reason for the long migration
of smallmouth bass they documented. Fall migrations of bull trout to lower elevation
overwintering habitats are also well documented. Many adult bull trout migrate,
more than 100 km, to overwinter in deep pools in the lower portions of watersheds
(Schill et al. 1994; Swanberg 1997; Hogan and Scarnecchia 2006). Brook trout
(Chisholm et al. 1987) and channel catfish Ictalurus punctatus have also been
observed migrating downstream in fall to more suitable overwintering habitats
(Pellet et al. 1998).

Homing behavior in fishes is believed to facilitate development of population-
specific adaptations to the habitat occupied (Leggett 1977). For example, alligator gar
exhibited high fidelity to overwintering sites (Kluender 2011). This fidelity to high
quality overwintering areas may optimize survival.

Spawning migrations

Seasonal migrations to spawning sites are very common in potamodromous
fishes. Mature walleye complete upstream migrations to spring spawning areas
(Crowe 1962), while fall spawning species, such as bull trout, also migrate to spawning
areas (Swanberg 1997). Natal homing or natal philopatry is well documented in several
potamodromous species, most commonly in salmonids (Hasler and Scholz 1983;
Northcote 1984). Homing may also result in reproductive isolation producing fish
stocks unique in behavior, energetics, and reproductive characteristics (Leggett 1977).

High levels of natal homing have been reported for coregoninies, thymallines,
and salmonines (Northcote 1997). Although non-salmonids are less studied,
homing to a previous spawning location has been reported in Colorado pikeminnow
(Tyus 1985), walleye (Crowe 1962), longnose suckers Catostomus catostomus and
white suckers (Geen et al. 1966), northern pike Esox lucius (Miller et al. 2001),
muskellunge (Crossman 1990), channel catfish (Pellet et al. 1998), paddlefish Polyodon
spathula (Firehammer and Scarnecchia 2007), razorback suckers Xyrauchen texanus
(Tyus and Karp 1990), white bass Morone chtysops (Horral 1981), and alligator gar
(Kluender 2011).

There are advantages to maintaining high levels of reproductive homing: eggs
are deposited in suitable habitat and homing tends to balance the number of spawners
with the reproductive capacity of the area (Northcote 1997). Despite the benefits
of homing, some straying may also have a long term selective advantage; enabling
species to invade new areas and repopulate old ones in the wake of stochastic events
(Lindsey et al. 1959). Following the 1980 eruption of Mount St. Helens in Washington
(USA), native cutthroat trout and sculpin, that found refugia in ice covered lakes or
less-impacted tributaries, were able to recolonize streams where fish populations had
been extirpated (Bisson et al. 2005).

In some potamodromous species, sub-adults complete a unique type of migration
that may be associated with adult fish movements. These migrations could be termed
‘Pied Piper’ migrations, since immature, sub-adult fish appear to follow mature
adults as they are migrating to spawning sites. Schill et al. (1994) reported sub-adult
bull trout migrating upstream in Rapid River along with mature bull trout from
April-July. In August, the sub-adult bull trout stopped migrating before reaching spawning
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sites and subsequently reversed their migration back downstream to other habitats
(Schill et al. 1994). The authors reported that the likelihood of this behavior increased
in bull trout smaller than 45 c¢cm in length, suggesting the downstream movements
may be associated with the seeking of summer thermal refugia or feeding habitats.

Diel and lesser scale movements

As described previously, movements within home ranges are primarily in response
to local resources and typically consist of station-keeping behaviors such as foraging
or agonistic behavior. Such movements also differ from migrations because of their
more restricted spatial and temporal scales. Smaller and shorter-lived species, such
as Cottus spp., tend to require smaller home ranges if all critical habitats are available
locally in contrast to the species described above (i.e., gar and sturgeon) with much
large home ranges and extensive migrations.

Diel movements represent a specialized type of movement within home ranges
and may be associated with feeding or refuge movements. The extent and timing of
diel vertical movements of adult alewives in Lake Michigan, for example, coincided
with diel movements of mysis zooplankton (Mysis relicta). Both mysis and adult
alewife concentrated at the bottom during the day and migrated upwards to the base
of the thermocline at night, with their stomach contents indicating the alewife vertical
movements were mechanistically linked to feeding behavior (Janssen and Brandt
1980). In winter, at water temperatures less than 2°C, juvenile bull trout exhibited diel
behavioral movements. During the day, all bull trout were concealed in the substrate,
while at night, some bull trout moved out of daytime concealment cover into the
water column (Thurow 1997). At night, Thurow (1997) observed feeding and resting,
primarily in pool and run habitats.

Benefits of potamodromy

Fish migration has been described as a life history syndrome involving energetic trade-
offs between movements and energetic output (Schaffer and Elson 1975; Leggett 1977).
Movements between habitats create both costs and benefits; costs include energy and
physiological demands for osmoregulation, the energetic demands of swimming, and
exposure to predators and disease (Gross 1987). The benefits of potamodromy could
be organized into three categories: survival benefits to potamodromous fishes, benefits
to humans, and lastly, benefits to the functioning of the entire ecosystem.

The benefits of potamodromous migratory behavior to individual fishes and
populations were described by Northcote (1984) as arising from spatial, seasonal, and
ontogenetic separation of optimal habitats for growth, survival, and reproduction. As
described above in the section ‘Types of Migration’ and Table 4.1, published research
suggests that migratory behavior allows potamodromous fishes to: (1) optimize growth
by accessing more productive areas; (2) improve survival: perhaps via improved
growth; increased overwinter survival; access to refugia from severe conditions
such as drought, unsuitable temperatures or low oxygen concentration; and predator
avoidance; (3) enhance reproductive fitness: perhaps via improved adult condition,
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increased fecundity, and access to optimal spawning habitat. Northcote (1997)
additionally observed that North American potamodromous fishes have probably
recolonized rivers and streams repeatedly over the past million years or more in the
face of several glaciations, ice recessions, and interglacial periods. To do so, they may
have evolved migratory behavioral patterns adapted to life in highly changeable and
unpredictable systems (Northcote 1997). Consequently, migratory behavior also allows
potamodromous fishes to: (4) recolonize previously extirpated habitats; (5) disperse to
vacant habitats; and (6) maintain beneficial aspects of source/sink dynamics (Hanski
and Gilpin 1991), even in very dynamic landscapes.

The importance of freshwater migratory species to humans has long been realized.
Humans have exploited migratory freshwater fishes for thousands of years (Lucas and
Baras 2001). Potamodromous fishes continue to support essential commercial and
recreational fisheries across their world wide range. Revenga et al. (2000) reported
that in 1997, inland fisheries landings accounted for 7.7 million metric tons. Taking
into account the inland capture, fisheries are estimated to be underreported by two or
three times, so the contribution to direct human consumption is likely to be at least
twice as high (Revenga et al. 2000). The authors reported that at the global level,
inland fisheries landings have been increasing since 1984 with most of this increase
in Asia, Africa, and more moderately in Latin America. In North America, Europe,
and the former Soviet Union, landings have declined, whereas in Oceania they have
remained stable (Revenga et al. 2000).

Over the past two decades, there is increasing recognition that migratory species
can also be major ecological drivers shaping both the structure and function of
freshwater ecosystems (Flecker et al. 2010). Potamodromous fishes provide benefits
to the entire ecosystem via a host of direct and indirect mechanisms as consumers,
ecosystem engineers, modulators of biogeochemical processes, and transport vectors
(Flecker et al. 2010). Consequently, the loss of key species can have widespread
consequences in ecosystems (e.g., Hooper et al. 2005) and this has also led to growing
interest in the roles species have in ecosystem function.

Flecker et al. (2010) provided a thorough description of the different processes
by which potamodromous fishes subsidize streams and how these subsidies are
linked to migration type. The authors described different types of fish migrations and
considered their importance from the perspective of ecosystem subsidies. Material
subsidies are the transfer of energy, nutrients, and other resources resulting in direct
changes in resource pools within ecosystems. In contrast, process subsidies arise
from feeding, spawning, or other activities of migratory species that directly affect
process rates within recipient ecosystems. Although the presence of migratory
individuals can modulate ecosystem functioning under both types of subsidy; the
key difference is that material subsidies involve direct delivery of new material
(e.g., fish carcasses, gametes), whereas process subsidies affect the dynamics and cycling
of existing material (e.g., movement of substrate during spawning, parasitic hosts)
(Flecker et al. 2010). For example, the physical and chemical effects of removing
algae and periphyton by grazing and sediment-feeding fishes, such as prochilodontids,
as well as seed dispersal by large-bodied frugivorous characins, represent potentially
key process subsidies by migratory fishes in some large South American rivers
(Flecker et al. 2010). Flecker et al. (2010) speculated that process subsidies are more
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widespread than material subsidies from migratory stream fishes, because they are
independent of the type of migration patterns, life history, and distance traveled.

The potential for migratory fish to represent major material subsidies is largest
when: (1) the biomass of migrants is high relative to ecosystem size; (2) the availability
of nutrients and energy is low in the recipient ecosystem (i.e., oligotrophic); and (3)
there is an effective mechanism for liberating nutrients and energy from migratory
fishes and retaining those materials within the food web of the recipient ecosystem
(Flecker et al. 2010). The authors note that the most efficient mechanisms for liberating
nutrients generally involve: (1) local mortality of migrants in the recipient ecosystem
due to programmed senescence in semelparous species; (2) local migrant mortality
due to predation, parasitism, and disease in iteroparous species; or (3) excretion and
gamete deposition by spawning fishes. Regardless of whether nutrients are re-released
via decomposition of carcasses, excretion, or gamete release, a mechanism for the
liberation and retention of nutrients and energy originating elsewhere is crucial for
material subsidies to be significant. Although some of the best examples of material
subsidies derived from migratory fishes have emerged from research on Pacific
salmon, potamodromous fishes also have considerable potential to represent major
material subsidies, especially when they display the requisite features of large migrant
biomass and high local mortality or nutrient release in streams of comparatively low
nutrient status (Flecker et al. 2010). The authors noted that perhaps the most likely
potamodromous candidates for significant nutrient inputs to North American streams
are the large, abundant, and widely distributed suckers and redhorses (Catostomidae).
The authors cite research by Linderman et al. (2004) documenting that runs of longnose
suckers Catostomus catostomus exceeded those of Pacific salmon in Alaska’s George
River. Although most catostomids are long-lived and iteroparous, Flecker et al.
(2010) summarized research to illustrate high breeding mortality, as well as results
in oligotrophic tributaries of Lake Michigan which indicate that spring migrations of
white sucker and longnose sucker are closely associated with a time-lagged increase in
dissolved phosphorus concentrations. Though they have not been studied in the context
of material subsidies, substantial inputs of energy and nutrients to streams might also
be provided by many other potamodromous North American fishes, including percids,
salmonids, esocids, moronids, and osmerids (Flecker et al. 2010).

In addition to conveying material subsidies, migratory fishes can strongly affect
stream ecosystem processes through their feeding and other activities (Flecker et al.
2010). The authors posit that in addition to migrant biomass, the potential for migratory
fish to represent strong process subsidies is influenced by ‘migrant interaction strength’
and the degree to which a migratory species is functionally unique in a particular
ecological setting. Flecker et al. (2010) noted that, by definition, strong interactors
would be keystone species; their impacts on ecosystem structure and function would
be substantial and disproportionately greater than would be predicted based on their
biomass alone. For example, migratory fishes that are hosts of parasitic stages of mussel
larvae are functionally unique, and even small numbers of fishes as hosts could be
crucial to the dispersal and demography of mussel populations (Flecker et al. 2010).

Migratory fishes can influence important process subsidies in stream ecosystems
through a diversity of mechanisms including functioning as: physical ecosystem
engineers, chemical ecosystem engineers or modulators of nutrient cycles, seed
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dispersers, directly and indirectly as consumers, and vectors of contaminants and
pathogens (Flecker et al. 2010). Two examples of process subsidies in North American
potamodromous fishes are described below, for more information on other types of
process subsidies, please see Flecker et al. (2010). Yellowstone cutthroat trout, for
example, act as ecosystem engineers during spawning by constructing redds and
altering the morphology of the stream bed, removing fine sediments, dislodging
aquatic insects and potentially increasing drift, and coarsening the substrate (Thurow
and King 1994). Fishes can modify their chemical environment by altering element
cycles directly (e.g., Percidae excretion and egestion) or indirectly (e.g., reduced algal
demand caused by Catostomidae feeding) (Flecker et al. 2010). A large migration of
fish that stay and feed within the recipient local stream can therefore constitute both
material (addition of carcasses and gametes) and process subsidies from an excretion
standpoint (Flecker et al. 2010).

Morphological adaptations for migration

It is beyond the scope of this chapter to address the highly variable morphological
adaptations of potamodromous fishes. These adaptations may influence their swimming
performance during migration and movements. Readers are urged to review Videler
(1993): Chapter 2 describes the structure of the muscles as swimming apparatus;
Chapter 3 describes the body axis and fins; and Chapter 4 describes how body shape,
skin, and other special adaptations affect swimming performance. On an interesting
note, Portz and Tyus (2004) emphasized the importance of experimental observation
for examining potential morphological adaptations for swimming. The authors reported
that native Colorado River Basin humpback chub Gila cypha and razorback sucker
possess a large nuchal hump. Portz and Tyus (2004) noted that although several
authors have suggested the hump confers a hydrodynamic advantage to life in fast
flow, this premise has not been confirmed with experimental work. Instead, Portz and
Tyus (2004) argue that the large humps represent convergent evolution prompted by
predation from sympatric Colorado pikeminnow, the top piscivore in the Colorado
River system. Lack of jaw teeth and a relatively small jaw gape limit the maximum
prey size that Colorado pikeminnow can consume and the large nuchal hump provides
a deep body that is difficult or impossible to ingest (Portz and Tyus 2004).

Research needs

Our ability to conserve and restore potamodromous fishes will be enhanced by
increased knowledge in several key research areas. Despite the rich history of excellent
work that has been accomplished to date, additional research is needed to improve
our future understanding of: metapopulation dynamics, detailed migratory behaviors,
overwintering behaviors and habitats, and the effects of a changing climate.
Metapopulation-scale information is critical for understanding factors
that influence fish population persistence. Hanski and Gilpin (1991) defined a
metapopulation as a group of spatially disjunct populations linked by immigration
and emigration. Consequently, some populations and their migrations may be
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disproportionately important for the survival of the species. Distinguishing between
source and sink populations is fundamental to identifying populations essential for
species persistence. As highlighted by Rosenfeld and Hatfield (2006), failing to
distinguish source and sink populations may result in protection of sinks instead of
sources, inappropriate identification of critical habitat, and underestimation of the
probability of extinction. These authors listed three key information needs at the
metapopulation scale: (1) determining the status of discrete populations as sources or
sinks; (2) identifying corridors for dispersal and evaluating the probability of exchange
between populations; and (3) assessing the probability of subpopulation persistence
based on risk of extinction from combined natural and anthropogenic impacts.

Despite many decades of work, our understanding of the migratory behavior of
many potamodromous species remains incomplete. Lee et al. (1997) focused a major
portion of their comprehensive assessment of the distribution and status of fishes in
the interior Columbia River Basin, on seven ‘key’ salmonids, in part, because these
species were widely distributed and well understood. However, despite the rich history
and many decades of excellent salmonid research, Northcote (1997) reported that our
understanding of the migratory behavior of many salmonids remained incomplete. As
Cooke et al. (2008) observed, given the complexity of migration and its role in a myriad
of management and conservation situations, in addition to understanding migration
timing and extent, we also need to understand the fundamental processes that enable
some fish to migrate vast distances, the causes of mortality during migrations, and
the factors that cause some fish to migrate and others not to. With few exceptions,
the migratory behavior of most non-salmonid potamodromous fishes is even less
well understood, especially in remote areas. As Flecker et al. (2010) observed, in the
temperate zone, the ecological significance of material subsidies by potamodromous
fishes is a ripe area for research. Migration studies would also benefit from being more
broadly based; there is a need to focus on migration as a behavioral, ecological, and
evolutionary phenomenon (Dingle and Drake 2007). Dingle and Drake (2007) also
observed that since movements to exploit separated and ephemeral habitats transcend
species and taxonomic groups, research should do likewise. New technologies and
interdisciplinary approaches that integrate positional telemetry with other disciplines
(e.g., stress physiology, functional genomics, oceanography, experimental biology)
hold promise to enhance future research on fish migration and ultimately provide
fisheries managers with the knowledge to better manage and conserve migratory fishes
globally (Cooke et al. 2008).

Overwinter ecology of fishes is perhaps the least understood aspect of their life
history, and the need for winter investigations has long been recognized (Hubbs and
Trautman 1935). We have an incomplete understanding of winter habitat, the extent of
winter movements, or how winter conditions regulate fish populations. For example,
Chisholm et al. (1987) observed that, despite the array of winter habitat research on
brook trout, no studies had focused on the extent of winter movement or the specific
habitat features selected. Similarly, although several studies suggest that the abundance
and quality of overwinter habitat may limit fish abundance (Bustard and Narver
1975; Campbell and Neuner 1985; McMahon and Hartman 1989), the role of winter
conditions in regulating fish populations remains poorly understood. Identifying and
describing overwinter habitat is an important step in maintaining critical habitats


http://vetbooks.ir

Life Histories of Potamodromous Fishes 49

(Thurow 1997) and conserving native fishes. Additional research is necessary to
improve our understanding of the extent of winter movements, fish behaviors during
winter, and the role of overwinter habitat in regulating potamodromous fish populations.
Potamodromous fishes are dependent on an abundant supply of water of a suitable
temperature. Consequently, studies dedicated to estimate the impacts of climate change
on potamodromous fishes will improve the management of habitats and species.
Wenger et al. (2010), for example, observed that hydrologic regimes in the western
United States have undergone substantial changes over the last half century, including
trends toward earlier snowmelt runoff (Mote et al. 2005), reduced water yields and
lower summer flows (Luce and Holden 2009), and increased or altered flood risk.
Consequently, Isaac and Rieman (2013) observed that the question is not whether,
but how fast, stream biotas are shifting or being extirpated by temperature increases
associated with climate change. Although empirical evidence exists for shifts in the
timing of migrations and spawning (Crozier et al. 2011), as well as poleward and
upstream range expansions (Milner et al. 2011), little evidence exists of broadscale
range contractions, despite the extensive changes predicted by numerous bioclimatic
models. Better approaches are needed to document the response of stream biotas to
climate change. Such information is fundamental to understanding if species responses
are accurate predictions of the rate at which isotherms near thermally mediated species
boundaries are shifting to higher elevations or latitudes (Isaac and Rieman 2013).

Conservation and restoration of potamodromous fishes

Potamodromous fishes are imperiled world-wide and more than 20% of the world’s
freshwater fish are extinct or have become threatened or endangered in recent decades
(Revenga et al. 2000). Revenga et al. (2000) observed that globally, the greatest
overall threat for the long-term sustainability of inland fishery resources is the loss
of fishery habitat and the degradation of the terrestrial and aquatic environment;
historical trends in commercial fisheries data for well-studied rivers show dramatic
declines over the 20th century, mainly from habitat degradation, invasive species,
and overharvesting. Liermann et al. (2012) assessed implications of dams for global
freshwater fish diversity and reported that nearly 50% of the 397 freshwater ecoregions
evaluated were obstructed by large- and medium-size dams, and approximately 27%
faced additional obstruction. Threatened ecoregions were found on all continents
(Liermann et al. 2012). In North America’s interior Columbia River basin, Lee et al.
(1997) reported that 45 of 88 native fish taxa were identified as threatened, sensitive,
or of special concern by state or federal agencies or the American Fisheries Society.
Eight of those species are anadromous which results in 37 of 80 potamodromous
fish taxa identified as threatened, sensitive, or of special concern within the interior
Columbia River Basin.

Identification and protection of critical habitat is central to the management of
species at risk (Rosenfeld and Hatfield 2006). The rationale for protecting critical
habitat is rooted in the observation that particular habitats are often disproportionately
important to population limitation (Fausch et al. 2002), and therefore habitat protection
can be prioritized. A general consensus of strategies, designed to conserve species and
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aquatic biological diversity, is that conservation and rehabilitation should focus first
on the best remaining examples of aquatic biological integrity and diversity (Thurow
etal. 1997). However, protection of critical habitats and population stronghold will not
be sufficient; such reserves never will be large or well distributed enough to maintain
biological diversity (Franklin 1993). Watershed rehabilitation and the development of
more ecologically compatible land-use policies are also required (Thurow et al. 1997).
As Rosenfeld and Hatfield (2006) observed, a key component of potamodromous
fish species persistence is the management of habitat and human activities outside of
critical habitat. Ultimately, conservation of potamodromous fishes will require a more
integrated, broad-scale view of management than has been practiced historically. An
assumed goal of ecosystem management is to maintain, or rehabilitate, the integrity
of aquatic ecosystems and to provide for the long-term persistence of native (and in
some cases desirable nonnative) fishes and other species (Grumbine 1994). Note that
non-native species might be desirable if they fill an open niche such as some Pacific
salmon species in the Great Lakes (Kohler and Courtenay 1986) or if they provide
fisheries values in cases where habitats have been so severely degraded as to be
unsuitable for native species restoration. As Thurow et al. (1997) observed, achieving
the goal of ecosystem management will require the maintenance, or rehabilitation, of a
network of well-connected, high-quality habitats that support a diverse assemblage of
native species, the full expression of potential life histories and their movements, and
the genetic diversity necessary for long-term persistence and adaptation in a variable
environment. Ecosystem management, then, also implies using active management
to reestablish more complete or natural structure, function, and processes whenever
possible (Thurow et al. 1997). Lastly, effective conservation and restoration efforts
for potamodromous fishes will also require an improved understanding of the effects
of a changing climate (Isaac and Rieman 2013) as well as increasing knowledge of
metapopulation dynamics, detailed migratory behaviors, and overwintering behaviors
and habitats.
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CHAPTER 5

Life Histories of Anadromous
Fishes

Marie-Laure Acolas™ and Patrick Lambert

Introduction, anadromous fishes: who are they?

Anadromous fishes are those among diadromous fishes (truly migratory fishes which
migrate between the sea and freshwater) who spend most of their lives in the sea and
migrate to freshwater to breed (Myers 1949). These movements between habitats
occur at a specific timing in the ontogeny and concern either part or all individuals
of a population (Fontaine 1975). But who are these anadromous fish? According to
several authors, the number of anadromous species is not yet fixed and is probably
underestimated, and estimates varied between 109 (McDowall 1988) and 175
anadromous species (Riede 2004), which corresponds to 23 and 31 families around the
world, respectively. Considering the 33,059 fish species described around the world
(Eschmeyer and Fong 2014), anadromous species represents about 0.5% of the whole
fish species. They occur among the class of Actinopterygii (among 28 family over 491)
and Cephalaspidorphii (among the three families of the order Petromyzontiformes:
Petromyzontidae, Geotriidae and Mordaciidae). No anadromous species are mentioned
in the literature in the following classes: Myxini, Elasmobranchii, Holocephali and
Sarcopterygii.

Anadromous fishes represent more than 20% of the total number of species
in the orders Acipenseriformes (71.4%), Petromyzontiformes (23.9%) and
Salmoniformes (21%) (Fig. 5.1), more than 5% in the orders Osmeriformes (8.7%),
Clupeiformes (9.8%), Elopiformes (11.1%, which corresponds to one species only)
and Gasterosteiformes (6.9%, which corresponds to two species only) (Fig. 5.1).
Among the other orders, the anadromous species seem more anecdotic and it often
corresponds to only one species and in a particular environment. For example, the

IRSTEA—National Research Institute of Science and Technology for Environment and Agriculture, Aquatic
Ecosystems and Global Changes research unit, Diadromous migratory fish team, 50 avenue de Verdun,
33612 Gazinet Cestas, France.
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Figure 5.1. Number of species described as anadromous in 17 fish orders (based on data from Riede (2004)
thanks to queries made on Fishbase).

common perch (Perca fluviatilis) was described as anadromous in the freshwater part
of the Baltic Sea (Nesbg et al. 1998) which is probably questionable, and is reported
as anadromous in the Groms database (www.groms.de).

Anadromous species are present in numerous parts of the world (Fig. 5.2),
but they seem to be mainly observed in the Northern Hemisphere (Fig. 5.3).
The orders Salmoniformes, Clupeiformes, Osmeriformes, Acipenseriformes and
Petromyzontiformes gather the most anadromous species, 82% of all anadromous
species, which occur mainly in the Baltic Sea, in North Atlantic and in North Pacific
Oceans (Fig. 5.3). All orders occur in South and East Europe-Mediterranean, Adratic,
Black, Aral and Caspian Seas, except the Osmeriformes. All orders occur in Asia
(China, Japan and Okhotsk Seas), except the Petromyzontiformes, and in northern
seas (Arctic, Barents and Bering Seas), except the Clupeiformes. None of these
orders occur in South Atlantic, Indian or west Pacific Oceans, except Clupeiformes
and a few Petromyzontiformes species (Southwest Atlantic and Southwest Pacific
Oceans). None of these five orders (Salmoniformes, Clupeiformes, Osmeriformes,
Acipenseriformes and Petromyzontiformes) has been mentioned in the Red Sea.
However, the differences between the two hemispheres may be partly biased by the
fewer and more recent studies developed at the Southern Hemisphere, which can be
very rare or nonexistent for some orders.

Why do they migrate?

The migration behavior of all migratory species is supposed to have entangled
genetic and environmental components (Pulido 2007). However, the characterization
of a gene or of a gene pool specific for anadromy is still a scientific challenge
(Amstutz et al. 2006; Bruford 2006; Dodson et al. 2013), since many factors seem to
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Figure 5.2. Number of anadromous species reported in different seas. The same species can occur in
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Figure 5.3. Proportion of species from the 17 orders that contain anadromous species in the different parts
of the world’s oceans and seas.

be involved in triggering migration. Some triggers may be endogenous, linked to fish
size or growth (Bohlin et al. 1996; Acolas et al. 2012; Dodson et al. 2013), metabolism
(Forseth et al. 1999) or sex (Rundio et al. 2012; Ohms et al. 2014). Migration
triggers may also be exogenous, and linked to environmental conditions (Yako et al.
2002; Byrne et al. 2004), latitude (Jonsson et al. 2001; Ohms et al. 2014), altitude
(Bohlin et al. 2001), density dependence (Morita et al. 2000; Marco-Rius et al. 2013),
food abundance (Olsson et al. 2006) or even to climate variability (Otero et al. 2014).
Moreover, the effects of these factors may interact and vary between populations
(Jonsson and Jonsson 1993; Thorpe et al. 1998), and even among individuals of the
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same population (Olsson and Greenberg 2004). Even over endogenous and exogenous
factors, evolution mechanisms might act on the persistence of the different migratory
tactics when they coexist (Hendry et al. 2004). According to Gross (1987), a migratory
life history could persist in a population if the migrant’s fitness is higher than non-
migrant’s fitness for the same period of time, when taking into account certain migration
costs, as mortality, later age at reproduction and energy expenditure. This benefit/cost
ratio, also called trade-off, was mainly defined theoretically (Hendry and Stearns 2004)
and very few empirical studies are available to support the founding assumptions,
because these studies are difficult to implement (Bohlin et al. 2001; Kinnison et
al. 2001). Sahashi and Morita (2013) studied how migration costs influence which
members migrate in 10 populations of anadromous salmonids (white-spotted charr
Salvelinus leucomaenis and masu salmon Oncorhynchus masou). They compared size
at maturity for resident males, which can be considered to be the threshold trait that
determines the migratory tactics used within a population, and they highlighted that
size at maturity for resident males was smaller in fish located further from the sea,
where migration costs are presumably higher. They suggest that migration costs are
a significant convergent selective force on migratory tactics and life-history traits in
nature. Despite the benefit/cost ratio involved when deciding to engage in a migration,
or not, the migratory behavior of a species represents an undeniable advantage to
colonize new places and to adapt to variable environmental conditions (Thorpe et
al. 1998).

The origin of anadromy is still under debate. Gross (1987) suggested that
anadromous species had a freshwater origin, through an intermediate stage of
amphidromy. His main argument was based on a higher proportion of anadromous
species associated with a higher productivity in sea water than in freshwater at high
latitudes (Gross et al. 1988). In this context, in cold temperate and subpolar regions,
freshwater fishes are more likely to cross into the sea as facultative wanderers and
then to evolve into amphidromous and then anadromous species. Later, McDowall
(1997) debated this argument since few freshwater fishes were known to be facultative
marine wanderers and there were both amphidromous and anadromous species of a
probable marine ancestry that reproduce in freshwaters. From phylogenetic studies,
he concluded that each of the various forms of diadromy clearly has multiple origins
throughout the diversity of fishes, and the migratory patterns that occur have taxonomic
group-specific idiosyncrasies. In 2008, the same author questioned the explanation
of overrepresentation of anadromy in northern high latitudes by a high primary
productivity, and proposed biogeography history with a post-Pleistocene invasion
of far northern new suitable freshwater habitats and species’ thermal preference to
explain the northern distribution of anadromous fish (McDowall 2008). For some
species (e.g., Clupeiformes) predation, competition and even geological history may
be at least as important as productivity (Bloom and Lovejoy 2014). A common origin
among anadromous fish has not been demonstrated, and we can assume that anadromy
corresponds to an adaptation of a species in its evolutionary history, in a particular
environment and it was independent of a marine or a freshwater origin. Then, anadromy
can be seen as a life history tactic.

Within the same population different tactics may occur with strictly migratory
individuals (growth at sea) and resident individuals (growth in freshwater), a
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phenomenon that has been called as partial migration (Chapman et al. 2012) or
contingent behaviors (Zlokovitz et al. 2003; Kerr and Secor 2010). In salmonids,
within the same population, there are a gradient of tactics from residency to anadromy,
a topic that has been widely discussed (Jonsson and Jonsson 1993; McDowall 1988;
Quinn and Myers 2004; Cucherousset et al. 2005; Dodson et al. 2013), especially
within the frame of species evolution (Hendry et al. 2004). Partial migration has
been also described in other orders, yet not extensively, such as in Gasterosteiformes
for the three-spined stickleback Gasterosteus aculeatus (Kitano et al. 2012), among
Perciformes for White perch Morone americana (Kerr et al. 2009; Kerr and Secor
2012) or among Acipenceriformes for shortnose sturgeon Acipenser brevirostrum
(Dionne et al. 2013). The existence of partial migrations have been recognized mainly
due to studies using biotelemetry (Chapman et al. 2011; Cucherousset et al. 2005;
Neuenfeld et al. 2007), or otolith microchemistry of trace element and stable isotopes
(Honda et al. 2012; Kerr and Secor 2012). Quinn and Myers (2004) concluded, from
a review on Pacific salmon and trout migratory behavior and relying on Rounsefell
(1958) work, that “anadromy is not a single trait with two conditions (anadromous or
non-anadromous) ... it reflects a suite of life history traits that are expressed as points
along continua for each species and population”.

When do they migrate?

For each anadromous species, migrations occur at a precise timing in the ontogeny
(Fig. 5.4). It is a synchronous movement among the same population. Moreover
larvae or juveniles leave freshwater at a specific period of the year. For some species,
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Figure 5.4. A general representation of the biological cycle of anadromous species.
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juveniles spent some time in the estuary before reaching the sea, ranging from
11 days for allis shad Alosa alosa (Lochet et al. 2009) from two—seven years for
the European sturgeon Acipenser sturio (Acolas et al. 2011a). Juveniles can spend
between a few months and a few years at sea and then return to freshwater to spawn
at a specific age and size (Fig. 5.4). Depending on the species, the freshwater stay can
be highly variable for the young stages, for example sea lamprey Petromyzon marinus
larvae can hide in the gravel for years (three to eight years) (Beamish and Potter 1975;
Quintella et al. 2003), while the eggs and larvae of striped bass Morone saxatilis drift
rapidly towards the sea (Dunning et al. 2009). In other cases, as for salmonids, the
alevins emerge from gravel and juveniles can spend between one and two years in
freshwater, and then they progressively colonize riverine habitats before reaching
the sea (Bagliniére and Maisse 1999). However, in some populations, where partial
migration occurs, some individuals can perform all their biological cycle in freshwater
and establish a resident population (Fig. 5.4) (Klemetsen et al. 2003).

Migration corresponds to a phenological event. In regard to the timing of
migrations onset, it might vary along a latitude gradient for the same species, mostly due
to temperature differences (Peer and Miller 2013; Otero et al. 2014). For example, the
spawning migration of allis shad populations along the North East Atlantic coast starts
in December for the Moroccan populations and in August for a few French populations.
For all populations, the temperature ranges between 8°C and 13°C at the onset of the
migration and between 16°C and 22°C at the end of the period. Other factors, such as
tide intensity and river discharge also trigger adult migration (Mennesson-Boisneau et
al. 2000). Besides the age and size at maturity of allis shad, populations are influenced
by latitudinal gradient, being higher towards lower latitudes (Lassalle et al. 2008).

How do they migrate?

As explained above, whatever the life stage, downstream and upstream migrations
can be triggered by exogenous (e.g., water discharge, temperature, photoperiod)
(e.g., Yako et al. 2002) and endogenous factors (e.g., genetic, physiology) (e.g., Dodson
et al. 2013). The interactions between these factors have been demonstrated for some
species, mainly for salmonids (Jonsson and Jonsson 1993; Thorpe et al. 1998), and the
mechanisms underlying migration are complex and probably species-specific (Glebe
and Leggett 1981). Anadromy involves long distance migrations that implies high
energy expenditure and requires great behavioral and physiological performances
(Cooke et al. 2011). Some species perform long migrations, for example, the beluga
sturgeon Huso huso commonly carries out a run of more than 1000 km in the Danube
and Volga Basins (Vecsei et al. 2002), the American shad Alosa sapidissima can
travel 2000 km (Maltais et al. 2010), and Pacific salmons migrate between 3700 and
7400 km at sea (Royce 1968). On the contrary, some species perform very short
migration, for example the delta smelt Hypomesus transpacificus migrates less than
100 km (Sommer et al. 2011).
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The cues and strategies used during migration, as well as the morphological and
physiological adaptations used to enhance the migration performances of anadromous
species also change through ontogeny, and are succinctly described next for each
development stage, namely for larvae, juveniles and adults.

The downstream movement of eggs and larvae in fluvial habitats is linked more
to dispersal rules than to a specific orientation mechanism, so the term ‘larval drift’ is
often used (Bell 2009; Borcherding et al. 2014). The water current is mainly used to
disperse, and the dispersal-timing is linked to the larvae’s development characteristics.
For example, salmonids eggs are buried in the gravel to avoid dispersal before
reaching a development stage that allows them to counteract currents and choose a
suitable habitat (Heggenes and Traaen 1988; Bardonnet et al. 2006). In the case of
Acipenseridae, their eggs are dense and become rapidly adhesive to cause rapid sinking
into the bottom without drifting (Jatteau 1998), while sea lampreys lay their eggs in
a nest and ammocoetes larvae hatch a few weeks later, emerging from the nest, and
drift downstream (Almeida and Quintella 2013). These ammocoetes larvae, which
are filter-feeders, have the morphological adaptability to bury in the sediment where
they can stay for several years before metamorphosis and initiate the downstream
migration (Almeida and Quintella 2013). Some species’ larvae, at an early development
stage, are able to withstand the physiological challenges of migration towards the sea:
in the case of the Baltic Sea whitefish Coregonus lavaretus, this is due to an early
physiological adaption to salt water (Jokikokko et al. 2012), similar to pink salmon
Oncorhynchus gorbuscha, that can enter sea water soon after emergence (Sackville
etal. 2012). However, for other anadromous species’ larvae, natural mortality increases
during early downstream migration caused by a river flow increase, as seen in striped
bass Morone saxatilis (Dunning et al. 2009). In Alosinae, downstream migration
towards the sea can occur in shoals before their first winter (Aprahamian et al. 2002),
a behavioral strategy usually used by pelagic species at sea to decrease predation risk
(Grobis et al. 2013).

The migration of juveniles from freshwater towards the sea occurs when fish
are physiologically ready to osmoregulate and support salt water (Hoar 1988).
Osmoregulation has been studied extensively, especially in salmonids, which during the
smoltification process face both morphological and behavioral changes (McCormick et
al. 2013; Moore et al. 2013). The salmon parrs become smolt and their color changes,
they lose their territorial behavior, and they also show negative rheotaxis and begin
schooling (Moore et al. 2013). For other species, there are no morphological changes,
but individuals have to reach a certain size and/or age to be able to physiologically
support salt water (Allen et al. 2011). In addition, exogenous stimuli (e.g., temperature,
water velocity, photoperiod) are also needed to trigger the downstream movement to
provide juveniles with the best environmental conditions possible (Yako et al. 2002;
Iafrate and Oliveira 2008).

In some families, a metamorphosis happens before juveniles initiate migration,
such as for lampreys (Almeida and Quintella 2013; Silva et al. 2013). When
sea lampreys become juveniles, they acquire a similar shape as the adult after
metamorphosis, which constitutes a physiological and morphological preparation
for their journey towards the sea (Reis-Santos et al. 2008). The juveniles are named
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macrophtalmia and this parasitic phase lasts up to two years (Silva et al. 2013). Then,
juveniles can migrate downstream, triggered by an increase of river discharge, but
they also have the possibility to hook onto other species to feed and to migrate at the
same time, which enables them to save energy (Silva et al. 2013).

The downstream migration of juveniles can also have a diel rhythm for some
species. For example, the Atlantic salmon Sa/mo salar presents mainly a nocturnal
downstream migration pattern both in freshwater and in estuarine environments (Moore
et al. 1995). In the case of sea lamprey Petromyzon marinus, macrophtalmia migrate
downstream during the night and burrow during daylight (Almeida and Quintella
2013). These diel rhythm behaviors, migration during the night and rest during the
day, are probably a strategy to decrease predation risk (Reebs 2002).

The time spent by juveniles in the estuary is also species-specific. For sturgeons,
it can last several years with some movements between the sea and the estuary
(Dadswell 2006; Rochard et al. 2001). Among salmonids, the estuary might just
be a transition habitat between freshwater and saltwater for some species (e.g.,
steelhead trout Oncorhynchus mykiss spend less than one day in the estuary (Romer
et al. 2013)), while other species actively use the estuary as a feeding area for a
few months (e.g., one to six months for sub-yearling ocean-type chum salmon
Oncorhynchus keta (Weitkamp et al. 2014)). Besides, in the estuary, juveniles might
use the ebb tide during migration, as a strategy to limit energy expenditure (Moore
et al. 1995; Taverny et al. 2002).

Both for juveniles and adults, the mechanisms of orientation are poorly known
(Blinder et al. 2011), however migratory fish are suspected to use a series of orientation
mechanisms to find suitable habitats, namely solar cues (Hasler et al. 1958), water
currents (Thomson et al. 1994), olfactory cues (Dittman and Quinn 1996) or a
geomagnetic orientation thanks to magnetite particles associated with the lateral line
(Moore et al. 1990). At sea, some authors propose that migratory fish use infrasound
patterns thanks to the sensitivity of the otolith organ (Sand and Karlsen 2000), and
differences in the temperature and salinity of oceanic currents are also mentioned
because it could create a vertical map with a unique odor which would lead individuals
to their natal stream (Blinder et al. 2011). Homing, i.e., the return of the adult to their
natal river for spawning, is supposed to allow fish to spawn in areas that have recently
provided successful spawning habitat (Cury 1994) and permits the evolution of local
adaptations (Taylor 1991). It is suspected to be a common life history trait among
anadromous fish, leading to the suggestion that anadromy and homing may have
co-evolved (McDowall 2001). For salmonids, homing of both sexes is particularly
well known. They might use olfactory cues to home in their natal streams with high
accuracy (Dittman and Quinn 1996; Ueda 2012), or even geomagnetic cues (Putman
etal. 2013). Generally, these imprinting mechanisms occur during early life stages, and
this information of their natal stream allows them to return as adults. For salmonids,
this imprinting is supposed to take place during the parr/smolt transformation when
plasma thyroxine level increase, which could favor the olfactory-imprinting (Dittman et
al. 1996). For other anadromous species homing studies are scarce, but there are some
studies on shads (Dodson and Leggett 1974; Waters et al. 2000; Walther et al. 2008)
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and sturgeons (Waldman et al. 2002) which found that imprinting and recognition of
the natal stream might occur. This ‘natal homing” ability is not the rule and straying
might occur in a population, which can be viewed, if it concerns a small proportion
of the population, as an opportunity to colonize unexploited habitats and to increase
genetic resilience (Keefer and Caudill 2014). Lampreys may also be an exception to
the ‘rule of natal homing’ in anadromous fishes (Waldman et al. 2008), since they use
olfactory cues to find a suitable spawning habitat but without needing to return to the
natal stream. For sea lamprey, the selection of a spawning stream is mediated by the
release of a pheromone by stream-resident larvae which functions as an instinctively
recognized indicator of habitat suitability (Sorensen et al. 2003).

Adult spawners need to have high swimming performances to reach their
spawning site, since they swim against the current (Hinch and Rand 2000; Makiguchi
et al. 2007). They must undergo, once again, through physiological modifications
(e.g., osmoregulation, hormonal level) to prepare for their spawning migration,
which they do without feeding and thus depleting their energy reserves (Kacem et al.
2013). Morphological modifications associated with sexual dimorphism might also
occur during the spawning migration for some species: for example, the lower jaw
of male salmons increases because it is used for fighting (Blair et al. 1993; Kinnison
et al. 2003). Competition between males for access to nests and females has been
observed between large anadromous Atlantic salmon males (combatants) and small
resident males, which mature as parr (sneakers), and depending on the winner, it
leads to small but significant differences on offspring quality, such as physiological
performances linked to muscle metabolic capacities and development (Morasse et al.
2008). Moreover, male salmonids might also display an agonistic behavior after eggs
are laid in the nest to protect them from cannibalism, as observed for the brown trout
Salmo trutta (Tentelier et al. 2011).

Spawners also need specific environmental conditions to reproduce effectively,
and water temperature and river discharge are particularly important for successful
upstream migration (Acolas et al. 2006; Yi et al. 2010). For some species, such as allis
shad, the upstream reproductive migration can even be stopped if the environmental
conditions are not suitable: the upstream migration is stopped below 10—11°C (Acolas
et al. 2006; Mennesson-Boisneau et al. 2000) and the reproduction activity itself is
inhibited for temperatures below 14°C at the latitude of Brittany (France) (Acolas
et al. 2006); yet these thresholds may vary with latitude (Cassou-Leins et al. 2000).
For species that built a nest, as lampreys and salmonids, the spawners select the most
appropriate substrates for their progeny (Gardner et al. 2012). Lampreys grab and move
the cobbles with their mouth to dispose them adequately to protect the eggs, while
female salmonids dig and cover the nest with their tail to protect the clutch (Tsuda
et al. 2006). Finally, as for many fish species, once the spawning sites are reached
(Fig. 5.4), some anadromous species will die after their first and unique reproduction
(semelparous species), while others will be able to carry out several reproductions in
their life (iteroparous species) (Crespi and Teo 2002; Hasselman et al. 2013).
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Insights on anadromous species conservation
Why anadromous species are in peril?

Anadromous fish travel between rivers and the ocean, through transitional water arcas
of different size, so they are vulnerable to many threats associated to these habitats.
The main threats on habitat that can affect migratory fish are:

+ Habitat fragmentation and modification of river’s hydraulic regime (Rolls et al.
2014). For anadromous fish, the presence of dams hinders the access of adults
to spawning grounds (Zhou et al. 2014), and it increases the mortality risk of
juveniles during downstream migration through entrainment against water intake
screens of hydro-electrical power plants (Williams et al. 2001; Keefer et al. 2012).
The large number of dams constructed in rivers, mainly since the mid-20th century,
has led to river habitat loss and modification of population dynamics for many
anadromous species (Locke et al. 2003; Morita et al. 2009; Hall et al. 2011; Junge
et al. 2014). For example, for American shad, about 4000 km of an original
11200 km of spawning habitat have been lost due to dams (Limburg et
al. 2003). To remediate these problems, fish ladders have been built and
can be successful for some species, such as salmonids (Bangsgaard et al.
2014), but they are not adapted to all species, such as shads (Brown et al.
2013). For species that need to access spawning grounds situated upstream
a river course, the succession of dams, even if equipped with a fish ladder,
delay reproduction or force the use of downstream spawning grounds
that are not fully suitable for reproduction success (Acolas et al. 2006;
Gao et al. 2014). Associated with hydraulic regime alteration, temperature may
rise with the succession of dams, or with power plant implantation, and thus
affecting the survival of cold-water related species, such as salmonids (Horne
et al. 2014). Moreover, the importance of connectivity is not restricted to rivers,
but also between estuarine and coastal habitats for species that actively use the
estuarine environment (Ray 2005).

+ Habitat degradation is often linked to the extraction of substrate in river and
estuarine beds, which will remove suitable substrates either for spawning, or
if they act as nursery and growth habitats (De Groot 2002; Gessner and Jaric
2014). Conversely, intensive agriculture and cattle grazing lead to soil erosion
and increase the input of fine sediment into rivers which can alter the habitat’s
functionality (e.g., oxygen depletion, temperature modification), especially for
the early life stages that live under gravel, as the salmonids (Sternecker et al.
2014).

Threats can also be directed on the species itself when the species is overexploited
or extensively used for aquaculture purposes. Overfishing can occur in all environments
(rivers, estuaries, oceans) and targeting both juveniles or adults, either for meat or egg
(i.e., caviar) consumption. Overfishing leads to the extirpation of populations with


http://vetbooks.ir

Life Histories of Anadromous Fishes 65

high market value, as sturgeons (Rochard et al. 1990; Krykhtin and Svirskii 1997) or
salmonids (Rand et al. 2012). For some species, the expansion of intensive aquaculture
might promote the risk of gene introgression and competition between wild and
domesticated fish, as well as disease transmission to wild populations (Naylor et al.
2005; Fisher et al. 2014). Alternatively, other sources of peril can affect anadromous
fish population health, like pollutants (Johnson et al. 2013), invasive species (Vignon
and Sasal 2010) and climate change (Lassalle and Rochard 2009). Unfortunately, most
of these threats occur in tandem, either on the same life stage or along the migration
journey (Edge and Gilhen 2001).

Endangered species and conservation projects

The conservation status of the 175 anadromous fish species is only known for
48% of them (extraction of the data with R interface Reol (Banbury and O’Meara
2014)), of which, 30.9% are listed as extinct or threatened (critically endangered,
endangered or vulnerable) (Table 5.1). Two species are classified as extinct, one
Salmoniforme and one Retropinniforme, and fourteen species are critically endangered,
thirteen Acipenseriforme and one Salmoniforme. Two species are endangered, one
Clupeiforme and one Osmeriforme. Eight species are considered vulnerable, four
Salmoniforme, two Clupeiforme, one Acipenseriforme and one Salangiforme. These
statuses are regularly updated, but some of them have evolved rapidly, such as the
supposed extinct Salmoniforme Coregonus oxyrinchus that benefited from a successful
reintroduction program in the Rhine (Borcherding et al. 2010).

In the study of 22 anadromous species of the North Atlantic Basin, Limburg and
Waldmann (2009) highlighted that all species had suffered population extirpation
since the 19th century. According to their study, and thanks to a 35 years time series
analysis, the relative abundance dropped over 90%, except for striped bass, the
northern population of Atlantic salmon and the Icelandic population of sea-run brown
trout. For most of those 22 species, moderate to sharp declines occurred in the 1990’s
followed by low harvests or cessation fishing. For allis Shad, population extirpation
in the southern part of its repartition range (Morocco) occurred in 1992 (Sabatié and
Bagliniére 2001), but it had already disappeared from large European rivers in the
mid-20th century, such as in the Seine (Spillman 1961) and Rhine rivers (Degroot
1990). More recently a drastic decline of the population was observed in the Gironde
basin, which lead to a fishing moratorium in 2008 (Rougier et al. 2012). In the Rhine
River, the eight anadromous species once present are either extirpated or under threat
(Degroot 2002; Freyhof and Schéter 2005).

Facing these threats and population declines, government and stakeholders have
tackled the issue by different means. From habitat point of view, partial connectivity
has been restored in a few rivers by selected dam removal which can lead to successful
recolonization of anadromous species (Hogg et al. 2013), but dam destruction has high
financial costs (Null et al. 2014). At a smaller scale, technological alternatives can
be developed to limit juvenile mortality in turbines (Brown et al. 2012) and improve
upstream fish passage (Muir and Williams 2012). When specific habitats have been
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Table 5.1. 2012 TUCN status for anadromous species extracted with R interface REOL (Banbury and
O’Meara 2014).

Orders Species
Known status 48.0 %
Extinct or threatened ~ 30.9%
among known status
Extinct (EX) 2 Salmoniformes Coregonus oxyrinchus (Linnaeus, 1758)
Retropinniformes  Prototroctes oxyrhynchus (Giinther, 1870)
Critically 14 Acipenseriformes  Acipenser stellatus (Pallas, 1771)
Endangered Acipenser sturio (Linnaeus, 1758)
(CR) Acipenser naccarii (Bonaparte, 1836)

Acipenser nudiventris (Lovetsky, 1828)
Acipenser gueldenstaedtii (Brandt and
Ratzeburg, 1833)

Acipenser schrenckii (Brandt, 1869)
Acipenser dabryanus (Duméril, 1869)
Acipenser sinensis (Gray, 1835)
Acipenser mikadoi (Hilgendorf, 1892)
Acipenser persicus (Borodin, 1897)
Huso dauricus (Georgi, 1775)

Huso huso (Linnaeus, 1758)
Scaphirhynchus suttkusi (Williams and
Clemmer, 1991)

Salmoniformes Hucho perryi (Brevoort, 1856)

Endangered 2 Clupeiformes Alosa volgensis (Berg, 1913)

(EN) Osmeriformes Hypomesus transpacificus (McAllister, 1963)

Vulnerable 8 Clupeiformes Alosa aestivalis (Mitchill, 1814)

(VU) Alosa immaculata (Bennett, 1835)
Acipenseriformes  Acipenser brevirostrum (Lesueur, 1818)
Salmoniformes Acipenser oxyrinchus desotoi (Vladykov, 1955)

Coregonus lavaretus (Linnaeus, 1758)
Coregonus huntsmani (Scott, 1987)
Salvelinus confluentus (Suckley, 1859)

Salangiformes Neosalanx reganius (Wakiya and Takahashi,
1937)
Near Threatened 5 Acipenseriformes  Acipenser medirostris (Ayres, 1854)
(NT) Acipenser oxyrinchus oxyrinchus (Mitchill,
1815)
Cithariniformes Citharinus eburneensis (Daget, 1962)

Petromyzontiformes Caspiomyzon wagneri (Kessler, 1870)
Retropinniformes  Prototroctes maraena (Giinther, 1864)

Least Concern 51  Acipenseriformes  Acipenser transmontanus (Richardson, 1836)

(LC) Ariiformes Arius madagascariensis (Vaillant, 1894)
Bagriformes Mystus gulio (Hamilton, 1822)
Claroteiformes Clarotes laticeps (Riippell, 1829)
Clupeiformes Alosa alosa (Linnaeus, 1758)

Alosa fallax (Lacepéde, 1803)

Alosa kessleri (Grimm, 1887)

Alosa mediocris (Mitchill, 1814)

Alosa pseudoharengus (Wilson, 1811)

Alosa sapidissima (Wilson, 1811)

Alosa tanaica (Grimm, 1901)

Anodontostoma thailandiae (Wongratana, 1983)

Table 5.1. contd....
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Table 5.1. contd....

Orders

Species

Least Concern
(LC)

Lower Risk/
Least concern
(LR/LC)

Data Deficient (DD)
Not evaluated (NE)

Total

51

2

84
175

Cypriniformes

Gadiformes
Gasterosteiformes
Moroniformes

Mugiliformes

Ophichthiformes
Osmeriformes

Perciformes
Petromyzontiformes

Salmoniformes

Tetraodontiformes

Salmoniformes

Clupeonella cultriventris (Nordmann, 1840)
Dorosoma cepedianum (Lesueur, 1818)
Dorosoma petenense (Glinther, 1867)
Nematalosa galatheae (Nelson and Rothman,
1973)

Nematalosa nasus (Bloch, 1795)
Pellonula vorax (Gunther, 1868)

Pelecus cultratus (Linnaeus, 1758)

Rutilus frisii (Nordmann, 1840)

Vimba vimba (Linnaeus, 1758)
Microgadus tomcod (Walbaum, 1792)
Pungitius pungitius (Linnaeus, 1758)
Morone americana (Gmelin, 1789)
Morone saxatilis (Walbaum, 1792)
Rhinomugil corsula (Hamilton, 1822)
Pisodonophis boro (Hamilton, 1822)
Hypomesus olidus (Pallas, 1814)

Osmerus eperlanus (Linnaeus, 1758)
Osmerus mordax dentex (Steindachner and
Kner, 1870)

Spirinchus thaleichthys (Ayres, 1860)
Thaleichthys pacificus (Richardson, 1836)
Perca fluviatilis (Linnaeus, 1758)
Lampetra ayresii (Gunther, 1870)
Lampetra fluviatilis (Linnaeus, 1758)
Petromyzon marinus (Linnaeus, 1758)
Lethenteron camtschaticum (Tilesius, 1811)
Lethenteron reissneri (Dybowski, 1869)
Coregonus albula (Linnaeus, 1758)
Coregonus autumnalis (Pallas, 1776)
Coregonus muksun (Pallas, 1814)
Coregonus nasus (Pallas, 1776)
Coregonus pallasii (Valenciennes, 1848)
Coregonus peled (Gmelin, 1789)
Coregonus pidschian (Gmelin, 1789)
Coregonus sardinella (Valenciennes, 1848)
Oncorhynchus nerka (Walbaum, 1792)
Salmo labrax (Pallas, 1814)

Salmo marmoratus (Cuvier, 1829)
Stenodus leucichthys (Giildenstadt, 1772)
Takifugu obscurus (Abe, 1949)

Coregonus artedi (Lesueur, 1818)
Salmo salar (Linnaeus, 1758)
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altered, such as spawning grounds, the reconstruction of habitats by means of gravel
addition can be a solution (Barlaup et al. 2008), but at great expenses (Zeug et al.
2014). These restoration projects are usually accompanied by specific habitat protection
measures, as well as by the implementation of new national policies on substrate
extraction in rivers or estuaries. From a general point of view, anadromous fish can
benefit from water quality amelioration in some rivers, as in the Seine (Belliard et al.
2009; Perrier et al. 2010) and Rhine rivers (Plum and Schulte-Wulwer-Leidig 2014).

For species targeted by fishing exploitation, a fishing ban can be implemented,
as for European sturgeon in France in 1982, and then followed by an European ban
in 1998. However, these measures are often considered to be implemented too late,
despite the early alert calls dating back to the 1920’s (Roule 1922). However in some
cases, a fishing moratorium can thwart the development of water resources exploitation
projects (Olney et al. 2008). When a species is at a low level of abundance, then several
policies can be implemented upon fisheries to control or limit its impact, as fishing
quotas, definition of fisheries season and/or net mesh size (Navodaru et al. 2001).
However, identifying the stocks characteristics is still needed for many populations
to ensure sustainable fisheries policies (McBride 2014).

In a situation of abundance decrease, stocking at a different age is a tool that has been
widely used to sustain fisheries, maintain a population for conservation purposes, and
introduce a species in a novel environment for conservation or fisheries purposes. This
tool has been used extensively for salmonids with positive and negative results according
to the sites (Prignon et al. 1999; Aprahamian et al. 2003; Ayllon et al. 2006; Perrier et
al. 2013), and in a lower proportion for other endangered anadromous species, such as
shads (Frank et al. 2011; Hasselman and Limburg 2012), sturgeons (St. Pierre 1999;
Zhu et al. 2006), North Sea houting (Borcherding et al. 2006) and striped bass (Secor
and Houde 1998), but with various rates of success (Ruzzante et al. 2004; Araki and
Schmid 2010). For a few anadromous species, specific restoration plans with multiple
action level plans (e.g., habitat protection, habitat restoration, stocking, monitoring)
have been carried out thanks to the involvement of local populations, non-governmental
organizations, advice of scientists and new governmental policies (Borcherding et al.
2010; Brown and St. Pierre 2001; De Groot 2002). For example, European sturgeon is
classified as critically endangered by IUCN, and benefited from a European restoration
plan (Rosenthal et al. 2007) declined in national action plans in France and Germany
(Gessner et al. 2010; Ministére de I’écologie du développement durable des transports
et dulogement 2011) and relying on specific scientific programs (Acolas et al. 2011b).

Over the last two decades, publications about anadromous fish conservation
and restoration have increased by three and five times, respectively (Fig. 5.5). The
prediction for the actual decade (since 2010) is to double the publications focusing
on conservation and to increase by 1.5 the works on restoration. These observations
highlighted the increased interest of scientists and stakeholders, which financed
research in the preservation and recovery of these anadromous species. However, the
main conservation projects seem to happen in the Northern hemisphere, while scanty
data is available from the Southern hemisphere.
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Figure 5.5. Number of publications referenced in WOS (Web of Science) dealing with conservation or
restoration of anadromous fish since 1990.

Detailed queries:

Queries for conservation: conservation and anadrom* not restoration within each year range.

Queries for restoration: restoration and anadrom™* not conservation within each year range.

Date of the queries: 23 October 2014.
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CHAPTER 6

Life Histories of

Catadromous Fishes
Michael J. Miller

Introduction

Diadromous fishes differ from other types of fishes because they migrate between
freshwater or estuarine habitats and the marine environment at specific times in
their lives. There are only about 250 species of diadromous fishes compared to the
likely more than 30,000 or more species of purely freshwater, estuarine or marine
fishes (McDowall 1988, 1997; Nelson 2006), so they are a unique subset of the
world’s fishes. The categories of diadromous fishes have been defined based on
which life history stages use the marine and freshwater habitats and for what purpose
(Myers 1949; McDowall 1988, 1997). Catadromy is a diadromous life history with
the fish using the marine environment for reproduction and larval growth and using
freshwater for juvenile growth. Or more specifically, McDowall (1997) provided
a detailed definition of catadromy as: “Diadromous fishes in which most feeding
and growth are in fresh water prior to migration of fully grown, adult fish to sea to
reproduce; there is either no subsequent feeding at sea, or any feeding is accompanied
by little somatic growth; the principal feeding and growing biome (freshwater)
differs from the reproductive biome (the sea).” This definition however seems to
have expanded somewhat to include estuaries as a separate biome, which would then
include fish that migrate from freshwater to estuarine habitats to reproduce, or from
estuarine to marine habitats to reproduce, with the juvenile growth biome being either
freshwater or estuarine habitats. Further complicating this issue is that many seemingly
catadromous species have plasticity in their life history patterns especially in terms of
how much they may use the pure freshwater environment (Tsukamoto and Arai 2001;
Daverat et al. 2006, 2012; Walther et al. 2011).
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In general, however, fishes that can be considered to be catadromous must show
some sort of migration to the brackish or marine environment to spawn, and their larvae
then feed and grow in higher salinity habitats before entering estuaries or freshwater as
juveniles for growth until maturity. The distance each species migrates into the ocean to
reproduce varies widely though, from thousands of kilometers in the case of anguillid
eels (Aoyama 2009), to just near the transition to saline waters within estuaries or in
nearshore waters in the case of other catadromous fishes (McDowall 1988). As will be
apparent later in this chapter, and is seen from previous overviews of catadromous or
freshwater fishes and their migrations (McDowall 1987, 1988, 1997; Lucas and Baras
2001), there is little evidence of any catadromous fishes having spawning areas far out
in the ocean like anguillid eels; so the catadromous anguillid life history seems to be
unique, with most other species being only marginally catadromous in comparison.

The kinds of catadromous fishes other than eels seem to mostly consist of a range of
mullets, kuhliids, and flatfishes, or one or a few species of percyichthyid, centropomid,
cottid, scorpaenid, galaxiid or other species (McDowall 1987, 1988). These various
fishes and eels have a wide range of body forms and maximum body sizes (Fig. 6.1).
McDowall (1987) could find evidence of 41 catadromous fish species in the world,
and this included 15 species of anguillid eels and about 12 mullets. Feutry et al. (2013)
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Figure 6.1. The body forms of different types of catadromous fishes showing (A) the giant mottled eel,
Anguilla marmorata, the largest tropical anguillid species that is widely distributed across the Indo-Pacific,
(B) the barramundi Lates calcarifer, an important sport fish and aquaculture species found from northern
Australia and Southeast Asia to East Africa, (C) the European flounder Platichthys flesus, (D) an Australian
bass Macquaria novemaculeata, a sport fish from eastern Australia, (E) flagtails of the Genus Kuhlia,
which are distributed in the tropical Pacific and Indian ocean region, (F) mullets of the Family Mugilidae,
which are distributed worldwide, (G) the fourspine sculpin Cottus kazika from southern Japan, and
(H) the tupong Pseudaphritis urvillii from southeastern Australia.
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listed five species of kuhliids as being catadromous compared to the two species known
by McDowall (1987), and a new anguillid eel species has been discovered (Watanabe
etal. 2009); but even after several decades of research, few additional species of fishes
seem to have been found to have catadromous life histories.

The species with catadromous life histories are distributed at tropical to temperate
latitudes, with the greatest number being present at tropical to subtropical latitudes
due the larger numbers of anguillids there (Fig. 6.2, McDowall 1997). This latitudinal
distribution is in contrast with anadromous species, which are most abundant at higher
latitudes in the Northern Hemisphere (McDowall 1997).

Catadromy may have typically evolved in marine fishes that developed the ability
to enter freshwater for feeding and juvenile growth (McDowall 1997). This has been
considered to be the case for anguillid eels (Tsukamoto et al. 2002), which have the
most distinct catadromous life histories. Phylogenetic analysis of the Anguilliformes,
which includes all freshwater and marine eels, has shown that the family Anguillidae
was derived from a lineage comprised of mesopelagic families of marine eels that
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Figure 6.2. The number of species of all catadromous fishes at each latitude or separated into different
taxonomic groups. Modified from McDowall (1997).
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live in the open ocean (Inoue et al. 2010). The ancestral anguillid eel species appears
to have originated in the tropical Indo-Pacific where its juveniles entered freshwater
presumably because of there being a vacant niche for eels with greater feeding success
and likely fewer predators (Tsukamoto et al. 2002, 2009; Inoue et al. 2010). For
catadromous fishes not from the deep-ocean, their evolutionary patterns may not be
so clear as for anguillid eels, but many appear to be derived from marine ancestors.
Catadromous kuhliid species for example appear to have given rise to purely marine
species (Feutry et al. 2013), although the genus itself appears to be derived from a
marine ancestor (Yagishita et al. 2009). The Centropomidae (snooks and barramundi)
appears to be derived from marine fish groups even though it includes some freshwater
species (Li et al. 2011).

This chapter briefly overviews catadromous fish life histories and their migrations
or movements. It places more emphasis on anguillids, which make the most distinct
catadromous migrations and have been studied in more detail. Because there have
been reviews or books published about most aspects of anguillid eel life history (e.g.,
McCleave 1993, 2003; Aida et al. 2003; Feunteun et al. 2003; Tesch 2003; Jellyman
2003; van Ginneken and Maes 2005; Jessop et al. 2008, 2010; Aoyama 2009; McCleave
and Edeline 2009; Miller et al. 2009a,b; Tsukamoto 2009; van den Thillart et al.
2009; Bonhommeau et al. 2010; Watanabe and Miller 2012), this chapter does not
exhaustively cover the literature about anguillid life history and places emphasis on
more recent studies. The other types of fishes with catadromous life histories have
also been described previously (McDowall 1988; Lucas and Baras 2001) and are
outlined here to give an overall view of the present state of knowledge about these
interesting fishes that use freshwater or estuarine habitats, but migrate to spawn in
higher salinity environments.

Anguillid life histories

Freshwater eels have been the classic example of catadromous fishes ever since
Schmidt (1922) showed the world what interesting life histories they have because
of the long migrations they make in the ocean. Their offshore spawning areas and the
random return of their larvae to their growth habitats result in temperate anguillids
consisting of single panmictic populations (Wirth and Bernachez 2003; Dannewitz
etal. 2005; Han et al. 2010). Some tropical anguillid eels with widespread distributions
consist of multiple spawning populations or metapopulations (Ishikawa et al. 2004;
Minegishi et al. 2008; Gagnaire et al. 2011). Other tropical anguillids have local
spawning areas and may have single populations or have more than one spawning
area (Miller et al. 2009a). These population structures appear to be formed by the
establishment of specific migration loops between the growth habitats and spawning
areas, which depend on the geography of landmasses and patterns of ocean currents
that transport the larvae (Tsukamoto et al. 2002; Ishikawa et al. 2004; Aoyama 2009).

In addition to interest in their long migrations and population structures, in recent
years attention has been focused on their ‘facultative catadromy’ in which not all
individuals of each species actually enter freshwater for juvenile growth (Tsukamoto
et al. 1998, Tsukamoto and Arai 2001, Daverat et al. 2006). However, all anguillid
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eel species have many individuals that migrate into freshwater and move far inland,
wherever they have not been blocked by dams, so their catadromy cannot be doubted.
Regardless of whether or not all the juveniles of the species migrate upstream into
freshwater from the estuary, all the adults migrate far offshore to spawn, and all their
larvae, called leptocephali live exclusively in the ocean environment (Tesch 2003;
Aoyama 2009). Their life histories are characterized by four distinct stages that consist
of larvae (non-feeding preleptocephali and feeding leptocephali) that metamorphose
into glass eels (recruitment stage), and yellow eels (juvenile growth stage), which
metamorphose into silver eels (adult stage) (Fig. 6.3).
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Figure 6.3. The life cycle of anguillid eels showing each life history stage. The adult silver eels spawn
offshore in the ocean, the leptocephali live only in the ocean, and the glass eels and yellow eels are found
in freshwater and estuarine habitats.

Silver eels and their spawning areas

The life cycles of anguillid eels both end and begin with the actions of the
reproductive-stage silver eels that migrate out of freshwater and estuarine habitats
into the ocean, where they swim to their offshore spawning areas for reproduction.
After having grown for many years as yellow eels and reaching a general age, size,
or amount of energy has been accumulated (Vollestad 1992), something triggers the
maturation process and the silver eels start gonadal maturation, their eyes enlarge,
and their body and fin coloration changes (Tesch 2003; Aoyama and Miller 2003;
Durif et al. 2005; Okamura et al. 2007; Tsukamoto 2009). These types of changes
appear to be associated with facilitating the long migration through the ocean and
for eventual reproduction, but changes in their osmoregulatory systems also occur
(Sasai et al. 1998). The silver eel migrations of northern temperate anguillid eels
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occur during the fall season (Haro 2003; Tesch 2003), whereas the migration season
of tropical eels is less well understood and possibly more linked to climatic cycles
of rainfall (Wouthuyzen et al. 2009). Silver eels in temperate regions tend to migrate
downstream during periods of stormy weather or rainfall when water discharge
increases in rivers, or during phases of the lunar cycle when there is little moonlight
(Haro 2003; Durif et al. 2008; Bruijs and Durif 2009).

The spawning areas of temperate anguillid eels are located along the low latitude
edges of subtropical gyres, which have westward currents to transport their larvae to
their recruitment areas (Miller et al. 2009b; Aoyama 2009). This requires the adult
silver eels of these species to migrate thousands of kilometers from the continental
margins to reach these spawning areas. Little is known about these oceanic migrations
(Tsukamoto 2009), except that the silver eels show distinct patterns of diel vertical
migration from shallow depths (a few hundred meters) during the night, to much
greater depths (600-800 m) during the day, while they are migrating towards their
spawning areas (Jellyman and Tsukamoto 2005, 2010; Aarestrup et al. 2009; Manabe
et al. 2011; Schabetsberger et al. 2013). Although silver eels are not often considered
to be great swimmers, recent research has shown that they are probably highly efficient
swimmers, capable of swimming continuously for many months without feeding
(van den Thillart et al. 2009). There is little light at the migration depths used by silver
eels, and temperate species must all cross through a variety of currents or water masses
to reach their spawning areas, so there are few clues about how they navigate back to
their spawning areas (Tsukamoto 2009). This suggests that their geomagnetic sense
(Nishi et al. 2004; Nishi and Kawamura 2005; Durif et al. 2013) may play an important
role in their migration back to the spawning area where they were born, before other
senses are used to determine where exactly they will spawn within the spawning area.

The locations where the Atlantic eels (European eel Anguilla anguilla; American
eel A. rostrata) and the Japanese eel Anguilla japonica spawn in these areas appear
to be determined by landmarks, such as temperature or salinity fronts or a seamount
ridge (Kleckner and McCleave 1988; Munk et al. 2010; Tsukamoto et al. 2011;
Aoyama et al. 2014). In contrast, tropical anguillid species can have shorter migration
distances to more local spawning areas (Aoyama et al. 2003, 2007; Miller et al. 2009a;
Wouthuyzen et al. 2009), or they can also migrate offshore like eels from the northern
population of the giant mottled eel Anguilla marmorata (Miller et al. 2002; Kuroki et
al. 2009). The locations of the spawning areas of many tropical anguillid species are
not known yet though, because few of their leptocephali have been collected (Miller
2003; Kuroki et al. 2008).

Collections of all the oceanic life history stages of the Japanese eel suggest that
spawning by anguillid eels occurs in the upper few hundred meters of the ocean. Adult
eels of both A. japonica and A. marmorata appeared to be caught in the 250-300
m depth layer by large midwater trawls (Chow et al. 2009; Tsukamoto et al. 2011;
Kurogi et al. 2011). Eggs and preleptocephali were also all collected in the surface
layer, with both being found in highest abundance in the layers near the top of the
thermocline centered at about 160 m (Tsukamoto et al. 2011; Kurogi et al. 2011;
Aoyama et al. 2014). Small anguillid leptocephali in the Sargasso Sea spawning area
of the Atlantic eels were also present at similar depths (Castonguay and McCleave
1987), which along with the similarities in the diel vertical migration behaviors of
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silver eels suggest the possibility of similar spawning ecology for other anguillid eels.
The Japanese eel is also known to only spawn during new moon periods (Tsukamoto
etal. 2003, 2011), but it is not known if other anguillids also have this characteristic.
All anguillid eels are thought to be semelparous and die after their spawning season
(Tesch 2003; Tsukamoto et al. 2011).

The leptocephalus stage and larval migrations

After anguillid eggs are fertilized they may develop for about 1.5-2 days before
hatching, depending on temperature (Ahn et al. 2012). Japanese eel eggs (embryos)
have been collected recently at a size of about 1.6 mm in diameter (Tsukamoto
et al. 2011; Yoshinaga et al. 2012; Aoyama et al. 2014). After the eggs hatch,
all anguillid eels have very similar leptocephalus larvae (Miller and Tsukamoto
2004) (Fig. 6.3). The leptocephali are unusual in comparison to other types of
fish larvae because they have a long larval duration, a large size increase, and
they have an unusual diet. The larval duration of anguillid eels seems to range
from about three months to almost a year or likely more (Marui et al. 2001;
Kuroki et al. 2006, 2014). Larvae seem to feed exclusively on various types of
particulate organic matter, such as marine snow and discarded appendicularian
houses and not on zooplankton (Otake et al. 1993; Mochioka and Iwamizu 1996;
Miller et al. 2013). This type of diet has resulted in them having a very low trophic
position within the marine food web (Miller et al. 2013). Anguillid and other
leptocephali all live in the upper few hundred meters of the ocean (Castonguay and
McCleave 1987; Miller 2009). The growth rates and maximum larval sizes of temperate
and tropical anguillid leptocephali differ with tropical species being shorter and with
higher growth rates (Kuroki et al. 2006, 2014). Accordingly, the tropical species of
leptocephali have shorter larval durations than the temperate species (Marui et al.
2001; Kuroki et al. 2014). As they feed and grow, anguillid leptocephali are transported
from their oceanic spawning areas to the continental margins, or near islands, where
they metamorphose into the glass eel stage, which then enter estuaries and freshwater
habitats (Tesch 2003).

It is presently unknown if the leptocephali of anguillid eels engage in active
horizontal migration as larvae, or if they are just passively transported by ocean currents
as discussed previously (McCleave et al. 1998; Miller 2009). Leptocephali swim
during their vertical migrations between different depths (Castonguay and McCleave
1987), and laboratory swimming studies on conger eel Conger oceanicus leptocephali
indicate they are capable swimmers for short periods of time (Wuenschel and Able
2008). The spawning areas of temperate anguillids are all located in westward flowing
currents that enter western boundary currents, which can transport their leptocephali
towards their recruitment areas (Miller et al. 2009b). However, at the latter stages
of their migrations, as leptocephali or glass eels, it is likely that some species must
use active swimming to reach coastal areas. For example, American eel leptocephali
originate on the east side of the Gulf Stream, but must eventually move west or later
north to cross the powerful current (Kleckner and McCleave 1982). There seems to
be no continuously occurring mechanism to allow large numbers of larvae to cross the
Gulf Stream without swimming though. European eel larvae that also enter the Gulf


http://vetbooks.ir

Life Histories of Catadromous Fishes 85

Stream (Kleckner and McCleave 1982) do not cross over towards the coastline of North
America (Kleckner and McCleave 1985), but continue on to the east towards Europe,
so this also implies active migration by American eel larvae to cross the current. Both
species then metamorphose into glass eels, which may also need to actively swim to
reach the coastline. However, this does not imply that anguillid leptocephali show
active migratory swimming throughout their larval stage, which they likely do not,
since that could interfere with feeding and growth.

Near the end of their larval period there may be some active migration, as anguillid
leptocephali approach the areas near the continental shelf or islands. At this stage,
something triggers the metamorphosis process, in which their laterally compressed
leaf-like and totally transparent bodies transform into the rounded body shape of eels
(Otake 2003; Tesch 2003) (Fig. 6.3). As glass eels reach estuaries and begin their
movements upstream, they become increasingly pigmented, and the various stages
of pigmentation have been classified (see Fukuda et al. 2013). The glass eels must
also develop the ability to osmoregulate in freshwater rather than seawater when they
migrate upstream (Wilson et al. 2004; Sasai et al. 2007).

The recruitment and growth stages of anguillid eels

Glass eels are the recruitment stage of anguillid eels that enter estuaries and then
subsequently migrate upstream into freshwater (Tesh 2003). In large estuaries, with
strong tidal flows that include upstream flow of water into the lower river reaches, glass
eels can use selective tidal stream transport (STST) to move upstream (McCleave and
Kleckner 1982). This behavior involves the glass eels resting at the bottom during ebb
tides, and then entering the water column during flood tides so the current will transport
them upstream. The timing of their entering the water column may be regulated at
least in part by a biological rhythm entrained to the tidal/lunar cycle (Wippelhauser
and McCleave 1988). If not blocked by dams, or other obstructions, anguillid eels will
often keep moving upstream as they grow larger (Feunteun et al. 2003).

Estuaries are productive feeding habitats for anguillid eels though, so some
glass eels may remain in the brackish environment without moving upstream into
freshwater if there is suitable habitat available for them. Others may move back
downstream into estuarine bays after initially settling in the lower reaches of
rivers. Otolith microchemistry studies using Sr:Ca ratios have consistently found
individuals that likely remained in the estuary, or high salinity habitats, during their
entire juvenile growth phase without residing in freshwater, while other eels were
freshwater residents their whole lives or switched from one type of habitat to another
(e.g., Tzeng et al. 1997; Tsukamoto et al. 1998; Tsukamoto and Arai 2001; Jessop
et al. 2002, 2008; Daverat et al. 2006; Kaifu et al. 2010). What determines if an eel
will choose to migrate upstream or remain in the estuary is difficult to determine,
but it may be related to factors such as the energy reserves or physiological state
of each individual, or behavioral interactions resulting from the density of eels in
the estuary already (Edeline 2007; McCleave and Edeline 2009). In the present-day
time period of lower eel abundances and at higher latitudes with low productivity in
freshwater, the growth rates of eels has been found to be faster in the brackish water
habitats (Jessop et al. 2004; Morrison and Secor 2003; Daverat and Tomas 2006;
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Carins et al. 2009; Jessop 2010; Daverat et al. 2012a; Kaifu et al. 2013a). Possibly
as a result of this, the majority of eels that switch between habitats are those that
move back downstream from freshwater into the estuary (e.g., Jessop et al. 2002;
Daverat et al. 2006; Kaifu et al. 2010). At the northern extreme of the species range
of the American eel though, yellow eels in brackish waters may move into freshwater
during winter to avoid colder waters in the estuary (Thibault et al. 2007). In less extreme
environments, why eels switch habitats by moving back downstream is unclear, but
evidence from a recent otolith microchemistry study on the Japanese eel suggested
that eels that switched back to the estuary were those that appeared to have entered
freshwater later than those that migrated directly into freshwater with no delay of first
residing in the estuary (Yokouchi et al. 2012).

Eels can make a variety of small-scale movements within estuaries that are not
recorded very well by otolith microchemistry, probably because there may be as much
as a two month time-lag for ambient water chemistry to be clearly reflected in their
otoliths (Yokouchi et al. 2011). This means that eels can move between the freshwater/
saltwater boundaries for short periods of time, which might not be clearly recorded
in their otoliths. These types of movements have been seen in tracking studies of eels
in estuaries and can be substantial, especially in large river systems with strong tidal
currents that allows them to use STST (Parker 1995; Parker and McCleave 1997,
Hedger et al. 2010). It should be emphasized that these types of behaviors or long-
term habitat shifts should be referred to as movements not migrations, because they
do not fit the generally accepted definition of a migration (a regular movement at a
certain life history stage by the majority of the population for a particular purpose).

Regardless of whether yellow eels are living in freshwater or estuarine habitats,
all species of anguillid eels appear to basically be opportunistic predators on
aquatic animals and they likely grow at various rates related to food availability and
temperature. Anguillid eels feed on things like aquatic insects, crustaceans, gastropods
annelids, and small fishes depending on the habitat and season (Dorner et al. 2009;
Kaifu et al. 2012 and references within). The proportion of fishes in their diet often
increases with the age of the eel. The growth rates of eels also seem to vary considerably
among freshwater and brackish habitats, with latitude, and between sexes, which may
be related to eel densities, water temperatures, or low food availability (see Jellyman
1995; Morrison and Secor 2003; Oliveria and McCleave 2002; Yokouchi et al. 2008;
Carins et al. 2009; Jessop 2010 and references within).

What determines the start of the silvering process of yellow eels is not clear,
but it is associated with the initiation of their downstream and oceanic migration
(Durif et al. 2005; van Ginneken et al. 2007). It has been hypothesized that male
yellow eels use a time-minimizing strategy of reaching maturity sooner to migrate
at a younger age than females, due to the low cost of producing sperm compared
to producing eggs (Helfman et al. 1987). Females would use a size maximizing
strategy to produce a large number of eggs, with both strategies being designed to
maximize reproductive fitness. Because sex determination in anguillid eels appears
to be environmentally determined by the density of eels and their growth rates
(Krueger and Oliveira 1999; Davey and Jellyman 2005), the different strategies
likely evolved in response to selective pressures resulting from large numbers of eels
recruiting to the same habitats each year.
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Other catadromous fish life histories

Compared to the anguillid eels there seem to be no other catadromous fishes that
make such impressive migrations (McDowall 1988; Lucas and Baras 2001), but
the variety of other catadromous fishes are also interesting for their ability to move
across the freshwater/seawater boundaries. These other fishes migrate from their
freshwater or estuarine growth habitats to higher salinity estuarine or marine habitats
to reproduce. The common features of these life histories are the movement of the
adults to higher salinity environments for spawning, and that their larvae then feed in
brackish or marine habitats before entering estuarine or freshwater habitats as larvae
or juveniles. For many species it is not yet clear how much variability there is among
individuals, or exactly what the adults do after each spawning. These fishes also have
seemingly overall greater variation in their life history patterns than anguillid eels
(McDowall 1988), likely due to the presence of some different reproductive ecologies
as mentioned below.

Characteristics of other catadromous fishes

There are a variety of species with life histories that are considered to be catadromous
in eastern Australia, which include the Australian bass Macquaria novemaculeata
(Fig. 6.1D) and the estuary perch Macquaria colonorum. These species migrate
from freshwater or the upper reaches of estuaries to spawn in the estuary and
seem to be the only known catadromous percichthyids (Walsh et al. 2011). The
Australian bass uses freshwater to a much greater degree than the estuary perch,
and migrates out of rivers during periods of strong flow to spawn in the estuary,
but Australian bass may delay reproduction during low-flow drought periods
(Harris 1986). The reproduction of estuary perch may also be linked to similar
environmental conditions and they showed poor recruitment in some years (Walsh
et al. 2010). The eggs of the Australian bass would not hatch in freshwater and have
the best survival in higher salinities (van der Wal 1985). The larvae are present in
estuaries and may be transported further into the estuary by tidal currents (Trnski
et al. 2005). The estuary perch can reach ages of 40 years old (Walsh et al. 2010),
so they may have the chance to reproduce several times in their lives (Harris 1986;
Walsh et al. 2011). Like anguillid eels though, the Australian bass may not be an
obligatory catadromous species based on a tracking study of adult fish in a river and
estuary (Walsh et al. 2012).

A quite different fish that appears to be catadromous is the tupong Pseudaphritis
urvillii (Fig. 6.1H). This species is the only member of the Pseudaphritidae (closely
related to the Antarctic icefishes and temperate thornfishes) and is found in freshwater
and estuarine regions of Southeastern Australia (Crook et al. 2010). The mature
tupong females migrate downstream to spawn in the estuary or marine environment
(Crook et al. 2010). However, the males may be estuarine/marine residents that are
not diadromous, but further research is needed on this species. Otolith microchemistry
studies on other catadromous or diadromous fishes in Southeastern Australia also show
diversity in habitat-use patterns, not always conforming to the traditional expectations
(Miles et al. 2009).
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The barramundi Lates calcarifer (Fig. 6.1B) is an important commercial fisheries
species, sport fish, and aquaculture species found in northern Australia and in other
parts of the Indo-West Pacific, and is also considered to have a catadromous life
history (Moore 1982; Russell and Garrett 1988; Athauda et al. 2012). Movements
of adult barramundi downstream for spawning, and of juveniles into freshwater
or between adjacent river systems have been documented in Australia and Papua
New Guinea using tagging studies (Moore and Reynold 1982; Davis 1986; Russell
and Garrett 1988). Spawning occurs in brackish water in or near river mouths, and
the juveniles use various habitats such as tidal creeks and swamps as nursery arcas
(Davis 1985; Russell and Garrett 1985; Blaber et al. 2008). The larvae are collected
within and outside of estuaries (Moore 1982; Russell and Garrett 1985). Telemetry
has been used recently to examine their movements in freshwater during two different
seasons (Heupel et al. 2011), and their growth rates in different river flow regimes have
been studied (Robins et al. 2006). Otolith microchemistry has been used in studies
on this species to examine individual habitat-use patterns, which show that not all
individuals exhibit the same types of movements between freshwater and brackish
habitats (see McCulloch et al. 2005; Milton and Chenery 2005; Walther et al. 2011). The
life history of barramundi is unusual though, because it is a protandrous hermaphrodite
that changes sequentially from males to females, spawning for three—four years as
males before becoming females (Moore 1979; Blaber et al. 2008; Athauda et al. 2012).

A closely related and moderately catadromous species, that is also a sport fish, is
the common snook Centropomus undecimalis. 1t is distributed from Florida to Brazil
and is also a protandrous hermaphrodite (Taylor et al. 2000). This species lives in
brackish and freshwater areas and migrates slightly offshore from its primary estuarine
habitats for spawning (Adams et al. 2009; Trotter et al. 2012). The larvae initially
feed in nearshore waters before moving into vegetated shorelines for early juvenile
growth (Peters et al. 1998). Some fish move into freshwater, but the reason for those
movements are not yet well understood (Blewett et al. 2009).

A group of smaller-sized tropical fishes are the 12 species of flagtails of the
family Kuhliidae, genus Kuhlia (Fig. 6.1E). These fishes inhabit tropical islands in the
Indo-Pacific and include some catadromous species that migrate from rivers to spawn
in saline habitats (Randall and Randall 2001; Feutry et al. 2013). They are probably
typically found in many of the same tropical island rivers as the amphidromous gobies
that use the freshwater habitats not only for both juvenile and adult growth, but also for
spawning (Keith 2003; Closs and Warburton 2016). The kuhliids however, seemingly
must move to higher salinity regions near the river mouths to spawn (Hogan and
Nicholson 1987; Oka and Tachihara 2001). This has been confirmed by otolith Sr:Ca
studies on a few species that show the larval period occurs in brackish or marine
waters before the fish enter freshwater for growth, with some variability in habitat use
among individuals (Benson and Fitzsimons 2002; Oka and Tachihara 2008; Feutry
et al. 2011, 2012a). Kuhlia xenura in Hawaii appears to use freshwater, estuarine,
rocky shore, and tide pools for juvenile growth, but was most abundant in the estuary
(McRae et al. 2011). The larval growth phase in saline waters appears to be at least a
month or more in some species (Feutry et al. 2012b).

A few species other than anguillid eels also appear to have some form of at least
semi-catadromous life histories in more temperate waters based on their movements
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towards brackish water for spawning. On the Atlantic coast of Europe it appears
that the European flounder Platichthys flesus (Fig. 6.1C) might use estuaries as
spawning areas, as well as growth habitats. Larvae can also be found in freshwater
during early life stage (Morais et al. 2011; Daverat et al. 2012b). The larvae of the
European flounder may be able to use STST to move upstream in river estuaries
(Bos 1999; Jager 1999), and in the laboratory the flounder larvae showed a preference
for freshwater in a choice experiment (Bos and Thiel 2006). This suggests that larvae
enter the estuaries and then try to move upstream towards freshwater, with the smaller
juveniles likely showing a preference for lower salinities and larger ones preferring
higher salinities within estuaries (Primo et al. 2013; Souza et al. 2013). Some other
flounder species also enter freshwater to various degrees in Australia, New Zealand and
elsewhere, with reproduction occurring in the marine environment (McDowall 1988).
Otolith microchemistry studies have shown that flounders use estuarine habitats, but
a wide range of freshwater and marine habitat-use patterns exist and some spawning
by flounders may occur in brackish water and also in freshwater (Daverat et al. 2011
2012b; Morais et al. 2011).

The Atlantic coast of Europe also has a species of mullet, the thinlip mullet Liza
ramada, that use estuaries for growth and may enter freshwater before they spawn
in marine waters (Daverat et al. 2011). Other species of catadromous mullets, the
flathead grey mullet Mugil cephalus, and white mullet M. curema, have been studied
using otolith microchemistry, showing that these species used estuaries after being
born in higher salinities, but few individuals resided very long in freshwater (Chang et
al. 2004; Wang et al. 2010; Ibafiez et al. 2012). Mullet species clearly enter estuarine
habitats as new recruits and use them as nursery areas and for later growth habitats
(e.g., DeSiva 1980; Chub et al. 1981; Torricelli et al. 1982; Lebreton et al. 2011). If the
adults only use offshore marine habitats as spawning areas, then they would meet the
basic criteria for being considered catadromous, rather than simply being estuarine-
dependent fishes that use marine waters for both feeding and reproduction. Mullets
appear to have a diversity of life histories around the world relative to how they use
freshwater, or if they use it. However, some species might have an obligate freshwater
juvenile growth stage (McDowall 1988; Lucas and Baras 2001).

A somewhat similar situation may exist for tarpon, such as Megalops cyprinoides,
which has been found to enter freshwater in places such as Papua New Guinea (Coates
1987; McDowall 1988); but they probably also use the marine environment for
feeding and not just reproduction and larval development. Tarpon leptocephali have
a shorter larval duration and do not grow as large as most anguilliform leptocephali,
but they have a comparatively fast growth rate (Crabtree et al. 1992; Zerbi et al. 2001).
Otolith microchemistry showed evidence that tarpon are a facultative freshwater user
in Taiwan, but some fish did not enter freshwater much or moved back and forth
(Shen et al. 2009).

Two species of catadromous sculpins are present in southern Japan and nearby
regions that spawn in the lower reaches of estuaries in benthic nests, with their
larvae remaining close to river mouths and moving upstream into the estuaries. The
fourspine sculpin Cottus kazika (Fig. 6.1G) uses freshwater habitats for juvenile growth
(Takeshita et al. 2005) and spawns in nests in the estuary (Takeshita et al. 1999), with
the larvae and juveniles being present in estuaries (Harada et al. 1999; Kinoshita et
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al. 1999). The roughskin sculpin Trachidermus fasciatus spawns in nests in the lower
estuary (Onikura et al. 2002), and the larvae and early juveniles are mainly present
in the brackish section of the estuary, though there is a tendency for these stages to
move upstream towards the freshwater part of the estuary (Islam et al. 2007). The
juveniles then move upstream into freshwater (Onikura et al. 1999). Comparative
observations of the larval distribution behavior of C. kazika and T. fasciatus made in
the laboratory suggest that there may be differences in the dispersal and settlement
characteristics of these species (Takeshita et al. 2004). There may be a few other
species or coastal forms of sculpins that also move from freshwater to estuaries to
spawn, such as some populations of prickly sculpin Cotfus asper on the west coast of
North America (McDowall 1988).

McDowall (1988) also lists several species of fishes that appear to be catadromous,
but most of these have not been studied much yet. The endemic Papuan black snapper
Lutjanus goldiei is an important sport fish living in freshwater in Papua New Guinea and
can reach one meter in length, but apparently reproduces in the marine environment.
It is a member of the Lutjanidae, which are almost all marine fishes, but little appears
to be published about this species. Similarly, an endemic lutjanid in Fiji, the Orange-
spotted therapon Mesopristes kneri, appears to live in freshwater and migrate to
the estuary to reproduce (McDowall 1988). The Lutjanidae colonized freshwater in
Australia, where it diversified into various freshwater species according to trophic
specializations (Davis et al. 2012), but it is unclear if any of the Australian species are
catadromous or not. The Australian bullrout Notesthes robusta is a scorpaniform fish
with venomous spines that is found in freshwater, which may move to the estuary to
reproduce, but this does not seem to be well documented (McDowall 1988). Although
there are various species of amphidromous galaxiids (Closs and Warburton 2016),
perhaps only one species is marginally catadromous, because mature adults of the
common galaxias Galaxias maculatus migrate downstream to the estuary to spawn
and die, but may also sometimes spawn in freshwater or have landlocked populations
(McDowall 1987, 1988; Barbee et al. 2011).

Advantages of catadromous life histories

From this overview of the diversity of types of fishes that have some type of
catadromous life history and previous evaluations of diadromy (McDowall 1987,
1988, 1993), it is apparent that these species groups have derived their diadromy
independently, and this type of life history is not a phylogenetic trait restricted to
particular lineages of fishes, or fishes with a particular body form (Fig. 6.1). How and
why diadromy has evolved is an interesting subject that has been examined by authors
such as Gross (1987), McDowall (1993, 1997, 2002), Parenti (2008), Dodson et al.
(2009), Tsukamoto et al. (2009) and Feutry et al. (2013). It has been hypothesized that
diadromy evolved in response to differences in productivity between the freshwater
and marine environments, which vary latitudinally (higher productivity in freshwater
in the tropics and higher productivity in the ocean at high latitudes) and that it would
evolve when the collective benefit of switching habitats outweighed the cost of
migration between habitats (Gross 1987; Gross et al. 1988). Differences in productivity
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between environments do not seem to be the only factors affecting the distribution of
the occurrence of diadromy though (McDowall 2008). There are various differences
in competition and predation among fishes and other animals between freshwater
and marine habitats that also can likely support the establishment of diadromy
(McCleave and Edeline 2009).

Diadromy may be beneficial though, because using different environments for
particular parts of the life history allows catadromous species to benefit from each
habitat’s advantages and avoid their particular disadvantages. For example, eels can use
freshwater and estuarine habitats for juvenile feeding and growth, but their reproduction
and larval growth occurs far away and is not linked to the ecology of their juvenile
growth habitats. This provides them several advantages over purely freshwater fishes
and over those living only in the marine environment. Marine habitats would have had
many other eels present that could be competitors, because anguillid eels are one of the
most recently derived groups of anguilliform eels, whereas freshwater environments
likely lacked any eels (Inoue et al. 2010). Anguillid eels may, in a sense, have been
‘escaping’ the marine environment to obtain the benefits of less competition for food,
and to experience lower predation pressure (Tsukamoto et al. 2009). Once anguillid
eels had established their use of freshwater as juvenile growth habitats, they would
have begun to compete with other non-eel predatory fishes in those habitats for food
and to have predator-prey interactions with them. However, one major advantage
of having a catadromous life history, compared to pure freshwater fishes, would be
that the eels would have the potential to prey upon the eggs and young stages of the
non-diadromous freshwater species. But because the eels migrate offshore into the
ocean to reproduce, those freshwater species could not prey upon the eggs and youngest
stages of eels. Similarly, by leaving the marine environment for their juvenile growth,
anguillids are probably exposed to fewer predators and do not have to compete with
marine eels for food (Kaifu et al. 2013b).

Other catadromous fishes that developed life histories in which they migrate out of
freshwater or estuaries to reproduce, would also likely obtain benefits in competitive
interactions with freshwater fishes and also the benefits of using marine habitats for
larval development and growth. Leaving freshwater to reproduce in brackish or marine
habitats, likely results in greater food resources being available for larval feeding and
growth. Rivers may have lower quality food resources for fish larvae, or at least can be
more unpredictable due to flooding or drought, compared to the marine environment.
In parts of Australia, for example, some freshwater fishes must time their reproduction
with periods of high water that provide nursery habitats for their larvae and juveniles
(Roberts et al. 2008). These types of unpredictable environmental factors would
favor catadromous species to migrate to the estuary to spawn. After reproduction,
the nearshore brackish waters and freshwater rivers and lakes, where juveniles grow,
would likely have fewer large predators to prey on the juvenile and adult stages of
catadromous fishes than the coastal marine environment, so returning to freshwater
may be advantageous. As discussed for amphidromous fishes (McDowall 2001,
2010), a catadromous life history of using freshwater or brackish water for juvenile
growth, but having larval development and growth occurring in marine habitats,
would enable larval dispersal through the ocean and colonization of new and unstable
freshwater systems, such as newly formed islands. Spawning offshore by anguillids
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in a relatively stable environment compared to freshwater provides the chance for
higher larval survival and for much wider dispersal. Even spawning in coastal waters
by other catadromous fishes will allow some larvae to be transported to nearby river
systems, or if transported offshore, much wider dispersal is possible. This is likely an
advantage over a purely freshwater life history in areas with frequent environmental
changes over evolutionary time.

Concluding remarks

Catadromous fishes include some interesting and economically important fishes around
the world, as well as some unusual and poorly known species. The use of purely
freshwater habitats unrelated to estuaries by most of these species, including anguillid
eels, appears to be a conditional strategy, as overviewed by McCleave and Edeline
(2009), in which individuals use freshwater when it is advantageous for them to do
so. Thus, these species may be facultatively catadromous in their use of freshwater
(e.g., Daverat et al. 2012b). Knowledge is steadily accumulating for many of these
species, but we are far from a clear understanding of many aspects of their life histories.
It is important to note though, that what we see in the present day must be considered
in the context of the extensive anthropogenic impacts that have occurred in both the
aquatic and terrestrial realms of the Earth through habitat loss and degradation, changes
in community structure due to deforestation, development, agriculture, and overfishing
(Vitousek et al. 1997; Lotze et al. 2006). For example, in highly populated parts of the
world, or in heavily channelized and polluted areas, it would seem that there might
be little advantage for some species to consistently enter freshwaters for long periods
of time during their catadromous life histories. In many places, fishes are blocked by
dams that prevent them from migrating upstream or safely returning back downstream,
and populations of many diadromous fishes have declined dramatically (Haro et al.
2000; Limburg and Waldman 2009), so the present-day populations of catadromous
fishes may be showing us their ability to adapt to changing environments more than
they are showing us how much they may have used freshwater environments before
their world was changed by humans.
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CHAPTER 7

Life Histories of

Amphidromous Fishes
Gerard P. Closs™ and Manna Warburton

Definition, recognition and history of amphidromy

The term ‘amphidromy’ was first proposed by Myers (1949) to describe diadromous
life histories where migrations between fresh and sea water are not directly associated
with reproduction. Even though the term was first proposed in 1949, it took several
decades for it to be widely accepted, with only very limited, if any, use of the term
prior to 1970 (McDowall 1992). The term ‘amphidromous’ only begins to appear
with any regularity in the titles and abstracts of published papers in the 1970s (Web
of Knowledge; search conducted on 22 August 2012) as Japanese ichthyologists
began employing the term to describe the life histories of various, mostly gobioid
fishes, of the Japanese archipelago. Clearly, based on the number of publications
(see Goto 1990; Iguchi and Mizuno 1990), the term was familiar to many Japanese
researchers by 1990, however much of this literature was published in Japanese and
hence relatively inaccessible to English speaking researchers.

Regular use of the term in the English-language scientific literature only began in
the late 1980s with McDowall’s cross-taxon review of the distribution of amphidromy
(McDowall 1988) and Kinzie’s use of the term to describe the life cycles of the
Hawaiian stream fish fauna (Kinzie 1988). However, the term is now in regular use
with a keyword search (Web of Knowledge; search conducted on 22 August 2012)
using ‘amphidromous’ yielding 32 papers for 2011 alone, out of a total of 401 papers
with a publication record starting in 1976. In comparison, the terms anadromous and
catadromous have their origins in the fisheries literature over 200 years ago (McDowall
1992). Keyword searches using anadromous or catadromous (Web of Knowledge;
conducted on 22 August 2012) produce publication records beginning in 1930 and
1937 respectively. Over 8,500 published papers use the term anadromous, but only
387 papers are identified as using the term catadromous.
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The slow acceptance of the term ‘amphidromous’ was most likely due to the
somewhat vague original definition proposed by Myers (1949), plus a general lack
of exposure of North American and European fisheries researchers to fish that might
be considered to be amphidromous (McDowall 2007). Myers’ (1949) paper clarified
the use of the terms anadromous and catadromous, defining them as life histories
exhibited by fish that spent most of their time in either fresh or sea water respectively,
and migrated to the alternate environment to breed. Using Myers’ (1949) definition,
both anadromous and catadromous involve a clearly defined spawning migration
between marine and freshwater habitats. In contrast, amphidromy was defined as,
“Diadromous fishes whose migration from fresh water to the sea, or vice-versa, is not
for the purpose of breeding, but occurs regularly at some other definite stage of the
life-cycle” (Fig. 7.1a). As McDowall (1988) comments, this definition is something of
a “catch-all for left-over groups” not classified as either anadromous or catadromous.
However, Myers (1949) also used the goby genus Sicydium to exemplify his concept
of an amphidromous life history, describing them as fish that “live and spawn in swift
water, but the larvae float downstream to salt water where they remain for a time before
migrating back upstream as small fry”, thus providing, perhaps unintentionally, a
framework from which a more refined definition of amphidromy could be developed.
Of the various authors that have used the term amphidromy, it is McDowall more
than any other who progressively refined (perhaps, arguably redefined) the concept of
amphidromy (McDowall 1988, 1992, 1998, 2007, 2010a) as a life history exclusively
characterized by freshwater spawning, an immediate post-hatch larval migration to the
sea, a return juvenile migration to freshwater, followed by growth to maturity over a
period of months to years in freshwater (Fig. 7.1b,c).

McDowall (2007) considered the strong cultural differences in the use of the term
‘amphidromous’ reflected the likelihood of fisheries biologists’ exposure to fishes that
might be viewed as amphidromous. Certainly, amphidromous fish form a diverse and
abundant component of the Japanese ichthyofauna, and it is Japanese ichthyologists
who first made regular use of the term (see Goto 1990; Iguchi and Mizuno 1990),
although much of their early work was published in Japanese language journals
(e.g., Goto 1981). As mentioned previously, the first researchers to regularly use the
term in the English-language scientific literature were McDowall (1988) and Kinzie
(1988) working in New Zealand and Hawaii respectively, and hence, regions with
a diverse amphidromous ichthyofauna. Whilst the diadromous migrations of many
of the Australian and New Zealand species were widely appreciated and understood
(e.g., Humphries 1989; Rowe et al. 1992), they were not described as amphidromous.
Indeed, even McDowall only used the term tentatively at two points in his text “New
Zealand Freshwater Fishes”, published in 1990 (McDowall 1990). However, since
2000, the use of the term has become far more widespread, with the publication of
papers describing various aspects of the biology of species that are explicitly described
as being amphidromous from Australia (Miles et al. 2009; Rolls 2011; Ebner et al.
2010), Caribbean (Flevet et al. 2001; Debrot 2003a; Keith 2003; Cook et al. 2009,
2010), China (Nip 2010), Madagascar (Loiselle 2005; Keith et al. 2011a), Mexico
and Central America (Lyons 2005), North America (Nordlie 2012) and West Africa
(Keith et al. 2011b). The term is also increasingly being used to describe the life
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Figure 7.1. Increasing levels of detail and precision in published descriptions of amphidromy by (a) Myers
1949; (b) McDowall 1987; and (c) McDowall 2010a.

history of some atyid crustacean shrimps and gastropod molluscs in the genus Neritina
(March et al. 1998; Flevet et al. 2001; Debrot 2003b; Cook 2004; McDowall 2004;
Page et al. 2005; Kano 2009; Crandall et al. 2010; Gorbach et al. 2012). However,
the amphidromous fish literature is still dominated by papers relating to fish from the
Indo-Pacific region (e.g., lida et al. 2010; Maeda and Tachibara 2010; Hoese and Allen
2011; Keith et al. 2011b; Maeda et al. 2011; Tamada 2011; Feutry et al. 2012a,b; Lord
et al. 2012; Walter et al. 2012).
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Taxonomic and biogeographic distribution of amphidromous fishes

The full extent of the diversity of amphidromous fishes has yet to be fully realized.
When Myers (1949) first proposed the term ‘amphidromous’, he commented that it
was “for a small known (but undoubtedly really large) number of species”. McDowall
(1988) represents the first attempt to collate a list of all known diadromous species,
listing a total of 109 anadromous, 53 catadromous and 52 amphidromous species.
A feature of McDowall’s (1988) list of amphidromous fish is that it is primarily
dominated by comparatively small species in the families Aplochitonidae, Clupeidae,
Cottidae, Galaxiidae, Gobiidae, Eleotridae, Pinguipedidae (formerly Mugiloidae)
and Prototroctidae, most of which have their centres of diversity remote from North
America and Europe. Amphidromous gobies, particularly in the genera Lentipes,
Sicyopterus, Sicydium, Sicyopus, Stiphodon, Awaous, Stenogobius, Schismatogobius
and Rhinogobius, dominate the diversity of amphidromous fish species, comprising
approximately 170 species (Keith 2003). Given the small and often cryptic nature
of amphidromous fishes, the taxonomy of many groups is poorly resolved, and
since McDowall (1988), the number of species considered to be amphidromous has
steadily risen with 273 species listed by Riede (2004). Descriptions of new species
of amphidromous Gobiidae, particularly amongst the Sicydiinae, continue to be
published regularly (Watson et al. 2001, 2002, 2005, 2007; Chen and Tan 2005;
Keith et al. 2002, 2004a,b, 2005a, 2007a,b, 2009, 2010, 2011a; Keith and Marquet
2007; Hoese and Allen 2011; Maeda et al. 2011; Suzuki et al. 2011). The taxonomy of
Rhinogobius is also poorly understood, with various undescribed species, often with
restricted distributions and poorly known life histories referred to in the literature
(e.g., Ito et al. 2010; Tamada 2011; Tsunagawa and Arai 2011). The use of otolith
microchemical techniques has also confirmed amphidromous life-histories in families
and species for which data was previously lacking or unclear, including ninespine
stickleback (Gasterosteidae, Pungitius pungitius) (Arai and Goto 2008), freshwater
mullet (Mugilidae, Myxus petardi) (Miles et al. 2009) and the southern smelts
(Retropinnidae) (Crook et al. 2008). Amphidromy has also recently been reported from
the freshwater pipefish Microphis leiaspis (Ishihara and Tachihara 2008) and Indo-
Pacific flagtails (Feutry et al. 2012a,b), adding two additional families (Syngnathidae
and Kuhliidae respectively) to the list collated by McDowall (1988).
Amphidromous fish have a broad global distribution, although they are particularly
prevalent on islands across the Indo-Pacific and Caribbean, and in the coastal streams of
southern Australia and South America, and New Zealand, with taxonomic composition
varying greatly between regions (McDowall 2007; Keith 2011). Amphidromous
Gobiidae, particularly in the subfamily Sicydiinae, are widespread across the Indo-
Pacific and Caribbean, often dominating the ichthyofauna of small islands and coastal
streams on larger land masses throughout these regions (Keith 2003; Lyons 2005;
Thuesen et al. 2011). Although they are most typically associated with small oceanic
islands (Keith 2003), they can also be found on larger landmasses including the small
coastal streams of Central America, Mexico, West Africa, Madagascar, New Caledonia,
Japan (Lyons 2005; Keith etal. 2011a, 2011b), and have recently been found in coastal
streams in the wet tropics of northeast Australia (Thuesen et al. 2011) and mainland
China (Nip 2010). Around the northern and north-eastern Pacific coastlines, several
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amphidromous sculpins (cottids) occur (Patten 1971; Goto 1990), the number of which
is likely to increase as the taxonomic and life-history knowledge of this group expands
(Goto and Arai 2006; Tsukagoshi et al. 2011). Around the coastlines of New Zealand,
and southern Australia and South America, various species of amphidromous galaxiid
occur, with the greatest diversity being found in southeast Australia and New Zealand
(Allen et al. 2002; McDowall 2010b). Amphidromous eleotrids also occur throughout
the Indo-Pacific region, although understanding of the life history of many species is
limited (Miles 2009; Nordlie 2012).

Larval dispersal has played a key role in the biogeographic distribution
of amphidromous fishes (McDowall 2004; Lyons 2005; Keith et al. 2011b).
Amphidromous fishes include some of the most widely distributed of any species;
Sicyopterus lagocephalus has a distribution extending from the western Indian Ocean
across to the western and eastern Pacific Ocean, including Japan and northeastern
Australia (Lord et al. 2012), and Galaxias maculatus has a circumpolar distribution
including New Zealand and southern Australia and South America (Barbee et al. 2011).
Larval dispersal is the only plausible mechanism that could have facilitated such a
distribution (McDowall 2004; Keith et al. 2011b). Genetic studies on S. lagocephalus
suggest high levels of gene flow across much of the species’ extensive range, while
results for G. maculatus suggest extensive intra-continental gene flow, but only limited
inter-continental exchange (Waters et al. 2000). The biogeography of the Sicydiinae
gobies is also best explained by successive dispersal, colonization and divergence
events (Keith et al. 2011b). The expansive distribution of some species contrasts with
the very limited distribution of others species (Keith et al. 2011b; Lord et al. 2012), with
some indication that the duration of the larval phase influences the extent of dispersal
and hence distribution (Lord et al. 2010). However, the duration of the larval phase
bears little or no relationship with the extent of distribution amongst some groups of
species (Taillebois et al. 2012).

At finer spatial scales, the distribution and highest diversity of amphidromous fish
species is most commonly associated with oceanic islands that have a high geographic
relief with steep, fast flowing streams (Keith 2003, 2011; McDowall 2004, 2007), and
more recently with steep small coastal streams on continental land masses (Lyons 2005;
Iguchi 2007; Thuesen et al. 2011). The dominance of amphidromous fish on isolated
islands has been attributed to their ability to disperse, and colonize either recently
formed or highly disturbed habitats (McDowall 2007; Keith 2011; Thueusen et al.
2011). However, their absence from low gradient, and often larger river systems, may
be related to the slow and limited transport of newly hatched larvae to the sea prior to
a pelagic rearing phase (Lyons 2005; Iguchi 2007; Closs et al. 2013). Amphidromous
fish typically exhibit high levels of individual fecundity, producing relatively
small eggs and often hatching at a very early stage of development (Goto 1990;
Keith 2003; McDowall 2009). However, due to the small size of the larvae, death from
starvation occurs relatively rapidly following hatching, necessitating rapid transfer
from their place of hatching in a fluvial environment to the pelagic feeding and rearing
environment (Moriyama et al. 1998; Iguchi and Mizuno 1999; Tamada and Iwata
2005). Increasing female and egg size in Rhinogobius sp. CB with distance upstream
has been proposed as a mechanism enabling increased larval resistance to starvation,
and hence survival whilst drifting downstream to the sea (Tamada 2009). Alternatively,
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downstream migration by adults to spawn close to the sea, thus reducing the distance
larvae must travel to their pelagic rearing habitat, may be a mechanism that enables
some amphidromous species to occupy low gradient river systems (McDowall 2009).

Key features and characteristics of amphidromy

The diadromous migratory syndrome first defined as amphidromy by Myers (1949),
and later refined by McDowall (McDowall 1997, 2007), is exemplified by the Sicydiine
gobies (e.g., Sicyopterus, Sicyopus, Smilosicyopus and Stiphodon) of the Indo-Pacific
and Caribbean, which are often found inhabiting tropical freshwater streams on rocky
islands, often of geologically recent volcanic origin (Keith 2003; McDowall 2007).
Freshwaters in these regions are characterized by small disturbance prone streams and
rivers, which are often punctuated by spectacular waterfalls and dramatic elevation
changes (Poff and Ward 1989; Keith 2003). Amongst the taxonomically diverse
Sicydiine gobies, amphidromy occurs in the following fashion. Adults occupying
freshwater habitats in these systems are often herbivorous (although this is not a
characteristic of most amphidromous fish), thus offering access to an abundant food
resource and avoiding reliance on macroinvertebrates, a prey item which is often
scarce in these depauperate systems (Benstead et al. 2009). The adults may spawn
in place, or make coordinated downstream movements associated with spawning
(Keith 2003; Goto 1986; Iguchi et al. 2005; Iguchi and Mizuno 1999). Adults will pair
off and spawn on the undersides of rocks and crevices using a variety of strategies
for mate selection including body size, nest location (Ito and Yanagisawa 2003),
and swimming ability (Takahashi and Kohda 2004). Fecundity is high, and large
numbers of small eggs are produced. Small egg size is a shared characteristic of
most amphidromous fishes (McDowall 2009a), and often contrasts with larger egg
sizes found in closely related non-migratory conspecifics (Goto 1990; Elgar 1990;
Closs et al. 2013). Amongst the Sicydiine gobies there is some limited parental care,
with nests sometimes being guarded by the male up to the point where the eggs
hatch and larvae are released. Following an abbreviated development in the egg,
newly hatched larvae emerge and mostly rely on downstream currents to sweep
them out of the adult habitat and into the proximate pelagic habitat (Keith 2003;
McDowall 2008; Yamasaki et al. 2011).

Amongst the Sicydiine gobies, the pelagic rearing habitat is the near shore
marine environment, but for other amphidromous fishes the pelagic habitat could be a
downstream freshwater lake or other large water body providing the pelagic conditions
necessary for larval development (Closs et al. 2003; David et al. 2004; Closs et al.
2013). There is recent evidence supporting an abbreviated migration in some species,
whereby larvae are retained within the influence of the freshwater plume of the natal
stream (Sorensen and Hobson 2005) or the nearshore coastal environment (Hicks 2012;
Kondo et al. 2013). Details of the larval movements for most species are unknown, but
for at least some, the larvae will undergo broader movements into adjacent longshore
currents where they may be carried for long distances, sometimes between continental
land masses (Waters et al. 2000; Lord et al. 2010). During the pelagic rearing phase, the
larvae feed actively on co-occurring zooplankton and make the transition from larvae
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to juvenile (Kondo et al. 2013). A common morphological trait of amphidromous fish
larvae during this period is a lack of body pigmentation, making the larvae translucent
(Kondo et al. 2013). This translucent appearance is associated with occupation of the
pelagic habitat and is assumed to be for predator avoidance. When the larvae achieve
a certain body size or competency, they then undergo their second migration, cued by
some zeitgeber (cues of temperature, salinity, light, developmental stage or combination
thereof) to transition from the larval marine habitat into the adult freshwater habitat
(Boehlert and Mundy 1988; Keith 2003). There is some evidence that the odour of
adult conspecifics may act as a cue, guiding juveniles back into suitable streams
on their return from marine habitats (Baker and Montgomery 2001; Baker 2003;
Baker and Hicks 2003; Hale et al. 2008, 2009a), although the importance of these
cues in natural situations has been questioned (Hale et al. 2009b).

Body size at the time of the migration back to freshwater is species-specific, or
even population-specific in the case of Galaxias maculatus (Barbee et al. 2011). Some
goby species migrate to freshwater at little more than 13 mm (Keith 2003), whilst
galaxiid species may transition to freshwater at lengths greater than 50 mm (McDowall
2000). This leg of the migration is marked by multiple physiological transformations,
such as changes in body and fin morphology, pigmentation, behaviour and diet
(Keith et al. 2008; Kondo et al. 2013). In the case of Sicydiine gobies, the change
in feeding is particularly marked with juveniles making a transition from a pelagic
planktivorous habit to a benthic algal grazing habit (Keith 2003). Transitions of
this nature are often reflected in the micro-structure of the fish’s otoliths or ear
bones (Campana 1999; Hale et al. 2008, 2009a), through a visible ‘check mark’ that
will signify the transition from the pelagic to the benthic habitat (Lord et al. 2010;
Shafer 2000). Post-larval fishes often make this transition within the estuarine interface,
and are miniature versions of the adults less than a month after entering the non-tidal
freshwater habitat (Keith et al. 2008). Once in the non-tidal freshwater habitat, they
will continue their migration into the adult habitat to complete the life cycle, often
overcoming extreme vertical drop structures, aided by the ventral fin sucker in the
case of the Sicydiine gobies (Keith 2003), or strong pectoral and pelvic fins in the
case of some galaxiids (David et al. 2009; David and Hamer 2012).

Downstream migration of larvae

The transition of newly hatched larvae to their pelagic rearing environment, be it
sea or lake, appears to be a particularly vulnerable stage in the amphidromous life
cycle (McDowall 2009). The eggs and larvae of many amphidromous fish are very
small, usually less than 1.0 mm in diameter (McDowall 2009a), with newly hatched
and poorly resourced larvae needing to gain access to small planktonic prey within
a few days if they are not to starve (Moriyama et al. 1998; Iguchi and Mizuno 1999;
Iguchi 2007). Various mechanisms appear to facilitate the rapid downstream transport
of larvae to a pelagic habitat, including the downstream migrations by adults prior
to spawning (Iguchi et al. 2005; Goto 1990; McDowall 2008). In many species,
spawning takes place within the adult habitat (Fitzsimons et al. 2007; Allibone and
Caskey 2000), hence newly hatched larvae must rely on passive transport on river
currents into the pelagic nursery habitat (Goto 1990; Luton et al. 2005; McDowall
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2009). In various gobiids and galaxiids, spawning and or hatching is timed to coincide
with flood events (O’Connor and Koehn 1998; Charteris et al. 2003; Fitzsimons et al.
2007; McDowall 2009), perhaps increasing the likelihood of rapid transit to the sea.
In some species of galaxiids, eggs are deposited so that they remain stranded amongst
bankside vegetation as the floodwaters recede, with hatching triggered only when the
eggs are resubmerged by floodwaters (O’Connor and Koehn 1998; Charteris et al.
2003). The larvae of many amphidromous fish are poorly developed, and only have
limited capacity to maintain their position in the water column and drift downstream
(Goto 1990; McDowall 2008; Ellien et al. 2011). McDowall (2008) argued that this
pattern of early hatch, occurring as early as within 2448 hours of fertilization in some
species, ensures that migrating larvae have sufficient yolk to survive the downstream
passage. As mentioned previously, slow flowing river reaches may act as barriers to
the passively transported larvae, thus restricting most amphidromous species to steep,
fast flowing coastal streams (Lyons 2005; Iguchi 2007; Thuesen et al. 2011).

Downstream migration of adults

Downstream migration of adults to spawning habitats close to the marine interface
are known for a number of amphidromous species in multiple families including
Galaxias maculatus (Galaxiidae) (McDowall 1990), Awaous guamensis (Gobiidae)
(Ha and Kinzie 1996), Cheimarrichthys fosteri (Scrimgeour and Eldon 1989) and
Plecoglossus altivelis (Osmeridae) (Iguchi et al. 1998). This downstream migration
prior to spawning may be a mechanism to reduce the distance newly hatched larvae
must drift to their pelagic rearing habitat (McDowall 2008). In several species, it
appears that the spawning sites, whilst still in freshwater, are located as close as is
possible to the marine larval rearing habitat. For example, Awaous guamensis spawns
in the first riffle upstream of the estuary (Ha and Kinzie 1996), and Galaxias maculatus
deposit their eggs amongst vegetation on spring high tides, leaving the developing
eggs stranded above the tideline until the next spring high tide (McDowall 1990;
McDowall and Charteris 2006). Such strategies are likely to leave larvae well placed
for a rapid transfer to the marine pelagic habitat (McDowall 2008). The life cycle of
these downstream migrating amphidromous species, including Galaxias maculatus, has
been described as being ‘marginally catadromous’ (McDowall 1990), and the similarity
between amphidromous and catadromous life histories has been noted by other authors
(Fitzsimons et al. 2002; Kondo et al. 2013). Downstream migration of adults may allow
some amphidromous species, such as Galaxias maculatus and Prototroctes maraena,
to overcome the barriers to downstream larval migration that exist in low gradient
habitats (see Lyons 2005; Iguchi 2007). Physiological constraints may restrict egg,
sperm and early larval survival to freshwater in some groups, including galaxiids and
Plecoglossus altivelis (Hicks et al. 2010; Iguchi and Takeshima 2011; Wylie 2011),
thus preventing a full transition to a catadromous life history.

Facultative amphidromy and land-locked populations

In several amphidromous genera (Gobiomorphus, Galaxias, Cottus, Rhinogobius,
Retropinna amongst others), the phenomena of land-locking is a common and
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repeated phenomena (Goto et al. 2002; Closs et al. 2003; David et al. 2004;
Crook et al. 2008; Tsunagawa and Arai 2008; Michel et al. 2008; Chapman et al.
2009). Amphidromous land-locking is the process whereby a species completes its
life cycle entirely within freshwater, with the pelagic larval phase occurring in a lentic
rather than marine environment (McDowall 1988). This has been observed even in
systems where natural lakes are connected to the sea by river channels, sometimes
resulting in mixed amphidromous and non-migratory populations (Closs et al. 2003;
Hicks 2012). It has also been observed to occur in newly created lake habitats produced
by human impoundment (McDowall and Allibone 1994; Kawakami and Tachihara
2011), suggesting that at least for some species, the marine phase of the life-cycle is
facultative. There appears to be considerable variation in the propensity of species and
particular groups to form land-locked populations; for example, within the galaxiids,
Galaxias truttaceus and Galaxias brevipinnis, readily form land-locked populations
(Humphries 1989; Hicks 2012), whereas none are known for Galaxias postvectus.
Similarly, whilst various Rhinogobius species readily form land-locked populations,
there are no known examples of land-locked Sicydiine gobies (Keith 2003) suggesting
that there may be physiological constraints dictating whether a species has the ability
to form non-diadromous populations. Exposure to seawater appears to be a critical
factor in triggering the final stages of larval development in some Sicydiine gobies
(Ellien et al. 2011). The propensity for some species or taxonomic groups to form
landlocked populations may promote speciation into non-diadromous forms, as in the
Galaxiidae, where amphidromous ancestors have given rise to a suite of closely related
non-amphidromous species (Waters and Wallis 2001). However, land-locking does
not appear to be a prerequisite for speciation, as there are examples of amphidromous
gobioids radiating into non-amphidromous variants without any evidence for the prior
formation of landlocked populations (Iguchi 2007; Kondo et al. 2013).

What is the ecological function of amphidromy?

McDowall (2007) discussed eight possible reasons for the existence of amphidromy
including: (i) enhanced dispersal to vacant habitats; (ii) enhanced recolonization of
previously extirpated habitats; (iii) predator avoidance; (iv) adult habitat suitability;
(v) adult adaptation to steep vertical drops in island catchments; (vi) maintenance of
high levels of fecundity; (vii) beneficial source/sink population dynamics; and (viii)
broad dispersal ability through a planktonic life stage. McDowall (2007, 2010) argued
that, among these reasons, dispersal to vacant habitat was the most likely reason for
amphidromy, based on the widespread distribution of many species and the dominance
of amphidromous fish on isolated islands, many of which are geologically recent,
isolated and volcanic in origin. The observation of fish communities dominated by
amphidromous fish on geologically recent volcanic islands, in catchments defaunated
by volcanic eruptions or ice sheets, or small tropical ephemeral streams, have all been
presented as evidence supporting amphidromy as a mechanism for dispersal and
colonization of vacant habitat (McDowall 2007, 2010b; Leathwick et al. 2008; lida
et al. 2009; Keith et al. 2011b; Thuesen et al. 2011). Communities in such recently
formed or frequently disturbed streams are often depauperate, with few competitors or
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predators, thus there are potentially significant rewards for any individuals that manage
to colonize them (Keith 2003; McDowall 2007). However, whilst amphidromous
fish may possess traits that enable them to colonize and exploit habitats that have
been recently created or significantly disturbed (e.g., volcanism, drought or an ice
age), it is difficult to conceive of a mechanism that would allow species to evolve
a trait that is specifically adapted to take advantage of such rare and unpredictable
events (Lytle 2001; Closs et al. 2013). Hence, whilst the biogeographic distribution
of amphidromous groups of fish can be partly explained by dispersal and colonization
of disturbed and isolated habitats (McDowall 2007, 2010b; Leathwick et al. 2008;
lida et al. 2009; Keith et al. 2011b; Thuesen et al. 2011), a dispersive function for
amphidromy does not provide a coherent explanation as to why amphidromous fish
undertake such arduous and risky migrations to complete their life cycle, generation
after generation and often in habitats not subjected to any obvious recent disturbance,
nor how such pelagic larvae evolved in the first instance (Closs et al. 2013). There is also
accumulating evidence that rather than dispersing, the larvae of many amphidromous
fish actively avoid dispersal by rearing in freshwater river plumes (Sorensen and
Hobson 2005; Hicks 2012; Kawakami and Tachihara 2011; Kondo et al. 2013), or in
coastal freshwater and estuarine lagoons (Closs et al. 2003; David et al. 2004; Ohara
et al. 2009; Hicks 2012). Furthermore, the restricted distribution and endemicity of
many insular amphidromous species (Ikeda et al. 2003; Keith 2003; Murphy and
Cowan 2007; Lord et al. 2010; Keith et al. paper) suggests widespread dispersal is
not a feature of the life cycle of many species.

The repeated observation that non-migratory species of Cottus, Rhinogobius and
Galaxias, which evolved from amphidromous species, have relatively larger eggs
and are less fecund than their amphidromous sister-taxa (McDowall 1970, 2009,
2010a; Goto 1990; Katoh and Nishida 1994; Goto et al. 2002; Goto and Arai 2003;
Maruyama et al. 2003; Yokoyama and Goto 2005) suggests a possible egg size/
fecundity life-history trade-off (see Smith and Fretwell 1974) may be influencing
the reproductive ecology of these fish (Closs et al. 2013). The newly hatched larvae
of the non-migratory conspecifics are relatively larger and more developmentally
advanced, and are largely benthic in habit, compared to the newly hatched larvae of
amphidromous species (Goto 1990; Mcdowall 2007). There are likely to be several
reasons as to why larger, more developmentally advanced larvae are likely to be
advantageous in freshwater, and particularly in stream environments (Closs et al.
2013). Such larvae have a greater capacity to resist currents in streams (McDowall
2007; Jellyman and Mclntosh 2010), larger gape size and hence access to a wider
range of prey (McDowall 2007), greater tolerance to starvation (Moriyama et al.
1998; Iguchi and Mizuno 1999; Maruyama et al. 2003; Tamada and Iwata 2005)
and reduced susceptibility to spinal malformations caused by trematode infections
(Kelly et al. 2010; Poulin et al. 2012). However, whilst the production of large
eggs may be required for the survival of larvae in difficult freshwater environments
(Einum and Fleming 1999, 2000), species that evolve wholly freshwater life cycles
tend to be significantly less fecund than their amphidromous sister-species (McDowall
1970, 2007, 2010a; Patten 1971; Humphries 1989; Goto 1990).

A striking feature of the distribution of amphidromous species and their
closely related non-migratory conspecifics is that they are largely allopatric, with
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non-migratory species mostly upstream of the amphidromous species (Goto 1990;
Leathwick et al. 2008). Whilst the downstream migration of larvae (Goto 1990;
Moriyama et al. 1998; Iguchi and Mizuno 1999; Maruyama et al. 2003; Tamada and
Iwata 2005; Ellien et al. 2011) and the upstream migration of juveniles (McDowall
1998) place obvious constraints on the distribution of amphidromous species, it is not
obvious why the distribution of non-migratory species is restricted to habitats upstream
of'the amphidromous species. However, the non-migratory species are likely to be at a
significant competitive disadvantage in habitats close to the pelagic rearing habitat of
their significantly more fecund amphidromous relatives. These patterns of distribution,
fecundity and larval ecology suggest that amphidromy may be a life-history strategy
that enables small freshwater fish (mostly fluvial) to maintain a high level of fecundity
by producing small eggs and pelagic larvae, at least in habitats relatively close to
suitable marine or lentic pelagic habitats (Closs et al. 2013).

Conservation of amphidromous species
Disruption of migration corridors

Amphidromous fish face similar challenges and vulnerabilities as other diadromous
fish species due to their migration between freshwater and marine biomes (Keith 2003;
Nordlie 2012; Ramirez et al. 2012; Walter et al. 2012). Of particular importance is
the risk of disruption of long migratory corridors due to multiple impacts, including
poorly constructed road culverts and dams (Joy and Death 2001; David et al. 2009;
David and Hamer 2012), water abstraction, pollution, and instream habitat degradation
including deforestation, particularly of the lower reaches of rivers (Luton et al. 2005;
McEwan and Joy 2009; Gorbach et al. 2012; Walter et al. 2012; Ramirez et al. 2012;
Nordlie 2012). Recent work suggests that remediation of passage through poorly
designed culverts may be achieved by the strategic placement of climbing ropes
(David et al. 2009; David and Hamer 2012), however there is little or no information
on how larger barriers to migration may be overcome. In some regions, over-collecting
by aquarists may also pose a threat (Ebner et al. 2011). Whilst multiple populations
connected by larval dispersal may confer a degree of resilience on amphidromous
populations that are subjected to the occasional disturbance (Thuesen et al. 2011), there
is concern that the loss of critical habitat for either adults, juveniles or for spawning
may also create population sinks, whereby juveniles are attracted in from the sea but
are unable to complete their life cycle in degraded habitats (Hickford and Schiel 2011).
The effects of such diffuse impacts on multiple inter-connected populations distributed
across a broad landscape are largely unknown (Hickford and Schiel 2011). Whilst
some amphidromous species are widespread (Keith 2003; McDowall 2007; Lord
et al. 2012), the distribution of many amphidromous fish is comparatively restricted,
often to a single island or limited number of catchments (Ishihara and Tachihara
2008; Maeda et al. 2011; Lord et al. 2012), thus making them vulnerable to land-use
intensification and roading developments that may degrade migration corridors and
habitat across their entire range (e.g., MacKenzie 2008).
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Fisheries

Juveniles of various gobies and galaxiids, returning to freshwater after the marine
pelagic phase of their life cycle, form the basis of artisanal, recreational and semi-
commercial fisheries in various regions, including New Zealand (McDowall 1990),
Reunion island (Hoareau et al. 2007; Valade et al. 2009; Teichert et al. 2012),
Caribbean, Colombia (Castellanos-Galindo et al. 2011) and the Philippines (Myers
1949). In New Zealand, whitebait fisheries are based on the return migration of
the post-larval stage of five species of Galaxias (G. maculatus, G. argenteus, G.
brevipinnis, G. fasciatus and G. postvectis) (McDowall 1990), although the fishery
is generally dominated by G. maculatus (Rowe et al. 1992). Historically, the fishery
has undergone a significant decline, with limited understanding of the relationships
between adult and juvenile populations (Hickford and Schiel 2011). In 1955, the annual
whitebait catch on the West Coast, New Zealand peaked at 322,000 kg (McDowall
and Eldon 1980), and given that the weight of each juvenile fish is approximately 0.45
g, the total catch represents a truly staggering number of individuals being removed
from the population. However, the impact of fisheries-induced mortality is largely
unknown, and declines in the abundance of galaxiid whitebait have mostly been
attributed to habitat degradation associated with intensification of agriculture and
draining of coastal wetlands (Hickford and Schiel 2011). In Colombia, on the tropical
eastern Pacific coastline, the post larvae of Sicydium salvini are collected in a goby-
fry fishery that represents an important seasonal food source for coastal populations
(Castellanos-Galindo et al. 2011). As much as 1.37 ton per month may be harvested
by a single village of 5000 inhabitants, representing the removal of approximately 20
million fish from the population (Castellanos-Galindo et al. 2011). Globally, goby-
fry fisheries are largely unmanaged with little or no data on historic or current yields
(Bell 1999). Even in New Zealand, known globally for its proactive management of
marine fisheries, the amphidromous whitebait fishery is largely unregulated with no
accurate collection of catch data. Some management of the fishery comes in the form
of seasonal and daylight limits on fishing activities. These limits are designed to allow
passage of some fraction of the catchable returning larval population, even during the
active fishing season, although at present there is no published data on the value of
these conservation measures.

Techniques for meeting research challenges

A major challenge in understanding the extent and dynamics of amphidromy is that
the critical migratory stages primarily occur in the larval and post-larval life history
stages (McDowall 2007). Due to the small size of these migratory life history stages,
the more traditional methods used to tag and track the movements of larger fish
cannot be used to track the migration of amphidromous fish (McDowall et al. 1975;
Walther and Limburg 2012), and hence amphidromous migrations remain poorly
described and understood (Keith 2003; McDowall 2007). Otolith microstructure
analysis of daily increments and annuli (Campana 1999) can provide some indication
of the age of larval and post-larval transitions between marine and freshwater habitats
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(McDowall et al. 1994; Hale 2008, 2009a; Lord et al. 2010; Shafer 2000), however
such methods cannot provide information on where the larvae have been.

Chemical analyses of various hard and soft body tissues are providing valuable
insights into the ecology of amphidromous fish, potentially providing information on
both movements and their timing (Walther and Limburg 2012). For example, stable
isotope analysis (6'*C, 8'°N) of post-larvae of amphidromous gobies entering freshwater
streams in Hawaii suggests the larvae reared within the freshwater plume of streams
entering the inshore environment, most likely without dispersing widely (Sorensen and
Hobsen 2005). Such information is at odds with assumptions and evidence, gathered
mostly through genetic techniques, of broad mixing of amphidromous larvae in the
pelagic offshore environment (Waters et al. 2000; Keith et al. 2005b; Schmidt et al.
2010; Lord et al. 2012).

Otolith microchemistry is a rapidly developing field of research whereby trace
element composition and isotopic ratios within the layers of the otolith are analyzed,
allowing researchers to reconstruct life histories (Elsdon et al. 2008; Walther and
Limburg 2012), and potentially describe fine scale movement within habitats across
the lifetime of a single animal (Elsdon and Gillanders 2005). Otolith microchemical
analyses are providing significant insights into the larval and post-larval life-history
phases in many amphidromous species, including confirmation of amphidromy and
duration of larval phase in species for which detailed life history information is
lacking (Goto and Arai 2003, 2006; Iguchi et al. 2005; Crook et al. 2008; Tsunagawa
and Arai 2008; Miles et al. 2009; Lord et al. 2010; Feutry et al. 2012), evidence of
facultative amphidromy in a variety of species (Closs et al. 2003; David et al. 2004;
Hicks et al. 2005; Arai and Goto 2008; Crook et al. 2008; Ohara et al. 2009; Hicks
2012), and indications of regional philopatry in species of Galaxias and Gobiomorphus
(Hicks 2012).

Specialized field sampling techniques

Because of the broad range of habitats and large-scale migrations that define
amphidromous life histories, specialized sampling techniques may be required to
answer research questions. As larval life history is perhaps the biggest missing piece in
the puzzle of amphidromous life cycles, specialized sampling gear focused on detecting
and capturing larval fishes may provide additional insights. Specialized plankton
and drift nets commonly employed in plankton and freshwater macroinvertebrate
sampling may find use when focusing on amphidromous fishes (Luton et al. 2005;
Bell 2007). Setting drift nets to capture downstream movements of larval fishes during
the first few hours after dark may provide insights into community composition and
reproductive timing (Luton et al. 2005). Snorkel surveys have also proved to be
effective at detecting these otherwise difficult to sample fish species (Thuesen et al.
2011). Night spotlighting using a powerful lamp or torch has also been found to be
an excellent alternative to more traditional methods to both locate and catch fish in
hand nets, resulting in greater detection of species and providing better estimates
of density, particularly in low water velocity conditions (Hickey and Closs 2006;
David et al. 2007; Hansen and Closs 2005).
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Conclusions

Recognition of amphidromy as a distinct form of diadromous migration has been
slow (McDowall 2010). However based on the increasingly widespread and frequent
use of the term, amphidromy now has a well-recognized place in the lexicon of
fisheries biology. Myers’ (1949) original definition of amphidromy was rather vague,
simply referring to it as migration not associated with breeding between the sea
and freshwaters. However, Myers’ use of Sicydium to illustrate what he meant by
amphidromy clearly suggests that his views were not that dissimilar to the conceptual
refinement of amphidromy as later proposed and developed by McDowall (1997, 1998,
2007, 2010). It is the late Bob McDowall who deserves much of the credit for taking
Myers’ (1949) original definition and refining the concept (McDowall 2007, 2010) into
a form that is readily recognized and clearly applies to a wide variety of mostly small
freshwater fish that often dominate fish communities in coastal streams in many regions
of the world. The availability of rapidly developing analytical techniques, particularly
in the area of otolith microchemistry (Walther et al. 2012) and genetics (Lord et al.
2012), is also driving research in amphidromy, enabling analyses of population-level
patterns of movement, recruitment and source-sink dynamics (Closs et al. 2003;
Crook et al. 2008; Ohara et al. 2009; Lord et al. 2010, 2012; Hicks 2012). These
techniques will enable researchers to increasingly address critical knowledge gaps in
the ecology of amphidromous fishes, particularly in our understanding of the extent
of movement and exchange of larvae between adult populations, and the ecological
requirements of larvae in marine and lentic pelagic environments.
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Overview on oceanodromous fish migration

In the ocean, population requirements often imply the use of different habitats, either
due to variable environmental conditions (e.g., temperature, dissolved oxygen), or a
change in the necessities of the population itself (e.g., foraging habitat vs. spawning
habitat) (Binder et al. 2011). In such cases, individuals benefit from moving to
an alternative habitat and as a result, many fish species develop a life history that
involves migration (e.g., Block et al. 2001; Sims et al. 2003; Walli et al. 2009; Chiang
et al. 2014). The term migration, although frequently used in biology, is difficult to
define satisfactorily; this is because in different fields, or more specifically, when
studying different species, it can have different meanings (Baker 1978; Aidley 1981;
Smith 1985). Therefore, some definitions fail to include movements that would
otherwise be classified as migrations in some specific cases (Smith 1985). For
example, long-distance, directed movements such as wide-scale foraging trips are
often not considered migratory movements. However, as long-term movements can
have considerable biological importance for oceanodromous species (and the whole
sequence is usually necessary for successful completion of the life cycle), such cases
should be classified as migrations (Smith 1985). Using a broader definition, Baker
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(1978) described migration as “the act of moving from one spatial unit to other”, with
this definition being later applied to oceanic fishes (Aidley 1981). Similarly, Jones
(1984) when referring to open ocean migrators, applied the word ‘migration’ to the
recurrent movement pattern of fish moving to and from a given location with the
seasons. For tuna species, a group of well-studied oceanodromous fish, a more specific
definition was proposed by Nakamura (1969) and later used by Humston et al. (2000),
where (1) movements within a habitat induced by alterations in local abiotic or biotic
conditions and/or (2) directed movements of fish between habitats due to changes
in biological requirements, were regarded as migrations. Nonetheless, a common
feature in all definitions is that migration involves the movement of individuals and
populations between well-defined areas or habitats, usually on a cyclical or seasonal
timescale (Metcalfe et al. 2008).

This chapter focuses on the migratory processes and patterns of oceanodromous
fish, using as examples studies where movement data was obtained using archival
and Pop-off Satellite Archival Tags (PSATSs) (see Chapter 13). For the purpose of this
chapter, migration will be classified as long-term horizontal movements between
areas, mainly driven by alterations in species requirements, such as reproduction,
feeding events or wide-scale foraging opportunities. In the first part of the chapter,
we emphasize the importance of tracking, characterizing the migratory movement
patterns of several teleost, such as tunas and swordfish, and elasmobranchs species.
Subsequently, migration triggers and cues, such as environmental changes or reductions
in feeding success, will be described; later followed by the definition of the main
drivers behind oceanodromous fish migrations, focusing on feeding vs. reproduction
dichotomy and wider scale foraging opportunities, while providing valuable examples.
At the end of the chapter, navigational cues that fish may use in the open ocean will
also be explored and the conservation status of the most emblematic oceanodromous
migratory species will also be briefly examined.

Migratory species and tracking

Approximately 2.5% of all fish species display a migratory behaviour (Binder
etal. 2011). In 1982, the United Nations Convention on the Law of the Sea (UNCLOS),
created a new category of species named ‘highly migratory species’, acknowledging
that some species move considerable distances in the open ocean and often between
zones with different jurisdictions (Burke 1984). Due to the vast expanse of the oceanic
environment and the difficulty of following animals, documenting the movements of
marine migratory species has been challenging (Chapman et al. 2015). For example,
conventional tagging (mark-recapture) of fish provides only two locations, one
where the fish was released and other where the fish was caught (Priede and French
1991). As detailed in Chapter 13, unprecedented advances in archival and satellite
tagging have been achieved during the last decade (Schaefer and Fuller 2016).
Numerous technological innovations such as increased memory, sensor performance
and improved component reliability were implemented and have allowed long-term
tracking of movements and migrations of a variety of fish species. Hence, it has been
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possible to characterize the migratory movements of several teleost and elasmobranchs
species. For example, pop-off archival tags have been successfully used to track the
movements of large pelagic fishes, including tunas (e.g., Block et al. 1998; Wilson et
al. 2005; Block 2011), billfishes (e.g., Takahashi et al. 2003; Kraus et al. 2011; Chiang
et al. 2014) and sharks (e.g., Skomal et al. 2004; Bonfil et al. 2005; Sims et al. 2005;
Weng et al. 2007; Bonfil et al. 2010; Hueter et al. 2013; Chapman et al. 2015). So
far, 17 shark species, representing seven families from four orders have been satellite
tagged (with migrations observed in 40% of the studied species), although 40% of the
studies focused on as few as three different shark species; white shark Carcharodon
carcharias (Linnaeus, 1758) (20%) (e.g., Bonfil et al. 2005; Bruce et al. 2006;
Weng et al. 2007; Domeier and Nasby-Lucas 2008; Jorgensen et al. 2009), basking
shark Cetorhinus maximus (Gunnerus, 1765) (16%) (e.g., Sims et al. 2003;
Skomal et al. 2004; Sims et al. 2005; Skomal et al. 2009) and whale shark Rhincodon
typus (Smith, 1828) (14%) (e.g., Wilson et al. 2006, Hammerschlag et al. 2011).
Similarly, a recent review study (Braun et al. 2015) revealed that migrations were
observed for swordfish Xiphias gladius (Linnaeus, 1758), blue marlin Makaira nigricans
(Lacepéde, 1802), and black marlin Istiompax indica (Cuvier, 1832), which accounted
for 40% of the analyzed species. Finally, with the exception of bigeye tuna Thunnus
obesus (Lowe, 1839), migrations were described for the Atlantic tuna Thunnus thynnus
(Linnaeus, 1758), Pacific bluefin tuna Thunnus orientalis (Temminck and Schlegel,
1844), albacore tuna Thunnus alalunga (Bonnaterre, 1788) and yellowfin tuna Thunnus
albacares (Bonnaterre, 1788) (De Metrio et al. 2002, Itoh et al. 2003, Block et al. 2005,
Kitagawa et al. 2007, Schaefer et al. 2007, Teo et al. 2007, Childers et al. 2011). See
Fig. 8.1 for spatial distribution of migratory archival- and satellite-based studies.

Migration triggers

The timing of key life history traits, such as migratory reproduction and/or feeding, can
have significant fitness consequences (Baker 1978; McNamara et al. 2011). Migration
timing determines the degree of spatio-temporal overlap with important resources or
environmental conditions and ecological interactions that are vital to survival and/
or reproduction (Scheuerell et al. 2009), particularly in environments with strong
seasonal variations. Many migratory species are known to use endogenous (e.g.,
hormone concentrations and body size) often coupled with environmental cues (e.g.,
temperature and food supply) to initiate migration. For example, migrations in sharks
and tunas are frequently directly related to seasonal changes in water temperature
(Kimura and Sugimoto 1997; Wilson et al. 2001; Wilson et al. 2006). Whale sharks
are known to aggregate in the coastal waters off Ningaloo Reef, migrate to the North-
eastern Indian Ocean (Wilson et al. 2006; pop-off archival tags) and return to the
same location in subsequent years. This seasonal aggregation of whale sharks off
Ningaloo Reef appears to be associated with a seasonal southerly movement of warm
water masses down the coast of western Australia. Hence, the seasonal alteration in
the current pattern may act as temporal signal triggering the southerly movements
of whale sharks back to Ningaloo Reef. Also, the extension of warm waters down
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Figure 8.1. Worldwide spatial distribution of the tagging studies described in this chapter.

the coast of western Australia allows whale sharks to exploit abundant food sources
in an expanded geographic range (Wilson et al. 2001). The relation between whale
shark migration and shifts in the currents was also investigated in Maldives, where
the seasonal movement of this species appeared related with monsoons (Anderson
and Ahmed 1993; Kumari and Raman 2010). From May to November, the current
flows from west to east, leading to the development of local upwelling and triggering
a plankton bloom on the ‘downstream’ side of the Maldives. Whale sharks were most
commonly found on the eastern side of the Maldives during this period, moving to
the opposite side after the monsoon period.

Alterations in the water temperature can also indirectly influence the migration
timing of apex predators by affecting prey distribution and movements. For example,
changes in the Kuroshio (warm) and Oyashio (cold) currents likely influence the
movements of the Japanese saury Cololabis saira, a major prey species of albacore
tuna, and as a consequence triggered a migratory dispersion of the tuna population
to different areas in order to satisfy food requirements (Kimura and Sugimoto 1997).
As a result, an increase in the frequency of the trans-Pacific (west-east) migratory
movements was also observed (Kimura and Sugimoto 1997). The migration of
Pacific bluefin tuna from western to eastern Pacific was also linked with changes
in prey abundance (Itoh et al. 2003; Kitagawa et al. 2009), although it might be
also related with reproduction (see below reproduction vs. feeding dichotomy). In
years when sardines, one of the known prey of Pacific bluefin tuna, are abundant
off Japan, a higher proportion of this species stay in the western Pacific compared
with years when sardines are scarce (Polovina 1996). The migration of this species
along the coast of western North America, as demonstrated by satellite tags (Domeier
et al. 2005; Kitagawa et al. 2007; Boustany et al. 2010), is also likely related with the
seasonal shifts in prey availability induced by favourable environmental conditions
(upwelling/downwelling events). The increase of water temperature in central
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California (USA) during fall, accompanied by a northward movement or recruitment
of prey, leads to a northerly movement of the Pacific bluefin tuna along the coast.
Strong downwelling events in December cause a decrease in the productivity of the
northern region, and consequent reduction of the concentration of preys in the zone,
resulting in the return of tunas to the waters off southern California and further south
(Kitagawa et al. 2007) (Fig. 8.2).
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Figure 8.2. Trans-oceanic migratory paths of Pacific bluefin tuna Thunnus orientalis in the North Pacific
Ocean [A—Boustany et al. (2010); B—Kitagawa et al. (2009)]. Used with permission.

Changes in the prey distribution and food availability due to shifts in the water
temperature were also linked to the movements of swordfish, which migrated northwards
to Peru, a region with year-round upwelling, and returned south to Chile during the onset
of summer upwelling (Abascal et al. 2010). The influence of upwelling on the migration
of marine animals was also observed for non-fish species. For example the migration
of humpback whales to northerly areas coincides with coastal upwelling at target
locations, resulting in cool surface waters (Rasmussen et al. 2007). The same pattern was
observed for sooty shearwaters, where the arrival to wintering grounds in the Northern
Hemisphere occurs when oceanic productivity is higher than in the South Pacific, which
is due to coastal upwelling events (Shaffer et al. 2006). Although the motivation for
white shark migrations is unknown, sharks migrations off California may be related
with foraging success (Weng et al. 2007; Domeier and Nasby-Lucas 2008). Weng
et al. (2007) proposed that the timing of departure of white sharks tagged with PSATs
in the Farallones islands, off California, to offshore oceanic waters is connected with
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the decline of pinnipeds abundance, resulting in a decrease of hunting success and
therefore causing the sharks to leave the area shortly after (Weng et al. 2007). In
Australian waters, the time white sharks spent in a determined area also seems related
with food resources availability, but when these disperse, sharks undertake rapid and
directed movement away from such areas (Bruce et al. 2006). White sharks remained
in an area off eastern Victoria (South-east Australia) where snappers, a known prey of
white sharks in southern Australia, seasonally aggregate to spawn and left that area in
autumn when the snappers were dispersing (Malcolm et al. 2001). Also, the northern
movement along the eastern Australian coast during autumn may be related with the
movement of several schooling species and these schools movements provide cues for
the seasonal migration of white sharks (Bruce et al. 2006). Motivation for departure
of white sharks from Guadalupe island (off the north-western Mexican coast) is also
concomitant with the decline of prey, as yellowfin tuna (a possible prey item; Domeier
and Nasby-Lucas 2007) and fur seals, which usually coincides with a decrease in the
water temperature (Domeier and Nasby-Lucas 2008). Hence, individual white sharks
possibly choose a departure time that is closely related with their specific hunting
success and physiological condition (Domeier and Nasby-Lucas 2008). Migration as
a response to declines in prey abundance has been observed in other marine species,
like leatherback turtles (Sherrill-Mix et al. 2008) and humpback whales (Best 1995).

Migratory patterns

Marine species rely on specific conditions for feeding and reproduction that often
cannot be met in a single location (Binder et al. 2011). Therefore, animals are required
to migrate in order to fulfil their biological needs. Several reasons behind large-scale
horizontal migrations have been proposed, such as moving to predictable productive
oceanic areas where food is expected to be abundant, such as frontal zones or eddies,
to overwintering grounds where conditions are ideal for survival, or to spawning areas
where mating occurs or conditions for spawning are favourable (Nettestad et al. 1999).

Reproduction vs. feeding dichotomy

Reproduction is one of the main drivers of fish migrations. Roshier and Reid (2003)
refer to migration as the periodic, seasonally-driven movement to and from regular
breeding and non-breeding grounds (generally foraging grounds), implying a strong
philopatry [defined as “going to a place formerly occupied instead of equally probable
places” (Gerking 1959; Grubbs et al. 2007)] for breeding locations. Therefore, long-
distance migrations typically connect foraging and reproductive grounds (Dingle 2014).
In some cases only mature adults perform migrations, while immature individuals
display small-scale movements (e.g., Schaefer et al. 2007).

Satellite tracking of Atlantic bluefin tuna revealed rapid and ocean-wide
migrations, ranging from cool sub-polar foraging grounds in the Atlantic Ocean to
breeding grounds in warm subtropical waters. The western stock migrates to the Gulf
of Mexico from April to June, where warm waters are favourable for the development
of the eggs and larval stages (Block et al. 1998; Lutcavage et al. 1999; Block et al.
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2005; Wilson et al. 2005; Teo et al. 2007; Block 2011). Similarly, mature individuals
from the eastern stock move to productive, warm areas in the Mediterrancan Sea
from June to August, which are also feeding grounds for both pre- and post-spawning
fish (De Metrio et al. 2002; Block et al. 2005; De Metrio et al. 2005; Rooker et al.
2007; Teo et al. 2007; Hilborn et al. 2010; Aranda et al. 2013; Cermeiio et al. 2015)
(Fig. 8.3). Pacific bluefin tuna also exhibit trans-Pacific migratory behaviour, likely
driven by reproduction purposes. Juveniles migrate from the spawning grounds in
the western Pacific Ocean to the eastern Pacific, and they only return back to the
western Pacific as adults (Itoh et al. 2003). This trans-Pacific migration was originally
observed using mark-recapture tags during the 1960s (Orange and Fink 1963;
Clemens and Flittner 1969) and was confirmed by satellite tracking (Itoh et al. 2003;
Kitagawa et al. 2009). Results from archival tagging of Pacific bluefin tunas off the
coast of California (USA) and Baja California (Mexico) suggested that a higher number
of mature individuals return to the spawning grounds in the west (Boustany et al. 2010).
Southern bluefin tuna Thunnus maccoyii (Castelnau, 1872) display similar migration
patterns to those of other bluefin species. Adults tagged in the western Tasman Sea
remained in this foraging area from June to December, leaving as early as September
and as late as December (Patterson et al. 2008) (Fig. 8.4). One individual travelled
into the Indian Ocean spawning grounds south of Indonesia, corroborating previous
assumptions that, during austral winter, adults would forage in the temperate waters
of the Southern Hemispheres, migrating to the spawning grounds located in the North-
western Indian Ocean from spring to autumn (Caton 1994). Similarly, reproduction-
driven, cyclical migrations of mature individuals were observed for populations of
yellowfin tuna (Schaefer et al. 2007), swordfish (Reeb et al. 2000, Takahashi et al.
2003, Neilson et al. 2009, Abascal et al. 2010) and black marlin Istiompax indica
(Cuvier, 1832) (Chiang et al. 2014), with individuals moving from food-rich foraging
grounds to warmer, southern spawning waters (Fig. 8.5).

Linking migratory movements with reproduction in elasmobranchs has been
historically difficult, although a few studies have tried to associate wide-scale
movement to parturition (Weng et al. 2008; Skomal et al. 2009; Hueter et al. 2013;
Vandeperre et al. 2014). For example, juvenile females blue sharks Prionace glauca
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Figure 8.3. Migratory paths of Atlantic bluefin tuna Thunnus thynnus in northwest [A—Block et al. (2005)]
and northeast [B—Aranda et al. (2013)] Atlantic Ocean. Used with permission.
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Figure 8.4. Geolocations of southern bluefin tuna Thunnus maccoyii in Australian waters (Patterson et al.
2008). The blue square represents the tagging locations and the black square the spawning grounds. Used
with permission.

(Linnaeus, 1758) tagged in the Azorean Archipelago (North Atlantic, Portugal),
undertook seasonal large scale latitudinal migrations, moving to northern latitudes
during summer, while males remained in the area until January before moving
west, to offshore areas in the northwestern Atlantic, probably to mate during spring
(Vandeperre et al. 2014). By the end of spring, blue sharks returned to the Azores
and then moved southwards during late summer, and thus performing a clear cyclic
pattern of migration (Vandeperre et al. 2014). Furthermore, the world’s two largest
fish, whale and basking sharks, leave summer feeding grounds in the North Atlantic
to southern tropical locations across the equator, likely to provide stable conditions for
gestation and parturition, as well as suitable nursery habitat for new-borns (Skomal
etal. 2009; Hueter et al. 2013) (Fig. 8.6). Lastly, female salmon sharks Lamna ditropis
(Hubbs and Follet 1947), tagged in the Prince William Sound (Alaska, USA), migrated
between subarctic foraging grounds (around 60° N) and subtropical reproductive areas
(around 30° N) (Weng et al. 2008). There are indications that salmon sharks give
birth during their southern migration in late spring-early summer, in the California
current and subtropical gyre (Weng et al. 2008). The California current appears to be
not only a foraging region, but also a parturition ground, due to the long residency
times (~ 107 days) observed (Weng et al. 2008). In contrast, the subtropical gyre may
be predominantly a parturition ground, as sharks spent short-term periods of time
(~ 77 days) there, and migrated north sooner (Weng et al. 2008). It was also observed
that some sharks immediately return north after arriving at the subtropical gyre area,
which is consistent with having given birth and with no other functions to fulfil in
the region (Weng et al. 2008).
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Figure 8.6. Trans-equatorial migration of whale sharks Rhincodon typus [A—Hueter et al. (2013)] and
basking sharks Cetorhinus maximus [B—Skomal et al. (2009)] along the western Atlantic Ocean. Used
with permission.

Wide-scale foraging opportunities

As mentioned, large-scale horizontal migrations can occur in response to wide-scale
predictable productive oceanic locations (Nettestad et al. 1999), even when prey are
abundant in coastal areas (Jorgensen et al. 2009). Such large-scale movements were
observed by several high trophic level pelagic species, such as tunas (e.g., Polovina et
al. 2001; Block et al. 2011), billfish (e.g., Brill and Lutcavage 2001) and sharks (e.g.,
Sims et al. 2003; Domeier and Nasby-Lucas 2008; Gore et al. 2008; Nasby-Lucas
et al. 2009; Block et al. 2011). For example, one of the probable reasons for trans-
Pacific migrations performed by a albacore tuna (Childers et al. 2011) is to explore
the various frontal zones and eddies that dominate the Kuroshio and Oyashio region
off Japan (Okazaki et al. 2002; Shaffer et al. 2006). Strikingly, this area is the main
spawning ground of pelagic fishes, such as anchovy and sardine, with a spawning peak
in May (Oozeki et al. 2007), and coinciding with the arrival of albacore tuna. The
migration of bluefin tuna from the northwest Atlantic to the northeast Atlantic has also
been linked to wide-scale foraging success, with tuna movements associated with a
productive upwelling off the Iberian Peninsula (western Europe) that attracts sardine
and mackerel species to the area (Brill and Lutcavage 2001; Walli et al. 2009), from
late May or early June to late September early October (Haynes et al. 1993) (Fig. 8.7).

The search for oceanic foraging areas is one of the hypothesis put forward to
explain why white sharks perform extensive migrations. Several studies involving
PSAT tagging of white sharks in North-east Pacific indicated that many individuals
aggregate near coastal areas during autumn and winter (Weng et al. 2007; Domeier
and Nasby-Lucas 2008; Jorgensen et al. 2009), before migrating to the same shared
offshore foraging area, a region centred halfway between Baja California and the
Hawaiian islands (Domeier and Nasby-Lucas 2008; Nasby-Lucas et al. 2009)
(Fig. 8.8). This area is an oxygen minimum frontal zone, where the potential prey
species aggregate and are targeted by white sharks (Domeier and Nasby-Lucas 2008;
Jorgensen et al. 2009; Nasby-Lucas et al. 2009). Moreover, PSAT tagged white sharks
in the Chatham Islands (New Zealand) made rapid and direct movements towards
subtropical and tropical locations, being consistent with described behaviour ranging
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Figure 8.7. Trans-oceanic migrations of albacore tuna Thunnus alalunga in the North Pacific [A—Childers
et al. (2011)] and Atlantic bluefin tuna Thunnus thynnus in the North Atlantic [B—Galuardi et al. 2010].
Used with permission.

from site fidelity to feeding related migrations (Bruce et al. 2006; Jorgensen et al.
2009; Bonfil et al. 2010). The migrations of two planktivorous sharks were also
associated with wide-scale foraging opportunities, with individuals leaving coastal
productive frontal regions (Sims et al. 2003; Skomal et al. 2004; Sims et al. 2005;
Wilson et al. 2006) to offshore areas in order to explore different food-rich habitats
(Eckert and Stewart 2001; Wilson et al. 2006; Gore et al. 2008). In a study that plainly
illustrates this behaviour, tiger sharks Galeocerdo cuvier (Péron and Lesueur, 1822)
tagged with satellite-linked high resolution tags in the northwest Atlantic, displayed
an extensive space-use throughout the region, with evident long-distance north-south
migrations. During winter, tiger sharks were mostly associated with coral reef-bound
islands in the Bahamas, Turks and Caicos Islands, and Anguilla/Saint Martin in the
Caribbean Sea, while during summer the majority of tiger sharks rapidly moved into
temperate, oceanic, foraging grounds (Lea et al. 2015) (Fig. 8.9). The northern range
expansion of tiger sharks during summer coincides with the northward extension of
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Figure 8.9. Seasonal north-south movements of tiger sharks Galeocerdo cuvier in the northwestern Atlantic
Ocean in relation to sea surface temperature (SST) during winter and summer (Lea et al. 2015). Used with
permission.

the Gulf Stream (Lea et al. 2015). Similar north-south migrations were observed for
arange of species such as swordfish (Takahashi et al. 2003; Abascal et al. 2010), blue
and yellowfin tunas (Block et al. 2011), black marlin (Chiang et al. 2014), sunfish
Mola mola (Linnaeus, 1758) (Sims et al. 2009), white shark (Bruce et al. 2006), mako
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sharks, blue and salmon sharks (Block et al. 2011). Therefore, the seasonal increase
of sea water temperature in northern areas and consequent physical and biological
processes (e.g., increase in the productivity) seems to drive marine animals to migrate,
in order to explore different locations.

Navigation cues

Marine animals that migrate long distances, and especially pelagic species, inhabit
a sensory environment quite different from that of the terrestrial world. The light
decreases rapidly with depth and is transformed by absorption, scattering, refraction
and the constant movement of the ocean surface (Lohmann et al. 2008). Also,
visual landmarks are generally absent for the majority of time. However, the marine
environment provides animals with other cues that do not exist on land. Therefore
animals navigating through the ocean also have access to a suite of navigational
cues (Klimley et al. 2002; Lohmann et al. 2008). It seems unlikely that the oriented
movement could occur without some form of environment reference (Klimley et
al. 2002). There are four particular types of cues that may provide the required
navigational information for ocean migrants, namely geomagnetic, chemical,
hydrodynamic and celestial cues (Klimley et al. 2002). White sharks tagged in the east
coast of Australia performed seasonal northward movements during autumn-winter
months and southward in the spring-early summer (Bruce et al. 2006). The similarity
in tracks recorded in the latter study and other studies (Bonfil et al. 2005; Bonfil
et al. 2010) suggests that white sharks may follow common routes or ‘highways’
when moving between areas, indicating that individuals probably followed similar
cues, or may have shared a common ability to navigate between destinations
(Bruce et al. 2006). The mechanisms used by white sharks to navigate to Australia
and back during a transoceanic migration (Bonfil et al. 2005) are also unknown; aside
from a few shallow seamounts, there are no other topographic features that could be
used for along-route orientation (Bonfil et al. 2005). However, by swimming near
the surface during the oceanic travel, it was possible for the white shark to use visual
cues such as celestial bodies as an important navigational mechanism (Bonfil et al.
2005). The use of solar cues for orientation during fish migrations in the open ocean
has been previously described (Binder et al. 2011). Some species may use information
obtained from changes in the sun’s angle in the horizontal plane and/or vertical plane.
However, these measures are subject to changes and therefore fish must possess an
internal biological clock and calendar to compensate. Also, the sun is often obscured
and, therefore, it is not always the best orienting cue. Nonetheless, it has been
suggested that fish may continue to orient using polarized light as a directional cue
(Binder et al. 2011). Klimley et al. (2002) also stated that swimming closer to the
surface would facilitate the use of the Earth’s main dipole field as a reference. There
is a growing body of support for geomagnetic orientation when fishes undergo long-
distance oceanic migrations (Gould 1998; Binder et al. 2011). When water moves
across the Earth’s magnetic field, it induces a weak electric current that may be detected
by fishes (Binder et al. 2011). Studies have subsequently shown that, for example,
yellowfin and Atlantic bluefin tuna precise navigation is mainly due to the ability to
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sense the various components of the Earth’s magnetic field (Walker 2006). Bruce et
al. (2006) observed that the migration periods of white sharks were characterized by
frequent ascents and descents between the surface and depth, and linked the oscillatory
diving behaviour with the ability of sharks to detect and follow cues in the environment,
either olfactory, geomagnetic, or orientation relative to the sun. Similarly, Klimley
et al. (2002) also suggested that oscillatory dives may be used to explore the water
column to gain directional information during migrations, by detecting the specific
source of a water mass with a unique chemical composition and odour. For example,
Atlantic bluefin tuna are known to use olfactory cues to locate their respective spawning
grounds, with fish diving deeper, probably in an attempt to locate the denser water
masses typical of the Gulf of Mexico or the Mediterranean Sea (Teo et al. 2007).
It has also been proposed that juvenile albacore use frontal areas to navigate in the
North Pacific, by using the chlorophyll « transition zone as migration route and as a
foraging habitat (Polovina et al. 2001). Furthermore, Cotton et al. (2005) suggested
that basking sharks rely on thermal discontinuities to navigate during their migrations.
This ‘foraging or migration corridors’ theory is supported by the correlation between
movement patterns and sea surface temperature and corroborated by behavioural
studies (Sims et al. 2003). However, it is not clear whether individuals use the fronts
as a cue to move toward favourable feeding locations or as a ‘simple’ pathway, which
are two different mechanisms that can have different implications for the distribution
of fish in relation to a given front (Schick et al. 2004). Evidence of the use of oceanic
fronts in movements was also observed for billfishes, with studies suggesting that
that horizontal movements of striped marlin Kajikia audax (Philippi, 1887) are set
predominately by currents, with tagged fish making continuous small-scale random
movements in relation to mesoscale eddies (Brill et al. 1993; Brill and Lutcavage 2001).

Conservation status of oceanodromous species

The fisheries of highly migratory fish species have great economic importance in
all oceans and semi-enclosed seas, except in polar regions. In 2006, around 30% of
highly migratory tuna and tuna-like species, and more than 50% of highly migratory
oceanic sharks were considered either overexploited or depleted (Maguire 2006).
Tuna and tuna-like species are some of the most economically important species due
to the intensive international trade (Maguire 2006), accounting for 4,8 million tonnes
in 2004, which corresponded to approximately US$7,670 million (2004 values). The
Atlantic bluefin tuna is currently considered as ‘endangered’ under the A2 criterion
of the Red List of the International Union for Conservation of Nature (IUCN),
mainly due to a 51% global decline in the Spawning Stock Biomass (SSB) over the
past four decades (Collette et al. 2011c). However, recently, the SSB showed signs
of increasing (Fromentin et al. 2014). The southern bluefin tuna, which has been
intensively fished since the early 1950s, is considered to be ‘critically endangered’
by the IUCN Red List, with an estimated 85% SSB reduction between 1973 and
2009, but with no signs of recovery (Collette et al. 2011d). The Pacific bluefin
tuna is listed as “vulnerable’ in the IUCN Red List (Collette et al. 2014), and recent
stock assessment studies, based on several biological reference points, indicate that
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overfishing is occurring (Collette et al. 2014; ISC 2014). The albacore and yellowfin
tuna are both considered ‘near threatened’ (Collette et al. 2011a,b) and are important
species (albacore: ~2,500 USD/tonne in 2008; yellowfin tuna: ~1,900 USD/tonne
in 2014) for the international trade (Collette et al. 2011a,b). The stocks of yellowfin
tuna are, or close to being, fully exploited in all oceans (Collette et al. 2011b); the
albacore stocks are fully exploited in the South Atlantic and Pacific and overexploited
in the North Atlantic (Collette et al. 2011a). The swordfish is also an important
commercial species (around 12,125 USD/tonne in 2012), caught mainly by longlining
(e.g., Buencuerpo et al. 1998; Marin et al. 1998; Megalofonou 2005; Abascal et al.
2010). Studies have indicated that the spawning biomass was above the required levels
to maintain maximum sustainable yield in the Pacific (Hinton and Maunder 2011)
and Atlantic oceans (Neilson et al. 2013), and the species is currently considered of
‘least concern’ by the IUCN Red List. Yet, there are some indications, such as low
average sizes/high catch rates, that have raised concerns about the sustainability of
swordfish fisheries, particularly in the Southeast Pacific (Abascal et al. 2010). The
worldwide stocks of tuna, as well as other tune-like species (including billfishes),
are managed by various international commissions operating in each ocean, such
as the Inter American Tropical Tuna Commission (IATTC; established in 1949), the
International Commission for the Conservation of Atlantic Tunas (ICCAT; established
in 1969), the Commission for Southern Bluefin Tuna (CCSBT; established in 1993)
and the International Scientific Committee (ISC; established in 1995) for tuna and
tuna-like Species in the North Pacific Ocean, among others (Majkowski 2007). All
major tuna fisheries target tuna populations that migrate across multiple Economic
Exclusive Zones (EEZ) and into the high seas, making them susceptible to fishing
pressure from several nations, including those that are not parties in cooperative fishing
agreements. In 1982, UNCLOS marked the beginning of international level fisheries
regulation, followed by the 1995 Fish Stocks Agreement (FSA) (Dulvy et al. 2008;
Techera and Klein 2011), which further elaborated the rights and obligations agreed
in UNCLOS regarding fishing of highly migratory species on the high seas. The FSA
attempted to improve the institutional basis for management of straddling and highly
migratory fish stocks, by articulating principles for the conservation and management
of such stocks, and by establishing rules for the creation and operation of regional
fishery management organizations. This development spurred efforts to create new
regional organizations to govern tuna harvests in the western and central Pacific and
Indian oceans. It also strengthened the legal foundation for pre-existing international
tuna management organizations, notably the IATTC and ICCAT, which previously
only focused on the status of stocks using traditional fishery management tools
(e.g., quotas and size limits for targeted species) (Fonteneau 2001). The newly emerging
consensus is that management of pelagic stocks should be more cautious, in order
to ensure, not only the long term health of tuna stocks, but also of other components
of the pelagic ecosystems, thus highlighting the importance of an ecosystem-based
fisheries management (Fonteneau 2001).

The total reported catches of shark species and families considered highly
migratory was close to 100,000 tonnes in 2004 (Dulvy et al. 2008). However, it is
likely that the total catch and mortality of sharks (for example as bycatch) is much
higher than the reported values (Dulvy et al. 2008). Unfortunately, the state of many
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shark populations is currently unknown, or poorly known (Dulvy et al. 2008). Whale
sharks, basking sharks, white sharks and tiger sharks are all considered ‘vulnerable’
by the IUCN Red List (Norman 2005; Fergusson 2009; Simpfendorfer 2009;
Fowler 2005b). The basking shark has been exploited commercially for centuries
in several parts of the world mainly for its liver oil, which was used as lighting fuel
for lamps and presently as a source of chemical compounds. Basking shark fisheries
have been declining in several areas but it is difficult to separate natural fluctuations
from fishing effects (Maguire 2006). A reduction in the catches of basking shark
was observed between 1960 and 1980 and 2004, from 8,000 tonnes to 239 tonnes,
indicating that this species is probably globally overexploited (Maguire 2006).
Populations of whale shark appear to have been depleted by harpoon fisheries in South-
east Asia and, perhaps, by incidental capture in other fisheries (Norman 2005). The
vulnerability of whale sharks to commercial fishing derives mainly from their high
value in the international fin trade, highly migratory nature and natural low abundance
(Norman 2005). White sharks have no targeted fisheries, and thus the majority of
worldwide captures are incidental through commercial fisheries operating surface
longlines, setlines, gillnets, trawls, fish-traps and other gear (Fergusson 2009).
Strikingly, pelagic sharks remain a low priority for fisheries management, and despite
increasing concern about their conservation status, oceanic sharks are at risk of
depletion (Dulvy et al. 2008). The International Plan of Action for the Conservation
and Management of Sharks (IPOA-Sharks), which was adopted in 1999 by the FAO
Committee on Fisheries, is a complement to the UNCLOS and to the FSA. In short,
the IPOA-Sharks asked fishing nations and regional fishery management organizations
to develop national action plans aiming the conservation and management of sharks,
covering both target and bycatch species caught in their waters or elsewhere by
nationals (Dulvy et al. 2008; Techera and Klein 2011). However, as it is a voluntary
international instrument, and not a treaty or law, thus it acts as a framework for
regulatory action (Dulvy et al. 2008; Techera and Klein 2011). Other conservation
agreements may offer an alternative for pelagic shark conservation, including regional
treaties such as the Barcelona and Bern conventions and international treaties such
as the Convention on International Trade in Endangered Species (CITES) and the
Convention on Migratory Species (CMS). Both white and basking shark are included
in the Barcelona convention on annex II ‘list of endangered or threatened species’
and in the appendix II ‘strictly protected fauna species’ of the Bern convention.
These two species, along with whale sharks, are also listed on CITES appendix 11
(whale and basking sharks in 2002, white shark in 2004) which intends to limit the
international trade to achieve sustainable fishing levels (Fowler 2000; Bonfil et al. 2005;
Fowler 2005a; Domeier and Nasby-Lucas 2007; Dulvy et al. 2008). Whale, white and
basking sharks are completely protected under the CMS appendices (whale shark on
appendix II in 1999; white shark on appendices I and II in 2002; basking shark on
appendices I and IT in 2005; Fowler 2000; Fowler 2005a; Dulvy et al. 2008), with the
establishment of zero quotas for basking and white shark in the EU, and for white shark
in New Zealand (Dulvy et al. 2008). Blue shark catches are regulated under annex 111
of the Bern and Barcelona conventions, which allow a certain level of exploitation
depending on the population levels or require exploitation licences (Fowler 2005a;
Dulvy et al. 2008). The need for a stronger protection of migratory sharks and the
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development of a global conservation agreement to mitigate bycatch has been identified
in 2005 by the CMS, which concluded that 35 species of migratory elasmobranchs,
including those species mentioned here, could benefit from the protection of CMS
proposals (Dulvy et al. 2008).

A new paradigm shift has arisen worldwide (Hooker et al. 1999) regarding the
protection of migratory ocean species, which consists in the creation of open ocean
Marine Protected Areas (MPAs) that would include known seasonal breeding or
feeding locations (as an example, MPAs for sharks were proposed by Kinney and
Simpfendorfer 2009; Pendoley et al. 2014). However, species are also at risk during
the migration between protected habitats (e.g., Shillinger et al. 2008; Womble and
Gende 2013). Failure to successfully protect migratory corridors generally arises
as the result of a combination of issues. For instance, the consistency of migratory
routes may vary between individuals and populations, hindering the delineation of
essential protection zones (Pendoley et al. 2014). With the exceptions detailed in this
chapter, long-term movement information remains sparse for many large oceanic
species, making it difficult to assess the potential efficacy of oceanic MPAs and the
implementation of protection in the migration corridors for such highly mobile species
(Lea et al. 2015). With the development of electronic tag data it is now known that
several tuna, billfish and shark species have greater spatial distributions than previously
assumed (e.g., Bonfil et al. 2005; Gore et al. 2008; Abascal et al. 2010; Block 2011;
Childers et al. 2011). Incorporating spatial information into fisheries management and
species protection policies will improve the effectiveness of management measures
(Abascal et al. 2010; Costa et al. 2012). As an example, the information gathered
with satellite tracking could provide the basis for large management schemes, using
international policy vehicles. Furthermore, if conservation corridors were to be
created, key ecological foraging hotspots and migratory paths could be sustainably
managed (Block et al. 2011). Advances in electronic tracking technologies, together
with new analytical techniques, have enhanced our understanding of oceanodromous
fish migrations, by allowing scientists to follow their movements over great distances,
during longer periods of time and, importantly, with greater detail (e.g., Teo et al. 2007,
Weng et al. 2007; Skomal et al. 2009; Block et al. 2011; Childers et al. 2011). In the
future, data from electronic tagging and bio-logging studies is expected to have an even
stronger role in conservation management (Bograd et al. 2010), since the increased
understanding of species migration is a crucial part of management and conservation
plans (Costa et al. 2012; Lea et al. 2015).
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CHAPTER 9

Microchemical and
Schlerochronological Analyses
Used to Infer Fish Migration

Francoise Daverat* and Jean Martin

Otoliths as tracers of fish migration

The use of calcified structures of fish (fin rays, scales, otoliths) to retrieve movements
and migration is based on two major hypotheses. The first hypothesis is that calcified
structures grow continuously throughout the life of the fish and hence record the entire
life chronology. The second hypothesis is that the chemical composition of the calcified
structure reflects the chemical composition of the ambient water. In this chapter, the
case study of otoliths will be treated as priority, and some aspects on the use of fin
rays, fin spines, vertebrae and scales will be discussed in a later chapter.

Otoliths are part of teleost fish skeleton, as bones of the inner ear. Otoliths are
calcium carbonate concretions, usually crystallizing in the form aragonite, but also as
vaterite or calcite, and are embedded in a structural protein matrix made of otolin and
rich in aspartate and glutamate residues. Otoliths allow fish to have a perception of
position in the water column (pressure, gravity), angular motion (rotation, translation)
and hearing. There are three pairs of otoliths (sagittae, lapilli, asterisci), which are
formed during embryonic development, and grow continuously throughout the fish’s
life. In this regard, otoliths meet the first hypothesis. In the same way as trees, otoliths
record the growth rhythms of fish, with rings of contrasting opacity depending on
growth velocity, either at the daily scale or at the seasonal scale. Hence, the different
layers of otolith material record the entire life of the fish.

The second interest of otoliths is their chemical tracer property: otolith
composition partially reflects ambient water composition (Kalish 1989; Campana 1999;
Daverat et al. 2005). As mentioned, otoliths are formed by a calcium carbonate matrix,
and since some alkaline elements (e.g., strontium, barium, magnesium) have a similar
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ionic radius to calcium, these elements might replace calcium in the formation of
the otolith matrix. These elements, and others, can be used as proxies to trace fish
migration, or fish movements, due to the heterogeneous composition of the different
water masses between which a fish has moved. In consequence, the ability to detect
migrations using otolith structure and composition is based on a third hypothesis: the
heterogeneous composition of the different water masses between which a fish has
moved. The validation of this third hypothesis should be a pre-requisite of each study,
but is a difficult issue. Predictable heterogeneity of water masses guides the choice
towards relevant microchemical tracers. The choice of relevant chemical tracers,
revealing the spatial heterogeneities of fish habitats, is central to infer fish migration.

One of the most obvious water mass heterogeneity features is salinity. Chemical
differences between seawater and freshwater provides a basis for the investigation of
fish movements through salinity gradients. As a consequence, otolith microchemistry is
well suited to track diadromous fish migration (Walther and Limburg 2012). Seawater
has a rather stable composition in Strontium (Sr), Barium (Ba) and ¥Sr:*Sr isotopes
ratio. Unlike seawater, freshwater has a large diversity of composition, mostly due to
the geological ground where the water is flowing. Depending on bedrock geology, the
Sr:Caratio in freshwater can be either lower or higher (Brown and Severin 2009) than
in marine water. However, in a large number of cases, Sr concentration in freshwater
is much lower than in seawater (only 12% of the analyzed streams and rivers in the
U.S. had higher Sr concentration than adjacent coastal areas (Kraus and Secor 2004)),
while Ba concentration is much higher in freshwater than in seawater (Gaillardet
et al. 2003). The Ba:Ca ratio in otoliths have also been proven to be a useful proxy
of habitat salinity (Elsdon et al. 2008). Water chemical composition was found to be
the primary factor influencing Sr:Ca and Ba:Ca ratios in most fish species studied
(Webb et al. 2012).

The Sr isotope ratio is very stable in seawater, so if the ratio in freshwater is
very different from seawater, a gradient in Sr isotope values are expected. Sr and
Ba concentrations have been used extensively to trace movements though gradients,
especially for diadromous species (Elsdon et al. 2008). Measurement of Sr:Ca ratio
is of particular interest for tracing migratory histories between marine and freshwater
environments, and even within freshwaters but not within marine environments (Brown
and Severin 2009).

Geology and hydrology provide clues on heterogeneity of water composition
between different water bodies. In river basins where tributaries drain different
bedrocks (limestone, metamorphic, basaltic, granitic), the water composition between
tributaries varies markedly (Palmer and Edmond 1992). For example, in streams and
rivers with low Ca concentration, an element to calcium ratio analysis can bias the
interpretation of fish life histories (Elfman et al. 1999). In freshwater, water Sr isotopes
ratio may discriminate different rivers (Kennedy et al. 2002; Martin et al. 2013), and
are used to trace water origin. The other advantage of Sr isotopes is that there is no
fractionation between water and the otolith, since Sr isotopes ratio are the same in
the water and in the otolith (Kennedy et al. 2000). Sr and Ba concentrations may also
differ between tributaries draining different bedrocks (Bowen 1956).

The origin of the water flowing into a river, either superficial or groundwater,
will influence its chemical composition, since upwelled groundwater has a specific
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composition (Brown and Severin 2009). For example, the little Colorado River was
found to have a significantly different 6'3C compared to the main Colorado River
(Hayden et al. 2012). Other elements, as Li, Cd, may also differ between rivers
(De Pontual et al. 2000; Tomas et al. 2005). In a similar manner, coastal areas may
also have diverse water chemical composition, either due to river plumes (Dorval
et al. 2007; Elsdon et al. 2008), upwelling (Woodson et al. 2013) or groundwater
discharge (Encarnagdo et al. 2013). Other examples have described the influence
of a hurricane which marked a specific signature in the otoliths of a marine fish
(Elfman et al. 1999). The composition of water chemical tracers varies continuously
(Sturrock et al. 2012), so it is also important to investigate the time-scale variation
of those chemical tracers used to infer migrations and movements, since variation
patterns might change weekly/monthly/seasonally. Therefore the heterogeneity of water
masses have to be constant over time to successfully retrieve movements between
water masses with high confidence, or the chemical variability of water masses must be
investigated simultaneously to the time covered by the life of the fishes that are being
studied. Complementarily, a geochemical atlas based on basins’ geological features
can provide basis for expected water composition heterogeneity (Hegg et al. 2013).

Stable isotopes such as 6'°C, 6'°N and 6'0 measured in calcified structures are
very useful to track movements. Spatial heterogeneity of 6'*C, 6'°N and 6'%0 across
oceanic water masses and across freshwater gradients, or isoscapes are available
worldwide (McMahon et al. 2013), and provide a basis for the interpretation of
movements. 6'*0 modern values can be predicted by salinity and temperature values
(Epstein and Mayeda 1953) so that '*0 measured in fish calcified structures was used
as a temperature proxy (Thorrold et al. 1997). Just as in soft tissues, 6'3C and 8"°N
measures in calcified structures are affected by the diet of the fish and reflect partly
the habitat used by the fish with the same limitations of physiological fractionation.
Stable isotopes are particularly useful in oceanic water masses where elemental ratios
do not offer spatial heterogeneity. However, the physiology of the fish was found to
bias the signals given either by stable isotopes and by elemental ratios, as found for
8'%0 for plaice (Darnaude et al. 2014).

Hence, the relation between water composition and otolith composition can be
biased by the physiological regulation of elements during their incorporation into the
aragonite matrix (Sturrock et al. 2014). The incorporation of chemical tracers into the
otolith is driven by complex physiology processes that are not yet fully understood,
similar to the otoliths’ biomineralization (Fablet et al. 2011). A simple illustration of
this complexity is the species specific relation between ambient water composition and
the fish otolith composition, which can also be specific to a group of related species
(Chang and Geffen 2012) or even stock specific (Barnes and Gillanders 2013). The
difference between Allis shad Alosa alosa, and European eel Anguilla anguilla otolith
composition measured during the same years, within the same saline gradient of the
Gironde Estuary (SW France), illustrates this species specific difference (Daverat
and Tomas 2006; Lochet et al. 2008). In this estuary, the Sr:Ca ratio in the otoliths of
Allis shad ranged from 1 x 102 to 3 x 102, while the Sr:Ca ratio in the otoliths of the
European eel ranged from 1 x 102 to 10 x 102

Validation of the ability of the otolith composition to reflect ambient water
composition is required when addressing migration of a species using otolith
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microchemistry, even for broadly used tracers such as Sr and Ba. Numerous validation
experiments consisted in rearing different fish species in controlled elemental water
composition to decipher the physiological effects from the environmental effects
(Kawakami et al. 1998; Kraus and Secor 2004; Daverat et al. 2005; Collingsworth
et al. 2010; Yokouchi et al. 2011; Reis-Santos et al. 2013). Several exogenous and
endogenous factors can affect the incorporation of chemical tracers into fish otoliths.
Temperature affects otolith’s biomineralization and fish metabolism (Thresher 1999).
Starvation, or more generally a poor body condition, affects Sr:Ca ratio along otoliths,
as revealed by a caging experiment where growth rate was found to marginally affect
Sr:Ca ratio (Daverat et al. 2012a). The genetical background of a stock might also
affect the elemental incorporation into the otoliths, significantly for Sr and Ba but not
for Magnesium (Mg), as observed for the mulloway Argyrosomus japonicus (Barnes
and Gillanders 2013).

Ontogeny can also bias the environmental signature of a species otolith
composition. Only a few experimental studies revealed strong ontogenetic effects
(Sturrock et al. 2014). For example, metamorphosis and development physiology
occurring at early life stages can significantly affect otolith composition. For
example, metamorphosis might cause a shift in the metabolic regulation of free Sr**
(Kalish 1989), registered as a drastic decrease of Sr:Ca ratio in the otoliths of some
species that undergo metamorphosis during early ontogeny, as the European eel
(Arai et al. 1997), Japanese eel Anguilla japonica (Otake et al. 1994), whitespotted
conger Conger myriaster (Arai et al. 2002), daggertooth pike conger Muraenesox
cinereus (Ling et al. 2005), reticulated moray Gymnothorax reticularis (Ling et al.
2005) and Dover sole Solea solea (De Pontual et al. 2003). Thus, the Sr:Ca ratio
decrease in the otolith could never be attributed to the onset of a migration. This
ontogenetic effect was also observed in otoliths of Atlantic salmon Salmo salar
juveniles (Martin et al. 2013). Although a significant relationship between water and
otolith chemistry was found, otoliths did not register the seasonal variations of water
Sr:Ca and Ba:Ca ratios (Martin et al. 2013). The otolith profiles exhibited a similar
Ba:Ca ratio peak pattern, following the yolk sac absorption mark, which could not be
explained as a result of Ba:Ca ratio changes in the ambient water, but rather reflected
an ontogenetic signal (Martin et al. 2013). High elemental concentrations found at the
core of the otoliths suggested an internal control of elemental incorporation during the
early stages of juvenile ontogeny (Ruttenberg et al. 2005; Warner et al. 2005). Strong
physiological control of metal incorporation was found for other elements, such as
Zinc (Zn), Manganese (Mn) and Copper (Cu); yet with confusing results, partly
explained by the presence of Cu and Zn metal-binding proteins in otoliths (Miller et
al. 2006). The metabolism of early stages of fish is likely to induce stage specific signal
in otolith composition as the otolith core microchemistry revealed strong metabolic
effects on otolith composition (Ruttenberg et al. 2005; Warner et al. 2005).

Several studies have shown variable concentrations of Mn and Zn in fish otoliths
throughout life history, with species differences (Campbell et al. 2002; Ranaldi and
Gagnon 2008; Friedrich and Halden 2010). Fluctuations were assigned to differences in
metabolic rates and to diet uptake. Zn:Ca ratio in otoliths of several species exhibited
seasonal oscillatory distribution (Friedrich and Halden 2010).
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Contrasting results were also found for Mn, with elevated Mn:Ca ratio found in
the core regions of otoliths of a wide range of species (Brophy et al. 2004; Barbee and
Swearer 2007). Outside core regions, Mn:Ca ratio exhibited highly variable patterns,
with habitat independent variations (Milton et al. 2008), or variations coupled with
the hypoxic conditions of ambient water (Limburg et al. 2011). Additional knowledge
on what mainly controls the incorporation of transition elements (e.g., Sr, Ba, Zn,
Mn) and other elements present in polluted areas (e.g., Cadmium (Cd), lead (Pb)) are
mandatory to establish sound ecological relationships with chemical signals recorded
in fish otoliths. Diet was not found, so far, to significantly affect the otolith elemental
composition compared to water (Walther and Thorrold 2006). This could be explained
by the fact that food composition is most often at equilibrium with the ambient water
composition. Other experimental studies looking at the origin of otolith Sr isotope
composition origin also showed that food contributed up to 70% to otolith Sr, when
marine food was provided to salmonids reared in freshwater (Kennedy et al. 2002;
Martin et al. 2013). Diet was found to affect §°C and 8'°N in calcified structures as
well as in soft tissues (see Chapter 10, Hoffman 2016). Measuring 8'*C and 8"°N in
essential amino acids instead of all the amino acids overcomes this bias (McMahon et
al. 2011). Essential amino acids are directly taken from the food and not synthesized by
the fish, reflecting without bias the habitat isotopic signature (McMahon et al. 2011).

The relation between otolith composition and water composition is not
straightforward, as fish metabolism imposes a delay in the response of habitat change,
depending on the tracer chosen. For example, two studies mentioned a delay of two
weeks before the otolith composition fully reflects ambient water composition in
Ba and Sr (Miller 2011; Yokouchi et al. 2011). Nevertheless both studies showed
that the habitat transition could be detected within a few days. This delay is shorter
as far as Sr or C isotopes are concerned (McMahon et al. 2011; Hayden et al. 2012;
Martin et al. 2013).

Analytical techniques and equipment used to infer fish migrations and
movements

In the present chapter, the necessary steps to achieve a study using calcified structures
chemistry to infer migrations are presented. The first step is the choice of relevant
tracer of migration across the entire range of habitats used by the fish. This first step
requires a spatial information on the heterogeneity of habitats and therefore on the
subsequent heterogeneity of tracer. The second step is the knowledge of possible
bias of relationship between fish calcified structure composition and ambient water
composition. The third step is the strategy of preparation, analysis and data treatment
to retrieve the final migration information.

Isoscapes of seawater 6'°C, 6'80 and organic 6'°N provide a great basis for the
geochemical discrimination of oceanic habitats. A large review addressed the isoscapes
of the North Atlantic ocean, showing how large-scale geochemical processes will
drive stable isotopes heterogeneity across water masses of different temperature and
salinity (McMahon et al. 2013).
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Fine-scale geographic discrimination of rivers could be achieved by the combined
use of elemental and Sr isotope ratios. A geological map provides an idea of expected
heterogeneity of water composition, because the rivers draining different bedrock
will have different water composition (Bataille et al. 2014). Several characteristics
of Sr isotopes make them ideal spatial markers for characterizing fish movements or
natal sources in freshwater environments. First, the #’Sr:36Sr ratio in rivers arises from
bedrock geology (Kennedy et al. 2000). Second, Sr isotopes are not trophic fractionated
and the ¥Sr:%Sr ratio in otoliths closely matched that of stream water (Kennedy et
al. 2000). The ¥Sr:%Sr ratio in river water is largely controlled by the age of rocks,
which influence the amount of ¥Sr produced by the radiogenic decay of ¥’Rb, and
flow variations that modulate water mixtures from tributaries with differing ratios
(Walther and Limburg 2012). As a result, considerable variations of ¥ Sr:%Sr ratio
can be found among and within tributaries based on the rock type and age (Beard and
Johnson 2000). It is useful to collect all knowledge sources that can provide a clue on
the heterogeneity of chemical composition of water. By placing spatial variation in
Sr isotope ratios in the context of bedrock geology, it could be predicted in advance
(e.g., from geological maps) whether sites are likely to show sufficient geochemical
variation for the technique to be useful.

Hydrology is also an important feature to take into account. The mixing degree
of marine water and freshwater along an estuary determines the gradient of water
composition, which is determined by the degree of marine water incursion and, to
a lesser extent, to the distance of tidal penetration. Therefore, estuaries are highly
dynamic mixing zones that are influenced by the biogeochemical processes occurring
along the salinity gradient (Church 1986; Zwolsman and van Eck 1999). The load
of dissolved elements changes along the salinity gradient through adsorption and
desorption processes (Zwolsman and van Eck 1999; Dorval et al. 2005).

So, the validation of the relationship between water composition and otolith
composition is essential to avoid bias during data analyses. Therefore, the collection
of water in different locations, and the subsequent analysis of chemical composition, is
essential to provide a ‘chemical map’ of the region of interest which greatly diminishes
any possible biases (Dorval et al. 2007). However, there are two drawbacks, (1) water
samples are by essence instantaneous and hence do not integrate chemical composition
at the same time resolution as fish otoliths do, and (2) there are differences between
water composition and otolith composition solely explained by the fish physiology
which might be species-specific, as explained before.

To date, studies examining links between environmental variables and otolith
chemistry have been largely restricted to laboratory experiments (Secor et al. 1995;
Bath et al. 2000; Elsdon and Gillanders 2003). Although controlled experiments
have provided notable information on how the physical and chemical environment
can influence otolith chemistry, their direct application to wild fishes is more limited
(Elsdon and Gillanders 2005). In such studies, the conditions (diet, oxygen, light,
temperature and ambient elemental concentrations) experienced by laboratory
fish deviate from natural conditions. Field caging studies have provided a method
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of validating the chemical signals produced by a specific habitat, but the exact
relationships between otolith chemistry and ambient water differ among species
and elements (Kraus and Secor 2004; Forrester 2005; Fodrie and Herzka 2008;
Mohan et al. 2012).

Fish have to be kept and in most cases fed in cages in all the habitats studied for
a long period of time, because the accretion of otoliths is slow (Kline 1990), making
caging a technically and financially very demanding approach. Besides, most wild
fish species are not adapted to live in cages. The stress induced by caging introduces
a bias in otolith’s chemical composition, which prevents the correct interpretation of
otolith composition in terms of habitats occupied (Daverat et al. 2012a).

Alternatively, the otolith composition of different fish from distinct water locations
can be mimicked by rearing fish in experimental setups with water collected in
different locations and renewed as often as necessary. This approach has been used
in a large number of studies to obtain the range of tracer concentration expected in
otoliths (Elsdon and Gillanders 2003; Kraus and Secor 2003; Daverat et al. 2005).
Another interesting protocol consists in transferring the same batches of fish from one
water source to another, to account for inter-individual variability in the elemental
incorporation into otoliths (Elsdon and Gillanders 2003; Kraus and Secor 2003; Daverat
et al. 2005; Elsdon and Gillanders 2005; Yokouchi et al. 2011).

The composition of otoliths from resident fish of the same species will provide
a baseline of expected otolith chemical composition of a defined habitat. However,
in most cases, resident fish are not available and there is no insurance that a fish has
remained permanently at the site of collection.

When there is no literature support on the incorporation of elements and isotopes
for a given species, there is a need to undertake controlled laboratory experiments
to validate the exact relationships between otolith chemistry and ambient water
(Bath et al. 2000; Milton and Chenery 2001; Martin and Thorrold 2005). The minimum
requirement is an experimental set up where fish of the age and life stage of interest
are reared under controlled water composition.

Collection and preparation of samples

First, it is imperative to check if the accretion of otolith material is continuous for
the species of interest. Second it is of major importance to know how to interpret the
structure of the otolith in terms of life history traits. Are there metamorphosis marks?
Are there any life stage transition marks? What is the rhythm of ring deposition (daily
rings, annual rings)? What is the average rate of otolith accretion?

Otolith tags can differ with life history stages (larval, juvenile, sub-adult and
adult otolith growth) and metamorphosis (Elsdon et al. 2008). If profiles of chemical
tags bridge life-history stages, then otolith composition differences may represent
ontogenetic effects and not changes in chemical environment. This implies a perfect
knowledge and control of the otolith structure in order to sample and analyze the
part, or the different parts, of the otolith corresponding to the time periods of interest.
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Figure 9.1. Picture of the core of a flounder otolith, showing a laser ablation trajectory starting from the
core, going through the metamorphosis area (accessory primordia) down to juvenile phase area (Daverat
et al. 2012b).

Preparation of otoliths or scales for microchemistry

General methods of calcified structures preparation for microchemistry are using
the same protocol as for age estimation, except that there is no contamination with
exogenous trace elements. For the extraction of otoliths or collection of scales, or fin
ray, metal forceps or metal devices have to be avoided and plastic, glass or ceramic
forceps should be used. If possible, sample preparations have to be undertaken in a
clean room under a laminar flow hood or cabinet. If possible, calcified structures have
to be analyzed shortly after extraction and after fish sample collection. Some authors
recommend storing fish samples in alcohol rather than freezing for further otolith
microchemistry analyses (Milton and Chenery 1998).

To avoid contamination with a media (e.g., alcohol, body fluids), we recommend
extracting the otoliths shortly after fish collection. The steps of preparation can be
undertaken in a clean room to avoid contamination. All instruments used to prepare
the calcified structures can be cleaned with diluted ultrapure nitric acid and rinsed
with ultrapure water (miliQ water). The plastic vials used to store otoliths, or other
calcified structures, also have to be cleaned with diluted ultrapure nitric acid and
rinsed with miliQ water.

The chemical composition of the otolith, to provide accurate information about
migration and/or habitat use, should be defined according to its location within the
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otolith or to a specific life stage. This is why, it is often required to section the otoliths
to access to a plane including the core and the edge, which corresponds to the whole
life chronology of the fish. Otolith section preparation requires embedding the calcified
structure in resin. To avoid contamination, the composition of the resin must be trace
elements free. Similarly, the steps of preparation consisting in sectioning and polishing
the surface of the otoliths require the use of metal free devices (diamond, silicium or
carbide saw, silicium paper, diamond suspension with ultrapure water as a lubricant).

Methods of analysis

The spatial resolution in otolith microchemistry is of importance because spatial
resolution means temporal resolution. Depending on the research question, targeting
one or more life stages, the spatial resolution of the analysis has to be adapted to the

Table 9.1. Most common methods used to analyze otolith chemistry tracers for fish migration.

Tracer Analytical Sample requirements Advantages/disadvantages/
technique reference
8"C, 8'%0, 8N [Micro-Milling + | A minimum of 20 pg of | Micro-milling spatial precision
IRMS Spectro p | aragonite required for (up to 100 um wide) can limit usage
sampler best detection IRMS of micro-milling to large otoliths,
destructive.
Stable isotopes, |NanoSIMS, SIMS |Spots of 10 um Non-destructive (Matta et al. 2013).
elements
Compound Micro-Milling + | Minimum of 10 mg of Bulk analysis, loss of life stage
specific Amino | GC-IRMS otolith powder required |information, only suitable for large
acid 8°C, 8N per sample juvenile otoliths (destructive).
all elements SXFM Surface analysis Provide maps of elements, long
10 pm x 20 pm (3s) acquisition time (6-24 hours per
sample), data on elements difficult
to access by other methods, non-
destructive (Limburg et al. 2007).
all elements PIXE Provide maps of elements, non-
destructive (Elfman et al. 1999).
Sr:Ca ratio WDS Surface analysis, spots as | Acquisition time is 3 minutes per
low as a few pm spot, limited to Sr and Na,
non-destructive.
all elements LA ICPMS In the order of 20 um Destructive method (the powder of
width otolith ablated to acquire measure is
A few pum for high lost after measure).
resolution
8%Sr, 8*S MC ICPMS Depends on Sr and S Destructive method (the powder of
concentration, up to otolith ablated to acquire measure is
100 pm wide beam lost after measure).

Legend: IRMS- Isotope Ratio Mass Spectrometer; NanoSIMS- Nano Secondary Ion Mass Spectrometry;
GC-IRMS- thermo trace Gas Chromatograph coupled with Isotope Ratio Mass Spectrometer;
WDS- Wavelength Dispersive Spectrometry; SXFM- Scanning X-ray Fluorescence Microscopy;
PIXE- Proton Induced X-ray Emission; LA ICPMS- Laser Ablation Inductively Coupled Mass Spectrometry;
MC-ICPMS- Quadrupole MultiCollector Inductively Coupled Mass Spectrometry.
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structure of the otolith, such as size of daily increments, size of annual increments or
marks of specific life history stages.

The choice of the analysis method will depend on the trace element chosen, and
on the spatial resolution required for the research issue.

Data acquired with any method requires a post treatment, and a fitting curve
obtained with the regular analysis of standards. The final results are concentrations
of elements located in the otolith, either along a transect (e.g., from nucleus to the
edge) or in specific points of the otolith (e.g., nucleus, edge, specific ontogeny marks
in the otolith). Then, image analysis is required to assign chemical data with the
corresponding position along the otolith, which can be a specific life stage or to assign
data according to fish age or growth period.

Investigating fish migration: data treatment

Raw microchemistry data is the chemical composition of one or more tracers, in one
or more areas of interest in the otolith (or in other calcified structure). The treatment
of microchemistry data consists in two assignment steps, one assigns the different
life stages along each otolith, and the second assigns one habitat, or several habitats,
to each life stage depending on otolith’s chemical composition. The correct habitat
assignment to a specific life stage is facilitated if otolith samples were prepared to
insure that otolith structures (or other calcified structure) are visible and interpretable
after chemical analysis. When a destructive analytical technique is used, like laser
ablation, then pictures of samples taken before the chemical analysis can be useful to
locate chemical measurements afterwards.

Models of habitat-stage assignment

The unsupervised assignment of the habitat where a fish lives, using the chemical
composition of a calcified structure, may rely on different sources of information. Thus,
a direct assignment can rely on water composition when there is a straightforward
link between water and otolith composition (Kennedy et al. 2000). However, more
complex assignment models can take into account any source of a priori knowledge
to make the correspondence of a chemical composition with a habitat.

The environmental fluctuations of water chemical composition, such as seasonal
variation of river discharge and tide fluctuations, can also be added to assignment
models to increase the accuracy of habitat specific signature. Moreover, all a priori
knowledge on fish physiology influence on chemical signature can be added into
assignment models (Darnaude et al. 2014). Some authors include individual growth
models into habitat assignment models to consider stage-specific growth influence on
chemical composition (Hoover et al. 2012), like metamorphosis (Daverat et al. 2012a).

Fish ecology can also be used as an a priori knowledge, since the probability of
a fish to use one habitat at a specific life stage, and the probability to move between
habitats, can be constrained (e.g., a fish cannot move between freshwater and the sea
without passing through brackish environments) and thus providing more reliable
habitat assignment (Fablet et al. 2007; Daverat et al. 2012b).
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There are several statistical methods used in habitat assignment, and the
choice of the most appropriate depends on the amount of available data and on the
ecological problem. Origin assignment can be achieved using a wide range of methods
(Mercier et al. 2010), as Bayesian framework models and neural networks, or even
more conventional statistical methods (e.g., Quadratic Discriminant Analysis, Linear
Discriminant Analysis). The main drawback of using a priori assignment is that the
funding assumption is that all putatively used habitats signatures are known, and as a
consequence the sampling strategy allows sampling all the required habitat signatures.
Quadratic Discriminant Analysis and Linear Discriminant Analysis are particularly
dependant on this hypothesis, because the habitats are defined a priori and they do not
allow the assignment to unknown sources (Swan et al. 2003; Brazner et al. 2004; Pruell
etal. 2010). The best results, or increased confidence in model outputs, are achieved if
the water chemical composition of all the putative origins/habitats of fish were sampled.
Bayesian tools are increasingly being used in the analysis of samples of mixed origin,
in part, because they enable different sources of data to be combined in one model
(e.g., water composition, geologic heterogeneity, fish ecology), and also because it
allow practitioners to account for and analyze several sources of uncertainty at one
time (Pella and Masuda 2006; Pflugeisen and Calder 2013). In particular, Bayesian
methods have been employed in an attempt to provide an answer to the problem of
an unknown number of origins in a population (Neubauer et al. 2013).

The interpretation of otolith composition transects as life histories can be
undertaken using zoning which is the segmentation of a data-series into zones on
the basis of similarity or dissimilarity metrics (Hedger et al. 2008). Local zoning
involves passing a window across the sequence of otolith composition to obtain
information on the local pattern, allowing the identification of discontinuities, with
these discontinuities being the breakpoints between zones. Global zoning divides
the sequence into a series of zones, usually through a recursive procedure, which are
internally homogeneous and different from adjacent zones. Although this method may
be easy to apply and a good tool for a rapid observation of the data, it has several
disadvantages. One problem is that the temporal aspect of the life history of the fish
is not addressed with this tool. Another drawback is that there is no model of habitat
assignment in this type of analysis, the different zones being interpreted directly for
each tracer and for each fish based on expert advice. It is not well suited to analyze
multi-tracer composition otolith sequences.

The full reconstruction of fish trajectories, from otolith composition sequences, is
a little more complex. Using signal analysis techniques, such as more commonly used
to reconstruct fish trajectories from data storage tags, it is possible to acquire fish life
histories of habitat use (Woilliez et al. 2014). The first step to reconstruct trajectories is
to construct a model of habitat assignment (Fablet et al. 2007). In Fablet et al. (2007),
the authors have used the distribution of the tracers value over the whole data set (all the
points of measures of all the individual fish otolith sequences), and knowledge about
known habitat signatures and fish physiology bias. The second step is to convert each
individual otolith composition sequence, as a function of otolith distance, into individual
otolith composition sequence as a function of fish age, based on the interpretation of
otolith structure along the otolith composition transect. Then, when these individual
time series are obtained, a model of transition, from one habitat to another habitat, is
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fitted on the whole data and finally each individual fish trajectory are reconstructed
(Fablet et al. 2007; Daverat et al. 2011; Daverat et al. 2012b). Another study based
on the same approach have used Fourier analysis to reconstruct oceanodromous fish
larvae trajectories (Hoover et al. 2012). The advantage of analyzing otolith composition
and otolith age sequences to retrieve trajectories is that useful statistics, at the whole
sample level, can be acquired, as the average age at habitat shift, the average habitat
used at a specific life stage and the diversity of habitat use patterns.

Coupling otolith natal origin and genetic to infer population structure

The coupling of natal origin inferred from otolith composition and population genetic
tools to identify migration can be useful, because the first tool provides an instantaneous
view of the reproductive groups (the fish born at the same location), and the second
tool provides population structure (population sensu stricto) (Bradbury et al. 2008;
Perrier et al. 2011; Collins et al. 2013; Longmore et al. 2014; Martin et al. 2014).

Case studies

Potamodromous migrations—Humpback chum in the Colorado River Basin—
(Limburg et al. 2013)

The habitat use and the migration patterns of humpback chum Gila cypha in the
Colorado River Basin, between the main river and tributaries, were inferred using
otolith microchemistry (Limburg et al. 2013). The determination of several tracers,
usually used to track fish movements, was achieved after a careful study on local
geology, water geochemistry and by quantifying the variation of these tracers in the
study area. The literature review and water analysis confirmed that Sr and 6"°C were
the most relevant tracers in this context. Otoliths (lapillus in the case of humpback
chum) were prepared, embedded in epoxy resin and polished to expose the core and
the edge on the same plane. Two different methods of analysis were performed, pPIXE
analysis was used to measure Sr:Ca ratio along the otoliths, while SIMS was used to
quantify 8"3C at the core and at the edge of the otolith. Fish migrations were inferred
by examination of water composition at the different locations, by looking at ruptures
in the transect, discrepancy or accordance between core and edge 8'°C together with
growth history. This revealed that humpback chum migrate between the main river
and the tributary to comply their life cycle.

Anadromous migrations—Natal origin and homing of the Atlantic salmon
(Martin et al. 2013)

Otolith microchemistry was used to identify the natal origin of the Atlantic salmon
Salmo salar, and investigate the relative contribution of stocked fish (obtained from
artificial reproduction) to the returning adult-stock, and to investigate the level of
homing in a vast area, 12 tributaries of the Adour Basin (Southwestern France)
(Martin et al. 2013). A literature review of geochemistry data served as a basis to
determine relevant tracers. The final decision on the tracer’s choice was based on
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an extensive water sampling strategy, with a large spatial coverage (sampling of
all tributaries), and a large temporal coverage (three years and two seasons in each
year). Based on contrasting geology among freshwater habitats, that generate unique
geochemical signatures, Sr:Ca, Ba:Ca and ¥’Sr:*Sr ratios were used successfully as
natural tags for determining individuals’ natal origins.

Fish sampling strategy consisted in an exhaustive sampling of wild juveniles
in 12 rivers, throughout the entire native range in the Adour Basin, and sampling
juveniles in two hatcheries where stocked fish originated from. Adult salmon were
sampled during their reproduction migration. Sagittal otoliths were imbedded in
epoxy resin and polished to expose the core. Otolith microchemistry analysis was
performed in two steps. A fine transect, 30 um wide, was used on a femtosecond laser
ablation coupled to an ICPMS device to measure elemental ratios. In a second step, a
transect of 100 um wide was used to measure Sr isotopes using a femtosecond laser
ablation coupled to a MC-ICP-MS. Mean otolith Sr:Ca, Ba:Ca and ¥Sr:%Sr ratios
were calculated in the region of the otolith accreted while in the natal tributary, but
after yolk absorption (avoiding any maternally derived material accreted at the core),
and prior to outmigration. Quadratic Discriminant Function Analysis (QDFA) was
successful at classifying juveniles according to their natal rivers. Adults of unknown
natal origin were assigned to their natal rivers using the juvenile fingerprints from
the QDFA approach.

Statistical analysis showed that juvenile otolith signatures were matching water
signatures. Although most of the adults showed a marked homing instinct, some wild
fish strayed into non-natal spawning areas, but they were originated from the neighboring
rivers. Few adults originated from unknown rivers. The hatchery-reared fish as adult
spawners represented only 10% of the fish sampled during spawning migration.

Catadromous migrations—(Daverat et al. 2012b)

European flounder Platichthys flesus life history patterns were investigated at
three basins along a latitudinal gradient (Minho- N-Portugal, Gironde- SW-France,
Seine- N-France) (Daverat et al. 2012b). Sr:Ca and Ba:Ca otolith signatures and
microstructure were used to retrospectively determine habitats occupied by flounders
during their life, including during early larval ontogeny. Trajectories of habitat
use were reconstructed based on the method of Fablet et al. (2007). Flounders
exhibited high life history plasticity among and even within basins, noticed by the
diversity of habitats used along larval ontogeny and throughout their lives, and by
the age at which flounders migrated to freshwater. Egg signatures probably had a
strong maternal influence, and our interpretation suggests that flounders spawned
and/or hatched predominantly in brackish waters in Minho, while in Gironde and
Seine, flounders spawned and/or hatched either in coastal, brackish or freshwater
environments. The freshwater egg signature was most frequent in the Seine. These
interpretations contradict the current general assumption that flounders spawn
exclusively in coastal waters. During pre-metamorphosis and metamorphosis, flounders
were predominantly in brackish waters in Minho, while in Gironde and Seine they
were mainly in coastal and freshwater environments, respectively. The diversity of
flounder life histories (LH) (i.e., sequence of habitat residence—freshwater, brackish
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and coastal), after metamorphosis was greater in Minho (LH = 18), than in Seine
(LH = 15) or Gironde (LH = 13). The age at which flounders migrated to freshwater
also varied between sites, at an earlier age in Minho and Gironde (< 0.5 years old)
than in the Seine, where flounders migrating from the coast into freshwater reached
maximum frequencies at the ages 1.3 years old. Thus, catadromy in European flounder
may be facultative, and the reasons influencing flounders life history high plasticity
deserves thorough research.

Amphidromous migrations—barramundi life histories (Walther et al. 2011)

Movements of migratory barramundi Lates calcarifer were quantified in two large
unregulated rivers in northern Australia, using both elemental (Sr/Ba) and isotope
(*’Sr/*Sr) ratios in aragonitic otoliths (Walther et al. 2011). Chemical life history
profiles indicated significant individual variation in habitat use, particularly among
chemically distinct freshwater habitats within a catchment. A global zoning algorithm
was used to quantify distinct changes in chemical signatures across profiles. This
algorithm identified between two and six distinct chemical habitats in individual
profiles, indicating variable movement among habitats. Profiles of ¥’Sr/*Sr ratios
were notably distinct among individuals, with highly radiogenic values recorded in
some otoliths. This variation suggested that fish made full use of habitats across the
entire catchment basin.

Oceanodromous migrations—(Longmore et al. 2014)

Otolith trace element and stable isotope analyses were combined with microsatellite
data to investigate population structure and connectivity in the migratory deep-sea
black scabbardfish Aphanopus carbo, sampled along a latitudinal gradient spanning
much of the known species range in the Northeast Atlantic (Longmore et al. 2014).
In each sampled life stage, otolith trace element and oxygen isotope compositions
are similar among fish from different capture locations, but otolith compositions
vary greatly between life stages. Oxygen isotope compositions indicate ontogenetic
migrations from relatively warm water conditions, during larval growth, to cooler
waters with increasing age. Analysis of microsatellite DNA also suggests lack of
genetic structure among the areas sampled. The multidisciplinary approach employed
collectively suggests that A. carbo individuals undergo an ocean-scale ontogenetic
migration, beginning with spawning in southern warm-water Macaronesian areas
(potentially dominated by Madeira), followed by a large proportion of immature fish
moving to and feeding on the continental slope in northern areas. The results lend the
first conclusive evidence for defining the life-history circuit of this species, and the
perception of its stock structure across the North Atlantic.

Scales, fin rays and other calcified structures used to infer fish migration

Fish scales, rays and spines have also been used successfully as alternatives to otoliths
in inferring fish migrations and movements (Clarke et al. 2007; Smith 2010; Davies
et al. 2011; Phelps et al. 2012; Woodcock and Walther 2014). The greatest advantage
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of using these three structures lies in the fact that they are non-lethal techniques
(Wolff et al. 2013; Woodcock and Walther 2014), which is particularly important
when studying endangered species. Scales of teleost fish are composed of two layers,
the upper osseous layer and the lower fibrillary plate. The fibrillary plate is known
to be composed of multiple layers of lamellae, each of which is filled with parallel
collagen fibers, hydroxyapatite and an organic matrix (Onozato and Watabe 1979).
Fin rays have the same composition as fish bones, with an hydroxyapatite matrix
(Phelps et al. 2012). The hydroxyapatite of fish scales and fin rays, in the same
manner as otolith aragonite, record ambient water composition to some extent, but
they might be regenerated when the fish is in calcium deficit (Yasuaki et al. 1989;
Witten and Villwock 1997) and, as a consequence, scales and fin rays may not
record the entire life of a fish. There are other limitations, scales can be lost and then
regenerated (Bereiter-Hahn and Zylberberg 1993) and, sometimes, scales are not
formed very early in life (Onozato and Watabe 1979); therefore, scales might not
record the entire life of the fish. As a consequence, appropriate sampling of scales
on the fish body, can increase the chance to collect scales that were formed at the
early stage of the fish. This area varies with the fish species. Growing evidences are
showing that scales composition in some cases can reflect ambient water composition
(Wells et al. 2000), as well as fin rays (Phelps et al. 2012). Indeed, some studies used
scales to trace fish movement with success for species with distinct life histories, as the
potadromous westslope cutthroat trout Oncorhyncus clarkii lewisi (Wells et al. 2003),
the anadromous brown trout Sal/mo trutta (Ramsay et al. 2011), the amphidromous
Atlantic tarpon (Woodcock and Walther 2014) and barramundi Lates calcarifer
(Pender and Griffin 1996), and the oceanodromous albacore tuna Thunnus alalunga
(Davies et al. 2011).

Vertebrae were also used to infer fish movements but with lower use than scales
and fin rays (Radtke and Shepherd 1991; Smith and Whitledge 2010).
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CHAPTER 10

Tracing the Origins, Migrations,
and Other Movements of Fishes

Using Stable Isotopes
Joel C. Hoffman

Introduction

Stable isotope analysis of fish tissue is now an established tool to identify the origin
or to trace migration patterns of freshwater, estuarine, and marine fishes. Studies of
fish origins, migrations, and other movements are undertaken to better understand
the ecology and ecological connectivity of fishes, provide habitat use information
for conservation, assess potential exposure to ecotoxicological threats, and support
environmental assessments. In early studies of migration and movement, spatial
patterns were inferred from marking and tagging of fish, or else by the use of intrinsic
markers found in meristic characters, scales, or otoliths that were location- or stock-
specific (Jones 1968). Such techniques are still used and effective; findings from
these studies, however, are limited by the ability to recapture tagged fish or to those
stocks for which intrinsic markers have been studied and determined reliable. Recent
developments in electronic tagging technologies (e.g., archival tags, acoustic and radio
telemetry tags; see Schaefer 2016, this book) have greatly expanded our ability to track
individual fish over varied spatial domains. Nevertheless, these tagging methods are
not feasible or economical for many fishes.

The stable isotope composition of fish tissue is an intrinsic marker. As such, it
has some advantages compared to tagging and marking fish. Populations or stocks
can be tracked because the marker is inherent to all members of the group, many
individuals can be analyzed for relatively little cost (typically, US$10-$30 per sample),

US Environmental Protection Agency, Office of Research and Development, National Health and
Environmental Effects Research Lab, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth,
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and there are no concerns about obtaining acceptable recapture rates or tag-induced
changes in behavior. Whereas radio, acoustic, or archival tags allow an individual fish
to be followed through space and time, stable isotope studies provide comparatively
little information about a specific individual’s behavior. With stable isotope studies,
variation among individuals, however, can provide insight into the range of behaviors
exhibited within the population (Bearhop et al. 2004). Further, the approach is broadly
applicable to various fish sizes, life stages, and environmental settings, and can be
applied without euthanizing fish. Because a fish’s stable isotope ratio is derived from
the fish’s diet, the marker also integrates movements with feeding ecology. Combining
various tagging methods (e.g., radio telemetry, otolith microchemistry, tissue stable
isotope analysis) is an increasingly popular approach that can offer advantages of both
intrinsic and extrinsic markers.

The basis of the stable isotope studies discussed here is that the isotopic
composition of muscle, liver, blood, or other soft tissues (i.e., not otoliths or spines)
sampled is primarily derived from the fish’s diet. That is, the isotopic ‘signature’ of a
fish is acquired as the stable isotope composition of the tissues change in response to a
change in the isotopic composition of the diet; thus, the signature is a time-integrated
marker of the diet (Fry and Arnold 1982; Tieszen et al. 1983). The stable isotope ratios
of carbon (*C:"2C), nitrogen ('*N:!¥N), and sulfur (*S:32S) are the most commonly
used for studies of fish movements (when analyzing soft tissues; Hobson 1999). To
trace the origin, migration pattern, or movement of a fish, a stable isotope-based study
exploits naturally-occurring differences in one or more element’s isotopic composition
between local food webs, specific to the different habitats or ecosystems of interest
(Hobson 1999). These isotopic differences arise where there are habitat- or ecosystem-
specific differences in either the underlying biogeochemical processes or the food web
inputs (Peterson and Fry 1987). Even where there is not a marked difference in the
isotopic composition of the local food webs, it may still be possible to trace movements
of fish. A fish may have a distinct isotopic composition between two habitats or systems
if either the fish of interest or its prey has different trophic niches between the two
locations. In either instance, the fish’s movement between locations must be quicker
than the rate of change in the isotopic composition of its tissues. Thus, the fish arrives
at the new location with an isotopic composition indicative of its previous location.
Once the fish is established in the new location, the fish’s tissues will begin to acquire
an isotopic composition specific to its new habitat (Fig. 10.1). The time required for
the change to be detectable in a fish’s tissue and for isotopic equilibrium to be reached
depends on the isotope turnover rate for the tissue of interest.

The focus of this chapter is to introduce the methods and analytical techniques
for studying movements of fish, inclusive of elasmobranchs, by stable isotope
analysis of soft tissues such as muscle, liver, and blood. For a discussion of stable
isotope analysis of otoliths and scales, see Daverat and Martin (2016, this book). In
the past decade, stable isotope analysis has become increasingly accessible to fishery
scientists and ecologists as the number of commercial laboratories performing this
analytical service has increased, analytical throughput has improved, and analytical
costs have declined. The topics presented in this chapter include basic terminology
in stable isotope science, sample analysis, and preparation; stable isotope turnover
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Figure 10.1. Somatic growth-dependent change in fish tissue 8"°C and 8N values (a, b) and habitat-
specific 83C and 8'°N tissue signatures (c) of a fish establishing in a new location where the food web has
a distinct stable isotope composition from the food web in the fish’s location of origin (e.g., migration of a
young-of-year fish from offshore to inshore habitat). The data set would be obtained by sampling the fish
population repeatedly in time or space (or both). I, is the weight at capture and W, is the initial weight of
fish migrating from their location of origin. The circles represent samples from individual fish. The solid
line is the expected isotope turnover, assuming somatic growth exclusively contributes to isotope turnover
(Eq. 2, c=—1; Fry and Arnold 1982). In panel c¢), the boxes define the 10th and 90th percentiles of fish with
an isotopic signature derived from its initial location (defined as those fish with W /W, <2, open circles)
and after settling into the new location (defined as those fish W /W, >10, open circles). The arrow indicates
the direction of change and the fish with an intermediate value are indicated (gray circles). Note that there
is a £ 2%o variation among individuals approaching isotopic equilibrium, and thus, in this example, having
a large difference between locations in both 3'°C values (maximum difference 6.9%o) and 3°N values
(maximum difference 3.4%o) is essential. Also note that the maximum difference illustrated in (a) and (b)
is greater than the mean difference illustrated in (c).
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and trophic fractionation; stable isotope distributions in ecosystems; study design;
and case studies that demonstrate how stable isotope analysis can be used to study
fish migration and movement.

Stable isotope terminology, analysis, and sample preparation

Stable isotopes are atoms of the same element (i.e., same number of protons) that
have different masses because the number of neutrons varies. Stable isotopes, unlike
radioisotopes, do not decay. The most abundant isotope of carbon (C) has six protons
and six neutrons. It has an atomic mass of about 12, designated >C. The atomic mass
is essentially the sum of the masses of the protons and neutrons (each of a weight
equal to about one atomic mass unit) because electrons have a relatively insignificant
mass. Carbon has a stable isotope with seven neutrons, designated '*C. Ecosystem
differences in the natural abundance of ?H, *C, N, and **S have proved useful for
studies of fish origin, migration, and movement (based on analysis of soft tissues). The
elements H, C, N, and S are all comprised of an assemblage of different isotopes. The
natural abundance of stable isotopes varies by element. For example, N comprises
99.63% of all nitrogen on the planet, whereas N comprises only 0.37%. In contrast,
12C comprises 98.9% of all carbon on the planet, whereas '*C comprises 1.1%. The
natural abundance in any given sample varies from the planetary mean, and systematic
variation in the environment, reflected in the food web, is exploited to determine the
origin of a given fish.

Ecological studies of fish movement generally report the isotopic composition
of a sample in J (delta) notation, which expresses the value as a ratio of heavy: light
stable isotopes (e.g., H:'H, BC:'2C, SN:!*N, 34S:32S) in relation to an international
standard in parts per thousand (%o, or “per mil”):
8X=(R_ /R -1)x 103, (Eq. 1)

sample ~  standard

where X is the heavy stable isotope (e.g., 1*C), R is the atomic ratio of heavy:light
stable isotopes (*C:'2C), and the standard is internationally recognized (for C, it was
established as Pee Dee Belemnite (PDB), a limestone formation in South Carolina,
USA; see Sharp (2007) for detailed information on stable isotope standards and
international references). For example, the '3C:"2C (R) for the PDB standard is
0.0112372, or about 1.12 '3C atoms for every 100 '2C atoms. If a sample has 1.11 13C
atoms for every 100 '>C, then the 8'*C value would be —21.1%o. In ecological studies,
the difference in 8"°C values between two locations is often 5%o to 15%o., which is a
small difference in the natural abundance of *C.

These small differences in natural abundance are measured using a high precision
Isotope Ratio Mass Spectrometer (IRMS), which is designed to quantitatively measure
the abundance of ions of different masses. Prior to quantitative measurement, the
element of interest first must be converted into a form that can readily be ionized. For
light elements, including H, C, N, and S, this is achieved by combusting the sample
completely to convert it into a gas (e.g., for C, it would be converted to CO,). Thus, the
IRMS is generally coupled to an elemental analyzer, in which the sample is converted
to a gas. The isotopic composition of the pure gas is measured using the IRMS
(for more information on measurement, see Criss 1999; Sharp 2007).
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For quality assurance, the two most important factors to consider when working
with an IRMS laboratory is the calibration and standards used. Calibration should
occur regularly and the laboratory should be able to demonstrate that their current
measures match either international or laboratory standards (or both) to within £ 1%e.
To demonstrate this, laboratories generally incorporate standards at the start or finish
(or both) of each ‘run’ (i.e., a discrete set of samples analyzed continuously). The
instrument is calibrated with samples of a standard mass; when samples are prepared,
an effort should be made to conform all sample masses to the amount indicated by the
laboratory or the results can be biased. When analyzing samples, the analytical facility
should introduce replicate laboratory standards at regular intervals (e.g., every 10—12
samples in the run) for quality assurance and to determine if substantial ‘drift’ in the
instrument occurred. Where substantial ‘drift” does occur, quality controls can be used
to apply a mathematical correction, though overall precision may be affected. For
acceptable precision, replicate reference material (whether a laboratory or international
standard) should have an error < 0.2%o and this should be maintained across runs.

When analyzing samples for hydrogen isotope abundance (6D), a standardized
equilibration method should be used to correct for water vapor contamination
(Wassenaar and Hobson 2003; Doucett et al. 2007; Chessen et al. 2009). Uncontrolled
hydrogen exchange between ambient water vapor and organic hydrogen in samples
presents an obstacle to reporting 8D values that are comparable among sampling
location and times, tissue types, and laboratories. In complex molecules, possibly
12-22% of the hydrogen can freely exchange with ambient water vapor (Wassenaar
and Hobson 2000).

When analyzing fish tissue, the most commonly used tissue is white muscle
from the dorsal region, which has low isotopic variability relative to other tissues
(Pinnegar and Polunin 1999). Muscle samples can be acquired without euthanizing
the fish using biopsy tools, such as a biopsy needle or dermal tissue punch, to obtain
small tissue samples (e.g., Baker et al. 2004; Schielke and Post 2010). Fin clips
can also be used and generally show strong agreement with white muscle tissue
(Tronquart et al. 2012), probably because they have a similar isotope turnover time
(Suzuki et al. 2005). Liver and blood are also analyzed (e.g., McIntyre and Flecker
2006; Buchheister and Latour 2011) because these tissues have faster isotope
turnover rates than muscle and therefore could add information about the timing of
movement. In birds, blood plasma has been shown to isotopically turn over much
more rapidly than red blood cells, which have a similar isotope turnover rate to muscle
(Hobson 1999). Mucus has similarly been shown to have a much faster 8*C and 6"°N
turnover rate than muscle in fish (Church et al. 2009). Investigators have also used
the organic fraction in bone (i.e., collagen; Schoeninger and DeNiro 1984), and more
recently in scales (Ramsay et al. 2012) and otoliths (McMahon et al. 2011).

When collecting samples, either tissue samples or the whole fish must be returned
to the laboratory for processing. If samples must be stored, freezing at —20°C will
not alter the stable isotope composition of tissues (Bosley and Wainright 1999;
Sarakinos et al. 2002). To avoid decomposition, samples should be stored on ice in the
field and frozen as soon as possible. In remote locations, however, some preservation
will be required. Preservation of tissues in ethanol or formalin significantly alters
the stable isotope composition of tissue, so investigators should proceed with
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these methods with caution (Sarakinos et al. 2002; Kelly et al. 2006; Arrington and
Winemiller 2002). Preservation by salt alters the composition only slightly (< 1% 6*C
and 6'°N), but the shift should be quantified and arithmetically corrected to remove
sample bias (Arrington and Winemiller 2002; Xu et al. 2011).

To prepare the samples for analysis, tissue samples should be isolated (i.e.,
incidental material such as skin or bones removed), rinsed in deionized water,
thoroughly dried (at least 48 hours at 45°C or freeze-drying), and homogenized by
grinding to minimize any within-tissue variation. Tissue grinding tools include a spatula
(the sample is crushed inside the original container), mortar and pestle, and ball mill.
To avoid cross-contamination, clean and sterilize (i.e., wipe down thoroughly with
alcohol-soaked wipe) all grinding utensils thoroughly between samples. For commonly
analyzed stable isotopes, only a small amount of dried tissue is required, about 2 mg
or less. The precise sample weight required for analysis varies with respect to material
(e.g., fish tissue or plant matter) and tissue (due to varying H, C, N, and S percent
composition), element, and laboratory, and so it is necessary to discuss preferred
sample weights with the IRMS laboratory prior to sample preparation. Different
sample weights are required, in part, because IRMS analysis quality depends on the
mass of the element analyzed. The ground sample is then packed into a foil capsule
(either tin [8'3C, 85N, 8*S] or silver [6D]), following instructions provided by the
IRMS laboratory. For sampling storage and handling, use clean storage containers
such as combusted glass vials to prevent contamination by other organic materials.

During preparation, samples are sometimes subject to acidification or lipid
extraction. Acidification removes inorganic carbonates, which would contaminate the
tissue’s carbon isotope composition. Generally, it will not be necessary to acidify the
sample if muscle, fins, blood, or some other organic animal tissue is analyzed. If in
question, a sub-sample of ground tissue may be treated directly with a small amount
of 10% hydrochloric acid to determine whether inorganic carbonates are present (if the
sample bubbles after acidification, there are carbonates present). The treatment is used
sparingly because it can inadvertently alter the 6'°N value of the sample (Pinnegar and
Polunin 1999). If samples are acidified, it is advisable to analyze a second, untreated
sample to measure the 6'°N value (Bunn et al. 1995; Carabel 2006).

Lipid extraction removes variability in 8'*C values associated with varying lipid
content in samples. Kinetic isotope effects during lipid synthesis result in the depletion
of BC in lipids compared to carbohydrates and proteins (DeNiro and Epstein 1977).
Thus, independent of a fish’s diet or environment, tissues with a higher lipid content
will have a lower 6"*C value compared to tissues with a lower lipid content, potentially
confounding comparisons among or within tissues (McConnaughey and McRoy 1979).
Correcting 6"*C values for lipid content is advisable when working with samples such
as whole organisms, muscle samples, fin clips, or liver that are a variable mixture of
lipids and other organic molecules and that have a lipid content greater than 5-10%.
For these samples, the lipid-effect will be higher than 1%o and thus could affect data
interpretation (Post et al. 2007; for aquatic organism muscle tissue, this is equivalent
to an atomic C:N > 4.0). To extract the lipid, a polar solvent, generally a mix of
chloroform and methanol, is introduced to the bulk tissue sample (Schlechtriem et
al. 2003). Unfortunately, lipid extraction can enrich the ®N of the sample, as well
(Murry et al. 2006). Investigators have used a variety of mathematical approaches to
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correct for the effect of lipids on untreated tissue 8"*C values using data from lipid-
extracted muscle, liver, and whole organism samples, thereby avoiding the need to
extract every sample and analyze both a treated and untreated sample (Logan et al.
2008). The two most common approaches are normalization based on lipid content
(McConnaughey and McRoy 1979; Kiljunen et al. 2006; Mintenbeck et al. 2008) and
arithmetic mass balance using tissue C:N as a proxy for lipid content (Alexander et al.
1996; Fry et al. 2003). In a comparative analysis of correction methods, Logan et al.
(2008) found that the correction method was less important than the level of specificity
of the data from which the correction was derived (taxa and tissue type). Hoffman and
Sutton (2010) compared four common corrections developed using a wide variety of
fish species and found all yield similar results, within £ 1%eo.

With respect to H, a number of studies have found that lipid content does affect
8D values of both whole organisms and muscle tissue, and that lipid-extracted samples
much more closely resemble the consumer’s diet (Jardine et al. 2009). An arithmetic
correction has not been determined, however.

Stable isotope turnover and trophic fractionation

The ability to study movements between habitats is dependent on the isotope turnover
rate in the tissue being analyzed (Tieszen et al. 1983; Hobson and Clark 1992; Hobson
etal. 2010). Isotope turnover is a function of somatic growth and metabolism. Somatic
growth-based isotope turnover occurs as the fish adds new tissue, diluting the pool
of tissue derived from the diet in its previous location. Metabolic isotope turnover
occurs as tissue is broken down and new tissue is synthesized. Whether a fish has a
fast or slow growth rate, somatic growth is the primary contributor to isotope turnover
(Hesslein et al. 1993; Herzka and Holt 2000; Bosley et al. 2002; Sakano et al. 2005).
Metabolic turnover can accelerate the isotope turnover rate beyond that exerted by
growth alone (Vander Zanden et al. 1998; Herzka et al. 2001; Trueman et al. 2005).
However, other physiological processes, such as routing of particular components of
diet to particular tissues (‘isotopic routing”) and progressive enrichment in tissue "N
during starvation (owing to the same physiological mechanisms that cause trophic
enrichment), can influence isotope turnover and cause certain tissues to not isotopically
resemble a consumer’s diet (Gannes et al. 1997). The isotope turnover time is the time
it takes a fish (or its tissues) to approach isotopic equilibrium with its food sources.
That is, a consumer’s isotopic composition is integrated over the isotope turnover
time. When a migratory fish moves to a new location and begins feeding, its isotopic
composition will take some time to reach equilibrium with the isotopic composition
of its prey (the faster the isotope turnover rate, the sooner the fish arrives at its new
isotopic equilibrium).

It is critical to find a life stage and tissue (or tissues) that will yield an isotope
turnover rate of appropriate temporal scale to study the type of movement of interest.
Because mass-specific growth and metabolism rates are size-dependent, the time
it takes for a fish to approach isotopic equilibrium with its diet generally should
increase with increasing size (Martinez del Rio et al. 2009). Fish larvae have been
found to approach isotopic equilibrium in 10-20 days (Herzka 2005; Hoffman et al.
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2011), juvenile fishes in two—four months (Suzuki et al. 2005; Logan et al. 2006;
Buchheister and Latour 2010) and adults in six months to two years (Hesslein et al.
1993; Weidel et al. 2011). Local climate may also be relevant due to a temperature
effect; indeed, Mclntyre and Flecker (2006) found that fish from tropical freshwaters
had faster isotope turnover rates than species of similar size from temperate freshwaters.

Different tissues have different isotope turnover rates. For example, liver tissue
consistently has been shown to have a faster isotope turnover rate than muscle
tissue in fish (Logan et al. 2006; Suzuki et al. 2005; Buchheister and Latour 2010;
Weidel et al. 2011). This is useful for migration studies because the liver provides
more recent information on diet than muscle tissue; the two tissues in tandem could
provide greater temporal resolution than either tissue alone regarding the timing of
movement (Phillips and Eldridge 2006).

Modeling isotope turnover can aid movement studies. Two different models commonly
are used for aquatic organisms. Fry and Arnold (1982) described isotope turnover as
an empirical dilution equation that expresses the stable isotope value as a weight-
dependent mixture between its initial and final isotopic values, represented by a power
function with a constant metabolic decay rate as the fish approaches an asymptotic
final value:

8,=8,+ (3, 8) x (W)WY (Eq. 2)

where ¢, is the stable isotope ratio (e.g., "°C) of the animal or tissue at time ¢; 6 ’ and J,
are the final (equilibrium) and initial stable isotope ratios, respectively; W and W, are
the initial weight and weight at time ¢, respectively; and c is the metabolic coefficient.
The model simplifies to dilution-only isotope turnover (i.e., somatic growth only)
when ¢ = —1 and can be used to date ecologically significant events associated with
changes in isotopic ratios (Fry and Arnold 1982), such as age at settlement of fish
larvae (Herzka et al. 2001).

Hesslein et al. (1993) used an exponential model with terms for a specific growth
rate (k; where k = In(W/W)/t) and a metabolic turnover rate (m).

0,=0,%(0,—9) X eth+mi (Eq. 3)

The advantages of this model are that (1) time, ¢, is an explicit term; (2) m can
be estimated using a curve-fitting procedure if & is known; and (3) it can be used with
slow-growing fishes for whom isotope turnover is slow because it is primarily the
result of metabolic turnover (m, i.e., k is much less than m). If ¢ fand 6.are both known
and represent the final and initial location of a fish, and if & and m are empirically
measured or can be estimated, then the equation can be solved for the time it would
theoretically require for the isotopic signature of the population in the first habitat (6
to resemble that in the second (J ) upon moving into the second habitat.

Isotopic fractionation occurs when there is partial separation of the light isotopes
from the heavy isotopes; the processes that cause fractionation have been characterized
as either non equilibrium effects (e.g., diffusion, evaporation, other kinetic isotope
effects) or equilibrium effects (Criss 1999). Trophic fractionation is the difference
between the isotopic composition of a consumer (whole body) and its diet; it is a
metabolic effect that incorporates the effects of several non equilibrium fractionations.
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In contrast, trophic discrimination is the difference between the isotopic composition
of a single tissue (e.g., muscle) and the diet (Martinez del Rio et al. 2009). Martinez
del Rio et al. (2009) argue that the distinction arises because there are many processes,
including fractionation, that influence the isotopic composition of a tissue, whereas
it is the effect of all physiological processes that result in the difference between the
whole organism and its diet. The stable isotope ratios used in migration studies are
useful because the 8D, 83C, 8"°N, and 6*S values of consumers generally reflect
their diet along with a predictable trophic fractionation. For example, the carbon
stable isotope ratio of a consumer closely resembles its diet, within + 1%o (DeNiro
and Epstein 1978; Fry and Sherr 1984). Based on reviews that incorporated estimates
from many animals, consumers have an average trophic fractionation per trophic
level of + 0.4%o 6"3C and + 3.4%o 6'°N and + 0.5%o 6**S (for whole organisms and
muscle tissue) (Vander Zanden and Rasmussen 2001; Post 2002; McCutchan et al.
2003). The trophic fractionation of *H, particularly in soft tissues, has received less
attention than that of the other stable isotopes. Estep and Dabrowski (1980) found little
trophic discrimination of 2H in laboratory-reared mouse tissue. Similarly, Solomon
et al. (2009) found little trophic discrimination of ?H in laboratory-reared fish muscle
tissue, though Birchall et al. (2005) reported a relatively large trophic enrichment
(ca. + 90%o) of bone collagen in fish. A number of factors that are not well quantified
can contribute to 6D values of tissues (Doucett et al. 2007), including environmental
water (Solomon et al. 2009), and thus caution is recommended when interpreting 3D
values from tissues.

Although numerous reviews have independently derived similar estimates of
trophic fractionation (Vander Zanden and Rasmussen 2001; Post 2002; McCutchan
etal. 2003), trophic fractionation can vary with respect to diet quality, trophic position,
taxon, environment (e.g., marine versus freshwater), and tissue type (Vander Zanden
and Rasmussen 2001; McCutchan et al. 2003; Caut et al. 2009). This potential variation
should be considered when analyzing data because small variations in the trophic
fractionation estimate may alter the interpretation of diet sources contributing to fish
production (Vander Zanden and Rasmussen 2001). Other biochemical processes such
as isotopic routing can alter stable isotope composition independent of diet and merit
some consideration prior to undertaking a study (Gannes et al. 1997; Martinez del
Rio 2009). With respect to elasmobranchs, there have been concerns that tissue urea
content may present a concern for 6'°N analysis; however, isotope turnover studies of
muscle, liver, and blood 8N and 8'*C values have shown that isotope turnover rates
and trophic discrimination estimates are consistent with values measured for teleost
fishes (Logan and Lutcavage 2010).

Stable isotope distribution in ecosystems

Different elemental pools in different aquatic ecosystems vary in their isotopic
composition owing to both fractionation and differences in biogeochemical cycling.
It is these differences that are often exploited in studies of fish origin and migration.
For example, the 3"°C value of total dissolved CO, (DIC) in the ocean is about
0%o (Mook et al. 1974), due to the equilibrium fractionation of atmospheric CO,
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(813C =—7%o) (Deines 1980) across the atmosphere-ocean boundary. The fractionation
by C3 plants during C fixation is about —21%o; thus, marine phytoplankton generally
have a 8"°C value of about —21%o. In contrast, the §'°C value of DIC in freshwaters
varies widely depending on the DIC source. In rivers, where important sources
can include C-depleted weathered carbonate or DIC respired from '3C-depleted
terrigenous organic matter (Mook and Tan 1991), the "3C values for DIC are generally
lower than —10%o. Owing to the difference in DIC source *C abundance, freshwater
phytoplankton in rivers often have a 6"°C value of <—30%o (Peterson and Fry 1987).
Fractionation by algae, however, is not constant and can vary with DIC concentration,
nutrient availability, phytoplankton growth rate, and cell size (Goericke et al. 1994;
Goericke and Fry 1994). Thus, it is advisable to carefully measure 6'*C baseline
values in the locations of interest, as they can vary. It is also possible to create a stable
isotope label by enriching the environment by isotope addition; these studies, however,
generally have not been designed to address movement in fishes (but see Caudill 2003
for an application to the mayfly Callibaetis ferrugineus hageni).

The purpose here is to provide a review of those ecosystems, or habitats, between
which sufficiently large isotopic differences exist, and thus allowing to trace fish
movements or migrations between them. This is not an exhaustive review of the
differences that could exist between ecosystems or habitats, nor is it meant to review
the many sources of variability that might obscure or confound such differences.
The interested reader is encouraged to document available habitat types, determine
relevant spatial and temporal scales, consider possible geochemical processes, and
evaluate the food web characteristics as they pertain to the research question at hand.

Marine versus freshwater. Gradients in *C, N, and *S abundance have been useful
for tracking migrations of marine fishes into freshwater (e.g., Hesslein et al. 1991;
Limburg 1998; MacAvoy et al. 1998). Movement between fresh and marine waters
can be tracked using the carbon stable isotope ratio because the respective food
webs in these waters are fueled by vegetation that utilize carbon pools with different
isotopic compositions (Peterson and Fry 1987). Marine phytoplankton have a §'*C
value of ca. —24%o to —19%o because the 5"°C of total dissolved inorganic CO, (DIC)
in the ocean is about 0%o and the incorporation of carbon by C, plants proceeds with a
fractionation of about —21%.. Riverine sources, such as matter derived from terrestrial
vegetation (C, plants, ca. —28%o 8"°C), soils (ca. —26%o 8'°C), and phytoplankton
(< =30%o 6'°C), generally are depleted in '*C compared to the estuary and marine
systems (Peterson and Fry 1987).

Freshwater organisms may be '"N-depleted compared to marine organisms
because terrestrial derived organic matter and freshwater algae often have a 6"°N value
of —2%o to 7%o (Peterson and Fry 1987; Cloern et al. 2002), which is generally less
than estuarine and coastal marine phytoplankton (7%o to 10%o) (Wainright and Fry
1994; Ostrom et al. 1997; Deegan and Garritt 1997). As a spatial tracer, '°N values
should be interpreted cautiously for numerous reasons. First, an ecosystem’s baseline
8N value, often represented by the particulate organic matter (POM), can be altered
indirectly and directly by biological and biogeochemical processes (Miyake and Wada
1971; Wada and Hattori 1978; Mariotti et al. 1981; Cifuentes et al. 1988; Altabet
1988). This variability in the baseline 3'°N value will propagate up the food chain
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to primary consumers and then fishes, potentially confounding spatial differences.
Second, temporal changes in baseline 3'°N values can occur faster than a consumer’s
isotope turnover and result in a mis-match between a consumer’s 3'°N value and its
environment (O’Reilly et al. 2004). Third, the relatively large "N trophic fractionation
(3%o to 4%o 8'°N) means that while tissue 8'°N values are useful for determining the
trophic level, small changes in the trophic level of a fish can substantially alter the
tissue 6'°N value and confound its interpretation as a spatial tracer.

The sulfur stable isotope ratio, 8**S, can also identify movements between
marine habitats and freshwater. Marine fishes generally are more enriched in **S than
freshwater fishes because marine sulfate (3**S ca. 21%o) is generally *S-enriched
compared to freshwater sulfate (6*S < 20%o) (Peterson and Fry 1987). Fractionation
of sulfate by plants is small (Trust and Fry 1992), as is trophic fractionation, thereby
preserving this difference in the *S value of consumers. Marine and polyhaline
estuarine fishes have been measured with 3*S values ranging from 10%o to 22%o,
whereas freshwater fishes have been measured with values generally < 5%o (Fry 1988;
Hesslein et al. 1993; MacAvoy et al. 2001; Hoffman et al. 2007). Indeed, sulfur isotopes
are perhaps the most powerful light isotope tracer of movement between marine and
freshwaters, because of the large difference in 6**S values between these ecosystems.

Estuaries and coastal habitats. Within estuaries, marked changes in the abundance of
stable isotopes, particularly *C and *S, will occur from the upper estuary to the ocean,
reflecting the different geochemistry of source waters (freshwater versus marine) and
the physical mixing dynamics (Fry 2002; Fry and Chumchal 2011). The change in
these tracers along an estuarine ecosystem is recorded in the isotopic signatures of
primary producers, and provides a framework for interpretation of consumer isotopic
data relative to conservative physical mixing (Fry 2002). The isotopic composition
along the estuary does not change linearly with respect to salinity, but rather tends to
be curvilinear because the concentration of the element of interest (e.g., C) generally
varies between the freshwater and marine sources to the estuary. The spatial expression
of this change in isotopic composition depends on the mixing dynamics specific to
the estuary being studied (Fry 2002; Hoffman et al. 2010; Fry and Chumchal 2011).
Measuring consumer isotopic ratios across the estuarine salinity gradient can identify
the temporal and spatial scale of fish movements within the estuary (Cunjak et al.
2005; Hoffman et al. 2007).

Habitats within the marine coastal environment may have distinct isotopic
compositions, facilitating movement studies. For example, mangrove leaves and
primary producers within mangrove habitat are depleted in *C (8'3C <—25%0) (Rodelli
et al. 1984) compared to primary producers and potential prey in seagrass (3°C >
—14%o; Nagelkerken and van der Velde 2004) and coral reef habitat (3'3C —16%. to
—8%o0) (Nakamura et al. 2008). Nakamura et al. (2008) were able to use this difference
to identify small black-tail snapper Lutjanus fulvus that had recently emigrated from
mangrove habitat and settled on the coral reef. Fry and Ewel (2003) noted that shrimp
Metapenaeus sp. captured in two different mangrove systems had different 8'*C values
(=9%o to —13%o versus <—16%o), implying that the shrimp in the former system were
feeding in nearby seagrass meadows whereas those in the latter were resident in the
mangrove system. Notably, some caution in interpretation is warranted because many
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possible basal sources could support mangrove food webs, some with similar isotopic
composition (e.g., the 8'*C value of mangrove leaves and mangrove-associated primary
producers are similar to that of terrestrial and aquatic vascular C3 plants), and these
sources can be readily transported within mangrove systems (Layman 2007).

Differences in isotopic composition between seagrass or marsh ecosystems
and adjacent open water habitat have also facilitated movement studies, including
studies of brown shrimp Penaeus aztecus (Fry 1981), larval red drum Sciaenops
ocellatus (Herzka and Holt 2001), and juvenile weakfish Cynoscion regalis (Litvin
and Weinstein 2004). Marine seagrasses have 6'°C values ranging from —3%o to
—15%o (Fry 1981). Salt marshes dominated by C4 plants such as Spartina alterniflora
have 8"°C values of ca. —13%o because C4 plants have a small isotopic fractionation
(ca. 6%o; Peterson and Fry 1987). These sources are more '3C enriched than plankton
from adjacent open waters (ca. —24%o to —19%o). Marshes dominated by other
vegetation may also be isotopically distinct. For example, Phragmites australis, a
vascular C3 plant, has a 6"*C value of —26%o to —28%o (Litvin and Weinstein 2004).
Differences in 3**S values between these ecosystems may occur, as well (Peterson
and Fry 1987; Litvin and Weinstein 2004).

Recently, numerous investigators have compiled basin-scale measurements of
isotopic variability in the ocean to construct isotopic landscapes, or ‘isoscapes’ across
the coastal and offshore marine environment that might offer new opportunities to trace
long distance marine migrations (Graham et al. 2010; Hobson et al. 2010; Trueman
et al. 2012). Few investigators, however, have yet attempted to exploit these isotopic
gradients to study fish migration using stable isotope analysis of soft tissues (but see
Graham et al. 2010).

Benthic versus pelagic habitats. In both marine and freshwater shallow habitat,
benthic and littoral habitats are often isotopically distinct from pelagic habitat because
both benthic and epiphytic periphyton have higher 6'3C values than phytoplankton
(France 1995). This is, presumably, due to a benthic boundary layer effect that
reduces *C fractionation in benthic algae. Benthic consumers also have lower 3**S
values than planktonic consumers because of greater fractionations associated with
sulfide production in sediments (Croisetiere et al. 2009). These same gradients may
also isotopically differentiate shallow nearshore waters and deep offshore waters, if
benthic primary production is incorporated into the nearshore food web but not into
the offshore food web (e.g., Sierszen et al. 2006; Bertrand et al. 2011).

Within the offshore environment in lakes and oceans, the isotopic composition
of the benthic food web is often enriched in *C and N compared to the planktonic
food web. The effect may arise from the carbon source, as sinking POM is generally
enriched in *C and "N compared to suspended POM due to a variety of biological
mechanisms (Saino and Hattori 1980; Altabet 1988; Ostrom et al. 1997), as well as
from trophic enrichment in the food web (Fry and Scherr 1984). This allows isotopically
distinguishing benthic versus pelagic consumers in offshore food webs in large lakes
(Sierszen et al. 2006) and oceans (Pettursdottir et al. 2008).

Rivers. Isotopic differences in N and *C among sites within watershed networks are
commonly found. Differences both in N-cycling and catchment land-use characters
(e.g., agricultural development, human density) can label sub-watersheds with unique
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8N values and thus help determine the origin of fish and their spatial scale of
movement (Gray et al. 2004; Sepulveda et al. 2009). The '*C in river systems undergoes
a predictable enrichment with stream size as the influence of *C-depleted dissolved
inorganic carbon derived from soils declines and that of *C-enriched atmospheric CO,
increases (Finlay 2003). The shift can be used to trace fish movement between upstream
and downstream locations (Gray et al. 2004; Rasmussen et al. 2009). Variation may
occur at relatively small spatial scales, as well. For example, Finlay et al. (2002) found
that consumers (scraper and collector-gatherer taxa) in stream pools are *C-enriched
(—18%o to —20%0 6'3C) compared to those in adjacent riffles (<—22%o 6'*C), presumably
due to water velocity effects on boundary layer thickness around benthic algae.

A number of recent studies have demonstrated the utility of deuterium (*H, or D)
as a food web tracer (Doucett et al. 2007; Jardine et al. 2009; Solomon et al. 2011),
particularly in tracing terrestrial versus aquatic sources to the food web. Thus, where
locations or habitats vary in the respective contribution of these two sources to the
local food web, 2H may also be a useful stable isotope for tracking movement. That
said, the use of 6D values in aquatic food web studies is relatively new, and there
are a number of residual concerns about interpreting 6D values in ecological studies,
including variable lipid content (Jardine et al. 2009). Among these concerns is that
hydrogen from ambient water that is digested (‘environmental’ or ‘dietary’ water) can
alter tissue 8D values, because the 6D value of water is typically different from that
measured in terrestrial or aquatic primary producers (Doucett et al. 2007). Estimates
for the dietary water contribution to 8D values for fish are relatively scarce. Solomon
et al. (2009) estimated the dietary water 6D value contribution to numerous hatchery-
reared salmonids (muscle tissue dD) to be an average of 12.4% (£ 2.4%). Thus, it
is advisable to measure the 8D value from the ambient water from the location(s) in
which the fish of interest is living.

Source-specific tracers. Both point and non-point sources of anthropogenic nutrients
and waste can label specific regions or sites within ocean basins, coastline, rivers, or
lakes with an isotopically distinct character. For example, offshore waste disposal,
sewage effluent, or seepage from septic tanks can alter the 6°C, 8'°N, and 3*S
values of local primary producers or consumers compared to the surrounding
environment (Macko and Ostrom 1994). This signal is reflected in fish, with
those fish located closest to the source being most similar to its isotopic signature
(Hansson et al. 1997; Steffy and Kilham 2004; Schlacher et al. 2005; Hoffman et al.
2012). The most common source-specific approach used in fish movement studies
is to utilize differences among locations in the amount or form of anthropogenic
nitrogen addition. Nitrate from human and animal waste is enriched in "N (8"°*N 10%o
to 22%o) owing to both denitrification and volatilization of ammonia (Kendall et al.
2007). In contrast, nitrate in synthetic fertilizer, which is fixed from atmospheric N,
generally has much lower 6"°N values (—3%o to 3%0) (Kendall et al. 2007), although
the SN content can be elevated to a composition similar to wastewater if it is subject
to denitrification in groundwater (Diebel and Vander Zanden 2009). Harrington et al.
(1998) found that both nitrate and juvenile Atlantic salmon Salmo salar had different
8N values among small streams within the same river network, in accordance with
variable agricultural land use among those catchments. Thus, they were able to use
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this marker to help identify the natal origin of juvenile salmon. More recently, Ramsay
et al. (2012) performed a comparable study with juvenile brown trout Salmo trutta
in the River Dee (U.K.) and found that scale 8"°N and 8'*C values could also be used
to classify fish to their natal stream, and with comparable success to otolith element
concentrations.

Study design

The key elements to a successful study of fish movement using stable isotopes are
(1) to demonstrate that the locations or habitats of interest have an isotopic difference
that is greater than the natural variation found in the fish, and (2) to use a tissue with
an isotope turnover rate on a temporal scale that is appropriate to detect movement
between these locations or habitats. Ideally, prior to the full study, a preliminary
investigation is conducted to determine that a reliable isotopic difference between
the locations or habitats of interest exists. It is important to note that stable isotope-
based inferences of a fish’s movement have considerable uncertainty, unless the two
locations have distinct signatures or the transition timing between locations is known.
The larger the difference in isotopic composition between the two habitats, the higher
the sensitivity and precision of isotope approaches for detecting movements (Phillips
and Gregg 2001). Analyzing tissues for multiple stable isotope ratios (e.g., 6"*C and
8*'S) can improve the ability to discriminate between locations, particularly if there
are more than two locations of interest or multiple potential diet sources for the fish in
each location (Harrod et al. 2005). Further, a fish must reside in a location long enough
to observe a change, because there is a time lag in the tissue’s isotopic composition.
Once the fish approaches isotopic equilibrium with its diet in its new location, it is
not possible to estimate how long ago the fish arrived in that location.

The preliminary investigation should include sampling multiple sites within each
location or habitat, and over multiple months or seasons to determine spatial and
temporal variability at the relevant scales of interest. Sampling may primarily aim
to characterize the fish species at an age or stage of interest, but the most successful
studies generally also include available primary producers, primary consumers, resident
fish that do not migrate, or some combination of these. It is important to develop an
isotopic baseline that incorporates variability and that includes many potential prey,
to successfully distinguish a shift in a fish’s isotopic composition resulting from a
movement versus another cause, such as a local ontogenetic diet shift or underlying
isotopic shift in the ecosystem (in response to an algae bloom, for example). It is
equally important to determine the ecologically relevant time-scales to successfully
choose, for analysis, a tissue with an isotope turnover time that integrates over the
same period as the movement of interest.

In the course of the study, it is preferable to measure the selected fish species
in all locations of interest, including prior to movement and after establishment in a
new location or habitat to confirm and describe the shift in isotopic composition in
the tissue of interest. Generally, two approaches are used to identify migratory fish.
First, fish can be identified as migratory by visually or statistically differentiating their
isotopic composition from a location- or habitat-specific mean element stable isotope
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ratio (Herzka 2005). Formally, this can be accomplished using discriminant analysis
or cluster analysis to classify fish as resident or migrant based on the distribution of
stable isotope ratios (Harrod et al. 2005; Sepulveda et al. 2009; Durbec et al. 2010),
or by using the data structure to determine which values do not conform to a localized
mean by identifying outliers (Fry and Chumchal 2011).

Second, a theoretical model can be developed that describes the expected change
in a fish’s isotopic signature for a given movement scenario. Measured patterns in
tissue isotopic composition, as a function of time or space, are then compared to the
model to diagnose movement patterns. For example, Hoffman et al. (2008) compared
weight-specific 8'*C values of a juvenile anadromous clupeid, American shad 4losa
sapidissima, to an isotope turnover model that described emigration from the tidal
freshwater to the ocean. Those fish with higher 3"3C values (at size) than the model
were interpreted to have migrated to the ocean at a smaller size than stipulated by the
model and, similarly, those with 6'*C values lower than the model were interpreted to
have migrated at a larger size than stipulated by the model. It is similarly possible to
compare the isotopic composition of a fish against a known spatial isotopic gradient,
wherein the theoretical model describes the spatial change as a function of isotopic
mixing between two geochemically distinct aquatic ecosystems, such as a coastal
tributary and the ocean (Fry 2002).

Investigators have used a number of approaches to quantify spatial and temporal
aspects of movement. Rasmussen et al. (2009) demonstrated that the spatial scale
of movement of individual fish can be quantified by measuring the difference in the
isotopic change over space (e.g., as found along freshwater-marine, inshore-offshore,
upriver-downriver gradients) between a fish and its prey. First, primary consumers or
prey species are measured along the spatial gradient of interest to determine the baseline
isotopic shift. Then, the fish species is measured along the same spatial gradient. The
difference between the slopes of the isotopic baseline and the isotopic composition
of the fish, as a function of space, is used to calculate the spatial scale of movement
occupied by the fish for feeding.

The temporal scale of movement can be quantified by applying stable isotope
turnover models in field studies, provided that growth and metabolic isotope turnover
rates are known or measured. For example, Herzka et al. (2000) was able to determine
the age of settlement of red drum Sciaenops ocellatus larvae. Hoffman et al. (2007)
quantified the duration of residency of an anadromous clupeid, American shad, within
tidal freshwater habitats prior to their seaward migration.

It is also possible to quantify the amount of energy derived from the various
locations between which the fish is moving using a single or multiple element
stable isotope conservative mixing model. The model postulates that the fractional
contribution from each habitat sums to one (Phillips and Gregg 2001). Mixing models
are particularly sensitive to the difference in isotopic composition between locations.
Doubling the difference between locations (e.g., from 2%o to 4%o) will reduced the
uncertainty in the contribution attributed to each location by half (Phillips and Gregg
2001). Using a two-element (C, N) stable isotope mixing model, Sierszen et al. (2012)
found that the amount of energy obtained from either coastal wetlands or adjacent
nearshore habitat of the Laurentian Great Lakes varied dramatically among individual
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adult northern pike Esox lucius. This indicated that movement for foraging, between
open water and protected inshore habitat, was highly variable among individuals and
within coastal wetlands.

Case studies

Diadromous migrations. Investigators have used stable isotope analysis to distinguish
movement of adult anadromous salmonids into freshwater (Doucett et al. 1999),
identify natal streams of young anadromous salmonids (Harrington et al. 1998),
characterize movement patterns of juvenile anadromous clupeids during their migration
to the ocean (Hoffman et al. 2007, 2008), and identify movement patterns of juveniles
and sub-adult anguillids between fresh and marine water (Harrod et al. 2005).

Doucett et al. (1999) identified co-existing anadromous and non-anadromous
brook trout Salvelinus fontinalis in the Tabusintac River (Canada) using the 8'°C,
SN, and 6*S values of fish tissue. Adults were sampled from holding pools near
the head of tide and their isotopic composition was compared to both age-0 brook
trout (potential prey) and resident fishes caught in the river. Based on adipose fins,
adults were found to have a much broader range of 6'*C, 6'°N, and &*S values than
freshwater resident fish or benthic invertebrates (sampled as whole organisms). Larger
adult brook trout generally had high 6"*C, 8N, and 6**S values; therefore they were
identified as anadromous brook trout that had recently migrated into the river from
the Atlantic Ocean. Interestingly, when examining the isotopic composition of very
small age-0 brook trout (ca. 2.0 cm fork length) that had recently emerged, only those
captured in the freshwater sampling site closest to the estuary had 6'*C, 6'°N, and 6*S
values similar to anadromous brook trout. The isotopic composition of these recently
emerged brook trout reflects a maternal influence because the fish’s tissue is derived
from its yolk sac. Thus, the spatial pattern in isotopic composition of age-0 brook
trout was used to identify regions of the river that were important for anadromous
brook trout production.

Harrod et al. (2005) used muscle tissue 6'3C, 6'°N, and C:N values of European
eel Anguilla anguilla to study movement between salinity zones in Lough Ahalia, a
tidal Atlantic lake in Ireland. The investigators captured 30 yellow-phase sub-adult
European eels from each of three salinity zones: freshwater, brackish water, and
marine water. They exploited the available gradients in *C and "N between fresh and
marine waters, which were quantified using a resident, invasive gastropod because it
was distributed across the entire salinity gradient. A discriminant analysis was used
to classify eels into the three salinity zones based on 8'*C (lipid-corrected), 6'°N, and
C:N values. The mean classification rate was 85%, indicating that the European eels
were organized into discrete groups along the freshwater-marine mixing zone. The
discriminant analysis revealed movement between salinity zones, and individuals
were classified into salinity zones, other than that in which the individual was
caught. This occurred most frequently in freshwater and brackish water individuals,
indicating European eels were moving more frequently between these salinity zones
than between the marine water and either fresh or brackish water. The authors were
then able to examine differences in growth and conditions among the salinity zones,
because the implication of the stable isotope data was that spatial differences might
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arise at this scale. This analysis revealed spatial intra-population structure within this
estuarine habitat.

Amphidromous migrations. To date, amphidromy has been rarely studied using stable
isotope analysis.

Sorensen and Hobson (2005) used 8'*C and 6'°N values of muscle sampled from
amphidromous gobiid fishes (Lentipes concolor, Sicyopterus stimpsoni, Awaous
guamensis) to study movement from the coastal marine environment into the Hakalau
Stream (Hawaii, USA). These gobies spawn in the stream. Larvae drift downstream
into the ocean, where they spend three—five months before entering freshwater streams
at 15-20 mm in length. Little is known, however, about habitat usage during their
marine residence or their movement into streams. Over multiple years, the authors
captured late-larval and juvenile stage gobies of migrating gobies, as well as resident
adult gobies, by hand net along four locations within the stream; three locations were
located in close proximity to the Pacific Ocean, where as the fourth was located well-
upstream of the mouth. To determine habitat-specific stable isotope baselines, plausible
organic matter sources, including leaf litter, stream detritus, freshwater algae, and
marine POM were collected for analysis, as well as two common primary consumers
(freshwater limpets Neritina granosa and freshwater shrimp Atyoida bisulcata).
Comparison of putatively migrating young-of-year gobies captured near the river
mouth to the resident adults provided evidence that the young-of-year gobies had not
recently arrived from the ocean, but rather had been resident in the river long enough
to isotopically resemble the adult fish. Moreover, the "°C and 3"°N values of young-
of-year gobies were more similar to inshore marine POM samples than offshore marine
POM samples. Together, the data indicated that amphidromous goby larvae were
using freshwater plumes and stream mouth regions as rearing habitats, a previously
unknown behavior. Thus, the freshwater plume region provided an important habitat
linking the freshwater and marine phases.

Potamodromous migrations. Fewer studies have used stable isotope analysis to trace
potamodromous migrations than to trace diadromous migrations.

Sepulveda et al. (2009) used the 6'°N value of Bonneville cutthroat trout
Oncorhynchus clarkii utah muscle to identify the origin of individual Bonneville
cutthroat trout captured in headwater stream spawning habitat in Bear River
(Utah, USA). In the system studied, fluvial Bonneville cutthroat trout primarily inhabit
mainstream rivers but migrate up to 90 km to headwater streams to spawn. Resident
Bonneville cutthroat trout complete their entire life cycle within these same headwater
streams. To determine the contribution of fluvial life history Bonneville cutthroat trout
to the population, the investigators used differences in 8'°N values that arise from the
diet (the fluvial form is larger and occupies a higher trophic position) and watershed
land use (greater agricultural land use adjacent to mainstem rivers) between mainstem
rivers and headwater streams. Fish were sampled only in headwater streams; however,
fluvial fish were identified by the presence of a parasite unique to the life history form.
The investigators found that the fluvial form had a 8'°N value about 4%o higher than
the resident form. A cluster analysis was used to test the accuracy of assignment based
on size and 8"°N value, which helped identifying fish within a mixed assemblage.
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Individuals of unknown life history were assigned to both forms, with smaller fish
predominantly assigned to the resident form.

Hoffman et al. (2011) used 6"*C and 6'*N values of whole fish to trace movement
of rainbow smelt Osmerus mordax larvae between coastal wetlands and adjacent open
coastal waters (Hoffman et al. 2011). Although anadromous in marine environments,
in the Laurentian Great Lakes, rainbow smelt migrate into rivers or use shorelines to
spawn. Rainbow smelt larvae were sampled in the western end of Lake Superior (USA)
to describe their movements by exploiting an isotopic gradient between inshore wetland
habitat (*C-depleted, *N-enriched) and Lake Superior (*C-enriched, ’N-depleted).
Over a three-month period, the investigators collected larvae weekly in a large coastal
wetland situated at a river mouth and behind a barrier beach, in the adjacent open
coast of Lake Superior, and at the inlet connecting the two habitats. Initially, yolk-sac
larvae collected at the inlet and in Lake Superior had similar stable isotope values,
reflecting the similar origin of the parent stock (Lake Superior). Once the larvae had
experienced a 10-fold increase in weight from the yolk-sac stage, habitat-specific
isotopic signatures were apparent. Rainbow smelt captured in the wetland had lower
8"3C values (ca. —32%o) and higher 8"°N values (ca. 9%o0) compared to larvae captured
in the inlet (—28%o to —26%o 8'*C, 5%0 to 8%o 6'°N) and in Lake Superior (ca. —26%o
d"3C, ca. 6%o 8'°N). Larvae had different isotopic compositions because they settled
into two geochemically distinct habitats—Lake Superior and the coastal wetland.
Larvae captured in the inlet had either an isotopic composition similar to larvae in
Lake Superior, implying they recently entered the river, or an isotopic composition
intermediate between the wetland and lake, implying that they may reside within the
inlet (a hydrologic transition between the river and lake) or move regularly between
Lake Superior and the wetland. Thus, the spatial pattern in isotopic composition
revealed facultative use of coastal habitats.

Marine migrations and movement. A growing number of studies document movement
and migrations of marine fishes wholly within the marine environment. Most of these
have characterized coastal movements, utilizing inshore-offshore isotopic gradients
(Estrada et al. 2003; Guelinckx et al. 2006; Tanaka et al. 2010) or differences between
habitats with distinct isotopic signatures (Nakamura et al. 2008; Papastamatiou et al.
2010).

Guelinckx et al. (2006) used 8'3C of young-of-year Atlantic herring Clupea
harengus and European sprat Sprattus sprattus muscle tissue to study movement
between the North Sea (marine environment; prey with 6'*C ca. —23%o to —20%o) and
the Schelde River estuary (brackish environment, prey with 6'3C ca. —30%o to —27%o).
The investigators sampled monthly for both fish and prey items, in both the lower
and upper estuary, for a year to follow movements of a single year-class. At the lower
estuary station, most herring and sprat had a marine signature; however some fish
captured in summer were identified as transient (intermediate '*C value), indicating
seaward movement. At the upper estuary station, a large proportion of both herring
and sprat captured in October through March were identified as marine, revealing
migration from the North Sea to the estuary. The tracer revealed that both herring and
sprat underwent almost constant immigration between the North Sea and the estuary,
with pronounced movement into the upper estuary during the winter months. The
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investigators concluded that the isotopic evidence for simultaneous movements into
and out of the estuary supports the hypothesis that migration to the estuarine nursery
habitat was facultative and individual-based.

Large-scale geographic variations in isotope abundance (‘isoscapes’) have been
used to track long distance migrations of large pelagic fishes and marine mammals,
but generally using biological materials other than soft tissues. Graham et al. (2010),
however, were able to use variability in the 8N value of yellowfin tuna Thunnus
albacares and bigeye tuna Thunnus obesus muscle to determine movements across
the equatorial Pacific Ocean. Tissue samples were collected from commercial fishing
vessels from across nearly the whole of the equatorial Pacific Ocean, from latitude 20°
N to 20° S. Surprisingly, the investigators found a large difference, 12%o to 14%o, in
SN values among individuals. Further research, using compound-specific 1°N analysis
of individual amino acids, revealed that this variability in bulk tissue 8'’N was caused
by variability in N at the base of the food web (i.e., not trophic position). Thus, the
investigators were able to map the isotopic deviations and create a 8N value isoscape
for tuna in the equatorial Pacific Ocean. Isotope turnover in juvenile yellowfin tuna
is rapid; the isotope signal is integrated over about a two-month period. Thus, the
study revealed that these pelagic tuna were not highly migratory but rather feeding
in discrete regions, on the scale of hundreds of kilometers, for at least a few months.

Combining tagging. Combining stable isotope analysis with electronic tagging
technologies such as radio or acoustic telemetry, or with other types of intrinsic tags
such as otolith microchemistry analysis, can provide insight into how movement
facilitates ecological connectivity among ecosystems (Hammerschalge-Peyer and
Layman 2010). It also reveals why fish are undergoing movements between habitats
(Cunjak et al. 2005), and yields increased certainty by providing multiple lines of
evidence for migration (Hogan et al. 2007).

Cunjak et al. (2005) provide numerous examples where combining telemetry
or mark-recapture data with stable isotope analysis can improve movement studies.
The Mirimachi River in New Brunswick (Canada) is an important habitat for Atlantic
salmon Salmo salar. Salmon parr are known to undertake a variety of small-scale
movements in this river, including moving between large, thermally dynamic river
systems and smaller, thermally stable tributaries. The authors combined Passive
Integrated Transponder (PIT) tagging with fin tissue stable isotope analysis (6'3C,
8"N) to explore causes for this movement. In essence, the question was whether this
movement was in search of foraging habitat or thermal refugia. The study was feasible
because prior work had demonstrated that fishes and macroinvertebrates from the
large and small tributary in the study area were isotopically distinct. Stable isotope
analysis revealed that fish captured in the large tributary were enriched in '*C with
little variation among individuals, whereas those captured in the small tributary were
mostly depleted in 1*C, but had wide variation among individuals. PIT tagging studies
revealed three different forms of foraging behavior consistent with the isotope data.
Those parr captured in the small tributary with the lowest 8'*C values were residing and
foraging in the system. Those parr captured in the small tributary with intermediate 5"*C
values were regularly moving between the two tributaries. While parr captured in the
large tributary were largely residents of the large tributary, consistent with their higher
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8"3C values. Notably, PIT tagging revealed that some of these parr were entering the
small tributary, indicating they were not using the habitat forage (they did not have an
intermediate 6'3C value) but were using it as thermal refugia during the summer. That
is, the two tagging methods together allowed the authors to identify a response to an
environmental stress that neither technique alone would have revealed as effectively.

Hogan et al. (2007) combined otolith microchemistry analysis (Sr:Ca) with
C and N stable isotope analysis of muscle tissue to characterize the life history of
a commercially important Asian catfish, Pangasius krempfi, in the Mekong River
(SE-Asia). Stable isotope analysis from muscle tissue of adults captured far up the
Mekong River (> 700 km) in southern Laos was undertaken to determine the diet
and habitat of adult P. krempfi. Sagittal otoliths were also obtained from spawning
adults captured at the same study site; the ratio of strontium to calcium concentrations
(Sr:Ca) along a transect from the core to the margin was analyzed to characterize
movements throughout life between marine and freshwater. In essence, stable isotope
analysis provided short-term information, whereas otolith analysis provided long-term
information regarding habitat use. The 8'*C and 6"°N values of P. krempfi tissue were
much higher than other species of resident fish and available organic matter sources to
the river, suggesting these fish had recently been foraging in the marine environment.
Sr:Ca measurements were highly variable between the otolith origin and margin,
reaching values much higher than resident freshwater fishes, and on average were
significantly higher than resident freshwater fishes. These data also suggest the fish
were spending much of their life history in the marine environment, likely moving
regularly between brackish and marine habitats. Together, the data demonstrate this
fish is anadromous, that individuals undergo long distance spawning migrations, and
that they inhabit both freshwater and marine environments.

Conclusion

While stable isotope analysis is now an established tool to trace the origins and
movements of fish, recent advances in laboratory instrumentation and data analysis
approaches have broadened the potential applications of this tool. Improvements in
analytical throughput, as well as reduced cost, now permit the analysis of hundreds
or thousands of individuals. This high analytical power allows investigators to
explore variation among individuals, identify multiple migration strategies, and study
movements at geographic scales that are quite small (hundreds of meters) and quite
large (thousands of kilometers). The use of non-lethal methods for sampling tissues
(e.g., fin clips, tissue biopsies) is increasing and these methods facilitate stable isotope
studies of fish of conservation concern, as well as studies that require repeat sampling
of'individuals. An expanding base of stable isotope markers and the geographic scales
of data sources will continue to improve our ability to interpret stable isotope data. The
development of quantitative approaches has enabled investigators to better characterize
movements, including using stable isotope turnover models to estimate the timing
of movements, using available isotopic gradients to estimate the spatial scale of fish
movement, and using stable isotope mixing models to estimate the relative amount of
energy obtained from foraging in various locations. While applications have broadened,
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it remains fundamental that in every study, the investigators must develop ecosystem-
and taxon-specific isotopic baseline signatures as a reference point for interpreting
their fish data. The strength of conclusions regarding inferred movements is only as
good as the isotopic context in which the data can be interpreted.

Continuing research in stable isotope turnover will undoubtedly improve this field
of research. While there exist general frameworks for understanding isotope turnover
and the number of isotope turnover studies is growing, it remains important to quantify
isotope turnover in a broad suite of fishes, especially those fishes with complex life
histories, and during different life stages (e.g., during spawning migrations, during
long distance seasonal migrations). Notably, metabolic processes remain relatively
unexplored with respect to stable isotope turnover and trophic fractionation. This
is because, at least in part, assessing the contribution of metabolism to isotope
turnover, especially in field studies, remains extremely difficult. New electronic
tagging technologies, however, could be applied to this problem. For example, the
contribution of metabolism could be indirectly measured in a field experiment by
following individuals and repeatedly recapturing them to obtain growth estimates
and measure the change in an individual’s isotopic composition (based on fin clips,
for example). This example demonstrates the potential of combined, complementary
tagging approaches to provide new insights into the utility of stable isotope analysis
for studying fish movements.

Summary

1. Element (H, C, N, S) stable isotope ratios in soft tissues are a time-lagged indicator
of a fish’s diet; the time period over which the diet information is integrated
depends on the stable isotope turnover rate of the tissue being analyzed.

2. A difference in the isotopic composition between two habitats or ecosystems
within the same fish species can result from underlying differences in ecosystem
biogeochemistry or food web inputs, as well as from differences in the trophic
niche of the fish or its prey.

3. Migrations and movements in fishes can be studied using stable isotope analysis
if (1) the fish moves between two (or more) locations, habitats, or ecosystems in
which their food source has a different isotopic composition; (2) the movement
between the two locations is faster than the rate of isotope turnover in the tissues;
and (3) the fish remains in the second location long enough to observe a change
in the isotopic composition of its tissues.

4. The isotope turnover rate depends on somatic growth (dilution) and metabolism
(replacement). The isotope turnover rate generally decreases with increasing body
size. It is critical to sample a life stage and tissue that has an isotope turnover rate
that is sufficiently fast to detect movements between the locations of interest.
Including multiple tissues with different isotope turnover rates may provide more
information on the timing of movements.

5. The ability to discriminate movements between two locations depends on
the magnitude of the isotopic difference between them. The certainty of the
conclusions that are drawn can be increased by choosing the stable isotope ratio
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with the greatest difference between locations, using multiple stable isotope
ratios (e.g., 8°C and 8*S values), or applying additional tracer approaches (e.g.,
tagging, otolith microchemistry).

6. To attribute the change in the isotopic composition of a fish’s tissue to movement
(versus an underlying shift in the isotopic baseline, for example), it is necessary
to account for temporal and spatial isotopic variability in location-specific stable
isotope ratio baselines. Such changes can be the result of changes in biogeochemistry
(e.g., microbial processing), fractionation by primary producers at the base of
the food web, food web inputs, trophic niche shifts, and trophic fractionation.
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CHAPTER 11

Use of Drift Nets to Infer
Fish Transport and Migration
Strategies in Inland Aquatic

Ecosystems
Michal Jand™* and Martin Reichard?

Principles of drift nets’ use

Drift nets are stationary nets designed to capture drifting organisms, i.e., those
transported via water current. For the purposes of this chapter, drift is understood as
the transport itself, in which along-current movement of an organism is maintained
by the current alone and not at the expense of the fish’s energy reserves. This will
be independent of whether (1) it results from passive dislodgement and ends with
passive deposition (Pavlov 1994), or (2) plays a part in an active migration strategy
(Hare et al. 2005). It is worth noting that the term ‘drift nets’ is also used for coastal
gill nets, where the nets themselves drift with the current (FAO 2013). Drifting gill
nets work on a substantially different principle and this chapter deals only with
stationary drift nets.

In fact, in its broadest sense, any stationary device capturing drifting organisms
could be considered a drift net. Thus, nets usually towed in order to sample
ichthyoplankton (plankton, ring or bongo nets) can also serve as drift nets when set in
a stationary position. Both rotary screw traps, used to sample downstream migrating
juvenile salmonids (e.g., Johnson et al. 2005), and anchored stow nets, used for
commercial catches in tidal zones, work on similar principles to drift nets. Drift pumps
(Gale and Mohr 1978; Dahms and Qian 2004), which mechanically pump water from
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the current, thereby avoiding problems with drift net clogging (see below), also serve
to capture drifting organisms. However, drift pumps carry a potential bias because
they may also capture non-drifting organisms present in the current.

In its basic form, a drift net consists of a frame, a tapering net attached to the
frame and (optionally) a collecting jar attached to the cod end of the net (Fig. 11.1).
The mouth of a drift net is installed perpendicularly to the current, such that the water
and the drifting organisms flow through the net mouth. Particles carried by the current
are trapped by the mesh and moved towards the cod end by current pressure. After an
allotted time, the organisms collected are either picked individually from the cod end
or collected in a jar, or washed from the nets into a collection jar or examination basin.

In order to ensure drift nets stay in their chosen position, they need to be anchored.
Anchoring points may comprise the river bottom or banks, a boat, pontoons, bridges,
piers or an anchor. In shallow water (< 1 m depth), iron rods hammered into the bottom
are used both to anchor the nets and to maintain the optimal position, i.e., mouth
facing perpendicular to the current. In deeper water, drift nets may be attached at a
stationary point by more flexible means (e.g., by rope) using a system of weights to
stabilize its position.

Although towed plankton nets had been used to sample early life stages of
fish since 1828 (Kelso and Rutherford 1996), stationary sampling nets, developed
for sampling drifting freshwater invertebrates, were not used for another century
(Needham 1928). Subsequently, the study of drift has become a major field in
macroinvertebrates studies (see Waters 1972; Brittain and Eikeland 1988; Svendsen
etal. 2004 for reviews). The first studies using stationary drift nets specifically design
for fish collection appear around the middle of the 20th century (e.g., Brett 1948;
Wolf 1951); using drift nets only slightly modified from those for macroinvertebrates
(e.g., alarger mesh size). Today’s nets differ little from these, though some modifications
havebeen proposed for specific purposes. The attachment of a flow meter, either at the mouth

iron rods

water level

] - frame
frame fixing loops
fine mesh net

collecting jar
flow

 —

mouth -
riverbed

Figure 11.1. Schematic diagram of a basic drift net positioned in a shallow river.
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or at the middle of the net, is probably the most common deviation from the basic scheme
(Gale and Mohr 1978). In addition, many studies varied the shape of the net and/or the
mesh size (see the subsection ‘Net design’). Schmutz et al. (1997) proposed a sampler
that could automatically collect six samples in temporal succession; allowing sampling
over relatively short intervals without the presence of an operator. As fish drift mostly
at night, this provides much appreciated relief in otherwise fatiguing work. The sampler
works on the principle of six compartments rotating within a frame construction, with
all nets except the lowest remaining closed during each interval (see Miiller 1966 for
macroinvertebrate drift samplers working on similar principles). However, the use of
such samplers is restricted to shallow waters (Schmutz et al. 1997). Oesmann (2003)
modified drift nets such that they can be opened and closed while under water, thereby
allowing quantitative sampling at distinct depth strata. The method uses the principle
of net collapse during retrieval to prevent contamination from other strata, as in the
approach of Nester (1987). In order to study fish larval movements in an estuary,
Graham and Venno (1968) ensured that their drift nets faced into the tidal current by
attaching the nets to vanes attached to a line buoyed at the surface and anchored to
the bottom. Similarly, a system of two buoys and two anchors allowed D’ Amours
et al. (2001) to set and retrieve multiple, vertically-stratified nets against the flow of
a river. Finally, Hare et al. (2005) were able to continuously observe drifting larvae
in an estuary by alternating two sets of vertically-stratified nets attached to a cable
deployed from the stern of a ship.

Generally, drift nets are specifically designed to sample waters with unidirectional
flow and are set at stationary points with easy access; hence they are mainly used in
rivers. Several studies, however, have used anchored neuston (Lindsay et al. 1978;
Hettler 1979), plankton (Graham and Venno 1968; Bradbury et al. 2004) or channel
nets (Lewis et al. 1970; Hare et al. 2005) to sample ichthyoplankton drifting with ebb
or flood tides in estuaries.

Despite well-developed procedures for sampling marine ichthyoplankton and the
known importance of drift for young marine fish, the use of drift nets (in the sense
described above) is rare in the marine environment. Most data on marine drifting
fish has been obtained using towed nets, as the marine environment rarely provides
conditions of unidirectional flow and stationary points. Indeed, only in exceptional
circumstances stationary nets are installed in seawaters, namely in polar waters where
nets may be attached to the ice crust and submerged below a seal hole (Sewell et al.
2008), or the installation of plankton nets in shallow coastal-waters (e.g., reef flats;
Hendler et al. 1999). Crest nets are stationary nets fixed to the substrate immediately
behind the crest of a reef, which sample reef-fish larvae migrating from their nurseries
(e.g., mangroves or seagrass beds) to their reef settlement areas, which may also
be considered as an example of marine use of drift nets (Dufour and Galzin 1993;
Nolan and Danilowicz 2008).

How drift nets are used to infer fish movement

All that we can be confident about when sampling organisms captured in drift nets
is that the organisms were being carried by the current at the time of capture. Any
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information on where, when, why and how fish larvae started drifting, or where
drift would have terminated if they had not been captured in the drift nets, usually
remains hidden. Only through carefully designed studies, in which drift net sampling
is accompanied with other sampling methods, measurement of environmental variables
and/or modelling, can we infer more detailed information on movement of fish larvae.
A number of different reasons have been put forward as to why fish larvae drift;
however, few studies have provided definitive proof.

For example, larvae of some species that use estuaries as nursery areas might
selectively (i.e., actively) use tidal streams to enter, remain in, or leave an estuary
(Hare et al. 2005). Active processes are also connected with drift of freshwater
fish larvae. Studies by Robinson et al. (1998), Wolter and Sukhodolov (2008) and
Schludermann et al. (2012) demonstrated that at least some of the larvae being carried
in a river current do not follow the same paths as passive particles, and that these larvae
are capable of (1) actively leaving the current, despite their poor swimming ability,
and/or (2) actively choosing currents that would distribute them to a suitable habitat.

In contrast, drift of some organisms may be part of a completely passive
process. Drifting eggs, for example, are both passively dislodged and passively
distributed. Eggs of lithophilic fish (fish typically spawning on fast-flow gravel beds)
(Balon 1975) may be swept by the current from gravel beds and drift for hundreds of
metres before becoming adhesive enough to attach to the bottom (Hofer and Kirchhofer
1996). Pelagophilic fish, on the other hand, spawn directly into the water and the
eggs can drift for hundreds of kilometres. These eggs develop into larvae during the
journey, whereupon some active component may be involved in its further distribution
(Jiang et al. 2010). Increased water velocity during times of elevated discharge will
often sweep eggs and fish larvae away from shelters, resulting in so called ‘catastrophic
drift’. Following passive dislodgement, catastrophic drift is also intuitively considered
to result in passive distribution, though no study to date has dealt with this question.
Larvae may also ‘passively’ enter a current as a consequence of losing orientation in
darkness (Pavlov 1994) or through some other accidental means (sensu ‘background
drift’ according to Brittain and Eikeland 1988).

The degree to which active processes contribute to migration of fish larvae and
juveniles in most species/age groups is presently unknown. Rather, studies have
tended to combine drift net sampling with knowledge of fish life-histories in order to
hypothesize on the importance of drift in different fish species/age groups.

The capture of small, early-stage larvae in drift nets set below spawning grounds
indicates post-hatching migration. In cases where spawning grounds cannot serve as
nurseries, such post-hatching drift is hypothesized as ensuring distribution of early-
stage larvae into suitable nurseries. Fast-flow gravel beds, for example, provide optimal
oxygen concentrations for eggs of lithophilic fish; however, high water velocity
and low food availability make this habitat less than suitable for the larvae. In this
case, drift is hypothesized as ensuring movement to slower and richer river stretches
(Hofer and Kirchhofer 1996). Post-hatching drift has been reported widely for
numerous species, e€.g., in potamodromous percids (Priegel 1970), coregonids
(Naesje et al. 1986), salmonids (Bardonnet et al. 1993) and cyprinids (Persat and
Olivier 1995), as well as anadromous osmerids (Bradbury et al. 2004), lampreys
(Harvey et al. 2002) and clupeids (O’Connell and Angermeier 1997). Long distance
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spawning migrations are common in these species and larval drift downstream is
sometimes considered as compensating for the long distances travelled upstream by
adult spawners.

Motivation for post-hatching drift is most apparent in amphidromous gobiids,
cottids and galaxiids (Iguchi and Mizuno 1990; McDowall 2007), whose larvae hatch
in freshwater. These larvae are incapable of feeding in freshwater and have very limited
swimming ability; hence, it is essential that larvae of these species reach marine waters
within a few days of hatching (Iguchi and Mizuno 1999).

Drift samples also commonly contain (1) newly-hatched larvae of species that
attach eggs to nearshore structures, vegetation or in cavities (i.e., phytophilic, phyto-
lithophilic, speleophilic or ostracophilic fish sensu Balon 1975) and whose spawning
grounds are often close to, or identical to, their nurseries, and (2) late larvae/early
juveniles (Pavlov 1994; Reichard and Jurajda 2007). Explanations for their presence
vary widely and might include accidental dislodgement, high population density,
or habitat shift related to ontogenetic development (Pavlov 1994; Zitek et al. 2004;
Reichard and Jurajda 2007).

Drift nets, or their equivalents, are also used to track anadromous post-
smoltification migrations of juvenile salmonids and the analogous movement of young
acipenserids, although such movements are not completely passive (i.e., fish swim
with the current) (Pavliov 1994).

Attaching a drift net to the outlet of a power-generating facility fed by a reservoir,
lake or river can not only provide information on fish transfer between two water
bodies but also information on young fish movement into the pelagic or benthic zones
of the initial water body, depending on the vertical position of the outlet (Kelso and
Leslie 1979; Barus et al. 1986; Carter and Reader 2000). Note that this is independent
of whether fish are actively following currents, as in migratory young salmonids and
acipenserids (Coutant and Whitney 2000), or are passively entrained as a consequence
of crossing in front of a water intake during diel vertical or horizontal migrations
(Pavlov et al. 2002). Scientists often additionally record the amount of damage caused
to fish by pressure changes, turbine passage or overheating when studying entrainment
through power generating facilities (Cada 1991; Carter and Reader 2000).

How to prepare samples using drift nets
Net design and exposure time

Drift nets are designed to capture small organisms. The mesh size used is generally
determined by the size of organism being studied. A very fine mesh (64 pm) was used
by Iguchi and Mizuno (1990) when capturing larvae as small as 1 mm total length;
however, most studies use a 400—500 um mesh, as recommended by Schmutz et al.
(1997). Though, a mesh as large as 1 mm can still effectively sample eggs and fish
larvae as small as 6 mm standard length (Copp et al. 2002).

The choice of appropriate mesh size should be carefully considered. Too large a
mesh may damage the smallest fish or let them through (Schmutz et al. 1997), while
too fine a mesh may prove effective at catching coarse particulate organic matter
(POM), which will lead to gradual clogging of the net. Clogging results in backflow,
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and thus biasing drift density estimates derived from the volume of water filtered
(see below). Measuring flow velocity both at the start and end of net exposure provides
an adequate estimate of the net clogging effect (with visual inspection providing a
rough estimate, naturally). If clogging causes considerable backflow, one can calculate
the actual volume of water filtered based in water velocity change. Note, however,
that water velocity in gradually clogged nets does not change linearly with exposure
time (Faulkner and Copp 2001).

The effects of backflow can be reduced by lengthening the net; however,
longer nets are more difficult to handle. The net:mouth area ratio rarely exceeds 6:1
(Schmutz et al. 1997), and a ratio higher than 5:1 is usually considered to provide
sufficient efficiency (Kelso and Rutherford 1996; see also Gale and Mohr 1978 for
inspiration on net design). Note that reducing the net mouth area (see Elliott 1970)
provides the same effect of increasing relative net length, but it will also decrease the
volume of water filtered.

Iguchi and Mizuno (1990) constructed their drift net with two mesh sizes, with a
fine mesh at the cod end and a coarser mesh near the mouth, allowing coarse POM to
be retained in the mouth of the net (Schmutz et al. 1997), while the fine mesh at the
cod end would reduce the risk of fish damage.

The negative effects of clogging on drift-net efficiency can be effectively resolved
in steep rivers and above weirs or waterfalls, by replacing the net with a horizontal
plastic tube (Elliott 1970). This tube feeds water into a net positioned under the tube
end outside of the waterbody. Thus, net clogging does not create backflow in the
tube. Water volume is calculated based on tube width and exposure time. However,
the use of such mechanisms is limited by the habitats in which they can be used and,
to date, they were only used for macroinvertebrate drift studies (e.g., Kubicek 1966).

A range of factors, including net clogging, compel scientists to compromise on
ideal sampling effort. Exposure time, for example, varies widely between studies,
ranging from 10 minutes to 12 hours, with 15-30 minutes being most common in
areas containing higher amounts of coarse POM. Short exposure times (lower water
volume filtered) lead to an increased probability of missing less common species; while
long net exposures increase the probability that captured fish will be damaged and
unidentifiable (Schmutz et al. 1997) and prevents determination of diel drift patterns
at fine scales (see Elliott 1970 for accompanying problems). Moreover, high volumes
of water filtered increase the amount of coarse POM retained in the net, increasing
both clogging and subsequent manipulation time due to the “painstaking separation
of the sample from organic and mineral debris” that follows each sampling (Faulkner
and Copp 2001). Although immediate separation of the sample in the field is less
comfortable than sorting preserved samples in the laboratory, it is generally preferred
for a number of reasons, including reduction of preservation medium used, reduction
of collateral damage to animals not of interest to the study, and, most importantly,
it saves time as “living, moving and naturally pigmented animals are easier to spot
amongst the debris than dead animals” (Copp et al. 2002).

Based on our experience, a shallow white basin (40x30x5 cm) originally
designed for photographic development is suitable for sorting samples of live drifting
organisms. Aliquots are poured into the basin in volumes sufficient for detection
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of small organisms, but also depending on the amount of coarse POM and water
transparency. Then, fish larvae and juveniles are individually removed using tweezers.
Small plastic bulb pipettes are extremely useful for removing the smallest fish larvae.
The sorted fish are then sacrificed (e.g., by an overdose of anaesthetic) and preserved
(4% buffered formaldehyde is widely used). Kelso and Rutherford (1996) provided a
detailed discussion on preservation media for fish larvae. When captured eggs and/or
larvae are too young to be identified, it is sometimes possible to hatch/raise part of a
sample for later determination of more developed stages.

In general, net design and exposure time will depend on the size and density of
organisms under study and on the amount of coarse POM. Final net design (shape,
size, mesh size) will always represent a compromise between filtration efficiency,
clogging rate, sample sorting time (Svendsen et al. 2004) and ease of net manipulation.

Temporal aspects of sample preparation
Seasonal aspects

The time of collection will be directly related to the assumed time of fish migration.
For most fish species, drift occurs in the earliest life stages and is, therefore, a function
of when fish spawn (Brown and Armstrong 1985). Indeed, inter-annual variability
in drifting fish assemblages is usually attributed to variability in spawning success
(Robinson et al. 1998; Reichard et al. 2002a), though some studies proposed that
propensity to drift is density-dependent and can change between years within the
same population (Economou 1991).

Strict seasonal patterns enable the planning of sampling campaigns with a precision
of a few weeks, with higher precision attainable on the basis of river discharge and
water temperature during the spawning season. Water temperature may speed up or
slow down both spawning season and egg and larval development, and thus also timing
of drift. Notably, drift seasonality in coregonids and salmonids may also be driven by
changes in discharge rate (Naesje et al. 1986; Johnston et al. 1995). In general, the
first sample of the seasonal cycle should precede the expected start of drift, with two
consecutive negative sampling sessions usually taken as an indication that the drift
season has come to an end.

Sampling frequency over the course of a season will depend on the aim of the
study. Daily intervals (or nightly, as drift occurs mostly at night; see below) intuitively
provide the most precise picture of seasonal drift pattern. Daily sampling can be too
demanding, especially when studying partial spawners, which appear in drift net
samples for long periods. Weekly sampling intervals (approximately) are usually
chosen, representing a compromise between precision and effort, but sufficient to
record the most important seasonal peaks in drift. Long-term studies that observe
changes in drifting fish assemblages over the course of a whole year, for example,
may set even longer sampling intervals of up to one month, usually with increased
sampling frequency during the periods when drift is expected to peak.
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Diel aspects

As larval drift occurs mostly at night, it is usually sufficient to collect samples
during periods of darkness. However, further sampling may be necessary if diel
movement patterns are the main objective of the study. Presence of diel drift patterns
in streams is linked to water transparency, with most studies reporting no diel pattern
in turbid rivers (Secchi disc transparency lower than 30 cm) (e.g., Pavlov 1994;
Pavlov et al. 1995) and nocturnal drift in the vast majority of rivers with transparency
higher than 30 cm (Pavlov 1994; see Reeves and Galat 2010 for review). Diel
periodicity is not bound strictly to transparency, since species-specific diel patterns
have been noted at the same sites (Robinson et al. 1998; Reeves and Galat 2010).
Stream morphology may also play a significant role as observed by Iguchi and
Mizuno (1990), which reported relaxation of otherwise strictly nocturnal goby diel
drift patterns in steep, fast-flowing water courses where fish were likely unable to
sustain the water current.

Whole-night, or even 24 hours, observation is tiring. Persat and Olivier (1995)
and Zitek et al. (2004) suggested that a single night sample, collected during the first
two hours of darkness, may be sufficient to predict drift density for the entire 24 hours.
Indeed, a number of studies have reported peak drift density during the first hours
of darkness (e.g., Reichard et al. 2002b). Some studies, however, have also noted a
second peak just before sunrise (Brown and Armstrong 1985) or a single peak in the
middle of the night (Naesje et al. 1986). In all these cases, those samples taken in
the two hours after sunset appeared to be reliable predictors of overall drift density
for the whole night. Note that a single sample may be insufficient where fish size is
of concern, as the size of drifting fish may vary over the course of the night (Sonny
et al. 2006, but consult Janac et al. 2013b for contradictory results).

Spatial aspects of sample preparation
Longitudinal aspects

Longitudinal positioning of drift nets will depend upon the purpose of the study, as
in the following examples. When studying drift of young fish from a reservoir, nets
are placed at, or close by, the outlet(s) (Pavlov et al. 2002). Alternatively, multiple
drift nets positioned across a stream immediately before its confluence with a main
stem river, lake, reservoir or the sea will provide a reasonable measure of the amount
of fish contributed (Franzin and Harbicht 1992). When the aim is to document the
journey of newly hatched fish to the sea, or a lake, the best results are obtained by a
longitudinal series of sampling points from the uppermost spawning site to the river’s
mouth (Priegel 1970).

Lateral and vertical aspects

The majority of studies agree that riverine fish drift is observed primarily in relatively
shallow zones near the shore (Reichard et al. 2004). Shallow, nearshore habitats are
also the most easily accessible and usually do not demand great effort or invention
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for net anchoring. It seems reasonable, therefore, to focus on these habitats when
preparing drift net samples. One should be aware that spatial drift patterns can differ
between species (Brown and Armstrong 1985; Pavlov 1994; Oesmann 2003), age
groups (Gale and Mohr 1978; Reichard et al. 2004) and river morphology. Concerning
the last topic, Pavlov et al. (2008) noted that “velocity gradients at river channel bends
can drastically redistribute fish larvae drifting downstream”.

There are two major patterns of vertical distribution when studying drift outside
of the shallow zone, namely (1) prevalence of surface drift (Brown and Armstrong
1985; Oesmann 2003), or (2) homogenous distribution throughout the water column
(Carter et al. 1986; Franzin and Harbicht 1992). Gale and Mohr (1978) and D’ Amours
et al. (2001) observed surface drift dominating only during the night, with bottom
drift dominating during the day. Graham and Venno (1968), on the other hand, found
larvae in surface nets during the ebb tide, while bottom catches prevailed during the
flood tide. Notably, some studies suggest that lateral and/or vertical distribution of
drifting fish in rivers is more dependent of flow velocity gradients along the transverse
profile, rather than the gradient of distance from margin or surface (Copp et al. 2002;
Lechner et al. 2013).

How to interpret and analyze data obtained from drift nets

In common with the general trend in ecological studies, statistical analysis of drift has
evolved greatly since the 1960’s (Svendsen et al. 2004); though the tools available for
basic description of drift net samples remain the same. In general, two approaches are
used to describe drift net yield: drift rate and drift density (Elliott 1970).

Drift rate represents a simple count of individuals captured in a standardized
net per unit time, but it is rarely used since it is highly correlated with discharge.
Intuitively, drift rate will increase with increasing discharge as a larger amount of
water will carry more drifting individuals. In exceptional cases, so far only observed
in invertebrates, drift rate can increase with decreasing discharge in response to stream
desiccation (Elliott 1970).

Drift density, expressed as the number of individuals per volume of water filtered
through the net, is generally agreed to be the most useful measure for quantifying
drifting fish. The volume of filtered water (m®) can be easily calculated as the area of
submersed net mouth (m?) multiplied by flow velocity in the mouth (m.s™') and exposure
time (s). In reality, this calculation represents no more than an approximation, as water
velocity varies both spatially (within the net mouth) and temporally. However, this
approximation is generally acceptable and two measurements of water velocity per
sample are considered acceptable. Measurements are usually conducted at the start
and end of each sample, using portable flow meters positioned at the centre of the
net mouth. Occasionally, high temporal variability in current velocity may call for
intermediate measurements. In such cases, flow meters permanently attached to the
nets allow continuous measurement of flow velocity and more accurate calculation
of filtered water volume.

For decision makers, it is often important to know the total amount of drifting fish,
namely when drift is used as an early measure of year-class strength (D’Amours et
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al. 2001), or when quantifying number of fish lost from a water body via entrainment
into the inlet of a power-generating facility (Kelso and Leslie 1979). Estimates of
total number of drifting fish are relatively rare; as they must contend with (1) spatial
variability over the transverse profile of the river/outlet, which can be very high,
especially in large rivers, and relatively low in reservoir outlets; (2) diel variability;
(3) missing data from not sampled dates (continuous sampling is rarely conducted
throughout the drift season); and (4) dependence of number of drifting individuals
on river discharge.

In order to deal with high spatial heterogeneity, a pilot study should be conducted
in order to reveal zones with different drift densities or, alternatively, density gradients.
The subsequent full-scale monitoring study should then have drift nets situated in each
of the zones observed, allowing estimation of drift density for the whole transverse
profile. The total estimate is obtained by averaging the density from each zone,
weighted by the proportion that each zone contributes to the total area of the transverse
profile. Diel variability can be treated in a similar way, though an approximation to
simple day and night densities and duration may be used. Drift density for intervening
days (i.e., missing data) can be obtained by interpolation, while diel discharge values
can usually be obtained from gauging stations. The following formula can then serve
for calculation of total number of drifting fish over a 24 hour interval:

N=03Txd,
i=1

where Q is the daily average discharge (m’ s'), T. is the duration of period i within
24 hours (s), d. is the drift density during period 7 (individuals m~*) and, commonly n
is 2, corresponding to the chosen periods (day and night). Note that, even after this
process, the estimate of total number of drifting fish will still have a large degree of
uncertainty, due to the number of approximations involved in the process.

By sampling drifting young fish and the source assemblages of young fish
concurrently (typically encountered in nearshore areas), the propensity of particular
fish species (or developmental stage/size categories) to drift can be revealed. For
example, Reichard and Jurajda (2007) calculated a drift index (E) based on relative
abundance (RA; % of total number of fish sampled in drift or in nurseries):

(RA in drift — RA in nurseries)
E= .
(RA in drift + RA in nurseries)

Drift indices such as these will be influenced by bias inherent in the sampling
gear used to sample the source assemblages, which will usually consist of species
with different habitat preferences (e.g., nearshore pelagic, nearshore demersal and
shelter-seeking fish larvae and juveniles).

Statistical treatment

Fish abundance data obtained from drift nets will rarely follow a normal distribution.
Traditionally, drift data were analyzed using ANOVA (following data transformation)
or non-parametric (e.g., Kruskal-Wallis) tests. Generalized Linear Models (GLMs),
designed specifically to cope with non-normally distributed data, are now widely
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available and we strongly recommend that GLMs should be used to analyze abundance
data from drift nets. Numbers of captured fish usually follow a Poisson distribution.
However, drift density values are not integers, being standardized to volume of filtered
water. In this case, the most appropriate option is using a Poisson distributed GLM
on pure count data (i.e., numbers of individuals) with water volume set as an offset
parameter (Zuur et al. 2009).

Data obtained from drift nets are frequently correlated, as the sampling design
often involves repeated sampling over time (e.g., when assessing seasonal and/or
diel patterns) using several nets distributed vertically and horizontally. Variables
representing correlation structure (e.g., replicated samples from the same cross-section)
often represent ‘nuisance variables’, which should be modelled as random factors.
Several other approaches have been used to overcome the ‘problem’ of correlated
drift net data. If a test of correlation structure undertaken prior to analysis reveals
only a weak correlation, for example, data non-independence may be omitted, as
outlined by D’ Amours et al. (2001). Alternatively, the effect of repeated sampling can
be removed by data standardization within a sampling unit (see Jana¢ et al. 2013a).
Such approaches may raise criticism, often rightly, as they may be easily biased or be
heavily dependent on subjective criteria. Overall, incorporating random factors into
the model appears to be the most appropriate solution for dealing with correlated data;
hence, we recommend mixed GLMs or their alternatives (e.g., GLMs with generalized
estimation equations) when analyzing drift abundance data (see Zuur et al. 2009).

The effect of abiotic factors (e.g., discharge, temperature, turbidity) on drift
density has traditionally been studied using correlations; but they can just as easily
be studied using GLMs. In fact, as these abiotic factors are known to influence drift
density, incorporating them as covariates into models dealing with drift abundance is
often advisable, at least at the stage of model construction.

When size of drifting fish is of concern, two statistical approaches have commonly
been applied. Some studies treat fish size as a response variable and use GLMs or
traditional Kolmogorov-Smirnov tests, while others tend to categorize fish size into
distinct groups and the abundance of the newly established ‘pseudo-species’ are
compared using contingency tables or GLMs.

Multivariate methods are rarely used in the analysis of fish drift samples. However,
Zitek et al. (2004) used cluster analysis to distinguish between different spawning
events (repeated occurrence of the same size group in drift during a season) and the
occurrence of later developmental stages; while Oesmann (2003) used canonical
correspondence analysis to explain variability in drifting fish assemblages through
environmental variables. Non-parametric multidimensional scaling based on ecological
distance matrices (e.g., Bray-Curtis) can also be used to visualize similarities in drift
assemblage between different sites or dates.

In general, it is reasonable to compare densities of drifting fish within a river
(e.g., when studying seasonal or diel drift patterns or differences between sites).
Inter-stream comparisons of drift density are more questionable, mainly due to low
representativeness of samples taken from larger rivers where just a small proportion of
the river can be sampled. On the other hand, comparisons between different streams are
reasonable when comparing assemblage composition of drifting fish, fish propensity to
drift or temporal and spatial drift patterns. Some studies have described drift patterns for
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the entire assemblage of drifting fish (species pooled rather than separated); however,
this is not a good practice as spatial and temporal drift patterns and propensity to drift
have proven to be species-specific, at least in some cases (Brown and Armstrong 1985;
Reichard and Jurajda 2007). Therefore, we urge that analysis should be undertaken at
the species or pseudo-species level, whenever possible.

Case studies using drift nets

Drift nets have been used to document stream fish drift worldwide, having been used
in rivers of Amazonia (Pavlov et al. 1995), Australia (Humphries et al. 2002), South
Asia (de Graafet al. 1999), China (Jiang et al. 2010), Japan (Iguchi and Mizuno 1990),
Russia (Pavlov et al. 1977), Europe (Zitek et al. 2004) and northern America (Gale
and Mohr 1978), with most studies taking place in the latter three.

In a series of studies, the drift of young fish was monitored in large rivers of
Europe, Asia and Amazonia (see Pavlov 1994 for a review). The numerous species
captured during the studies documented the widespread occurrence of drift, confirming
that it is not restricted to anadromous fishes but occurs also in many strictly freshwater
fish, including not only potamodromous fish but also ‘stationary species’ with limited
adult home ranges. Based on the results of these studies, Pavlov (1994) identified a
range of mechanisms that influence how fish enter a current, how they react once in
the current and how they orientate themselves once there. According to Pavliov (1994),
drift primarily results from relaxation or reversing of various retention mechanisms
(e.g., negative phototaxis, positive thigmotaxis, shelter seeking or rheoreaction) that
have evolved in riverine fish larvae to keep them out of stronger currents.

Brown and Armstrong (1985) used drift nets to document drift of approximately 60
species in the [llinois River (USA). This thorough study was one of the first to describe
basic seasonal, diel, lateral and vertical patterns in fish drift, and to demonstrate that
drift is a function of when species spawn, a prevailing night-time drift pattern, and
preferences for nearshore and surface drift. In combination with concurrent samples of
resident larval fish, drift net samples suggested that some species that were abundant
in the river may be able to resist drift.

Kennedy and Vinyard (1997) used drift nets to demonstrate drift avoidance in
larvae of the small catostomid Catostomus warnerensis, hypothesizing that the species
evolved ‘drift resistance’ in response to unreliability of habitats downstream. The
almost complete absence of the species in drift nets, reinforced by direct observation
of drift cessation in released larvae, supported the authors’ hypothesis.

More recently, Schludermann et al. (2012) tested the hypothesis that there may be
an active component in the drift of potamodromous common nase Chondrostoma nasus
larvae in the River Danube. The combination of (1) a hydrodynamic model tracing
transport of passive particles, and (2) drift net samples of released larvae, marked with
alizarin red, revealed that larvae were not distributed in a completely passive manner.

Priegel (1970) used drift nets to document the early life-cycle stages of the
potamodromous walleye Sander vitreus, concluding on the necessity of larvae leaving
their marsh hatching grounds for lake habitats with richer food sources within three—five
days. By releasing large numbers of marked (coloured dye) walleye fry and installing
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drift nets at several control points along the river, Priegel (1970) calculated the rate of
drift spread, proving the ability of small walleye to drift 70 km within just two days.

Iguchi and Mizuno (1999) installed drift nets in several Japanese coastal
streams at varying distances from the spawning grounds of the amphidromous goby
Rhinogobius brunneus. Captures demonstrated that fish travelling further distances
were in significantly worse condition than those travelling shorter distances. Thus,
the significance of swift transport to the sea (larvae were incapable of feeding in
freshwaters), and the related limited reproductive success observed in areas furthest
from the sea, contributed greatly to knowledge of amphidromous gobiid life-cycles.

By installing drift nets at the inflow and outflow of a coal-fired power station
cooling system, Carter and Reader (2000) estimated the density of fish entrained by the
inlet canal from a nearby river, and concluded that all larvae die after passing through
the cooling system. Concurrent drift net sampling in the river revealed that species
composition and diel and seasonal patterns of drifting fish assemblages corresponded
to those entrained at the inlet, confirming that the entrained fish larvae originated
mostly from river drift.

Drift nets installed just below the outlet of a shallow, lowland reservoir allowed
Janac et al. (2013a) to monitor diel and seasonal changes in the assemblage of young
fish leaving the reservoir through the turbine of a hydropower facility. The study
showed that passage of non-native tubenose goby Proterorhinus semilunaris through
the turbine allowed further downstream spreading of the species. Indeed, they estimated
that approximately 0.5 million young tubenose gobies passed into the river, with only
a 3% suffering significant damage.

Graham (1971) used drift nets to document the routes taken by Atlantic
herring Clupea harengus larvae during ebb and flood tides within an estuary.
By installing two vertically stratified sets of drift nets at both the landward and
seaward ends of the estuarine channel, Graham (1971) revealed differences in the
vertical distribution of larvae carried by tidal currents, and thus demonstrating
“a system of larval movement that retains the larvae within the estuary”. The suggested
retention mechanism consists of (1) up-estuary movement via flow near the bottom,
(2) upward movement through the water column upon reaching the limit of up-estuary
movement, (3) down-estuary movement via surface flow, and (4) descent again into
the up-estuary bottom flow.

Hare et al. (2005) used drift nets to sample larvae of several fish species (mostly
Micropogonias undulatus, Brevoortia tyrannus and Paralichthys dentatus) migrating
from continental shelf spawning sites to estuarine nurseries. With the addition of
extensive measurement of physical variables, the authors tested several hypotheses
regarding larval ingress mechanisms, including their relative importance. Tidally
driven ingress was of particularly high importance, with higher larval concentrations
present during up-estuary flood tides compared to low concentrations during down-
estuary ebb tides. The authors rejected several hypotheses connecting tidally driven
larval flux with purely physical processes (e.g., tidal change in water column density
or vertical mixing), thus supporting the hypothesis that tidally driven larval flux results
from active behaviour.

In general, knowledge of larval and juvenile migration still remains relatively
limited and even purely descriptive studies are desirable. Future research on
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the migration of early fish life stages should include controlled experiments
that test hypotheses originating from descriptive studies (Reichard et al. 2002b;
Faria and Gongalves 2010) and from individual based models (Peck et al. 2009).
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Methodologies for Investigating
Diadromous Fish Movements:
Conventional, PIT, Acoustic and
Radio Tagging and Tracking
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Tagging of fish has been carried out at least as long ago as the 17th century when, in
‘The Compleat Angler’ (first published in 1653), Izaak Walton reported the attachment
of ribbon tags to the tail of juvenile Atlantic salmon Salmo salar to determine their
movements (Walton and Cotton 1921; Lucas and Baras 2000). Since then, systematic
tagging of fish for scientific purposes has been conducted for more than a century
using natural marks or synthetic passive marks and tags, whereas the development
of electronic tags arose in the 1950’s with the first study of Trefethen (1956) using
underwater telemetry.

Methods to study the migratory behaviour of fish can be divided in two categories:
capture-dependent (based on sampling marked or unmarked fish) and capture-
independent methods, such as visual or video observation, resistivity fish counters
or hydroacoustics (Lucas and Baras 2000). In this chapter we focus only on capture-
dependent methods using marked fish.
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Tagging methodologies

Prior to conducting direct observation, there is often a need to identify fish within a
population. Identification is useful not only when recording immediate behaviour, but
also for long term monitoring of an individual’s or population’s performance. Tagging
and marking are used for identification purposes, both at the individual and group level
(Murphy and Willis 1996). Tagging or marking fish involves treatment and handling,
which may disturb and possibly stress the fish, so careful handling is most important
when undertaking such procedures (Baras 1991; Murphy and Willis 1996; Thorstad
et al. 2000a, 2001; Jepsen et al. 2002, 2005; Bridger and Booth 2003; Sulikowski et
al. 2005; Brown et al. 2011; Bégout et al. 2012).

External tags and marks can be used for visual identification, whereas internal
passive or transmitting tags and marks usually require specialized equipment for
detection and identification. An advantage of internal marks, such as chemical marking
of bony structures, is that they can enable large numbers of fish to be marked at an
early age (Murphy and Willis 1996). In some cases an external tag, or mark, is used
to signify the presence of an internal tag or mark.

External marks and tags

An external mark may be defined as a visible mark on the outside of the fish that is
used to identify individual fish, or to distinguish between groups of fish, but without
any additional information or specialized reporting format. External marks may be
natural, based on variation in colour patterns and morphological traits, such as scale
numbers, number of fin rays and distribution of melanophores (Garcia de Leaniz et
al. 2004). Additionally, differences in overall body shape (morphometrics) may allow
fish from different populations to be distinguished (Bergek and Bjorklund 2009).
External marks may also be artificially applied, as when fish are marked with dye,
stains or brands (Murphy and Willis 1996). External marking techniques are used by
fish biologists in a range of field applications (Murphy and Willis 1996). Such marks
are often simple, cheap and quick to apply, but carry limited information. External
marks such as fin clipping have often been used as a means of calling attention to
the presence of internal tags, but fin clipping may be stressful and affect swimming
behaviour, so it should be used with caution.

External tags are visible structures that are usually attached to the fish by piercing
tissues (Murphy and Willis 1996). Such tags, which may carry an individual code,
batch code or visible instructions, can be easily detected without specialized equipment.
External tags include ribbons, threads, wires, plates, discs, dangling tags, straps
(McFarlane et al. 1990), T-bar anchor tags (Harden Jones 1979; Morgan and Walsch
1993), Carlin tags (Carlin 1955) and coloured beads (Jadot et al. 2003).

Ideally the behaviour, growth and survival of tagged and untagged fish should
be similar. While this may be true for many types of tags and marks, some tags may
well affect behaviour and influence growth and survival (Murphy and Willis 1996;
Bridger and Booth 2003). For example, fish with external tags may be more vulnerable
to predation and their growth may also be affected. By permanently penetrating
the skin, the tag may provide an access route for infection. Additionally, tags may
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become overgrown with algae and other organisms, adding weight to the tag and
increasing drag, as well as preventing tag detection or reading. The need to identify
fish, individually or by group, with minimal influence on behaviour, health or survival
has thus led to the development of internal tags.

Internal tags

Internal tags are defined as tags inserted or injected into tissues and carried in the
body cavity, muscle or cartilage, which can be used to identify individuals or groups
of fish. Most types have to be removed from the fish to be identified, but some,
such as Radio Frequency Identification (RFID) tags often called Passive Integrated
Transponder tags (PIT tags), can be read by an external antenna; so, once implanted,
they provide a non-invasive and non-destructive means of identification without a
need for recapture (Baras et al. 2000; Downing et al. 2001; Barbour et al. 2012; see
later for further details).

Other types of internal tags include plastic or glass tubes, metal plates and small
pieces (size 0.5-2.0 mm % 0.25 mm) of magnetized stainless steel, that may have a
binary code of Arabic numbers engraved or laser etched on their surface. The latter,
known as coded wire tags, are normally injected into the snout of a fish, often in
combination with an external mark to aid recovery (Schurman and Thompson 1990).
Such tags are extensively used for identifying large numbers of fish and, due to their
small size, covering a broad range of sizes. Magnetic body cavity tags (MCTs) are
steel plates inserted into the body cavity of the fish, which are detected during fish
recapture by magnets placed in strategic positions.

Internal tags that are visible externally

Some tags are placed subcutaneously, but are visible by eye. One example is the
Visible Implant Tag (VIT), or the newer visible implant alphanumeric (VI alpha) tag.
Such tags were developed to combine the advantages of external tags with those of
internal tags, and are used where minimal disturbance of the fish is important. VIT are
made of plastic strips and VI alpha are made of medical-grade silicone rubber, often
with the addition of fluorescent material. These tags come with printed information
and are often placed in transparent tissue just behind the eye. An alternative, which
can be used for batch tagging, comes with the Visible Implant Elastomer tags (VIE).
These tags consist of a biocompatible two-part fluorescent silicone elastomer material
that is mixed and injected into tissue, as a liquid, with a hypodermic syringe. After
24 hours at room temperature it cures into a pliable solid, providing an externally visible
internal mark. The fluorescent elastomer is available in several colours. Recognition
of individuals is possible through the use of different body locations and colours
(Frederick 1997; Olsen and Vollestad 2001).

Transmitting tags

A large and growing array of electronic transmitter tags is available. Apart from
pulsed and coded signals that identify the position of the fish, some tags carry sensors
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that collect additional data, such as depth, swimming direction and speed, heart or
respiration rate or information about muscle contraction. Such electronic tags are larger
than PIT tags, and require an internal battery to power the transmitter and microchip.
The lifetime of the tag, which must be considered in telemetry studies, depends on
transmitter size, power supply, range and rate of signal transmission. Telemetry studies
on free swimming fish can range over periods of hours to months, and tag detection
range can be up to a kilometre in some instances, but is generally less than 100 m.
Microchip technology allows for specific instructions to be placed onto a tag, allowing
it to be switched on or off under a given set of conditions. For example, tags may
transmit only under certain conditions of water chemistry or light intensity, and such
selective use can increase the longevity of the tags.

Non-programmable radio and acoustic pulsed transmitter tags transmit a simple
radio or acoustic pulse at pre-set time intervals. Theoretically, large numbers of fish can
be monitored simultaneously using multiple frequencies or pulse rates, but in practice
it is very difficult to distinguish more than four or five pulse rates on an individual
frequency. Coded tags are a special type of transmitter tag that operates by emitting
a digitally encoded pulse signal at user-defined intervals on specific radio or acoustic
frequencies. This allows up to 100 individual signals to be distinguished at a given
frequency. This technology has the advantage that many fish can be tracked separately
on a single frequency, the information being automatically recorded and downloaded
to a computer. Coding can thus increase data acquisition rates and increase sample
sizes in telemetry experiments (Stuchrenberg et al. 1990). Lastly, programmable
microprocessor tags have been used to transmit radio or acoustic pulsed signals at
intervals defined by the user. Specific on/off sequences can be set that are useful for
preserving the battery life of the transmitter. New developments include the ability
to include sensors that can collect information about the electromyogram, tail beat
frequency and heart or respiration rate.

Acoustic tags are mostly used in seawater because sound is transmitted over long
distances in salt water, whereas radio waves are attenuated very rapidly. Frequencies of
20-500 kHz are used. Signals from pulsed acoustic tags can be detected using a simple
receiving system, comprising a hand-held directional hydrophone, a portable receiver
and headphones. This provides only a rough indication of the position of the fish, so
accurate position fixing requires triangulation using an array of fixed hydrophones
(see later for further details).

Radio tags, which can only be used in water of very low salinity, are useful
because radio waves are less affected by physical obstacles, turbidity, turbulence and
thermal stratification than acoustic, non-electromagnetic waves (see later for further
details). Radio signals also radiate through the water surface and can be detected at
great distances, because there is little loss of signal strength in air. Receivers can be
placed in boats, aircraft or at land-based listening stations. Radio tags operate at high
frequencies (30-300 MHz), so there is little signal drift.

In experiments where simple transmitting tags are used, fish depth can be deduced
from time of arrival of acoustic signals at the hydrophones (Anonymous 1968), and
algorithms for the calculation of 3D coordinates from an array of four hydrophones are
provided by Hardman and Woodward (1984). Signal strength from a radio source at a
known location may also be used to estimate fish depth (Velle et al. 1979), although
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the use of pressure-sensing transmitters (Luke et al. 1973; Williams 1990) gives more
reliable estimates, independent of signal attenuation.

In conclusion, and until recently, using conventional VHF radio transmitters
was regarded as the method of choice for the majority of studies in freshwater
systems (Sisak and Lotimer 1998, Fig. 12.1). But while conventional radio or new
hybrid technologies, such as GPS-based radio telemetry, are today considered the
standard in wildlife biology (Boitani and Powell 2012; Habib et al. 2014), radio
telemetry is no longer the only option for research on fish in freshwater habitats
(Cooke and Thorstad 2012; Cooke et al. 2013). In parallel to the innovations in
radio telemetry (see later), there have been considerable technical advances in other
electronic tagging and tracking technologies, including PIT tags (e.g., Barbour
et al. 2012; Burnett et al. 2013; Thiem et al. 2013; see later), acoustic transmitters
(e.g., Pincock and Johnston 2012; see later), and archival tags with or without
transmitting capabilities (e.g., multi-sensor loggers, tri-axial accelerometers,
miniaturized geopositioning systems, pop-up satellite tags—Bograd et al. 2010;
Block et al. 2011; Schaefer et al. 2011; Hazen et al. 2012; see also Schaefer et al.
2016), which all now provide further effective means of tracking fish in every aquatic
ecosystems. Hence, for more than a decade, there has been a steadily increasing
trend particularly towards the use of acoustic telemetry for freshwater studies
(Cooke et al. 2013; Fig. 12.1).
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Figure 12.1. Results of a wide record search in Aquatic Sciences and Fisheries Abstracts using either [(radio
telemetry) and migration], giving a total of 605 records from 1970 to 2013, or [(acoustic telemetry) and
migration], giving a total of 356 records from 1985 to 2013, and [(PIT tag) and migration], giving a total of
194 records from 1987 to 2013. Data is expressed as number of records per publication year and per method.
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Passive integrated transponder tags
Equipment basics and principles

The PIT tag technology is based on magnetic fields, since the PIT tag is an inert, small
biocompatible glass-encapsulated integrated circuit microchip and coil antenna that
receives and transmits automatically low-frequency radio signals (generally 125 to
400 kHz) carrying a unique alphanumeric identity code (ID) when triggered by an
interrogator. Hence, PIT tags are powered by magnetic induction. The interrogator
(or reader) consists of an antenna which generates a magnetic field inducing an
alternating voltage at a specific frequency to energize the PIT tag, and receives the
ID signal transmitted by the PIT tag which can be read an unlimited number of times.
PIT tags allow rapid retrieval of transmitted information from large numbers of tagged
individuals. The spatial resolution is less important with PIT tags than with classical
radio or acoustic tags (Hyun et al. 2012), but they have an unlimited lifespan (Gibbons
and Andrews 2004). The lack of a battery is the greatest advantage of the PIT tag,
since it allows for the production of much smaller tags that can be used on smaller
organisms. They can be easily implanted into the body cavity, or muscle, of a fish
using a veterinary syringe or a scalpel (Fig. 12.2) and are well retained (Hill et al.
2006; Cucherousset et al. 2007; Hirt-Chabbert and Young 2012; Mazel et al. 2013),
with no or low effect on growth and survival (Zydlewski et al. 2001; Hill et al. 2006;
Cucherousset et al. 2007; Hirt-Chabbert and Young 2012), even in young life stages
(Roussel et al. 2000; Acolas et al. 2007; Archdeacon et al. 2009).

Figure 12.2. Pit-tag insertion. (A) 12-mm Pit-tag injection into the dorsal muscle using a 12-gauge syringe
(Acipenser sturio, © Irstea, R. Le Barh). (B) 23-mm Pit-tag insertion into the visceral cavity following
scalpel incision (Anguilla Anguilla, © Trstea, F. Bau).

There are two main different technologies: full-duplex (FDX) and half-
duplex (HDX). Both systems most often operate at a 134.2 kHz frequency but the
signal transmission is different. A FDX system receives and transmits the signal
simultaneously as opposed to a HDX system that transmits the signal, stops and then
receives (Fig. 12.3). AFDX antenna receiver continuously emits a magnetic field that
charges the tag and listens for the tag to transmit an identification code at a rapid rate.
The HDX antenna receiver stops emitting magnetic charge while listening for a tag
transition, and therefore they have a slower read rate (two times less). Because the
HDX tags have the capacity to momentarily store energy, the tags transmit a stronger
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Figure 12.3. Comparison of FDX and HDX technologies: a trade-off between detection distance, tag size
and reading speed requirements.

signal resulting in a greater read range. The trade-off however is a larger tag, the
actual smallest FDX tags being 8 mm in length and the smallest HDX being 12 mm
in length (Fig. 12.3; Chase et al. 2013; Burnett et al. 2013). However, even when
using the most powerful technology in terms of detection range (i.e., HDX), the larger
23 or 32 mm PIT tags still have to be within 1 m of the antenna to be detected and
decoded (Roussel et al. 2000; Zydlewski et al. 2001; Bubb et al. 2006; Tranquilli 2010;
Burnett et al. 2013), the distance being much lower for 12 mm PIT tags in either
HDX or FDX technology (maximum 15 to 30 cm; Cucherousset et al. 2005;
Burnett et al. 2013).

The RFID technology is still improving in terms of tag miniaturization with a new
generation of RFID glass microtags (Nonatec® 1 mm in diameter, 6 mm in length, and
10 mg in mass) that operate at a high frequency (13.56 MHz) and allow an electronic
individual identification of small-bodied fish using a laboratory bench reader. The
distance of detection being very small (around 1.5 cm), it limits their use to individuals
that need to be recaptured, but it allows tagging very small fish such as zebrafish of
1642 mm (Cousin et al. 2012), juvenile sea bass of 36 mm (400 mg) (Ferrari et al.
2014) and even glass eel of 12 mm (95 mg) (T. Podgorniak, Irstea, pers. comm.).

On the other hand, ‘giant’ active transponder tags (e.g., 15 X 62.5 mm and
26.5 g in air) have been developed within the frame of the NEDAP Trail-System®. This
method is based on inductive coupling between an antenna loop fixed on the bottom
of a river, channel or estuary, and a ferrite rod antenna within the Nedap-transponder
(see Breukelaar et al. 2000). Nedap-trail stations with large antenna loops (e.g., three
parallel 550 m long cables separated by 10 m or more) have been broadly deployed in
the lowland reaches of the River Rhine and Meuse, where transponder detections can
occur at water depths up to 15 m (Breukelaar et al. 1998, 2000; Klein Breteler et al.
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2007). The frequency band used is low (33.25 kHz), and the Nedap-transponder has a
functioning concept similar to PIT tag except that it can generate an interrogating signal
to the antenna thanks to an internal battery, which implies that such an active tag has
a predefined lifespan (2 years, ca. 2000 detections) compared to unrestricted lifespan
for conventional PIT tags. Nedap-trail detection stations have been successfully used
to study migration routes of up-migrating adult sea trout (Breukelaar et al. 1998;
Bij de Vaate et al. 2003), out-migrating Atlantic salmon smolt (Brevé et al. 2013a),
silver European eel (Winter et al. 2006, 2007; Klein Breteler et al. 2007; De Oliveira
2012) and European sturgeon (Brevé et al. 2013b), as well as large-scale migratory
patterns of adult rheophilic fish (De Leeuw and Winter 2008).

Methods use to track fish migration

In the past, PIT tags were typically used for identifying unique individuals if fish
were recaptured, rather than as a telemetric monitoring tool for free-swimming
fish. However, PIT tagging systems have been developed whereby small fish can be
implanted with PIT tags, and their movements tracked if they move past checkpoints
(i.e., antennas with data loggers; Gibbons and Andrews 2004). The technique can be
used in either a passive or an active mode to track fish movements (Figs. 12.4 and
12.5). Accordingly, depending on the research objectives, spatial scale, life stage, and
field conditions, either mobile or stationary approach will be selected, even though
combining both techniques has also become increasingly common for studies in
shallow freshwater habitats (Cooke et al. 2013). Furthermore, tags and handheld readers
are also available in both FDX and HDX technologies (ISO 11784/11785 standard) to
easily check the tag after tagging or verify the identity of fish when recaptured. But
as FDX and HDX formats are interoperable but not compatible, ISO readers inherit
traits from both technologies, such as a slower FDX read rate to listen for HDX and
mostly the same antenna characteristics as for FDX (i.e., high inductance loops, noise
sensitivity, rigid antenna wire with air gap for underwater antennas), and therefore

Figure 12.4. Passive tracking with fixed detection stations (antennas). Flatbed antennas in a small river,
River La Roche, Normandy, France, FDX technology (© Irstea, M.L. Acolas, Inra experimentation site)
(A). Swim-through antennas in a pool fish pass (B) and at a fish bypass entrance (C), HDX technology,
River Gave de Pau, France (© Onema, P. Gomes).
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Figure 12.5. Active tracking with portable backpack readers and hand-held antennas. (A) Active tracking
in a small river, FDX technology, (Inra, © D. Huteau) and (B) search for the precise localization of a dead
fish with active tracking in scuba diving, HDX technology (Irstea, © F. Bau).

ISO readers are used in either pre-defined format specification for remote active or
passive monitoring.

Passive tracking using fixed detection stations can be implemented either in
small, shallow natural streams (Zydlewski et al. 2001; Teixeira and Cortes 2007;
Aymes and Rives 2009; Johnston et al. 2009) or within semi-natural or experimental
conditions, such as in artificially confined structures (ca. < 1000 cm?) like fishways
or fish traps which provide suitable narrow openings to enable PIT-tagged fish to
be detected (Castro-Santos et al. 1996; Downing et al. 2001; Thiem et al. 2011;
Burnett et al. 2013). Formerly, stations at hydroelectric facilities have been commonly
fitted with flat-plate PIT tag interrogation systems and flatbed antennas (mainly in
FDX technology) to detect fish passing over (Nunnallee et al. 1998; Lucas et al. 1999).
In recent years, PIT antennas have been more frequently used as vertical loops that
form swim-through windows (mainly self-built loops in HDX technology made from
one or multiple turns of welding cable; see Fig. 12.4), which allow better detection in
larger structures (Castro-Santos et al. 1996; Aarestrup et al. 2003; Axel et al. 2005;
Travade et al. 2010; Thiem et al. 2011, 2013; Burnett et al. 2013).

In natural river environments, different constraints may also arise including site
depth, width, river discharge, current velocity, conductivity, turbidity, accessibility for
the operator and ambient electromagnetic noise (Bass et al. 2012; Hyun et al. 2012;
Cooke etal. 2013). So, the design of PIT antennas has to be adapted to those constraints
and calibrated (e.g., accordance, synchronization, multiplexing) according to the
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particular environment to be efficient (Castro-Santos et al. 1996; Zydlewski et al. 20006;
Aymes and Rives 2009; Riley et al. 2010; Bass et al. 2012). Deep water makes the use
of PIT tags ineffective to infer fish positioning by virtue of the technical difficulty of
deploying PIT antennas, though technically feasible if linked in situ with waterproofed
logger and power supply (Tranquilli 2010). Hence, the latest under-going technological
developments to improve PIT-telemetry system capacity, resulting in both higher
spatial and temporal resolutions in deeper and complex habitats, may go through more
refinements in terms of networking of mainly long read-range HDX-antenna systems.
Indeed, passive PIT telemetry arrays have allowed simultaneous detection of fine-
scale movements of multiple individuals in deeper areas, and latest developments in
antenna technology sturdiness in harsh stream conditions (Johnston et al. 2009) have
also enabled longer-term field deployments. In small shallow rivers, passive detection
can be improved by deploying small, usually, flatbed antennas that can be multiplexed
to increase detection coverage. Such multiplexing leads to larger individual detection
fields, that can be further extended by synchronizing one or several other multiplexed
antenna systems within arrays. This technique has been used in streams to study small-
scale fish movements or habitat use for periods of a few months (Teixeira and Cortes
2007; Aymes and Rives 2009; Johnston et al. 2009). In larger rivers, cross-river antenna
arrays consisting of single or multiplexed larger flatbed or swim-through antennas
may be deployed to form independent detection barriers to remotely monitor larger-
scale fish movements and migration patterns (Zydlewski et al. 2006). So far, passive
PIT telemetry has mainly been used in smaller systems. It was especially valuable in
assessing fish movement through narrow passageways, such as fish passes and small
streams, but is being increasingly used in wider swim-through channels (30 x 0.8 m
deep; Leach 2010; Tranquilli 2010) using arrays of tag readers. The use of a single
antenna may be adequate to provide descriptive data on the timing of migration, but
in most cases operation of multiple arrays, even if they do not span the entire stream
width, can greatly increase combined efficiency while providing movement direction
(F. Kroglund, Norwegian Institute for Water Research, pers. comm.). Hence passive
systems yield high-quality long-term recording of large fish samples at discrete locations
in increasingly wider and deeper habitats (Zydlewski et al. 2006).

Active tracking methods have been developed in both technologies, FDX and
HDX (Roussel et al. 2000; Zydlewski et al. 2001; Riley et al. 2003, 2010; Hill et al.
2006; Cucherousset et al. 2007; Linnansaari and Cunjak 2007; Hewitt et al. 2010),
which also allow for enhanced prospection range at least on practicable rivers in
terms of width and depth. This type of tracking allows long-distance coverage in a
short period of time, however it is limited to particular cases, such as for studies on
fish positions, movements and microhabitat preferences in shallow waters with low
structural complexity and for relatively short discontinuous periods of time, since it
needs to be made manually by an operator (Fig. 12.5). Tracking with portable backpack
readers can be performed by foot within the river or on its sides, or even over ice cover
(Roussel et al. 2004; Linnansaari and Cunjak 2007).

Passive and active tracking can be successfully combined to track movements
of either juvenile or adult migrating fish from the upper watershed to the estuary
(Zydlewski et al. 2001; Acolas et al. 2012; Barbour et al. 2012). This technology
can be used in a ‘mark-recapture’ way: fish can be captured by different methods
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(electrofishing, fishing nets) and in different environments, from freshwater to
seawater, individually identified for their whole life owing unlimited PIT tag lifespan
and recaptured either by conventional means (electrofishing or netting) or through
detection antennas disposed along the river course or by active tracking. Thanks to
this technology, the same individuals can be identified from juvenile to adulthood and
from freshwater to the sea.

Acoustic telemetry

Underwater telemetry actually started with Trefethen (1956) who developed the
first tracking system based on acoustic signals transmission. The technology was
rapidly applied (see first review on underwater telemetry by Baras 1991), mostly in
marine environments, with different aims and methods detailed below, either active
(Westerberg et al. 1983) or passive (Lagardére et al. 1990; Juell and Westerberg 1993),
to reach now a very large number of applications (Fig. 12.1) both in basic research
and in resource protection like in marine reserve (Klimley et al. 2001; Espinoza
etal. 2011). Nowadays, the technique is highly complementary or even replacing radio
telemetry in all types of environment (Cooke and Thorstad 2012).

Equipment basics and principles

As presented above, a transmitter, or acoustic tag, is an electronic device usually
implanted or externally attached to a fish that transmits ultrasonic signals. In this
case, it concerns the transmission in water of ultrasonic energy, or sound signals, at
frequencies between 20-500 kHz (20,000-500,000 cycles™), generally above human
hearing range. Ultrasonic frequencies are usually used for transmitting data underwater
because, compared to radio frequencies (30-300 MHz—millions of cycles™, see
later), acoustic frequencies are absorbed much less. However, acoustic signals, due to
their lower frequencies, experience more distortion than radio and cannot transmit as
much information per time unit. Physical limitations on the acoustic transmission are
mostly associated with underwater noises (e.g., generated by bubbles, waves), screens
due to aquatic weeds or temperature and salinity stratification. Most frequently used
frequencies are between 30 and 90 kHz to maximize transmission range in fresh to
salt water, recently tags were developed in 180, 307 or 416 kHz which allowed for
further miniaturization (0.65 g @ 180 or 307 kHz, 0.28 g @ 416 kHz) but operating
frequencies greater than 100 kHz are less effective in salt water, and are thus essentially
dedicated to freshwater environments.

Tags are produced in many different shapes and sizes depending on the type of
species being studied, or the type of environment in which the study is conducted.
Acoustic tags consist of a piezoceramic transducer, drive/timing electronics, and a
battery power source. Cylindrical or ‘tube’ transducers are often used, which have
metalization on the inner and outer walls of the structure. In normal operation, an
Alternating Current (AC) electrical signal generated by the drive/timing electronics
is impressed across the two metalization layers. This voltage creates stress in the
material, which in turn cause the transducer to emit an acoustic signal or ‘ping’, which
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emanates outward from the surface of the tube. Most tags transmit very short pings
of ultrasound, either at very regular intervals (e.g., 1 second) or as series of several
pings (6—10) that contain a digital ID (identifier) code, and sometimes physical data
(e.g., temperature, pressure) that a receiver, called hydrophone in this case (see below),
detects, decodes and transmits or stores in memory. Transmitters range from 5 mm up
to 33 mm in diameter and are of various lengths, from 10 to 100 mm. There are two
basic types of tags with unique data transmission, continuous and coded. A continuous
tag transmits sequential pings at a precise or varying interval that is correlated to a
physical variable, such as temperature or depth. Continuous tags are restricted to
one frequency each, thus a multi-frequency acoustic receiver is needed. Continuous
tags are an excellent choice for tracking a single fish from a vessel in real time, or
conducting positioning studies using at least three synchronized hydrophones (see
next information on tracking methods). Coded transmitter transmits a series of pings
defined as a burst or code burst. Each burst contains a digital ID code and sometimes
physical data (e.g., temperature, depth or acceleration). The code burst usually occurs
over a few seconds followed by a delay which is usually determined by the study
design. It also often depends on such factors as number of tagged animals, swimming
speed or detection range. Delay is randomized to minimize the chance that the pings
from any two tags will overlap or collide repeatedly. For example, a typical coded tag
might have a delay that ranges between 30 and 90 seconds, which means the tag will
transmit a series of pings every 30 to 90 seconds. This type of transmission scheme
allows many tags to transmit on the same frequency, enabling researchers to conduct
large scale population studies. Finally, within the coded tag family there are two types:
tags that transmit an ID code only (referred to as a pinger), and tags that transmit both
an ID code and sensor data, such as temperature, depth or acceleration (referred to as a
sensor transmitter). Sensor transmitters provide a ‘view’ into the behaviour of animals
by transmitting physiological or physical data of an animal’s natural environment.

For signal reception, acoustic tags require both a hydrophone and associated
receiver or data storage system. Basically, the hydrophone technology is the same as for
the tag with reversal functioning: a piezoelectric transducer generates electricity when
subjected to a pressure change hereby converting a sound signal into an electrical signal,
which is then emitted and decoded. Hydrophones can either have omnidirectional or
directional reception depending on how they are build (with a spherical body around
the hydrophone for focused hydrophone). Depending on this property, they are used
differently: directional hydrophone are often used for actively tracking animals, while
omnidirectional hydrophones, also called passive receivers, are used in arrays moored
in a fixed location to detect the acoustic signal of tags. These receivers have a single
or dual frequency, with plenty of data storage, and are designed to last for greater than
one to five years on a single battery.

Methods use to track fish migration

Two main tracking methods are used with acoustic systems: active or passive method.
Active tracking is achieved using mobile listening receivers, and entails following
tagged animals from a vessel using an acoustic receiver and directional or, sometimes,
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omnidirectional hydrophone. The path of the animal is approximated by way points
in the course of the vessel, and accuracy is in the order of 100 m. The method is
very useful for investigating large scale fish behaviour, such as mating, predation,
feeding or diving over short periods of time, but has the main drawback of being
time consuming (10 days maximum are spent following animals over about 100 km,
Klimley et al. 2001). Usually the system is a multi-frequency Digital Signal Processing
(DSP) receiver that digitally samples acoustic sound and provides output that can be
heard by the human ear, and data that can be stored either in the receiver’s memory or
on a computer. Remarkable examples include many large species such as migrating
yellowfin tuna (Holland et al. 1990; Block et al. 1997, 2011; Brill et al. 1999) or
European eel (Aarestrup et al. 2009).

Passive monitoring is achieved with fixed listening receivers used for investigating
positioning over particular areas and time, such as migration routes, home range,
spawning and feeding areas. There are two main types of methods and associated
deployment; one achieves the localization of a transmitter based on when the same
pulse arrives at three stationary hydrophones aligned in a triangular array (the method
is fully described and evaluated in Klimley et al. (2001)), while the other method is
based on the installation of curtains of hydrophones with build-in data logger that
record every ping received (the principle is described in Jackson 2011). Briefly, in
the first system, the receivers are mounted with cables leading to a receiving station,
or cables can be replaced by radio transmission to a base station and computer (on
land or onboard a vessel), which in both cases calculate in real time the coordinates
of the animal in the survey area (e.g., Bégout Anras et al. 1999; Klimley et al. 2001).
Recently receivers are setup as ‘curtains’ or ‘gates’ across shorelines, or in arrays
(making several triangles in an area), to quantify the amount of time animals spend in
an area by recording the presence of coded transmitters (e.g., around marine reserve
(Koeck et al. 2013) or along a large river, as for the European eel (Bultel et al. 2014)).
Receivers are moored in many configurations, often reflecting the bathymetry and
oceanographic or aquatic/weather conditions. A simple mooring design generally
works well (e.g., in a lake, Roy et al. 2014). However, in rougher conditions, heavier
weights and mooring lines are usually required (Jackson 2011; Bergé et al. 2012). If
a bottom mooring is desired, the receiver should be positioned above the floor such
that it has an unobstructed ‘view’ of tagged animals within their expected acoustic
range. Receiver spacing is generally determined based on range testing and historical
acoustic data (see procedure in Roy et al. 2014 or Bergé et al. 2012), and spacing
is usually between 100 and 1000 m. Most receivers store detection data in memory
along with sensor information, if the transmitter is equipped with a sensor, status and
battery information. Uploading data requires retrieving the receiver and connecting
it to a computer interface or some wireless devices. Translating data stored into
actual positions of the animals requires most often, a database or particular software
(Cote et al. 1998; Ehrenberg and Steig 2003; Espinoza et al. 2011; Roy et al. 2014).
There are also statistical and GIS packages available that facilitate movement
animations, home range analysis, and advanced statistical tests.

All the advances in acoustic receiver-loggers, coding and signal-processing
methods have broadened the scope of acoustic telemetry, and autonomous acoustic
receiver arrays are now routinely applied in inland waters, especially large rivers,
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lakes and reservoirs to assess migration patterns. A number of high profile acoustic
marine tracking systems have been efficiently extended into estuarine and freshwater
environments to record movement patterns of migratory and non-migratory fish (e.g.,
Melnychuk et al. 2007; McMichael et al. 2010; Bergé et al. 2012; Klimley et al. 2013;
Ingraham et al. 2014; Roy et al. 2014) including small-sized individuals, thanks to
the availability of relatively small acoustic transmitters (e.g., McMichael et al. 2010)
compared with the Combined Acoustic and Radio Tags (CARTS) previously used (e.g.,
Solomon and Potter (1988) or Deary et al. (1998)).

Radio telemetry

Radio telemetry technology was first applied to terrestrial wildlife studies before
being used in the late 1960s to monitor fish in freshwater ecosystems (Lonsdale and
Baxter 1968; Winter et al. 1978). For nearly 40 years (Fig. 12.1), this technology
has been increasingly involved in studies on freshwater fish, which have addressed
a diversity of topics such as daily movements, migrations, habitat use, survival and
population estimation (reviewed in Baras 1991; Lucas and Baras 2000; Spedicato
et al. 2005; Adams et al. 2012), as well as physiology and bioenergetics (Cooke et al.
2008; Cocherell et al. 2011; Ueda 2012). Currently, radio technology is also commonly
used to transmit data in real time from passive acoustic monitoring systems to shore
or onboard based stations (Espinoza et al. 2011; McDougall et al. 2013; Kessel et al.
2014), or to communicate with satellites (pop-up archival satellite tags, Wahlberg et
al. 2014).

Despite a decline in popularity (Fig. 12.1), VHF radio telemetry often remains the
most appropriate or only feasible option for some types of studies in freshwater, due to
advantages in antenna size (from cm to dm, see below) and reception characteristics
(e.g., evaluation of dam passage especially in turbulent hydrologic conditions,
microhabitat use in shallow river systems, migrations in large watersheds). The
unique characteristic of radio telemetry continue to make it an extremely powerful
tool for studying movements of fishes, particularly those living in fluvial habitats,
and in providing information to enable effective management and conservation of
aquatic resources.

Equipment basics and principles

Radio telemetry is a form of active biotelemetry, that allows the remote sensing of
the movements and aspects of behavioural or physiological variables of an animal
by use of radio waves. It relies upon the transmission of information between a radio
transmitter, placed in or on a studied animal, and a distant receiver with a receiving
antenna. Radio transmitters generate and emit electromagnetic energy in the Very
High Frequency (VHF) band of the radio frequency range, usually between 30 and
300 MHz (Sisak and Lotimer 1998), but typically between 30 and 150 MHz for
fisheries applications (Winter 1983, 1996). There is no one optimal radio frequency
(Winter 1983; Eiler 1990; Sisak and Lotimer 1998) and the choice of operating
frequency is important, conditioning the whole telemetry system since receivers and
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antennas are frequency specific. The actual frequency used depends on the country and
government regulations, but with more and more studies on macro-scale movement
patterns of fish populations, a good coordination of frequencies used has become the
norm. Most usage occurs in the 140 MHz to 175 MHz range (e.g., North America,
Scandinavia) while frequencies in the 30 MHz to 50 MHz range, generally assumed to
have less attenuation due to water conductivity, are commonly used in other countries
and tend to be gradually replaced. The frequency used and the operating environment
will have major impacts on the performance and suitability of the telemetry system
to research objectives. Radio telemetry systems are dependent on the surrounding
environment. The distance at which transmitter signals are detected by receiving
antennas mainly depends on the power radiated by the transmitter, the sensitivity of
the receiving station and propagation losses.

Radio transmitters use a quartz crystal to generate the transmitting frequency
and control signal modulation, and are powered by lithium or silver oxide battery
(depending on tag size, lifetime or transmitting range requirements) and controlled by
a stable multivibrator or microprocessor circuit (depending on field-programmable tag
requirements) (see Kuechle and Kuechle 2012 for a comprehensive review). Signal
modulation (i.e., pulse sequences) of transmitters can be divided into either standard
or coded ID types. The transmitter itself requires a transmitting antenna that induces
an electromagnetic field (radio wave) which radiates outward into the water. Most fish
radio tags are fitted with a long insulated wire antenna (whip antenna) that typically
trails from the transmitter, but radio tags with coated loop antenna, either to be coiled
inside the fish or preferably directly pre-coiled and sealed within the transmitter
package, are also available. Use of internal antenna, configurations (Cooke and Bunt
2001; Collins et al. 2002; Ovidio et al. 2002; Verbiest et al. 2012) may simplify
tagging procedures (as for acoustic tags), avoid additional risks to fish such as abrasion
and infection at antenna exit, entanglement with debris, vulnerability to predation
(Adams et al. 1998; Mulcahy 2003; Bauer et al. 2005; Jepsen et al. 2008; Liedtke et
al. 2012), and limit disruption of normal behaviour inherent to long trailing antennas
(Thorstad et al. 2001; Murchie et al. 2004). However, internal antennas may negatively
affect signal strength (Winter 1996; Cooke and Bunt 2001; Collins et al. 2002;
Ovidio et al. 2013), reducing transmitter power output and hence decreasing
significantly the signal detection range, typically about 25% relative to a transmitter
with whip antenna (Kuechle and Kuechle 2012). In some cases, the loss of signal
propagation may be compensated through increased transmitter power output.
However, increased power output, as well as longer battery lifetime and increased
pulse rate, are all variables that require larger batteries, which will increase the overall
size of transmitters.

As other major components, a radio telemetry system typically includes a receiving
antenna, a receiver and a data logger. The receiving antenna is used to capture the
radio signal produced by the transmitter, and change it into a voltage for detection by
a receiver. The receiver is used to convert the radio signal captured by the receiving
antenna into an audible or electronic form that can be used to identify the tagged
animal. The data logger is used to store the collected data, and may be a separate unit
or may be integrated into the receiver, as in most modern fixed stations for stationary
tracking arrays (Eiler 2012). Three different types of antennas are in general use for fish
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telemetry (i.e., dipole, loop and Yagi antennas), each with different attributes depending
on the used frequency (reviewed in Kuechle and Kuechle 2012). Omnidirectional
dipoles are used in large-scale river applications, while directional antennas such
as loop and Yagi antennas are both particularly useful in river applications where
high direction finding accuracy is required. However, if Yagi antennas are the most
commonly used antennas in fish telemetry, tuned loop antennas are of interest especially
for manual tracking, and particularly at lower frequencies where Yagi antennas may
become too large for practical use (about 3.75 m long at 30 MHz). According to the
research objectives, different types of antennas may be mixed, and antennas may
also be combined into arrays to enhance gain or pattern characteristics (Larinier
et al. 2005; Croze et al. 2008; Travade et al. 2010). Underwater antennas are seldom
used in fisheries research relative to aerial applications. However, using common
underwater antennas such as stripped coaxial cable and standard dipole types
(Bunt et al. 2003; Beeman et al. 2004; Croze et al. 2008; Peters et al. 2008; Travade
et al. 2010), or relatively new systems (Gingerich et al. 2012) in conjunction with
aerial antennas, can be of great interest for detecting fish with more precision when
located, for example, in deep-water habitats (Niemela et al. 1993; Martinelli and
Shively 1997; Brown et al. 2006; Gingerich et al. 2012).

Key variables influencing the range of radio transmitters include water depth and
conductivity (Velle et al. 1979). Radio telemetry is typically used in relatively shallow
(< 10 m depth), low conductivity (usually < 500 uScm™) freshwater environments
(Winter 1983, 1996), where radio signals are capable of travelling greater distances than
acoustic signals (Thorsteinsson 2002). Most electromagnetic frequencies are rapidly
attenuated by seawater (Voegeli and Pincock 1996), and are usually undetectable within
a fraction of a metre from the source, explaining why normal VHF radio telemetry
is useless for marine applications. Radio waves propagate omnidirectionally in the
water, but only those wave vectors almost perpendicular (< 6° from the vertical) to
the air-water interface propagate from water into the air (Velle et al. 1979) and can
be detected by an aerial receiving antenna. Radio waves can transmit information
rapidly and for long distances in air. Because radio frequencies travel well through air,
receivers and antennas can be used for mobile tracking with a large range of methods
(e.g., from land, boat, air). This flexibility in modes of coverage can provide greater
detail on behaviour and movement of individual animals than other forms of marking
or tracking (Winter 1996). The ability to detect radio transmitters in air, using highly
portable aerial antennas, provides a major advantage for migration studies in large or
inaccessible river systems (Koehn 1999). Furthermore, the use of radio frequencies
is advantageous to acoustic frequencies when turbulent hydrologic conditions entrap
air in the water column, because air bubbles shorten the distance that acoustic signals
can travel through water (Monan et al. 1975; Thorstad et al. 2000b). Being more easily
detected in air than acoustic transmitters, radio tags are used in turbulent locations
with entrapped air, such as hydroelectric dam tailraces, and hence frequently chosen
for studies on the evaluation of dam passage and fishway performance, such as the
effects of bypass collectors and turbines on fish behaviour and survival (e.g., Castro-
Santos and Haro 2003; Gowans et al. 2003; Hockersmith et al. 2003; Thorstad et al.
2003; Larinier et al. 2005; Ovidio et al. 2007; Croze et al. 2008; Travade et al. 2010;
Calles et al. 2012; Chase et al. 2013). In addition, radio frequencies travel through
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ice, so this technique is the most effective in winter (including during periods of
ice cover, ice break-up and flooding), for studying fish movement and migration in
both lotic (Eiler 1990; Brown and Mackay 1995; Brown et al. 2001; Robertson et al.
2003; Halttunen et al. 2013) and lentic systems (Bauer and Schlott 2004). Also, radio
frequencies are not adversely affected by thermoclines, algae, plant or other aquatic
obstacles (Winter 1996; Jacobsen et al. 2002; Kobler et al. 2008; Jellyman 2009),
although they are reflected or diffracted from rock faces.

Difficulties in using radio telemetry can arise in areas with depths greater than
15 m, areas such as estuaries and lowland rivers influenced by salt water, or in areas
that have saline pools or haloclines (see earlier). Nevertheless new underwater
radio antenna systems, such as the turnstile and balanced loop-vee antennas
(Gingerich et al. 2012), may be another useful option in freshwater-deep habitats
through their better reception characteristics than the underwater dipole antenna more
commonly used for fisheries research. The balanced loop-vee antenna especially with
stronger omnidirectionality and overall reception strength (—36.84 dBm) was shown
to detect radio transmitters as far as 15 m through water, compared to 9 m and 12 m
for dipole and turnstile antennas, respectively.

A further improvement has been the development of radio transmitters with
additional capabilities, combining miniature ID with (bio)telemetry sensors to record
the location of the tagged fish along with data on either its surrounding environment
(e.g., depth, temperature) or its physiological status (e.g., heart rate, tail-beat frequency,
swimming direction, swimming speed). Some of them (tilt sensors) have been used
to indicate activity or motion (mortality) (e.g., Eiler 1990; Watry and Scarnecchia
2008). Among all biotelemetry sensors including electrocardiograms (ECGs),
electromyograms (EMGs) and accelerometers, ECGs that measure the electrical
activity of muscles from electrodes inserted into the axial musculature are currently
the most readily used to measure fish activity (Cooke et al. 2004). However, the use
of animal-borne acceleration data loggers for studying free-swimming fish is gaining
popularity (e.g., Clark et al. 2010). EMG transmitters have been used to measure
swimming speed and estimate energetic costs associated, for example, with migration
patterns and fishway use, hydropeaking events, angling, predation/fisheries interactions
(Gowans et al. 2003; Brown et al. 2006; Quintella et al. 2009; Slavik and Horky 2009;
Pon et al. 2009; Cocherell et al. 2011; Makiguchi et al. 2011; Gravel and Cooke 2013;
Alexandre et al. 2013; Taylor et al. 2013). Although some concerns remain regarding
the reliability of the data provided by electromyogram telemetry (Geist et al. 2002),
its potential for fishway research is obvious.

Methods used to track fish migration

Mobile (i.e., manual) tracking, although intermittent, provides an effective method
for collecting a wide range of information, including both large and small-scale
movements, macro and micro-habitat use, and activity patterns. The basic approach
is to actively search for and locate the fish while travelling through the study area.
Fish locations are determined either by triangulation or by following the signal back
to the transmitter (i.e., zero-point tracking or successive gain reductions) (Gravel
and Cooke 2008; Gillis et al. 2010), sometimes referred to as ‘homing in’ on the
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signal. Mobile tracking is dynamic and versatile; it can be performed at a variety of
spatial scales and take a number of forms, including surveys on foot, and from land-
based vehicles, boats, airplanes, and likely in a near future by routinely multi-UAVs
(Unmanned Aerial Vehicles) localization (Jensen and Chen 2013). Although most
frequently used for automated telemetry systems, coded transmitters are also useful for
manual tracking because the coded signal can be detected audibly more easily during
levels of high background noise, and the scan time can be reduced when searching
for a large number of fish spread over a large geographical area (Eiler et al. 1991).
Aerial tracking provides the greatest reception range (Winter 1983) and covers vast
areas in relatively short periods. Hence, using an airplane is particularly well suited
for large-scale studies where tagged fish need to be tracked over long distances
(Burger et al. 1985; Hockersmith and Peterson 1997; Collins et al. 2000). In contrast,
the low accuracy of aerially estimated locations can limit conclusions of studies where
exact information is needed (e.g., site residency). Nonetheless, tracking fish via an
aircraft is appropriate for determining raw positions (within hundreds of metres)
in remote areas and rough terrain, where other tracking techniques are impractical.
However, studies based only on manual monitoring are about to become less common
(Cooke and Thorstad 2012), with a greater emphasis on automated systems due to
increasing sample sizes that make manual tracking rather difficult. Eiler (1995) already
reported much higher tracking success when using satellite-linked tracking stations
compared to repeated aerial surveys for tracking adult Chinook salmon Oncorhynchus
tshawytscha and Coho salmon Oncorhynchus kisutch migrating in the large isolated
Taku River in Alaska (USA).

Combining station arrays with manual tracking seems to be an effective approach
to collect further information on detailed behaviour patterns when fish are outside the
range of fixed stations, as it was the case of studies on migration routes of Atlantic
salmon Salmo salar (Larinier et al. 2005; Croze et al. 2008) and European eel
Anguilla anguilla (Travade et al. 2010). These studies focused on monitoring fishes
passing through or near dams, which were the monitoring stations, and this data was
complemented by daily manual tracking and weekly aerial surveys on larger watershed
(Croze et al. 2008).

Stationary tracking typically uses one or more tracking stations (i.e., receiver-
loggers, often termed automatic listening stations, connected to one or more receiving
antennas) placed at fixed locations to detect, identify, and record radio-tagged fish
that move within a reception range. Stationary automated stations provide continuous
coverage at specific, standardized sites and can operate autonomously under a wide
range of environmental conditions and for extended periods with adequate external
power supply and maintenance. Receivers available in standard or coded versions can
be programmed to scan a variety of frequencies and antennas, either sequentially or
simultaneously. Additional improvements of receiver-logger capabilities, including
increased internal battery life, expanded data storage capacities, and remote data
retrieval abilities via one-way or two-way communication uplinks (e.g., satellites,
cellular networks) have allowed for continuous fish tracking and regular access to the
data. The type of information provided by stationary tracking at standardized sites
include information on presence-absence at site, site passage, and accurate timing
and movement rates between sites, that are directly comparable for different reaches
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of the study area or different groups of fish. Some data loggers are also capable of
recording additional information encoded within the transmitter signal, such as water
depth or whether the fish is active.

Stations have been used to document residency patterns in areas of high use, and
to detect fish passage at natural or man-made migration barriers, such as dams (e.g.,
Beeman and Maule 2001; Moser et al. 2002; Hockersmith et al. 2003; Thorstad et
al. 2003; Caudill et al. 2007; Beeman et al. 2012), fishways (Castro-Santos and Haro
2003; Gowans et al. 2003; Larinier et al. 2005; Croze et al. 2008; Calles et al. 2012),
or sections of river with high velocity flows (Ovidio et al. 2007; Chase et al. 2013).

Case studies for diadromous species

The technological advances in PIT, acoustic and radio telemetry systems, including
those on transmitters, hydrophones, radio antennas and receivers have made it
possible to track large numbers of fish (up to 500 individual fish on a single radio
frequency or thousands on a single acoustic frequency), over a wide range of species
(over a hundred), and small individuals, less than 100 mm (fork length) or about
8—10 g body mass based on a minimum mass of 0.2—0.25 g for the smallest currently
available transmitter respecting a maximum tag burden of about 2% (Jepsen et al.
2005), with additional relevant information about the physical environment and their
physiological status. But while short-term tracking of few localized individuals can
be relatively simple, monitoring large numbers of migrating fish in large rivers or at
sea for extended periods can be extremely challenging. Methods suitable for studying
migratory patterns over substantial distances will differ considerably from those used
to determine habitat preference in small streams. Accordingly, depending on the
research objectives, scale, life stage, and field conditions (e.g., remote or inaccessible
sites), either a mobile or stationary approach will be selected, even though combining
methods has been more frequent in current studies (Cooke and Thorstad 2012) and
some examples are given hereafter.

Anadromous species
Application to small rivers, salmonids downstream migration patterns

A two years study on the downstream migration patterns of young brown trout
Salmo trutta was carried out in a small tributary, which was a spawning and nursery
habitat for both anadromous and resident salmonids (Acolas et al. 2012). Young-of-
the-year brown trout were captured in La Roche River, a small tributary of the L’Oir
River that flows into the Baie du Mont Saint-Michel (France). Juveniles were tagged
with 12 mm PIT tags and their fate in the watershed (emigration from the spawning
tributary and from the Oir River) was monitored (Acolas et al. 2012). Recapture
methods were combined to study the triggers of their migration: conventional methods
(electrofishing and trapping) and telemetry methods (flatbed antennas in the watershed
and regular active tracking in the tributary). The RFID technology used was HDX
technology, and the flatbed antennas were fixed at the mouth of each tributary of the
Oir River and at the Oir River itself, combined with a trapping system (Cucherousset
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et al. 2005). During the study, electrofishing campaigns were carried out in the nursery
stream to tag the juveniles (two campaigns) and to assess their growth and survival.
Active tracking was carried along the 2.2 km of the tributary every three weeks to
assess fine-scale fish movements, survival and to confirm their downstream migration
(crossing information between active and passive tracking in case of missing data).
Thanks to these methods, data were gathered together to perform a capture-mark-
recapture analysis to disentangle the effect of body size and growth on survival and
downstream migration behaviour. It was identified that body size affected mainly
survival probability and not migration probability, and that growth acted on downstream
migration probability, with the fastest growing fish having the highest probability of
emigration (Acolas et al. 2012).

Application to fishway, entrainment or bypass assessments

In areas above and below dams and through fishways, or other possible migration
barriers, the use of radio station arrays involving multiple aerial and underwater
antennas has greatly improved the studies on detailed individual fish movements
and migrations. The use of extensive station arrays, at a large-scale hydroelectric
complex on the River Garonne (France) provided valuable information to optimize the
performance of a fish lift for upstream migrating Atlantic salmon and other anadromous
migratory fish species, including Allis shad Alosa alosa. Indeed, coverage of the whole
system by six elaborate radio station arrays, allowing fine-scale monitoring of fish
movements, was helpful in evaluating the functionality of the fish lift, unambiguously
showing its insufficient attraction efficiency, but it also showed ways to enhance fish
passage and limit delays in upstream spawning migration (Croze et al. 2008). Acoustic
telemetry was also applied downstream an impassable dam and, using both active
tracking and two radio linked acoustic arrays, it was possible to determine the timing
and spawning activity of migrating Allis shad (Acolas et al. 2004). Similarly, Larinier
et al. (2005) had gained thorough knowledge to further improve the final design of
a new fish passage facility for adult Atlantic salmon, at a small hydroelectric plant
on the Gave de Pau (France). In all studies, combining station arrays, either radio or
acoustic, with daily manual tracking was shown as an effective approach to collect
further information on detailed behaviour patterns when fish were outside the range
of fixed stations.

Application to surveys near dams and large scale migration

In both fields of application (i.e., surveys of small- and large-scale fish migrations),
radio telemetry has been, and continues to be applied to a wide range of anadromous
fish species, primarily in salmonids and also among acipenserids (Dionne et al. 2013),
clupeids (e.g., Aunins et al. 2013; Grote et al. 2014) and petromyzonids (e.g., Keefer
etal. 2013), in order to study animal behaviours and ecophysiological performance in
their natural freshwater environments (Cooke et al. 2013). Radio telemetry remains
to date the most effective and utilized technology for studies near or around dams,
or other industrial and utility infrastructures (e.g., fish passages selectivity and
efficiency at weirs and power stations, temporal patterns of fish passage in fishways
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(Gowans et al. 2003; Hockersmith et al. 2003; Thorstad et al. 2003; Larinier et
al. 2005; Croze et al. 2008; Calles et al. 2012; Chase et al. 2013). Developments
in acoustic telemetry systems (new tags at higher frequency, Ehrenberg and Steig
2003) has also greatly contributed to study salmonid behaviour in the forebay of
acoustically noisy hydroelectric facility, to estimate the three-dimensional position
of the fish with sub-meter accuracy and track movement patterns over time. Further,
the majority of these applied studies have been conducted on relatively small spatial
scales, estimating survival past a single dam or through a limited river reach (i.e.,
migrating time between dams).

However, telemetry methods involving fixed stations and coded tags have been
increasingly used for tracking large samples of animals, over long distances and large
temporal scales such as watershed levels, and using radio (Robertson et al. 2003;
Croze et al. 2008; Watry and Scarnecchia 2008) or acoustic systems (Welch et al.
2008, see Jackson 2011 for a complete review). Multiple stations, placed on primary
travel routes and major tributaries, have been used to determine the distribution and
migratory patterns of fish in large river drainages (Eiler 1995; Keefer et al. 2004; Watry
and Scarnecchia 2008). For example, several station barriers have enable assessment of
upstream migration rates of nearly 2,000 radio-tagged adult spring-summer Chinook
salmon Oncorhynchus tshawytscha through 12 unimpounded river reaches (36 to
241 km long) in the Columbia River Basin (Canada and USA) from 1997 to 2002
(Keefer et al. 2004). Manual tracking is less frequently used for these applications,
particularly on larger systems where there are many tagged fish. However, the
development of large-scale collective telemetry systems, at the watershed-scale level,
has opened new possibilities for tracking radio-tagged fish during their entire in-river
migration.

Typically, radio telemetry has proven useful in understanding fish migrations
between rivers and marine environments (Watry and Scarnecchia 2008; Corbett and
Brenkman 2012). For example, Corbett and Brenkman (2012) reviewed the importance
of radio telemetry in establishing the extent of anadromy, timing of river entry, and
variability in freshwater, estuarine and marine residence times of the bull trout Salvelinus
confluentus inhabiting coastal watersheds (Hoh and Elwha Rivers, Washington, USA).
Broad-scale migratory patterns of bull trout between multiple rivers, estuaries, and the
Pacific Ocean, as well as inter-basin migrations among multiple coastal watersheds, have
been addressed by using this technology (Corbett and Brenkman 2012). Life history
strategies and migratory patterns of bull trout were also studied with the same method
in the large Secesh River watershed (Idaho, USA) (Watry and Scarnecchia 2008).

Catadromous species
Application to fishways, entrainment or bypass assessments

For a long-term study on behaviour and passage routes of downstream migrating
European silver eel Anguilla anguilla at small hydroelectric facilities on the Gave
de Pau (France), combined arrays of radio and PIT telemetry systems were used to
monitor fish approach and route-specific passage (Travade et al. 2010; Larinier et al.
2012), evaluate further technical solutions and to propose rehabilitative measures to
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develop and create safe downstream passages. At each site, several large radio detection
zones, covered by aerial loop antennas, were established to detect presence of eels in
the forebay and to determine passage routes via quite large fish passage structures, such
as weirs, flood gates, surface flap gates, turbines or upstream fishways. Small radio
detection zones of only a few metres, covered by underwater antennas made of stripped
coaxial cable, were also delimited along trash racks or around downstream migration
bypasses when appropriate. In addition, some strategic passageways of limited size
(including bypasses and trash troughs) were fitted with PIT antennas to detect rapidly-
moving tagged fish as they transit through such narrow engineered structures.
Despite using coded radio tags in only one or two frequencies, combining both
radio and 23 or 32 mm HDX PIT tagging has successfully limited risks of detection
failure for silver eels transiting through such small openings at high flow velocities. To
ascertain fish detection, specific bypass structures (e.g., 2 m wide X 1 m deep, bypass
flow 2.2 m? s7!, flow velocity ca. 1 m s™') were equipped with two synchronized PIT
antennas, each connected to a separate reader. Antennas were constructed on-site
and consisted of wire coils mechanically protected by PVC pipe, bent to the shape of
passageway openings, and usually isolated from concrete walls by wood battens and/
or polyethylene plates (Fig. 12.5). To achieve required inductances while maximizing
field strengths, usually two to three turns of 13-AWG (i.e., 2.5 mm? cross section)
multi-stranded flexible copper wire were used. With adequate in situ calibration
and regular system checking, the 11 PIT telemetry stations, deployed at strategic
passageways among three of the six sites under study, have provided useful information
on migration behaviour and route-specific passage of downstream migrating silver
eel at small-scale hydroelectric facilities (Travade et al. 2010; Larinier et al. 2012).

Application to surveys of yearly migrant fluxes of European eel in an obstructed
river system

Capture Mark Recapture (CMR) studies can be used to estimate the proportion
of candidates for emigration in a given catchment in the same year (Feunteun et
al. 2000; Zabel et al. 2005). The availability of such information is critical for the
catadromous European eels, and particularly to the silver stage that corresponds to
maturing eels on the onset of their spawning migration. Electrofishing surveys are
commonly conducted in summer to characterize the status of the sedentary fraction
of the eel stocks. Among sedentary eels, pre-migrant eels achieve their silvering in
late summer and then wait in the catchment until migration is triggered by floods.
Pre-migrant eels can be identified by measuring external signs of silvering (Acou
et al. 2005; Durif et al. 2005). By enumerating and marking these pre-migrant eels, it
is possible to assess the impact of river regulation on yearly migrant fluxes (Feunteun
et al. 2000; McCarthy et al. 2008).

It is generally agreed that a one-to-one relation exists between pre-migrant eels
and escapement of silver eels in the consecutive autumn (Acou et al. 2009). However,
this assumption could lead to biased estimates, as many factors could alter migration
behaviour and the final size of migrant eels. The downstream migration corresponds
to specific water conditions. If these conditions are not met during autumn and winter,
eel candidates to emigration are probably constrained to wait in the catchment for
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favourable water conditions in the following year. A minority of them can even regress
to the yellow stage. Thus, with dry winter conditions, unfavourable for emigration, the
quantity of emigrating silver eels does not reflect the real potential of silver eels of the
catchment. Physical obstructions also play a role. The latter may lead to (i) temporary
settlement or definitive stop of the migration until the next waterflood season (Durif et
al. 2003), (ii) or subsequent mortalities of emigrating eels through discharge facilities
and sluice gates (Legault et al. 2003) or turbines (Larinier and Travade 2002). River
regulation also eliminates seasonal flow peaks, an essential cue for eel migration
(Acou et al. 2008a). This is particularly true in obstructed river systems, such as
the Fremur River (western France) that presents a 3 x 10° m® water supply reservoir
created by a 14 m high dam, the Bois Joli dam, located only at 6 km from the estuary.
The Bois Joli dam has been equipped with an eel lift to restore upstream migration,
but no equipment has been provided for downstream migration. Apart from a minor
number of silver eels that are able to find the minimum flow discharge pipe of the dam
(Legault et al. 2003), most silver eels remain trapped in the reservoir and are not able
to pass downstream until the dam is filled and flows pass over the crest (Acou et al.
2008a). In 2012, an acoustic telemetry survey led in the reservoir showed that among
20 silver eels marked, only one third managed to move downstream the river, despite
the exceptionally favourable environmental conditions (E. Feunteun, unpubl. data).
The aim of this case study is to illustrate the type of information that can be
gained from a CMR study for a threatened species. Specifically, we were interested
in addressing the following questions: How many candidates for emigration are lost
each year in the reservoir? For that, we assessed, during nine years (1996-2004) in
the Frémur catchment, the relation between pre-migrant eels and escapement of silver
eels in the consecutive year. Sampling was conducted in the low-water level period
(September), i.¢., after the beginning of silvering and before emigration of silver eels
(Fontaine 1994). Sampled eels were measured for length and weight and released
directly outside the sampled river section. Pre-migrant silver eels were identified by
three criteria: colour of the back and belly, presence of a well-defined lateral line and
ocular hypertrophy (Acou et al. 2005). If only two of the criteria were met, the eel was
classified as yellow/silver eel which were assumed to be ‘candidates for emigration’
during the next season. If only one or none occurred, the eel was recorded as yellow.
All eels bigger than 200 mm were marked individually using PIT tags injected with
a syringe into the general cavity. Induced mortality and PIT tag rejection were tested.
Fourteen percent of the tags were rejected within an hour after the injection (Feunteun
et al. 2000). After this period, tag losses were very low. Therefore, the eels were kept
for at least an hour after tagging before they were released in the river. Overall, 1097
eels were tagged during the study period. Among them, most were tagged at the yellow
eel stage (73%). Yellow/silver and silver eels represent 10 and 17% of total marked
eels respectively (Table 12.1). A Wolf trap was installed at 4.5 km from the estuary,
and designed to capture every descending eel bigger than 200 mm under practically
every flow condition. Daily monitoring was conducted between September 1996 and
August 2004 (i.e., over eight downstream migration seasons), with count of descending
eel made from September 1 to August 31 each season. Over this period, the trap was
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inspected approximately once every two days, but every day during migration peaks.
Each fish collected was measured, classified either yellow, yellow/silver or silver
stage according to the same methodology presented before, and the presence of PIT
tags was verified using a reader.

Among the 186 silver eels individually marked with PIT tag over the study
period, 28.5% (n = 53) were recaptured in the trap the following year, and 4.3%
(n = 8) probably settled in the reservoir for one or two extra years before emigration,
while the fate of 67.2% (n = 125) of the silver eels marked is unknown (Table 12.1).
Subsequent sampling campaigns (surveys were pursued until the summer of 2014) did
not allow the recapture of these individuals, either in the river or in the trap. Natural
mortality, fishing pressure and predation mortality might have reduced the tagged
population. However, eel mortality is also rather low in natural populations, about
5-10% year! (Adam 1997). Moreover, both fishing pressure and predation mortality
are low in the Fremur River as (i) there is no professional fishery and anglers mainly
focus on cyprinids, esocids or percids, and (ii) only a few number of cormorants
and herons are present in the study site. Therefore, it is likely that pre-migrant silver
eels settled and finally probably died in the Bois Joli reservoir. As a consequence
of eutrophication, cyanobacterial blooms regularly occur from July to September
(40 pg L, principally Microcystis aeruginosa) equivalent to 40 times the World
Health Organization provisional guidelines value for microcystins in drinking water
(Chorus and Bartram 1999). There are clear indications that such cyanobacterial
concentration have severe impacts on water quality such as pH or oxygen levels
(Briand et al. 2003) and induce severe damages in fish as it has been shown in silver eel
livers (Acou et al. 2008b) and probably mortality (Malbrouck and Kestemont 2006).
This long-term study of PIT-tagged silver eels, led between 1996 and 2004, showed that
the fate of two thirds of the pre-migrant silver eels tagged above the reservoir remain
unknown, the following scenario is thus envisaged. A majority (66.7%) of pre-migrant
silver eels are not able to reach downstream areas but remain trapped in the reservoir,
where they finally died after a while because of huge concentration of microcystins
and/or bad water quality. Water reservoirs may constitute a major threat for European
eels as they are widespread through the distribution range of this endangered species.

Amphidromous species

Telemetry techniques have not yet been extensively used to study amphidromous fish.
This is probably due to the fact that studies on amphidromous species are more recent
than for anadromous and catadromous species, for which studies are more ancient.
The characterization of the amphidromous character being also more debatable than
for the two others migration strategy (Myers 1949). However telemetry is defined as
one of the key issues in the future to study amphidromous fish migration behaviour
(Miles et al. 2014).

Smith and Kwack (2014) used both RFID techniques and radio telemetry to
confirm the amphidromous character of bigmouth sleeper Gobiomorus dormitor
(Eleotridae) and mountain mullet Agonostomus monticola (Mugilidae), by studying
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their reproductive migration patterns in freshwater. They analyze the data thanks to
a capture-recapture approach that allowed them to estimate the use of a different part
of the estuary (lower part to upstream part), and the survival probabilities during the
spawning season.

Acoustic and radio telemetry were used to assess reproduction migration of
Australian grayling Prototroctes maraena (Retropinnidae) coupled with drift netting
for egg catching (Koster et al. 2013). The purpose was to assess the cues of this
downstream migration for management and conservation purposes, since the species
is under a national action plan in Australia (Backhouse et al. 2008). The study confirms
that the adults migrated downstream, and linked to water flow conditions within the
freshwater area just above the estuary, for reproduction in a common area. The authors
explain this behaviour could benefit the eggs that would have a shorter time to reach
the sea. After reproduction, all adults went back to their original capture area which
demonstrates site fidelity. However the study suffers from a high tagged fish loss
(especially with radio tags), once the species is highly sensitive to handling; therefore
further refinement tests for transmitter insertion are needed.

As reviewed by Miles et al. (2014) for Australian diadromous fish, telemetry
tools offer an opportunity to characterize migratory movements and occurrence of
facultative diadromy. The differentiation between catadromy and amphidromy being
allowed thanks to these techniques (i.e., Smith and Kwak 2014).

The size of the transmitters is decreasing, especially in acoustic telemetry
(i.e., McMichael et al. 2010), which could allow new insights in largely unknown
juvenile behaviour of amphidromous species (Miles et al. 2014). The coupling
of a physiological sensor within telemetry tags (i.e., Cooke et al. 2008) is also an
opportunity to understand how amphidromous fish can cope with migratory barriers
in freshwater habitats, within the frame of conservation purposes.
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CHAPTER 13

Methodologies for Investigating
Oceanodromous Fish Movements: Archival
and Pop-up Satellite Archival Tags
Kurt M. Schaefer* and Daniel W. Fuller

Introduction

Traditional mark-recapture studies, utilizing coded plastic tags, have long provided
the foundation for determining individual fish linear displacements, and dispersion
and mixing rates among fish stocks (Thorsteinsson 2002). However the method has
limitations for studies of spatial dynamics of fish, including large-scale movements and
migrations, as it only provides information about the release and recapture positions,
and recaptures are highly dependent on spatial and temporal variability in fishing
effort, fish behavior, and gear selectivity. Also, the methodology is unable to provide
any information on behavior or movement of fish between the locations of release
and recapture. There is also the inherent problem of these so-called conventional tags
being returned with incomplete or inaccurate recapture information. Many high-seas
commercial fishing vessels operate over extensive areas during a fishing trip. Since
those who eventually find tagged fish, usually at the time the vessel is unloading, are
unaware of when and where the fish was recaptured during the fishing trip sometimes
return tags with inaccurate information. These factors along with geographic variability
in reporting rates, can have a profound impact on the interpretation of the data obtained
from mark-recapture studies.

Since most fish remain submerged, the use of Advanced Research and Global
Observation Satellite (ARGOS) and Global Positioning Systems (GPS) tags, which
provide + 350 m or GPS precision positions, respectively, and for which data acquisition
is fisheries independent, have been used successfully only with some shark and billfish
species (Weng et al. 2005; Holdsworth et al. 2009) which exhibit sufficient time at the
surface for communications with satellites. Archival Tags (ATs) and pop-up archival
satellite tags (PSATs) with light sensors have, however, been used successfully to

Inter-American Tropical Tuna Commission, 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA.
* Corresponding author: kschaefer@iattc.org
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estimate positions and reconstruct most probable tracks, although with much less
accuracy than ARGOS and GPS tags, for many marine epipelagic species, based
primarily on daily records of ambient light and sea-surface temperatures. Recent
advances in light- and temperature-based geolocation methods, coupled with state-
space modeling, have enabled better estimation of the geographical positions and
most probable tracks of fish from ATs and PSATs (Lam et al. 2010). The large-scale
movements and migrations of individual fish, along with their behavior patterns
relative to fine-scale environmental influences and physiological constraints, acquired
through experiments utilizing ATs and PSATSs, offers the potential to understand spatial
population processes (Patterson et al. 2008).

However, obtaining data from ATs, like conventional tags, is dependent on
their returns, with most coming from recaptures by commercial fisheries. Normally,
however far greater monetary rewards are offered for their return, than for conventional
tags, and thus reporting rates are expected to be close to 100% of the recaptures.
PSATs do not need to be returned, as the archived data are summarized onboard the
tags and transmitted to satellite-borne ARGOS receivers, following predetermined
durations, detachments, and floating to the surface. Data acquisitions from PSATs
are thus considered to be fisheries independent. Compared with conventional tagging
experiments, the numbers of ATs and PSATs deployed in experiments, including in
multi-year tagging programs, is quite limited primarily because of the high costs of
these tags.

ATs and PSATSs are designed for simultaneously measuring at specified intervals,
and storing in the tag’s memory, depth, temperature, and light-level data while attached
to fish and or aquatic animals. By ascertaining the times of dawn and dusk events from
ambient light-level curves, and matching sea-surface temperatures recorded by the
tags with those obtained from satellite sensors, it is possible to estimate daily positions
to within about 100 nautical miles (nmi), on average, of actual GPS positions, and
reconstruct the most probable tracks of tagged fish in coastal and oceanic environments
(Lam et al. 2010). Current-generation ATs are capable of storing data for up to several
years, providing a unique opportunity to evaluate the influence of seasonal and annual
environmental variability and ontogenetic change on fish movement patterns, behavior,
and habitat utilization. These tags have been used on a wide range of species, since
their development in the 1990s, and proven to be a valuable research tool in biologging
studies, including investigations of the large-scale movements and migrations of fish
stocks.

For oceanic species such as some tunas, billfishes, sharks, salmon, and eels,
which undertake fairly extensive movements or migrations over distances of several
hundred nautical miles, tagging studies using ATs and PSATs can provide remarkable
insights and empirical data on their spatial dynamics and behavior. But for fish which
are not highly mobile, exhibiting confined home range distributions, this technology
would be of limited value for investigations of their movements or migrations, because
errors of around £ 100 nmi surround most probable tracks derived from State-Space
Models (SSMs) utilizing light- and temperature-based geolocations (Lam et al. 2010).
Furthermore, fish species which live at depths greater than about 300—400 m, exhibit
extreme diving activities during dawn or dusk, or reside in murky coastal waters,
there can be critical issues with inadequate light sensitivity for use in geolocation


http://vetbooks.ir

Archival and Pop-up Satellite Archival Tags 253

estimates, and these tags are probably not appropriate for use in investigating spatial
dynamics of those species.

For more than a decade, fish tagging programs using ATs and PSATs have
been generating large volumes of data on spatial dynamics, physiology and habitat
utilization, providing unparalleled insights into the spatial ecology of some species
(Block 2005). Analyses of data sets obtained from deployments of these tags with
commercially-important species can provide essential information on movement
parameters, and mortality rates, for incorporation into fish stock assessments and
ultimately used for science-based management (Kurota et al. 2009; Eveson et al.
2012). Movement parameters from ATs and PSATs are far more informative than
those from conventional tagging studies and for incorporating into seasonally- and
spatially-explicit fisheries models to account for movements, mixing, residency and
site fidelity (Taylor et al. 2011).

This chapter is intended to provide an overview of the designs of ATs and PSATSs
with light sensors, attachment methods, methods of analysis of data for estimating
movement patterns and parameters, and examples of applications of this technology
in studies of large-scale movements and migrations of teleost and cartilaginous fish,
since early 2000. There is a vast amount of useful information published on these
topics in scientific journals, for a wide range of fish species. Those interested in further
information on these topics, including specific details relevant to studies on particular
species of fish, will benefit by consulting references provided in this chapter.

TAG designs

Currently there are only a few companies manufacturing ATs and PSATs with light-
based geolocation capabilities suitable for deployments with fish. Although there are
some similarities among the ATs and PSATs currently being manufactured by these
companies, design specifications, performance, and potential applications are unique
for each tag. Numerous technological innovations implemented by these manufacturers
over the past decade have made their products more reliable for utilizing in long-term
experiments on large-scale movements and migrations of a variety of fish species. Some
of the most important technological improvements over the past decade with ATs and
PSATs include lower power components, miniaturized electronics, increased memory,
sensor performance, improved component reliability, data compression techniques/
firmware, and reduced production costs. There have also been improvements, of lesser
importance, with higher grade lithium batteries and satellite transmission capabilities.
For some early history, dating back about 20 years to the early 1990’s, on the
development and designs of ATs and PSATs, and some of the first applications with
these tags for estimating large-scale movements and migrations of fish, the reader is
referred to the chapters by Arnold and Dewar (2001) and Gunn and Block (2001).

Archival tags

The term AT refers to electronic tags, containing clocks and various environmental
sensors, with data storage capabilities. The recovery of data files stored in the memory
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of ATs is generally considered fisheries dependent, since the recapture of the tagged
fish and the return of the tags is normally required in order to download the archived
data. Exceptions include the external attachments of ATs with positive buoyancy and
timed release mechanisms with the idea that those tags could be recovered either
floating or along a shoreline, or by means of a tracking signal. Another exception
previously investigated in a limited number of applications is the use of automated
acoustic data retrieval stations capable of downloading the data from Communicating
History Acoustic Transponder (CHAT) tags attached to fish either at moored or mobile
hydrophone systems (Arnold and Dewar 2001).

There are two companies that have been producing ATs with light-based geolocation
capabilities since early 2000, Lotek Wireless, Inc., St. John’s, Newfoundland, Canada
(http://www.lotek.com/) and Wildlife Computers, Inc., Redmond, Washington, USA
(http://www.wildlifecomputers.com/). Some of the technical specifications in the
designs of the LTD2310, LAT2810, and LAT2910 ATs manufactured by Lotek Wireless,
and the MK9 AT manufactured by Wildlife Computers, with 2000 m depth ratings and
external sensor stalk configurations, are given in Table 13.1, and the tags shown in
Fig. 13.1. These tag configurations are designed for internal implantation of the tag
body into either the coelom or dorsal musculature of fish, with the external sensor stalk
from which the ambient light-level and temperature measurements originate, exits the
body of the fish through an incision. The Lotek Wireless external sensor stalk is an omni
directional-light gathering fiber (and temperature sensor) in a protective sheath, which
conducts light into the body of the tag and focuses it on a temperature-compensated
light circuit. The Lotek Wireless LAT2800 and LAT2900 are also available with light
sensors, and without external stalks, in several different configurations designed for
external attachment. The Wildlife Computers external sensor stalk has a diode-type
temperature-compensated light sensor (and temperature sensor) in a protective sheath,
situated near the end of the stalk, for obtaining light measurements (Fig. 13.1). The
MKO9 is also available with a light sensor, and without the external stalk, in customer
specified packaging configurations for external attachment.

The Lotek Wireless LTD2310 and Wildlife Computers MK9 tags have been
used widely during the past decade. The LTD2310 has recently been discontinued,
and replaced with the LAT2310, as the company has moved to a new platform
configuration which is also used for its LAT2810 and LAT2910 ATs. The LTD2310
and MKO tag bodies are similar in size and weight, and cylindrical in shape, so as
to better withstand high pressure at extreme depths without fracturing. The ranges,
resolutions, response times, and sensitivities of the depth, temperature, and light-
level sensors of the LTD2310 and MK are fairly similar, but with some differences
in sensor performances (Schaefer and Fuller 2006). Experiments in the equatorial
eastern Pacific Ocean with hydrocasts to about 500 m, demonstrated average light
sensitivities to around 400 m with both the LTD2310 and MK9. Data obtained from
both these ATs while attached to bigeye tuna in the equatorial eastern Pacific have
shown that the light sensors are capable of identifying dawn and dusk events to at
least 300 m (Schaefer and Fuller 2009).
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A

——

Figure 13.1. Archival tags with external sensor stalks for ambient light and temperature measurements
(A) LTD2310, LAT2810L, and LAT2910PDA (top down) manufactured by Lotek Wireless, and (B)
MK9 manufactured by Wildlife Computers.

In comparison, the newest generation LAT2810 and LAT2910 geolocating
archival tags, which have been produced by Lotek Wireless only since early 2012,
are substantially smaller and lighter (Table 13.1). Because of battery sizes and voltage
requirements, these tags are not expected to have as long a life for logging data as
expected from the LAT2310 or the Wildlife Computers MK9 ATs.

One substantial difference between the Wildlife Computers MK9 and the Lotek
Wireless ATs is the way in which the memory of the tags is configured and utilized.
The MKO is capable of logging data for depth, internal and ambient temperatures,
and light-level, at a 30-second sampling interval for 8.7 years, and with a non-volatile
memory, storing that data for up to 25 years, after the battery has expired. Following a
successful deployment and recovery of an MKO9, the entire data set can be downloaded
and then processed with software provided by the manufacturer to obtain estimates of
daily geolocation, sea-surface temperature (SST) and a suite of other summaries based
on the physical oceanographic parameters measured. The memory of Lotek Wireless
ATs is partitioned, with a section for a day-log, based on calculations done onboard
the tag, and a section for data logging. Within the day-log the estimates of geolocation
are provided, along with SSTs, and other summaries of physical oceanographic data
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collected. There is also a substantial amount of memory allocated to the logging of
raw data for depth, temperatures, and light-level at a 30-second sampling interval for
multiple years for the LTD2310 and LAT2810 tags, but the memory configuration is
currently limited with logging of time-series data with the LAT2910. The memory in
each of these tags is also non-volatile, which means that even if the tag stops working
the data previously stored is saved in the tags memory for upto 25 years.

Further advancements in integrated circuits have contributed to the miniaturization
of ATs. This now makes it feasible to be manufacturing ATs for applications with
fish much smaller than previously possible. With the relatively small LAT2910, the
minimum size for pelagic fish potentially capable of carrying such a tag internally
implanted, without probable adverse effects is possibly approaching 30 cm Fork Length
(FL). Conducting experiments with captive fish to determine minimum sizes of fish
for which tags are suitable for implantation, before undertaking field experiments, is
strongly advised if feasible.

Pop-up satellite archival tags

Following deployment attached to a fish, PSATs record and store measurements of
depth, temperature, and ambient light-level data at pre-programmed intervals, and
perform onboard data processing. At a pre-programmed date the tags are designed to
detach from their tethers and float to the surface to transmit processed and time-series
data to the ARGOS system of polar orbiting satellites. The ARGOS data collection and
Collecte Localisation Satellite (CLS), is a joint venture between the Centre National
d’Etudes SPSATiales (CNES) of France and the National Aeronautics and Space
Administration (NASA), and National Oceanic and Atmospheric Administration
(NOAA) of the United States. Receivers on board NOAA satellites provide world
coverage. The system uses UHF radio frequencies and a Doppler location system to
calculate the position of the PSAT at the time of release (< 250 m, with best location
class) by the shift in frequency as the satellite approaches and then moves away
(Taillade 1992). The data along with a classification of their location accuracy are
provided by ARGOS (http://www.argos-system.org) to the registered account for
that PSAT.

Because of the relative size of PSATS, their use is intended for deployments with
relatively large fish. PSATs are externally attached to fish with anchors and tethers, and
at a pre-programmed date and time during a deployment, the PSAT actively corrodes
the pin to which the tether is attached and floats to the surface to transmit a subset of
the archival data to the ARGOS satellites. Those data which include daily geolocation
estimates, depths, and temperatures, provide the opportunity of reconstructing the
large-scale movements of fish, in addition to understanding of their habitat utilization
throughout the deployment period. Acquiring data from PSATs is fisheries-independent,
because it is not necessary to recapture the fish or recover PSAT, as with ATs, to obtain
data. The full archival tag record, which is maintained in memory, can also be acquired
from recovered PSATSs.

Currently the two primary manufacturers of PSATs, which have been used since
the late 1990s in numerous experiments with fish, are Microwave Telemetry, Inc.,
Columbia, Maryland, USA (http://www.microwavetelemetry.com/) and Wildlife
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Computers, Redmond, Washington, USA (http://www.wildlifecomputers.com/). There
are other companies currently experimenting with producing their own versions of
PSATs. Some of the technical specifications in the designs of the PTT-100 and X-Tag
PSATs manufactured by Microwave Telemetry, and the MK-10 PSAT and MiniPAT
manufactured by Wildlife Computers, are given in Table 13.2, and the tags shown in
Fig. 13.2. Because of requests from researchers desiring smaller PSATs, with lower
hydrodynamic drag, to potentially improve retention rates and enable their use with
smaller animals, Microwave Telemetry produced the X-Tag in 2007 and Wildlife
Computers produced the MiniPAT in 2010. In the development process of these
smaller PSATs numerous other improvements were also made, including sensors
and relevant information returned from the tags. These smaller PSATs from both
companies are considered replacements for their large tags, although they are still
currently manufacturing the larger models.

Although the appearance, physical dimensions, and sensors on the PSATSs
manufactured by these two companies are similar (Fig. 13.2; Table 13.1), there are some
fundamental differences between their products. The pre-deployment programming
and data decoding and processing of the Wildlife Computers PSATs are controlled by
the user, and for the Microwave Telemetry PSATs, these features are performed by
the manufacturer so as to provide less chance for user errors and bias. The Wildlife
Computers PSATs have enough power to sample data for at least one year and then
make 10,000 transmissions, using a frequency-stability specialized ARGOS transmitter
(“Cricket’) to maximize the quantity and quality of those transmissions. The Microwave

Figure 13.2. Pop-up satellite archival tags (A) MK 10 and MiniPAT manufactured by Wildlife Computers
(photo credit: Wildlife Computers), and (B) PTT-100 and X-Tag manufactured by Microwave Telemetry
(photo credit: Microwave Telemetry).
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Figure 13.3. Intracoelomic implantation of (A) Wildlife Computers MK9 archival tag in a yellowfin tuna
(photo credit: J. Dettling II/SPC-OFP-PTTP), and (B) Lotek Wireless LTD2310 archival tag in a bigeye
tuna (photo credit: D. Itano/SPC-OFP-PTTP).

Telemetry PSATs also have enough power to sample data for at least one year, have
a 15,000 transmission capability, and are equipped with a Satellite-in View (SIV™)
technology to maximize the efficiency of transmissions. PSATs manufactured by
both companies provide daily estimates of light-based geolocation, using changes in
ambient light levels so as to determine the times of sunrise and sunset. Also, while
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Microwave Telemetry PSATS provide raw time-series data of temperature and depth
at specified sampling rates, the Wildlife Computers PSATs provide summarized
histograms for those parameters. The PSATs manufactured by both companies include
similar methods to detect a mortality, such as a constant depth for a user-defined period
of time, and a corrosion link on the nose cone of the PSATSs to jettison the tag and
initiate transmissions at the surface. The emergency mechanisms to prevent PSATs
from imploding at depths below which they are rated, is the corrosion link on the nose
cone of the Microwave Telemetry tags activated at 1250 m (default setting), and a
mechanical guillotine (RD1800) on the Wildlife Computers tags designed for cutting
a monofilament tether at 1800 m.

Although the MiniPAT and the X-Tag are substantially smaller, lighter, and with
much lower drag coefficients than earlier generation PSATs, the minimum size of
fish that should be considered for their use without probable adverse impacts on their
behavior and survival is unknown for most species. However, as suggested before
undertaking tagging experiments with ATs, if the minimum acceptable size has not
already been established for the species, conducting experiments with captive fish or
field experiments with dummy tags to determine minimum sizes for which PSATs
may be suitable, and is advisable before undertaking costly field experiments with
functional PSATSs.

The data typically acquired from deployments and recoveries of ATs have been
of longer average durations, and greater length and age ranges, than those obtained
from PSATs, and thus more useful for investigations of large-scale movements and
migrations of fish. However, in areas and times in which sufficient fishing effort on a
species of interest is limited, and current experiments have not been conducted with
plastic dart tags (PDTs) to establish base-line recapture rates, one should be cautious
with his or her expectations in obtaining cost-effective and sufficient AT recoveries. If
the fish of interest are of adequate size for deployments with PSATs, useful information
on large-scale movements may be obtained. However, retention of PSATs for prolonged
time periods on numerous fish species has been problematic, as will be discussed later.

Attachment methods

The importance of using the best techniques for the capture, handling, and attachment
of ATs and PSATs to fish, is to achieve high post-release survivorship, tag retention, and
comparable behavior to conspecifics, which cannot be overemphasized to its impact
on the overall success of tagging experiments. Protocols must be carefully considered
and tailored to the candidate species being tagged, since different species have different
tolerance levels to capture, handling, and stress. Materials and methods that have been
used with varying levels of success for attaching ATs and PSATSs to a diversity of fish
species are described below. Opinions vary among experts on appropriate materials
and methods to be used for attachments of ATs and PSATSs, even for the same species,
and limited analyses of meta-data associated with such tagging experiments have been
only recently published to evaluate techniques. Unpublished information gleaned from
discussions with colleagues, who pioneered some of the currently acceptable PSAT
attachment methods and continue to evaluate and improve their techniques, has also
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contributed to the contents mentioned here. It is imperative to continue to evaluate
and improve the implantation techniques of ATs and attachment techniques of PSATs
so0 as to maximize the reliability of the data that are generated or the potential benefits
from tagging studies using this powerful technology (Cooke et al. 2011).

Archival tags

During the early development of ATs, there was a lack of consensus among scientists,
with various levels of experience in tagging large pelagics with conventional and
acoustic tags, as to whether ATs with dimensions similar to those of the LTD2310
and MK9 (Table 13.1) should be attached externally or internally to the fish
(Klimley et al. 1994). The first light-based geolocating ATs were designed and
manufactured with external sensor stalks, for internal implantation in tunas and
other large fish (Gunn and Block 2001). Tagging experiments were conducted off
Australia with southern bluefin tuna Thunnus maccoyii, to specifically determine
the most reliable method of attaching ATs (Gunn et al. 1994). Plastic replicas,
approximately the same size (55 mm x 24 mm x 12 mm) as the AT were attached in
three different ways, intracoelomic implantation and two external attachment methods
with tethers secured at the base of the second dorsal fin. Return rates indicated that
intracoelomic implantation was superior to either of the external attachment methods
for the retention of ATs. The overall recovery rate of 16.5% for 514 ATs internally
implanted in the coelom of southern bluefin between 1994 and 2000 indicated this
to be a suitable method for attachment for this species (Arnold and Dewar 2001;
Gunn and Block 2001). Appropriate handling and procedures were also developed for
the intracoelomic implantation of ATs manufactured by Northwest Marine Technology
(NMT, Shaw Island, Washington, USA), in Atlantic bluefin tuna Thunnus thynnus
through collaboration with a veterinarian and fish husbandry experts (Block et al.
1998a). During the period between 1996 and 2000, a recovery rate of 14% for 279
ATs deployed also confirmed that intracoelomic implantation of ATs was a suitable
attachment method with Atlantic bluefin (Gunn and Block 2001). Appropriate handling
and implantation procedures were also developed during this early period by scientists
in Japan, for intracoelomic implantation of NMT ATs in a variety of fish, including
Pacific bluefin tuna Thunnus orientalis (Tsuji et al. 1999; Kitagawa et al. 2000), chum
salmon Oncorhynchus keta (Wada and Ueno 1999), and the ocellate puffer Takifugu
rubripes (Nakajima and Nitta 2001).

Tagging experiments with a variety of fish species, however, have demonstrated
that acoustic and archival tags attached by intracoelomic implantation can be lost
through failure of the wound closure, or by transabdominal or transintestinal expulsion,
and also cause inflammatory responses (Cooke et al. 2011). Freshwater fish, particularly
salmonids, have been investigated more intensively regarding issues associated with
intracoelomic implantation of tags (Welch et al. 2007; Teo et al. 2013). They appear
to have much higher tag expulsion rates than those reported for some marine species,
including bigeye tuna Thunnus obesus (Schaefer and Fuller 2002), Atlantic bluefin
tuna (Walli et al. 2009), Pacific bluefin tuna (Boustany et al. 2010), yellowfin tuna
Thunnus albacares (Schaefer et al. 2011), Pacific halibut Hippoglossus stenolepis, and
other pleuronectid species (Loher and Rensmeyer 2011). External sensor stalks of ATs
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protruding from the coelomic cavity creates drag, precession and continuous vibrations
and movement, preventing complete wound closure and can lead to tissue necrosis and
potential tag loss. Based on our experience with tunas, expulsion of ATs also appears
to be a function of tag body proportions, and surgical techniques used for attachment.
Although there are other attachment methods for ATs, intracoelomic implantation via
laparotomy is considered the most appropriate for long-term biologging applications
(Bridger and Booth 2003). However, it should be recognized, as with any procedure,
there are inherent risks, including potential for infection, physiological imbalance,
and even post-surgical mortality (Cooke et al. 2011).

Appropriate fishing gear and fish handling methods should not be overlooked
for their importance in the post-surgical survivorship of fish released with ATs. Small
pelagic fish captured by hook and line, preferably using barbless circle hooks, should
be lifted aboard vessels without the aid of any devices and placed directly in v-shaped
tagging cradles, padded with closed-cell foam and with a wet smooth vinyl liner
(Bayliff and Holland 1986). Placing fish immediately in cradles ventral side up, and
covering their head and eyes with a wet synthetic chamois cloth, normally initiates a
comatose-like state, lasting for up to a few minutes. Larger fish should be lifted out
of the water and aboard vessel, carefully and without injury to the fish, with the aid of
either seawater-filled vinyl slings (Farwell 2001), hand-held scoop nets with knotless
webbing (Schaefer and Fuller 2002), or in slings using mechanical hoists, as required
for large sharks and other fish on large research vessels (Musyl et al. 2011b). There are
other noteworthy methods and exceptions, including a technique developed specifically
for pulling large Atlantic bluefin aboard sportfishing vessels through the fish door
on the transom, and onto pads with smooth vinyl lining (Block et al. 1998a). Larger
fish can also be placed in appropriate sized cradles, or on large closed cell foam pads
lined with smooth vinyl surfaces, and restrained, for attaching ATs as has been done
with some species of billfish (Holland et al. 2006). Rapid examinations to assess any
potential bleeding from the gills, eye damage, or barotrauma are also a critical part of
the protocol, so as to select only fish in excellent condition for tagging with ATs. At
all times during the handling and tagging process, the comfort and welfare of the fish
should be assessed. The time in which fish are out of the water is dependent on the
competency of the surgeon, and speed in completing the tagging process is essential
to reduce trauma, and maximize survival of the fish.

Detailed descriptions of appropriate handling methods and implantation procedures,
including recommended materials to be used for intracoelomic implantation of ATs, the
size of the LTD2310 and MK9 (Table 13.1), in tunas are given by Block et al. (1998a)
and Schaefer and Fuller (2002). Conventional tags, such as a plastic dart tag or a plastic
intramuscular tag (Hallprint Pty Ltd, South Australia) in bright colors, to make them
readily observed, should also be attached to fish with implanted ATs. Text printed on
the conventional tag should specify the reward amount and instructions for the return
of the AT located inside the fish. The early generation NMT ATs and Lotek Wireless
LTD2310 models did not have a ring welded to the stainless casing, at the base of the
sensor stalk, for tying the end of a suture to prevent the AT from sliding forward in the
coelomic cavity of large Atlantic bluefin which occurred and occasionally prevented the
collection of ambient light data (Arnold and Dewar 2001). The use of antibiotics for
such intracoelomic surgeries should probably be avoided, either injected into the fish
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or a coating on tags to prevent potential infections as it does not appear to be beneficial
(Mulcahy 2011). With respect to surgical procedures for intracoelomic implantation
of ATs it is crucial to employ sterile techniques, while realizing there are limitations
to such procedures when performing surgeries aboard vessels at sea. Sterile surgical
techniques are essential to prevent infections which can lead to various detrimental fish
health issues, including delayed post-release mortalities. Procedures should include
a clean environment where surgeries are performed, the use of new surgical gloves,
sterile scalpel blades, and suture materials for each surgery. ATs should be sterile by
cleaning them with alcohol, drying and wrapping in a film, and then sprayed with
a broad spectrum bactericide, such as Betadyne solution (a 10% povidone-iodine),
immediately before implantation. Wagner et al. (2011) provided an excellent review
of surgical implantation techniques for electronic tags in salmonids, also relevant to
all AT fish surgeries. For other fish species, including salmon (Teo et al. 2013), cod
(Righton et al. 2006), and pleuronectid species (Loher and Rensmeyer 2011), handling
techniques include the use of anesthesia prior to surgeries, and subsequently holding
tagged fish in enclosures to ensure complete recovery before being released.

Experiments conducted at the Inter-American Tropical Tuna Commission’s
laboratory in Achotines, Panama, with captive yellowfin tuna in which earlier
generation ATs of size similar to that of the LAT2810 (Table 13.1), had been attached
by intracoelomic implantation following procedures described by Schaefer and Fuller
(2002) resulted in a high rate of expulsion from the incision site within two weeks. A
method was developed that appears more suitable for the intracoelomic implantation
of the LAT2810 and LAT2910 ATs in tunas, in which the external sensor stalk exits the
body through a small secondary hole, so that the initial incision to accommodate the
tag body can be completely closed with sutures. This surgical procedure is expected
to reduce the expulsion rates of these relatively small ATs by tropical tunas. The end
of the suture material (Ethicon (PDS II) size 0, cutting cp-1, 70 cm), used for closing
the incision in the ventral abdominal wall through which the AT body is implanted,
should be securely tied off in advance to one of the wire connectors on the tag body.
An incision about 2 cm long should be made in the abdominal wall anterior of the
anus and about 2 cm to the left of the centerline of the fish. Special care should be
taken to cut only through the dermis and partially through the muscle, but not into the
coelomic cavity. A gloved finger is inserted into the incision and forced through the
muscle, with a twisting motion, into the coelomic cavity. A sterile 8 gauge stainless
steel curved piercing needle, is manipulated inside the incision with the pointed end
pushed through the abdominal wall to penetrate outside at about 1 cm posterior to the
initial incision. When about half of the needle is protruding, the end of the external
stalk is placed inside the end of the piercing needle and then the needle is pushed
entirely through and removed from the stalk (Fig. 13.4A). The stalk is then pulled
gently until the relief spring penetrates through the abdominal wall. The tag body,
while being held by the thumb and index finger, is then inserted, anterior end first,
through the initial incision, into the coelom (Fig. 13.4B). The tag stalk is then pulled
gently until the tag body is directly beneath the initial incision and the spring relieve
section is protruding outside the fish. With the end of the suture material tied securely
to a connection wire on the tag body, two sutures are used to tightly close the incision
and hold the AT in place (Fig. 13.4C).
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Figure 13.4. Procedures illustrating the intracoelomic implantation of an LAT2810 in a yellowfin tuna.
(A) The external stalk being directed through a second incision created with the use of a curved hollow
piercing needle, (B) the tag body being inserted into the coelomic cavity through the primary incision,
and (C) the primary incision closed with two sutures, with external stalk exiting from secondary incision.

Some early concerns about handling of large pelagics, specifically billfishes,
for attachments of ATs, and considerations of viable alternatives to intracoelomic
implantation resulted in a laboratory experiment using scaled-down (1/25) model ATs
with small (1-2 kg) captive yellowfin tuna to evaluate the feasibility of long-term
intramuscular implantation (Brill et al. 1997). The results of these experiments were
that 10 of 15 fish survived until the conclusion of the experiment at 10 months, and
seven of the 10 had retained the model ATs. A similar procedure of dorsal intramuscular
implantation of NMT ATs was used in some tagging experiments in Hawaii with
bigeye tuna, which resulted in return rates similar to those of bigeye tagged with only
conventional PDTs and with no reported AT shedding (Musyl et al. 2003). Considering
the relatively small size of the LAT2910 AT, it seemed prudent to evaluate the feasibility
of implanting it at the base of the second dorsal fin of tunas and other fish. The specific
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impetus was to establish a rapid and reliable technique to attach ATs the size of the
LAT2910, or smaller, to skipjack tuna Katsuwonus pelamis. A plastic dart, such as that
used on a plastic dart tag, was attached to a stainless shaft extending from the anterior
of the LAT2910 (Fig. 13.1) for placement between the pterygiophores of the second
dorsal fin to attempt to attach the AT in place, similar to that of a conventional plastic
dart tag. Results from a recent tagging experiment in 2012, using this intramuscular
implantation technique with yellowfin deployments (=97, mean FL=111.3 cm,
range: 69-160 cm) were disappointing, as a 52.6% shedding rate was observed for
the LAT2910PDA tags based on 19 fish recaptured with conventional plastic dart tags
(K. Schaefer and D. Fuller, unpubl. data).

It stands to reason that if proper handling and surgical techniques are used, the
recapture rates of fish tagged with ATs, and AT return rates, should be comparable or
greater than those for fish released during the same tagging experiments with only
PDTs. This is because post-release tagging mortality should not be greater for the fish
with implanted ATs than the fish with just PDTs. Tag reporting rates can be greater,
however, for ATs due to publicity campaigns and greater monetary rewards for their
return (Schaefer and Fuller 2009; Schaefer et al. 2011).

Pop-up satellite archival tags

Nelson (1978) proposed externally attaching several single-point PSATs to sharks
as a means for reconstructing their large-scale movements. Several years later,
an international group of tuna scientists met to discuss limitations of data from
tuna tagging studies, using conventional plastic dart tags for understanding the
movements and behavior of tunas, and concluded that a technological solution may
be the development of PSATs (Hunter et al. 1986). The first PSATs were attached
externally to large Atlantic bluefin in 1997 to investigate their movements and behavior
(Block et al. 1998b). Following the success of those experiments, experiments by
Lutcavage et al. (1999), also with PSATs externally attached to large Atlantic bluefin,
confirmed and validated the concept. The technology evolved rapidly, and within a
short time numerous experiments were underway with several large pelagic species,
including tunas, marlins, and sharks (Arnold and Dewar 2001; Gunn and Block 2001).

The external attachment of PSATSs to a variety of large fish species has provided
useful information on their horizontal and vertical movements, habitat utilization,
and post-release mortality, which most likely was not obtainable with other types of
tags. The size of the MK-10 and PTT-100 PSATs (Table 13.2) has, however, limited
their suitability for external attachment to large fish, due to concerns associated with
the inability of smaller fish to swim and behave normally with the increased drag
and flotation of the PSATs, and also to survive the tagging process, including the
stress associated with capture and handling. With considerable reduction in the size
of the MiniPAT and X-Tag (Table 13.2), the size of fish to which PSATs could be
attached externally, became considerably reduced. The minimum size has not been
evaluated for which PSATs should not have a prolonged adverse impact on their
behavior and survival for most species of fish. This is a critical consideration for the
application of PSATSs, although it would be difficult to determine without considerable
experimentation, including laboratory and field experiments using PSATs or dummy
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PSATSs on a range of fish sizes. Nevertheless, irregular behavior has been reported to
last for three to 60 days for individual large pelagic fish, following their release with
PSATSs attached (Hoolihan et al. 2011). PSATs have also been reported to affect the
swimming performance of the European eel Anguilla anguilla (Methling et al. 2011).
The probable cause of the altered behavior is the physiological stress associated with
the capture, handling, and tagging process (Wells et al. 1986; Skomal 2007), and
acclimatization to swimming with the newly-attached PSAT.

A persistent problem with the use of PSATs for obtaining information on the
long-term (> 1 year) movements and migrations of fish, has been the short-term
(< 3 months) median retention times. Premature detachments of PSATs has occurred
for most species for which experiments have been undertaken (Gunn et al. 2003;
Musyl et al. 2011a; Hammershclag et al. 2011; Patterson and Hartmann 2011). By early
2000, a large number of PSATs had been deployed on a variety of marine animals,
and issues surrounding the performance and reliability of PSATs were recognized as
a serious problem by several research groups, so a workshop was convened to address
a list of concerns, including attachment methods (Holland and Braun 2003). It was
concluded that there were numerous factors that could contribute to poor performance,
short retention times, and failure of PSATs, including inadequate holding power of
anchors, tissue rejection, PSAT hardware failures, and predation by sharks or other
large predators on PSATs while attached to the fish. Progress has been made with
some species of fish to increase median retention times of PSATs by evaluating
and improving handling and tagging techniques, including using different anchors
and tethers for attaching PSATs. Manufacturers have also made modifications to
their hardware on newer generations of PSATSs, including increasing the breaking
strength of the pins in the nosecone to which tethers are attached. Issues pertaining
to early detachments and overall performance of PSATs remain controversial among
researchers and manufacturers.

Methods used for attaching PSATs to fish have been described for tunas
(Block et al. 1998b; Patterson et al. 2008), billfish (Domeier 2006; Prince and
Goodyear 2006; Nielson et al. 2009), sharks (Weng et al. 2007a; Domeier et al. 2008;
Musyl et al. 2011b), Pacific halibut (Seitz et al. 2003; Loher and Setiz 2006), eels
(Jellyman and Tsukamoto 2002; Aarestrup et al. 2009; Manabe et al. 2011), sturgeon
(Erickson 2007), Atlantic salmon kelts (Chittenden et al. 2013), and other fish. For
some of these groups of fish, PSATs have been attached to individuals captured by
hook and line with recreational or commercial fishing gear, and either brought aboard
a vessel and placed in a cradle or on a tagging pad, or restrained alongside a vessel in
the water. Proper tag placement can more easily be accomplished with fish restrained
aboard vessels, but this may cause high levels of stress or infections due to removal
of their protective mucous coating. Large tunas, billfishes, and sharks have been
tagged alongside the vessel with tags attached to the ends of long poles by taggers
standing on the deck of the vessel, but accurate placement of the tags is a problem
with this method, and it is infeasible to measure the fish. The use of a ‘snooter’ for
restraining billfish alongside sportfishing vessels has proven to be useful for improved
placement of PSAT anchors, and resuscitation while moving a vessel forward at 1-2
knots for an adequate time period before release has been recommended (Prince and
Goodyear 2006). Other innovative methods have been used for attachments of PSATs
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with anchors to free-swimming individuals of some species. Free-swimming Atlantic
bluefin tuna, swordfish Xiphias gladius, and great white sharks Carcharodon carcharias
have all been tagged with PSATSs, using long tagging poles (Chaprales et al. 1998;
Weng et al. 2007a; Nielsen et al. 2009). Divers have also tagged whale sharks
Rhincodon typus (Wilson et al. 2006) and other fish underwater with PSATs using
spearguns.

There are several types of PSAT anchors available that have been designed for
implanting in the dorsal musculature near the base of the dorsal fin, passing between
pterygiophores. Three custom-made anchors have been used fairly extensively by
different research groups for attaching PSATs in this manner to tunas, billfishes,
sharks, and other species. The titanium dart shown in Fig. 13.6, which measures
59 x 13 x 1.5 mm, with the posterior 10 mm section canted at a 17° angle, has been
used widely with a variety of fish (Block et al. 1998b; Weng et al. 2007a). The medical-
grade nylon toggle anchor shown in Fig. 13.6, measuring 62 X 23 mm with blades
retracted, and 80 x 23 mm with blades fully expanded, has been used in numerous
tagging experiments with billfishes (Prince et al. 2010; Hoolihan et al. 2011a). This
PSAT anchor was originally designed by Musyl et al. (unpubl. results) by adding
stainless steel, spear gun flopper blades to the nylon intramuscular anchor originally
used by Prince and Goodyear (2006) (Musyl et al. 2011a). The nylon umbrella-style
anchor shown in Fig. 13.6, measuring 31 X 24 mm, has been used widely with a variety
of fish (Domeier et al. 2005). The materials used for tethers connecting the anchors
and PSATs also differ, depending on the objectives of the experiment (i.e., determining
long-term movements or estimating post-release mortality), and also among research
groups. Lengths of tethers should be designed as to minimum lengths for the species
and size of fish to which PSATs are being attached. For tethers with heat-shrink tubing
covering the monofilament, to stiffen the tether and reduce movement at the insertion
site, instructions can be printed regarding the reward for the return of the PSAT and/
or tether. A MiniPAT rigged with a primary tether consisting of 135 kg monofilament
connected to a large titanium dart, using stainless steel crimps, and covered with
heat-shrink tubing is shown in Fig. 13.7A. A secondary tether, rigged in a similar
manner, but with a different stainless steel dart, intended to minimize the range of
motion and stress on the primary anchor site is also shown. The secondary tether has
proven effective at increasing the retention times of PSATS attached to tunas (Patterson
etal. 2008). A MiniPAT rigged with a tether made of abrasion-resistant cable, covered
with heat-shrink tubing, and connected to a “‘Wilton’ dart, cast in urethane, is shown
in Fig. 13.7B. The tag and tether are designed so that the tag’s attachment pin is the
weak link to facilitate identifying the causes of attachment failures (M. Holland, pers.
comm.). A MK10 with the RD1800 (depth severance device designed to cut through
the tether material if depth exceeds ~ 1800 m), rigged with a 300-1b. monofilament
tether, connected to the white nylon flopper-blade anchor, using stainless steel crimps,
and mounted on a tagging pole is shown in Fig. 13.7C. Fluorocarbon line, being more
abrasion-resistant, may be preferable for rigging tethers, rather than monofilament,
which hydrates and gets brittle over time. It is important to confirm whether PSATS,
with tethers and anchors attached, are positively buoyant before deployments, as that
information can be useful for interpretation of data obtained from early detachments
of PSATs and post-release mortality (Musyl et al. 2011a,b; J. Hoolihan, pers. comm.).
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Six species that have been tagged with PSATSs using intramuscular implantation of
anchors with tethers are shown in Fig. 13.7.

Aside from externally attaching PSATs to fish with anchors, another method
that has been used for eels (Jellyman and Tsukamoto 2002; Aarestrup et al. 2009)
and salmonids (Chittenden et al. 2013) is a bridle system, consisting of cushioned
nylon plates securely fastened together on both sides of the dorsal region to which the
tether is attached. This method has proven to work effectively in a limited number of
experiments for those species, with some PSATs retained up to several months, but
there have also been early detachments. PSATs have also been securely attached with
a fluorocarbon tether crimped to a harness, made of braided stainless cable inside soft
plastic tubing, inserted through a hole drilled at the base of the dorsal fins of several
species of sharks (Moyes et al. 2006; Musyl et al. 2011b).

An evaluation of the performance of PSATs, based on statistical analyses
of meta-data from 731 PSAT deployments for 19 species, mostly tunas, marlins,
and sharks, and a total of 1433 PSAT deployments on 24 marine animals from 53
articles provides useful insights on retention times and early detachments of PSATSs
(Musyl et al. 2011a). Results indicated that the three types of anchors illustrated in
Fig. 13.5 appear to have similar performances with respect to retention times, but
80% of 491 PSATs affixed to teleosts and sharks with those anchors detached before
the programmed pop-off date. The longest median retention times for Microwave
Telemetry PSATs, reported in this study, were those deployed on great white
sharks (207 days), followed by oceanic whitetip sharks Carcharhinus longimanus
(164 days), and Atlantic bluefin tuna (102 days). Median retention times for MT
PSATs deployed on striped marlin Kajikia audax (98 days) were considerably longer
than those for black Istiompax indica (46 days), and blue marlins Makaira mazara
(54 days). Analyses of the shark data separately, indicated 65% of all PSATs detached
before the programmed pop-up date, and sharks that were immobilized on the deck of
vessels for attaching PSATs had significantly shorter retention times than those tagged
in the water. PSAT retention times increased significantly for teleosts and sharks which
inhabited greater depths and cooler waters. The results suggested that pressure and/
or temperature experienced at greater depths, biofouling on PSATs increasing drag,
and possible infections and tissue necrosis at the insertion site of the anchors were
major factors to explain variable PSAT retention times (Musyl et al. 2011a). A separate
review of shark satellite tagging studies by Hammerschlag et al. (2011) reported that
PSAT premature releases averaged 66% across 27 studies reporting such data, even
though most were programmed for relatively short deployment periods of 30, 60, or
90 days. Other researchers have hypothesized that early detachments of PSATs affixed
to fish may have been caused by increased drag from biofouling (Gunn et al. 2003;
Kerstetter et al. 2004; Wilson et al. 2006), tissue necrosis at the site of the implanted
anchor and tether (Jellyman and Tsukamoto 2002; De Metrio et al. 2004; Wilson
et al. 2005), and predation by sharks or other predators on either the tagged animals
or the PSATs (Klimley et al. 1994; Kerstetter et al. 2004; Polovina et al. 2007). PSAT
tag retention is obviously a complex issue and probably the result of several factors. In
many instances it has been difficult to ascertain causes, except in those rare instances
when fish are returned with PSATs or tethers still attached.
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Figure 13.5. Three types of anchors which have been used for attaching PSATs with tethers to a variety
of fish. (A) titanium dart, (B) medical grade nylon toggle anchor, and (C) nylon umbrella-style anchor.

Data analyses

The most important feature of ATs and PSATSs is their ability to measure and record
ambient light and temperature data, and other environmental data, which can be
analyzed using various methods to reconstruct the most probable tracks of individual
fish. Analyses of the spatial and environmental data collected by ATs and PSATs
enables us to better understand the large-scale movements and migrations of individual
fish, along with their behaviors, relative to their habitat. This type of information
is indispensable for gaining a better understanding of the spatial dynamics of fish
stocks. Elucidating the spatial dynamics of fish stocks, including movement patterns,
dispersion, mixing, residency, site fidelity, and homing, and ultimately including those
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Figure 13.6. PSATs rigged with different types of tethers and anchors for different applications. (A) MiniPAT
rigged with primary tether and a titanium dart, along with a secondary restraining loop and stainless steel
dart (photo credit: B. Block/Stanford University). (B) MiniPAT rigged with a tether and ‘Wilton’ dart (photo
credit: Wildlife Computers) and (C) MK 10 rigged with tether and medical grade nylon toggle anchor, and
mounted on a tagging pole with an applicator (photo credit: J. Hoolihan/NMES).

factors in assessment models, requires data sets from large numbers of individuals,
and the inclusion of SSMs in the data analysis (Patterson et al. 2008).

The ambient light-level data measured and recorded by archival and pop-up
satellite archival tags can provide the time of dawn and dusk events and the ability
to calculate daily geolocations of fish during the time they were carrying those tags
(Smith and Goodman 1986; Wilson et al. 1992; Hill 1994). The manufacturer’s basic
tag processing software calculates longitude from the time of local noon, and latitude
from the local day length using what is referred to as the threshold method. The raw
(i.e., unfiltered and uncorrected) light-based geolocations obtained for longitude can
be reasonably accurate and reliable, whereas those for latitude are highly variable and
unreliable especially around the time of the equinoxes due to the nearly constant day
length at all latitudes (Hill 1994; Hill and Braun 2001; Ekstrom 2004). The accuracy
of the light-based geolocation estimates have been reported from ATs tethered to
moored buoys, at higher latitudes, as + 0.2—0.9° in longitude and + 0.6—4.4° in latitude
(Welch and Eveson 1999, 2001; Musyl et al. 2001). Comparisons of the calculated light-
based geolocation within a day of recapture of bigeye tuna with ATs attached, to the
reported recapture position indicated an accuracy of £+ 0.5° of longitude and + 1.5-2.0°
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Figure 13.7. (A) Southern bluefin tuna Thunnus maccoyii with a Wildlife Computers PAT-4 attached
using umbrella-style anchor on primary tether, and secondary restraining loop around the PSAT shaft, is a
modified Hallprint PIMA tag (photo credit: Kristi Wright /CSIRO). (B) Yellowfin tuna Thunnus albacares
with a MiniPAT attached using a ‘Wilton’ dart on primary tether and secondary restraining loop around
the PSAT shaft is a modified Hallprint PIMA tag (photo credit: K. Holland/UH, HIMB). (C) Great white
shark Carcharodon carcharias with a MiniPAT attached using a titanium dart on primary tether, and
secondary restraining loop around the PSAT shaft is a modified Floy FH-69 tag (photo credit: Chuck
Winkler/Monterrey Bay Aquarium). (D) Sandbar shark Carcharhinus plumbeus with a MiniPAT attached
using a ‘Wilton’ dart (photo credit: M. Royer/UH, HIMB). (E) Indo-Pacific blue marlin Makaira mazara
with MK 10 attached using a nylon umbrella-style anchor (photo credit:B. Boyce/ www.boyceimage.com).
(F) Pacific halibut Hippoglossus stenolepis with a MK 10 attached using a titanium dart (photo credit:
R. Ames/Pacific States Mar. Fish. Comm.).

latitude (Schaefer and Fuller 2002). Problems with light-based geolocation estimates
and associated sources of error include depth distributions and diving behavior,
meteorological and oceanographic conditions, light attenuation, and proximity to the
equator (Metcalfe 2001). The large errors in the light-based geolocation estimates can
be improved somewhat through utilizing the narrow-band blue light and the template-
fit method (Ekstrom 2004, 2007).
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Daily SSTs recorded by ATs and PSATs matched to SSTs from remote sensing
have been shown to significantly improve estimates of latitude (Teo et al. 2004;
Domeier et al. 2005; Wilson et al. 2007). Teo et al. (2004) developed an algorithm for
estimation of daily positions of latitude by comparing SSTs measured by the tag with
that measured by satellite sensors, along the longitudinal meridian estimated from
the threshold technique, using light-level data. From double-tagging experiments,
using Wildlife Computers PSAT and Smart Position Or Temperature transmitting
(SPOT) tags on salmon sharks (Lamna ditropis) and blue sharks (Prionace glauca),
Teo et al. (2004) estimated Root Mean Square (RMS) error of light-based longitude
was within 0.89°, and the RMS error of SST-based latitude was within 1.54°. Domeier
etal. (2005) also developed an algorithm, called ‘PSAT Tracker’, which automatically
matches SST data from ATs and PSATs with SSTs measured by satellite sensors.
They demonstrated the usefulness of their algorithm through the analyses of data
collected from ATs and PSATs attached to Pacific bluefin tuna tagged and released in
the eastern Pacific. Tsontos et al. (2006) improved on this approach by integrating the
Fishtracker SST-matching geocorrection algorithm within EASy-GIS (http://www.
runeasy.com), a time dynamic mapping system for oceanographic applications used
in marine biogeographical studies.

Incorporating light-based geolocation estimates within a movement model has
proved extremely useful for reconstructing tracks of fish tagged with ATs and PSATSs.
Sibert and Fournier (2001) first introduced a state-space statistical model, utilizing the
Kalman Filter (KF) (Kalman 1960), to estimate a ‘most probable’ track along with
geolocation errors for longitude and latitude and movement parameters applicable
to population-level models. Their KF model parameterizes movement as a biased
random walk, with the movement partitioned into directed and dispersive movements.
The method uses the raw geolocations to estimate the random walk parameters in
the periods during which the data are reliable, but relies mainly on the random walk
predictions in periods during which the data are unreliable. The model estimates the
geolocation errors as the longitude and average latitude standard deviations. The
utility of the KF model was first demonstrated by application to AT data sets recovered
from bigeye tuna released in the vicinity of the Hawaiian Islands, so as to describe
their horizontal movement patterns and parameters (Sibert et al. 2003). SSMs have
also been developed, utilizing the Bayesian approach (Jonsen et al. 2003; Jonsen
et al. 2005), for analyses of animal movements data, including reconstruction of fish
or other animal tracks from raw geolocation estimates and ancillary data.

Since daily geolocations and tracks can be improved by including SSTs measured
by tag sensors and matched to SST fields derived from satellite sensors, Nielsen
et al. (2006) extended the KF model by integrating SST data. The KFsst model was
evaluated by attaching PSATSs directly on drifter buoys with thermistors and GPS,
and then applied to tracks derived from blue sharks in the central Pacific Ocean. The
inclusion of SST in the KFsst model produced substantially more probable tracks than
those estimated from the light-level data alone. Royer et al. (2005) also developed a
Kalman filter model with SST measurements along with bathymetry integrated for
use with AT and PSAT data sets obtained from marine animals. The unscented KF
model with SST measurements integrated (UKFsst) (Lam et al. 2008), is similar to
the KFsst model. The UKFsst model is a better model for handling non-linearities,
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and also has the advantage that every model parameter is handled within a statistical
framework. The UKFsst model can also utilize remotely-sensed SST data of various
spatial resolutions, and it automatically estimates the amount of smoothing required
for the SST field. This approach is preferable to ad hoc SST matching algorithms
(Lam et al. 2008).

Nielsen and Sibert (2007) developed the state-space model Tracklt, which begins
the geolocation estimation process, using the records of ambient light data recorded by
tags, rather than those provided from other algorithms. TrackIt assumes an underlying
movement model and estimates the track that best matches both the assumed model
and the relationship estimated empirically within Tracklt for the light time series
data. Lam et al. (2010) incorporated SST data into the light-based geolocation model
TracklIt, making it a single coherent model to estimate positions, founded on a set
of much more reliable light-based geolocation estimates. Tracklt is a generic and
statistically-sound modeling framework that can be extended to utilize new data streams
such as geomagnetic data or ocean chemistry data. Double-tagging experiments with
Wildlife Computers PSATs and SPOTs, attached to mako sharks Isurus oxyrinchus,
demonstrated that TracklIt with SST data provides improved movement estimation
to within 100 nmi, on average, in both the coastal environment and the open ocean
(Lam et al. 2010). TracklIt, however, does not contain land masks, but Lam et al.
(2010) indicate that by applying other filtering techniques, such as hidden Markov
models (Pedersen et al. 2008; Thygesen et al. 2009) should enable that feature to be
incorporated. Tracklt with SST, along with Trackit, UKFsst, KFsst, and KF models
are all freely available as plug-in packages for the open-source statistical software R
(https://code.google.com/p/geolocation/).

Tremblay et al. (2009) developed an alternative model to that of an SSM for
reconstructing animal tracks that is simpler and more computationally efficient. The
approach uses a particle filter method, consisting of bootstrapping random walks
biased by forward particles. The model uses light-based geolocations and SST or other
environmental data recorded by tags, and can easily incorporate land boundaries. The
model was tested and validated from double-tagging experiments with elephant seals,
using ARGOS and GPS tags, and results showed that for geolocation data, 50% of
errors were less than 56.6 nm (< 0.94°), and 90% were less than 107.9 nmi (< 1.80°)
(Tremblay et al. 2009).

SSMs are a preferred method to estimate animal movement behavior because of
their statistical robustness and predictive ability, but also because they lend themselves
to combined inference from a set of biologically plausible models, which is more
reliable than predicting from a single best model (Patterson et al. 2008). An interesting
example of this approach is given in Tancell et al. (2012) who compared and integrated
the results of four models, kernel, first-passage time, SSM, and minimum displacement
rate applied to data from the wandering albatross Diomedea exulans fitted with ARGOS
transmitters. A gridded overlap approach applied to all tracks revealed core areas of
habitat utilization not apparent from results of any single analysis and spatial overlap
between methods based on different assumptions and among individuals (Tancell et
al. 2012).


http://vetbooks.ir

Archival and Pop-up Satellite Archival Tags 275

Wildlife Computers developed an integrated user-friendly software package
called Wildlife Computers Data Analysis Programs (WC-DAP), which includes
utilities to decode, summarize, visualize, analyze, and export Wildlife Computers
AT and PSAT data. Visualization is done via ‘Instrument Helper’, within WC-DAP,
which provides the flexibility to display time-series data for one hour to multiple
years, for each recorded data channel, individually or all at once. Wildlife Computers
Global Position Estimator (GPE) program integrates into WC-DAP to produce daily
geolocation estimates from a tag’s light-level data, and allows the user the flexibility
to manage light-level geolocation operations. The integrated GPE software also
provides the option, without exporting the data, for processing light-based geolocation
estimates with the UKFsst state-space model. However, in order to use the TrackIt or
Tracklt with SST models, the user must first use the GPE to automatically sub-sample
and export raw light-level data recorded on the tag. At the same time an R-script is
created for processing the sub-sampled light-levels in the R framework. For additional
visualization flexibility and the ability to analyze dive patterns, AT or PSAT data can
be exported from WC-DAP in an IGOR Pro format, a graphing and data analysis
tool. Wildlife Computers has created a macro which operates in both the free trial and
licensed versions of IGOR Pro, which is specific to the graphical display and analyses
of AT data, giving the user high levels of control.

Lotek Wireless has developed LAT Viewer Studio software package, which is
a Windows-based application for importing, processing, and managing data from
Lotek ATs. LAT Viewer Studio operates independently from the Lotek software
program TagTalk2000, which is used for setup and download of ATs. LAT Viewer
studio provides several options for tabular, graphical, and statistical summaries of
imported data sets. However, to accomplish some of the more complex queries and
analyses of AT data, the user must be familiar with SQL script language. The program
also provides the user with some flexibility in processing methods for geolocation
estimates from light-level data, including Lotek’s proprietary Template-Fit method, and
also incorporating SST data with both template fit and threshold methods. However,
in order to use the UKFsst, Trackit, or Trackit with SST models, data must first be
exported, and compiled in a format compatible within R. This requires that the user
have knowledge of operating these models within the R framework. These Wildlife
Computers and Lotek Wireless data management and analysis programs provide
attractive features for quick visualization of large volumes of time-series data, some
individual data analyses and summaries, using various analysis routines, and plotting
tracks in Google Earth maps.

Multi-species long-term tagging programs, which utilize ATs and PSATS,
can produce huge volumes of data from various tag manufacturers. The programs
available from tag manufacturers are designed primarily for initial processing of data
sets from individual ATs and PSATS, but not for the management of large numbers
of data sets, nor from tags produced by other companies. The management of these
large AT and PSAT data bases for storing and accessing data is critical. Previously,
unless institutions and organizations had resources for dedicated data management
(Block et al. 2002; Hartog et al. 2009), this was an issue for many groups, until Lam
and Tsontos (2011) developed Tagbase, a robust and user-friendly data base solution
for ATs and PSATs. Tagbase provides a data management system for rapid assimilation
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oftag data from multiple tag types within a generalized platform and requires minimal
user intervention. The system also provides a set of integrated tools for visualizing
and summarizing data, and operates within an open-source development model
(Lam and Tsontos 2011). Tagbase is implemented in Access and SQL Server running
on MS Windows operating systems, providing secure storage, data base queries, and
some processing suitable for small to extremely large AT and PSAT data bases. Queries
can be written to extract information from the data base in required formats for use in
other programs, including Microsoft Excel, R and ArcView (Environmental Systems
Research Institute, ESRI).

Applications

There are many good studies describing successful applications of ATs and PSATs
for determining the large-scale movements and migrations of fish. We have chosen
four species to showcase the enormous potential of this technology, because of the
relatively large numbers of tag deployments with each of these species, subsequent
data sets acquired, analyses performed, and relevance of the results to fishery stock
assessments and management considerations.

Pacific bluefin tuna

Pacific bluefin tuna have an extensive distributional range throughout the North Pacific,
extending into the western South Pacific. They are a migratory species, with spawning
restricted to an area from the northern Philippines to southeastern Japan and the Sea of
Japan during April through August. They undertake extensive migrations throughout
much of the western and central Pacific, with variable portions of the population making
transPacific migrations to and from the eastern Pacific Ocean (EPO) (Bayliff 1994).

Considering the expansive distribution and migratory habits, along with concerns
about fishery impacts and population status, Pacific bluefin have been studied
fairly extensively with deployments of ATs in both the western and eastern Pacific.
Investigations of movements of juveniles tagged and released in the western Pacific
have shown primary residence within the Kuroshio current, and Sea of Japan, but
also some long-distance migrations, including across the Pacific to off northern Baja
California, Mexico (Kitagawa et al. 2000; Inagake et al. 2001; Itoh et al. 2003).
Seasonal movements of Pacific bluefin released in the EPO with archival tags were
reported to extend along the coast of North America, residing in southern Baja
California during winter and spring, and moving to northern California during the
summer and fall, with movements correlated with SSTs and sardine catch distributions
(Domeier et al. 2005; Kitagawa et al. 2007).

Boustany et al. (2010) reported the results of a series of tagging experiments in
which 253 Pacific bluefin were captured, tagged, and released with ATs off the coast
of California (USA) and Baja California (Mexico), between August 2002 and August
2005. A total of 143 AT data sets were obtained from fish recaptures with mean days
at liberty 359 & 248 (SD) days. From those AT data sets a total of 38,012 geolocation
positions were estimated, using the methods reported in Teo et al. (2004). Results
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indicate a similar pattern of movement along the coast of North America to those
previously reported, with fish found farthest south off southern Baja California in the
spring, and furthest north off central and northern California in the fall. Latitudinal
movement patterns and residence along the coast of North America were clearly shown
to be correlated with peaks in coastal upwelling-induced primary productivity. The
geographic range in movements of these bluefin released with ATs was extensive,
with fish distributed from the coast of North America to the Sea of Japan (Fig. 13.8).
Seventeen fish exhibited movements > 300 nm offshore. Seven fish exhibited trans-
Pacific movement, and two of those fish moved back to the eastern Pacific, with
one traveling back to the western Pacific where it was recaptured. All the other fish
remained in the area near the North American coast. The authors emphasize that the
transPacific migration rates from the east to the west are expected to be much higher
for older fish returning to their spawning grounds.

This work was part of the Tagging of Pacific Predators (TOPP), a field program of
the Census of Marine Life which deployed 4,306 electronic tags on 23 species of marine
animals in the North Pacific Ocean resulting in a tracking data set of unprecedented
scale and species diversity (Block et al. 2011).
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Figure 13.8. Positions of all Pacific bluefin tuna Thunnus orientalis tracked with archival tags, color-coded
by month. Tracking data were obtained from 143 fish and 38,012 positions were obtained. Pacific bluefin
tuna primarily occupy the eastern Pacific. Movement to the western Pacific (n = 7 fish) occurs in the
winter while migrations back to the eastern Pacific occurred in the summer. Background is North Pacific
bathymetry. Figure is from Boustany et al. (2010); reprinted with permission.

Yellowfin tuna in the eastern Pacific Ocean

Yellowfin tuna are distributed across the world’s oceans in tropical and subtropical
seas (Collette and Nauen 1983). They show regional fidelity to the eastern Pacific,
with evidence of sub-stocks from conventional tagging and other biological data, but
further research is required to elucidate the extents and interactions of the sub-stocks
(Schaefer 2008). Yellowfin are not a highly migratory species as they exhibit spawning
throughout subtropical and tropical regions where SSTs are in excess of about 24°C
(Schaefer 2001).
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Recent stock assessments of yellowfin in the eastern Pacific Ocean (EPO) indicate
that the population appears to be fully exploited, but results of the assessment are
somewhat uncertain due to uncertainty in several parameters, including movements
and stock structure throughout the Pacific Ocean (Maunder and Aires-da-Silva 2011).
Studies are being undertaken in the EPO with ATs to obtain information on movement
patterns and parameters to help clear up some of the uncertainty regarding spatial
dynamics of yellowfin.

Schaefer et al. (2011) reported the results of a series of tagging experiments in
which 144 yellowfin were captured, tagged, and released with ATs off northern Baja
California (Mexico), between October 2003 and October 2006, and 354 yellowfin
were captured, tagged, and released with ATs off southern Baja California (Mexico)
between October 2002 and December 2008. The movements off Baja California were
described from analyses of 31,357 days of data, downloaded from 126 archival tags
recovered from yellowfin (57 to 162 cm in length and 1.2 to 5.2 years of age) at liberty
from 90 to 1161 days (x=273.2 days), collected from 2002 to 2010. The UKFsst model
(Lam et al. 2008) was used to process the AT data sets in order to obtain improved
estimates of geographic positions and Most Probable Tracks (MPTs) and parameters.
The median parameter estimates from the UKFsst model for errors in longitude ()
and latitude (o,) were 0.32° and 1.36°, respectively, for directed movements (u and v)
were 0.27 nmi d! and 0.77 nmi d™', respectively, and for dispersive movement (D) was
144.3 nmi* d"!. The MPTs for 120 (95%) of the yellowfin remained within 733.3 nmi
of their release locations, indicating restricted horizontal utilization distributions, and
fidelity to this area of high biological productivity (Fig. 13.9A). There are observed
differences in the movement patterns and parameters for fish released in different
areas, and also evidence of fidelity to release locations off southern and northern Baja
California (Fig. 13.9B-E). This work was also part of the TOPP program of the Census
of Marine Life (Block et al. 2011).

Bigeye tuna in the eastern Pacific Ocean

Bigeye tuna inhabit tropical and subtropical seas across the world’s oceans (Collette
and Nauen 1983). Tagging studies with conventional and ATs indicate regional fidelity
to the EPO, and evidence of probable northern and southern sub-stocks, but further
research is required to elucidate the extents and interactions of these sub-stocks
(Schaefer 2008). Bigeye does not appear to be a highly-migratory species as they
spawn widely throughout subtropical and tropical regions where SSTs are in excess
of about 24°C (Schaefer 2001).

Recent stock assessments of bigeye in the EPO (Aires-da-Silva and Maunder 2011)
indicate that the population appears to be fully exploited, but results of the assessment
are somewhat unpredictable due to the uncertainity in several parameters, including
movements and stock structure throughout the Pacific Ocean. Studies are being
undertaken in the eastern, central, and western Pacific Ocean utilizing conventional
and ATs to obtain information on the spatial dynamics and stock structure of bigeye
in the Pacific Ocean.
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Figure 13.9. (A) Daily position estimates for 38 yellowfin tuna Thunnus albacares released off northern Baja
California, Mexico (yellow circles, n = 11,072) and 88 yellowfin tuna released off southern Baja California
(Mexico) (orange circles, n = 20,285) during 2002-2008. Release positions indicated by the black circles,
recapture positions for northern Baja California releases indicated by red circles, and recapture positions
for southern Baja California releases indicated by green circles. Most probable tracks for yellowfin tuna
exhibiting site fidelity and homing, (B) released off northern Baja (60 cm FL), at liberty for 372 d, (C)
released off northern Baja (61 cm FL), at liberty for 407 days, (D) released off southern Baja (122 cm FL),
at liberty for 781 days, and (E) released off southern Baja (90 cm FL) at liberty for 1161 days. Release and
recapture positions indicated by the squares and triangles.
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Schaefer and Fuller (2009) reported the results of a series of tagging experiments
in which 323 bigeye were captured, tagged, and released with ATs in the equatorial
EPO, during March to May of 2000 and 2002 through 2005, of which 163 of the tags
were returned. The UKFsst model (Lam et al. 2008) was used to process 98 archival
tag data sets from bigeye at liberty from 31 to 2,291 days (x = 258.4, SE = 35.5), in
order to obtain improved estimates of geographic positions and MPTs and parameters.
The median parameter estimates from the UKFsst model for errors in longitude ()
and latitude (o,) were 0.27° and 2.34°, for directed movements (« and v) were 1.25
nmi d! and 0.35 nmi d”!, and for dispersive movement (D) was 465 nmi? d™'. The
95 and 50% utilization distributions, based on 11,585 positions for the combined
98 bigeye archival tag data sets, were 716,158 nmi?and 32,757 nmi?, respectively,
and were centered between about 3° N and 5° S and 90° W and 105° W. Based on
the AT data, there are observed differences in the spatial patterns of movements
by year of deployment and fish age or size. These data indicate that bigeye exhibit
restricted movements, with regional fidelity to this area of high biological productivity
(Fig. 13.10A), with one exception. The exception was a bigeye at liberty for 4.1 years.
Because of various computational problems encountered for processing of this very
large data set with UKFsst, the most probable track was derived using the TracklIt
model with SST incorporated (Lam et al. 2010). During the first two years at liberty,
the fish remained within 993 nm of its release location, a restricted area similar to
that occupied by the other 97 fish, but centered slightly to the east (Fig. 13.10B-D).
However, during the third (Fig. 13.10E) and fourth (Fig. 13.10F) years at liberty the
fish undertook two very similar cyclical movements to the central Pacific. The first
movement began with a departure in early July 2007, arriving at about 151° W in early
November 2007, and returning to the EPO, at about 84° W, in early May 2008. The
second movement began with a departure in early July 2008, arriving at about 162°
W in early December 2008, and returning to the EPO, at about 84°W, in early May
2009. The fish was recaptured just 672 nmi from where it was released.

Great white sharks in the Northeastern Pacific Ocean

The great white shark has a circumglobal distribution extending through temperate
to tropical waters and coastal to pelagic habitats (Compagno 1984). There is a
concentration of great white sharks in the Northeastern Pacific (NEP), but little is
known about their breeding, parturition, and early life history phases. Young of the
year great white sharks have been observed in the southern California Bight and off
Baja California, and the nursery habitat in the Northeastern Pacific is hypothesized
to include the coast of North America south of Point Conception (Klimley 1985).
Great white sharks are listed for international protection under the Convention on
International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the
International Union for Conservation of Nature (IUCN) (Dulvy et al. 2008).

Since understanding the spatial dynamics and population structure of white sharks
is critical for conducting appropriate population assessments, and implementing
effective management strategies, there has been a considerable number of tagging
experiments in the NEP utilizing PSATs in recent years, with deployments from
northern Baja California (Mexico) to central California (USA). Data from those PSATs
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Figure 13.10. (A) Daily position estimates from the UKFsst and Trackit models (yellow circles,
n=16,721) for 96 bigeye tuna Thunnus obesus with archival tags, at liberty for 31 to 1508 days released
(green circles) in the equatorial eastern Pacific during 20002005, recovery positions indicated by the red
circles. Most probable track, color coded by bi-monthly periods, for bigeye tuna released April 15, 2005
(67cm FL) for the (B) first, (C) second, (D) third, and (E) fourth year at liberty.
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have demonstrated that great white sharks tagged in California (Boustany et al. 2002;
Weng et al. 2007a) and at Guadalupe Island off northern Baja California (Domeier and
Nasby-Lucas 2008) share common oceanic habitats, but also exhibit unique homing
and site fidelity to coastal habitats. Longer tracks from those studies have revealed
that adult great white sharks made some long-distance seasonal migrations from
coastal waters offshore into the eastern and central Pacific, as far west as Hawaii and
remained for up to about four months. Juvenile great white sharks tagged with PSATs
have demonstrated restricted movements, remaining in waters of southern California
(USA) and Baja California (Mexico) (Weng et al. 2007b).

Jorgensen et al. (2009) used a combination of PSAT tagging, passive acoustic
telemetry, and genetic analysis, to determine the spatial dynamics and demographic
scope of great white sharks in the NEP. They deployed 97 PSATs on great white sharks
in coastal waters of central California. Data from 68 of the 97 PSATSs were retrieved,
54 satellite-transmitted data sets and 14 recovered PSATSs with archival records. PSAT
deployments rendered 6978 longitude and 6144 latitude estimates, and 60 ARGOS
endpoint positions. Latitude and longitude estimates and tracks from the PSAT data
sets were determined using the methods of Teo et al. (2004). The data revealed site
fidelity and consistent homing in a seasonal migratory cycle with fixed destinations,
schedules, and routes (Fig. 13.11). The geolocation estimates and acoustic detection
locations (n = 74,354) across the Northeastern and central Pacific demonstrated that
great white sharks were consistently focused on three core areas: (1) the North America
shelf waters, (2) the slope and offshore waters of the Hawaiian archipelago, and (3)
the offshore white shark ‘Café’ (Jorgensen et al. 2009). Their findings from using this
integrated approach combining PSAT tagging, passive acoustic telemetry, and genetics
to investigate the NEP white shark population, culminates in their demonstration of
a demographically independent management unit that shows fidelity to discrete and
predictable locations (Jorgensen et al. 2009).
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Figure 13.11. Site fidelity and homing of great white sharks Carcharodon carcharias tagged along the
central California coast during 2000-2007 revealed by PAT records. (A—F) Site fidelity demonstrated by
six individual tracks (yellow lines; based on five point moving average of geolocations). Triangles indicate
tag deployment locations and red circles indicate satellite tag pop-up endpoints (Argos transmissions) for
white sharks returning back to central California shelf waters after offshore migrations. (G) Site fidelity
of all satellite tagged white sharks (n = 68) to three core areas in the NEP included the North American
continental shelf waters, the waters surrounding the Hawaiian Island Archipelago and the white shark
‘Café’. Yellow circles represent position estimates from light- and SST-based geolocations (Teo et al. 2004),
and red circles indicate satellite tag endpoint positions (Argos transmissions), respectively. Figure is from
Jorgenson et al. (2009); reprinted with permission.
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