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Preface

Best linear unbiased prediction (BLUP) has become the most widely accepted method
for genetic evaluation of domestic livestock. Since the method was first published by
Henderson (1949) it has evolved in terms of its application in models for genetic
evaluation, from sire, sire and maternal grandsire models in the early years, followed
by univariate and multivariate animal models, random regression models for the
analysis of longitudinal data and more recently, for the analysis of the genomic data
(SNP-BLUP or GBLUP). Advances in computational methods and computing power
have enhanced this development. Currently, most national genetic evaluation systems
for several domestic livestock species are based on animal or random regression mod-
els using BLUP.

In view of these developments and the proliferation of information in the litera-
ture, there is no simple and straightforward text on the application of linear models
to the prediction of breeding values. Moreover, in developing countries, where access
to journals is limited, there is a basic lack of practical information on the subject. This
book has been written with a good balance of theory and application to fill this gap.
It places at the hand of the reader the application of BLUP in modelling several
genetic situations in a single text. The book has been compiled from various publica-
tions and experience gained from several colleagues in the subject area and from
involvement in several national evaluation schemes over the last 14 years. Relevant
references are included to indicate sources of some of the materials.

Initially, in Chapter 1, the basic model and assumptions governing genetic evalu-
ation are presented, together with simple situations involving prediction of breeding
values from the records of an individual. This is followed by the introduction and use
of selection indices to predict genetic merit combining information on several traits
and individuals. Then the general framework on the application of BLUP in genetic
evaluation in a univariate and multivariate situations is presented in Chapters 3 to 5.
The simplification of multivariate evaluations by means of several transformations is
also examined, followed by maternal trait and social interaction models. Random
regression models for the analysis of longitudinal data are discussed in Chapter 9, fol-
lowed by a chapter on incorporating genetic marker information into genetic evalua-
tions in the context of marker-assisted selection and then genomic selection.
Non-additive genetic animal models are discussed with methods for rapidly computing
the inverse of the relationship matrices for dominance and epistasis effects. Next,
threshold and survival models are discussed. In Chapters 15 and 16, the basic concepts
for variance component estimation are introduced, followed by the application of the
Gibbs sampler in estimation of genetic parameter and evaluations for univariate and
multivariate models. Finally, computing strategies for solving mixed model equations
are examined, with a presentation of the several formulae governing iterative proce-
dures on the data. A knowledge of basic matrix algebra is needed to understand the
principles of genetic evaluation discussed in the text. For the benefit of those not
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familiar with matrix algebra, a section on introductory matrix algebra has been incor-
porated as Appendix A. It is also assumed that the reader is familiar with the basic
principles of quantitative genetics.

Several examples have been used to illustrate the various models for genetic
evaluation covered in the text, and attempts have been made to present formulae that
explain how the solutions for random and fixed effects in the models were obtained
from the mixed model equations. This illustrates to the reader how the various pieces
of information are weighted to obtain the genetic merit of an animal under various
models.

Every attempt has been made to ensure the accuracy of the text, but in the event
of errors being discovered, please inform the author.

Professor Robin Thompson contributed the chapter on estimation of variance
components despite his busy schedule and reviewed the manuscript of earlier editions.
His contribution is immensely acknowledged. The chapter on genomic selection
was reviewed by Drs Ben Hayes, Ricardo Pong-Wong and Professor John A.
Woolliams and I am grateful for their valuable input. Drs Gabor Mészaros and Sue
Brotherstone reviewed the chapter on survival analysis within a very tight schedule
and I acknowledge their contribution. I am grateful to Professor Denny Cruz and
Dr Victor Olori for reviewing the chapters on social interaction and on reducing the
dimension of multivariate analysis. I am greatly indebted to Professors W.G. Hill
and Mr G. Swanson for reviewing the manuscript of earlier editions; their com-
ments and suggestions resulted in substantial improvements in the text. Drs Martin
Lidauer and Ismo Stranden read specific chapters or sections; I acknowledge their
useful suggestions. The assistance of Dr Sebastian Mucha in preparing the graphs
in the text is greatly acknowledged. In addition, experience gained from working
with Dr Mike Coffey and the late Professors C. Smith and B.W. Kennedy has been
valuable in writing this book. I also wish to express my thanks to Prof. R.L. Quaas
for permission to use information from his unpublished note on inbreeding algo-
rithm; Animal Genetics and Breeding Unit, University of New England, Australia,
for allowing me to adopt some materials from BLUP Handbook for Chapter 2 of
the text; and Prof. Fernando R.L. to use some his material from the Iowa State
University 2010 summer course. My sincere gratitude to my wife, Doris, for her
immense support, and for typing part of the manuscript. Special thanks to Kevwe,
Joshua and Esther for their cooperation, especially when I had to take time off to
prepare the manuscript, and to many dear friends who were of great encouragement.
Finally, to God be all the glory.

R.A. Mrode
Scotland’s Rural College

(Former Scottish Agricultural College)
Edinburgh
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1 Genetic Evaluation with
Different Sources of Records

1.1 Introduction

The prediction of breeding values constitutes an integral part of most breeding
programmes for genetic improvement. Crucial to the accurate prediction of breed-
ing value is the availability of records. In a population, data available at the initial
stages are usually on individual animals, which may or may not be related, and
later on offspring and other relatives. Thus initially, the prediction of breeding
values may be based on the records of individuals and few relatives. In this chapter,
the use of individual records and information from other related sources in the
prediction of breeding value is addressed. Also, the principles for the calculation of
selection indices combining information from different sources and relatives are
discussed.

1.2 The Basic Model

Every phenotypic observation on an animal is determined by environmental and
genetic factors and may be defined by the following model:

Phenotypic observation = environmental effects + genetic effects + residual
effects

or
Vi= M+ 8 +e; (1.1)

where y, is the record j of the ith animal; y; refers to the identifiable non-random
(fixed) environmental effects such as herd management, year of birth or sex of the ith
animal; g; is the sum of the additive (g ), dominance (g,) and epistatic (g,) genetic
values of the genotype of animal i; and ¢; is the sum of random environmental effects
affecting animal i.

The additive genetic value in the g term above represents the average additive
effects of genes an individual receives from both parents and is called the breeding
value. Each parent contributes a sample half of its genes to its progeny. The average
effect of the sample half of genes that a parent passes to its progeny is called the
transmitting ability of the parent and corresponds to one-half of its additive genetic
value. The breeding value of the progeny therefore is the sum of the transmitting
abilities of both the parents. Since the additive genetic value is a function of the genes
transmitted from parents to progeny, it is the only component that can be selected
for and therefore the main component of interest. In most cases, dominance and
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epistasis, which represent intra-locus and inter-loci interactions respectively, are
assumed to be of little significance and are included in the e, term of the model as:

Vi =M+ 8t e (1.2)
with ¢/ being the sum of the random environmental effects, dominance and epistatic
genetic values. Equation 1.2 constitutes the linear model usually employed in most
problems of breeding value prediction in animal breeding. Usually it is assumed that
y follows a multivariate normal distribution, implying that traits are determined by
infinitely many additive genes of infinitesimal effect at unlinked loci, the so-called
infinitesimal model (Fisher, 1918; Bulmer, 1980). Also, it is assumed that var(y), var(g)
and var(e’) are known and that there is no correlation between g and € (cov(g, €) = 0)
nor is there any correlation among mates (cov(e, €) = 0). Also y, which is used sub-
sequently in this chapter to represent the mean performance of animals in the same
management group, for instance animals reared under the same management system,
of the same age and sex, is assumed known. From Eqn 1.2, the problem of predicting
breeding value reduces to that of adjusting phenotypic observations for identifiable
non-random environmental effects and appropriately weighting the records of ani-
mals and their available relatives.

From the earlier explanation, if , is the breeding value of animal 7, then:

4= 8, =3a,+3a,+m,
where a_and a, are the breeding values of the sire and dam, respectively, and 7z, is the
deviation of the breeding value of animal 7 from the average breeding value for both
parents, that is, Mendelian sampling. The sampling nature of inheritance implies that
each parent passes only a sample one-half of their genes to their progeny. There is,
therefore, genetic variation between offspring of the same parents since all offspring
do not receive exactly the same genes. Mendelian sampling could be regarded as the
deviation of the average effects of additive genes an individual receives from both
parents from the average effects of genes from the parents common to all offspring.

The accurate prediction of breeding value constitutes an important component of
any breeding programme since genetic improvement through selection depends on
correctly identifying individuals with the highest true breeding value. The method
used to predict breeding value depends on the type and amount of information avail-
able on candidates for selection. The next section discusses the prediction of breeding
value using different sources of information. It should be noted that many applica-
tions of genetic evaluation deal with the prediction of transmitting ability, usually
referred to as predicted transmitting ability (PTA) or estimated transmitting ability
(ETA), which is one-half of the predicted breeding value.

1.3 Breeding Value Prediction from the Animal’s
Own Performance

1.3.1 Single record

When one phenotypic record is the only available information on each animal, the
estimated breeding value (EBV) (a,) for animal 7 can be calculated as:

a,= bly, - ) (13)
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where b is the regression of true breeding value on phenotypic performance and g, as
indicated earlier, is the mean performance of animals in the same management group
and is assumed to be known. Thus:

b = cov(a, y)/var(y) = cov(a, a + e)/var(y)
= q/lo;
=h?

The prediction is simply the adjusted record multiplied by the heritability (5?). The
correlation between the selection criterion, in this case the phenotypic value, and the
true breeding value is known as the accuracy of prediction. It provides a means of
evaluating different selection criteria because the higher the correlation, the better
the criterion as a predictor of breeding value. In some cases, the accuracy of evalu-
ations is reported in terms of reliability or repeatability (r2), which is the squared
correlation between the selection criterion and the true breeding value. With a single
record per animal, the accuracy is:

7., = covia, y)/(c,0)

and reliability equals 5?.
Expected response (R) to selection on the basis of a single record per individual
(Falconer and Mackay, 1996) is:
2 =2
R =ir; o, =ib’c,

where i, the intensity of selection, refers to the superiority of selected individuals
above population average expressed in phenotypic standard deviation.
The variance of EBV (var(a,)) is:

var(d,) = var(by) = var(h*y)
= h*o3
=13y h*0; = 13,0; (1.4)

Example 1.1

Given that the yearling weight of a heifer is 320 kg in a herd with a mean of 250 kg,

predict her breeding value and its accuracy if the heritability of yearling weight is 0.45.
From Eqn 1.3:

a=0.45(320 - 250) = 31.50 kg
and:

r,, =\0.45 =0.67

1.3.2 Repeated records

When multiple measurements on the same trait, such as milk yield in successive
lactations, are recorded on an animal, its breeding value may be predicted from the
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mean of these records. With repeated measurements it is assumed that there is addi-
tional resemblance between records of an individual due to environmental factors
or circumstances that affect the records of the individual permanently. In other
words, there is an additional covariance between records of an individual due to
non-genetic permanent environmental effects. Thus the between-individual vari-
ance is partly genetic and partly environmental (permanent environmental effect).
The within-individual variance is attributed to differences between successive meas-
urements of the individual arising from temporary environmental variations from
one parity to the other. The variance of observations (var(y)) could therefore be
partitioned as:

var(y) = var(g) + var(pe) + var(te)

where var(g) = genetic variance including additive and non-additive, var(pe) = variance
due to permanent environmental effect, and var(te) = variance due to random tempo-
rary environmental effect.

The intra-class correlation (z), which is the ratio of the between-individual vari-
ance to the phenotypic:

t = (var(g) + var(pe))/var(y) (1.5)

is usually called the repeatability and measures the correlation between the records of
an individual. From Eqn (1.5):

var(te)/var(y) =1 - ¢ (1.6)

With this model, it is always usually assumed that the repeated records on
the individual measure the same trait, that is, there is a genetic correlation of
1 between all pairs of records. Also, it is assumed that all records have equal vari-
ance and that the environmental correlations between all pairs of records are
equal. Let y represent the mean of # records on animal i. The breeding value may
be predicted as:

d,=b(F - (1.7)
where:
b = cov(a, y)/var(y)
Now:
cov(a, y) = cov(a, g + pe + Lteln) = 03
and:
var(y) = var(g) + var(pe) + var(te)/n
Expressing the items in terms of Eqns 1.5 and 1.6:
var(t) = [t + (1 - t)/n]o?
Therefore:

b=t + (1 - t)n]o?
=nb*[1 + (n - 1)t]

Note that b now depends on heritability, repeatability and the number of records.
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As mentioned earlier, the difference between repeated records of an individual
is assumed to be due to temporary environmental differences between successive
performances. However, if successive records are known to be affected by factors
that influence performance, these must be corrected for. For instance, differences
in age at calving in first and second lactations may influence milk yield in first and
second lactations. Such age differences should be adjusted for before using the
means of both lactations for breeding-value prediction.

The accuracy of the EBV is:

1,y =cov(a,y)/(0,0,)
=0, /(o lt+(1-1)/nlo;)
[/ (1+(n—1))]

= JInb* 1 1+ (n-1))] = b

Compared with single records, there is a gain in the accuracy of prediction with
repeated records from the above equation, which is dependent on the value of repeat-
ability and the number of records. This gain in accuracy results mainly from the
reduction in temporary environmental variance (within-individual variance) as the
number of records increases. When 7 is low, this gain is substantial as the number of
records increases. When ¢ is high, there is little gain in accuracy with repeated records
compared with using only single records. The gain in accuracy from repeated records
compared with selection on single records can be obtained as the ratio of accuracy
from repeated records (r,) to that from single records (r,):

Using the above equation, the gain in accuracy from repeated records compared
with selection on single records is given in Table 1.1. The increase in accuracy with four
measurements at a low ¢ value of 0.4 was 35%, but this dropped to only 8% when ¢
equalled 0.8. In general, the rate of increase dropped rapidly as the number of records
exceeded four, and it is seldom necessary to record more than four measurements.

Table 1.1. Percentage increase in accuracy of prediction
with repeated records compared with single records at a
heritability of 0.35.

Number of records

tvalues 2 4 6 8 10
0.4 20 35 41 45 47
0.6 12 20 22 24 25
0.8 5 8 10 10 10
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Expected response to selection on the basis of mean of repeated records is:

R=ih? o J[t+(1—1)/n]

ay "y

Example 1.2

Assume that a cow has a mean yield of 8000 kg of milk for first and second lacta-
tions. If the phenotypic standard deviation and heritability of milk yield in the first
two lactations are 600 kg and 0.30, respectively, and the correlation between first and
second lactation yields is 0.5, predict the breeding value of the cow for milk yield in
the first two lactations and its accuracy. Assume that the herd mean for first and
second lactations is 6000 kg.

From Eqn 1.7:

4., = b(8000 - 6000)

with:
b=2(0.3)/(1+(2-1)0.5)=04
Therefore:

4 =0.4(8000 - 6000) = 800 kg

cow

and:

7. =04 =0.632

1.4 Breeding Value Prediction from Progeny Records

For traits where records can be obtained only on females, the prediction of breeding
values for sires is usually based on the mean of their progeny. This is typical of the
dairy cattle situation, where bulls are evaluated on the basis of their daughters. Let 3:
be the mean of single records of # progeny of sire 7 and assume that the progeny are
only related through the sire (paternal half-sibs), and so the breeding value of sire i is:

i, = biG - ) (1.8)
where:

b = cov(a, y)/var(y)
Now:

cov(a, y) = cov(a, la +1a,+ Xeln)

where a_is the sire breeding value and a, represents the breeding value for the dams.
Therefore:

cov(a, §) = %cov(a, a)= %O'%Z
Using the same principles in as in Section 1.3.2:

var(y) = [t + (1 - t)/n]o@
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assuming there is no environmental covariance between the half-sib records and ¢, the
intra-class correlation between half-sibs, is {03/07 = 1h2.
Therefore:
b =302/t + (1 - t)/n]o?
= 5h*c2[+h* + (1 - 1h*)In]o?
= 2ub?/(nh?* + (4 - bh?))
=2n/(n + (4 - b2)/b?)
=2n/n + k
with:
k= (4-h)/h?
The term k is constant for any assumed heritability. The weight (b) depends on the herit-

ability and number of progeny and approaches 2 as the number of daughters increases.
The accuracy of the EBV is:

T,y = cov(a,y)//(var(a) var(y))

From the above calculations, this could be expressed as:

R v S
a’y
(1-4h) (1-35%

\/hzaﬁ[lh%n“ o2 |ih*+ ;
_ nh*

nbh* +(4-h?)

_ n

“Nnu+k

which approaches unity (1) as the number of daughters becomes large. Reliability of
the predicted breeding value therefore equals n/(n + k).

The equation for expected response when selection is based on the mean of half-
sibs is the same as that given in Section 1.3.2 for the mean of repeated records but
with # now referring to the intra-class correlation between half-sibs.

The performance of any future daughters of the sire can be predicted from the
mean performance of the present daughters. The breeding value of a future daughter
(ddaugh.) of the sire can be predicted as:

aAdaugh. = b(j; - ,U)

with yand u as defined in Eqn 1.8, respectively, and:
b= cov(adaugh', y)/var(y)

Now:
cov(adaugb, y) = cov(ia +1a,., sa + la,+ Yeln)

where the subscript d* refers to the dam of the future daughter, which is assumed to
be unrelated to dams (d) of present daughters. Therefore:

Cov(ada”gh-’ 5}) = COV(%aS’ %as) = %COV(ﬂS, as) = %O‘%
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Therefore:
b =10i/[t+ (1 -1t)/n]o?

Using the same calculations for obtaining b in Eqn 1.8:
b =nlln+ k)

The b value is half of the value of b in Eqn 1.8, thus the predicted breeding value of
a future daughter of the sire is equal to half the EBV of the sire. The performance of
a future daughter of the sire can be predicted as:

y= M + adaugh.

where M is the management mean.
The accuracy of the predicted breeding value of the future daughter is:

Tay = COV(Aya,g,¥) 1/ (var(a) var(y))

This could be expressed as:

L e
Pdaugh> Y~ 142 - 1-1p2
thoi(zhu“ e S )
1"
"2\ n+k

which is equal to half of the accuracy of the predicted breeding value of the sire.
Reliability of the predicted breeding value equals %n/(n + k), which is one-quarter of
the reliability of the bull proof.

Example 1.3

Suppose the fat yield of 25 half-sib progeny of a bull averaged 250 kg in the first
lactation. Assuming a heritability of 0.30 and herd mean of 200 kg, predict the breed-
ing value of the bull for fat yield and its accuracy. Also predict the performance of a
future daughter of this bull for fat yield in this herd.

From Eqn 1.6:
a,,; = b(250 - 200)
with:

b =2nl(n+ (4 - bA)/h2) = 22525 + (4 - 0.3)/0.3) = 1.34
4, = 1.34(250 - 200) = 67 kg

=1 (n+k)) = [25/(25+(4-0.3)/03)] = 0.82

Tay

The future performance of the daughter of the bull is:

y = (0.5)a,,, + herd mean
=33.5 +200 = 233.5 kg
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1.5 Breeding Value Prediction from Pedigree

When an animal has no record, its breeding value can be predicted from the evaluations
of its sire (s) and dam (d). Each parent contributes half of its genes to their progeny, and
so the predicted breeding value of progeny (o) is

a,=(a,+a,)n (1.9)

Let f = (4, + d,)/2, then the accuracy of the predicted breeding value is:

cov(a,,3a,+%a,)

+
\/O' var(3a, +d,)

Now:

COV(QO, %a/\s + %aAd) = COV(CZO, Zas) + COV(ﬂO, Zad)

1 1 1x 1
= cov(za, + 3, 7d) + cov(—as + 34, 2ad)
Assuming sire and dam are unrelated:

cov(a, ta +14,)) = %cov(as, a) + gcoviay, a,)
= var(d) + gvar(a,)

Substituting the solution for the variance of EBV in Eqn 1.4:
cov(a,, 3d, + 3d,) = L(r} + r2)o2

From the calculation above, the term var(34, + 4,) in the denominator of Eqn 1.9 is
also equal to 4(r2 + 73) 02, assuming random mating and the absence of joint informa-
tion in the sire and dam proofs. Therefore:

2, 2y 2
_ glri+rdor  or | 33
Taof = Tai 3, 3 g, 2V HTd
O X(rs + rd)o-a Oa
where:

o= \/[Var(%as +1a, )]

From the above equation, the upper limit for » when prediction is from pedigree is
%\/5 =0.7; that is, the accuracy of the proof of each parent is unity. Note that when
the prediction is only from the sire proof, for instance, then:

15 _
Tas 2% —2\/ \/n/n+

the accuracy of the predicted breeding value of a future daughter of the sire as shown
in Section 1.4.
Expected response to selection on the basis of average proof of parents is:

R =ir,

aofa

Substituting o;/0, for r:

R:iG/,
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Example 1.4
Suppose that the EBVs for the sire and dam of a heifer are 180 and 70 kg for yearling
body weight, respectively. Given that the accuracy of the proofs are 0.97 for the sire
and 0.77 for the dam, predict the breeding value of the heifer and its accuracy for
body weight at 12 months of age.

From Eqn 1.9:

G = 0.5(180 + 70) = 125 kg
The accuracy is:

fya =0.5(0.97* +0.77%) = 0.62

1.6 Breeding Value Prediction for One Trait from Another

The breeding value of one trait may be predicted from the observation on another
trait if the traits are genetically correlated. If y is the observation on animal 7 from
one trait, its breeding value for another trait x is:

4, =bly - ) (1.10)
with:
b = cov(a_, measurement on y)/var(measurement on y) (1.11)

The genetic correlation between traits x and y (7, ) is:
y

Ty = COV(a, a )/(0, 0, )
Therefore:

cov(a,, ay) = 7,0,0,.0,, (1.12)

Substituting Eqn 1.12 into Eqn 1.11:
b=r,0, 0.0} (1.13)

axy ayax

If the additive genetic standard deviations for x and y in Eqn 1.13 are expressed
as the product of the square root of their individual heritabilities and phenotypic
variances, then:

— 2
b= raxycyoxhxhy/ay

=1,,h.h,0./0, (1.14)
The weight depends on the genetic correlation between the two traits, their heritabilities
and phenotypic standard deviations.

The accuracy of the predicted breeding value is:

T ay = cov(a,, measurement on y)/GaxO'y
= Taxyo-ayo-ax/( o-axdy)
=7
axy 'y
The accuracy depends on the genetic correlation between the two traits and heritability

of the recorded trait.
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Correlated response (CR) in trait x as a result of direct selection on y (Falconer
and Mckay, 1996) is:

CRx =thhr_ o

Xy laxy Ty

Example 1.5

Suppose the standard deviation for growth rate (GR) (g/day) to 400 days in a popula-
tion of beef cattle was 80, with a heritability of 0.43. The standard deviation for lean
growth rate (LGR) (g/day) for the same population was 32, with a heritability of
0.45. If the genetic correlation between both traits is 0.95 and the population mean
for growth rate is 887 g/day, predict the breeding value for LGR for an animal with
a GR of 945 g/day.

Using Eqn 1.10:

;g = b(945 - 887)
with:

b = cov(GR, LGR)/var(GR)
From Eqn 1.13:

b =(0.95(0.656)(0.671)(32))/80 = 0.167

4, cq = 0.167(945 - 887) = 9.686

The accuracy of the prediction is:

r= 0.95(M) -0.623

1.7 Selection Index

The selection index is a method for estimating the breeding value of an animal com-
bining all information available on the animal and its relatives. It is the best linear
prediction of an individual breeding value. The numerical value obtained for each
animal is referred to as the index (I) and it is the basis on which animals are ranked
for selection. Suppose y,, y, and y, are phenotypic values for animal 7 and its sire and
dam, then the index for this animal using this information would be:

I,'Zdizbl(yl _.u1) +172()’2—.U2) +1?3(y3—ﬂ3) (1.15)

where b,, b,, b, are the factors by which each measurement is weighted. The deter-
mination of the appropriate weights for the several sources of information is the main
concern of the selection index procedure. In Eqn 1.135, the index is an estimate of the
true breeding value of animal i.

Properties of a selection index are:

1. It minimizes the average square prediction error, that is, it minimizes the average
of all (a, - 4)*.

2. It maximizes the correlation (7, ;) between the true breeding value and the index.
The correlation is often called the accuracy of prediction.

3. The probability of correctly ranking pairs of animals on their breeding value is
maximized.
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The b values in Eqn 1.15 are obtained by minimizing (a - I)?, which is equivalent
to maximizing r,,. This is the same procedure employed in obtaining the regression
coefficients in multiple linear regression. Thus the b values could be regarded as
partial regression coefficients of the individual’s breeding value on each measurement.
The minimization results in a set of simultaneous equations similar to the normal
equations of multiple linear regression, which are solved to obtain the b values. The
set of equations to be solved for the b values is:

bipii + bapir + -+ b = g1
bipr1 + bapry + -+ bupr = g12

blpm1+b2pm2+"'+bmpmm = &im (1.16)

wherep ~andg  are the phenotypic and genetic variances, respectively, for individual
or trait m; p ~and g = are the phenotypic and genetic covariances, respectively,
between individuals or traits 72 and 7.

In matrix form, Eqn 1.16 is:

Pb=G
and:
b = P'lG

where P is the variance and covariance matrix for observations, and G is the covariance
matrix between observations and breeding value to be predicted.
Therefore the selection index equation is:

I=a=(PG)ly - ) (1.17)
= bly - ) (1.18)

where W refers to estimates of environmental influences on observations, assumed to
be known without error. The application of the selection index to some data therefore
involves setting up Eqn 1.17. From Eqn 1.18 it is obvious that the previous methods
for predicting breeding values discussed in Sections 1.3 to 1.6 are no different from
a selection index and they could be expressed as in Eqn 1.17.

1.7.1 Accuracy of index

As before, the accuracy (r,,) of an index is the correlation between the true breeding
value and the index. The higher the correlation, the better the index as a predictor of
breeding value. It provides a means of evaluating different indices based on different
observations, to find out, for instance, whether a particular observation is worth
including in an index or not.

From the definition above:

Tl = cov(a, I)/(0,0,)

a
First we need to calculate 67 and cov(a, I) in the above equation. Using the formula
for the variance of predicted breeding value in Section 1.3.1:

o2 =var(b,y, + var(byy, + ... + 2b,b,cov(y,, y,) + ...
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= bvar(y,) + bvar(y,)+ ... + 2b,b,cov(y,, y,) + ...
o7 =bip,, +b3p,, + ... +2b.b,p,, +...

or in general:
m m m
2_N"72 ci
o= Zbi bi* zzbibipi/’ 1#]
i=l i=1 j=1

where 1 is the number of traits or individuals in the index.
In matrix notation:

o7 =b'Pb

Now b = P-'G; substituting this value for b:
o1=GP'G (1.19)
The covariance between the true breeding value for trait or individual 7 and index is:

cov(a, I) = cov(a, b,y,) + cov(a, b,y,) + ... + cov(a, biyi)
= b,cov(a, y,) + bycov(a, y,) + ... + bl.cov(al., ¥)

or in general:

cov(a;, )= Y b;g; (1.20)

j=1
where g, is the genetic covariance between traits or individuals i and j, and 2 is
the number of traits or individuals in the index.
In matrix notation:
cov(a, I) =b'G
Substituting P-!G for b:

cov(a, I) = G'P-'G
= O'%

Thus, as previously, the regression of breeding value on predicted breeding values is
unity. Therefore:

- o2 -
r, = oi(o,0) = glo,

For calculation purposes, 7 is better expressed as:

(1.21)

Response to selection on the basis of an index is:

R = l'ra,lo—a
=10;

Genetic Evaluation with Different Sources of Records 13 ]



1.7.2 Examples of selection indices using different sources of information
Data available on correlated traits
Example 1.6

Assume the following parameters were obtained for average daily gain (ADG) from
birth to 400 days and lean per cent (LP) at the same age in a group of beef calves:

Heritability Standard deviation
ADG (g/day) 0.43 80.0
LP (%) 0.30 7.2

The genetic and phenotypic correlations (r, and r,) between ADG and LP are 0.30
and -0.10, respectively. Construct an index to improve growth rate in the beef calves.
Assuming ADG as trait 1 and LP as trait 2, then from the given parameters:

Py, =80% = 6400

Py =7.2% =51.84

pra = 011 ) (pra) = ~0.1/(6400)(51.84) = -57.6
g1 = (py) =0.43(6400) = 2752

€ =h" (pr)=0.30(51.84)=15.552

812 =78 (gn )(822) =62.064

The index equations to be solved are:

- -1
b, _{Pn P12:| |:g11:|
[b2] [P P2] &2
Inserting appropriate values gives:

by| [6400.00 —57.601'[2752.000
by] | -57.60 51.84 62.064

The solutions are b, = 0.445 and b, = 1.692.
The index therefore is:

I=0.445(ADG - 1) + 1.692(LP -y, )
where p, . and u, , are herd averages for ADG and LP. Using Eqn 1.21:

r= \/[(0.445(2752) +1.692(62.064))/2752] =0.695

Using single records on individual and relatives

Example 1.7
Suppose the ADG for a bull calf (y,) is 900 g/day and the ADG for his sire (y,) and dam
(v;) are 800 g/day and 450 g/day, respectively. Assuming all observations were obtained
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in the same herd and using the same parameters as in Example 1.6, predict the breed-
ing value of the bull calf for ADG and its accuracy.
From the parameters given:

D1y =Py = P33 = 0y = 6400
Py, = cov(y,, y,) = 103 =1(2752) = 1376
Dy3 =Dy = 1376

Py =0
g, =05=2752
81, = 83 =105 =1376

The index equations are:

-1
bi| [6400 1376 1376 2752
by |=]1376 6400 0000| =|1376
bsz| [1376 0000 6400 1376

Solutions to the above equations are b, = 0.372, b, = 0.135 and b, = 0.135.
The index is:

I=0.372(900 - u) + 0.135(800 — ) + 0.135(450 - u)
where u is the herd average. The accuracy is:

rz\/[(0.372(2752) +0.135(176) + 0.135(176))/2752] = 0.712

The high accuracy is due to the inclusion of information from both parents.

Using means of records from animal and relatives

Example 1.8

It is given that average protein yield for the first two lactations for a cow () called
Zena is 230 kg and the mean protein yield of five other cows (3,), each with two lacta-
tions, is 300 kg. If all cows are all daughters of the same bull and no other relation-
ship exists among them, predict the breeding value of Zena, assuming a heritability of
0.25, a repeatability (¢) of 0.5, standard deviation of 34 kg and herd average of 250 kg
for protein yield in the first two lactations.

From the given parameters:

g, = 02 = h*02 = 0.25(342) = 289
and:
g,, = covariance between half-sibs = 4(03) = £(289) = 72.25

From calculations in Section 1.3.2:

n

o) -[ee )

=(0.5 + (1 - 0.5)/2)34> = 867
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Using similar arguments:
p,, = var(3,) = o + 1/n(c},)

where o} is the between-cow variance and 1/n(c}) is the mean of the within-cow
variance. From Section 1.4:

2 _ 152
O3 = 30a
and for cow i in the group of five cows:
2 _ S 2
Oy = var(y,, - 03)

where . is the mean of the first two lactations for cow i. Since all five cows each have
two records like Zena:

oy = by, - 503)
and:

1/n(oy) = Un(p,, - +03)
Therefore:

Py, = 405 + 1n(p,, - §07)
_ 1(289) + (1)(867 - 1(289)) = 231.2

The index equations are:

1
bl _ 867 72.25] [289
bo| | 72.25231.2 72.25
The solutions are b, = 0.316 and b, = 0.213 and the index is:
I=0.316(230 - 250) + 0.213(300 - 250)

The accuracy of the index is:

r=[(0.316(289)+0.213(72.5)/ 289) ] = 0.608

1.7.3 Prediction of aggregate genotype

At times, the aim is not just to predict the breeding value of a single trait but that of
a composite of several traits evaluated in economic terms. The aggregate breeding
value (H) or merit for such several or m traits can be represented as:

H = wa, +wya, + ...+ w a.

where a, is the breeding value of the ith trait and w, the weighting factor, which
expresses the relative economic importance associated with the ith trait. The con-
struction of an index to predict or improve H is based on the same principles as those
discussed earlier except that it includes the relative economic weight for each trait.

Thus:
I=PIGwl(y - p) (1.22)
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where w is the vector of economic weights and all other terms are as defined in Eqn 1.17.
The equations to be solved to get the weights (b values) to be used in the index are:

bipi1 + bapis + -+ b1y = wig11 + WG + - Wi
bipa1 + bapry + -+ o = Wiga1 + w2800 + -+ + WG

blpml + prmZ +eet bmpmm =w1gm T W2+t Win&mm
In matrix notation these equations are:

Pb = Gw
b =P'Gw

It should be noted that it is possible there are some traits in the index that are not
in the aggregate breeding value but may be correlated with other traits in H. Conversely,
some traits in the aggregate breeding value may be difficult to measure or occur late in
life and may therefore not be in the index. Such traits may be replaced in the index with
other highly correlated traits that are easily measurable or occur early in life. Con-
sequently, the vector of economic weights may not necessarily be of the same dimension
as traits in the index, as indicated in the equations for b above. Each trait in the index
is weighted by the economic weight relevant to the breeding value of the trait it is pre-
dicting in the aggregate breeding value.

The index calculated using Eqn 1.22 implies that the same economic weights are
applied to the traits in the aggregate genotype across the whole population. A change
in the economic weight for one of the traits would imply recalculating the index. An
alternative formulation of Eqn 1.22 involves calculating a sub-index for each trait in
H without the economic weights. The final index in Eqn 1.23 is obtained by summing
the sub-indices for each trait weighted by their respective economic weights. Thus:

[=Y1w, (1.23)
izl

where I, = P-'G,(y — p), the sub-index for trait i in H and w, = economic weight for
trait 1.

With Eqn 1.23, a change in the economic weights of any of the traits in the index
can easily be implemented without recalculating the index.

To demonstrate that Eqns 1.22 and 1.23 are equivalent, assume that there are
two traits in H, then Eqn 1.23 becomes:

I'=1lw, + Lw,
= P_1G1w1(y - IJ«) + P_lczwz(y - 'J‘)
where G, is the covariance matrix between trait / and all traits in the index. Thus:

I=PYGuw, + Gw,)(y - p)
=P'Gw(y - n)

which is the same as Eqn 1.22.

Example 1.9
Assume the economic weights for ADG and LP are £1.5 and £0.5 per an increase of
1 kg in ADG and 1% increase in LP, respectively. Using the genetic parameters
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in Example 1.6, construct an index to select fast-growing lean beef calves using
Egn 1.22. Repeat the analysis using Eqn 1.23.
Using Eqn 1.22, index equations are:

-1
[b1:| _ |:P11 P12:| |:W1g11 + wzglz]
b, P21 P2 wigr1+wWsr82
Inserting the appropriate values:

bi| |6400.00 -57.60 B 1.5(2752)+0.5(62.064)
b| | -57.60 51.84| |1.5(62.064+0.5(15.552)

Solutions for b, and b, from the above equations are 0.674 and 2.695, respectively.
The index therefore is:
I=0.674(ADG - 11,,) + 2.694(LP - 1. )

Applying Eqn 1.23, the sub-index for ADG is the same as that calculated in
Example 1.6 with b, = 0.445 and b, = 1.692.The sub-index for LP is:

bipy, +bypy, = 8y,
bip,y, + bypy, = 8,
which gives:

_1
bi]_[6400.00 -57.607 [62.064
b,| | =57.60 51.84| [15.552

The solutions are b, = 0.0125 and b, = 0.314. Multiplying the sub-indices by their
respective weights gives:

Lipe = 0.445(1.5)(ADG - ) + 1.692(1.5)(LP - ;)

= 0.668(ADG - p1,,) + 2.538(LP - ;)
and:

I, = 0.0125(0.5)(ADG - g, ) + 0.314(0.5)(LP - ;)
= 0.006(ADG - g, ) + 0.157(LP - ;)

Summing the b terms from the two sub-indices, the final b terms are:

b, = 0.668 + 0.006 = 0.674
b, =2.538 + 0.157 = 2.695

Therefore the final index is:
1=0.675(ADG - p,p,c) + 2.695(LP - p; )

which is the same as calculated using Eqn 1.22.

1.7.4 Overall economic indices using predicted genetic merit

Overall economic indices that combine (PTAs) or estimated breeding values (EBVs)
calculated by best linear unbiased prediction (BLUP, see Chapter 3) have become
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very popular in the last decade. In addition to the recognition that more than one
trait contributes to profitability, the broadening of selection goals has also been due
to the need to incorporate health and welfare traits to accommodate public con-
cerns. Examples of indices constructed with PTAs or BVs of several traits and used
in genetic improvement of dairy cattle include production index (PIN), combining
PTAs for milk, fat and protein in the UK, production life index (PLI), which is PIN
plus PTAs for longevity and somatic cell count in the UK; and in the Netherlands,
index net (INET), which combines BVs for milk, fat and protein and durable per-
formance sum (DPS), which is INET plus durability (Interbull, 2000). The principles
for calculating these indices are similar to those outlined in previous sections. Given
that the PTAs or BVs are from a complete multivariate analysis, the optimal index
weights (b) are the sum of the partial regression coefficients of each goal trait on
each index trait, weighted by the economic value of the goal trait (Veerkamp et al.,
1995). Thus given m traits in the selection goal and # traits in the index, then the
partial regressions can be calculated as:

R = GG,
ig
and:
b = Rw

where R is a matrix of partial genetic regression, Gl.g is the matrix of genetic covari-
ance between m goal and 7 index traits, G is the genetic covariance matrix between
the index traits, and w is the vector of economic weights. It is obvious that when
goal and index traits are the same, G, = G and b = w. In the case where the index
and goal traits are not the same, R can be estimated directly from a regression of
phenotype on the EBVs for the index traits (Brotherstone and Hill, 1991). However,
if PTAs or BVs are from a univariate analysis, rather than from a multivariate analy-
sis, the use of b above results only in minimal loss of efficiency in the index
(Veerkamp et al., 1995).

Selection based on breeding values from BLUP is usually associated with an
increased rate of inbreeding as it favours the selection of closely related individu-
als. Quadratic indices can be used to optimize the rate of genetic gain and
inbreeding. This does not fall within the main subject area of this text and inter-
ested readers should see the work by Meuwissen (1997) and Grundy et al. (1998).

1.7.5 Restricted selection index

Restricted selection index is used when the aim is to maximize selection for a given
aggregate genotype, subject to the restriction that no genetic change is desired in
one or more of the traits in the index for H. This is achieved by the usual index
procedure and setting the covariance between the index and the breeding value
(cov(l, a,) for the ith trait specified not to change to zero. It was Kempthorne and
Nordskog (1959) who introduced the idea of imposing restrictions on the general
index procedure.
For instance consider the aggregate genotype composed of two traits:

H = w,a, + wya,
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However, it is desired that there should be no genetic change in trait 2; thus
effectively:

H=wa,
and the index to predict H is:
I=by, + by,

To ensure that there is no genetic change in trait 2, cov(l, a,) must be equal to zero.
From Eqn 1.20:

cov(l,a,) =b g, +b,g,,=0

This is included as an extra equation to the normal equations for the b values, and a
dummy unknown, the so-called Lagrange multiplier, is added to the vector of solu-
tions for the index weights (Ronningen and Van Vleck, 1985). The equations for the
index therefore are:

-1
b, P11 P &1 811
by|=|Py P2 &» 12 (1.24)
A g1 82 0 0

Example 1.10
Using the same data and parameters as in Example 1.6, construct an index to improve
the aggregate genotype for fast-growing lean cattle using an index consisting of GR
and LP but with no genetic change in LP.

From Eqn 1.23 the index equations are:

6400  -57.60 62.064 (| b,| |2752
57.60 51.80 15.552|(b,|=| 62.064
62.064 15.552 0 A 0

The solutions for b, and b, from solving the above equations are 0.325 and -1.303.
Therefore the index is:

I=0.325(ADG - g, ) + (-1.303(LP = 11,,))

The accuracy of this index (Eqn 1.21) is:

r= \/ [(0.325)(2752)+ (—1.303(62.064))/2752] =0.544

which is lower than the accuracy for the equivalent index in Example 1.6, but with
no restriction on LP, and is also lower than the accuracy of prediction of breeding
value for ADG on the basis of single records. The imposition of a restriction on any
trait in the index will never increase the efficiency of the index but usually reduces it
unless I, = 0 for the constrained trait.
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1.7.6 Index combining breeding values from phenotype
and genetic marker information

Consider a situation in which one or more genes affecting a trait with a large impact
on profit have been identified to be linked to a genetic marker (see Chapter 10). If genetic
prediction based only on marker information is available in addition to the conven-
tional BV estimated without marker information, then both sources of information can
be combined into an index (Goddard, 1999). It is also possible that the conventional
BV is based on a subset of traits in the breeding goal and marker information is avail-
able on other traits that are not routinely measured, such as meat quality traits.

A selection index could be used to combine both sources of information and the
increase in accuracy from including marker information could be computed
(Goddard, 1999). Given r as the accuracy of the conventional breeding BV and d as
the proportion of genetic variance explained by the marker information, then the
covariance between the two sources of information is dr?. If m is the BV based on
marker information and a the BV from phenotypic information, then:

(m) d dr*
var =
a dr*

Let g be the true breeding value to be predicted, then cov(g, ) = d and cov(g, a) = 7%
The normal index equations are:

(le_ d d?\ d]

b, ar*  1* r

Solving the above equations gives the following index weights:
b,=1-7*(1-dr*)and b, =1 - d/(1 - dr?)

The variance of the index = reliability () is:
r2=[(1-7r3)d + (1 - d)r?)/(1 - dr?)

The increase in reliability (72 ) from incorporating marker information therefore is:

r2 o= (ri-r?) =dl(1 -dr’)[(1 - r*)?]

mc

For example, given that 72 of the conventional BV is 0.34 and marker information
accounts for 25% of the genetic variance, then 72 is 0.459, an increase in reliability of
0.12. However, if 7% is 0.81, then r7is 0.83 and r2_is only 0.02. Thus the usefulness
of marker information is greater when reliability is low, such as in traits of low herit-
ability and also traits that cannot be measured in young animals such as carcass traits
(Goddard and Hayes, 2002).
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Genetic Covariance Between
Relatives

2.1 Introduction

Of fundamental importance in the prediction of breeding values is the genetic
relationship among individuals. From Chapter 1, it was found that use of the selec-
tion index to predict breeding values requires the genetic covariance between indi-
viduals to construct the genetic covariance matrix. Genetic evaluation using best
linear unbiased prediction (BLUP), the subject of the next chapter, is heavily depend-
ent on the genetic covariance among individuals, both for higher accuracy and for
unbiased results. The genetic covariance among individuals is comprised of three
components: the additive genetic variance, the dominance variance and the epistatic
variance. This chapter addresses the calculation of the additive genetic relationship
among individuals and how to determine the level of inbreeding. Dominance and
epistasis genetic relationships are considered in Chapter 12, which deals with non-
additive models.

2.2 The Numerator Relationship Matrix

The probability of identical genes by descent occurring in two individuals is termed
the coancestry or the coefficient of kinship (Falconer and Mackay, 1996) and the
additive genetic relationship between two individuals is twice their coancestry. The
matrix that indicates the additive genetic relationship among individuals is called
the numerator relationship matrix (A). It is symmetric and its diagonal element for
animal i (a,) is equal to 1 + F, where F, is the inbreeding coefficient of animal i
(Wright, 1922). The diagonal element represents twice the probability that two
gametes taken at random from animal i will carry identical alleles by descent. The
off-diagonal element, a , equals the numerator of the coefficient of relationship
(Wright, 1922) between animals i and j. When multiplied by the additive genetic
variance (02), Ac? is the covariance among breeding values. Thus if #, is the breeding
value for animal 7, var(#,) = a,0% = (1 + F,)o2. The matrix A can be computed using
path coefficients, but a recursive method that is suitable for computerization was
described by Henderson (1976). Initially, animals in the pedigree are coded 1 to 7 and
ordered such that parents precede their progeny. The following rules are then
employed to compute A.
If both parents (s and d) of animal i are known:

a;=a;= 0.5(al.s + a/.d); j=1to(i-1)
a;,=1+0.5(a,)
[ 22 © R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values,
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Table 2.1. Pedigree for six animals.

Calf Sire Dam

3 1 2

4 1 Unknown
5 4 3

6 5 2

If only one parent s is known and assumed unrelated to the mate:

a;=a,=0.5(a); j=1to(i-1)
a;=1
If both parents are unknown and are assumed unrelated:
a;=a;=0; j=1to(i-1)
a;=1
For example, assume that the data in Table 2.1 are the pedigree for six animals.
The numerator relationship matrix for the example pedigree is:

1 2 3 4 5 6

1.00 0.00 0.50 0.50 0.50 0.25

0.00 1.00 0.50 0.00 0.25 0.625
0.50 0.50 1.00 0.25 0.625 0.563
0.50 0.00 0.25 1.00 0.625 0.313
0.50 0.25 0.625 0.625 1.125 0.688
0.25 0.625 0.563 0.313  0.688 1.125

[o)JN& ) NNV I \O

For instance:

a,=1+0=1
6112:0.5(0+0)=O:6121
a,,=1+0=1

a,;;=0.5(a,; +a,,) =05(1.0+0)=0.5 =ay,
a,; =0.5(a, +ay,) =0.5(0+1.0)=0.5=qa,,

ay, = 0.5(a,y) = 0.5(0.5 + 0) = 0.25 = a,

a4 =1+0.5(a;,) = 1+0.5(0.25) =1.125

From the above calculation, the inbreeding coefficient for calf 6 is 0.125.

2.3 Decomposing the Relationship Matrix

The relationship matrix can be expressed (Thompson, 1977a), as:

A=TDT (2.1)
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where T is a lower triangular matrix and D is a diagonal matrix. This relationship
has been used to develop rules for obtaining the inverse of A. A non-zero element of
the matrix T, say ¢, is the coefficient of relationship between animals 7 and /, if i and
are direct relatives or 7 = j and it is assumed that there is no inbreeding. Thus the
matrix T traces the flow of genes from one generation to the other; in other words,
it accounts only for direct (parent—offspring) relationships. It can easily be computed
applying the following rules.
For the ith animal:

t;=1

If both parents (s and d) are known:

t;=0.5(t +1,)

If only one parent (s) is known:

t;=0.5(t)

If neither parent is known:

t.=0

i

The diagonal matrix D is the variance and covariance matrix for Mendelian

sampling. The Mendelian sampling (2) for an animal ¢ with breeding value #, and #,
and u, as breeding values for its sire and dam, respectively, is:

m,=u, - 0.5(u+u,) (2.2)

D has a simple structure and can easily be calculated. From Eqn 2.2, if both parents
of animal i are known, then:

var(m,) = var(u,;) - var(0.5u_ + 0.5u,)

var(u,) — var(0.5u ) — var(0.5u,) + 2cov(0.5u, 0.5u,)

1

= (1 + F)o?-0.25a 0% - 0.25a,,0> - 0.5a 0>

where a_, a,,and a_, are elements of the relationship matrix A, and F, is the inbreeding
coefficient of animal i.

var(m)/o2=d, = (1+F)-025a_-0.25a,,-0.5a,
Since F, = 0.5a_,

d,=1-025(1+F)-0251+F)
= 0.5 - 0.25(F, + F))

where F_and F, are the inbreeding coefficients of its sire and dam, respectively. If only
one parent (s) is known, the diagonal element is:

d.=1-025(1+F)
=0.75 - 0.25(F)

and if no parent is known:

dii: 1
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For the pedigree in Table 2.1, the matrix T is:

1 2 3 4 5 6
1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 1.0 0.0 0.0 0.0
4 0.5 0.0 0.0 1.0 0.0 0.0
5 0.5 0.25 0.5 0.5 1.0 0.0
6 0.25 0.625 0.25 0.25 0.5 1.0

and D is:
D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.469)

For instance, animal 4 has only the sire known, which is not inbred, therefore:
d,=0.75-0=0.75

and:
d.,=0.5-0.25(0.125 + 0) = 0.469

because both parents are known and the sire has an inbreeding coefficient
of 0.125.

2.4 Computing the Inverse of the Relationship Matrix

The prediction of breeding value requires the inverse of the relationship matrix,
A-1. This could be obtained by setting up A by the recursive method and invert-
ing it. This is, however, not computationally feasible when evaluating a large
number of animals. In 1976, Henderson presented a simple procedure for calcu-
lating A~! without setting up A. The procedure and its principles are described
below.

From Eqn 2.1 the inverse of A can be written as:

Al = (T-!YD!'T-! (2.3)

The matrix D! is easy to obtain because D is a diagonal matrix. The diagonal
elements of D! are simply the reciprocals of the diagonal elements of D computed in
Section 2.3. T-! is a lower triangular matrix with ones in the diagonals and the only
non-zero elements to the left of the diagonal in the row for the animal i are 0.5 for
columns corresponding to the known parents. It can be derived as I - M, where I is
an identity matrix of the order of animals on the pedigree and M is a matrix of the
contribution of gametes from parents to progeny (Kennedy, 1989). Since progeny i
receives half of its genes from each parent, the only non-zero elements in row i of M
are 0.5, corresponding to columns of known parents. Thus if both parents of progeny
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i are unknown, all elements of row 7 are zero. For the pedigree in Table 2.1, T-! can
be calculated as:

10000 0] [0.000 00 00 00 0.0]

01000 0| |00 00 00 00 00 0.0

00100 0| |05 0500 00 00 0.0

00010 0| 0500 00 00 00 0.0

0000 10| |00 00 05 05 00 0.0

00000 1] [00 05 0.0 00 0.5 0.0]
(D (M)

1.0 00 0.0 0.0 0.0 0.0

00 1.0 0.0 00 0.0 0.0

0.5 -0.5 1.0 0.0 0.0 0.0

0.5 00 0.0 1.0 0.0 0.0

0.0 0.0 -0.5 -0.5 1.0 0.0

0.0 -0.5 0.0 0.0 -0.5 1.0
(T™

and:

D-' = diag(1, 1, 2, 1.333, 2, 2.133)

2.4.1 Inverse of the numerator relationship matrix ignoring inbreeding

The relationship shown in Eqn 2.3 was used by Henderson (1976) to derive simple
rules for obtaining A~' without accounting for inbreeding. With inbreeding
ignored, the diagonal elements of D! are either 2, or 4 or 1 if both or one or no
parents are known, respectively. Let ¢, represent the diagonal element of D! for
animal 7. Initially set A-! to zero and apply the following rules.

If both parents of the ith animal are known, add:

o to the (i,i) element

-0,/2 to the (s,i), (4,5), (d,i) and (i,d) elements

o, /4 to the (s,s), (s,d), (d,s) and (d,d) elements

If only one parent (s) of the ith animal is known, add:
o to the (,i) element

-0;/2 to the (s,i) and (i,s) elements

o,/4 to the (s,s) element

If neither parent of the ith animal is known, add:

o to the (i,i) element
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As an illustration, the inverse of the relationship matrix in Section 2.2 can be
calculated as below. Initially list all animals in the pedigree:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 1 2

4 1 Unknown
5 4 3

6 5 2

Then set up a 6 x 6 table for the animals. For animals 1 and 2, both parents are
unknown, therefore o, = @, = 1. Add 1 to their diagonal elements (1,1 and 2,2). For
animal 3, both parents are known therefore o, = 2. Add 2 to the 3,3 element, -1 to the
(3,1), (1,3), (3,2) and (2,3) elements and 1 to the (1,1), (1,2), (2,1) and (2,2) elements.
For animal 4, only one parent is known, therefore o, = . Add % to the (4,4) element,
-2 to the (4,1) and (1,4) elements and 3 to the (1,1) element. After the first four
animals, the table is:

1 2 3 4 5 6
1 1+3+3 1 -1 -2
2 1 141 -
3 -1 -1 2
4 -3 3
5
6

After applying the relevant rules to animals 5 and 6, the inverse of A then is:

1 2 3 4 5 6
1 1.83 0.5 -1.0 -0.67 0.0 0.0
2 0.5 2.0 -1.0 0.0 0.5 -1.0
3 -1.0 -1.0 2.5 0.5 -1.0 0.0
4 -0.67 0.0 0.5 1.83 -1.0 0.0
5 0.0 0.5 -1.0 -1.0 2.5 -1.0
6 0.0 -1.0 0.0 0.0 -1.0 2.0

Using Eqn 2.3, the inverse of A can be calculated directly. If inbreeding is ignored,
D for the pedigree is:

D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.5)
and:

D' = diag(1, 1, 2, 1.33, 2,2)
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Therefore the inverse of the relationship matrix using Eqn 2.3 is:

1.0 0.0 -0.5 -0.5 0.0 0.0][1.00 0.00 0.00 0.00 0.00 0.00
0.0 1.0 -0.5 0.0 0.0 -0.5(/0.00 1.00 0.00 0.00 0.00 0.00
0.0 0.0 1.0 0.0 -0.5 0.0(]0.00 0.00 2.00 0.00 0.00 0.00
0.0 0.0 00 1.0 -0.5 0.0(]0.00 0.00 0.00 1.33 0.00 0.00
0.0 0.0 0.0 0.0 1.0 -0.5(10.00 0.00 0.00 0.00 2.00 0.00

|0.0 0.0 0.0 0.0 0.0 1.0]/0.00 0.00 0.00 0.00 0.00 2.00]

(T D!

1.0 00 0.0 00 00 0.0
0.0 1.0 0.0 0.0 0.0 0.0
-0.5 -0.5 1.0 0.0 0.0 0.0
-0.5 0.0 00 10 0.0 0.0
0.0 0.0 -0.5 -0.5 1.0 0.0
| 0.0 0.5 0.0 0.0 -0.5 1.0]

(T™)

[ 1.83 0.50 -1.00 -0.67 0.00 0.00]
0.50 2.00 -1.00 0.00 0.50 -1.00
-1.00 -1.00 2.50 0.50 -1.00 0.00
-0.67 0.00 0.50 1.83 -1.00 0.00
0.00 0.50 -1.00 -1.00 2.50 -1.00

| 0.00 -1.00 0.00 0.00 -1.00 2.00]

A—l

which is the same inverse obtained previously by applying the rules.

2.4.2 Inverse of the numerator relationship matrix accounting for
inbreeding

The calculation of A~ with inbreeding accounted for involves the application of the
same rules outlined in Section 2.4.1 but D and therefore D! in Eqn 2.3 are calcu-
lated using the inbreeding coefficients of sires and dams (see Section 2.3). This
implies that the diagonal elements of the relationship matrix are needed for A-! to
be properly calculated. This could be achieved by initially calculating the A for the
group of animals and writing the diagonal elements to a file. The diagonal elements
could be read from the file while computing A-!. For a large pedigree, this approach
would require a large amount of memory for storage and be computationally
demanding. However, Quaas (1976) presented a strategy for obtaining the diagonal
elements of A while computing A~! without setting up the relationship matrix.
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Recall from Section 2.3 that A can be expressed as:

A=TDT
IfL=TJD
A=LL (2.4)

where L is a lower triangular matrix and, since D is diagonal, v/D refers to a matrix
obtained by calculating the square root of the diagonal elements of D. Equation 2.4
implies that the diagonal element of A for animal i is:

a;= 2l (2.5)
m=1
Thus for a pedigree consisting of 72 animals:
ay =1

_ 2. ]2
a,, = 1221+ l%2 ,
ayy =15+ 15+ 15,

’ 2 2 2 2
Qg =g +ls + 1+ 1

From the above, all the diagonal elements of A can be computed by calculating L one
column at a time (Quaas, 1984). Only two vectors of dimension equal to the number
of animals for storage will be required: one to store the column of L being computed
and the second to accumulate the sum of squares of the elements of L for each animal.
The matrices L and A~! can be computed using the following procedure:

From Eqn 2.4 the diagonal element of L for animal 7 is:

ii = \/671
1i=/[0.5-0.25(F,+ F,)]
Li=+/[1.0-0.25(a+au)]; withay=1+F, and gz =1+ Fu
Using equation [2.5]:

s d
L = \/ [1.0 —0.25(2 2+ ljmﬂ
m=1 m=1

To set up A-! at the same time, calculate the diagonal element of D~!(e) for animal i
as o, = 1/I7. Then compute the contribution of animal 7 to A-!, applying the usual
rules for computing A~! (see Section 2.4.1).

The off-diagonal elements of L to the left of the diagonal for animal 7 are calculated as:

l;=0.5(; + 1,); s and d equal to or greater than j
For the example pedigree used in Section 2.4.1 the L matrix is:

1 2 3 4 5 6
1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 0.707 0.0 0.0 0.0
4 0.5 0.0 0.0 0.866 0.0 0.0
5 0.5 0.25 0.354 0.433 0.707 0.0
6 0.25 0.625 0.177 0.217 0.354 0.685
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and A-' with inbreeding accounted for is:

1 2 3 4 5 6
1 1.833 0.5 -1.0 -0.667 0.0 0.0
2 0.5 2.033 -1.0 0.0 0.533 -1.067
3 -1.0 -1.0 2.5 0.5 -1.0 0.0
4 —-0.667 0.0 0.5 1.833 -1.0 0.0
5 0.0 0.533 -1.0 -1.0 2.533 -1.067
6 0.0 1.067 0.0 0.0 -1.067 2.133

The calculation columns of L and ¢, for the first three animals are illustrated below:

I, =[1-0250+0)] =1

o, = 1 and its contribution to A-! is computed using the rules in Section 2.4.1
L, =0

L =050, +1,) = 0.5(1+0)=0.5

L =050 = 0.5

I = 050 + 1) = 0.5(0.5 + 0.5) = 0.5
L =050 + L) = 0.5(0.5 + 0) = 0.25

L, = J[1-0.250+0)] =

o, = 1 and its contribution to A~! is computed using the rules in Section 2.4.1
l,,=0.5(l,, +1,,) =0.5(0 + 1) = 0.5

l,, =0.5(, ) 05(0) 0

I, =0.5(, +1,) =0.5(0 + 0.5) = 0.25

I, =0. 5(l + l ,) =0.5(0.25 + 1.0) = 0.625

Iy = [1-0.25(1%,) - 0.25(13, +13,)]

= \/[1 -0.25(1)-0.25(00+1)] =0.707
a, = 1/(0.707)* = 2.0 and its contribution to A~! is computed using
the usual rules
l,;=0.5(l;) =0.5(0) =0
153 =0.5(l,; + I;;) = 0.5(0 + 0.707) = 0.354
l;=0.5( + l ) 0.5(0.354 + 0) = 0.177

Faster algorithms for computing the inverse of A accounting for inbreeding based
on the L matrix have been published by Meuwissen and Luo (1992) and Quaas
(unpublished note, 1995), and these are presented in Appendix B.

2.5 Inverse of the Relationship Matrix for Sires and Maternal
Grandsires

In some cases, the prediction of breeding value is only for sires and maternal grandsires,
the so-called sire and maternal grandsire (MGS) model. In such cases, the A~! to be
incorporated in the mixed model equations (MME) involves only sire and maternal
grandsires and the rules for calculating A-! are different from those discussed in the
previous sections relating to pedigrees with individuals, sires and dams. With the
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MGS model, the relationship matrix A required pertains to males and can be approxi-
mated (Quaas, 1984) as:

a,=1+025a, (2.6)
a.=0.5a_+0.25a, (2.7)
7 S/ ]

where s and k are the sires and maternal grandsires, respectively, for sire . When all
maternal granddams are unrelated (base animals) and there are no maternal half-sibs,
the above will yield the exact A.

The inverse of approximate A can be calculated from a list of sires and mater-
nal grandsires, applying Eqn 2.3. In this case, T-! is a lower triangular matrix
with ones in the diagonal and the only non-zero elements to the left of the diagonal
in the row for the ith animal are -0.5 and -0.25 for the columns corresponding
to the sire and maternal grandsire, respectively. The elements of D and therefore
D-! can be calculated in a manner similar to that described in Sections 2.3
and 2.4. The diagonal elements of D (d,) for animal 7 are calculated by the fol-
lowing rules.

If both sire (s) and maternal grandsire (k) are known:

d, = [var(u) - var(su_ + ju,)|/c?

where the # terms are breeding values. Following the same arguments as in
Section 2.3:

1 1
d. =—— F_EFk

1
i 16 47

where F and F, are inbreeding coefficients for sire and maternal grandsire,
respectively.
When only the maternal grandsire is known:

d, = [var(u,) - var(+u,)|/c2

d,==-LF,

i T 16 16

When only the sire is known or no parents are known, d, is as calculated in
Section 2.3.

The elements of D! are reciprocals of D, calculated above. Using Eqn 2.3, A~! can
be calculated on the basis of T-! and D!, defined above, as follows:

Initially, set A~! to zero.

If both sire (s) and maternal grandsire (k) of animal i are known, add:
d;! to the (i,i) element

-d'/2 to the (s,i) and (i,s) elements

-d;'/4 to the (k,i) and (i,k) elements

d;!/4 to the (s,s) element

d;!/8 to the (s,k) and (k,s) elements

d;!/16 to the (k,k) element
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Without inbreeding, d;;' = 1¢.
If only the maternal grandsire (k) of animal 7 is known, add:
d;! to the (i,i) element
-d;!/4 to the (k,i) and (i,k) elements
d;!/16 to the (k,k) element

Without inbreeding, d;' = 1¢.
If only the sire (s) of animal i is known, add:
d;! to the (i,i) element
-d;!/2 to the (s,7) and (i,s) elements
d;'/4 to the (s,s) element

Without inbreeding, d;' = 4 in this situation, as in Section 2.4.1.

When s and k are unknown, add:
d;! to the (i,i) element
and 43! = 1.

2.6 An Example of the Inverse of a Sire and Maternal Grandsire
Relationsip Matrix

A pedigree consisting of sires and maternal grandsires set up from the pedigree in
Table 2.1 is:

Sire Sire of sire Maternal grandsire of sire
1 Unknown Unknown

4 1 Unknown

5 4 1

Recoding sires 1 to n, the pedigree becomes:

1 Unknown Unknown
1 Unknown
3 2 1
1.0 0.5 0.5

Using Eqns 2.6 and 2.7, A = {0.5 1.0 0.625
0.5 0.625 1.125

Note that the relationship among sires is the same as in A calculated from the full
pedigree in Section 2.2.

1.0 0.0 0.0
The T-! matrix for the pedigree is: T-! = | -0.5 1.0 0.0
-0.25 -0.5 1.0

[ 32 Chapter 2



and:

D' = diag(1,%,1%)

Applying Eqn 2.3, A-! is:

1.0 -0.5 -0.25|(1 0 O 1.0 0.0 0.0
A'=]00 1.0 -0.5 0 % 0][-0.5 1.0 0.0
0.0 00 1.0 0 0 1&][-0.25 -0.5 1.0

1424 -0.485 -0.364
=|-0.485 1.697 -0.727
-0.364 -0.727 1.455

To calculate the inverse of the sire and maternal grandsire relationship matrix,
applying the rules given earlier, initially set A~! to zero. The elements of D! have
already been given above. Processing the first animal, add 1 (d7}) to the diagonal
element (1,1) of A-L. For the second animal, add  (d3}) to the diagonal element (2,2)
of A1, 1 to the (1,1) element and —3 to the (1,2) and (2,1) elements. Finally process-
ing the third animal, add {$(d-},) to the (3,3) element of A-!, -{¢ to the (3,4) and
(4,3) elements, —1¢ to the (1,3) and (3,1) elements, §§ to the (4,4) element, {5 to the
(1,4) and (4,1) elements and £ to the (1,1) element. This gives the same A~ as previ-
ously calculated using Eqn 2.3.

In the next chapter, the incorporation of A~! in the MME for the prediction of
breeding value using BLUP is addressed.
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Best Linear Unbiased
Prediction of Breeding Value:
Univariate Models with One
Random Effect

3.1 Introduction

In Chapter 1, the use of the selection index (best linear prediction) for genetic
evaluation was examined; however, it is associated with some major disadvan-
tages. First, records may have to be pre-adjusted for fixed or environmental factors
and these are assumed to be known. These are not usually known, especially when
no prior data exist for new sub-classes of fixed effect or new environmental fac-
tors. Second, solutions to the index equations require the inverse of the covariance
matrix for observations and this may not be computationally feasible for large
data sets.

Henderson (1949) developed a methodology called best linear unbiased predic-
tion (BLUP), by which fixed effects and breeding values can be simultaneously
estimated. The properties of the methodology are similar to those of a selection
index and the methodology reduces to selection indices when no adjustments for
environmental factors are needed. The properties of BLUP are more or less incor-
porated in the name:

® Best— means it maximizes the correlation between true (2) and predicted breeding
value (4) or minimizes prediction error variance (PEV) (var(a - a)).

® Linear — predictors are linear functions of observations.

® Unbiased - estimation of realized values for a random variable such as ani-
mal breeding values, and of estimable functions of fixed effects are unbiased
(E(a = a)).

® Prediction — involves prediction of true breeding value.

BLUP has found widespread usage in genetic evaluation of domestic animals
because of its desirable statistical properties. This has been enhanced by the steady
increase in computing power and has evolved in terms of its application to simple
models, such as the sire model, in its early years, to more complex models such as the
animal, maternal, multivariate and random regression models, in recent years. Several
general purpose computer packages for BLUP evaluations such as PEST (Groeneveld
et al., 1990), BREEDPLAN, Mix 99 (Lidauer et al., 2011) and a host of others have
been written and made available. In this chapter, BLUP’s theoretical background is
briefly presented, considering a univariate animal model, and its application to several
univariate models in genetic evaluation is illustrated.
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3.2 Brief Theoretical Background

Consider the following equation for a mixed linear model:
y=Xb+Za+e (3.1)

where:

y = n x 1 vector of observations; # = number of records

b = p x 1 vector of fixed effects; p = number of levels for fixed effects

a =g x 1 vector of random animal effects; ¢ = number of levels for random effects

e =n x 1 vector of random residual effects

X = design matrix of order 7 x p, which relates records to fixed effects

Z = design matrix of order 7 x g, which relates records to random animal effects
Both X and Z are termed incidence matrices.

It is assumed that the expectations (E) of the variables are:

E(y) = Xb; E(a) = E(e) = 0

and it is assumed that residual effects, which include random environmental and non-
additive genetic effects, are independently distributed with variance o2 therefore,
var(e) = Io? = R; var(a) = Ao = G and cov(a, €) = cov(e, a) = 0, where A is the
numerator relationship matrix.

Then:

var(y) = V = var(Za + e)
= Zvar(a)Z’ + var(e) + cov(Za, €) + cov(e, Za)
=7ZGZ + R + Zcov(a, e) + cov(e, a)Z’

Since cov(a, €) = cov(e, a) = 0, then:

V=72GZ +R (3.2)
cov(y, a) = cov(Za + e, a)
= cov(Za, a) + cov(e, a)
= Zcov(a, a)
=7ZG
and:
cov(y, e) = cov(Za + e, e)
cov(Za, e) + cov(e, e)

Zcov(a, e) + cov(e, e)
=R

The general problem with respect to Eqn 3.1 is to predict a linear function of
b and a, that is, k’'b + a (predictand), using a linear function of y, say Ly (predictor),
given that k’b is estimable. The predictor L’y is chosen such that it is unbiased (i.e. its
expected value is equal to the expected value of the predictand) and PEV is minimized.
This minimization leads to the BLUP of a (Henderson, 1973) as:

a= BLUP(a) = GZ'V-!(y - Xb) (3.3)
and:

L'y = kK'b + GZ'V-!(y - Xb)
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where b = (X'V-1X)X'V-ly, the generalized least square solution (GLS) for b, and k'b
is the best linear unbiased estimator (BLUE) of k’b, given that k’b is estimable. BLUE
is similar in meaning and properties to BLUP but relates to estimates of linear func-
tions of fixed effects. It is an estimator of the estimable functions of fixed effects that
has minimum sampling variance, is unbiased and is based on the linear function of
the data (Henderson, 1984). An outline for the derivation of Eqn 3.3 and the equa-
tion for L’y above are given in Appendix C, Section C.1.

As mentioned in Section C.1, BLUP is equivalent to the selection index with
the GLS of b substituted for b in Eqn 3.3. Alternatively, this could simply be illustrated
(W.G. Hill, Edinburgh, 1995, personal communication) by considering the index
to compute breeding values for a group of individuals with relationship matrix A,
which have records with known mean. From Eqn 1.17, the relevant matrices are
then:

P=1Ic2+Ac? and G=Ac?
with:

a=oc%lc? or (1-h*h?

Hence:

[=P'Gy =1+ aA')ly

which is similar to the BLUP (Eqn 3.3) assuming fixed effects are absent and
with Z = L

The solutions for a and b in Eqn 3.3 require V-, which is not always computa-
tionally feasible. However, Henderson (1950) presented the mixed model equations
(MME) to estimate solutions b (fixed effects solutions) and predict solutions for
random effects (a) simultaneously without the need for computing V-'. The proof
that solutions for b and a from MME are the GLS of b and the BLUP of a is given in
Appendix C, Section C.2. The MME for Eqn 3.1 are:

X'R™'X XR7Z]|[p]_[XRy
ZR'X ZR'Z+G'||a] |XRy
assuming that R and G are non-singular. Since R-! is an identity matrix from

the earlier definition of R in this section, it can be factored out from both sides of the
equation to give:

XX XZ|p X'y 34

ZX z7Z+A'a|lal |2y (3-4)

Note that the MME may not be of full rank, usually due to dependency in the

coefficient matrix for fixed environmental effects. It may be necessary to set certain

levels of fixed effects to zero when there is dependency to obtain solutions to the MME

(see Section 3.6). However, the equations for a (Eqn 3.3) are usually of full rank since
V is usually positive definite and Xb is invariant to the choice of constraint.

Some of the basic assumptions of the linear model for the prediction of breeding
value were given in Section 1.2. The solutions to the MME give the BLUE of k’b and

[ 36 Chapter 3



BLUP of a under certain assumptions, especially when data span several generations
and may be subject to selection. These assumptions are:

1. Distributions of y, u and e are assumed to be multivariate normal, implying that
traits are determined by many additive genes of infinitesimal effects at many infinitely
unlinked loci (infinitesimal model, see Section 1.2). With the infinitesimal model,
changes in genetic variance resulting from selection, such as gametic disequilibrium
(negative covariance between frequencies of genes at different loci), or from inbreed-
ing and genetic drift, are accounted for in the MME through the inclusion of the
relationship matrix (Sorensen and Kennedy, 1983), as well as assortative mating
(Kemp, 1985).

2. The variances and covariances (R and G) for the base population are assumed to
be known or at least known to proportionality. In practice, variances and covariances
of the base population are never known exactly but, assuming the infinitesimal
model, these can be estimated by restricted (or residual) maximum likelihood
(REML) if data include information on which selection is based.

3. The MME can account for selection if based on a linear function of y (Henderson,
1975) and there is no selection on information not included in the data.

The use of these MME for the prediction of breeding values and estimation of fixed
effects under an animal model is presented in the next section.

3.3 A Model for an Animal Evaluation (Animal Model)

Example 3.1
Consider the data set in Table 3.1 for the pre-weaning gain (WWG) of beef calves
(calves assumed to be reared under the same management conditions).

The objective is to estimate the effects of sex and predict breeding values for all
animals. Assume that 02 = 20 and o2 = 40, therefore @ = 0=2,

The model to describe the observations is:

yl.l. =p; + ai + el.].
where: V= the WWG of the jth calf of the ith sex; p. = the fixed effect of the ith sex;

a. = random effect of the jth calf; and ¢, = random error effect. In matrix notation the
model is the same as that described in Eqn 3.1.

Table 3.1. Pre-weaning gain (kg) for five beef calves.

Calves Sex Sire Dam WWG (kg)
4 Male 1 Unknown 4.5
5 Female 3 2 2.9
6 Female 1 2 3.9
7 Male 4 5 3.5
8 Male 3 6 5.0
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3.3.1 Constructing the mixed model equations

The matrix X in the MME relates records to fixed (sex) effects. For the example data
set, its transpose 1s:

10011
X’ =
{01100]

The first row indicates that the first, fourth and fifth observations are from male
calves and the second row shows the second and third records are from female
calves.

The Z matrix relates records to all animals — those with or without yield records.
In this case, animals 1 to 3 are parents with no records and animals 4 to 8 are
recorded. Thus for the example data, Z is:

000100O0O0
000O0OT1TO0O0O
Z=|0 0 0001 0O
000O0OO0OO0OT1TO0
000O0OO0OO0OOT1

Note that the first three columns of Z are zeros and these correspond to the animals
1 to 3, which are parents without records.

The vector y is simply the vector of the observations. For the data set under con-
sideration, it is:

y=[45 29 39 35 5.0]

Having set up the matrices X, Z and vy, the other matrices in the MME, such as X'Z,
Z'X, X'y and Z’y are easily obtained by matrix multiplication. In practice, these
matrices are not calculated through multiplication from the design matrices and vec-
tor of observations but are usually set up or computed directly. However, for the
example data set, these matrices are:

00010011

X'Z =
00001100

} and Z'X is the transpose of X'Z

13.0 .
X'y = 6.8 and the transpose of Z'yis (0 0 0 4.5 2.9 3.9 3.5 5.0)

The matrix Z'Z is a diagonal matrix, with the first three diagonal elements zeros and
the next five elements all ones.

The various matrices in the MME have been calculated, apart from A-'o.
With these matrices, we can set up what are known as the least squares equations

(LSE) as:
XX XZ|[p] _[Xy
Z’X 7'Z||a] |z
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For the example data set, the LSE are:

_m O O kRO O O O W

SO O R Rk, O O O O N O

SO O O O O o o o o o
S O O O O o o o o o

S O O O O o o o o o

S O O O =k O O O O -
SO O O R, O O O O = O

S O R, O O O O O -~ O
S R, O O O O O O O -
_ O O O O O O O O -

[13.0
6.8
0
0
0
4.5
2.9
3.9
3.5
5.0

The addition of A~'a to Z'Z in the LSE yields the MME. Using the rules outlined in
Section 2.4.1, A-! for the example data is:

[ 1.833
0.500
0.000

_|-0.667
0.000
-1.000

0.000

| 0.000

0.500
2.000
0.500
0.000

—-1.000
-1.000

0.000
0.000

0.000
0.500
2.000
0.000
—-1.000
0.500
0.000
-1.000

-0.667  0.000
0.000 -1.000
0.000 -1.000
1.833 0.500
0.500 2.500
0.000 0.000

-1.000 -1.000
0.000 0.000

—-1.000
-1.000
0.500
0.000
0.000
2.500
0.000
-1.000

0.000
0.000

0.000

—-1.000
—-1.000

0.000

2.000
0.000

0.000]
0.000
~1.000
0.000
0.000
~1.000
0.000
2.000 |

and A-'a is easily obtained by multiplying every element of A! by 2, the value of o.

Adding A-'a to Z'Z, the MME for the example data are:

b
b
@
a

as

[3.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
1.000

| 1.000

0.000
2.000
0.000
0.000
0.000
0.000
1.000
1.000
0.000
0.000

0.000
0.000
3.667
1.000
0.000
-1.333
0.000
-2.000
0.000
0.000

0.000
0.000
1.000
4.000
1.000
0.000
-2.000
-2.000
0.000
0.000

0.000
0.000
0.000
1.000
4.000
0.000

-2.000

1.000
0.000

-2.000

1.000  0.000
0.000  1.000
-1.333  0.000
0.000 -2.000
0.000 -2.000
4.667 1.000
1.000  6.000
0.000  0.000
-2.000 -2.000
0.000  0.000

0.000
1.000
-2.000
-2.000
1.000
0.000
0.000
6.000
0.000
-2.000

1.000
0.000
0.000
0.000
0.000
-2.000
-2.000
0.000
5.000
0.000

1.000 ]

0.000
0.000
0.000
-2.000
0.000
0.000
-2.000
0.000

5.000 |

[13.0]

6.8
0.0
0.0
0.0
45
2.9
3.9
3.5
5.0

Solving the MME by direct inversion of the coefficient matrix gives the following

solutions:

Sex effects Animals
Males Females 1 2 3 4 6 7 8
4.358 3.404 0.098 -0.019 -0.041 -0.009 -0.186 0.177 -0.249 0.183
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The solutions indicate that male calves have a higher rate of gain up to weaning than
females calves, which is consistent with the raw averages for males and females. From
the first row in the MME (Eqn 3.4), the equations for sex effect are:
(X’X)b= X'y - (X'Z)a
b= (X'X)X(y - Z4)

Thus the solution for the ith level of sex effect may be written as:

l;z = [Z)’zy _Z 2’;‘;‘ ]/ﬁagi (3.5)
j j

where y, is the record and 4, is the solution of the jth animals within the sex subclass
i and diag; is the sum of observations for the sex subclass i. For instance, the solution
for male calves is:

b, = [(4.5 + 3.5 +5.0) - (-0.009 + -0.249 + 0.183)]/3 = 4.358

The equations for animal effects from the second row of Eqn 3.4 are:

(Z'Z + Alo)a=Z'y - (Z'X)b
(Z'Z + Alo)a=Z'(y XB)
(Z'Z + A'a)a= (Z'Z)YD (3.6)

with YD = (Z'Z)"'Z'(y - Xb), where YD is the vector of yield deviations (YDs) and
represents the yields of the animal adjusted for all effects other than genetic merit
and error. The matrix A-! has non-zero off-diagonals only for the animal’s parents,
progeny and mates (see Section 2.4), transferring off-diagonal terms to the right-hand
side of Eqn 3.6 gives the equation for animal i with k progeny as:
(27 4,003, = e, 4, 8) + (Z2)YD + 3, (0, - 0.52,)
where 2, is the element of the A-! between animal i and its parents with the sign reversed,
and u, 1s the element of A~! between the animal and the dam of the kth progeny.
Therefore:

(Z’Z + uiia)&i prog Azmzm - &m) (37)

W(PA) +(Z2'2)YD + 0. 50(214
Z; or 1 if both, one or

where PA is the parent average, u,, = 2(u ), with u equal to 1,
neither parents are known and u, = u, , with u, equal to 1 when the mate of animal
i is known or £ when the mate 1s not known

Multiplying both sides of the equation by (Z'Z + u,0)~' (VanRaden and Wiggans,
1991) gives:

a, = n,(PA) + n,(YD) + ny(PC) (3.8)
where:
PC= zupmg anim am)/g’upmg

is regarded as the progeny contribution and 7, 7, and 7, are weights that sum to
one. The derivation of the equation for PC is given in Appendix C, Section C.3. The
numerators of n,, n, and #n, are au  , Z'Z (number of records the animal has) and
0.50%u,,.. respectlvely The denominator of all three 7 terms is the sum of the three
numerators.

[ 40 Chapter 3



From Eqn 3.8, the breeding value for an animal is dependent on the amount of
information available on that animal. For base animals, YD in the equation does not
exist and 4 and 4, are zeros with no genetic groups in the model; therefore, the solutions
for these animals are a function of the contributions from their progeny breeding values
adjusted for the mate solutions (PC). For instance, the proof for sire 1 in Example 3.1 can
be calculated from the contributions from its progeny (calves 4 and 6) using Eqn 3.8 as:

4y = m,(0)+ 73] (3)(24,) + (245 — 4,)]/ (3 +1)
4y = n,(0)+ 15[ (2)(-0.018) + (1)(0.354 - (<0.019))] /(2 +1)
a, = ;(0.2166) = 0.098

with 7, = 3% and 7, = 0.5a(3 + 1)/3.667 and 3.667 is the sum of the numerators of
n, and n,. The higher breeding value for sire 1 compared with sire 3 is due to the fact that
the progeny of sire 1 have higher proofs after correcting for the solutions of the mates.
The solutions for an animal with a record but with no progeny depend on the aver-
age contributions from its parents and its yield deviation. Equation 3.8 reduces to:

a, = n,(PA) + n,(YD)
Thus for progeny 8, its EBV can be calculated as:

a=mn/(d+a)l2 + n,(y, - b))
=n,(0.068) + n,(5.0 - 4.358) = 0.183

with n, =22, n, =1 and 5 is the sum of the numerators of 7, and #,.

It can also be demonstrated that for an animal with a record but with no
progeny its solution is a function of an estimate of Mendelian sampling (72) and
parent average. From Equation ¢.8 in Appendix C, Section C.3, the solution for
calf i can be written as:

(1 +u.00a +ou a +owm ,a,="1y,
Therefore:
A -1 A A
a=(1+wu,00 "y, - oma - om,a)]
If there is no inbreeding, u, = u,, = -0.5u,. Therefore:

4, = (1 +u,00 'y, + 0.5u,0(a + a,)]
=(1+ uiia)‘l[(yl. -0.5(a +a)) + 0.5(1 + u,)(a, + a,)]
= (1 +u,0) My, - 0.5(a, +a,) +0.5(a, +a,)

a.=0.5(a, +ay) +m, (3.9)
where 2, = k(y, - 0.5, - 0.54,) is an estimate of Mendelian sampling, and k = 1/(1 + d"'0y),
with d = 1 if both parents of animal i are known or 3 if only one parent is known.
Alternatively, the weight (k) can also be derived as:

k = cov(m, y )Ivar(y ) = cov(m, m + e)/(var(m) + var(e))
where y_is the yield record corrected for fixed effects and parent average.

k = var(m)/(var(m)+var(e))
= dol(do+0?)
= db?/(dh? + (1- h?))
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where d, as defined earlier, equals L, 3orl if both, one or no parents are known,
respectively. Using the parameters for Example 3.1 and assuming both parents
known, k = 10/(10 + 40) = 0.2.

Thus for progeny 8, its EBV can be calculated as:

4, = 0.5(a, + &) + k(y, - b, - 0.5(a, + a,))
= 0.5(=0.041 + 0.177) + 0.2(5.0 - 4.358 — 0.5(=0.041 + 0.177))
=0.183

Compared with calf 7, the proof of calf 8 is higher because it has a higher parent
average solution and higher estimate of Mendelian sampling.

In the case of an animal with records and having progeny, there is an additional
contribution from its offspring to its breeding value. Thus the breeding values of
progeny 4 and 6 using Eqn 3.8 are:

~

a, = n,(&/2) + ny(y, - b)) + n,(2(a,) - a,)

= 1,(0.098/2) + 7,(4.5 - 4.358) + n,(2(~0.249) - (-0.186)) = -0.009

with 7, = 20(3)/4.667, n, = 1/4.667 and n, = 0.50/4.667; 4.676 = the sum of the
numerators of 7, n, and n,; and:

b, = n,((a, + &,)/2) + my(y, - by) + n,(2(a) - &)
7,((0.098 + 0.019)/2) + 7,(3.9 - 3.404) + 7,(2(0.183) - (-0.041))
=0.177

with 7, =2, n, = { and n, = 23%; 6 = the sum of the numerators of 7, n, and 7,.
Although contributions from parent average to both calves are similar, differences

in progeny contributions resulted in a higher breeding value for calf 6, accounting for

about 75% of the difference in the predicted breeding values between both calves.

3.3.2 Progeny (daughter) yield deviation

The yield deviation of a progeny contributes indirectly to the breeding value of its sire after
it has been combined with information from parents and the offspring of the progeny
(see Eqn 3.8). Thus progeny contribution is a regressed measure and it is not an independ-
ent measure of progeny performance as information from parents and the progeny’s off-
spring is included. VanRaden and Wiggans (1991) indicated that a more independent and
unregressed measure of progeny performance is progeny yield deviation (PYD). However,
they called it daughter yield deviation (DYD) as they were dealing with the dairy cattle
situation and records were only available for daughters of bulls. PYD or DYD can simply
be defined as a weighted average of corrected yield deviation of all progeny of a sire; the
correction is for all fixed effects and the breeding values of the mates of the sire.

DYD has been used for various purposes in dairy cattle evaluation and research.
It was used in the early 1990s for the calculation of conversion equations to convert
bull evaluations across several countries (Goddard, 1985). It was initially the variable
of choice for international evaluations of dairy bulls by Interbull, but, due to the
inability of several countries to calculate DYD, deregressed proofs were used
(Sigurdsson and Banos, 1995). In addition, Interbull methods for the validation of
genetic trends in national evaluations prior to acceptance for international evalua-
tions utilize DYDs (Boichard et al., 1995). DYDs are also commonly employed in
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dairy cattle studies aimed at detecting quantitative trait loci using the granddaughter
design (Weller, 2001). The equation for calculating DYD from univariate animal
model evaluations was presented by VanRaden and Wiggans (1991) and its deriva-
tion is briefly outlined here.

For the progeny (prog) of a bull i that has no offspring of her own, Eqn 3.8 becomes:

Byrog = MyprogPA + 115, YD (3.10)

Substituting Eqn 3.10 into the equation for PC in Eqn 3.8 gives:

PC =Y u,,.[2(n,,, PA+n,,,, YD) -4,,] /Z Ui
k k
= Z upmg[nlpmg (&z + &mi) + n2prog2‘YD - &mi ]/Z Mprog
k k

where n and n

1pro 2prog AT€ the 72, and 72, of progeny. Since these progeny have no offspring

of their own 300 equals zero; therefore ,,  equals 1 -7, . Then:
PC= Zumg (1= 125y (3,4 @)+ 13,0, 2YD = G, /Zumg
= Zum (1= 7250)d; + 73, (2YD — /Z o
= ai+2k“upmg nzpmg(—ai+2YD —ad,,;) /gumg (3.11)

Substituting Eqn 3.11 into Eqn 3.8 and accumulating all terms involving 4. to the left
side gives:

a;,—nza;+mn; 2 uprognlprogai/z Uprog
k k

=n,PA+n,YD+n, % Uiy prog (2YD = /2 g
Therefore:
{1 -1y + 1, ; upmg”lprog/; Uy J a;
=n,PA+n,YD +n, ; g™ prog (YD — / Dty

Substituting (72, + n,) for 1 - n; and removing the common denominator of the 7 terms

from both sides of the equation, with DYD as:
DYD or PYD =Y u,,, n,,,.(2YD — / D o prog (3.12)
k

the breeding value of animal i can be expressed as:
a.=w PA + w,YD + w,DYD (3.13)

where the weights W, W, and w, sum to unity. The numerators of w, and w, are equal
to those of 7, and 7, in Eqn 3.8. The numerator of:
ws = O'Sazkupmgnlprog

which is derived as 7, times:

Zkupmgnlprog/zkupmg

Univariate Models with One Random Effect 43 ]




As VanRaden and Wiggans (1991) indicated, w, is always less than unity and therefore
less than 72, which reflects that PYD or DYD is an unregressed measure of progeny perfor-
mance. Note that, for bulls with granddaughters, PYD or DYD does not include informa-
tion from these granddaughters. Also, in the dairy cattle situation, the information from
sons is not included in the calculation of DYD.

lllustrating the calculation of PYD or DYD

The computation of DYD is usually carried out in dairy cattle evaluations and it is
illustrated later for a dairy data set in Example 4.1. Using the beef data in Example 3.1,
the calculation of PYD is briefly illustrated for animal 3, using information on both
female and male progeny, since observations are available on both sexes.

First, the YDs for both progeny of sire 3 are calculated:

YD, = (y; - by) = (2.9 - 3.404) = -0.504
YD, = (y, - b)) = (5.0 - 4.358) = 0.642

Therefore, using Eqn 3.12:

PYD, = 712(5)14(5)(2YD5 -4) + 112(8)14(8)(21/D8 - &6)/(712(5)14(5) + ”2(8)“(8))
=0.2(1)(-1.008 - (-0.019) + 0.2(1)(1.284 - 0.177)/(0.2(1) + 0.2(1))
=0.059

where 7, , and u, are the 7, and u for the jth progeny. Note that in calculating 7,),
it has been assumed that progeny j has no offspring. Thus My = 1/(1 + 2(1)) = 0.2.

Using Eqn 3.12 to calculate the breeding value of sire 3 gives the value of 0.0098,
with w, = 0.833 and w, = 0.167. This is different from the breeding value reported

from solving the MME as the granddaughter information (calf 7) has not been included.

3.3.3 Accuracy of evaluations

The accuracy (r) of predictions is the correlation between true and predicted breeding
values. However, in dairy cattle evaluations, the accuracy of evaluations is usually
expressed in terms of reliability, which is the squared correlation between true and
predicted breeding values (r2). The calculation for 7 or 7?2 requires the diagonal ele-
ments of the inverse of the MME, as shown by Henderson (1975).

If the coefficient matrix of the MME in Eqn 3.4 is represented as:

[Cll Ciz

1n 12
and a generalized inverse of the coefficient matrix as: ) sz
Cu Cn c” C

Henderson (1975) showed that:

PEV = var(a - 4) = C*?c? (3.14)
Thus the diagonal elements of the coefficient matrix for animal equations are needed
to calculate PEV for animals. The PEV could be regarded as the fraction of additive

genetic variance not accounted for by the prediction. Therefore, for animal , it could
be expressed as:

PEV, = C*0c? = (1 - r?)c?
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where 72 is the squared correlation between the true and EBVs. Thus:
do? = (1 - P)o>

where d, is the ith diagonal element of C*2,
do*lo® =1-1*
r=1-da

and the accuracy () is just the square root of reliability.

From Eqn 3.14 the standard error of prediction (SEP) is:
SEP = /var (a —a)

=/d,c> for animal i

Note also that:
r* =1 - (SEP¥/c?)
The inverse of the coefficient matrix for Example 3.1 is:

[ 0.596 0.157 -0.164 -0.084 -0.131 -0.265 -0.148 -0.166 -0.284 -0.238]

0.157 0.802 -0.133 -0.241 -0.112 -0.087 -0.299 -0.306 -0.186 -0.199
-0.164 -0.133 0.471 0.007 0.033 0.220 0.045 0.221 0.139 0.134
-0.084 -0.241 0.007 0.492 -0.010 0.020 0.237 0.245 0.120 0.111
-0.131 -0.112  0.033 -0.010 0.456 0.048 0.201 0.023 0.126 0.218
-0.265 -0.087 0.220 0.020 0.048 0.428 0.047 0.128 0.243  0.123
-0.148 -0.299 0.045 0.237 0.201 0.047 0.428 0.170 0.220 0.178
-0.166 -0.306 0.221 0.245 0.023 0.128 0.170 0.442 0.152 0.219
-0.284 -0.186 0.139 0.120 0.126 0.243 0.220 0.152 0.442 0.168
|-0.238 -0.199 0.134 0.111 0.218 0.123 0.178 0.219 0.168 0.422 |

The 72, r and SEP for animals in Example 3.1 are:

Animal Diagonals of inverse re r SEP
1 0.471 0.058 0.241 4.341
2 0.492 0.016 0.126 4.436
3 0.456 0.088 0.297 4.271
4 0.428 0.144 0.379 4.138
5 0.428 0.144 0.379 4.138
6 0.442 0.116 0.341 4.205
7 0.442 0.116 0.341 4.205
8 0.422 0.156 0.395 4.109

In the example, the reliabilities of animals with records are generally higher than
those of ancestors since each has only two progeny. The two calves in the female sex
subclass are progeny of dam 2 and this may explain the very low reliability for this
ancestor as the effective number of daughters is reduced. The amount of information
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on calves 4 and § is very similar; each has a record, a common sire and parents of the
same progeny, hence they have the same reliability. Calf 8 has the highest reliability
and this is due to the information from the parents (its sire has another progeny and
the dam has both parents known) and its record. The standard errors are large due
to the small size of the data set but follow the same pattern as the reliabilities.

In practice, obtaining the inverse of the MME for large populations is not feasible
and various methods have been used to approximate the diagonal element of the
inverse. A methodology published by Meyer (1989) is presented in Appendix D and
was used in the national dairy evaluation programme in Canada (Wiggans et al.,
1992) in the 1990s.

3.4 A Sire Model

The application of a sire model implies that only sires are being evaluated using prog-
eny records. Most early applications of BLUP for the prediction of breeding values,
especially in dairy cattle, were based on a sire model. The main advantage with a sire
model is that the number of equations is reduced compared with an animal model
since only sires are evaluated. However, with a sire model, the genetic merit of the
mate (dam of progeny) is not accounted for. It is assumed that all mates are of similar
genetic merit and this can result in bias in the predicted breeding values if there is
preferential mating.
The sire model in matrix notation is:

y=Xb+Zs +e (3.15)

All terms in Eqn 3.15 are as defined for Eqn 3.1 and s is the vector of random sire
effects, Z now relates records to sires and:

var(s) = Ac?
var(y) = ZAZ'0>+ R

where A is the numerator relationship matrix for sires, 62 = 0.2502 and R = Io2. The
MME are exactly the same as in Eqn 3.4 except that a = 02/6% = (4 - h*)/h?.

3.4.1 An illustration

Example 3.2

An application of a sire model is illustrated below using the same data as for the
animal model evaluation in Table 3.1. Assigning records to sires, and including the
pedigree for sires, the data can be presented as:

Sex of progeny  Sire  Sire of sire  Dam of sire  WWG (kg)

Male 1 — — 4.5
Female 3 - - 2.9
Female 1 - - 3.9
Male 4 1 — 3.5
Male 3 - - 5.0
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The objective is to estimate sex effects and predict breeding values for sires 1, 3 and 4.
Using the same parameters as in Section 3.3, O'f =0.25(20) = § and 0'5 =60-5=2355,
therefore o = 55/5 = 11.

SETTING UP THE DESIGN MATRICES AND MME

The design matrix X relating records to sex is as defined in Section 3.3.1. However,
Z is different and its transpose is:

10100
Z’=(0 10 0 1
00010

indicating that sires 1 and 3 have two records each while sire 4 has only one record.
The vector of observations y is as defined in Section 3.3.1. The matrices XX, X'Z,
2'X,72'Z, X’y and Z’y in the MME can easily be calculated through matrix multipli-
cation. Thus:

X’X = 30 , X'Z-= i , Z'7 =diag(2,2,1), X'y is as in Section 3.3.1
0 2 110

and the transpose of Z'y = (Z'y)" = [8.4 7.9 3.5]

The LSE are:
301 1 1]fp, 13.00
02 1 10]||p, 6.80
1 12 0 0f]|s&]|=| 8.40
1 1 0 2 0f]4; 7.90
1 0 0 0 1|34, 3.50

Apart from the fact that sire 4 is the son of sire 1, no other relationships exist among
the three sires. Therefore A-! for the three sires is:

1.333 0.0 -0.667
A7'=[ 0.000 1.0 0.000
-0.667 0.0 1.333

The MME obtained after adding A-'e to Z’Z in the LSE are:

1

by|]3-000 0.000 1.000 1.000 1.000| " [13.00
b,|[0.000 2.000 1.000 1.000 0.000 6.80
§1/11.000 1.000 16.666 0.000 -7.334( =| 8.40
§3/(1.000 1.000 0.000 13.000 0.000 7.90
§4/11.000 0.000 -7.334 0.000 15.666 3.50
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The solutions to the MME by direct inversion of the coefficient matrix are:

Sex effects Sires
Males Females 1 3 4
4.336 3.382 0.022 0.014 -0.043

The difference between solutions for sex subclasses, L’b, where L is [1 - 1], is the
same as in the animal model. However, sire proofs and differences between sire
proofs (s; - s;) are different from those from the animal model, although the ranking
for the three sires is the same in both models. The differences in the proofs are due to
the lack of adjustment for breeding values of mates in the sire model and differences
in progeny contributions under both models. In this example, most of the differences
in sire solutions under both models are due to differences in progeny contributions.
The proofs for these sires under the animal model are based on their progeny contri-
butions, since their parents are unknown. This contribution from progeny includes
information from progeny yields and those of grand-offspring of the sires. However,
in the sire model, progeny contributions include information from only male grand-
offspring of the sires in addition to progeny yields. The effect of this difference on sire
proofs under the two models is illustrated for two bulls below.

From the calculations in Section 3.3.1, the proportionate contribution of calves 4
and 6 to the proof of sire 1 in the animal model are -0.003 and 0.102, respectively.
Using Eqn 3.8, the contribution of information from the different yield records to sire 1
under the sire model are as follows.

Contributions (CONT) from yields for calves 4 and 6 are:

CONT, = 1,(0.082) = 0.010
CONT, = 1,(0.259) = 0.031

where 7, = 2/16.667.

Contributions from yield record for male grand-progeny (calf 7) through animal 4
(progeny) is:

CONT, = 7,(-0.086) = -0.019

where 7, = 3.667/16.667.

Therefore:
s, = CONT, + CONT, + CONT, = 0.022

In the sire model the sum of CONT, and CONT, is equivalent to the contribution
from calf 4 to the sire proof in the animal model. Thus the main difference in the
proof for sire 1 in the two models is due largely to the lower contribution of calf 6 in
the sire model. This lower contribution arises from the fact the contribution is only
from the yield record in the sire model while it is from the yield and the progeny of
calf 6 in the animal model.

Similar calculations for sire 3 indicate that the proportionate contributions from
its progeny are —0.088 for calf 5 and 0.047 for calf 8 in the animal model. However,
in the sire model the contributions are -0.037 and 0.051, respectively, from the
yield of these calves. Again, the major difference here is due to the contribution from
calf 5, which contains information from her offspring (calf 7) in the animal model.
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The similarity of the contributions of calf 8 to the proof of sire 3 in both models
is because it is a non-parent and the contribution is slightly higher under the sire model
due to the lack of adjustment for the breeding value of the mate.

3.5 Reduced Animal Model

In Section 3.2, the BLUP of breeding value involved setting up equations for
every animal, that is, all parents and progeny. Thus the order of the animal equa-
tions was equal to the number of animals being evaluated. If equations were set
up only for parents, this would greatly reduce the number of equations to be
solved, especially since the number of parents is usually less than the number of
progeny in most data sets. Breeding values of progeny can be obtained by back-
solving from the predicted parental breeding values. Quaas and Pollak (1980)
developed the reduced animal model (RAM), which allowed equations to be set
up only for parents in the MME, and breeding values of progeny are obtained by
back-solving from the predicted parental breeding values. This section presents
the theoretical background for the RAM and illustrates its use for the prediction
of breeding values.

3.5.1 Defining the model

The application of a RAM involves setting up animal equations for parents only and
representing the breeding values of non-parents in terms of parental breeding value.
Thus for the non-parent i, its breeding value can be expressed as:

a, =%, +a;)+m, (3.16)

where a_ and a, are the breeding values of sire and dam and 7, is the Mendelian
sampling. It was shown in Section 2.3 that:

var(m,) = (0.5 = 0.25(F, + F,))o?
Let F = (F, + F,)/2, then:

var(m,) = (0.5 - 0.5(F))o?
- 0.5(1 - F)o? (3.17)

The animal model applied in Section 3.3 was:

yijk = pi + ai + eii (318)
In matrix notation:

y=Xb+Za+e (3.19)

The terms in the above equations have been defined in Section 3.3.
Using Eqn 3.18, Eqn 3.19 can be expressed as:

- 1 1
Yig =D+ Ja,+ a;+m+ ey (3.20)

For non-parents, the terms 72, and e;;, can be combined to form a single residual
term e}, as:
ij

el =M+ ey (3.21)
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and:
var(e ﬁk) = var(m/.) + var(el./.k)
Using Eqn 3.19:
var(ej,) = 3(1 - F)o2 + o?
In general:
var(m,) = d.(l - F.)O'ﬁ (3.22)

where d; equals 3 or § or 1 if both, one or no parents are known, respectively, and F,
is the average mbreedmg for both parents or, if only one parent is known, it is the
inbreeding coefficient of the known parent. F; equals zero when no parent is known.
Ignoring inbreeding:

var(ej,) = o2+ dl.of =(1+ dl.oc‘l)of
Equation 3.20 can be expressed in matrix notation as:
y = Xb+Za +e (3.23)

where X is the incidence matrix that relates non-parents’ records to fixed effects,
Z, is an incidence matrix of zeros and halves identifying the parents of animals, and
a_is a vector of breeding values of parents.

The application of RAM involves applying the model:

y,=Xb+Za+e
for parents and the model:
v, =Xb+Za + e

for non-parents.
From the above two equations, the model for RAM analysis can be written as:

e AR

Z Io2 0 I 0
X:[X"}, W:[ ] and R=|:R”:|= ° *{ };g
X, Z R, 0 1452 0 I+Dg™

Then:

var(y) = WA \W’O'2 +R
var(a,)) = A, (72

If:

where A_ is the relationship matrix among parents and D above is a diagonal matrix
with elements as defined for d; in Eqn 3.22.
The MME to be solved are:

b]_[xR'x XR'W[ [ XRTy (3.24)
a] |WR'X WR'W+A'/62] |WRy '
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Equation 3.24 can also be written as:

o -1 rp -1 rp -1 rp-1
X/R,'X,+X/R,'X,, X/R,'Z+X/R,'Z,
Z'R,'X,+ Z{R,'X, Z'R;'Z+Z|R,'Z,+A '1/0;

m_ X;R,'y,+ X, R}y,
a Z'R,'y,+ZR}y,

Multiplying the equations above by R  gives:

X; X+ X, R;'X, XpZ+ XoRZi| [ _ | Xyt XIR Y, (3.25)
X, +ZRIX, ZZ+ZR'Z+A'e| 4] " | Z'y,+Z(Ry, '

where R:'equals 1/(1 + Dar?).

3.5.2 Anillustration

Example 3.3

The application of RAM using Eqn 3.24 for the prediction of breeding values is illus-
trated below with the same data set (Table 3.1) as in Example 3.1 for the animal
model evaluation. The genetic parameters are 6% = 20.0 and o2 = 40.0.

CONSTRUCTING THE MME

First we need to set up R, the matrix of residual variances and its inverse. In the
example data set, animals 4, 5 and 6 are parents; therefore the diagonal elements
in R corresponding to these animals are equal to o2, that is, 40.0.

Calves 7 and 8 are non-parents, therefore the diagonal elements for these animals
in R are equal to 02 + d,02, assuming that the average inbreeding coefficients of the
parents of these animals equal zero. For each calf, d, equals 1 because both their par-
ents are known, therefore 7. = 7o, = 40 + 1(20) = 50.

The matrix R for animals with records is:
R = diag(40, 40, 40, 50, 50)
and:
R = diag(0.025, 0.025, 0.025, 0.020, 0.020)

The matrix X is the same as in Section 3.3.1 and relates records to sex effects.
Therefore:

XR-IX - |:0.065 0.000:|

0.000 0.050

For the matrix W, the rows for parents with records (animals 4, 5 and 6) consist
of zeros except for the columns corresponding to these animals, which contain ones,
indicating that they have records. However, the rows for non-parents with records
(animals 7 and 8) contain halves in the columns that correspond to their parents, and
otherwise zeros. Thus:
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0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
W=(0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.5 0.5 0.0
0.0 0.0 0.5 0.0 0.0 0.5

and:
[0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
i 0.0 0.0 0.005 0.0 0.0 0.005
WRW =

0.0 0.0 0.0 0.03 0.005 0.0
0.0 0.0 0.0 0.005 0.03 0.0
0.0 0.0 0.005 0.0 0.0 0.03 |

The transpose of the vector of observations, y, is as defined in Section 3.3.1.
The remaining matrices, X’R-'"W, W/R'X, X’R-'y and Z’R-'y can easily be calcu-
lated through matrix multiplication since X, R-!, W and y have been set up.
Therefore:

X’R1W—|:O'OOO 0.000 0.010 0.035 0.010 0.010]

0.000 0.000 0.000 0.000 0.025 0.025

The matrix W’R™'X is the transpose of X’R™'W.

[0.000]
0.000
L {0.282:| . |0.050
XRy= and WRy=
0.170 0.148
0.107
[ 0.148 ]
The LSE are:
_51_ [0.065 0.000 0.000 0.000 0.010 0.035 0.010 0.010]'[0.282]
b 0.000 0.050 0.000 0.000 0.000 0.000 0.025 0.025| |0.170

N

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000( |0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000(| |0.000
0.010 0.000 0.000 0.000 0.005 0.000 0.000 0.005( |0.050
0.035 0.000 0.000 0.000 0.000 0.030 0.005 0.000| [0.148
0.010 0.025 0.000 0.000 0.000 0.005 0.030 0.000( |0.107
0.010 0.025 0.000 0.000 0.005 0.000 0.000 0.03 | |0.148]

Q> O N
e w [ ) —_

Q>
“

r
Q>
o~
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The relationship matrix is only for parents, that is, animals 1 to 6. Thus:

1.833  0.500 0.000 -0.667 0.000 -1.000]
0.500 2.000 0.500 0.000 -1.000 -1.000
0.000 0.500 1.500 0.000 -1.000 0.000
“|-0.667 0.000 0.000 1.333 0.000 0.000

0.000 -1.000 -1.000 0.000 2.000 0.000
|-1.000 -1.000 0.000 0.000 0.000 2.000]

Adding A-'1/6?% to the W'R-'W of the LSE gives the MME, which are:

-

b,] [0.065 0.000 0.000 0.000 0.010 0.035 0.010 0.010]"'[0.282
b,| [0.000 0.050 0.000 0.000 0.000 0.000 0.025 0.025| |0.170
4| 10.000 0.000 0.092 0.025 0.000 —0.033 0.000 —0.050| |0.000
a,| [0.000 0.000 0.025 0.100 0.025 0.000 -0.050 -0.050| |0.000
4,1 |0.010 0.000 0.000 0.025 0.080 0.000 —0.050 0.005| [0.050
a,| 0.035 0.000 -0.033 0.000 0.000 0.097 0.005 0.000| |0.148
as| [0.010 0.025 0.000 -0.050 -0.050 0.005 0.130 0.000| |0.107
| 4¢] [0.010 0.025 -0.050 -0.050 0.005 0.000 0.000 0.130] |0.148]

The solutions are:

Sex effects Animals
Males Females 1 2 3 4 5 6
4.358 3.404 0.098 -0.019 -0.041 -0.009 -0.186 0.177

The solutions for sex effects and proofs for parents are exactly as obtained using
the animal model in Example 3.1. However, the number of non-zero elements in the
coefficient matrix is 38 compared with 46 for an animal model in Section 3.3 on the
same data set. This difference will be more marked in large data sets or in data sets
where the number of progeny far exceeds the number of parents. This is one of the
main advantages of the reduced animal model, as the number of equations and there-
fore non-zero elements to be stored are reduced. The solutions for non-parents can
be obtained by back-solving, as discussed in the next section.

SOLUTIONS FOR NON-PARENTS

With the reduced animal model, solutions for non-parents are obtained by
back-solving, using the solutions for the fixed effects and parents. Equation 3.9,
derived earlier from the MME for an animal with its parents, can be used to back-
solve for non-parent solutions. However, the R-! has not been factored out of the
MME in Eqn 3.25, and so the k& term in Eqn 3.9 now equals:

k=it 4 diigt (3.26)
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Solutions for non-parents in Example 3.3 can be solved using Eqn 3.9 but with &
expressed as in Eqn 3.26. However, because there is a fixed effect in the model, 2, =
k(y, - b/’ - 0.5a_- 0.5a,). In Example 3.3, both parents of non-parents (animals 7 and §)
are known, therefore:

k =0.025/(0.025 + (2)0.05) = 0.20
Solution for calves 7 and 8 are:

a, = 0.5(-0.009 + -0.186) + 0.20(3.5 - 4.358 - 0.5(-0.009 + -0.186))
=-0.249

ag = 0.5(-0.041 + 0.177) + 0.20(5.0 -4.358 - 0.5(-0.041 + 0.177))
=0.183

Again, these solutions are the same for these animals as under the animal model.

3.5.3 An alternative approach

Note that, if the example data had been analysed using Eqn 3.25, the design matrices
would be of the following form:

100 11
X’ = , X, =
P01 1 0 0

Z including ancestors is:

000100
Z={0 0 0 0 1 0| and Zl=[
000O0O0OT1

00 0 05050
00050 0 05

The remaining matrices can be calculated through matrix multiplication. The MME then are:

gl [2.600 0.000 0.000 0.000 0.400 1.400 0.400 0.400] '[11.300]
| 10.000 2.000 0.000 0.000 0.000 0.000 1.000 1.000 6.800

41110.000 0.000 3.667 1.000 0.000 -1.333 0.000 -2.000 0.000

A

‘fl 0.000 0.000 1.000 4.000 1.000 0.000 -2.000 -2.000 0.000
221710.400 0.000 0.000 1.000 3.200 0.000 -2.000 0.200 2.000

A

a3 1.400 0.000 -1.333 0.000 0.000 3.867 0.200 0.000 5.900

~

941 10.400 1.000 0.000 -2.000 -2.000 0.200 5.200  0.000 4.300

~

a4 10.400 1.000 -2.000 -2.000 0.200 0.000 0.000 5.200| [ 5.900 |

|ds |

and these give the same solutions as obtained from Eqn 3.24.

3.6 Animal Model with Groups

In Example 3.1 there were animals in the pedigree with unknown parents, usually called base
population animals. The use of the relationship matrix in animal model evaluation assumes
that these animals were sampled from a single population with average breeding value of
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zero and common variance 6% The breeding values of animals in subsequent generations
are usually expressed relative to those of the base animals. However, if it is known that base
animals were actually from populations that differ in genetic means, for instance, sires from
different countries, this must then be accounted for in the model. In the dairy cattle situation,
due to differences in selection intensity, the genetic means for sires of bulls, sires of cows,
dams of bulls and dams of cows may all be different. These various sub-population structures
should be accounted for in the model to avoid bias in the prediction of breeding values. This
can be achieved through a proper grouping of base animals using available information.
Westell and Van Vleck (1987) presented a procedure for grouping, which has gen-
erally been adopted. For instance, if sires have been imported from several countries
over a period of time and their ancestors are unknown, these sires could be assigned
to groups on the basis of the expected year of birth of the ancestors and the country
of origin. The sires born within a similar time period in a particular foreign country
are assumed to come from ancestors of similar genetic merit. Thus each sire with one
or both parents unknown is initially assigned phantom parents. Phantom parents are
assumed to have had only one progeny each. Within each of the foreign countries, the
phantom parents are grouped by the year of birth of their progeny and any other fac-
tor, such as sex of progeny. In addition, for the dairy cattle situation, the four selection
paths — sire of sires, sire of dams, dam of sires and dam of dams — are usually assumed
to be of different genetic merit and this is accounted for in the grouping strategy.
With groups, the model (Thompson, 1979) is:

yi,'=h/+di+2tikgk+€i/’ (3.27)
k=1

where h; = effect of the jth herd, 4, = random effect of animal i, g, = fixed group effect
containing the kth ancestor, ¢, = the additive genetic relationship between the kth and
ith animals and the summation is over all # ancestors of animal 7, and e; = random
environmental effect. From the model, it can be seen that the contribution of the
group to the observation is weighted by the proportion of genes the ancestors in the
group passed on to the animal with a record.

In matrix notation, the model can be written as:

y=Xb+ZQg +Za +e (3.28)
where:
Q=TQ

Q" assigns unidentified ancestors to groups and T, a lower triangular matrix, is obtained
from A = TDT" (see Section 2.3). With this model the breeding value of an animal k& is:

a,.=0g+d,
The MME are:
X'X xz xzQl[4 X'y
Z’X 7'7Z+A'a Z’7Q||a|= 7'y

Q/Z/X QIZIZ Q,Z,ZQ g Q/Zly

Solving the MME above will yield vectors of solutions for a and g but the ranking
criterion (breeding value) is 4,. = Qg + 4, for animal k. Modification of the MME
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(Quaas and Pollak, 1981) and absorption of the group equations gave the following
set of equations, which are usually solved to obtain a* directly (Westell ef al., 1988).

XX X'Z 0 b| [X’y
A A , 3.29
ZX ZZ+Ala Alal|lda+Qg|=|ZYy (3:29)
_ _ g 0
0 Ao Ajla
where 7 is the number of animals and p the number of groups.
Let
A=

A
A Ay
The matrix A-! is obtained by the usual rules for obtaining the inverse of the relation-
ship matrix outlined in Section 2.4.1. A list of pedigrees, consisting of only actual
animals but with unknown ancestors assigned to groups, is set up. For the ith animal
calculate the inverse (b)) of the variance of Mendelian sampling as:
b, = 4/(2 + number of parents of animal i assigned to groups)

Then add:
b, to the (i,i) element of A~
—% to the (i,s), (i,d), (s,i) and (d,i) elements of A~
% to the (s,s), (s,d), (d,s) and (d,d) elements of A~!
Thus for an animal 7 with both parents assigned to groups:
b =4/(2+2)=1
Then add:

1 to the (;,i) element of A~!
-1 to the (i,s), (i,d), (s,i) and (d,i) elements of A~!
1 to the (s,s), (s,d), (d,s) and (d,d) elements of A~!

3.6.1 An illustration

Example 3.4

An animal model evaluation with groups is illustrated below using the same data set
and genetic parameters as in Example 3.1. The aim is to estimate sex effects and predict
breeding values for animals and phantom parents (groups). The model in Eqn 3.28 and
the MME in Eqn 3.29 are used for the analysis. The pedigree file for the data set is:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 Unknown Unknown
4 1 Uunknown
5 3 2

6 1 2

7 4 5

8 3 6
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Assuming that males are of different genetic merit compared to females, the unknown
sires can be assigned to one group (G1) and unknown dams to another group (G2).

The pedigree file now becomes:

Calf Sire Dam
1 G1 G2
2 G1 G2
3 G1 G2
4 1 G2
5 3 2

6 1 2

7 4 5

8 3 6

Recoding G1 as 9 and G2 as 10:

Calf Sire Dam
1 9 10
2 9 10
3 9 10
4 1 10
5 3 2
6 1 2
7 4 5
8 3 6

SETTING UP THE DESIGN MATRICES AND MME

The design matrices X and Z, and the matrices X'X, X'Z, Z'X, X’y and Z'y in the
MME are exactly as in Example 3.1. The MME without addition of the inverse
of the relationship matrix for animals and groups are:

(O8]
o
[«
[e]
o
[e]
o

SO O O O O O R, O OO O O -
SO O O Rk, OO O OO oo o o -
S Ok O O O O O o o O -

SO O Rk =k OO =, O O o0
O O O O R =) O O O O N
SO O O O O O o o o o o
S O O O O O o o o o o
SO O O O O oo o o o o o
SO O O O O -k, O O O O -
S O O O =k O O O O O -

[e]

SO O O O O O o o o o o

(e

S O O O O O O O o o O

[13.0]

6.8
0
0
0
4.5
2.9
3.9
3.5
5.0
0
0
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Using the procedure outlined above, A-! for the example data is:

1 2 3 4 5 6 7 8 9 10
1 1.83 0.50 0.00 -0.67 0.00 -1.00 0.00 0.00 -050 -0.17
2 0.50 2.00 0.50 0.00 -1.00 -1.00 000 0.00 -0.50 -0.50
3 0.00 0.50 2.00 0.00 -1.00 050 0.00 -1.00 -0.50 -0.50
4 -0.67 0.00 0.00 1.83 0.50 0.00 -1.00 0.00 0.00 -0.67
5 0.00 -1.00 -1.00 0.50 2.50 0.00 -1.00 0.00 0.00 0.00
6 -1.00 -1.00 0.50 0.00 0.00 250 0.00 -1.00 0.00 0.00
7 0.00 0.00 0.00 -1.00 -1.00 0.00 2.00 0.00 0.00 0.00
8 0.00 0.00 -1.00 0.00 0.00 -1.00 000 2.00 0.00 0.00
9 -050 -0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.75 0.75
10 -0.17 -0.50 -0.50 -0.67 0.00 0.00 0.00 0.00 0.75 1.08

and A-'a is easily obtained by multiplying every element of A~' by 2, the value of o. The
matrix A~ o is added to equations for animal and group to obtain the MME, which are:

[ 6] [3.000
b,| |0.000
a,| 10.000
4| [0.000
as| [0.000
as| [1.000
as |~ [0.000
as| [0.000
a,| [1.000
4| |1.000
& | |0.000
8| |0.000

0.000  0.000
2.000  0.000
0.000 3.667
0.000  1.000
0.000  0.000
0.000 -1.333
1.000  0.000
1.000 -2.000
0.000  0.000
0.000  0.000
0.000 -1.000
0.000 -0.333

0.000
0.000
1.000
4.000
1.000
0.000
-2.000
-2.000
0.000
0.000
-1.000
—-1.000

0.000
0.000
0.000
1.000
4.000
0.000
-2.000
1.000
0.000
-2.000
-1.000
-1.000

1.000
0.000
-1.333
0.000
0.000
4.667
1.000
0.000
-2.000
0.000
0.000
-1.333

0.000  0.000
1.000 1.000
0.000 -2.000
-2.000 -2.000
-2.000  1.000
1.000  0.000
6.000  0.000
0.000  6.000
-2.000  0.000
0.000 -2.000
0.000  0.000
0.000  0.000

1.000  1.000
0.000  0.000
0.000  0.000
0.000  0.000
0.000 -2.000
-2.000 0.000
-2.000  0.000
0.000 -2.000
5.000  0.000
0.000  5.000
0.000  0.000
0.000  0.000

0.000
0.000
-1.000
-1.000
-1.000
0.000
0.000
0.000
0.000
0.000
1.500
1.500

0.000]"

0.000
-0.333
-1.000
-1.000
-1.333

0.000

0.000

0.000

0.000

1.500

2.167 |

[13.0 ]
6.8
0.00
0.00
0.00
4.50
2.90
3.90
3.50
5.00
0.00

| 0.00 |

There is dependency in the equations, that is, all effects cannot be estimated;
therefore, the equation for the first group has been set to zero to obtain the following

solutions:
Sex effects
Males 5.474
Females 4.327
Animals
1 -0.780
2 -0.936
3 -0.977
4 -1.287
5 -1.113
6 -0.741
7 -1.354
8 -0.782
Groups
9 0.000
10 -1.795
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The animal proofs above are generally lower than those from Example 3.1, the
model without groups. In addition, the ranking for animals is also different. However,
the relationship between the two sets of solutions can be shown by recalculating the
vector of solutions for animals using the group solutions (g) above and the estimated
breeding values (a) from Example 3.1 as:

a,=a+Qg

where Q = TQ", as defined earlier.
Assigning phantom parents (M1 to M7) to animals with unknown ancestors, the
pedigree for the example data can be written as:

Calf Sire Dam
1 M1 M2
2 M3 M4
3 M5 M6
4 1 M7
5 3 2

6 1 2

7 4 5

8 3 6

and the matrix T for the pedigree is:

M1 M2 M3 M4 M5 M6 M7 1 2 3 4 5 6 7 8

M1 1.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M2 0.000 1.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M3 0.000 0.000 1.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M4 0.000 0.000 0.000 1.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M5 0.000 0.000 0.000 0.000 1.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M6 0.000 0.000 0.000 0.000 0.000 1.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M7 0.000 0.000 0.000 0.000 0.000 0.000 1.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
0.500 0.500 0.000 0.000 0.000 0.000 0.00 1.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
0.000 0.000 0.500 0.500 0.000 0.000 0.00 0.00 1.00 0.00 0.0 0.0 0.0 0.0 0.0
0.000 0.000 0.000 0.000 0.500 0.500 0.00 0.00 0.00 1.00 0.0 0.0 0.0 0.0 0.0
0.250 0.250 0.000 0.000 0.000 0.000 0.50 0.50 0.00 0.00 1.0 0.0 0.0 0.0 0.0
0.000 0.000 0.250 0.250 0.250 0.250 0.00 0.00 0.50 0.50 0.0 1.0 0.0 0.0 0.0
0.250 0.250 0.250 0.250 0.000 0.000 0.00 0.50 0.50 0.00 0.0 0.0 1.0 0.0 0.0
0.125 0.125 0.125 0.125 0.125 0.125 0.25 0.25 0.25 0.25 0.5 0.5 0.0 1.0 0.0
0.125 0.125 0.125 0.125 0.250 0.250 0.00 0.25 0.25 0.50 0.0 0.0 0.5 0.0 1.0

ONO O~ WN =

The transpose of the matrix Q*, which assigns phantom parents to groups is:

Q*,_101010000000000
“lo101010000000TO0O0
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and the transpose of Q (Q = TQ") is:

Q'—l 010100 05 05 05 025 05 05 0375 0.5
o101 010 05 05 05 075 05 05 0625 0.5

Therefore the vector of solutions using the EBVs from Example 3.1 is:

[ 0.098] [-0.898] [-0.800]

~0.019| |-0.898| |-0.917

—0.041| |-0.898| |-0.939

o |-0009| |-1.346| |-1.355
2=a+Q8 =1 ;06| * | -0.898| = | -1.084
0.177| |-0.898| |-0.721

~0249| |-1.122] |-1371

| 0.183] |-0.898] |-0.715]

These solutions are similar to those obtained in the model with groups. The slight dif-
ferences are due to differences in sex solutions in the two examples and this is
explained later. This indicates that, when the solutions from the model without groups
are expressed relative to the group solutions, similar solutions are obtained to those in
the model with groups. Thus the differences between the solutions in Examples 3.1
and 3.4 are due to the fact that the solutions in the former are expressed relative to
base animals assumed to have an average breeding value of zero, while in the latter
solutions are relative to the group solutions, one of which is lower than zero.

The inclusion of groups also resulted in a larger sex difference compared with
Example 3.1. The solution for sex effect i can be calculated using Eqn 3.5. For
instance, the solution for male calves in Example 3.4 is:

b, =[(4.5+3.5 +5.0) - (-1.287 + -1.354 + -0.782)]/3 = 5.474

Since Zy,, in Eqn 3.5 is the same in both examples, differences in Za,, between the
sexes in both models would result in differences in the linear functién of b. The dif-
ference between average breeding values of male and females calves is -0.02 and
-0.214, respectively, in Examples 3.1 and 3.4. The larger difference in the latter
accounted for the higher sex difference in Example 3.4. Males had a lower breeding
value in Example 3.4 due to the higher proportionate contribution of group two to
their solutions (see the matrix Q above).

The basic principles involved in the application of BLUP for genetic evaluations and
the main assumptions have been covered in this chapter, and its application to more com-
plex models involves an extension of these principles. Equation 3.1 is a very general model
and a could include random animal effects for several traits (multivariate model), random
environmental effects, such as common environmental effects affecting animals that are
reared together, maternal effects (maternal model), non-additive genetic effects, such as
dominance and epistasis (non-additive models), and repeated data on individuals (random
regression model). The extension of the principles discussed in this chapter under these
various models constitutes the main subject area of the subsequent chapters in the text.
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Best Linear Unbiased
Prediction of Breeding Value:
Models with Random
Environmental Effects

4.1 Introduction

In some circumstances, environmental factors constitute an important component of
the covariance between individuals such as members of a family reared together
(common environmental effects) or between the records of an individual (permanent
environmental effects). Such environmental effects are usually accounted for in the
model to ensure accurate prediction of breeding values. This chapter deals with models
that account these two main types of environmental effects in genetic evaluations.

4.2 Repeatability Model

The repeatability model has been employed for the analysis of data when multiple
measurements on the same trait are recorded on an individual, such as litter size in
successive pregnancies or milk yield in successive lactations (Interbull, 2000). The
details of the assumptions and the components of the phenotypic variance have been
given in Section 1.3.2. Briefly, the phenotypic variance comprises the genetic (additive
and non-additive) variance, permanent environmental variance and temporary envi-
ronmental variance. For an animal, the model usually assumes a genetic correlation
of unity between all pairs of records, equal variance for all records and equal envi-
ronmental correlation between all pairs of records. In practice, some of these assump-
tions do not hold in the analysis of real data. A more appropriate way of handling
repeated measurements over time is by fitting a random regression model or a covari-
ance function, and this is discussed in Chapter 9. This section has therefore been
included to help illustrate the evolution of the model for the analysis of repeated
records over time. The phenotypic structure for three observations of an individual
under this model could be written (Quaas, 1984) as:

2 2 2 2 2 2 2

y,| |gntOpet Oy Opet oy Opet Oy

2 2 2 2 2 2 2

var|y, |= Opetoy Ointoptoy Opet Oy
2 2 2 2 2 2 2

Y3 Cpet Oy OpetOy O3t 0ptO;

with: 02 = temporary environmental variance specific to record i; 02, = covariance
due to permanent environmental effects (variances and covariances are equal); and
O'E = genetic covariance (variances and covariances are equal). The correlation
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between records of an individual is referred to as repeatability and is (o7 + 07,)/07.
Genetic evaluation under this model is concerned not only with predicting breeding

values but also permanent environmental effects.

4.2.1 Defining the model

The repeatability model is usually of the form:
y=Xb + Za + Wpe + ¢ (4.1)

where y = vector of observations, b = vector of fixed effects, a = vector of random
animal effects, pe = vector of random permanent environmental effects and non-
additive genetic effects, and e = vector of random residual effect. X, Z and W are
incidence matrices relating records to fixed animal and permanent environmental
effects, respectively.

Note that the vector a only includes additive random animal effects; conse-
quently, non-additive genetic effects are included in the pe term. It is assumed that the
permanent environmental effects and residual effects are independently distributed
with means of zero and variance 612)6 and o2, respectively. Therefore:

var(pe) = Io},
var(e) = Io?=R
var(a) = Ac?

and:
var(y) = ZAZ'c? + WIo2 W’ + R
The MME for the BLUE of estimable functions of b and for the BLUP of a and pe are:

-1
51 | XR'X X'R™'Z XR'W| | XRy
al=| ZR'X ZR'Z+A'1/c? ZR'W | | ZRy
pe] | WR'X WR'Z WR'W+I(1/0,,)| |WRy

However, the MME with R-! factored out from the above equations give the following
equations, which are easier to set up:

01 [xx X'Z xw] Xy
al=|z'X Z2Z+A'q, ZwW| | Zy (4.2)
pe| |W'X WZ WW+lg,| WYy

where o, = 62/62 and o, = 62/0?
e “a 2 e’ Y pe

4.2.2 Anillustration

Example 4.1
For illustrative purposes, assume a single dairy herd with the following data structure
for five cows:
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Cow Sire Dam Parity HYS  Fatyield (kg)

4 1 2 1 1 201
4 1 2 2 3 280
5 3 2 1 1 150
5 3 2 2 4 200
6 1 5 1 2 160
6 1 5 2 3 190
7 3 4 1 1 180
7 3 4 2 3 250
8 1 7 1 2 285
8 1 7 2 4 300

HYS, herd—year—season.

It is assumed that o2 = 20.0, 02 = 28.0 and 0'1279 = 12.0, giving a phenotypic vari-
ance (02) of 60. From the given parameters, o, = 1.40, o, = 2.333 and repeatability
is (02 + 0'28)/0'5 = (20 + 12)/60 = 0.53. The aim is to estimate the effects of lactation
number and predict breeding values for all animals and permanent environmental
effects for cows with records. The above genetic parameters are proportional to esti-
mates reported by Visscher (1991) for fat yield for Holstein Friesians in the UK for
the first two lactations using a repeatability model. Later, in Section 5.4, this data set
is reanalysed using a multivariate model assuming an unequal design with different
herd-year—season (HYS) effects defined for each lactation using corresponding mul-
tivariate genetic parameter estimates of Visscher (1991).

SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to HYS and parity is:

1010001000
0000100010
lo100010100
X=10 001000001
1010101010
010101010 1]

The first four rows of X’ relate records to HYS effects and the last two rows to parity effects.
Considering only animals with records, Z" and W” are equal and for the example data set:

1100000000
001100 00
Z'=[0 000110000
0000001100
0000O0O0OO0OTO0T11

Each row of Z’ corresponds to each cow with records. The matrices Z'Z and W'W
are both diagonal and equal and Z'Z is:

7’7 = diag(2, 2, 2, 2, 2)
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Note, however, that it is necessary to augment Z’Z by three columns and rows of
zeros to account for animals 1 to 3, which are ancestors. The remaining matrices in
the MME apart from A-! can easily be calculated through matrix multiplication. The
inverse of the relationship matrix (A1) is:

[ 2.,50 0.50 0.00 -1.00 0.50 -1.00 0.50 -1.00]
0.50 1.50 0.00 -1.00 0.00 0.00 0.00 0.00
0.00 0.00 183 0.50 -0.67 0.00 -1.00 0.00
-1.00 -1.00 0.50 2.50 0.00 0.00 -1.00 0.00
0.50 0.00 -0.67 0.00 1.83 -1.00 0.00 0.00
-1.00 0.00 0.00 0.00 -1.00 2.00 0.00 0.00
0.50 0.00 -1.00 -1.00 0.00 0.00 2.50 -1.00

|-1.00  0.00 0.00 0.00 0.00 0.00 -1.00 2.00]

and A-'e, is added to the Z'Z to obtain the MME.

The MME are too large to be shown. There is dependency in the MME because
the sum of equations for HYS 1 and 2 equals that of parity 1 and the sum of HYS 3
and 4 equals that for parity 2. The equations for HYS 1 and 3 were set to zero to
obtain the following solutions by direct inversion of the coefficient matrix:

Effects Solutions
HYS
1 0.000
2 44.065
3 0.000
4 0.013
Parity
1 175.472
2 241.893
Animal
1 10.148
2 -3.084
3 -7.063
4 13.581
5 -18.207
6 -18.387
7 9.328
8 24.194
Permanent environment
4 8.417
5 -7.146
6 -17.229
7 -1.390
8 17.347
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The fixed-effect solutions for parity indicate that yield at second lactation is higher
than that at first, which is consistent with the raw averages. From the MME, the
solution for level 7 of the nth fixed effect can be calculated as:

diag,,

émz leyinf _Z[;inj - Zk:&ink - Zl:ﬁeinl/diagm (4.3)
= j

where y, is the record for animal fin level 7 of the nth fixed effect, diag,, is the number

of observations for level i of the nth fixed effect, b, , 4,, and pe, , are solutions for
. . . mj m, m .

levels j, k and I of any other fixed effect, random animal and permanent environmental

effects, respectively, within level i of the nth fixed effect. Thus the solution for level

two of HYS effect is:

b, =1[445 - (2b,,) - (@, + d ) - (Pe, + pey))/2
= [445 - 2(175.472) - 5.807 - (0.118)]/2
= 44.065

21

Breeding values for animals with a repeatability model can also be calculated
using Eqn 3.8, except that YD is now yield corrected for the appropriate fixed effects,
permanent environmental effect and averaged. Thus for animal 4:

d, = n[(@, + a2 + ny[((y, - b, - b, - pe,) + (y,, - by - b, - pe,)2]
+ (24, - dy)

where y, is yield for cow j in lactation i, 7, = 2.8/5.5, n, = 2/5.5 and n; = 0.7/5.5 and
5.5 = the sum of the numerator of #, n, and #,.

4, =n,(3.532) + m,[((201 - 0.0 - 175.472 - 8.417)
+ (280 - 0.0 - 241.893 — 8.147))/2] + n,(18.656 — (~7.063))
= 13.581

The higher breeding value for sire 1 compared with sire 3 is due to the fact that
on average the daughters of sire 1 were of higher genetic merit after adjusting for the
breeding values of mates. The very high breeding value for cow 8 results from the
high parent average breeding value and she has the highest yield in the herd, resulting
in a large YD.

The estimate of pe for animal 7 could be calculated as:

pe, :Hf}l@ b, -y ﬂ/m +a,) (4.4)
f j k

where 2, is the number of records for animal 7 o, = 662/0'1726 and other terms are as
defined in Eqn 4.3. Thus for animal 4:

pe, = [(201 - 0.0 - 175.472 - 13.581)
+ (280 - 0.0 — 241.893 — 13.581)]/(2 + 2.333)
- 8.417

The estimate of permanent environment effect for an animal represents environ-
mental influences and non-additive genetic effect, which are peculiar to the animal
and affect its performance for life. These environmental influences could either be
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favourable - for instance, animal 8 has the highest estimates of pe and this is reflected
by her high average yield — or could reduce performance (for example, cow 6 has a
very negative estimate of pe and low average yield). A practical example of such per-
manent environment effect could be the loss of a teat by a cow early in life due to
infection. Thus differences in estimates of pe represent permanent environmental dif-
ferences between animals and could help the farmer, in addition to the breeding value,
in selecting animals for future performance in the same herd. The sum of breeding
value and permanent environment effect (4, + pe;) for animal i is termed the probable
producing ability (PPA) and represents an estimate of the future performance of the
animal in the same herd. If the estimate of the management level (M) for animal 7 is
known, its future record (y,) can be predicted as:

yi = M + PPA
This could be used as a culling guide.

4.2.3 Calculating daughter yield deviations

As indicated in Section 3.3.3, daughter yield deviation (DYD) is commonly calculated
for sires in dairy cattle evaluations. The calculation of DYD for sire 1 in Example 4.1
is hereby illustrated.

First, the yield deviations for the daughters (cows 4, 6 and 8) of sire 1 are
calculated. Thus for cow i, YD, = (Z'Z)'Z'(y, - Xb - Wpe). Therefore:

YD, = 3[(201 - 175.472 - 0 - 8.417) + (280 - 241.893 - 0 - 8417)] = 23.4005
YD, = 1[(160 - 175.472 - 44.065 - (-17.229))
+ (190 - 241.893 - 0 - (-17.229)] = -38.486

(
YD, = 1[(285 - 175.472 - 44.065 - 17.347)
+ (300 - 241.893 - 0.013 - 17.347)] = 44.432

Both parents of these daughters are known, therefore 7, =~ =2/(2 + 2¢,) = 0.4167

and Uproe = 1 for each daughter. Using Eqn 3.12, DYD for sire 1 is:

DYD, = [t 11, (2YD,~ &) + 151, (YD~ &)

+ u(S)n2<8)(2YD8 - 57)]/(2(741770;; + anrog))

3

DYD, =[(1)(0.4167)(2(23.4005) - (-3.084)) +(1)0.4167(2(-38.486) - (-18.207))
+(1)0.4167(2(44.432) - 9.328)]/(3(1)(0.4167))
=23.552

Calculating the proof of sire 1 using Eqn 3.13 and a DYD of 23.552 gives a breeding
value of 9.058. It is slightly lower than the breeding value of 10.148 from solving the
MME, as the contribution of the granddaughter through cow 4 is not included.

4.3 Model with Common Environmental Effects

Apart from the resemblance between records of an individual due to permanent envi-
ronmental conditions, discussed in Section 4.2, environmental circumstances can also
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contribute to the resemblance between relatives. When members of a family are
reared together, such as litters of pigs, they share a common environment and this
contributes to the similarity between members of the family. Thus there is an addi-
tional covariance between members of a family due to the common environment
they share and this increases the variance between different families. The environ-
mental variance may be partitioned therefore into the between-family or group
component (0?), usually termed the common environment, which causes resem-
blance between members of a family, and the within-family or within-group vari-
ance (0?). Sources of common environmental variance between families may be due
to factors such as nutrition and/or climatic conditions. All sorts of relatives are
subject to an environmental source of resemblance, but most analyses concerned with
this type of variation in animal breeding tend to account for the common environ-
ment effects associated with full-sibs or maternal half-sibs, especially in pig and
chicken studies.

4.3.1 Defining the model

Genetic evaluation under this model is concerned with prediction of breeding val-
ues and common environmental effects and the phenotypic variance may be parti-
tioned into:

1. Additive genetic effects resulting from additive genes from parents.

2. Common environmental effects affecting full-sibs or all offspring of the same dam.
In the case of full-sibs, it may be confounded with dominance effects peculiar to off-
spring of the same parents. Further explanation is given later on the components of
the common environmental effect.

3. Random environmental effects.

In matrix notation, the model, which is exactly the same as in Eqn 4.1, is:
y=Xb+Za+Wc+e

where all terms are as given in Eqn 4.1 except ¢, which is the vector of common
environmental effects and W now relates records to common environmental
effects.

It is assumed that common environmental and residual effects are independently
distributed with means of zero and variance 6% and 62, respectively. Thus var(c) = Io2,
var(e) = Io? and var(a) = Ac?.

The MME for the BLUP of a and ¢ and BLUE of estimable functions of b are
exactly the same as Eqn 4.2 but with o, = 62/62 and o, = 62/02.

4.3.2 Anillustration

Example 4.2
Consider the following data set on the weaning weight of piglets, which are progeny
of three sows mated to two boars:
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Piglet Sire Dam Sex Weaning weight (kg)

6 1 2 Male 90
7 1 2 Female 70
8 1 2 Female 65
9 3 4 Female 98
10 3 4 Male 106
11 3 4 Female 60
12 3 4 Female 80
13 1 5 Male 100
14 1 5 Female 85
15 1 5 Male 68

The objective is to predict breeding values for all animals and common environmental
effects for full-sibs. Given that o2 = 20, 6= 15 and 62 = 65, then O'y2 =100, o, = 3.25
and o, = 4.333.

The model for the analysis is that presented in Eqn 4.5 and, as mentioned earlier,
the MME for the BLUP of a and ¢ and BLUE of estimable functions of b are as given
in Eqn 4.2, using o, and o, defined above.

SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to sex effects in this example is:

, 11000100101
0111011010

and Z = I, excluding parents. The transpose of matrix W that relates records to

full-sibs is:

W =

- O O

0
0
1

S O -

1
0
0

S O =
S = O
S = O
S = O

0
0
1

The MME can be set up as discussed in Example 4.1. The solutions to the MME
by direct inversion of the coefficient matrix are:

Effects Solutions
Sex
Male 91.493
Female 75.764
Animals
1 -1.441
2 -1.175
3 1.441
4 1.441
5 -0.266
6 -1.098
Continued
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(Continued)

Effects Solutions
7 -1.667
8 -2.334
9 3.925
10 2.895
11 -1.141
12 1.525
13 0.448
14 0.545
15 -3.819
Common environment
2 -1.762
4 2.161
5 -0.399

The equation for the solution of the i level of fixed, animal and common envi-
ronmental effects under this model are the same as those given for fixed (Eqn 4.3),
animal and permanent environmental effects (Eqn 4.4), respectively, in Example 4.1.
The inclusion of common environmental effects in the model allows for accurate
prediction of breeding values of animals. Assuming each dam reared her progeny and
full-sib families were kept under similar environmental conditions, the estimates of
common environmental effects indicate that dam 4 provided the best environment for
her progeny compared with dams 2 and 5. Also, dam 4 has the highest breeding value
among the dams and would therefore be the first dam of choice, whether selection is
for dams of the next generation on the basis of breeding value only or selection is for
future performance of the dams in the same herd, which will be based on some com-
bination of breeding value and estimate of common environmental effect.

The environmental covariance among full-sibs or maternal half-sibs might be due
to influences from the dam (mothering ability or maternal effect); therefore, differ-
ences in mothering ability among dams would cause environmental variance between
families. For instance, resemblance among progeny of the same dam in body weight
could be due to the fact they share the same milk supply and variation in milk yield
among dams would result in differences between families in body weight. This varia-
tion in mothering ability of dams has a genetic basis and, to some degree, is due to
genetic variation in some character of the dams. In Chapter 7, the genetic component
of maternal effect is examined and the appropriate model that accounts for the genetic
component in genetic evaluation is presented.
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Best Linear Unbiased
Prediction of Breeding Value:
Multivariate Animal Models

5.1 Introduction

Selection of livestock is usually based on a combination of several traits of economic
importance that may be phenotypically and genetically related. Such traits may
be combined into an index on which animals are ranked. A multiple trait evaluation
is the optimum methodology to evaluate animals on these traits because it accounts
for the relationship between them. A multiple trait analysis involves the simultane-
ous evaluation of animals for two or more traits and makes use of the pheno-
typic and genetic correlations between the traits. The first application of best linear
unbiased prediction (BLUP) for multiple trait evaluation was by Henderson and
Quaas (1976).

One of the main advantages of multivariate best linear unbiased prediction
(MBLUP) is that it increases the accuracy of evaluations. The gain in accuracy is
dependent on the absolute difference between the genetic and residual correlations
between the traits. The larger the differences in these correlations, the greater the gain
in accuracy of evaluations (Schaeffer, 1984; Thompson and Meyer, 1986). When, for
instance, the heritability, genetic and environmental correlations for two traits are
equal, multivariate predictions are equivalent essentially to those from univariate
analysis for each trait. Moreover, traits with lower heritabilities benefit more when
analysed with traits with higher heritabilities in a multivariate analysis. Also, there is
an additional increase in accuracy with multivariate analysis resulting from better
connections in the data due to residual covariance between traits (Thompson and
Meyer, 1986).

In some cases, one trait is used to decide whether animals should remain in the
herd and be recorded for other traits. For instance, only calves with good weaning
weight may be allowed the chance to be measured for yearling weight. A single trait
analysis of yearling weight will be biased since it does not include information on
weaning weight on which the selection was based. This is often called culling bias.
However, a multi-trait analysis on weaning and yearling weight can eliminate this
bias. Thus MBLUP accounts for culling selection bias.

One of the disadvantages of a multiple trait analysis is the high computing cost.
The cost of multiple analysis of 7 traits is more than the cost of # single analyses.
Second, a multiple trait analysis requires reliable estimates of genetic and phenotypic
correlations among traits and these may not be readily available.

In this chapter, MBLUP involving traits affected by the same effects (equal design
matrices) and situations in which different traits are affected by different factors (non-
identical design matrices) are discussed. In the next chapter, approximations of MBLUP
when design matrices are equal with or without missing records are also examined.
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5.2 Equal Design Matrices and No Missing Records

Equal design matrices for all traits imply that all effects in the model affect all traits
in the multivariate analysis and there are no missing records for any trait.

5.2.1 Defining the model

The model for a multivariate analysis resembles a stack of the univariate models for
each of the traits. For instance, consider a multivariate analysis for two traits, with
the model for each trait of the form given in Eqn 3.1, that is, for trait 1:

y,=Xb, +Za, +e¢
and for trait 2:

y,=X,b, +Zja, +¢,

If animals are ordered within traits, the model for the multivariate analysis for the
two traits could be written as:

A X; 0 |[by Z: 0 |[ay eq
= + + (5.1)

Y, 0 Xa][ba] [0 Z:f[az] [e
where y, = vector of observations for the ith trait, b, = vector of fixed effects for the
ith trait, a, = vector of random animal effects for the ith trait, e, = vector of random
residual effects for the ith trait, and X; and Z, are incidence matrices relating records

of the ith trait to fixed and random animal effects, respectively.
It is assumed that:

ai g,A g,A 0 0
var ax| _ A g,A 0 0
el 0 0 711 2

e2 0 0 ra 12

where G = additive genetic variance and covariance matrix for animal effect with
each element defined as: g, = additive genetic variance for direct effects for trait 1;
g, = &, = additive genetic covariance between both traits; g,, = additive genetic vari-
ance for direct effects for trait 2; A is the relationship matrix among animals; and
R = variance and covariance matrix for residual effects.

The MME are of the same form as in Section 3.2 and these are:

X'R7IX XR'Z b _[xrTy (5.2)
ZR'X ZR'Z+A'G'||a| |ZR'Y '

where:
X ) {Xl 0:|, Z ) |:Zl 0:|, B ) [Pll, é ) |:?1:| and y ) {YI}
0 X, 0 7, b, a2 Y2
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Writing out the equations for each trait in the model separately, the MME become:

b, [XIR'X, XIR"X, XiR'"Z, XiR"Z,
b, | | X2R*'X, X5R¥X, X3R*'Z, X3R*Z,
a| | ZR"X, ZiIR”X, Z|R'Z;+A”'g"" Z/R12Z,+Ag?
] |Z:R¥X, Z)R¥X, Z)RYZ;+A'g? Z)R?Z,+A-lg? (53)
X1R11Y1 . X; R12y2
X, Rﬂy1 + X, R22y2
Z\R"y,+Z\R}’
Z2Ry, +Z5RY

where g7 are 7/ elements of G! and R, respectively. It should be noted that if R'%,
R?!, ¢'? and g*! were set to zero, the matrices in the equations above reduce to the
usual ones computed when carrying out two single trait analyses since the two traits
become uncorrelated and there is no flow of information from one trait to the other.

5.2.2 An illustration

Example 5.1

Assume the data in Table 5.1 to be the pre-weaning gain (WWG) and post-weaning
gain (PWG) for five beef calves. The objective is to estimate sex effects for both traits
and to predict breeding values for all animals using a MBLUP analysis. Assume that
the additive genetic covariance (G) matrix is:

 WWG {zo 18

WWG| 4 11
= and the residual covariance matrix R = G40
PWG |18 40

PWG |11 30

The inverses of G and R are:

» 0.084 —0.038 4 0.028 -0.010
= and R7'=
-0.038 0.042 -0.010 0.037

SETTING UP THE DESIGN MATRICES

The matrices X, and X, relate records for WWG and PWG, respectively, to sex
effects. Both matrices are exactly the same as X in Section 3.3.1. Considering only
animals with records, Z, and Z, relate records for WWG and PWG to animals,
respectively. Both matrices are identity matrices since animals have only one record
each for WWG and PWG. The matrix y is a vector of observations for WWG (y,)
and PWG (y,). Thus its transpose is:

y=[y, v,]=[45 29 39 35 50 68 50 6.8 6.0 7.5]

The other matrices in the MME can then easily be calculated from the design
matrices and vector of observations through matrix multiplication. Examples of some
blocks of equations are given below.
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Table 5.1. Pre-weaning gain (kg) and post-weaning gain (kg) for five beef calves.

Calves Sex Sire Dam WWG PWG
4 Male 1 - 4.5 6.8
5 Female 3 2 2.9 5.0
6 Female 1 2 3.9 6.8
7 Male 4 5 3.5 6.0
8 Male 3 6 5.0 7.5

From Eqns 5.2 and 5.3, the fixed effects by fixed effects block of equations for
both traits in the coefficient matrix of the MME is:

0.084 0.000 -0.03 0.00
X/ RUX, X&R12X2:|_ 0.00 0.056 0.00 -0.02
X5 R21X; X5R2X, -0.03 0.00 0.101 0.00
0.00 -0.02 0.00 0.074

X’'R™ X:{

The right-hand side for the levels of sex effects for both traits is:

0.364 +(-0.203)

X{RUy, +X5R2y, | | 0.190+(-0.118)

X;R2ly, + X5 R2Y, }_ ~0.130+0.751
~0.068+0.437

X'Ry =[

The inverse of the relationship matrix for the example data is the same as that given
in Example 3.1. The matrices A-'g"!, A-'g'?> and A-'g?? are added to Z/R"Z , ZR"?Z,
and Z, R2 Z,, respectively, to obtam the MME. For example, the matrlx Z RuZ +
Alg 12

[-0.069 -0.019 0.000 0.025 0.000 0.038 0.000 0.000]
-0.019 -0.076 -0.019 0.000 0.038 0.038 0.000 0.000
0.000 -0.019 -0.076 0.000 0.038 -0.019 0.000 0.038
L 12_| 0.025 0.000 0.000 -0.080 -0.019 0.000 0.038 0.000
ZR12Z,+A"g "=
0.000 0.038 0.038 -0.019 -0.105 0.000 0.038 0.000
0.038 0.038 -0.019 0.000 0.000 -0.105 0.000 0.038
0.000 0.000 0.000 0.038 0.038 0.000 -0.086 0.000
| 0.000 0.000 0.038 0.000 0.000 0.038 0.000 -0.086 ]

The MME have not been presented because they are too large, but solving the MME
by direct inversion of the coefficient matrix gives the solutions shown below. See also
the solutions from a univariate analysis of each trait.
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Multivariate analysis traits Univariate analysis traits

Effects WWG PWG WWG PWG
Sex
Male 4.361 6.800 4.358 6.798
Female 3.397 5.880 3.404 5.879
Animals
1 0.151 0.280 0.098 0.277
2 -0.015 -0.008 -0.019 -0.005
3 -0.078 -0.170 —-0.041 -0.171
4 -0.010 -0.013 —-0.009 -0.013
5 -0.270 -0.478 -0.186 -0.471
6 0.276 0.517 0.177 0.514
7 -0.316 -0.479 -0.249 -0.464
8 0.244 0.392 0.183 0.384

The differences between the solutions for males and females for WWG and PWG in
the multivariate analysis are more or less the same as those obtained in the univariate
analyses of both traits. The solutions for fixed effects in the multivariate analysis
from the MME can be calculated as:

~ -1
{lfﬂ]=[nir“ n,ﬂ] S (5.4)

21 2
baj njr- njr yo;— g — az;

where y, and 4, are the sums of observations and EBVs, respectively, for calves for
trait 7 in sex subclass Js b is the solution for trait i in sex subclass j and n; is the num-
ber of observations for sex subclass j j. Using the above equation, the solutions for sex
effects for males for WWG and PWG are:

[gn]_[grﬂ 3ru}‘1 [rn ,H] 13.0—(0.082) — g'%(-0.10) _[4u361}
bo| 32 3% ™ r**]120.3 - ¢*'(-0.082) - (-0.10) || [6-800

5.2.3 Partitioning animal evaluations from multivariate analysis

An equation similar to Eqn 3.8 for the partitioning of evaluations from multivariate
model was presented by Mrode and Swanson (2004) in the context of a random regres-
sion model (see Chapter 9). Since the yield records of animals contribute to the breeding
values through the vector of yield deviations (YD), equations for calculating YD are
initially presented. From Eqn 5.1, the equations for the breeding values of animals are:

(ZR'Z + A1 G)a=2ZR"(y - Xb)

Therefore:

(ZR'Z + A" GYa=(ZR'Z) YD (5.5)
with:

YD =(ZR'Z)" (ZR (y - Xl;)) (5.6)
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Just as in the univariate model, YD is a vector of the weighted average of a cow’s yield
records corrected for all fixed effects in the model.

Transferring the left non-diagonal terms of A~! in Eqn 5.5 to the right side of the
equation (VanRaden and Wiggans, 1991) gives:

(ZR'Z+G ' =G 'a,, (@, + dg,,)+(Z'R'Z)YD
+ G 12 apmg prog - 0'5émate)

~
anim ) anim

where o =1, % or ; if both, one or neither parents are known, respectively, and &, =1
if the animal’s mate is known and 3 if unknown. Note that o, =20, +0.5¢, .
The above equation can be expressed as:
(Z’R'Z+G ) 1y = 2G 7't (PA)+(Z'R™'Z)YD
-1 N A
+0.5G Yo (24,00 =B pra) (5.7)

where PA = parent average.

Pre-multiplying both sides of the equation by (ZR-'Z + G-l ) gives:

= W,PA + W, YD + W,PC (5.8)

amm

with:

PC= Z prog pmg Aate )/Zapmg

The welghts W, W, and W, = I, with W, = (DIAG)-'2G"! o, W, =
(DIAG)- (ZRlz) and \W3 = (DIAG)'0.5G "2, , where (DIAG) = (ZR12 +
G'a . ). Equation 5.8 is similar to Eqn 3.8 but the weights are matrices of the

anim

order of traits in the multivariate analysis. Equation 5.8 is illustrated below using
calf 8 in Example 5.1.
Since Z =1 for calf 8, then Eqn 5.6 becomes YD = RR-!(y - Xb) =y - Xb. Thus:

(YDm J ) {ym b, J_ (5.0 - 4.361)_(0.639)
YDy, Ve, — b, 7.5-6.800) 0.700
Both parents of calf 8 are known, therefore:

0.1958 —0.0858J

DIAG, =R +2G' =
-0.0858 0.1211

and:

0.8476 —0.1191
W, = (DIAG)'2G™ =( ) and

-0.0237 0.6092

0.1524 0.1191]

W, =1-W, =
: ! (0.0237 0.3908

Then, from Eqn 5.8:
dg, PAg, YDy, 0.099 0.639
Sl=w, +W, =W, +W,
s, PAg, YDy, 0.1735 0.700
0.06325 0.18075) (0.244
0.10335) 10.28870) (0.392
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In both traits, the contributions from PA accounted for about 26% of the breeding
value of the calf.

In general, the estimates of breeding value for PWG from the multivariate
analysis above are similar to those from the univariate analysis. The maximum
difference between the multivariate and univariate breeding values is 0.008 kg
(calf 8). The similarity of the evaluations for PWG from both models is due to the
fact that genetic regression of WWG on PWG (0.45) is almost equal to the pheno-
typic regression (0.41) (Thompson and Meyer, 1986). However, the breeding val-
ues for WWG from the multivariate analysis are higher than those from the
univariate analysis, with a maximum difference of 0.10 kg (calf 8) in favour of the
multivariate analysis. Thus much of the gain from the multivariate analysis is in
WWG and this is due to its lower heritability, as mentioned earlier. However, there
was only a slight re-ranking of animals for both traits in the multivariate analysis.

5.2.4 Accuracy of multivariate evaluations

One of the main advantages of MBLUP is the increase in the accuracy of evaluations.
Presented below are estimates of reliabilities for the proofs for WWG and PWG from
the multivariate analysis and the univariate analysis of each trait.

Multivariate analysis

Diagonals® Reliability Univariate analysis reliability
Animal WWG PWG WWG PWG WWG PWG
1 18.606 35.904 0.070 0.102 0.058 0.102
2 19.596 38.768 0.020 0.031 0.016 0.031
3 17.893 33.799 0.105 0.155 0.088 0.155
4 16.506 29.727 0.175 0.257 0.144 0.256
5 16.541 29.865 0.173 0.253 0.144 0.253
6 17.152 31.504 0.142 0.212 0.116 0.212
7 17.115 31.364 0.144 0.216 0.116 0.216
8 16.285 29.160 0.186 0.271 0.156 0.270

aDiagonal elements of the inverse of the coefficient matrix from multivariate analysis.

The reliability for the proof of animal 7 and trait j (r}) in the multivariate analysis
was calculated as 1’5 = (g; - PEV,)/g,, where PEV. is the diagonal element of the
coefficient matrix pertaining to animal i and trait j. This formula is obtained by
rearranging the equation given for reliability in Section 3.3.3. For instance, the relia-

bilities for the proofs for WWG and PWG for animal 1, respectively, are:
5 = (20 - 18.606)/20 = 0.070

and:
15, = (40 - 35.904)/40 = 0.102

Similar to the estimates of breeding values, the reliabilities for animals for PWG from
the multivariate analysis were essentially the same from the univariate analysis as G, =
r,G;; (Thompson and Meyer, 1986), where the jth trait is PWG and r, is the phenotypic
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correlation. However, there was an increase of about 20% in reliability for WWG for
each animal under the multivariate analysis compared with the univariate analysis. Again
much of the gain in accuracy from the multivariate analysis is observed in WWG.

5.2.5 Calculating daughter yield deviations in multivariate models

The equations for calculating daughter yield deviations (DYDs) with a multivariate
model are similar to Eqn 3.12 for the univariate model except that the weights are
matrices of order equal to the order of traits. The equations can briefly be derived
(Mrode and Swanson, 2004) as follows.

Given the daughter (prog) of a bull, with no progeny of her own, Eqn 5.8 becomes:

éprog 1progPA + WZprog (YD) (59)
Let PC be expressed as in Eqn 5.7:
PC=0.5G"'Y a (24, — 4

p‘rog prog mate )

(5.10)

Substituting Eqn 5.9 into Eqn 5.10 gives:

PC=0.5G"Y o, (W, 4, + W, A, +W, 2YD-d,,,)
Since the daughter has no offspring of her own, W, = 0, therefore W, =1-W, .
Then:

PC=0.5G"Y o, (=W, )3, +W,  (Q2YD-a, ) (5.11)

Substituting Eqn 5.11 into Eq 5.7 and moving all terms involving a . to the left-
hand side gives:

(Z’R™'Z+2G ', +0.5G' YW, «
=2G"'e,,PA+(ZR7Z)YD +0.5G™' Y\ W, «

pmg) anim

prog (ZYD - éimate)

Pre-multiplying both sides of the equation by the inverse coefficient matrix gives:

= M, (PA) + M, (YD) + M,(DYD) (5.12)

amm

where:

DYD=3W, o, (2YD=1,,.)/>W, a,, (5.13)

and M, + M, + M, =1, with M, = (DIAG)2G"'«
(DIAG) 10. 5G 12W2prog oro where (DIAG)=(ZR7'Z+2G'at,,, +0.5G ' W, mgap,og)
The matrix W, prog 111 the equatlon for DYD is not symmetrical and is of the order of traits
and the full matrix has to be stored. This could make the computation of DYD cum-
bersome, especially with a large multivariate analysis or when a random regression
model is implemented (see Chapter 9). For instance, in the Canadian test day
model, which involves analysing milk, fat and protein yields and somatic cell count

(SCC) in the first three lactations, it is a matrix of order 36 (Jamrozik et al., 1997).

» M, = (DIAG)"{(Z'R"'Z) and M, =
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Thus for computational ease, pre-multiply W with G1, and the equation for

DYD becomes:

2prog

-1 ~ -1
DYD = 2 G Wlprog aprog(ZYD - umate )/G Wlprog aprog

The product of G'W,_  is symmetric and only upper or lower triangular elements
need to be stored. The computation of DYD is illustrated in Section 5.4.2, using the
example dairy data.

5.3 Equal Design Matrices with Missing Records

When all traits in a multivariate analysis are not observed in all animals, the same
methodology described in Section 5.2 can also be employed to evaluate animals,
except that different residual covariance matrices have to be set up corresponding to
a different combination of traits present. If the loss of traits is sequential, that is, the
presence of the ith record implies the presence of 1 to (i - 1) records, then the number
of residual covariance matrices is equal to the number of traits. In general, if there are
n traits, there are (2" — 1) possible combinations of observed traits and therefore
residual covariance matrices (Quaas, 1984).

5.3.1 An illustration

Example 5.2
For illustrative purposes, consider the data set below, obtained by modifying the data
in Table 5.1.

Calf Sex Sire Dam WWG (kg) PWG (kg)
4 Male 1 — 4.5 -

5 Female 3 2 2.9 5.0

6 Female 1 2 3.9 6.8

7 Male 4 5 3.5 6.0

8 Male 3 6 5.0 7.5

9 Female 7 — 4.0 -

The model for the analysis is the same as in Section 5.2.1 and the same genetic
parameters applied in Example 5.1 are assumed. The loss of records is sequential;
there are therefore two residual covariance matrices. For animals with missing records
for PWG, the residual covariance matrix (R ) and its inverse (R;!) are R =7 . =40
and R;! = 7! = - = 0.025. For animals with records for both WWG and PWG the

20
residual covariance matrix (R ) and its inverse (R~}) are:

40 11 . | 0.028 -0.010
R, = and R,'=
11 30 -0.010  0.037
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SETTING UP THE DESIGN MATRICES

The X; and X; matrices, which relate sex effects for WWG and PWG, respectively, are:

100110 000110
| = and X =
011001 011000
30 20
XiXi=|, and XpXa=| ),

In setting up XiR“Xl, it is necessary to account for the fact that animals (one
male and one female) have missing records for PWD. Thus:

rpll 11 ’ 11p- 10 2.0
X{R'X, = 1,'WW 1) 'B'B=0.025| = |+0.028 =

0.081 0.000
0 2

0.000 0.081

where the matrix W relates WWG records for animals 4 and 9 with missing records
for PWD to sex effects and B relates WWG records for calves 5, 6, 7 and 8 to sex
effects. The matrices W' and B’ are:

10 00 11
W’ = and B’ =
0 1 1100

However, all animals recorded for PWG also had records for WWG, therefore:

20 0.074 0
X§R22X2=7<2)2X'2X2=0'037{ } ] { }

0 2 0 0.074
and:
R, =% x. =—0.010]2 O] = [002 000
1R T e R R T 0 2] T | 0.00 —0.02

Excluding ancestors, the matrix Z, is an identity matrix because every animal has a
record for WWG. Therefore, Z]Z, =1 and:

Z/R"Z = diag(0.025, 0.028, 0.028, 0.028, 0.028, 0.025)

However:
Z, = diag(0, 1, 1, 1, 1, 0)

indicating that calves 4 and 9 have no records for PWG, and:
Z;R**Z, = diag(0.0, 0.037, 0.037, 0.037, 0.037, 0.0)

To account for ancestors (animals 1 to 3), ZR"Z and ZJR**Z, given above
augmented with three rows and columns of zeros.

The other matrices in the MME can be calculated through matrix multiplica-
tion. The matrix A-! can be set up and A'"G™! (where * means the Kronecker
product) added to the appropriate matrices, as described in Section 5.2.2, to obtain
the MME. The MME are too large to be presented but solutions from solving the
equations are shown below, together with solutions from the univariate analyses of
WWG and PWG.
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Multivariate analysis Univariate analysis

Effects WWG PWG WWG PWG

Sex
Male 4.367 6.834 4.364 6.784
Female 3.657 6.007 3.648 5.873

Animal
1 0.130 0.266 0.077 0.273
2 -0.084 -0.075 -0.081 0.000
3 -0.098 -0.194 -0.058 -0.165
4 0.007 0.016 0.003 -0.025
5 -0.343 -0.555 -0.250 -0.463
6 0.192 0.440 0.098 0.517
7 -0.308 -0.483 -0.237 -0.460
8 0.201 0.349 0.143 0.392
9 -0.018 -0.119 0.010 -0.230

The differences for sex solutions for WWG from the multivariate and univariate
analyses are very similar to those in Section 5.2 since there are no missing records in
WWG. However, sex differences in the two analyses are different for PWG due to the
missing records. Again, most of the benefit in terms of breeding values from the mul-
tivariate analysis was observed in WWG, as explained in Section 5.2. However, for
the calves with missing records for PWG, there was a substantial change in their
proofs compared with the estimates from the univariate analysis. The proofs for these
calves for PWG are based on pedigree information only in the univariate analysis but
include information from the records for WWG in the multivariate analysis due to
the genetic and residual correlations between the two traits. Thus the inclusion of a
correlated trait in a multivariate analysis is of much benefit to animals with missing
records for the other trait.

5.4 Unequal Design Matrices

Unequal design matrices for different traits arise when traits in the multivariate analysis
are affected by different fixed or random effects — for instance, the multivariate analysis
of yields in different lactations as different traits. Due to the fact that calving in different
parities occur in different years, herd-year—season (HYS) effects associated with each
lactation are different, and an appropriate model should include different HYS for yield
in each parity. An example where random effects might be different for different traits is
the joint analysis for weaning weight and lean per cent in beef cattle. It might be consid-
ered that random maternal effect (see Chapter 7) is only important for weaning weight
and the model for the analysis will include maternal effects only for weaning weight.

5.4.1 Numerical example

Example 5.3
Using the fat yield data in Chapter 4 analysed with a repeatability model, the princi-
ples of a multivariate analysis with unequal design are illustrated below, considering
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yield in each parity as different traits and fitting a different HYS effect for each trait. The data
with each lactational yield treated as different traits and HYS recoded for each trait is:

Cow Sire Dam HYS1 HYS2 FAT1 FAT2
4 1 2 1 1 201 280
5 3 2 1 2 150 200
6 1 5 2 1 160 190
7 3 4 1 1 180 250
8 1 7 2 2 285 300

HYS1, HYS2, herd-year—season for parity 1 and 2, respectively; FAT1, FAT2, fat
yield in parity 1 and 2.

The aim is to carry out a multivariate estimate of breeding values for fat yield in
lactation 1 (FAT1) and 2 (FAT2) as different traits. Assume the genetic parameters are:

65 27 35 28 0.018 -0.007
R=|: ] and G:[ ] with R_1=|: ] and

27 70 28 30 -0.007 0.017
o [ 0.113 -0.105
“1-0.105 0.132

The model for the analysis is the same as in Section 5.2 but the MME are different
from those in Section 5.2 because HYS effects are peculiar to each trait. The MME
with the equations written out separately for each trait are:
6,1 [XIR'"X, X/R™X, X/R"Z, X/R"?Z, |
b | | XR*X; X3R¥X, X;R*'Z, X;R*Z,
al| | ZIR"X, ZRVX, Z{R"Z+A™g" Z{R?Z,+A'g"
] |z, R¥X, ZIRPX, Z,RMZ,+A'¢Y ZiRZZ,+A'g?
| X{R'y, +X{R"y,
X5 Ry, + X3 R? Y2
ZR'y,+Z{R"%y,
| Z3R*y, +Z, Ry,

SETTING UP THE DESIGN MATRICES AND MME

The matrix X, now relates HYS effects to FAT1 while X, relates HYS effects to FAT2.
The transposes of these matrices are:

11010 | 10110
= n =
Xi=lg 010 1| ™ X

Matrices Z, and Z, are equal and they are identity matrices of order 5 by §
considering only animals with records. The matrix A-' has been presented in
Section 4.2.2. The remaining matrices in the MME can be obtained as described in
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previous sections. The MME have not been presented because they are too large.
The solutions to the MME are:

Solutions
Multivariate analysis Univariate analysis

Effects FATA1 FAT2 FAT1 FAT2
HYS

1 175.7 243.2 175.8 2371

2 219.6 240.6 220.4 250.0
Animal

1 8.969 8.840 6.933 8.665

2 -2.999 =2.777 -2.59 —2.244

3 -5.970 -6.063 -4.341 -6.422

4 11.754 11.658 9.103 12.197

5 -16.253 -15.824 -12.992 -15.563

6 -17.314 -15.719 -15.197 -11.149

7 8.690 8.138 7.566 7.696

8 22.702 20.931 19.417 15.560

Similar to the results in Section 5.2.2, the largest increase in breeding value under
the multivariate analysis compared with the univariate was in FAT2. This may be due
to the lower heritability of FAT2 compared with FAT1, as explained earlier.

Compared with the results from the repeatability model (Section 4.2.2) on the same
data with corresponding estimates of genetic parameters, the mean breeding values for
FAT1 and FAT2 for animals in the multivariate analysis are similar to the breeding
value estimates from the former. The ranking of animals is the same under both models.
Also, the differences between solutions for corresponding levels of HYS are very similar.
In general, the repeatability model on successive records of animals is very efficient
compared with the multivariate model, especially when the genetic correlation among
records is high. The genetic correlation used for the multivariate analysis was 0.86.
Visscher (1991) reported a loss of 0 to 5% in efficiency in genetic gain with a repeat-
ability model on first and second fat yield compared with the multivariate model using
a selection index. Mrode and Swanson (1995) reported a rank correlation of 0.98
between breeding value estimates for milk yield in first and second lactations, from a
repeatability model and multivariate analysis for bulls with 60 or more daughters. The
benefit of the repeatability model compared with the multivariate is that it is less com-
putationally demanding and fewer estimates of genetic parameters are required.

If there are missing records in addition to unequal design matrices for traits in a
multivariate analysis, the analysis can be carried out using the same principles out-
lined in Section 5.3, defining different residual covariance matrices for each pattern
of missing traits.

5.4.2 lllustrating the computation of DYD from a multivariate model

The computation of DYD from a multivariate model is illustrated using sire 1 with
three daughters (cows 4, 6 and 8) in Example 5.3. As shown in Section 5.2, since
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each daughter has one record per each trait, YD, for the daughter 7 and trait j equals
(v, - xt.].b). Thus:

(YD“ ] B (201 - 175.5} ) (25.7]. [YDM] ) (160 - 219.6] B (—59.6]
YD,, 280 -243.2 36.8)7 YD, 190 —243.2 -53.2
and:

(YDglJ B (285 - 219.6] 3 (65.4)

YD, 300 -240.6 59.4
For all three daughters, the dams are known, therefore W
for all daughters and is:

Wos = (Z’R7'Z+2G™) 1 (Z'R7'Z)
( 0.2439 —0.2176)‘1 (0.0183 —0.0071)_(0.1713 0.0821]

2prog 11 Eqn 5.13 is the same

-0.2176  0.2802) \-0.0071 0.0170 0.1078 0.1244

The correction of the daughters’ YD for the breeding values of the mates of the sire
is follows:

2YD,, -4y, ) (S1.4- (—2.999))_ (54.399)

2YD,, —d,, 73.6 —(=2.777)) \76.377
2YDg, —d5y | (-119.2 - (-16.253) _(-102.947
2YD,, —a45, ) (-106.4 —(-15.824) | -90.576

2YDy, —d; | (130.8-8.690) (122.110
2YD,, -4, ) \118.8-8.138) (110.662

Since (A equals 1 for all daughters of the bull, DYD for sire 1, using Eqn 5.13, is:

DYD=(3W, ) [Wz (53.399] W, (—102.947] W, (122.110]]
i\ 76.377 w | -90.576 = (110.662
24.5207
) (32.1543)

Using Eqn 5.12, the breeding value of sire 1 can be calculated as:

(&HJ M (24.5207) ~ (7.439)

a, )  \32.1543) \7.387
where:
-1
M, = [zcl 0.5+0.5G" YW, apng (0.5G1 2w, ap,ogJ
3 3

_( 0.1247  -0.1110 “'(0.0120 -0.0058 _(0.1937 0.0836
> 1-0.1110 0.1432) (-0.0058 0.0116) |0.1099 0.1459
The vector of breeding value calculated for sire 1 using Eqn 5.12 is slightly lower than

that shown earlier in the table of results as contributions from the grand-progeny of
the sire are not included.
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5.5 Multivariate Models with No Environmental Covariance

In some cases, a multivariate analysis may be necessary when individual animals have
records for one trait (or subset of traits) but relatives have records on a different trait (or
subset of traits). For instance, in beef cattle, if selection is for dual-purpose sires, male
and female calves might be reared in different environments (different feedlots) and body
weight recorded in male calves and milk yield in female calves. The evaluation of the
sires will be based on multivariate analysis of these two traits. A special feature of such
a multivariate analysis is that there is no environmental covariance between the traits as
the two traits are not observed in the same individual. In Section 5.5.1, the details of
such a model are discussed and its application to example data is illustrated.

Also, when the same trait is measured on relatives in different environments
such that the genetic correlation between performances in the two environments is
not one, a multivariate analysis might be the optimum means to evaluate sires. For
example, milk yield may be recorded on the daughters of a bull in two different
environments, say, in a tropical environment and a temperate environment. Such
a multivariate analysis will treat milk yield in the various environments as different
traits. However, as the number of environments increases, the data might be associ-
ated with a heterogeneous fixed effects structure that might be difficult to model
correctly in multivariate analysis, such that it might be useful, for practical purposes
of implementation, to analyse not the original data but summaries of the data. A very
good illustration of such a multivariate analysis is the multi-trait sire model used by
the international bull evaluation service Interbull (Uppsala, Sweden), for the across-
country evaluation of dairy sires. This multi-trait sire model, commonly referred to
as MACE (multi-trait across-country evaluations), analyses deregressed breeding
values (DRB) of sires in different countries as different traits. The use of DRB could
be regarded as utilizing a variable that summarizes the daughter performances of
bulls in different countries. This avoids the need to model at the Interbull centre the
heterogeneous fixed effects structure, such as different herd management systems
and complex national climatic conditions associated with the daughters’ milk per-
formance records in the different countries. MACE plays a very important role in
the international trade of dairy cattle and in Section 5.5.2 the model for MACE is
discussed and illustrated.

5.5.1 Different traits recorded on relatives
Defining the model

In this situation, with different traits recorded on relatives in different environments,
the different traits are not observed on the same individual, and so there is not
environmental covariance between the traits. Therefore, the residual covariance
matrix R is diagonal. Thus for # traits:
: 2 2 2 .
R = diag(c?, 02,,...,02 ) = diag(r,, 75),. . -»1,,,)

and:

R-! = diag(r!, r22,...,7™)
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However, var(a), where a’ = [a,, a,,...,a,], the vector of breeding values, is:
var(a) = A*G

where * refers to the direct product, A is the relationship matrix and G the covariance
matrix for additive genetic effects. Schaeffer et al. (1978) discussed this model in
detail but from the standpoint of variance component estimation.

Assuming there are two traits, the model for the analysis is as given in Eqn 5.1
but with R and G defined as above. The MME for the BLUP of a and estimable func-
tions of b are:

b 17X X, 0 X Z, o] | x|y,
~ 22<,7 22~ r 22

b, 0 X5 X, 0 Xy Z; _ X517y,
a|| 'z X, 0 r'z{ Z,+A'g" AT | Zirty,
52 O rZZZ; )(2 A—1g21 rZZZ; ZZ+A_1g22 Z; rZZyz

An illustration

Example 5.4

Consider the following data on the progeny of three sires born in the same herd;
assuming that selection is for dual-purpose sires, such that the male and female calves
are raised on different feeding regimes, with males recorded for yearling weight and
females for fat yield:

Calf  Sex Sire  Dam HYS  Yearling weight (kg)  Fat yield (kg)

4 Female 1 Unknown - - -

9 Male 1 4 1 375.0 -
10 Male 2 5 2 250.0 -
11 Male 1 6 2 300.0 -
12 Male 3 Unknown 1 450.0 -
13 Female 1 7 1 - 200.0
14 Female 3 8 2 - 160.0
15 Female 2 Unknown 3 - 150.0
16 Female 2 13 2 - 250.0
17 Female 3 15 3 - 175.0

HYS, herd-year—season.

The aim is to estimate HYS effects for both traits and predict breeding values for
yearling weight and fat yield for all animals, carrying out a multivariate analysis.
Note that animal 4 is just an ancestor and has no yield record for either trait. Assume
that the additive genetic covariance matrix (G) is:

_[43 18

= and R = diag(77,70)
18 30
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Then R = diag(1/77, 1/70) and:

o[ 0.0311 -0.0186
“[-0.0186  0.0445

The MME given earlier can easily be set up using the principles discussed so far
in this chapter. Solving the MME by the direct inverse of the coefficient matrix gave
the following solutions:

Solutions

Effects Yearling weight (kg)  Fat (kg)

HYS
1 411.833 193.299
2 275.955 205.344
3 - 163.315
Animal
1 -0.472 2.519
2 -3.350 0.381
3 0.856 -3.208
4 -5.142 -3.936
5 -4.778 -2.000
6 4,778 2.000
7 2177 3.628
8 -4.940 -5.251
9 -10.234 -3.817
10 -8.842 -2.810
11 6.932 4.260
12 11.568 3.060
13 3.029 6.701
14 -6.395 -11.485
15 -2.797 -1.680
16 4,193 10.797
17 0.526 0.050

Selection of dual-purpose sires will be based on some combination of breeding
value estimates for yearling weight and fat yield. If equal weights were given to yearling
weight and fat yield, sire 1 would be the best of the three sires, followed by sire 3.

5.5.2 The multi-trait across-country evaluations (MIACE)

The sire model for MACE was originally proposed by Schaeffer (1994) and involved
the analysis of the DYD of bulls in different countries as different traits, with the
number of daughters of a bull used as a weighting factor. The genetic correlations
among DYDs of bulls in different countries were incorporated. The genetic correla-
tions accounted for genotype by environment (G x E) interactions and differences in
national models for genetic evaluations among the countries. The genetic correlations
among several countries used by Interbull are usually of medium to high value.
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However, due to the inability of some countries to compute DYDs for bulls, the
deregressed proofs (DRP) of bulls became the variable of choice (Sigurdsson and
Banos, 1995) and the weighting factor became the effective daughter contributions
(EDC) of bulls (Fiske and Banos, 2001). The model in matrix notation is:

y,=1p +ZQw, + Za, + e, (5.14)

where y, is the vector of DRP from country 7 for one trait such as milk yield, p,
is a mean effect for country i, which reflects the definition of the genetic base for
that country, w, is the vector of genetic group effects of phantom parents, a. is
the vector random sire proof for country 7 and e, is the vector of random mean
residuals. The matrix Q, relates sires to phantom groups (see Section 3.6) and Z,
relates DRP to sires. Given two countries, the variance-covariance matrix for w,
s and e is:

W, Appgll Appg12 Apngll Apnglz 0 0
w, Appg21 Appg22 Apng21 Apng22 0 0
S A,p81 A8 A& A, 0 0
o ) - Anpg21 AnngZ A8 A,8n 0 0
€ 0 0 0 0 D2, 0
€ 0 0 0 0 0 Dol

where 7 and p are the number of bulls and groups, respectively, g; is the sire genetic
(co)variance between countries 7 and j, and A is the additive genetic relationship for
all bulls and phantom parent groups based on the maternal grandsire (MGS) model
(see Section 3.6), 0 is the residual variance for country 7, and D; is the reciprocal of
the effective daughter contribution of the bull in the ith country.

The variable DRP, analysed in Eqn 5.14, are obtained by deregressing the national
breeding values of bulls such that they are independent of all country group effects and
additive genetic relationships among bulls, their sires and paternal grandsires, which
are included in the MACE analysis (Sigurdsson and Banos, 1995). DRP may therefore
contain additive genetic contributions from the maternal pedigree, which are included
at the national level but not in MACE. The deregression procedure involves solving the
MME associated with Eqn 5.14 for the right-hand side details. The details of the pro-
cedure are outlined in Appendix F. The computation of the EDC of bulls used as the
weighting factor for the analysis of DRP in Eqn 5.14 is dealt with in a subsequent
section.

The MME for the above model, which are modified such that sire solutions have
group solutions incorporated (see Section 3.6) are:

X'R™'X X'R™'Z 0 & X'R7ly
Z/R—IX Z/R—IZ + A—] ® G—l _ A—lQ ® G—] QV,R’ + é — Z/R—ly (5.15)
0 —QA'®G! QA'Q®GT! w 0

Genetic groups are defined for unknown sires and MGS on the basis of country of
origin and year of birth of their progeny. Also, maternal granddams (MGDs) are
always assumed unknown and assigned to phantom groups on the same basis.
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Then A~ can be obtained by the rules outlined in Section 2.4, which can be briefly
summarized in the table below, taking into account the contribution to the groups for
MGDs. Given a list of pedigrees with the ith line consisting of a bull, its sire or group,
its MGS or group and a group for its MGD, then contributions to A-! are as follows:

Bull Sire MGS MGD
Bull d -0.5d -0.25d -0.25d
Sire -0.5d 0.25d 0.125d 0.125d
MGS -0.25d 0.125d 0.0625d 0.0625d
MGD —-0.25d 0.125d 0.0626d 0.0625d

where d = 16/(11 + m) and m = 0 if both sire and MGS are known, m = 1 if the sire
is known but MGS is unknown, 7z = 4 if the sire is unknown and the MGS is known,
and m = § if both sire and MGS are unknown.

Usually there are dependencies among group effect equations and 1 is added to the
diagonals of the phantom group effects in the inverse of the relationship matrix to over-
come these dependencies. Then the group solutions sum to zero, and so the solutions for
bulls are relative to the same genetic base within each country. The addition of 1 to the
diagonals of the phantom groups implies that group effects are random, with expected
values of zero. Since group effects represent differences in the effects of previous selec-
tion, which should not have expected values of zero, Schaeffer (1994) indicated that this
approach could also be regarded as a biased estimation of the fixed effects of phantom
groups. That is, a small amount of bias in the estimates of the phantom groups is
accepted in exchange for the hope of getting estimates with smaller mean square errors.

Computing effective daughter contribution

The use of EDC instead of the number of daughters as a weighting factor was proposed
by Fiske and Banos (2001) from a simulation study in which they demonstrated that using
the numbers of daughters resulted in biased estimates of sire variances used in MACE and
international reliabilities. The computation of EDC for a bull accounts for such factors as
contemporary group (CG) structure for the bull’s daughters, the correlation between
observations on the same daughter and the reliability of the performance of the daughters’
dams. Thus the EDC provides a measure of the precision of the daughter information used
to compute the DRP of the bull. The formula for the computation of EDC (Fiske and
Banos, 2001), which included the performance of the dam of the daughter & of bull i is:

Arely,

EDC, =
k 4- relk(o) : (1 + reldam(o))

where the summation is over all the k daughters of the bull, A = (4 - h?)/h?, rel dam(o
is the reliability of the dam’s own performance, rel,  is the reliability of the animai
k’s own performance computed as:

2
b

P —
A T

with 7 being the reliability of the animal’s records, 7, the number of lactations of the
daughter k of the sire adjusted for the CG size computed as:
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where 72,,, is the size of the CG, in which the daughter k of sire i made her /th lactation.

An example of MACE for two countries

Example 5.5

The data set below consists of bull breeding values (kg) and DRP for fat yield for six bulls
from two countries. Two of the bulls have evaluations in both countries and in addition
each country had two other bulls, which were the only progeny tested in that country.
A MACE is implemented using the data set. Assume residual variances of 206.5 kg? and
148.5 kg? for countries 1 and 2, respectively, with corresponding sire additive genetic
variances of 20.5 kg? and 9.5 kg?. The sire genetic covariance between fat yield in both
countries was assumed to be 12.839 kg, giving a genetic correlation of 0.92.

Country 1 Country 2

Sire EDC BV DRP EDC BV DRP

1 58 9.0 9.7229 90 13.5 14.5088
2 150 10.1 9.9717 65 7.6 7.7594
3 20 15.8 19.2651 - - -

4 25 -4.7 -8.5711 - - -

5 - - - 30 19.6 23.9672
6 - - - 55 -5.3 —9.6226

EDC = effective daughter contribution; BV = breeding value; DRP = deregressed proof.

Assume that the sires in the data set have the following pedigree structure, with
unknown sires, MGS and MGD assigned to group G, withi=1,...5.

Bull Sire MGS MGD
1 7 G3 G5
2 8 9 G5
3 7 2 G5
4 1 G2 G5
5 8 G3 G4
6 1 9 G4
7 G1 G2 G4
8 G1 G2 G4
9 G1 G3 G4

Computing sire breeding values

The matrix G™! for Example 5.5 is:

4 [ 0.31762 —0.42925
-0.42925 0.68539
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The inverses of the matrix of residual variances for countries 1 and 2 are:

R7! = diag(0.2809, 0.7264, 0.0969, 0.1211, 0, 0)
and:
R;' = diag(0.6061, 0.4377, 0, 0, 0.2020, 0.3704)

The design matrix X is:
111100
X:
110011
and:

R (1.2252 0 ]

0 1.6162

The matrix Z is an identity matrix of order 12, considering only bulls with evalua-
tions. The matrix A-! is set up using the rules outlined earlier. The remaining matrices
in Eqn 5.15 could be obtained through matrix multiplication and addition. The
MME are of the order of 30 by 30 and have not been shown. Solutions to the MME

by direct inversion gave the following results:

Solutions
Effects Country 1 Country 2
Country effect
7.268 9.036
Animal/group
A B A B
1 2.604 9.871 2.661 11.697
2 2.176 9.444 0.403 9.439
3 8.059 15.327 5.001 14.037
4 -9.865 -2.597 -5.605 3.431
5 13.634 20.902 9.728 18.764
6 -18.086 -10.818 -13.203 -4.167
7 4.310 11.578 3.071 12.106
8 7.015 14.283 4.489 13.525
9 -6.299 0.969 -5.059 3.977
G1 0.174 7.442 -0.092 8.944
G2 -0.124 7.144 0.126 9.162
G3 -0.071 7.197 0.264 9.300
G4 0.087 7.355 -0.288 8.748
G5 -0.067 7.201 -0.010 9.026

A = solutions for animals and groups from the MME; B = solutions for animals and groups

expressed in each country scale.

The solutions for animals and groups were expressed in each country scale by
adding the solution for country effects for country i to the animal and group solu-
tions of the ith country. As indicated earlier, the sum of the group solutions is zero.
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In the next section, some of the bull solutions are partitioned to contributions
from various sources to gain a better understanding of MACE.

Equations for partitioning bull evaluations from MACE

The equations for sire proofs from Eqn 5.15 are:

Nl
(ZR'Z+A'®GNa=(A"Q®G)g+ ZR™ (y — X&) (5.16)
where:
a=Qg+s
Thus Eqn 5.16 can be expressed as:
(ZR'Z+ A1 ®G')a=(A"'Q®G)g+ZR"' Z(CD) (5.17)

where:

CD = (ZR'Z)yN(Z'R Yy — X¢&))
CD (country deviation) is simply a vector of weighted average of corrected DRP in
all countries where the bull has a daughter, the weighting factor being the reciprocal
of EDC multiplied by the residual variance in each country. Since R™! is diagonal, CD
is equal to the vector (y - X&).

For a particular bull with a direct progeny (e.g. son), Eqn 5.17 can be written as:

(ZR'Z + G oy, )4y, = G ey, (4, + 0. 5(a +8)) + ZR'Z(CD)

+G ' Y, 0 25a,,) (5.18)
where o, = & &, 5 or 5 if both sire and MGS (maternal grandsire), only MGS, only sire
or no parents are known respectively; and &, = 17 £ if bull’s mate (MGS of the progeny)
is known or % if unknown The above values for ocp and o, are based on the assump-

pro,

tion that A-! has been calculated without accounting for inbreeding. Note that in Eqn 5.18:

ahull = 20([7 +0. Saprog

Equation 5.18 can be expressed as:
(ZR'Z + Gy, )4, = 2G et (PA) + (Z'R‘lz)CD
+0. 5G-12 -0.54

prog pro g mate)
where:

PA =0.5a,, +0.25@a,, +8)

sire

Pre-multiplying both sides of the equation by (Z’R*'Z + G-'a, )" gives:

a,, = W,PA + W, YD + W,PC (5.19)
where:
PC = z prog prog mate /z prog and Wl + WZ + W3 =1
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The matrices W, W, and W, are the product of (ZR-'Z + G'¢;, ;)" and ZG_lapw
Z'R'Z, and 0.5G'X0,,,,, respectively. Using Eqn 5.19, the contributions from
different sources of information from different countries to the MACE of a bull can
be computed.

If the progeny in Eqn 5.19 is not a direct progeny of the bull but a maternal

grandson of the bull then o, equals 2 if mate (sire) is known or £ if unknown.
Then Eqn 5.19 becomes:

rog

(ZR'Z + G oy, )4, = Ga, (4, + 0.5(3, +8)) + ZR'Z(CD)

+GDa (& -0.5

prog \“prog maze)

sire

and ¢, now equals 2¢r, + 0.25¢, - and 0.53,,, = 0.54, the sire of the progeny.
The above can be expressed as: )

ar

+ O.25Gilzapmg (4aprog_ Zﬁ

(ZR'Z + G oy, )4y, = 2GL (PA) + (ZR'Z)CD
)
mate

Pre-multiplying both sides by (Z’R7'Z + G 'e,,,)"! gives the same equation as
Eqn 5.19 but with:

PC= 2 prog (4épmg = 28,0 )/Z prog (5.20)

and W, now equals (Z’R"'Z+G'a,,;,)'(0.25G™ Z%mg)

The use of Eqn 5.19 to partition proofs from MACE is illustrated for two
bulls, one with no progeny and another with a maternal grandson. First, consider
bull 3 in Example 5.5 that has DRPs only in country 1 and has no progeny. Therefore,
CD,; for bull 3 in country i is:

CD,, =y, -y, =19.2651 - 7.268 =11.997 and CD,, =0
Parent average for bull 3 (PA,)) in country i is:

PA;, = 0.5(a,)) + 0.25(a,, + §5,) = 0.5(4.310) + 0.25(2.176 + (-0.067)) = 2.68225
and:

PA,, = 0.5(a,,) + 0.25(a,, + §.5,) = 0.5(3.071) + 0.25(0.403 + (-0.010)) = 1.63375

where 4 is the breeding value of animal j in country i and g, is the solution for
group j and in the ith country.

The residual variance for bull 3 in country 1 (r;,) = (%)206.5 =10.325 and its
inverse equals 0.09685. Both sire and MGS of bull 3 are known, therefore ¢, = %
Then:

o 0.09685 0) ( 0.4620 —0.62436

0 0) \-0.62436 0.99693
_ 0.55884 —0.62436
1 -0.62436  0.99693
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The matrices of weights (W) using Eqn 5.19 are:
_( 0.55884 -0.62436 (0 0.4620 -0.62436 _( 0.4229 -0.3614
171-0.62436  0.99693 ) |-0.62436 0.99693 ) | -0.3614 1.0000

and:

_( 0.55884  —0.62436 (0.09685 0 (05771 0
27 -0.62436 0.99693) (0 0) 10.3614 0

Therefore the vector proofs of bull 3 are:
as 2.68225 11.9971 1.1343 6.9235 8.058
=W, + W, = + =
as, 1.63375 0 0.6644 4.3358 5.000
The contribution from the DRP of bull 3 in country 1 accounts for over 85% of the
MACE proof in both countries, although the bull has no DRP in country 2. Thus,
with only 20 daughters, parental contribution was not very large, although in gen-
eral, parental contributions will be influenced by the heritability of the traits in both
countries and the genetic correlation between them.
When a bull has a proof only in country 7 and not in j, its proof in country j can
be obtained (Mrode and Swanson, 1999) as:
4 = PA - (g,/g,)(3 - PA) (5.21)

where g is the genetic variance in country 7 and g, the genetic covariance between
countries 7 and j. Therefore, if interest was only in calculating the proof of bull 3 in
country 2, it can be obtained from the above equation as:

ay, = 1.63375 - (12.839/20.5)(8.059 - 2.68225) = 5.001

Equation 5.21 can be derived from Eqn 5.18 as follows. The equation for 4,, from
Eqn 5.18 is:

(gzzabull)&ﬁ = gzzapar(asireZ + Oj(amgsl + gmgdl) + gnapm(asirel + O'S(amgsl + gmgdl)

+ g%y, )y,

wherea, ., a,,and g, . are the proofs for the sire, MGS and solution for the MGD
in country j, respectively, and g” are the inverse elements of G™'. Since ¢, = 2, for
bull 3, multiplying the above equation by (Zocpm)‘1 gives:

g222132 - gZZ(PAZ) + g21(PA1) _ g212131

g22a32 = gZZ(PAz) - gZ](&g,l - PA1)

a,, = PA, - g*'/g**(a,, - PA))

ay, = PA, - 8,,/8,(a3, - PA,)
Thus the proof of a bull in country j is dependent on the parent average of the
bull in country j and the Mendelian sampling of the bull in the ith country.

Partitioning the proof of bull 2 with records in both countries and a

maternal grandson (bull 3) is as follows. The country deviations for bull 2 in
both countries are:

CD,, =y,, -, = 9.9717 - 7.268 = 2.7037
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and:
CD,, = vy, - 1, = 7.7594 - 9.036 = -1.2766
Parent average for sire 2 (PA,)) for country i is:
PA,, = 0.5(ag,) + 0.25(a,, + &5;) = 0.5(7.015) + 0.25(-6.299 + (-0.067)) = 1.916
PA,, = 0.5(ag,) + 0.25(ay, + &.5,) = 0.5(4.489) + 0.25(-5.059 + (-0.010)) = 0.97725
Progeny contributions (PC) from bull 3 to sire 2 (PC,,,) in country i are:
PC,, = 4(ay,) - 2(a,,) = 4(8.059) - 2(4.310) = 23.616
PC,, = 4(a;,) - 2(a,,) = 4(5.001) - 2(3.071)) = 13.862
The residual variance for bull 2 in country 1, (r,,) = (75)206.5 and country 2, (r,,) =
(5)148.5. Corresponding inverses were 0.72639 and 0.43771, respectively. Since both

sire and MGS of bull 2 are known and he has a maternal grandson, o, = 2a,, +
0.25a,, = 2(37) + 0.25(;%) = 1.54545. Therefore:

prog
L 0.72630 0 0.49087 —0.66338
0 0.43771 -0.66338 1.05924
_( 1.21726 —0.66338)

-0.66338 1.49695

From Eqn 5.19, the matrices of weights (W) are:

W = 1.21726 —0.66338) "' ( 0.4620 —O.62436J_[ 0.2007 —0.1977)
| = =

—0.66338 1.49695) |-0.62436 0.99693 -0.3281 0.5783

1.21726 -0.66338) (0.72639 0 J (0.7867 0.2101]

-0.66338 1.49695 0 0.43771 0.3487 0.3855
1

W. = 1.21726 -0.66338) '( 0.02887 —0.03902) ( 0.0125 -0.0124
?(-0.66338 1.49695) (-0.03902 0.06231) |-0.02051 0.0361

The vector of proof for bull 2 is:
ay, 1.9160 2.7037 23.616 2.176
=W +W, + W, =
ay, 0.9773 -1.2766 13.862 0.403
Again, similar to bull 3 above, the contributions from the DRPs in both countries
accounted for much of the MACE proofs of the bull 2 in countries 1 and 2.
Recently, Interbull has modified the MACE systems to use sire and dam pedigree

instead of sire and maternal sire pedigree. Partitioning of bull proofs can be done as in
Section 5.2.3.
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6 Methods to Reduce the
Dimension of Multivariate
Models

6.1 Introduction

One of the limitations of multivariate analysis is the large computational requirements
of such high-dimensional analyses. The number of effects in multivariate analyses
tend to increase linearly with the number of traits considered. In some cases, the
available or small number of records for some of the traits can hamper the reli-
able estimation of a large number of covariance components simultaneously.
However, developments in methodologies to model higher-dimensional data more
parsimoniously (Kirkpatrick and Meyer, 2004) implies that such multivariate
analysis is more feasible in terms of parameter estimation and therefore genetic
evaluation.

Reducing the dimension of multivariate analysis includes methods such as canon-
ical transformation and Cholesky decomposition, which involve the transformation
of the vector of observations in addition to residual and genetic covariance matrices.
Other approaches, such as principal component analysis and factor analysis, only
involve reducing the rank of the genetic covariance matrix. Initially, methods that
include the transformation of the vector of observations are discussed.

6.2 Canonical Transformation

In the example discussed in Section 5.2.2 both traits were affected by the same fixed
effect and all animals were measured for both traits. Thus the design matrices
X and Z were the same for both traits or, in other words, the traits are said to have
equal design matrices. In addition there was only one random effect (animal effect)
for each trait apart from the residual effect. Under these circumstances, the multi-
variate analysis can be simplified into 7 (number of traits) single trait analyses
through what is called a canonical transformation (Thompson, 1977b). Canonical
transformation involves using special matrices to transform the observations on
several correlated traits into new variables that are uncorrelated with each other.
These new variables are analysed by the usual methods for single trait evaluation,
but the results (predictions) are transformed back to the original scale of the obser-
vations. Ducrocq and Besbes (1993) have presented a methodology for applying
canonical transformation when design matrices are equal for all traits but with
some animals having missing traits; details of the methodology, together with an
illustration, are given in Appendix E, Section E.2.

© R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values, 95 ]
3rd Edition (R.A. Mrode)



Let y be vectors of observations:
var(y) = G + R (6.1)

where G and R are variance and covariance matrices for the additive genetic and
residual effects, respectively. Assuming G and R are positive definite matrices, then
there exists a matrix Q, such that:

QRQ' =1 and QGQ =W

where T is an identity matrix and W is a diagonal matrix (Anderson, 1958). This
implies that pre- and post-multiplication of R by the transformation matrix (Q)
reduces it to an identity matrix and G to a diagonal matrix. The multiplication of y
by Q vyields a new vector of observations y* that are uncorrelated:

y=Qy

var(y") = W + I; which is a diagonal matrix.

Since there are no covariances between the transformed traits, they can be inde-
pendently evaluated. The procedure for calculating the transformation matrix Q is
given in Appendix E, Section E.1.

6.2.1 The model

A single trait analysis is usually carried out on each of the transformed variables.
The model for the ith transformed variable can be written as:

y,=Xb; + Za; + ¢; (6.2)

where y; = vector of transformed variables for the ith transformed trait; b’ = vector of
fixed effects for the ith transformed variable #; a; = vector of random animal effects
for transformed trait 7; e; = vector of random residual errors for the ith transformed
trait; and X and Z are incidence matrices relating records to fixed and random effects,
respectively.

The MME to be solved to obtain the BLUE of b; and the BLUP of a; are the same
as those presented in Section 3.2 for the univariate model. These equations are:

X'X xZ|[3] [Xy;

ZX 724A ) 21| | Z'y:
As explained earlier, it is assumed for the ith trait that:
var(a;) = Aw; var(e}) =1 and var(y}) = ZAZ'w, +1

where w,, refers to the ith element of the diagonal matrix W.
The MME are solved for b} and a; and the transformation back to the original
scale is achieved as:

b, =Q"'b; (6.3)
a,=Q'la; (6.4)

Thus the multivariate analysis is simplified to i single trait evaluations.

[ 96 Chapter 6



6.2.2 An illustration

Example 6.1
The multivariate analysis for WWG and PWG in Section 5.2.2 is repeated below,
carrying out a canonical transformation assuming the same genetic parameters.

The calculation of the transformation Q and the diagonal matrix W are given in
Appendix E, Section E.1. Presented in Table 6.1 are the data for all calves in the original
scale and as transformed variables (VAR1 and VAR2). The observations are trans-
formed into new uncorrelated variables using the matrix Q. Thus for animal 4, the
record would be transformed as:

Q.= 0.1659 -0.07927[4.5] [0.208
Y4710.0168 0.1755( 6.8| | 1.269

The residual variance for each of the transformed variables is 1, thus heritability for
the ith transformed variable = w,/(1 + w,) and o, = 1/w,,.

Therefore b2 = 0.247, b2 = 0.573, o, = 1/0.3283 = 3.046 and «, = 1/1.3436 =
0.744. A single trait analysis is carried out on the transformed variates for WWG and
PWG using the model and the MME in Section 5.3.1 and solutions are transformed
back to the original scale.

SETTING UP THE DESIGN MATRICES

The matrix X, which relates records for either VAR1 or VAR2 to sex effects,
is exactly as the matrix X, in Section 5.2.2. Similarly, Z is the same as Z, in
Section 5.2.2. For animals with records, the vector of observations y; and y, are
equal to the column of transformed variates for WWG and PWG gains, respec-
tively, in Table 6.1. The matrices in the MME are easily obtained through matrix
multiplication and the addition to the animal equations of A-'e, for VAR1 and
A-'e, for VAR2. A-! has been given earlier in Section 5.2.2. For instance, the
MME for VAR1 only are:

gl 3.0 0.0 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.000] [0.549
bs 0.0 2.0 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.194
a 0.0 0.0 5584 1.523 0.000 -2.031 0.000 -3.046 0.000 0.000 0.000
@ 0.0 0.0 1.523 6.092 1.523 0.000 -3.046 -3.046 0.000 0.000 0.000
25 1_10.0 0.0 0.000 1.523 6.092 0.000 -3.046 1.523 0.000 -3.046 0.000
N T11.0 0.0 -2.031 0.000 0.000 6.584 1.523 0.000 -3.046 0.000 0.208
as 0.0 1.0 0.000 -3.046 -3.046 1.523 8.615 0.000 -3.046 0.000 0.085
de 0.0 1.0 -3.046 -3.046 1.523 0.000 0.000 8.615 0.000 -3.046 0.108
an 1.0 0.0 0.000 0.000 0.000 -3.046 -3.046 0.000 7.092 0.000 0.105
a8 |1.0 0.0 0.000 0.000 -3.046 0.000 0.000 -3.046 0.000 7.092] |0.235 |

Solving the MME for each transformed trait by direct inversion of the coefficient
matrix gives the following solutions on the canonical scales. Given also are solutions
for WWG and PWG after transforming the solutions for the transformed variates to
the original scale.
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Table 6.1. Weaning gain and post-weaning gain for beef calves on the original and
transformed scales.

Original scale Transformed scale
Calves Sex Sire Dam WWG PWG VAR1 VAR2
4 Male 1 - 4.5 6.8 0.208 1.269
5 Female 3 2 2.9 5.0 0.085 0.926
6 Female 1 2 3.9 6.8 0.109 1.259
7 Male 4 5 3.5 6.0 0.106 1.112
8 Male 3 6 5.0 7.5 0.236 1.400
Canonical scale Original scale
Effects VAR1 VAR2 WWG PWG
Sex
Male 0.185 1.266 4.361 6.800
Female 0.098 1.089 3.397 5.880
Animals
1 0.003 0.052 0.151 0.280
2 -0.002 -0.002 -0.015 -0.008
3 0.000 -0.031 -0.078 -0.170
4 -0.001 -0.002 -0.010 -0.013
5 -0.007 -0.088 -0.270 -0.478
6 0.005 0.095 0.276 0.517
7 -0.015 -0.089 -0.316 -0.479
8 0.009 0.073 0.244 0.392

The solutions are exactly the same as those obtained from the multivariate analysis
in Section 5.2. The solutions are transformed to the original scale using Eqns 6.3 and
6.4. For instance, the solutions for animal 1 for both traits on the original scale are:

ay | [ 5.7651 2.60061[0.00297 [0.151
45, | |—0.5503 5.4495]/0.0516] |0.280
6.3 Cholesky Transformation

When all records are measured in all animals, MBLUP may be simplified by a canoni-
cal transformation as described in Section 6.2. However, if animals have some records
missing and the loss of records is sequential then a Cholesky transformation can be
applied (Quaas, 1984). Such situations can arise, for example, in dairy cattle due to
sequential culling and different lactations being regarded as different traits.

6.3.1 Calculating the transformation matrix and defining the model

Cholesky transformation involves forming transformed variables (traits) that are
environmentally independent of each other; that is, there is no residual covariance
among them, therefore the residual covariance matrix for the transformed traits is an
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identity matrix. The transformation matrix T-! is obtained by carrying out a Cholesky
decomposition of R, the residual covariance matrix for the traits, such that:

R=TT

where T is a lower triangular matrix. The transformation matrix T-! is the inverse of T.
The formula for calculating T is given in Appendix E, Section E.3.
The vector of observations y,, for the ith animal is transformed as:
.
V= Ty

where k is the number of traits recorded and y,; is the transformed vector.

If traits are missing in y,, then the corresponding rows of T-! are set to zero when
transforming the vector of observation. Thus if y,, is a vector of observations of #
traits for the ith animal, the transformation of y can be illustrated as:

* ol 2
V= Y + 0y + 1Y,

where the #J above are the elements of T-'.
Given that the variance of y,, is:

var(y) = G + R
and the variance of the transformed variables becomes:
var(y ) = TIG(TY + I=G + =M + 1 (6.5)

where G is the covariance matrix for additive genetic effects and G is the transformed
additive genetic covariance matrix. Note that G” is not diagonal. Vectors of solutions
(b, and a;) are transformed back to the original scale (b, and a)) as:

b, = Tb; (6.6)
a, =Ta, (6.7)

2 1

6.3.2 An illustration

Example 6.2
The methodology is illustrated using the growth data on beef calves in Section 5.4.1.
The residual and additive genetic covariance matrices were:

40 11 20 18
R= and G=
11 30 18 40

Now carry out a Cholesky decomposition of R such that R = TT". For the R above:

6.324555 0.000 ith T 0.1581139 0.000
= 1 =
1.739253 5.193746 v —0.052948 0.1925393
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The transformed additive genetic covariance matrix (M) is:

0.5000  0.380539 L arl| 2654723 0862556
0.380539 1.171972| °

M=T'GT"Y=
-0.862556  1.133334

The transformed variables are calculated using the transforming matrix T-'. For the
first two animals the transformation is as follows:
Animal 1:

yy,= t'y,, = 0.1581139(4.5) = 0.712

Animal 2:

vy, =ty = 0.1581139(2.9) = 0.459
y5, = Bly, + *2y,, = =0.052948(2.9) + 0.1925393(5.0) = 0.809

where y, and y,+ are the original and transformed observations, respectively, for
the ith trait and jth animal. The transformed variables for all calves are shown in the
table below.

Original traits Transformed traits
Calves Sex Sire Dam WWG PWG Vi Vs
4 Male 1 - 4.5 - 0.712 -
5 Female 3 2 29 5.0 0.459 0.809
6 Female 1 2 3.9 6.8 0.617 1.103
7 Male 4 5 3.5 6.0 0.553 0.970
8 Male 3 6 5.0 7.5 0.791 1.179
9 Female 7 - 4.0 - 0.632 -

The model for analysis is the same as in Section 5.4.1 except that the variance of
y now is:

var(y’) = TIG(T-1) + I=M + 1
The MME for the transformed variables are:

-1

bi| [XixX 0 X/ Zi 0] [ Xivi
bl 0 XiXs 0 X5 Z» 2Y;
al |4 X 0 Z{Zi+A"m" AT'm? |z
i 0 7;X, AT'm* 73 Zo+ AT'm? 7, y;

The design matrices X, X,, Z, and Z, and the inverse of the relationship matrix
are exactly as in Section 5.4.1. The vector observations y* now contain the trans-
formed variables shown in the above table. All other matrices in the MME above can
be derived from the design matrices and vector of observations through matrix mul-
tiplication and the addition of the A-'m!! and A~'7?? to the animal equations for trait
one and two, respectively, and A-'m'? to animal equations for trait one by trait two
and A~'m?! to equations for trait one by trait two that pertains to animals. The MME
have not been shown because they are too large. However, solving the MME gives
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the following solutions on the transformed scale. The solutions transformed to the
original scale are also shown.

Transformed scale Original scale
Effects WWG PWG WWG PWG
Sex
Male 0.691 1.085 4.367 6.834
Female 0.578 0.963 3.657 6.007
Animals
1 0.021 0.044 0.130 0.266
2 -0.013 -0.010 -0.084 -0.075
3 -0.015 -0.032 -0.098 -0.194
4 0.001 0.003 0.007 0.016
5 -0.054 -0.089 -0.343 -0.555
6 0.030 0.075 0.192 0.440
7 —-0.049 -0.077 -0.308 -0.483
8 0.032 0.056 0.201 0.349
9 -0.003 -0.022 -0.018 -0.119

These are exactly the same solutions as those obtained in Section 5.3 without any
transformation. The number of non-zero elements was 188 in the analysis on the
transformed variables, compared with 208 when no transformation is carried out.
This difference could be substantial with large data sets and reduces storage require-
ments when data is transformed. The solutions were transformed to the original scale
using Eqns 6.6 and 6.7. Thus the solutions for male calves on the original scale are:

bi| [6-324555 0.000 0.69063] [4.367
b | [1.739253 5.193746 ]| 1.0846 | | 6.834
6.4 Factor and Principal Component Analysis

In Sections 6.2 and 6.3, the simplification of multivariate analysis using canonical trans-
formation and Cholesky decomposition were discussed. Both approaches involved the
transformation of the vector of observations as well as the residual and genetic covari-
ance matrices. However, for multivariate analysis with a large number of traits and with
high genetic correlations among the traits, a factorial or principal component analysis
might be more appropriate in reducing the dimension of such analysis. Neither of these
methods involve the transformation of the vector of observations. The principal compo-
nent and factor analysis (FA) methods provide efficient means for reducing the rank of
the genetic covariance matrix in multivariate analysis, resulting in the substantial spar-
sity of the MME for genetic evaluation and estimation of genetic parameters (Meyer,
2009). Therefore, both methodologies have attracted considerable attention in multi-
variate analysis involving many traits for parameter estimation and genetic evaluation
(Kirkpatrick and Meyer, 2004; Meyer, 2005, 2007; Tyriseva et al., 2011a, 2011b).

FA is mainly concerned with identifying the common factors that give rise to
correlations between variables. It assumes that the traits studied are linear combina-
tions of few latent variables, referred to as common factors. Then any variance not
explained by these common factors is modelled separately as trait specific, by fitting
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corresponding specific factors. Since the factors are assumed to be uncorrelated, sub-
stantial sparsity of the MME is achieved.

On the other hand, PC aims to identify factors that explain the maximum amount of
variation and does not imply any underlying model. The first PC explains the maximum
amount of genetic variation in the data and each successive PC explains the maximum
amount of the remaining variation. Thus for highly correlated traits, only the leading PC
have a practical influence on genetic variation and those with negligible effect can be omit-
ted without reducing the accuracy of estimation. For example, with # traits, k independent
principal components (k < t) can be derived that explain a maximum proportion of the
total multivariate system. Similar to the FA, the PC approach requires decomposing
the genetic covariance matrix into pertaining matrices of eigenvalues and eigenvectors. The
eigenvector or PC can be regarded as a linear combination of the traits and they are
independent, while the corresponding eigenvalues gives the variance explained.

6.4.1 Factor analysis

Assume that w is a vector of n variables with covariance matrix equal to G and that
w can be modelled as:

w=U+®Dc+s

where W is the vector of means, ¢ is a vector of common factors of length 1, s is the
vector of residuals or specific effects of length 7 and @ is the matrix of order 7 x m of
the so-called factor loadings. In the most common form of FA, the columns of @ are
orthogonal, i.e. ¢9=0, for i # j and thus the elements of ¢ are uncorrelated and assumed
to have unit variance, var(c) = I. The columns ¢, are determined as corresponding eigen-
vectors of G, scaled by the square root of the respective eigenvalues (Meyer, 2009).

Usually @ is not unique but is often orthogonally transformed to obtain factor
loadings that are more interpretable than those derived from the eigenvectors. The
specific effects (s) are assumed to be independently distributed and therefore the vari-
ance of s is a diagonal matrix S of order 7. Therefore:

var(w) = G, = @D + S (6.8)

The above indicates that all the covariances between the levels of w are modelled
through the common factors while the specific factors account for the additional indi-
vidual variances of the elements of w. Thus the n(n + 1)/2 elements of G are modelled
through the 7 elements of the specific variances and (27 — m + 1)/2 elements of ® and
additional m(m - 1)/2 of @ which is determined by the orthogonal constraints. For
example if 72 is 4 and m = 1, then the 10 elements of G are modelled by the four ele-
ments of S and the four elements of ®. FA with a small 7 thus provides a parsimonious
way to model the covariances among a large number of variables. When all the ele-
ments of S are non-zero, then four traits is the minimum number of variables for which
imposing an FA structure results in a reduction of the parameters (Meyer, 2009).

Mixed model equations

Assume the following multi-trait linear mixed model in Eqn 5.1 is presented as:

y=Xb+Za+e (6.9)
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with terms defined as in Eqn 5.1 and MME as in Eqn 5.2. If G is represented by an
FA structure (Eqn 6.8), then an equivalent model to Eqn 6.9 is:

y=Xb+Z(Igx®)c+Ws+e=Xb+Zc+Ws+e (6.10)

with g being the number of individuals, ¢ is a vector of common factor effects of
order m, Z" = Z(Ig x @), and s is the vector for the specific factor effects. In some
contexts, application of Eqn 6.10, i.e. with elements of S # 0, is referred to as the
extended factor analysis (XFA) compared with models with no specific effects (S = 0),
which is simply referred to as factor analysis (FA). The MME for XFA then are:

X’R™'X X'R™'Z* XR'W | (§ X'R7ly
Z'R'X Z"R'Z'+1,®A" Z'RTW || ¢|=|Z"RY | (6.11)
WR™'X WR'Z" WR'W+S'T®A||s] |WRy

The vector 4, of solutions for animal i can be obtained as:

a,= @ +§, (6.12)

The number of equations in the MME (Eqn 5.2) for the usual multivariate model
are equal to the number of equations for b and s in Eqn 6.11. However, there are an
additional g equations for the common effects and Z°, which is a vector of order m
with elements ¢,, is denser than Z in Eqn 5.2, which contains a single element of
unity in a row or column. However, the section of the coefficient matrix for random
effects is much sparser as effects are genetically uncorrelated and A-! contributes only
(m + n) non-zero elements compared to 7> for Eqn 5.1. For the estimation of covari-
ance estimates using REML, Thompson et al. (2003) showed that the sparsity of the
MME with an XFA structure imposed dramatically reduced computational require-
ments compared to the standard multivariate model. Note that fitting an FA structure
to G with no specific effects, the MME are similar to Eqn 6.11 but with the row of
equations for s omitted, and the Z" will be a vector of order 7.

An illustration

Example 6.3

The data on pre-weaning weight gain (WWG) and post-weaning gain (PWG) in
Example 5.1 is extended to include two additional traits of muscle score (MS) and
backfat thickness (BFAT), and data is presented below. The objective is to undertake
multi-trait analysis imposing an XFA on G and the results obtained compared to
those from full MBLUP or FA structure on G with no specific factors.

Calf Sex WWG PWG MS BFAT
4 Male 4.5 6.8 5.0 0.226
5 Female 2.9 5.0 3.0 0.573
6 Female 3.9 6.8 12.0 0.386
7 Male 3.5 6.0 8.0 0.290
8 Male 5.0 7.5 15.0 0.175
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Assuming that G and R, respectively, are:

20 18 4 9 40 11 16 9

18 40 9 20 11 30 12 14
G= and R=

4 9 25 4.5 16 12 70 10

9 20 4.5 32 9 14 10 55

Applying Eqn 6.8 to G using the function factanal in the R package (The R Development
Core Team, 2010) gives:

@ = (2.8532 6.3056 1.4250 3.1678) and S’ =(11.860 0.200 22.975 21.952)

This implies that the number of common factors, 7, is equal to 1 for the example G
above. Thus the column vector z: for animal 7 in the matrix Z" in Eqn 6.11 equals ®.
Therefore, for animal i with a record, z;'r-'z; is 1.361. However, for animal i, W, is
a diagonal matrix and therefore W/R-'W, is computed as described for the MBLUP
model in Section 5.2. Thus for animal i, W/R-'W. is:

0.0297
-0.0079 0.0419 symmetric
—0.0052 -0.0041 0.0163
-0.0019 -0.0086 -0.0011 0.0209

Although there were 48 equations in the MME defined in Eqn 6.11 for this
example compared with 40 in the usual MBLUP, there were only 502 non-zero ele-
ments in the XFA compared with 620 in MBLUP, illustrating the increased sparsity
of the MME with the XFA model. Solving the MME gave the following solutions.
The results from the usual MBLUP gave exactly the same solutions and these have
not been presented.

WI;R—lWi —

Solutions for sex of calf effects
WWG PWG MSC BFAT

M  4.352 6.795 9.412 0.231
F  3.487 5.959 7.095 0.535

Animal and specific solutions

Specific effects solutions Transformed solutions®

COomM2  WWG PWG BFAT MSC  WWG PWG MSC BFAT

0.036 -0.008 0.095 0.000 0.005 0.095 0.227 0.340 0.010
-0.012 -0.001 -0.073 0.021 0.000 -0.089 -0.073 0.313 -0.050
-0.027 0.068 0.031 0.208 0.000 -0.086 -0.169 0.031 -0.032

0.021 0.046 0.113 -0.021 0.000 0.168 0.136 -0.855 0.113
-0.064 -0.191 0.000 0.005 0.000 -0.191 -0.407 -0.539 -0.029

0.046 0.290 0.021 0.000 0.000 0.017 0.290 1.350 -0.082
-0.063 -0.813 0.208 0.000 0.029 -0.208 -0.399 -0.813 -0.015

0.028 -0.101 -0.021 0.000 0.000 -0.017 0.178 1.431 -0.101

ONO O~ WN =

2COM, solutions for common factor. PTransformed solutions from Eqn 6.12.
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Analysis with FA model

The main differences with fitting an FA model with no specific effects is that Z" for
an animal in Eqn 6.11 is of order n by n and the last row of Eqn 6.11 is omitted.
Note that Z" is now a product of the eigenvectors of G and the square root of a diago-
nal matrix of eigenvalues (see Section 6.4.2). Thus Z" is:
2.2974 3.2100 -0.1259 -2.0983
. | -1.7761 5.8683 -0.1348 -1.5333 , ,
Z = and for animal i:
0.2453 2.0018 4.4348 1.1272

0.5878 4.3506 -1.7658 3.0977

0.372 -0.226 -0.042 0.054
-0.226 1.236 -0.141 -0.246
-0.042 -0.141 0.410 0.019

0.054 -0.246 0.019 0.537

Z'R'Z; =

Setting the MME follows the usual rules and the MME has 40 equations for the
example but with only 388 non-zero elements. The low number of non-zero elements
is due to the fact that only 7 elements of A-! are contributed compared with 7? for
the MBLUP. Solving the equations gives the following solutions.

Solutions for calf sex effects
WWG PWG MSC BFAT

M 4.352 6.795 9.412 0.231
F 3.487 5.959 7.095 0.535

Animal solutions

Untransformed solutions Transformed solutions?

WWG PWG BFAT MSC WWG PWG MSC BFAT

-0.011 0.035 0.063 —-0.008 0.095 0.227 0.340 0.010
-0.003 -0.005 0.066 0.028 —-0.089 -0.073 0.313 -0.050
0.010 -0.020 0.010 0.021 —-0.086 -0.169 0.031 -0.032
0.000 0.002 -0.177 -0.067 0.168 0.136  -0.855 0.113
0.015 -0.062 -0.099 0.019 -0.191 -0.407  -0.539 -0.029
—-0.022 0.061 0.267 0.045 0.017 0.290 1.350 —-0.082
0.003 -0.069 -0.153 0.005 -0.208 -0.399  -0.813 -0.015
-0.007 0.050 0.285 0.060 -0.017 0.178 1.431 -0.101

ONOO O WN =

aTransformed solutions = vectors of solutions multiplied by Z*
6.4.2 Principal component analysis
Analysis with full PC model

The application of a full PC model with no rank reduction is similar to the FA analysis
except that Z" is now a matrix of eigenvectors of order 7 by 7 and Z"R7'Z" + (I ® A
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in the second row of Eqn 6.11 is replaced by Z“R™'Z* + (D, ® A~!), where D is a
diagonal matrix of eigenvalues. Again, the last row of Eqn 6.11 is omitted. It there-
fore involves decomposing G to a matrix of eigenvectors (Z*) and corresponding
eigenvalues (D). Thus Z* and D, respectively, are:

0.7710 0.3896 -0.02940 -0.5029
7 -0.5983 0.7139 -0.0268 -0.3628 J
= n
0.0865 0.2427  0.9288 0.2664 ?

0.2000 0.5288 —-0.3685 0.7379
D = diag(8.8159 67.6963 22.8286 17.6592)

Thus Z:'R_IZ; for animal 7 is:

0.042 -0.009 -0.003 0.004
-0.009 0.018 -0.004 -0.007
-0.003 -0.004 0.018 0.001

0.004 -0.007 0.001 0.030

Z'R'Z =

The MME are set up as usual. Similar again to the FA model, the PC has 40 equations
and 388 non-zero elements. The solutions for the various effects from solving the
MME are:

Solutions for sex of calf effects
WWG PWG MSC BFAT

M 4.352 6.795 9.412 0.231
F 3.488 5.959 7.095 0.535

Animal solutions

Untransformed solutions Transformed solutions

WWG PWG BFAT MSC WWG PWG MSC BFAT

-0.032 0.287 0.303 -0.032 0.094 0.227 0.340 0.010
-0.009 -0.038 0.314 0.118 -0.090 -0.073 0.313 -0.050
0.031 -0.163 0.047 0.089 -0.086 —-0.169 0.030 -0.032
-0.002 0.015 -0.844 -0.279 0.170 0.136 —-0.855 0.113
0.045 -0.511 -0.473 0.078 -0.190 -0.407 -0.539 -0.029
-0.062 0.496 1.276 0.186 0.014 0.290 1.350 -0.083
0.007 -0.571 -0.732 0.022 -0.207 —-0.400 -0.812 -0.015
-0.018 0.413 1.362 0.252 -0.019 0.178 1.431 -0.101

ONOO O WN =

6.4.3 Analysis with reduced rank PC model

The diagonal matrix D with the full PC model in Section 6.4.2 indicates that the first prin-
cipal component accounts for about 8.82% of the total genetic variance. Deleting the first
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eigenvalue gives a diagonal D* of order 3 as D*= diag(67.6963 22.8286 17.6592).
Then G, a new genetic covariance matrix, can be computed as M'D*M, where M is
equivalent to Z* in Section 6.4.2 with a full PC model fitted but with the first column
deleted. Thus:
14.759 22.067 3.412 7.640
. . 22.067 36.844 9.456 21.055 ,
G =M'D'M-= with
3.412  9.456 24.934 4.347
7.640 21.055 4.347 31.647
0.3896 -0.02940 -0.5029
0.7139 -0.0268 —-0.3628
0.2427  0.9288 0.2664
0.5288 -0.3685 0.7379

The application of reduced rank PC is similar to the full PC analysis with Z*
replaced by M and D by D*. Thus for animal i, M/R"! M, is:

0.018 -0.004 —0.007
M/R'M, =|-0.004 0.018 0.001
~0.007  0.001  0.030

The MME for the reduced PC has 32 equations and 284 non-zero elements.
The solutions for the various effects from solving the MME are:

Solutions for sex of calf effects

WWG PWG MSC BFAT
M 4.349 6.798 9.412 0.230
F 3.480 5.963 7.093 0.533

Solutions for animal effects

Untransformed solutions Transformed solutions?

WWG PWG MSC BFAT
1 0.295 0.305 -0.033 0.123 0.214 0.346 0.019
2 -0.037 0.314 0.118 -0.083 -0.078 0.314 -0.048
3 -0.170 0.046 0.090 -0.113 -0.156 0.025 —-0.041
4 0.017 -0.844 -0.279 0.171 0.136 -0.854 0.115
5 -0.523 -0.476 0.080 -0.230 -0.390 -0.548 -0.042
6 0.511 1.279 0.185 0.069 0.263 1.362 -0.066
7 -0.576 -0.734 0.022 -0.215 -0.400 -0.816 -0.018
8 0.419 1.364 0.251 -0.003 0.171 1.435 -0.096

aTransformed solutions = vector of solutions multiplied by M

The deletion of the first eigenvalue in the reduced PC analysis had very little effect
in terms of the EBVs of animals for traits 3 and 4. Thus there was no ranking for MSC
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and only two animals swapped places for BFAT compared with the result from the full
PC analysis. However, only the top four and six animals were the same for WWG and
PWG, respectively, compared with the full PC analysis, indicating more re-ranking was
observed in WWG due to the reduction in variance. In practice, models with reduced
ranks are usually applied in the analysis of many traits as in Meyer (2007), resulting
in no re-ranking in the top animals, which are mainly of interest.
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7 Maternal Trait Models: Animal
and Reduced Animal Models

7.1 Introduction

The phenotypic expression of some traits in the progeny, such as weaning weight
in beef cattle, is influenced by the ability of the dam to provide a suitable environ-
ment in the form of better nourishment. Thus the dam contributes to the perfor-
mance of the progeny in two ways: first, through her direct genetic effects passed
to the progeny and second, through her ability to provide a suitable environment,
for instance in producing milk. Traits such as birth and weaning weights in beef
cattle fall into this category and are termed maternally influenced traits. The abil-
ity of the dam to provide a suitable environment for the expression of such traits
in her progeny is partly genetic and partly environmental. Similar to the genetic
component of an individual, the maternal genetic component can be partitioned
into additive, dominance and epistatic effects (Willham, 1963). The environmen-
tal part may be partitioned into permanent and temporary environmental compo-
nents. It is the maternal additive genetic component of the dam that is passed on
to all her offspring, but it is expressed only when the female offspring have prog-
eny of their own.

In the usual mixed linear model for maternally influenced traits (Eqn 7.1) the
phenotype is partitioned into:

1. Additive genetic effects from the sire and the dam, usually termed the direct genetic
effect.

2. Additive genetic ability of the dam to provide a suitable environment, usually termed
the indirect or maternal genetic effect.

3. Permanent environmental effects, which include permanent environmental influ-
ences on the dam’ mothering ability and the maternal non-additive genetic effects
of the dam.

4. Other random environmental effects, termed residual effects.

In this chapter, the mixed model methodology for genetic evaluation in models
with maternal effects is discussed, considering a univariate situation, and the exten-
sion to multivariate analysis is also briefly presented. The application of BLUP to
models with maternal effects was first presented by Quaas and Pollak (1980).

When repeated measurements for maternally influenced traits are available
over a range of ages (for instance, body weight from birth to 630 days), a random
regression model (see Chapter 9) might be more appropriate to analyse such a
trait. A random regression model for maternally influenced traits is briefly defined
in Section 9.3.6.

© R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values, 109 ]
3rd Edition (R.A. Mrode)



7.2 Animal Model for a Maternal Trait

The model for maternally influenced traits in matrix notation is:
y=Xb +Zu + Wm + Spe + ¢ (7.1)

where y = vector of observations, b = vector of fixed effects, u = vector of random
animal effects, m = vector of random maternal (indirect) genetic effects, pe = vector
of permanent environmental effects as explained in item 3 in Section 7.1, e = vector
of random residual effects, and X, Z, W and S are incidence matrices relating records
to fixed, animal, maternal genetic and permanent environmental effects, respectively.
It is assumed that:

u guA gpA 0 0
m g gnA 0 0

Wpe| Tl 0 0 1ok 0
e 0 0 0 Io:

where g,, = additive genetic variance for direct effects, g,, = additive genetic variance for
maternal effects, g,, = additive genetic covariance between direct and maternal effects,
01276 = variance due to permanent environmental effects and o2 = residual error
variance.

The variance of y, using the same arguments as in Section 3.2, is:

g gLA| Z 2 @ 2
var(y)=(Z W |: ][ ,|+Slo;. S + 1o,
[ ] gnA EnA|W ’

The BLUE of estimable functions of b and the BLUP of u, m and pe in Eqn 7.1 are
obtained by solving the following MME:

b] [xX X'Z X'W X'ST'[ Xy

i ZX ZZ+A'ay ZW+Aa, ZS| | Zy

m| |WX WZrA e, WWiATa,  WS| |wy (7:2)
pe §'X Sz SW SS+las| | Sy

11 12 11 12
withG:[g“ 312} G- g21 g22 and [ou a2]=g§ g21 gzz and a4=crf/0;e
821 82 g o 03 g g

7.2.1 Anillustration

Example 7.1

Assume the data in Table 7.1 to be the birth weight for a group of beef calves. The
aim is to estimate solutions for herd and pen effects and predict solutions for direct
and maternal effects for all animals and permanent environmental effects for dams of
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Table 7.1. Birth weight for group of beef calves.

Calf Sire Dam Herds Pen Birth weight (kg)
5 1 2 1 1 35.0
6 3 2 1 2 20.0
7 4 6 1 2 25.0
8 3 5 1 1 40.0
9 1 6 2 1 42.0

10 3 2 2 2 22.0

11 3 7 2 2 35.0

12 8 7 3 2 34.0

13 9 2 3 1 20.0

14 3 6 3 2 40.0

progeny with records. Suppose that the genetic parameters are g, = 150, g,, = -40,
8, =90, 0;, = 40 and o7 = 350. Then:

. [0.00756 0.00336] [al az]
and

2.647 1.176
0.00336 0.0126 o o3

1.176 4.412

and o, = 350/40 = 8.75.
The model for the analysis is as presented in Eqn 7.1.

SETTING UP THE DESIGN MATRICES

Considering only animals with records, the first three rows of matrix X relate records
to herd effects and the last two rows to pen effects. The transpose of X is:

1111000000
00001T11000
X’=f0 0 0000O0T1T11
10011000O010O0
0110011101

Excluding ancestors, each animal has one record; therefore Z is an identity
matrix. However, Z is augmented with columns of zeros equal to the number of
ancestors to take account of ancestors in the pedigree. The matrices W and S relate
records through the dam to their effects, i.e. maternal genetic effect and permanent
environmental effect, respectively. However, since maternal effect is genetic and is
passed from parent to offspring, estimates of maternal effect are for all animals
in the analysis while estimates of permanent environmental effects are only for
dams of progeny with records. Thus, in setting up W, all animals are considered,
while only four dams with progeny having records are taken into account for S.
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For the example data set, W (with rows and columns numbered by the relevant
animal they relate to) is:

1 23 456 7 8 910 11121314

5[0 1.00000O0O0OOO0OO0 O]

610 1.00000O0O0OO0OO0OO0OTO0ODO

7[00 00001 000O0O0O0O0O0

80 0 0 0O1 000 O0O0OO0OO0OO0OO

W - 910 0 0 0 0 1.0 0 00O O OO O

100 1. 0 0 0 0OOOOOOOO O

110 0 0 0 0 0 1 0 0 0 0O O O O

120 0 0 0001000 O0O0O0 O

130 1. 0 0 0 00O OOOO0OO0OO0O O

1410 0 0 0 0 1.0 0 0 0 0 0 0 O]

and:

56 7 8 91011121314
2[t 100 010010
S’—SO 00 10O0O0O0TO0DO0
6/]0 0101 000O01
710 0 0000 1100

The matrix S above implies, for instance, that animals 5, 6, 10 and 13 have the same
dam (animal 2), while animals 11 and 12 are from another dam (animal 7).
The transpose of the vector of observations is:

y =1[3520 25404222 35 34 20 40]

The other matrices in the MME can be calculated through matrix multiplication.
The inverse of the relationship matrix is calculated applying the rules in Section 2.4.1.
The matrix A-'e, is added to animal equations, A~'e, to the equations for maternal
genetic effects, A! o, to the animal by maternal genetic equations and ¢, to the diagonals
of the equations for permanent environmental effects to obtain the MME. The MME are
not presented because they are too large. There is dependency between the equations for
herds and pen; thus the row for the first herd was set to zero in solving the MME by direct
inversion. Solutions to the MME are:

Effects Solutions
Herd—year—season
1 0.000
2 3.386
3 1.434
Pen
1 34.540
2 27.691

Continued
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(Continued )

Effects Solutions
Animals
Direct effects Maternal effects
1 0.564 0.262
2 -1.244 -1.583
3 1.165 0.736
4 -0.484 0.586
5 0.630 -0.507
6 -0.859 0.841
7 -1.156 1.299
8 1.917 -0.158
9 -0.553 0.660
10 -1.055 -0.153
11 0.385 0.916
12 0.863 0.442
13 -2.980 0.093
14 1.751 0.362
Permanent environment
2 -1.701
5 0.415
6 0.825
7 0.461

The solutions show little difference between the herds, but calves in pen 1 were
heavier than those in pen 2 by about 6.85 kg at birth. The solution for level i of the
fixed effect # can be calculated using Eqn 4.3 except that the sum of yields for the

level of fixed effect is corrected in addition for maternal effects. That is:
diag,,

}Z; Yinf — Zl;in/ - ;ﬁink - zl‘/h,»,,; - Zﬁeint
__I= / ¢

dlag in

~

. (7.3)
where 72, , is the solution for level [ of genetic maternal effects within level 7 of the nth
fixed effect and all other terms are as defined in Eqn 4.3. Thus the solution for level 1
of pen effect is:
by, =137 - (2bd, + hd, + hd,) - (4, + 4, + 4, + 4,3
- (27, + 1ing + 101) = (2pe, + pes + pe,)]/4
=[137 - 4.82 - (-0.986) - (-2.832) - (-2.162)]/4
= 34.540
where hd. is the solution for level j of herd effect.
From the MME, the solutions for direct and maternal effects for animal ; with
progeny o are:

|:1fti:|=|:n1+(d+k1)(x1 (d+k1)a2:|_1 HE [ﬁsmd}

i (d+k)o, n,+(d+k)oy 5 +171,
+ yi_[;i_ﬁqdam_ﬁdam 5
yo_éo_ﬁo_ﬁi 5

Amale) :|
S8, 00e) (7.4)
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where 7, is the number of records for animal 7; 7, is the number of progeny records with

animal 7 as the dam; d = 2, 4 or 1 when both, one or no parents of animal i are known;
k, =1 or 5 when both or one parent of animal i are known; k, = 5 and k, = 1 when the
mate of animal i is known or k, = % and k; = 2 with the mate unknown and:

3
a1 02
H-=
a2 O3
For instance, the solutions for direct and genetic maternal effects for animal 5 are:

[ﬁj]_[1+(2+0.5)2.647 (2+0.5)1.176}‘1 [ ulmz}{ys_él_%_ﬁz}
it (2+0.5)1.176  1+(240.5)4.412| 2| my+m, | | vg— b, — itg — bs
&8—0.5(213)}
1i1g —0.5(r715)
{ﬁS]_[l+(2+0.5)2.647 (2+O.5)1.176]1H {0.5644—1.244)}
; (2+0.9)1.176 1+(2+0.5)4.412 0.262+~(1.583)

+[35—0—34.54—(—1.583)—(—1.701):|

o

ms

40-0-34.54-1.917-0.415

1.917—0.5(1.165)]_ |: 0.630]

H(1
" (>|:—O.158—0.5(0.736) -0.507

The solution for the permanent environmental effect for dam j from the MME is:

A

be, = (v, - b, - i, - )l(n, + ;) (7.5)

o] o

where all terms are as defined in Eqn 7.4. For animal 3, the solution for the perma-
nent environmental effect is:

pe, =40 -0 - 34.54 - 1.917 - (-0.507)/(1 + 8.75) = 0.415

Additive genetic maternal effects represent good mothering ability, which is
passed on from dams to progeny, while permanent environment effects refer to per-
manent environmental and maternal non-additive genetic influences on the mother-
ing ability of the dam. Thus selection of dams for the next generation in a maternal
line would place emphasis on good genetic maternal effects in addition to a good
estimate of breeding value. If equal emphasis is placed on both effects, dams 7 and 5
would be the top two dams in the example while dam 2 ranks lowest. However, if the
main interest is the performance of the future dams in the same herd, then selection
of dams would be based on some combination of the solutions for direct, maternal
genetic and permanent environmental effects for the dams. Again, in the example
data, dam 2 ranks lowest while the best two dams are dams 6 and 7 if equal emphasis
is placed on the three components.

In the case of males, the selection of sires for a maternal line, for instance, would
be based on a combination of solutions for direct and maternal genetic effects.
Obviously, sires 3 and 1 would be the top two bulls for such a purpose. However, if
the emphasis is only on direct genetic effects, probably to breed a bull, then sire 8 in
the example would be the bull of choice.
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7.3 Reduced Animal Model with Maternal Effects

In Section 3.5, the use of the reduced animal model (RAM), with only one random
effect apart from residual error in the model, was considered. The records of non-
parents in the MME were expressed as the average of parental breeding values plus
Mendelian sampling. This has the advantage of reducing the number of random
animal equations in the MME. The application of RAM with multiple random effects
in the model is illustrated in this section using the example data used for the full
animal model in Section 7.2. The model for the analysis is the same but design matri-
ces and the variance of non-parental animals are different. From the arguments in
Section 3.5, the model for the RAM can be expressed as:

y y4
Lj [ij+[zﬂup+sz+Z3pe+|:Z::| (7.6)

where Y, ¥, = vector of observations for parent and non-parents, respectively,
b = vector of leCd effects, u = vector of random animal effect for parents, m = vector
of maternal genetic effects for parents, pe = vector of permanent environmen-
tal effects and e, e, = vector of residual error for parents and non-parents,
respectively.

The incidence matrices Z, and Z, relate records to maternal genetic and perma-
nent environmental effect, respectively. The matrices Z and X relate records of
parents to animal and fixed effects, respectively, while PZnand X, relate records of
non-parents to parents (animal effect) and fixed effects, respectively.

It is assumed that:

u, —guA g,A 0 0 0]
m g,A g,A 0 0 0
var|pe| = 0 0 IGjZJe 0 0
€p 0 0 0 Io-gp 0
€xn L 0 0 0 0 Iggn_

where 67 is the residual variance for parents, which is equal to 62 in Section 7.2,
o2 is the residual variance for non-parents and is equal to I + Dgll, with D being a
dlagonal matrix containing elements d;, which are equal to 3 or 1 depending on
whether one or both parents are known The matrix G and 02 are defined as in

Section 7.2. Let:

Io2 O .0 10
X= Xy VAL Zy , R= Ter = R and R_1= Ry -1

Again, the MME provide the basis of the BLUE of estimable functions of b and BLUP
of a, m and pe in Eqn 7.6. The relevant MME are:
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-1

b][XR'X X'R'Z, XR'Z, XR'Z,
i ZR'X ZR'Z +A;1g11 Z{R_1Z2+A;1g12 ZR'Z,
Z,R'X ZR'Z +A,'¢" ZyR'Z,+A,'g” Z,R'z,
pe||Z;R'X Z\R'Z, Z\R'Z, ZiR'Zi+11/0,,
XR'y
_| ZirTy (7.7)
B Z, Ry
Z,Ry
where g" are the elements of the inverse of G.
As shown in Section 3.5, each block of equations in the MME above can be

expressed as the sum of the contributions from parents’ records and non-parents’
records. Thus:

X'R™'X =X}, Rp'X,+ X, R:'X,

Expressing Eqn 7.7 as shown for the equations for the block of fixed effects above
and multiplying by R, gives:

X X,+X,R,'X, X! Z,+X,R;'Z, X! Z,+X,R,'Z, X; Z;+ X, R,'Z,
Z,X,+Z,R;X, Z,Z,+Z,R,'Z,+A"a, Z,Z,+Z,R,'Z,+A ', Z,Z;+Z,R;'Z;
Z; X, +ZiR)X, ZLZ,+ZR'Z+ AT, Z3Z,+Z3 R, Z,+ A, 7, Z,+Z} R, Z,
Z, X, +ZR,'X, Z,Z,+7Z,R,'Z, Z,Z,+Z4R,'Z, Z,Z,+Z;R,'Z,+1a,

b| [X;y, +X,R,'y,
il | Zy,*Z,R}y,
| | Zby, +Zi Ry,
pe] | Zyy, *Zi Ry,

The o terms are as defined in Eqn 7.2 and R~! now equals 1/(1 + Da™'). The MME

for the solutions of b, u, m and pe can therefore be set up as shown above or as in
Eqn 7.7.

7.3.1 An illustration

Example 7.2
The same data set and genetic parameters as in Section 7.2 are used below to demon-

strate the principles for setting up a RAM with maternal effects in the model using
Eqn 7.5. Recollect that:

40 10 o 0.029 -0.014
G= andG™'=
10 20 -0.014 0.057
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The residual variance for parents Ggp =350, and because both parents of non-parents
in the data are known:

02, = 0%+ Yg,,) = 350 + 1(150) = 425

with:
R- I, O
0 Iol,

Then:

R = diag(350, 350, 350, 350, 350, 425, 425, 425, 425, 425)
and:

R-' = diag(0.00286, 0.00286, 0.00286, 0.00286, 0.00286, 0.00235, 0.00235,
0.00235, 0.00235, 0.00235)

1/02, = L =0.025

SETTING UP THE DESIGN MATRICES

The matrix X, which relates records to fixed effects, is the same as in Section 7.2.1,
considering only animals with records. The matrix X’R-'X in the MME can be cal-
culated through matrix multiplication from X and R-! already set up. For illustrative
purposes, the matrix X’R~'X, when expressed as the sum of the contributions from
parents’ and non-parents’ records, is:

XR'X=1'X/X +1'X X,
[0.0114 0.0 0.0 0.0057 0.0057] [0.0 0.0 0.0 0.0 0.0

0.0 0.0029 0.0 0.0029 0.0 0.0 0.0047 0.0 0.0 0.0047
=(0.0 0.0 0.0 0.0 0.0 +10.0 0.0 0.0071 0.0024 0.0047
0.0057 0.0029 0.0 0.0086 0.0 0.0 0.0 0.0024 0.0024 0.0

10.0057 0.0 0.0 0.0 0.0057 0.0 0.0047 0.0047 0.0 0.0094
[0.0114 0.0 0.0 0.0057 0.0057

0.0 0.0076 0.0 0.0029 0.0047

=(0.0 0.0 0.0071 0.0024 0.0047

0.0057 0.0029 0.0024 0.0109 0.0

10.0057 0.0047 0.0047 0.0 0.0151

where X and X are matrices relating parents and non-parents to fixed effects,
respectively, and are:

11110 00O0O0OO
00001 11000
X, =0 000 0] and X, =|0 0 1 1 1
10011 00010
01100 11101
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The matrix Z,, which relates records to animal effect is:

1 2 3 4 5 6 7 8 9
[0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0]
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
10 /0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
11 {0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0
12 10.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0
13100 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5
14 [0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0]

O o NI O »n

VAR

The first five rows correspond to animals 5 to 9, which are parents, and each has
one record. The last five rows correspond to the records for animals 10 to 14 (non-
parents), which are related to their parents. The matrices Z, and Z, are exactly the
same as W and S in Section 7.2.1, respectively, and the vector of observation, y, is the
same as in Section 7.2.1. Apart from the relationship matrix, all the matrices in the MME
can easily be calculated through matrix multiplication from the design matrices
and vector of observation set up above. The inverse of the relationship matrix is set
up only for parents (A:1), i.e. for animals 1 to 9, using the procedure outlined in Chapter 2.
The matrix A-'g!! i 1s added to animal equations, A}'g** to the equatlons for maternal
genetic effects, A‘ g'? to the animal by maternal genetlc equations, A g?! to the mater-
nal genetic by ammal equations and 1/62 to the diagonals of the equatlons for per-
manent environmental effects to obtain the MME. The MME are not presented
because they are too large. Solving the MME by direct inversion with the equation
for the first herd set to zero gives the same solutions as from the animal model
(Example 7.1). However, the number of non-zero elements in the coefficient matrix
was 329 compared with 429 in the animal model, due to the reduced number of
equations, indicating the advantages of the RAM.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are back-solved
after the MME have been solved.

BACK-SOLVING FOR DIRECT EFFECTS

Solutions for direct animal effect for the non-parents are obtained from parent aver-
age and an estimate of Mendelian sampling using Eqn 3.27. Thus the solution for
the non-parent i is:

i, = 0.5(a, + ) + k(y, — b~ 1in, - pe, ~ 0.5(i, + i) (7.8)
with:
k=1t +d'g")=1/(1+d'®a); a=ocic?
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where d is either 1 if both parents are known or 2 if only one parent is known. For
the example data, both parents of the non-parent individuals are known,

therefore:
k.=1/(1+2(2.333)) = 0.17647
For animal 10, for instance, the breeding value is:

10 = 0.5, +u)+k(y10—b b - p, = 0.5(, + ,))

= 0.5(1.165 + —1.244) + 0.17647(22 ~3.386 - 27.691 - (-1.583)
~ (=1.701) = 0.5(1.165 + —1.244))
= -1.055

BACK-SOLVING FOR MATERNAL EFFECTS

The equation for obtaining genetic maternal effects for non-parents can be derived
as follows. From the MME, the equation for direct and genetic maternal effects for
non-parent 7 is:

ri+nigh n*]g12 U+ itg Vi = bi = itdam = Do
{ 21 1522 Gk +r! 0 (7.9)

n-gs n'g s + 11y

where 7 is defined in Eqn 7.8 and other terms are as defined in Eqn 7.4.
From the above equations:

i = (@220, + i) + g2 (i, + i) — 7' g2 (i) |12
i = n(ii, + 1)) + [(g¥n(i, + i) - g*'i)/ 2]
1, = n(im, + 1) + g2 g*(n(d, + ) — i1)

Note that:
82118% = {-8,,/(81182 ~ 81,821)1(8118&22 — 812821)/811)
= -81,)/8
Therefore:
M. = n(im, + 1) + g,/g,, (4 - d(d, + i1,)) (7.10)

When both parents are known:
m, = 0.5(m, + 1) + (g,,/g,)(4 = 0.5(4_ + i1,))
For instance, for animal 10:

A1y = 0.5(, + 1in) + (g,,/g,,) (i - 0.5(i, + ib,))
= 0.5(0.736 + (~1.583)) + (-40/150)(~1.055 — 0.5(1.165 + —1.244))
- -0.153

The solutions for direct and maternal effects of all non-parents in the example data
(animals 10 to 14) applying Eqns 7.7 and 7.9 are exactly the same as obtained for
these animals in the animal model.

7.4 Sire and Maternal Grandsire Model

In some cases, due to the structure of the available data, a sire and maternal grand-
sire model may be fitted for traits affected by direct and maternal genetic effects.
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This tends to be more common for calving traits such as calving ease or stillbirth
(Wiggans ef al., 2003). The calving event is regarded as a direct effect of the service
sire (direct effect). This predicts how easily his progeny are born and is computed by
fitting the service sire. The maternal effect, which predicts how easily the bull daugh-
ters calve, is computed by fitting the MGS, hence the name sire-maternal grandsire
(S-MGS) model.

The model then is similar to Eqn 7.1 and can be written as:

y = Xb + Zs + Wmgs + Spe + e (7.11)

where y = vector of observations, s = vector of random service sire (direct) effects,
mgs = vector of random MGS (indirect) genetic effects and other terms defined as in
Eqn 7.1, but Z and W are now incidence matrices relating records to service sire and
MGS genetic effects, respectively. Note that if only first lactation data is being ana-
lysed, then the pe can be omitted from the model.

It is assumed that:

var(s) = Ac?, with 62 = 0.250% var(mgs) = Ac2, with O = (7205 + 405, + 150, )5
where 02 and 62 are the additive genetic variance and maternal genetic variance,
respectively.

1

. 2 1
cov(s,mgs) = Ao, with 0, ... =50, 50,
2 2 2 2
var(pe) = 0, = (&0, +30,,+20,,+0,,) and
2 2 2
var(e) = 0, = (30, +10;.)

The same principles described in Section 7.2 can be used in the application of
Eqn 7.11 to estimate breeding values and solutions for fixed effects. Note, however,
that MME from such an analysis will produce predicted transmitting abilities (PTAs)
(which is half of the EBV) for the service sire (direct effect) and PTAs for maternal
effect are computed as:

PTA maternal effect = PTA for MGS from MME - 0.25%(PTA for direct effect)

The variance components for a S-MGS model can be converted to variances for an
animal model direct and maternal effects from the details of the components of
the variances defined above. Thus the direct genetic variance component (62) = 402, the
covariance between direct and maternal component (o, ) = 4*(0'S’mgs) - 0.502 and the
maternal genetic variance component (o) = 40,,  —0.250; - 0, . The computation
of maternal genetic component (62) can be illustrated as:

o, =(40,, -0250; -0,,)=4L0; +10,, +10,,)-0250, -0,,, =0,

m mgs m
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Social Interaction Models

8.1 Introduction

Social interaction among animals, such as competition and cooperation, can have a profound
effect on the expressions of performance and welfare traits in domestic livestock popula-
tions (Muir, 2005; Bijma et al., 2007a). When a group of animals rely on a limiting resource
(e.g. feed) to achieve an outcome (e.g. growth) the observed phenotype of an individual
(e.g. growth rate) can be influenced by both the phenotype (e.g. ability to fight for food)
and the genotype (which confers this ability) of the competitors in the group. So the growth
rate of piglets, for instance, can be reduced due to competition for food. In laying hen pro-
duction systems, social interactions can result in mortality due to cannibalism when hens
are housed in groups, and this poses both economic and welfare problems.

Although a major component of the social interaction among group members may
appear to be environmental, there is a genetic component (Wolf et al., 1998) attributable
to the genes carried by others in the group which affects how they compete; generally
referred to as indirect genetic effects (IGE) (Cheverud and Moore, 1994; Moore et al.,
1997). A selection experiment to reduce mortality due to cannibalism in domestic chick-
ens (Muir, 1996) has shown that heritable interactions (or IGE) can contribute substan-
tially to response to selection. Selection schemes that ignore this social effect of an
individual on the phenotypes of its group members could result in less optimum response
or even response in the opposite direction (Griffing, 1967). This social effect or indirect
genetic effect (Cheverud and Moore, 1994) is often referred to as an associative effect
(Griffing, 1967). In addition, Bijma et al. (2007b) indicated that the existence of social
interaction among individuals may increase the total heritable variance in a trait. They
found that heritable variance in survival days expressed as a proportion of phenotypic
variance increased from 7 to 20% due to social interactions, indicating that about two-
thirds of heritable variation is due to interactions among individuals. One possible solu-
tion for improving traits affected by social interaction is to undertake group selection
(Griffing, 1967). However, an optimum individual selection scheme to improve traits
affected by interactions among individuals will involve the use of models that account for:

1. direct effects due to the direct effects of the genes of the individual; and
2. indirect effects due to the associative effect of the individual on its group members.

The phenotype (P,) of an animal i for a trait influenced by social interaction
belonging to a group with # members where interaction occurs may be modelled as:

n—1 n—-1

P =Ap;+0Op, +Ep,; + ZAS,;' + ZQS,;' + Eg;

j#i j#i
where j is one of the # — 1 group mates, A, and A . are the additive direct effect and
sum of the additive indirect effects of each of the 7 — 1 group mates, with corresponding
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non-additive components Q,,; and Q;; and environmental components E , ; and E;
The non-additive components may be combined with the environmental components
such that the equation may be expressed:
n—1
P =Ap,+E,; + Y Ag, +Eg;
j#i
Therefore the phenotypic variance can be derived as:
n—1
var(P) = var[Ap, + Ep; + 3 Ag; + Eg |
j#i

Given that cov(E, , Es,,') = 0 when i # j, and cov(A, E) = 0 for all 4, j, then:
n-1 n-1 n—1
var(P) = 0 +0p + var () Ag )+ var(Y Eg ;) +2cov(Ap;, ) A )

J#L j#i j#i
with cov((ESl,E =0
when:

]i],var(ZE J (n— 1)

j#i

Also given that cov((A;,, A; ;) = 7,05, Where 7, is the relatedness between animals j and , then:

n—1

Var( AS /_J =n- 1)01245 +(n-1)(n- Z)rai
j#i ’

with 7 equal to the mean relatedness within the groups. Finally:

cov( D,,{ZAJ (n—1)ro,

j#i
Collecting all the terms together gives the phenotypic variance as:

0, =04 +0p +(n—1)(0s +0p)+(n—-1)r20, +(n-2)o;]
However, the total breed value (TBV; Bijma et al., 2007a) for individual i is:
TBV,= A, + (n-1) A (8.1)

Note that TBV is what the progeny of the individual i will inherit and is the relevant
breeding value in computing response for selection for traits affected by associative
effects. Therefore, the total heritable variance of the trait equals the variance of the
TBVs (02,,) among individuals and is:

Oty = a,ﬁ +2(n-1)0, +(n— 1)262

where o7 4 o 4, and o, are the variance of direct breeding value (DBV), associative
breeding value (SBV) and the covariance between DBV and SBV, respectively. The
sign of this covariance provides a measure of the competition versus cooperation
among group members. Negative values may be interpreted as ‘heritable competition’
in the sense that animals’ positive DBV on the basis of their phenotype has a negative
heritable impact on the phenotypes of their associates. On the other hand, a positive
covariance may be interpreted as ‘heritable cooperation’ (Bijma et al., 2007b).

Thus the ratio of total heritable variance to the phenotypic Variance (‘L’z) for traits with
associative effects (Bergsma et al., 2008) can be expressed as 7%= 57, / o’. A comparison of
7 to the classical heritability (b* = 073 / 0'2) indicates the proportlonal contribution of
indirect additive effects to the total heritable variance for traits with associative effects.
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Bijma et al. (2007a) presented this general formula for total genetic response per
generation (AG) to selection for traits with associative effects.

AG = {wt(n —1)(r + 1035y + (1~ wt)G, 15y %I

where 0, ,,, is the covariance between the phenotype of the individual and TBV,  meas-
ures the degree of genetic relatedness, which is twice the coefficient of coancestry, Kkis the
selection intensity, o; is the standard deviation of the index (I) that combines individual
phenotypes and phenotypes of group members, and wt defines the weights on individu-
als versus phenotypes of group members, such that:
n
I=wtP +(1 wt)/;pf

Thus for a given 7, , wt and selection intensity, response is dependent on the 62, and the
covariance between the phenotype of the individual and TBV. Therefore, response to selection
may not necessarily follow the same direction as the selection pressure as in classical quan-
titative theory. The interactions among individuals affect both the direction and magnitude
of selection response. Strong competition, for instance a negative o, ;;, due to a large and
negative 0, , will result in a response opposite in direction to the direction of selection.

8.2 Animal Model with Social Interaction Effects

Usually, data with associative effects tend to include animals that are full-sibs and
therefore there is the need to account for the common environmental effects in the
model. Thus the MME for a trait with social interaction effects could be written as:

y=Xb+Zyu, + Zug+ Wc +e (8.2)

where b is the vector of fixed effects, u,, and ug are the vectors for direct and associa-
tive genetic effects, respectively, c is the vector for common environmental effects and
e is the vector for residual error.

It is also assumed that:

[UD] _ |:g11A gle]
var =
Ug gnA  gnA

and if there are # animals in a group, then for the ith animal:

var(e;) = (var(Ep; + Eg;),j =1L,n—1and i # j) = 0'1%:” + (n _1)0-12% (8.3)

Assuming that 7 = 3, with animals 4, j and k in the group, then the residual covariance
between animal 7 and j in the same group or pen is:
co

= cov(e, el.) =cov(E,; + Es,,' + Eg s ED)].+ Eg, + Eg,)

=cov(Ep,, Es, )+cov(Es , Ep, )+ cov(E . Eg ) =204 +(n—2)0} (8.4)

Vpenmates

Therefore, the correlation among animals in the same group (p) can be defined as:
p = covle;,e;)/ var(e) = [20, +(n—2)o; |/[o} +(n—1)o} |

Assuming that residual covariance among different groups is zero, the residual vari-
ance structure can then be defined as var(e) = R, with 7, = 67, ;= p(c?) for animals
i and j in the same group and r,; = 0 for animals 7 and j in different groups. Thus R is

block diagonal and with 7 = 3, the block diagonal for one group is:
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All elements between the various block diagonals are zero. However, Bergsma et al. (2008)
indicated that the residual covariance within groups (cov ) equals the variance among

> . penmates’ = .
group means (o). Thus when €OV, ynates OF P 18 > 0, instead of fitting the correlated residual

structure described above, a random group effect can be fitted as an equivalent model, with:
0; =20, +(n—-2)o},

and residual variance now defined as:
o2 = 0%~

Therefore, the equivalent model to Eqn 8.2 is:
y=Xb+Zju, +Zug+ Vg + Wc + e (8.5)

where g is the vector of random group effects with g ~ N(0, Igaé). The MME to be
solved then are:

X'X X'Zpy X'Zs X'V X'W
ZoX ZWZpy+A'ey ZpZs+ Ao, ZLV ZW
ZX ZiZy+A'a, ZiZi+Al'a, ZYV Z\W
V'X VZ, V'Z V'V+la, VW
WX WZp, W'Z W'V W'W + Lo 56)
b X'y
Uy, Zny
Ug | = | Zgy
g Vy
c W'y
11 12 11 12
IfG™! ={g21 gn] then [Zl a2:|= o_i*[gﬂ gzz:l’ o,=0,/0; and o =0./0;
g g 2 03 g 8
However, when OV ates 1 S 05 then the MME to be solved are:
XR'X XR'Z, X'R'Z X'R™'W
ZLRTX ZERTZ, + AT ZERTZg+ AT ZERT'W
ZR'X ZR'Zy +AT'gY ZRT'Zg+AT'e ZERT'W
WR'X WR'Z, WR™'Z, WR'W +Ic? 3.7)
b1 [XRTy
iy |ZHRy
Ug ) ZRy
¢ W’R’ly
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Although the number of equations to be fitted for Eqn 8.6 is usually more than for
Eqn 8.7, the systems of equations for Eqn 8.7 are denser and more difficult to set up.

8.2.1 lllustration of a model with social interaction

Example 8.1
Table 8.1 contains the growth rate data of nine pigs housed in three pens during the
finishing period in groups of three. The pigs are from three different litters and the
aim is to estimate the direct and associative breeding values for all pigs, estimate sex
effect and common environment effect as some of the pigs are full-sibs. It is assumed
that genetic variances for direct and associative effects are 25.70 g? and 3.60 g2,
respectively, with a covariance of 2.25 g between them. Also, it is assumed that the
variance for common environmental variance (02) is 12.5 g and residual variances
for direct (Géb) and associative (O',i) effects are 40.6 g and 10.0 g2, respectively, and
the correlation among pigs in the same pen (p) is 0.2.

The MME in Eqn 8.6 are initially used to analyse the data. Based on the given
genetic parameters:

var(e) =0} +(n—1)o;=40.6+(3-1)10 = 60.6

Since p = cov(e, ¢)/var(e) = 0.2, and cov(e,, ¢) = Gé in Eqn 8.6, then Gi, = p var(e) =
0.2760.6 = 12.12.

Therefore, the residual variance relevant to the analysis using Eqn 8.6 with groups
fitted is var(e*) = var(e) - Gé =60.6 —12.12 = 48.48 and:

1.9956 -1.2472
1 %2 in8.6]=G ! gt =
o2 O3 -1.2472 14.2462

Setting up the incidence matrices X, V, W and Z, in Eqn 8.6 follows the pattern
already described for other models in previous chapters, with Z being a diagonal
matrix for animals with records and:

111000000
v=(0 0 01 1.1 0 0 O
0 000 O0O0O0T1TT11

relating records to pen (groups).

Table 8.1. The growth rate of a set of finishing pigs.

Animal Sire Dam Pen Sex Growth rate (g/day)*10
7 1 4 1 Male 5.50
8 1 4 1 Female 9.80
9 2 5 1 Female 4.90

10 1 4 2 Male 8.23

11 2 5 2 Female 7.50

12 3 6 2 Female 10.00

13 2 5 3 Male 4.50

14 3 6 3 Female 8.40

15 3 6 3 Male 6.40
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The matrix Z; that relates an individual to other members of the same group is:

01 100O0O0O0OO
1 010 0 00O
110 0 000 0O
0000110 O0O0
Z;=/10 0 01 01 0 0 O
0 001 1O0O0O0TO0
000 0O0O0OO0OTT1
0 000 O0O0T1TO01
0 000O0OO0OT1TT1TOPO

Setting up the MME therefore follows a similar pattern to that described in previous chap-
ters. Solving the MME (Eqn 8.6) for this example gives the following set of solutions. The
results from an analysis that ignored associative effects but fitted random animal and com-
mon environmental effects and fixed effects of sex of pigs and pen effects are also presented.

Model with no
Model with associative effects associative effects»

Sex of pig effects

Male 6.006 0.000
Female 8.241 2.169
Animal effects
DBV SBV TBV
1 0.298 -0.044 0.210 0.336
2 -0.487 0.028 -0.431 -0.478
3 0.189 0.016 0.221 0.142
4 0.298 -0.044 0.210 0.336
5 -0.487 0.028 -0.431 -0.478
6 0.189 0.016 0.221 0.142
7 0.129 -0.075 -0.022 0.279
8 0.527 -0.098 0.330 0.652
9 -0.878 0.010 -0.858 -0.738
10 0.538 -0.003 0.531 0.412
11 -0.494 0.083 -0.328 -0.628
12 0.400 0.059 0.517 0.216
13 -0.578 0.019 -0.539 -0.547
14 0.156 0.004 0.164 0.162
15 0.201 0.002 0.204 0.192
Common environment effects
1 0.325 0.327
2 -0.504 -0.465
3 0.178 0.139
Group effects
1 -0.275
2 0.367
3 -0.092

DBV, direct EBV; SBV, associative EBV; TBV, total EBV = (DBV + (n - 1)SBV).
aModel also fitted pen effects, and solutions were 5.160, 7.131 and 5.838 for pens 1, 2 and 3, respectively.
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Although solutions for sex of pig and common environmental effects were gener-
ally in the same direction in models with or without associative effects, there was a
major re-ranking of animals based on the EBVs. Griffing (1967) has indicated that
selection schemes that ignore this social effect of an individual on the phenotypes of
its group members could result in less optimum response, while Bijma ez al. (2007a)
observed that the presence of social interaction among individuals may increase the
total heritable variance in a trait.

8.3 Partitioning Evaluations from Associative Models

The equations for DBV and SBV for animal i can be written as:

ZhZyn+A, ZpZg+ A, |:ﬁD:| B Ziply, —Xb-Z )
Z;S ZiD + A(;j Z:S ZiS + A;: Z,,S (Y,- - Xl; - ZjSﬁjS - Z/Dﬁ]-D)

_ ZyZy O (Ydl]
0 Z;SZiS) ydz (8.8)

with i #jandj = (1, n - 1), where 7 is the number of animals in the same group and:
’ -1 ’ N A
yd, = (ZiD ZzD) Zy (yi -Xb _Z/su,'s) and
ydy =(Z'sZg) ™ Zls(y;, - Xb ~ Z0;s—Zpup)

Ug

Thus yd, is the yield record of animal 7 corrected for all fixed effects and the SBVs of
all other members in the same group, and yd, is the average of the yield records of
all animals in the same group apart from animal i corrected for all fixed effects, the
DBVs and SBVs of the members of the group. Transferring the left non-diagonal
terms of A~! in Eqn 8.8 to the right side of the equation gives:

ZZp +ad'ey, ZpZs+a'a, [ﬁD] 5 [al az) (PAl)
. . . |=2a,,
Z.Zy +a'a, Z,Zg+a'o, || Py oy ) \PA,
7 7. 0 d o o 2a 7o, - mate
I Ry (Y 1)4_0.5%"@( 1 2) ADP g AD 1
0 Zz,S ZiS) de o, o 2uSprog = Ugpuare

where PA, and PA, are the parent averages for DBV and SBV for animal i;a,,, = 1, 2

or 3 if both, one or neither parents are known, respectively; and a, =1 if the animal’s
prog

mate is known and 3 if unknown. Note that @/ = 2a,, + 0.5a,, ., therefore pre-
multiplying both sides of the above equation by the inverse of DIAG, with:

DIAG — ZLZ+a'o, ZLZg+a'a,
ZiZp+a'o, ZiZg+a'o,
gives
0 PA d PC1
o wr | w4+ (8.9)
i PA, vd, PC2
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where:
PC1 2ﬁDprog - lAleazte
= a a
(PCZJ z prog [ 2ﬁSprog - ﬁSmate z prog
The weights W, W, and W, = I, with:

7y Zy O
W, = (DIAG)™ 2%(“1 az) ,W, = (DIAG) | P “P
o & 0 ZisZs

1 o 0y
and W, = (DIAG) 0.5( ]Zap,og
0, 05

Equation 8.9 is illustrated below using pig 7 in Example 8.1. For pig 7:
vd, = (y, = b — it — ity — &, - &) = (5.50 — 6.006 — (~0.098)
—0.010 - 0.325 — (-0.274) = -0.469 and

yd, = 1/ (n = V)((yg + ¥o) —2b, — iy — iy — g — i1y — &, — & 28))
=%((9.8+4.9)—2(8.241)—0.527—(—0.878)—(—0.098)

~0.010-0.325 - (~0.504) - 2(=0.274)) = —0.308

Since both parents are known:

o 0, 10
DIAG=2 +
o, 0 0 2

Therefore:

(o o 0.791 —0.034
WT, = (DIAG)™ 2 = and
o, o;) (=0.017  0.932

WT, = (DIAG)™ 1 0) (0209 0.034
2 0 2) 10.017 0.068

4991 -2.494
-2.494 30.492

From Eqn 8.9:

i PA d 0.298 —0.469 0.129

7w, | e wTL | Y | = W +WT, -

U, PA, yd, —-0.044 -0.308 -0.075
The weights indicate that the relative emphasis on parent contribution was higher

for the SBV compared to the DBV. This might be due to the lower genetic variance
for associative effects in the model.

8.4 Analysis Using Correlated Error Structure

The analysis of the same data using Eqn 8.7 gave the same solutions obtained from
Egn 8.6. Since the major difference is the structure of the residual covariance, R, this
section has only focused on illustrating the structure of R, for this example. Although
the number of equations using Eqn 8.7 were three less compared to Eqn 8.6, the num-
ber of non-zero elements was higher (481 compared with 462 for Eqn 8.6). This is due
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to the correlated residual variance structure in Eqn 8.7. As mentioned earlier, residual
error structure is block diagonal with all elements between the various block diagonals
being zero. Thus for the example data in Table 8.1, with # = 3, the R block diagonal
structure for one group is:

1 p p 1 0.2 0.2
R=|p 1 plo?=[02 1 0.260.6 and
p p 1 0.2 02 1

0.01768 -0.00295 -0.00295
R'=]-0.00295 0.01768 -0.00295
—0.00295 -0.00295  0.01768

The MME can then easily be set following the usual principles.
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Analysis of Longitudinal Data

9.1 Introduction

In Chapter 4, the use of a repeatability model to analyse repeated measurements on
individuals was discussed and illustrated. The basic assumption of the model was that
repeated measurements were regarded as expression of the same trait over time. In
other words, a genetic correlation of unity was assumed between repeated measure-
ments. The model has been employed mostly in the genetic evaluation of milk pro-
duction traits of dairy cattle in most countries up to 1999 (Interbull, 2000). The main
advantages of this model are its simplicity, fewer computation requirements and
fewer parameters compared to a multivariate model (see Chapter 5). However, the
model has some drawbacks. First, test day records within lactation are assumed to
measure the same trait during the whole lactation length and are used to compute
305-day vyields. These test day records are actually repeated observations measured
along a trajectory (days in milk), and the mean and covariance between measure-
ments change gradually along the trajectory. Several studies have reported that herit-
ability of daily milk yields varied with days in milk. In addition, genetic correlations
between repeated measurements usually tended to decrease as the time between them
increases (Meyer, 1989; Pander et al., 1992). The extension of test records to compute
305-day yields is unable to account for these changes in the covariance structure.
Second, the assumption that 305-day yields across parities measure the same trait
suffers from the same limitations.

However, in beef cattle, repeated measurements of growth have been analysed
somewhat differently, with the assumption that measurements are genetically differ-
ent but correlated traits. Usually, a multivariate model has been employed in the
genetic evaluation of these traits. While the multivariate model is an improvement
on the repeatability model by accounting for the genetic correlations among differ-
ent records, it would be highly over-parameterized if records were available at
many ages or time periods. For instance, a multivariate model for daily body weight
up to yearly weight in beef cattle as different traits will not only be over-parameterized
but it will be difficult to obtain accurate estimates of the necessary genetic
parameters.

An appropriate model for the analysis of repeated measurements over time or age
(also termed longitudinal data) should account for the mean and covariance structure
that changes with time or age and should be feasible in terms of estimating the
required genetic parameters. In 1994, Schaeffer and Dekkers introduced the concept
of the random regression (RR) model for the analysis of test day records in dairy
cattle as a means of accounting for the covariance structure of repeated records over
time or age. Almost at the same time, Kirkpatrick et al. (1990, 1994) introduced
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covariance functions (CFs) to handle the analysis of longitudinal data, illustrating
their methodology with growth data. The application of RR models in animal breed-
ing for the analysis of various types of data has been comprehensively reviewed by
Schaeffer (2004). Prior to the development of the RR model for genetic evaluation,
milk yield test day records were analysed by Ptak and Schaefer (1993) using a fixed
regression model. The details of this model are discussed and illustrated in the next
section, followed by its extension to an RR model. This is then followed by a brief
presentation of CF, and the equivalence of the RR model and CF is demonstrated.

9.2 Fixed Regression Model

The theoretical framework for the fixed regression model and its application for the
analysis of longitudinal data such as test day milk production traits were presented by
Ptak and Schaefer in 1993. On a national scale, a fixed regression model was imple-
mented for the genetic evaluation of test day records of milk production traits and
somatic cell counts in Germany from 1995 until 2002. The model involved the use of
individual test day records, thereby avoiding the problem of explicitly extending test
day yields into 305-day yield, and accounted for the effects peculiar to all cows on the
same test day within herds (herd—test-day (HTD) effect). Therefore, corrections for
temporary environmental effects on the day of test are more precise compared to evalu-
ations based on 305-day yields. The model also accounted for the general shape of the
lactation curve of groups of similar age, and calving in the same season and region. The
latter was accomplished by regressing lactation curve parameters on days in milk (hence
the name of the model) within the groupings for cows. Inclusion of the curve therefore
allows for correction of the means of test day yields at different stages of lactation.
Fitting residual variances relevant to the appropriate stage of lactation could also
account for the variation of test day yields with days in milk. The only major disadvan-
tage is that the volume of data to be analysed is much larger, especially in the dairy situ-
ation, as ten or more test day observations are stored relative to a single 305-day yield.

Similar to the repeatability model, at the genetic level, the fixed regression model
assumes that test day records within a lactation are repeated measurements of the
same trait, i.e. a genetic correlation of unity among test day observations. Usually, the
permanent environmental effect is included in the model to account for environmen-
tal factors with permanent effects on all test day yields within lactation.

The fixed regression model is of the form:

nf
Y = htd; + Z‘pt/'kﬁk +u; +pe; +ey
=0

where y,. is the test day record of cow j made on day ¢ within HTD subclass 7; 5, are
fixed regression coefficients; u; and pe; are vectors of animal additive genetic and
permanent environmental effects, respectively, for animal j; ¢,,, is the vector of the kth
Legendre polynomials or any other curve parameter, for the test day record of cow j
made on day #; #f is the order of fit for Legendre polynomials used to model the fixed
regressions (fixed lactation curves) and e, is the random residual. In matrix notation,
the model may be written as:

y=Xb + Qu + Zpe + e (9.1)
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where y is the vector of TD yields, b is a vector of solutions for HTD and fixed regres-
sions, and u and pe are vectors of animal additive genetic and permanent environ-
mental effects, respectively. The variances of u and pe are as defined in Eqn 4.1. The
matrices X, Q and Z are incidence matrices and are described in detail in the next
section, which illustrates the application of the model. It is assumed that var(u) = Ac?2,
and var(pe) = IG[%, and var(e) = Io? = R. The MME for Eqn 9.1 are:

X’'X X'Q X'Z\ (b X'y
QX QQ+Ay QZ|lu | =|QYy
Z’X 7’Q Z'Z+a,)|be Zy

: —_ ~2 2 — 2 2
with o = 02/62 and o, = O'E/O'p.

9.2.1 Anillustration

Example 9.1

Given in Table 9.1 are the test day fat yields of five cows in a herd with details of
HTD and days in milk (DIM). The aim is to estimate solutions for HTD effects,
regression coefficients for a fixed lactation curve fitting Legendre polynomials of
order 4, solutions for permanent environmental effects and breeding values for ani-
mal effects using Eqn 9.1. Assume that the estimated variances for additive genetic
effects, permanent environmental effects and residual variances were 5.521 kg2,
8.470 kg? and 3.710 kg?, respectively. Then:

a, = 62/02 = 3.710/5.521 = 0.672

and:

o, = (73/6; = 3.710/8.470 = 0.438

Table 9.1. Test day fat yields (TDY) for some cows in a herd.

Animals
4 5 6 7 8
DIM HTD TDY HTD TDY HTD TDY HTD TDY HTD TDY
4 1 17.0 1 23.0 6 10.4 4 22.8 1 22.2
38 2 18.6 2 21.0 7 12.3 5 22.4 2 20.0
72 3 24.0 3 18.0 8 13.2 6 21.4 3 21.0
106 4 20.0 4 17.0 9 11.6 7 18.8 4 23.0
140 5 20.0 5 16.2 10 8.4 8 18.3 5 16.8
174 6 15.6 6 14.0 9 16.2 6 11.0
208 7 16.0 7 14.2 10 15.0 7 13.0
242 8 13.0 8 13.4 8 17.0
276 9 8.2 9 11.8 9 13.0
310 10 8.0 10 114 10 12.6

DIM, days in milk; HTD, herd—test—day.
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The modelling of the fixed lactation curve by means of Legendre polynomials
implies the need to compute ®@, which is the matrix of Legendre polynomials evalu-
ated at the different DIM. The matrix @ is of order # (the number of DIM) by k
(where k is the order of fit) with element ¢, = ¢(a,), which is the jth Legendre poly-
nomial evaluated at the standardised DIM ¢ (a,). Therefore ® = MA, where M is the
matrix containing the polynomials of the standardized DIM values and A is a matrix
of order k containing the coefficients of Legendre polynomials. The calculation of @
is outlined in Appendix G and matrix @ for Example 9.1 is shown in Eqn g.1.

SETTING UP THE INCIDENCE MATRICES FOR THE MME

In Eqn 9.1, let Xb = X b, + X,b,, then in Example 9.1, the matrix X, which relates
records to HTD effects, is of order #,, (number of TD records) and is too large to be
presented. However, X{X| is diagonal and is:

X[ X, = diagonal 3, 3, 3,4,4, 5, 5,5, 5, 5]

The matrix X, of order #,, by nf contains Legendre polynomials (covariables)
corresponding to the DIM of the ith TD yield. Thus the ith row of X, contains
elements of the row of ®@ corresponding to the DIM for the ith record. The matrix
X,, with rows for the first three TD records of cow 4 and the last three TD records
of cow 8 is:

[0.7071 -1.2247 1.5811 -1.8704 2.1213]
0.7071 -0.9525 0.6441 -0.0176 -0.6205
0.7071 -0.6804 -0.0586 0.7573 -0.7757

0.7071 0.6804 -0.0586 -0.7573 -0.7757
0.7071 0.9525 0.6441 -0.0176 -0.6205
10.7071  1.2247 1.5811 1.8704  2.1213]

and X’ X, is:

20.9996 -4.4261 4.0568 -0.8441 8.7149

—4.4261 24.6271 -4.7012 11.1628 -3.0641

X, X,=| 4.0568 -4.7012 31.0621 -6.6603 19.0867
-0.8441 11.1628 -6.6603 38.6470 -8.8550

8.7149 -3.0641 19.0867 -8.8550 48.2930

Considering only animals with records, Q = Z and is a matrix of order 5 (number
of animals) by 7,,. The matrix Q" could be represented as:

¢, 0 0 0 0
0 qs 0 0 0
Q=0 0 q, 0 0
0 0 0 q, O
|0 0 0 0 g

Analysis of Longitudinal Data 133 ]



where q’ is a vector of ones with size equal to the number of TD records for the ith
cow. The matrices Q’Q and Z'Z are both diagonal and equal. Thus:

QQ = Z'Z = diag[10, 10, 5, 7, 10]

The matrix A-! has been given in Example 4.1. The remaining matrices in the
MME could be obtained as outlined in earlier chapters. Solving the MME, with the
solution for the 10th level of HTD effects constrained to zero, give the following results:

Effects Solutions
HTD
1 10.9783
2 7.9951
3 8.7031
4 8.2806
5 6.3813
6 3.1893
7 3.3099
8 3.3897
9 0.6751
10 0.0000
Fixed regression coefficients
1 16.3082
2 -0.5227
3 -0.1245
4 0.5355
5 -0.4195
Animal effect
EBV for daily yield EBV for 305-day yield
1 -0.3300 -100.6476
2 -0.1604 —48.9242
3 0.4904 149.5718
4 0.0043 1.3203
5 —-0.2449 —74.7065
6 -0.8367 —-255.2063
7 1.1477 350.0481
8 0.3786 115.4757
Permanent environmental effects
Cow Solutions for daily yield Solutions for daily yield
4 -0.6156 -187.7634
5 —-0.4151 -126.6150
6 -1.6853 -514.0274
7 2.8089 856.7092
8 —-0.0928 —-28.3035

EBYV, estimated breeding value.

The solutions for the fixed regressions are regression coefficients from which
plots of lactation curves can be obtained. In practice, the fixed regressions are usually
fitted within group of cows calving in the same season in the same parity and of simi-
lar age. Thus the curves obtained for various groups of cows are useful for examining
the influence of different environmental factors on lactation curves. In Example 9.1,
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one fixed lactation curve was fitted for all cows and a vector (v) of actual daily fat
yield (kg) from days 4 to 310 can be obtained as:
R 310 nf

v=0b= qu)ﬂ 1;2/

i=4 j=1

where @ is a matrix of Legendre polynomials evaluated from 4 to 310 DIM, as
described in Appendix G. From the above equation, v, for instance, is:

vy =[0.7071 -0.9525 0.6441 -0.0176 —0.6205]62:12.2001

For the DIM in the example data set, v is:

(DIM) 4 38 72 106 140 174 208 242 276 310
v =[10.0835 12.2001 12.6254 12.2077 11.5679 11.0407 10.9156 11.1111 11.2500 10.8297]

A graph of the fixed lactation curve can be obtained by plotting the elements of v
against DIM.

The EBV for animals and solutions for permanent environmental effect obtained
by solving the MME are those for daily fat yield. To obtain EBV or solutions for pe
effects on the nth DIM, these solutions are multiplied by 7. This is implicit from the
assumptions stated earlier of genetic correlations of unity among TD records. Thus
EBVs for 305 days, shown in the table of results above, were obtained by multiplying
the solutions for daily fat yield by 305.

PARTITIONING BREEDING VALUES AND SOLUTIONS FOR PERMANENT ENVIRONMENTAL EFFECTS

Similar to the repeatability model, EBVs of animals can be partitioned in terms of
contributions from various sources, using Eqn 3.8. The YD for an animal is now cal-
culated as the average of corrected TD records. The correction is for effects of HTD,
fixed regressions and pe. Thus for cow 6 with five TD records, YD, is:

YD, = (QQ)'Q'ly, - X,b, - X,b, - pe)

withy, — le’l - Xsz —-pe=y,
10.4 3.1893 10.0835 -1.6853 -1.1875
12.3 3.3099 12.2001 -1.6853 -1.5247
=113.2|-[3.3897|—[12.6254 || -1.6853 =] -1.1298
11.6 0.6751 12.2077 -1.6853 0.4025
8.4 0.0000 11.5679 -1.6853 -1.4826

and:

-1.1875
—-1.5247

q; [ -1.1298||=—-4.9221/5 = -0.9844
0.4025
-1.4826

YD, = (QQ'Q(y.)

G|—
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Then the solution for additive genetic effect for animals 6 using Eqn 3.8 is:

i, =w (4, + 45)/12) + w,(YDy)

=w,((-0.3300 + -0.2449)/2) + w,(-0.9844) = -0.8367

with w, = 2(0.672)/6.344, w, = 5/6.344 and 6.344 = the sum of the numerators of
w, and w,.
For animal 8 with ten TD records, the solution for additive genetic effect is:

iy = w, (@, + 1,)12) + w,(YDy)
= w,((~0.3300 + 1.1477)12) + w,(0.3746) = 0.3786

with w, = 2(0.672)/11.344, w, = 10/11.344 and 11.344 = the sum of the numerators
of w, and w,. The weights on YDs were 0.7882 and 0.8815 for animals 6 and 8,
respectively. This illustrates the fact that as the number of TD increases, more emphasis
is placed on performance records of the animal. Considering animal 4 with ten TD
records and a progeny, her breeding value can be calculated as:

i, = w, (i, + 0,)/2) + w,(YD,) + wy(, - 0.54,)
= w,((=0.3300 + -0.1604)/2) + t0,(~0.0226)
+ wy(2(1.1477) - 0.4934) = 0.0043

where w, = 2(0.672)/11.68, w, = 10/11.68 and w, = 0.5(0.672)/11.68 and 11.68 is
the sum of the numerators of w,, w, and w,. There was a slight reduction to the
weight given to parent average from 0.1185 (animal 8) to 0.1151 (animal 4) due to
the additional information from progeny.

The solution for pe of an animal can be calculated as in Section 4.2.2, using Eqn 4.4.
Here, the correction of the TD records is for the estimates for HTD effects and fixed

regressions and animal effect. Thus for cow 6, pe, can be calculated as:

10.4 3.1893 10.0835 —0.8367
12.3 3.3099 12.2001 -0.8367
pe,= |t'|13.2|-]3.3897|-|12.6254|-|-0.8367 5.4380
11.6 0.6751 12.2077 —0.8367
8.4 0.0000 11.5679 -0.8367

= —9.1650/5.4380=—-1.6853

where t is a column vector of order 5 (number of TD records for the animal), with
all elements equal to one. However, in contrast to pe estimates in Example 4.1, these
pe estimates represent permanent environmental factors affecting TD records within
lactation.

9.3 Random Regression Model

In Section 9.2, the advantage of including fixed regressions on days in milk in the
model was to account for the shape of the lactation curve for different groups of
cows. However, the breeding values estimated represented genetic differences
between animals at the height of the curves. Although different residual variances
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associated with different stages of lactation could be fitted with the fixed regression
model, the model did not account for the covariance structure at the genetic level.
Schaeffer and Dekkers (1994) extended the fixed regression model for genetic
evaluation by considering the regression coefficients on the same covariables as
random, therefore allowing for between-animal variation in the shape of the curve.
Thus the genetic differences among animals could be modelled as deviations from
the fixed lactation curves by means of random parametric curves (see Guo and
Swalve, 1997) or orthogonal polynomials such as Legendre polynomials
(Brotherstone et al., 2000), or even non-parametric curves such as natural cubic
splines (White et al., 1999). Most studies have used Legendre polynomials as they
make no assumption about the shape of the curve and are easy to apply. The RR
model has also been employed for the analysis of growth data in pigs (Andersen and
Pedersen, 1996) and beef cattle (Meyer, 1999). An additional benefit of the RR
model in dairy cattle is that it provides the possibility of genetic evaluation for
persistence of the lactation. A typical random regression model (RRM) especially
for the analysis of dairy cattle test day records is of the form:

nf nr nr
Vi =htd; + 2 Do, Br + z Py + 2 dupe e
k=0 k=0 k=0

where y,, is the test day record of cow j made on day ¢ within HTD subclass #; B, are
fixed regression coefficients; u;, and pe,, are vectors of the kth random regression for
animal and permanent env1ronmental effects respectively, for animal j; ¢,,, is the vec-
tor of the kth Legendre polynomials for the test day record of cow j made on day
nf is the order of polynomials fitted as fixed regressions; 77 is the order of polynomi-
als for animal and pe effects; and ¢, is the random residual. The model in matrix
notation is:

y=Xb + Qu + Zpe + ¢

The vectors y, b and the matrix X are as described in Example 9.1. However, u
and pe are now vectors of random regressions for animal additive genetic and pe
effects. The matrices Q and Z are covariable matrices and, if only animals with
records are considered, the ith row of these matrices contains the orthogonal
polynomials (covariables) corresponding to the DIM of the ith TD yield. If the
order of fit is the same for animal and pe effects, Q = Z, considering only animals
with records. This would not be the case if the order of fit is different for animal
and pe effects. In general, considering animals with records, the order of either
Q or Z is n,; (number of TD records) by nk, where nk equals nr times the number
of animals with records. It is assumed that var(u) = A*G, var(pe) = I*P and var(e) =
IoZ = R, where A is the numerator relationship matrix, * is the Kronecker product
and G and P are of the order of polynomial fitted for animal and pe effects. The
MME are:

X’R™'X X'R7'Q X'R'Z)\ (b X'R7ly
QR'X QR'Q+A'®G QR'Z||a [=|QRy
ZR'X ZR'Q zR'z+p)\Pe) |ZRy
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9.3.1 Numerical application

Example 9.2

Analysis of the data in Table 9.1 is undertaken fitting an RR model with Legendre
polynomials of order 4 fitted for the fixed lactation curve and Legendre polynomials
of order 2 fitted for both random animal and pe effects. The covariance matrices for
the random regression coefficients for animal effect and pe effects are:

3.297  0.594 -1.381 6.872 -0.254 -1.101
G=| 0.594 0921 -0.289|; P=|-0.254 3.171 0.167
-1.381 -0.289  1.005 -1.101 0.167  2.457

and the residual variance equals 3.710 for all stages of lactation.

As indicated earlier, the above G or P matrix models the genetic or permanent
environment covariance structure of fat yields over the whole lactation length. Thus
the genetic covariance between DIM i and j along the trajectory can be calculated
from G. For instance, the genetic variance for DIM i, (v.) can be calculated as:

ii
v, = tGt,
where t; = ¢, , the ith row vector of ®, for day 7, and k is the order of fit. The genetic
covariance between DIM 7 and j (v;) therefore is:
v, = tGt;

Using the G matrix in Example 9.1, the genetic variance for DIM 106 equals
2.6433 kg?, with t, . =[0.7071 -0.4082 -0.5271], and the genetic covariance between
DIM 106 and 140 equals 3.0219 kg, with t,,, = [0.7071 -0.1361 -0.7613]. The plots
of daily genetic and permanent environmental variances against DIM are shown in
Fig. 9.1, indicating how these variances change through the lactation length.

SETTING UP THE MATRICES FOR THE MME

The setting of the matrix X has been described in Example 9.1. The matrix X’R-'X
can easily be obtained by matrix multiplication. Considering only animals with
records, Q’ can be represented as:

Q, 0 0 0 0
0Q, 0 0 0

Q= 0 0Q, 0 o0
0 0 0Q, O©

0 0 0 0 Qf

where Q' is the matrix of order 77 by k (number of TD records for animal 7). Thus
for animal 6, QF is:

0.7071  0.7071 0.7071 0.7071 0.7071
Q; =|-1.2247 -0.9525 -0.6804 -0.4082 -0.1361
1.5811 0.6441 -0.0586 -0.5271 -0.7613

[ 138 Chapter 9



Daily variance (kg?)

12.0
11.0
10.0 A
9.0 1
8.0 1
7.0
6.0 A
5.0
4.0 1
3.0
2.0
1.0

0.0

7

28 49

91

112

154
Days in milk

196 217 238 259 280 301

—+— Genetic —s=— Permanent environment

Fig. 9.1. The estimates of daily genetic and permanent environmental variances by days
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For all animals with records, Q' R-!1Q = Z’R-'Z and are block diagonal. For
instance, Q'R-1Q for the first three cows (cows 4, 5 and 6) with records is:

0

S O O o O

0

o O O O

0

0

S O O O O

[1.348 0.000 0.335 0
0.000 1.647 0.000 0
0.335 0.000 2.035 0O
1.348 0.000 0.335
0.000 1.647 0.000
0.335 0.000 2.035

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0.674
—0.648
0.167

S O O o O

0
—0.648

0.824
-0.591

S O O o O

0

0.167
~0.591
1.018]

When all animals are considered, Q'R-'Q is augmented by 77 columns and rows per
ancestor without records (i.e. animals 1-3). The matrix G™! is then added to QR'Q and
P-! added to Z'R~'Z to obtain the MME. Solving the MME by direct inversion with the
solution for level 10 of HTD effects constrained to zero gave the following results:

Effects Solutions
HTD
1 10.0862
2 7.5908
3 8.5601
4 8.2430

Continued
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(Continued)

Effects Solutions
5 6.3161
6 3.0101
7 3.1085
8 3.1718
9 0.5044
10 0.0000
Fixed regression
1 16.6384
2 -0.6253
3 -0.1346
4 0.3479
5 -0.4218
Animal Regression coeffients 305-day breeding value
1 -0.0583 0.0552 -0.0442 -12.3731
2 -0.0728 -0.0305 -0.0244 -15.7347
3 0.1311 -0.0247 0.0686 28.1078
4 0.3445 0.0063 -0.3164 74.8132
5 -0.4537 -0.0520 0.2798 -98.4153
6 -0.5485 0.0730 0.1946 -118.4265
7 0.8518 -0.0095 -0.3131 184.1701
8 0.2209 0.0127 -0.0174 47.6907
Permanent environmental effects
Cow Regression coefficients 305-day solutions
4 -0.6487 -0.3601 -1.4718 -138.4887
5 -0.7761 0.1370 0.9688 -168.5531
6 -1.9927 0.9851 -0.0693 -427.2378
7 3.5188 -1.0510 -0.4048 756.9415
8 -0.1013 0.2889 0.9771 -22.6619

The solutions for HTD and fixed regression for the RRM are similar to those from
the fixed regression model. Lactation curves can be constructed from the fixed regres-
sion, as described in Section 9.2.1, and influences of different environmental factors on
the curves can be evaluated. Each animal has 77 regression coefficients as solutions for
animal and permanent environmental effects. These are not useful for ranking animals
and need to be converted to breeding values for any particular day of interest. Usually,
in dairy cattle, values are calculated for 305-day yields and these have been shown above
in the table of results. The EBV from days 6 to #z for animal k (EBV, ) is calculated as:

EBV,, =ti,; with t=t,=) > ¢ (9.2)

i=6 =0
where t is a row vector of order nr, with the jth elements equal to the sum of the jth
orthogonal polynomial from days 6 to 7 and @, is vector for the regression coefficient
of animal k. For Example 9.2, the matrix ®@ for days 4 to 310 has not been shown
because of the size but can be generated as described in Appendix G. Assuming 305-day
breeding values are computed from days 6 to 310, then the vector t for Example 9.2
calculated from days 6 to 310 is:

t=[215.6655 2.4414 -1.5561]
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The breeding value for 305-day yield for animal 4, for instance, can be calculated as:

0.3445
ta, =[215.6655 2.4414 -1.5561]| 0.0063 |=74.81
-0.3164

Over the lactation length, daily breeding values can be computed for each animal
from the random regression coefficients. Genetic lactation curves can be obtained for
each animal by plotting these daily breeding values against DIM and differences
between curves for different animals can then be studied. Let v be a vector containing
daily breeding values for days 6 to 310, then v can be calculated as:

310 nr
v=Ta,; with T= t,; = 22%
i=6 j=0
The plots of the daily breeding values for animals 2, 3 and 8 are shown in Fig. 9.2.
The plots indicate that the animal with the highest 305-day breeding value for fat
yield also had the highest daily breeding values along the lactation length.
If the trait being analysed is milk yield, persistence breeding values can be calculated
from the daily breeding values. For instance, persistence predicted transmitting ability
(PS,p) for milk yield can be calculated (Schaeffer et al., 2000) as:

PTAyg = PTAG + Y50
Yoo
where PTA,, and PTA, are predicted transmitting abilities for day milk yield for an

animal at days 60 and 280, respectively, and y,, and y,, are the average milk yields
of cows in the genetic base at days 60 and 280, respectively.

PSppy = (100)

0.25
021
0.15
0.11
0.05
0]

Daily breeding values (kg)

-0.1 4

-0.15 —1r—r"r"r—"+"r—rr—rr—

7 28 49 70 91 112 133 154 175 196 217 238 259 280 301
Days in milk

e Animal 2 —s— Animal 3 —— Animal 8

Fig. 9.2. The estimates of daily breeding values for some animals by days in milk.
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9.3.2 Partitioning animal solutions from random regression model

Equations for calculating the contribution of information from various sources to the
solutions (random regression coefficients) of an animal from an RRM were presented
by Mrode and Swanson (2002). These equations are the same as those presented in
Section 5.2.3 for the multivariate model. Test day records of cows contribute to ran-
dom regressions for the animal effect through the yield deviations. The calculation of
the vector of yield deviations (YD) is first examined. Using the same argument for
deriving Eqn 5.7, the equation for YD for an RRM is:

YD = (QR'Q) QR !y - Xb - Zpé) (9.3)

While this equation is similar to Eqn 5.6 for yield deviation under a multivariate
model, here YD is a vector of weighted regressions of the animal’s TD yields adjusted
for all effects other than additive genetic effect, on orthogonal polynomials for DIM.
Since YD is a vector of regressions, it can be used to generate actual yield deviations
for any DIM using Eqn 9.2. Thus actual yield deviation (yd*) for day m, for instance,
equals v'YD, where v is a vector of order nr with v = ¢ . andj = 1,nr. The actual
yield deviation for 305-day yield can be calculated using Eqn 9.2 but with @ replaced
with YD.

The calculation of YD for cow 6 in Example 9.2 is illustrated below. First, the
vector of TD records for cow 6 corrected for all effects (y ) other than the additive
genetic effect is:

Y. =¥, - X;b - X,b, - pe

10.4 3.0101 10.7725 -2.7251| |-0.6576
12.3 3.1085 12.5295 -2.3920| [-0.9460
y.=[13.2|-|3.1718|-|12.7890 || -2.0752 |=| -0.6856
11.6 0.5044 12.3454 -1.7746 0.5249
8.4 0.0000 11.7641 -1.4904| [-1.8738

where i)l and Bz are vectors of solutions for HTD and fixed regression coefficients.
The matrices QR™'Q and Q'R-'y_are:

0.6738 —0.6484 0.1674 ~0.6934
QR'Q=[-0.6484 0.8235 -0.5906| and QUR7y. =| 0.5967
0.1674 -0.5906 1.0177 ~0.1237

Using Eqn 9.3, yield deviation for cow 6 (YD) is:

~5.0004
YD, =(QR'Q)'Q Ry, =| 4.6419
-1.9931
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The actual yield deviation at 305 DIM for cow 6 using Eqn 9.2 with @i replaced with
YD, is -1086.6450.

The equation for the partitioning of random regression coefficients for animals
to contributions for parent average, yield deviations and progeny is:

i . =W,PA+W,(YD)+ W,PC (9.4)

anim
with:

PC=> 0, (20, ~6,.,)/ >0, and W, +W,+W =I

This is the same equation as Eqn 5.8, which partitioned breeding values under the
multivariate model. The weights W, W, and W, are as defined in Eqn 5.8, but
here W, is of the order of orthogonal polynomials for animal effects. Illustrating
with cow 6, the weights on parent average (W,) and yield deviation (W,) can be
calculated as:

1

2.1520 -0.9957 2.0986| | 1.4781 -0.3473 1.9313
W, =1-0.9957 3.2921 -0.3580| |-0.3473 2.4685 0.2326
2.0986 -0.3580 5.7284 1.9313 0.2326 4.7107

(QR'Q+G ') (2Ga,,,)
0.6156 0.1940 0.2987
=10.0935 0.8107 0.2402
0.1175 0.0202 0.7279
W1

and:

q-1

[ 2.1520 -0.9957 2.0986 0.6738 -0.6484 0.1674
W, =[-0.9957 3.2921 -0.3580| |-0.6484 0.8235 -0.5906
| 2.0986 -0.3580 5.7284] 0.1674 -0.5906 1.0177
QR'Q+Ga,)" QR'Q)
[ 0.3844 -0.1940 -0.2987]
=1-0.0935 0.1893 -0.2402
|-0.1175 -0.0202  0.2721]
W2

The contributions from PA and YD to the random regression coefficients for cow
6 are:

1o -0.2560 -5.0004| |-0.1221 —0.4265| |-0.5485
a1 |=Wq 0.0016 |+W,|—4.6419 |=| 0.0057 |+| 0.0674|=| 0.0730
i 0.1178 -1.9931 0.0557 0.1389 0.1946
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For cow 8 with ten TD records and no progeny, Eqn 9.4 is:

i, 0.3893 —-0.0844 0.1763|| 0.3967
i, |={-0.0604  0.5903 0.0353|| 0.0228
i, 0.1576  0.0425 0.6379||-0.1787
(W) (PA)

0.6107 0.0844 -0.1763||0.2102

+| 0.0604 0.4097 -0.0353(]|0.0574

~0.1576 -0.0425  0.3621](0.1893
(W) (YDy)

and:

io] [ 0.1210] [0.0998 0.2208
i -0.0168|+|0.0295 [=| 0.0127
@] [-0.0505] [0.0330] |-0.0175

Considering cow 4, with ten TD records and a progeny:

(0] [ 0.3488 —-0.0684 0.1393][-0.0655] [ 0.5640 0.0856 —0.1741
| =1-0.0490 0.5132 0.0284| 0.0123|+| 0.0613 0.3585 -0.0355
72| | 0.1245 0.0343 0.5451||-0.0343] |-0.1557 -0.0428 0.3186
(W) (PA) (W)

[ 0.2711] [ 0.0872 -0.0171 0.0348][ 1.5725
-0.0508|+(-0.0123 0.1283 0.0071(| 0.0057

[-0.6412] | 0.0311 0.0086 0.1363][-0.6948

(YD) (W;) (PC)

0] [-0.0285] [ 0.2602] [ 0.1128] [ 0.3445
in|=| 0.0086|+| 0.0212[+[-0.0235|=| 0.0063
in| [0.0264] |-0.2443| [-0.0457| |[-0.3164

Equation 9.4 is useful in explaining the evaluations for animals in terms of con-
tributions from different sources of information, and how these contributions vary
with different DIM could also be examined. However, Eqn 9.4 relates to random
regression coefficients. Usually, the EBV at a particular stage of the longitudinal scale,
such as 305 days for milk yield or body weight at 1 year of age, is published. Therefore,
the interest might be in calculating the contributions from the various sources of infor-
mation to the published EBV. Using milk yield as an example, the contribution to
305-day estimated BV from various sources of information can be calculated as:

= V,PA + V,YD + V,PC
=PA" + YD +PC (9.5)

(305)anim
(305)anim

(=2l =
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where V, = DW,, with D being a diagonal matrix such that d, = ¢, with ¢, being the
element of the row vector tin Eqn 9.2, PA* = V,PA, YD* = V,YD and PC* = V,PC.
However, V|, + V, + V, # L. Thus the estimated BV at 305 days (BV, ) from
Eqn 9.5 is:

nr nr nr nr
BVi3051anim = ZMABOS)anim = ZPAi + ZYDi + ZPCi
i1 i1 i1 -1

where the contributions to the EBV at 305 days from PA, YD and PC are:

305)anim

i PA;, i YD;, and i PC, respectively.

i=1 i=1 i=1

Using Eqn 9.5, the contributions from various sources of information can be calcu-
lated for EBV at days or ages j to # along the longitudinal scale, and this could be
plotted to examine how the contributions vary with days or age.

Using cow 6 in Example 9.2, the matrix D used in calculating the V terms in
Eqn 9.5 is:

D = diag(215.6655, 2.4414, -1.5561)

Using the W, and W, calculated earlier for cow 6:

132.7637 41.8391 64.4193
V,=DW, =] 0.2283 1.9792 0.5864
-0.1828 -0.0314 -1.1327

82.9018 —-41.8391 —64.4193
V, =DW, =| -0.2283  0.4622 —0.5864 | and
0.1828  0.0314 —-0.4234
~26.3320) (-91.9351
fi5056= V,PA+V,YD=| 0.0138 |+| 0.1649
0.1178 ) | -0.2160

Therefore, contributions from PA and YD are -26.4049 and -91.9862, respectively,
and:

BV 3556 = —26.4049 + 91.9862 = -118.3911

(305

Thus contribution from parent average is about 22% of the EBV at 305 days. The
EBV at 305 days calculated above is slightly different from the value of -118.4265
shown earlier, due to rounding.

9.3.3 Calculating daughter yield deviations
The equation for calculating daughter yield deviation under an RRM is the same as

Egn 5.12 presented for the multivariate models. However, with the RRM, DYD in
Eqn 5.12 is a vector of random regression coefficients and the weights M, M, and
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M, are of the order nr. Actual daughter yield deviation for any DIM can be generated
using Eqn 9.2.

As indicated in Section 5.2, for ease of computation, W,  in Eqn 5.12 is pre-
multiplied with G™1, such that the equation for DYD becomes:

-1 0 -1
DYD = ZG Wlﬁrogaﬁmg (2’YD - umate) /G szmgapmg

9.3.4 Reliability of breeding values

The reliability of an EBV depends on its prediction error variance (PEV) relative to
the genetic variance. It can therefore be regarded as a statistic summarizing the value
of information available in calculating the EBV. The published EBV from an RR
model is usually a linear function of the random regression coefficients obtained by
solving the MME. The principles for calculating PEV and reliability under this situa-
tion are presented using the diagonal elements of the inverse of the coefficient matrix
of the MME for Example 9.2.

Let k’u define the EBV for the trait of interest for animal i from the RR model.
The vector k = w t, where w, might be the weighting factor for the ith age or lactation
if the study was on body weight at several ages or fat yield in different lactations
analysed as different traits. For instance, if fat yields in lactations 1 and 2 were ana-
lysed as different traits, w’ might be [0.70 0.3], indicating a weight of 0.7 and 0.3,
respectively, for first and second lactation EBV. The vector t defines how within lacta-
tion EBV was calculated and is the same as in Eqn 9.2. For Example 9.2, k is a scalar
with a value of 1. Given that G is the additive genetic covariance matrix for random
regression effect for animal effects and P is the covariance matrix for pe effects, then
the additive genetic variance of k'u = g = k’Gk and the variance for the pe effect for
the trait of interest = p = k’'Pk. The heritability of k’u can therefore be calculated as
(glg+p +e)and a= (4 - b/~

Let C# be the subset of the inverse of MME corresponding to the genetic
effect for the ith animal. Then for animal 7, prediction error variance (PEV,) =
k’C’k. The reliability of k’u can therefore be calculated as 1 - PEV /g. As an illus-
tration, in Example 9.2, k" = wT = [215.6655 2.4414 -1.5561], ¢ = kK'Gk =
154896.766 kg?, p = k'Pk = 323462.969 kg? and h? = 0.32. For animal 1, the
matrix C'! is:

2.9911 0.5159 -1.2295
c''=| 0.5159 0.8683 -0.2480
-0.2295 -0.2480 0.9183

and:
PEV, = k'C'k = 140499.97

Therefore, reliability for animal 1 equals 1 - 140499.97/154896.766 = 0.09. The relia-
bilities for the animals in Example 9.2 are:
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Animal Reliability

0.09
0.04
0.07
0.12
0.15
0.06
0.10
0.05

ONO O~ WN =

In practice, calculating the inverse of the MME is not feasible for large populations
and PEV has to be approximated. As indicated earlier, EBV from RR models are linear
functions of the random regressions; therefore, methods to approximate reliabilities should
simultaneously approximate PEV and the prediction error covariance (PEC) among the
individual random regressions (Liu et al., 2002; Meyer and Tier, 2003). Such an approxima-
tion method presented by Meyer and Tier (2003) is outlined in Appendix D, Section D.2.

9.3.5 Random regression models with spline function

Random regression models with Legendre polynomials have been considered to have
better convergence properties as the regressions are orthogonal. However, some stud-
ies have reported high genetic variances at the extremes of the lactation and negative
correlations between the most distant test days. In order to overcome this limitation,
some workers have fitted RRM using splines (Misztal, 2006; Bohmanova et al., 2008).
Splines are piece-wise functions consisting of independent segments that are connected
in knots. The segments are described by lower-order polynomials. Linear splines are
the simplest spline function where the segments are fitted by linear polynomials
between two knots adjacent to the record and zero between all other knots. Thus the
system of equations is sparse as only two coefficients are non-zero for a given record.
The use of cubic splines for the modelling of the lactation curve has also been pre-
sented by White et al. (1999). However, the linear spline is considered in this section.

Let T be a vector of n knots, then the covariables of the linear spline for DIM
t (@,(t)) located between knots T, and T, | can be calculated as:

@0 = (- TUT,, - T)
d)m(t) = (Ti+1 - t)/(Tm - Ti)
=1- () and D = 0
Itt=T, ®()=1and @, ., ., ,=0.

Thus the vector @ for DIM ¢ has at most two non-zero elements, which sum up to
one. The above formula assumes that T, <z < T. If, however, t < T or ¢ > T , the fol-
lowing can be used and the sum of the elements of the vector will not sum up to one:

1f t< Tp ®1(t) = t/Tl and CD1+ ion 0
ift>T, @) =TJtand &, =0
Using the data in Example 9.1, assume that the four knots are fitted for the fixed

lactation curve and knots are placed at days 4, 106, 208 and 310, the covariables for
the spine function for particular DIM are as follows:
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DIM @, @, @, @,
4 1.000 0.000 0.000 0.000
38 0.333 0.667 0.000 0.000
72 0.667 0.333 0.000 0.000
106 0.000 1.000 0.000 0.000
140 0.000 0.333 0.667 0.000
174 0.000 0.667 0.333 0.000
208 0.000 0.000 1.000 0.000
242 0.000 0.000 0.333 0.667
276 0.000 0.000 0.667 0.333
310 0.000 0.000 0.000 1.000

As an illustration, the covariates for DIM 38 can be computed as:
@ (38) = (38 - 4)/106 - 4) = 0.333 and @,(38) =1 - 0.333 = 0.667
Thus ®(38) = [0.333, 0.667, 0 0]

A random regression model can therefore be fitted as:
nf nr nr
Vi = btd;+ Z Dok Bk+z Dl +Z dubejt+ ey
k=0 k=0 k=0

where all terms are as defined in Section 9.3 but the ¢, is the vector of the kth spline
function for the test day record of cow j made on day ¢. The same procedure described
in Section 9.3.1 can be used in the application of the model for the analysis of data
and interpretation of results.

9.3.6 Random regression model for maternal traits

Maternal genetic effects are important in growth traits in beef cattle, and models that
account for these effects have been discussed in Chapter 7. However, the RR model
could also be augmented to include random regressions for maternal genetic and
maternal permanent environmental effects. Albuquerque and Meyer (2001) examined
different orders of fit for the random regressions for both effects. One of the favoured
models was the one in which the order of Legendre polynomials for direct genetic,
maternal genetic, animal pe and maternal pe effects were 5, 5, 5 and 3, respectively.
Such a model, excluding all fixed effects, could be written as:

k-1 k,—1 k,—1 k,—1
Yiiktd =Z o,u; + Z ¢, m; + Z d,pe; + z 3PPt €jjiea
i=0 i=0 i=0 i=0

where y,,; is the body weight of cow j taken at age ¢ that has a dam d; u, m, and
pe;, are the random regressions for direct, maternal genetic and animal pe effects for
animal j, respectively; pp,, is the random regression for dam pe effects and ¢, is
random error; ¢, and ¢, are the vector of the ith Legendre polynomial for body
weight at age ¢ for cow j and dam d, respectively. They assumed a zero covariance
between direct and maternal genetic effects to simplify the computation. The vari-
ance for direct effects increased from birth to 365 days while maternal genetic

variance increased from birth to about 115 days and decreased thereafter.
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9.4 Covariance Functions

Kirkpatrick et al. (1990, 1994) introduced the concept of analysing repeated records
taken along a trajectory such as time or age by means of covariance functions. In
view of the fact that such a trait can take on a value at each of an infinite number of
ages and its value at each age can be regarded as a distinct trait, the trajectory for such
a trait could be regarded as an infinite-dimensional trait. Thus the growth trajectory
or milk yield trajectory of an individual could be represented by a continuous function.
Covariance function describes the covariance structure of an infinite-dimensional
character as a function of time. Therefore, the covariance function is the infinite-
dimensional equivalent of a covariance matrix for a given number of records taken
over time at different ages. The value of the phenotypic covariance function, p(z, t),
gives the phenotypic covariance between the value of the trait at ages ¢, and 7.
Similarly, the value of the additive genetic covariance function, f(z, t), gives the addi-
tive genetic covariance between the value of the trait at ages ¢, and . In mathematical
terms, given ¢ ages, the covariance between breeding values % and u on an animal at
ages a; and a, could be written as:

k=1k-1
cov(uy,u,)=fla,a,,)= ZZQ("[ )¢, (a,, )C,’,' (9.6)
120 j=0
k*lj@*l o
= ZZTﬁa;aln (9.7)
i=0 j=0

where f with factors 7, is the covariance function (CF), C is the coefficient matrix
associated with the CF with elements C> a, 1s the Ith age standardized to the intervals
for which the polynomials are defined’ and k is the order of fit. Kirkpatrick ez al.
(1990, 1994) used Legendre polynomials that span the interval =1 to + 1. The ages
can be standardized as described in Appendix G.

Given that G is the observed genetic covariance matrix of order #, and
assuming a full order polynomial fit (k = ¢), Eqn 9.6 can be written in matrix
notation as:

G=0Ca (9.8)
and C can be estimated as:
C=0'G @ (9.9)

where @ is the matrix of Legendre polynomials of order ¢ by k with element ¢, = ¢(a ) =
the jth polynomial evaluated at standardized age .

As an illustration, assume body weight measurements in beef cattle have been
taken at three diffe}‘ent ages, 90, 160 and 240 months old, and that the genetic
covariance matrix (G) estimated was:

132.3 127.0 136.6
G = |127.0 172.8 200.8
136.6 200.8 288.0

Using the method described in Appendix G, the vector of standardized ages is:
=[-1.0 -0.0667 1.000]
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and M becomes:
1.0000 -1.0000 1.0000
M =|1.0000 -0.0667 0.0044
1.0000 1.0000 1.0000

Thus for t = 3, A is:

[0.7071 0.0000 -0.7906
A=0.0000 1.2247  0.0000
10.0000 0.0000  2.3717

and ® is:

[0.7071 -1.2247 1.5811
®=0.7071 -0.0816 -0.7801
10.7071 1.2247 1.5811

and from Eqn 9.9, the coefficient matrix Cis:

344.7117 45.2787 —3.2062
C =| 452787 24.5185 -0.1475
-3.2062 -0.1475 3.2768

The covariance between two different ages can be calculated using Eqn 9.8. For

instance, the variances at days 90 and 200 of body weight and the covariance

between body weight on both days are @, C(I>' = 132.30, (I>200C @), = 218.50,

D, CCI)QOO = 129.71, respectively, with:

®,, = my,A = [0.7071 ~1.2247 1.5811]
and:

®,,, =m,, A =[0.7071 0.5716 -0.2740]

where m, are the appropriate row vectors of the matrix M.
Also, from Eqn 9.8 and Appendix G, G can be written as:

G = MACA'M'

Therefore, G = MTM’ with T = ACA or calculated as T = M-'G(M-'), where T is
the matrix with elements 7, in Eqn 9.7. Substituting T in Eqn 9.7 the full estimate of
the CF, f(a,, a,), can be obtained. Using the example data:

177.99 39.35 -11.52
T=| 39.35 36.78 -043
-11.52 -0.43 18.43

Therefore, the full estimate of the covariance function, f(a, a,), is:

flaya,) =177.99 + 39.35(a, + a,) + 36.78aa,, - 11.52(a} + ay)
- 0.43(afa, +aa’) + 8. 43ata?,
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The application of CF in genetic evaluation involves defining an equivalent model
using Eqn 9.8. For instance, using the example of the body weight of beef cattle,
assume that the multivariate model for observations measured on one animal is:

y=Xb+a+e

where y, X, b, a and e are vectors defined as in Eqn 5.1 with i = ¢, with var(a) = G and
var(e) = R. Assuming a CF has also been fitted for the covariance matrix for environ-
mental effects with a term included to account for measurement error, then:

R = (I)CPCI)' + lo%e
where C contains the coefficient matrix associated with the CF for pe and variance

€ is [o%e. Using this equation and Eqn 9.8, an equivalent model to the multivariate
model can be written as:

y = Xb + ®@u + Dpe + €

where u and pe are now vectors of random regression coefficients for random animal
and pe effects. Then var(u) = ®C®" and var(pe) = oC 0. The application of the
above model in genetic evaluation is illustrated in Example 9.2. Thus the breeding
value a, for any time 7 can be calculated as:

=
a, =3 ¢t,)u

=
where ¢(,) is the vector of Legendre polynomial coefficients evaluated at age ¢,.
Thus with a full order fit, the covariance function model is exactly equivalent to
the multivariate model. However, in practice, the order of fit is chosen such that
the estimated covariance matrix can be appropriately fitted with as few parameters
as possible. In the next section, the fitting of a reduced-order CF is discussed.

9.4.1 Fitting a reduced order covariance function

Equation 9.8 and the illustration given in the above section assumed a full-order poly-
nomial fit of G (k = #). Therefore, it was possible to get an inverse of @ and hence
estimate C. However, for a reduced-order (k < t) fit, ® has only & columns and a
direct inverse may not be possible. With the reduced fit, the number of coefficients to
be estimated are reduced to k(k + 1)/2. This is particularly important for large A, such
as test day milk yield within a lactation with # equal to 10 or 305 assuming monthly
or daily sampling and requiring #(¢ + 1)/2 coefficients to be estimated. Thus a reduced
order fit with k substantially lower than # could be very beneficial.

Kirkpartrick et al. (1990) proposed weighted least squares as an efficient method
of obtaining an estimate of the reduced coefficient matrix (é) from the linear function
of the elements of G. They outlined the following steps for the weighted least-square
procedure. The procedure is illustrated using the example G for the body weight in
beef cattle given earlier, fitting polynomials of order one, i.e. only the first two
Legendre polynomials are fitted, thus k = 2. Initially, a vector g of order #* is formed
by stacking the successive columns of G. Thus:

§ = (GG GrpnG o, GG

717!]
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Thus for the example G:
g=[132.3 127.0 136.6 172.8 200.8 288.0]

Define @, of order ¢ by k, obtained by deleting (¢ - k) columns of @ correspond-
ing to those (b not in the reduced-order fit. The relationship between the observed covari-
ance matrix, g, and the coefficient matrix of the reduced fit to be estimated is given
by the following regression equation:

g=Xi+e (9.10)

where e is the vector of the difference between observed covariances and those pre-
dicted by the covariance function, ¢ is a vector of dimension k?, containing the
elements of the coefficient matrix of the reduced fit (C). The order of elements of C
in ¢ is the same as in §: that is, ¢ = (COO, Cko, Ckl, .oy Cy). X is the Kronecker
product of @ with itself (X = ® x @) and is of the order #* by k2. Since only the
first two polynomials are fitted, ‘the matrix ®_ can be derived by deleting from @
the third column, corresponding to the missing second-degree polynomial. Thus for
the beef cattle example:

0.7071 -1.2247
® =(0.7071 -0.0816
0.7071 1.2247

and X_is:

[0.5000 -0.8660 —0.8660  1.4999]
0.5000 -0.0577 -0.8660 0.0999
0.5000 0.8660 -0.8660 -1.4999
0.5000 -0.8660 -0.0577 0.0999
0.5000 -0.0577 -0.0577 0.0067
0.5000 0.8660 -0.0577 -0.0999
0.5000 -0.8660 0.8660 -1.4999
0.5000 -0.0577 0.8660 —-0.0999

10.5000 0.8660 0.8660 1.4999)

X

The application of weighted least squares to obtain solutions for ¢ in Eqn 9.10
requires the covariance matrix (V) of sampling errors of g. Kirkpatrick et al. (1990) pre-
sented several methods for estimating V, examining three different experimental designs.
However, in animal breeding, most estimates of G are from field data and may not
fit strictly to the designs they described, but estimates of sampling variances from
REML analysis could be used. For the example G for the beef cattle data, V has been
estimated using the formula given by Kirkpatrick et al. (1990) for a half-sib design, assum-
ing that 60 sires were each mated to 20 dams. The mean cross-product for the residual
effect (We) was estimated as Wel/ =P, - OZSG and that among sires (W) as WM
(n - 1/4)G + P, where P, is the phenotyp1c variance and 7 is the number of dams
Samplmg Varlance for g was then calculated as: V = (16/n* )[cov(W Wa o) + cov(W. ..,

e,ij’

W, )l where cov(W sz) (W W + W W )/ df, with df = number of/ degrees of freedom
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plus 2. In estimating cov(W Wg ») and cov (W, We w)sdf=(s=1)+2ands(nz-1)

a,ij’ e,ij’

+ 2, respectively. The estimated V therefore is:

3450.0 2256.4 2184.6 2256.4 1480.3 1434.7 2184.6 1434.7 1390.9]
2256.4 2959.6 2430.9 2959.6 2903.5 2530.2 2430.9 2530.2 2180.1
2184.6 2430.9 3889.7 2430.9 2249.1 3181.6 3889.7 3181.6 4051.5
2256.4 2959.6 24309 2959.6 2903.5 2530.2 2430.9 2530.2 2180.1
1480.3 2903.5 2249.1 2903.5 5711.4 4410.0 2249.1 4410.0 3417.5
1434.7 2530.2 3181.6 2530.2 4410.0 5818.8 3181.6 5818.8 6354.3
2184.6 2430.9 3889.7 2430.9 2249.1 3181.6 3889.7 3181.6 4051.5
1434.7 2530.2 3181.6 2530.2 4410.0 5818.8 3181.6 5818.8 6354.3

| 1390.9 2180.1 4051.5 2180.1 3417.5 6354.3 4051.5 6354.3 11835.0]

<>
1

However, the symmetry of G resulted in redundancies in the vector § such that
V is singular. The vector gcan be redefined to be of the order s by 1, which contains
only the elements in the lower half of G, where s = #(¢ + 1)/2. Therefore, delete from
g the elements Gi,‘ for which i < j. Thus for the example G, the vector § becomes:

g=[132.3 127.0 136.6 172.8 200.8 288.0]

Then delete from V those columns and rows corresponding to elements G with 7 < ;.
This involves deleting rows and columns 4, 7 and 8 from the matrix V glven above.
The V of reduced order (s by s) is:

[3450.0 2256.4 2184.6 1480.3 1434.7 1390.9]
2256.4 2959.6 2430.9 2903.5 2530.2 2180.1
2184.6 2430.9 3889.7 2249.1 3181.6 4051.5
1480.3 2903.5 2249.1 5711.4 4410.0 3417.5
1434.7 2530.2 3181.6 4410.0 5818.8 6354.3

11390.9 2180.1 4051.5 3417.5 6354.3 11835.0|

<>
1l

Similarly, the rows corresponding to those elements of g for which (v}lu has i <j
are deleted from X . In the example X, rows 4, 7 and 8 are deleted. Thus X_becomes:

[0.5000 —-0.8660 -0.8660 1.4999]
0.5000 -0.0577 -0.8660 0.0999
0.5000 0.8660 -0.8660 -1.4999
0.5000 -0.0577 -0.0577 0.0067
0.5000 0.8660 -0.0577 -0.0999
10.5000 0.8660 0.8660 1.4999 |

Xs=

Also, for each element of ¢ for which C has 7 < j, add the corresponding column
of X_to the column corresponding to C then delete the former column. For the beef
cattle example, the vector of Coeff1c1ents ¢ = [Coo C C C 1] Therefore, the third
column of X_ corresponding to C is added to the second column and the third col-
umn is deleted. The matrix X, then becomes:
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[0.5000 -1.7320 1.4999]
0.5000 -0.9237  0.0999
0.5000 0.0000 -1.4999
0.5000 -0.1154 0.0067
0.5000 0.8083 -0.0999

10.5000 1.7320  1.4999

Xs=

Finally, delete from & the elements for which C has elements 7 < j. The matrix ¢ is
now of the order k(k + 1)/2 by 1. For the example data, ¢ = [C,, C,, C,,]. The vector ¢
can now be calculated by a weighted least-square procedure as:

E=(XVIX)IXVg
For the example data, ¢ calculated using the above equation is:
¢=[341.8512 45.0421 24.5405]

The reduced coefficient matrix C is then constructed from the calculated & Then a
row and column of zeros are inserted in positions corresponding to those polynomials
not included to obtain C. For the example data, C is now:

341.8512 45.0421 0.0
C =| 45.0421 24.5405 0.0
0.0 0.0 0.0

Kirkpatrick et al. (1990) presented the following chi-square statistic to test the good-
ness of fit of the reduced covariance function to G:

oy = B XV (G- X9

where 71 = #(¢ + 1)/2 is the number of degrees of freedom in G and p = (k(k + 1)/2 is the
number of parameters being fitted. A significant result indicates that the model is
inconsistent with the data, and a higher order of fit may be needed. For the beef cattle
example, the value of x? was 0.2231 with m = 6 and p = 3. This value of 32 was not
significant with three degrees of freedom and thus the reduced covariance function
was not significantly different from G.

Another method of fitting a reduced-order CE proposed by Mantysaari (1999),
involved eigenvalue decomposition of the coefficient matrix. The largest k eigenvalues of
C in Eqn 9.9, for instance, are kept in a diagonal matrix (D,) and the matrix @ replaced
by the k corresponding eigenfunctions. Thus G in Eqn 9.7 can be approximated as:

~ 7 4 ’
G=®v,v,...v,|D,[v, v, ...v,]® =TD,T
where the v, are the eigenvectors of C corresponding to eigenvalues in D..

Similarly, if CF has been fitted to the environmental covariance matrix, a similar
reduction can be carried as follows:

R = @CPCI) + o’
=@V, v, ... v,ID,[v, v, ... v, J® + Io%e = QD, Q" + Io2e (9.11)
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where D, contains the k largest eigenvalues of C . However, Mantysaari (1999) indi-
cated that with several biological traits, Eqn 9.11 could easily lead to a non-positive definite
C. and the decomposition may not be possible. He used an expectation maximization
(EM) algorithm to fit the CF to the environmental covariance matrix. However, if C
has been estimated directly using REML (Meyer and Hill, 1997), the EM algorithm
would not be necessary and the covariance matrix for pe can be approximated as QD Q'.
In addition to reducing the number of equations to & per animal in the MME with this
method, the system of equations is very sparse since D, or D, are diagonal.

9.5 Equivalence of the Random Regression Model
to the Covariance Function

Meyer and Hill (1997) indicated that the RR model is equivalent to a covariance
function model. The equivalence of the RR model fitting either a parametric curve or
Legendre polynomials to the CF model is presented below. Similar to the model in
Section 9.3, the RR model with a parametric curve can be represented as:

f-1 k-1 k-1
Vi =EF + 22,08, + Xz, 0, + Y 2,04, +e¢, (9.12)
m=0 m=0 m=0

where y,, is the test day record of cow j made on day #; 3, are fixed regressions coef-
ficients; o, and 4, are the additive genetic and permanent environmental random
regressmns \ for cow js F,, represents the remaining fixed effects in the model; z, () is
the mth parameter of a parametrlc function of days in milk; and e, is the random
error term. For example, in the model of Jamrozik ef al. (1997), z was a function of
days in milk with five parameters: z = (1 ¢ ¢ d d?), where ¢ = #/305 and d = In(1/c),
with In being the natural logarithm. Then the covariance between breeding values u,
and #; on an animal recorded at DIM ¢, and ¢, is:
k=1 k-1
cov(u;,u) =f(t;,t) = 2 Zz t;) cov(cr,,,0,) (9.13)
m=0r=0
However, instead of a parametric curve, assume that orthogonal polynomials such
as Legendre polynomials were fitted in an RR model as described in Section 9.3. Let
a; and g, represent TD records on days ¢, and ¢, of animal j standardized to the interval
-1 to 1 as outlined in Appendix G. Furthermore, assume that the mth Legendre poly-
nomial of g, be ¢, (a), for m = 0,...,k - 1. The covariance between breeding values #,
and #, on an animal recorded at DIM 4, and g, could then be represented as:

k‘

-1 k-1
cov(u;,u;) = f(a;,a;) = 8,,(a;)¢.(a;) cov(a,,,,) (9.14)
0 r=0

3
I

The right-hand sides of Eqns 9.13 and 9.14 are clearly equivalent to the right-
hand side of Eqn 9.6, with cov(e,, @ ) equal to G, the ijth element of the coefficient
matrix of the covariance function. ThlS equlvalence of the RR model with the covari-
ance function is useful when analysing data observed at many ages or time periods,
as only k regression coefficients and their k(k + 1)/2 covariances need to be estimated
for each source of variation in a univariate model.
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10 Use of Genetic Markers in
Breeding Value Prediction

10.1 Introduction

A genetic marker is a fragment of DNA that is associated with a certain location
(chromosome) within the genome. In the 1990s, most genetic markers used in live-
stock studies were microsatellites. DNA microsatellites, also referred to as simple
sequence repeats (SSR), consist of a specific sequence of DNA bases or nucleotides
which contain mono, di, tri, or tetra tandem repeats; for example, AAAAAAAAAAA
or CTGCTGCTGCTG, which may be referred to as (A),, or (CTG),, respectively.
Alleles at a specific location (locus) can differ in the number of repeats (polymorphic)
and hence they are used as genetic markers. Microsatellites are inherited in a
Mendelian fashion and are typically co-dominant, that is, the heterozygote genotype
could be distinguished from either homozygote.

Genetic markers are useful in identifying portions of the chromosomes that are
associated with particular quantitative traits. The incorporation of information on
marker loci that are linked to quantitative trait loci (QTL), together with phenotypic
information in a genetic evaluation procedure, would increase the accuracy of evalu-
ations and therefore of selection. The use of breeding values with marker information
incorporated in the selection of animals in a breeding programme is termed marker-
assisted selection (MAS). The gains from MAS depend on the amount of genetic vari-
ation explained by the marker information and are larger for traits with low
heritabilities, and therefore EBV from phenotype are of low accuracy (Goddard and
Hayes, 2002). Similarly, MAS should result in larger increases in accuracies for traits
that are sex-limited, such as milk yield, or measured in only in culled animals, for
instance, carcass traits.

Fernando and Grossman (1989) presented a methodology that incorporated
marker information into the BLUP procedure for the genetic evaluation of animals.
This method is discussed and illustrated in this chapter. The extension of the method
of Fernando and Grossman (1989) by Goddard (1992) to handle information on
QTL bracketed by two markers is examined. This chapter deals with linkage analysis,
i.e. the use of microsatellites as markers for the purpose of MAS.

10.2 Defining a Model with Marker Information

Consider a single polymorphic marker locus (ML), which is closely linked to a quanti-
tative trait locus (MQTL). Assume individual i inherited M? and M"at the ML from
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its paternal (p) and its maternal (m) parents. Also, let Q7 and Q" denote alleles at
the quantitative trait loci linked to M? and M as illustrated below:

M 0!

I |
t |
M7 or
Let v” and v be the genetic additive effects of OF and Q”, respectively, and u, the
genetic additive effects of the remaining quantitative trait loci not linked to the ML.
Then the additive genetic value (4,) of individual i is:
a=vl+ vl'+u, (10.1)
Given only phenotypic information, the usual BLUP equation for additive genetic
effects (Section 3.2) is:
y,=x,B+a +e (10.2)
Replacing a, above by Eqn 10.1 gives:
y,=x,B+vl+ 0"+ u +e, (10.3)
From Section 2.2, the covariance matrix for u, A, is the usual relationship matrix
(Henderson, 1976) but the covariance for v, G, depends on both the relationship
matrix and marker information. Thus given A and G, the BLUP of v, and #, can be

obtained using the usual MME. The calculation of A and its inverse has been covered
in Chapter 2. The calculation of G and its inverse are covered in the next section.

10.3 Calculating the Covariance Matrix (G )
for MQTL Effects

The matrix G o2 represents the covariance between the additive effects of the MQTL
alleles. For simplicity, consider only maternal MQTL. Assume two arbitrary individu-
als b and b’ inherit MQTL alleles Q7 and Q7. with additive effects v/ and v}, from
dams d and d&’, respectively. The covariance between the additive effects ¢/} and v7; for
the maternal MQTL in b and &’ is:

cov(v, v') = cov(vy, v"‘ 1 Q7 = ’Z - P(Q7=0Q7%)

= var(vy) - P(Q7 = Q%) (10.4)
=0.G,
where var(v7) = 6% is the variance of the MQTL allele, P(Q7'= Q7%.) is the proba-

bility that Q is identical by descent (IBD) to Q7. and the matrix G, is the
covariance matrix for the MQTL between b and b Given that b is not a direct
descendant of b’, Qjfcan only be identical by descent to Q7. in two mutually exclusive
manners: (i) if Q7 is IBD to Q7, the paternal MQTL allele of the dam of 4, and
b" has 1nher1ted OFh; or (il QZ’IS IBD to Q”, the maternal MQTL allele of the dam
of b’, and b’ has inherited Q7. This is akin to calculating A where the relation-
ship, say, between b and b’ is evaluated through the relationship of b with the

parents of b’
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With marker information available, the conditional probability that b’ inherits
O, given that it has inherited M7, is (1 - r), with 7 being the recombination rate
between the ML and the MQTL. Thus if b" inherits M, the probability in Eqn 10.4
can be calculated recursively as:

=0y) =POy=04) - r+ P(Q})=07) - (1 -7) (10.5)
Similarly, given that b” inherits M, then:
P(Q7=07)=PQr=04) - (1 -7+ P(Q7=Q%) - r (10.6)

If it is not known whether b” inherits M”, or M#, due to lack of marker information,
then Q% and QO have equal probability of being transmitted to b”. Therefore, r is
replaced by 0.5 in Eqns 10.5 and 10.6.

Using the above information, Fernando and Grossman (1989) developed a
tabular method for constructing G , which is similar to that for calculating A.
The rows and columns of G, should be such that those for parents precede those
for progeny. It should be noted that there are two rows for an individual in G :
one each for the paternal and maternal MQTL alleles. Let g, be the ij element of
G, and i, i” be the rows of G corresponding to the additive effects of MQTL
alleles (vf’ ) of the oth individual. Similarly, let i, i be the rows for the add1t1ve
effects of the MQTL alleles (22, v™?) of its sire (s) addlthC effects and 7, i} be the
rows for the effects of the MQTL alleles (vh, v") of its dam (d).Then the elements
of the row ## below the diagonal, using Eqns 10 4 to 10.6, can be calculated as:

;= (1—p0p)gif,j +p0pgi:ﬂ’7.; for j =1,...,i" -1 (10.7)

W1th p? = rif b inherits MP or p? = (1 - r) if o inherits M. Similarly, elements of row
i” below the diagonal are:

8 = (1—pg”)gi‘,i,,j +pé”gi;ﬂ’/.; for j=1,...,i" -1 (10.8)

where p” = r if o inherits M, or p” = (1 - r) if o inherits M. Since G, is symmetric
h o o v
then:

., =g, . an o = Zom
8w =&p,; 4 d 8 = 8

It is obvious from Eqn 10.4 that, if o = 0/, that is, the same individual, then cov(v™,
v™) = var(v™) as P(Q” = Q™) = 1. Therefore, the diagonal elements of G equal unity.
If it is not possible to determine which of the two marker alleles o inherited from its
sire or dam, then p? in Eqn 10.7 and p” in Eqn 10.8 are replaced by 0.5.

10.3.1 Numerical application

Example 10.1

Given in the table below are the post-weaning gain data of five calves with the geno-
type at the marker locus given. The aim at this stage is to construct the covariance
matrix G, for the MQTL among the five calves.
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Marker inheritance

Calf Sex of calf Sire Dam Sire Dam PWG (kg)

1 Male — — — - 6.8
2 Female - - - - 4.5
3 Male 1 2 m?# M7 8.5
4 Female 1 3 m7 mp 6.0
5 Female 4 3 MP M~ 7.0

For ease of illustration, let rows ## and i” for animal o in G, be coded as ip and
im, respectively. Thus, for example, for animal 1, ## and i/ will be coded as 1p and 1,
respectively, for animal 2, if and /7 will be coded as 2p and 2m and for animal S, 2
and iZwill be coded as 5p and Sm, respectively. The G, for the example, therefore, is:

1p im 2p 2m 3p 3m 4p 4m 5p 5m

ip  1.000 0.000 0.000 0.000 0.900 0.000 0.100 0.810 0.171 0.810
im 0.000 1.000 0.000 0.000 0.100 0.000 0.900 0.090 0.819 0.090
2p 0.000 0.000 1.000 0.000 0.000 0.100 0.000 0.010 0.001 0.010
2m 0.000 0.000 0.000 1.000 0.000 0.900 0.000 0.090 0.009 0.090
3p 0900 0.100 0.000 0.000 1.000 0.000 0.180 0.900 0.252 0.900
3m 0.000 0.000 0.100 0.900 0.000 1.000 0.000 0.100 0.010 0.100
4p 0.100 0.900 0.000 0.000 0.180 0.000 1.000 0.162 0.916 0.162
4m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 1.000 0.246 0.820
50 0.171 0.819 0.001 0.009 0.252 0.010 0.916 0.246 1.000 0.228
5m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 0.820 0.228 1.000

The calculation of G, for the first three animals is illustrated as below. For the
first two animals, the parents are unknown, therefore:

81p,1p = 8tmm = 82p2p = 8amam = 0

At the ML, animal 3 inherited M? from his father; therefore, for row 3p in G, cor-
responding to the effects of the paternal alleles of the MTQL for animal 3, » = 0.1.
Hence, from Eqn 10.7:

83p1p = (1-0. 1)g1p,1p + (0. 1)g1m,1p =(0.9)1 + (0.1)0 = 0.9
&pim = (1-0. 1)g1p’ +(0.1)g,,,4,, = (0.9)0 + (0.1)1 = 0.1
83p0p = (1-0. l)g] ot (0 1)g1m’2p =(0.9)0 + (0.1)0 =0
83pam = (1-0. 1)g1p om +(0.1)gy, 5 =(0.9)0 +(0.1)0 = 0
833 = 1.0

At the ML, animal 3 inherited M from his mother; therefore, for row 372 in G, corres-
ponding to the effects of the maternal alleles of the MTQL for animal 3, » = 0.9.
Hence, from Eqn 10.8:

Gy = (1= 0.9)g,, 1+ (0.9)g,,, = (0.1)0 + (0.9)0 = 0

Eymim = (1 - 0.9)g2[;,1m + (0. 9)g2,’n 1, = (0.1)0 + (0.9)0 = 0
8ymap = (1= 0.9)g, 5 +(0.9)g,,.5, = (0.1)1 + (0.9)0 = 0.1

Use of Genetic Markers in Breeding Value Prediction 159 ]



G = (1= 0.9)g,, 5+ (0.9)g,, 5, = (0.1)0 + (0.9)1 = 0.9
Gy = (1= 0.9)g,,7, +(0.9)g,,5, = (0.1)0 + (0.9)0 = 0

g3m,3m =10

10.4 An Alternative Approach for Calculating G,

An alternative recursive method for the calculation of G, and its inverse was presented
by Van Arendonk et al. (1994) using matrix notation. Their method accounts for
inbreeding and can be used to calculate a combined numerator relationship matrix
(A,) and its inverse. The matrix A = A + A , where A is the numerator relationship
matrix for animals for QTL not linked to the marker and A is the relationship matrix
for animals for MQTL linked to the marker. The inverse of A_is useful for the direct
prediction of total additive genetic merit, i.e. additive genetic merit with information
from markers directly included.

The principles of their methodology are initially illustrated briefly using the calcula-
tion of the relationship matrix (A) among animals in the absence of marker information.
The representation of the rules for building A, for animals 1 to 7 in matrix form is:

A A
A = (10.9)
s; A, a

n

where s, is the column vector of i - 1 elements containing two elements, 3, corre-
sponding to the sire or dam (if known) and zero elsewhere. A, is the numerator
relationship matrix for animals 1 to (i - 1) and a, is the diagonal element of A for
animal 7 and is equal to 1 + F,, where F, is the inbreeding coefficient of the ith animal.
Using the data in Example 10.1, the A matrix ignoring marker information is:

1.000 0.000 0.500 0.750 0.625
0.000 1.000 0.500 0.250 0.375
A=[0.500 0.500 1.000 0.750 0.875
0.750 0.250 0.750 1.250 1.000
0.625 0.375 0.875 1.000 1.375

For animal 5, s{ = [0 0 0.5 0.5]; therefore, the column vector above the diagonal
for animal 5 (q;) in A using Eqn 10.9 can be calculated as q; = A,s..Thus the row
vector q; = s{A,= [0.625 0.375 0.875 1.00] and the diagonal element for animal 5,
ass =1+ 0.5(ay,) = 1.375. Note also that given q,, s, can be computed as:

s, = A7l q, (10.10)

This relationship will be used in subsequent sections when it is not possible to calcu-
late s, directly.

Given A7!, for animal i - 1, Tier and Solkner (1993) demonstrated that the effect
of adding an additional row to A on the elements of A-! as:

Al 0 s;ss —s;
A7l =T +(a. —s A. s e ! 10.11
i lo O] (Cl” sl t—lst) |:—S,» 1:| ( )

1
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When both sire (f) and dam (d) of i are known, s/A, s = Hag+a,+a,+ay) where
a; are the elements of A, for fand d. Since a; = (1 + a,), then (a, - s/A,_;s)™' can be writ-
ten as (1 - 4(a, + a,,))™". The application of Eqn 10.11 to calculate A~! for the pedi-
gree in Example 10.1 is straightforward. For instance, for the first two animals with
parents unknown, A3' is an identity matrix of order 2. Then A3 can then be calcu-
lated using Eqn 10.11. Given that A}! has been calculated, the inverse of A for all five
animals can be illustrated as follows:

For animal $, (a,, - s{A,s)™" = (1 - H(ag; + a,,)" = (1 - L(1 + 1.25))"' = 2.286.
Then Eqn 10.11 is:

2.000 0.500 -0.500 -1.000 0.000 0.0 0.0 0.0 0.0 0.0
0.500 1.500 -1.000 0.000 0.000 0.0 00 0.0 0.0 0.0
A;'=/-0.500 -1.000 2.500 -1.000 0.000(+(2.286){0.0 0.0 0.25 0.25 -0.5
-1.000 0.000 -1.000 2.000 0.000 0.0 0.0 0.25 0.25 -0.5
0.000 0.000 0.000 0.000 0.000 0.0 0.0 0.5 -0.5 1.0

2.000 0.500 -0.500 -1.000 0.000
0.500 1.500 -1.000 0.000 0.000
=1-0.500 -1.000 3.071 -0.429 -1.143
-1.000 0.000 -0.429 2.571 -1.143
0.000 0.000 -1.143 -1.143 2.28

wheres; = (0 0 0.5 0.5).
Applying Eqns 10.9, Van Arendonk et al. (1994) showed that when alleles are
ordered chronologically, G, ; can be calculated as:
G G, ia8i
Gl/i = ’
’ s} GU,H 8ii

v i—1

(10.12)

where s, is the column vector of 7 - 1 elements containing non-zero elements relating
allele i to paternal and maternal alleles of parent (if known) and zeros elsewhere;
G, ,_, is the covariance matrix for MQTL for alleles 1 to (i - 1); and g, is the diagonal
element of G, for the & allele, which is equal to 1. Using the same notation for the rows
in G, shown in Section 10.3.1, s, for animals 3, 4 and 5 are: s,=[1-7r700],5], =
007 (1-7)0],s),=[r1-r0000],s, =[0000(1~-7)7r0],s;,=[000000
(1-7)rJands =[0000 (1 -7)7000]. Thus G, can easily be constructed using
Eqn 10.12.

10.5 Calculating the Inverse of G,

Fernando and Grossman (1989) used an approach similar to that for setting up A~
in calculating the inverse of G,. They showed that G, could be expressed as:

G,= (Q'VHQ"
Therefore, G;'can be written as:

G'= QH'Q (10.13)
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where Q = (I - P’) and P is a matrix that relates the effect of the MQTL allele of
an individual to the paternal and maternal MQTL alleles of its parent. Each row
of P contains only two non-zero elements if the parent is known, otherwise only
zeros if the parent is unknown. For instance, for individual 7 with sire (s) known,
row i will have (1 - p?) in the column corresponding to i, and p? in the column
corresponding to column 7. Similarly, if dam (d) is known, row i” will contain (1 - p™)
in the column corresponding to i and p” in the column corresponding to i”. The
row of P for allele i is equal to s; in Eqn 10.12. The matrix P for the pedigree in
Example 10.1 is:

1p im 2p 2m 3p 3m 4p 4m 5p 5m

1p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
im 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3m 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0
4p 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0
5p 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0
5m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0

The matrix H is a diagonal matrix for the covariance of residual effects after
adjusting the effect of the MQTL allele of an individual for the effects of the parent’s
paternal and maternal MQTL alleles. For example, the residual effect (&?) for a pater-
nal MQTTL allele of an individual with sire s known is:

el =vb — (1 - ph)l + pbo™
and the variance of & is:
var(g?) = var(vf) - (1 - p£)* - var(vf) - (p£)? - var(v”) - 2(1 - pP)pt - cov(v?, (v7))
Since var(v?) = var(v) = var(v™) = 6>and cov(vf, v™) = var(v?) - P(QP = Q") = var(v?) - F, = 6°F,
the above equation can be written as:
var(e?) = 20.(pt) - 207(ph)* - 202(1 - pP)pP F,
= 262((1 - p)pt - (1 - pt) p*F))

= 203(1 -phpl(1 - F)
var(ef)/o? = ht = 2(1 - p?) p(1 - F)) (10.14)

where (1 - pf)p? = (1 - r)r for p? = r or (1 - 7), F_ is the inbreeding coefficient at
the MQTL of the sire and A? is the diagonal element of H for the paternal MQTL
of individual o. Therefore, if the sire is not inbred, »? = 2(1 - 7)r with marker infor-
mation or b? = 0.5 with no marker information and h? = 1 if the sire is unknown.
Similarly, for the maternal MQTL of o:

var(e”)/ o2 = h"=2(1 - p") p"(1 - F,) (10.15)
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where (1 - p7)p”= (1 - r)r for p”=r or (1 - 7), F, is the inbreeding coefficient at
the MQTL of the dam and /”"is the diagonal element of D for the paternal MQTL
of individual o. Therefore, if the dam is not inbred, 47 = 2(1 - r)r with marker
information or h” = 0.5 with no marker information and h” = ¢Z if the dam is
unknown.

Equation 10.13 may be written as:

S =2 a9h;
j=1

where 7 is the number of individuals in the pedigree, g, is the column of Q and 4, is
the jth diagonal element of H. Since Q = (1 - P’), the jth element of g; (i.e. the dia-
gonal element) is unity and g; has at most only two other non-zero elements. If the
sire of o is known, j = i, element i?= -(1 - p?) and element i = -p?. Similarly, if
the dam is known, then for j = i, element i) = —(1 - p™) and element i} = —p”.
Therefore, the contribution corresponding to the paternal and maternal MQTL
alleles of an individual to G-} can easily be calculated from parent and marker
information.

Fernando and Grossman (1989) gave the following rules for obtaining G;'. First,
calculate the diagonals of H using Eqns 10.14 and 10.15 and its inverse. Second, set
G;' to zero and for each offspring o, with sire s and dam d, add the following to the
indicated elements of G

If the sire is known, add:

1- pf)zh;(,’,' to diagonal element 71”5
-(1-ph) b to elements i1’ and %17,
(L= pJ)ps by to elements ifil" and i"if’;
(pf)zh;,} to diagonal element 4"3]";
—pl b} to elements 1"} and ifi]"

If the dam is known, add:
1- p;”)zhlf“m' to diagonal element i7if;
—(1-pr) h; to elements i and i"i%;
(L= p; )P, bt to elements b7 and 7'k
(pr )zb;’,} to diagonal element i7i7’;

-p)' b;! to elements iy'i)" and i'i}
And always add:

b, to element i il and b, to element 7',

O’O
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Applying these rules, the calculation of the inverse of G;!for the pedigree in
Example 10.1 is illustrated. For this pedigree, the matrix H and its inverse are:

H=diag(1 1 1 1 0.18 0.18 0.18 0.18 0.1508 0.18) and
“T=diag(l 1 1 1 5.556 5.556 5.556 5.556 6.630 5.556)

Note that in calculating the diagonal element for the paternal MQTL of animal 4 (4, , ),
an inbreeding coefficient of 0.162 (covariance between the maternal and paternal
MQTL alleles of the sire and dam, respectively) has been accounted for. Set G;' with
elements represented as g/ to zero and the contribution from the first three animals
can be calculated as follows.

For animals 1 and 2, parents are unknown; the diagonal elements are equal to 1
for the MQTL alleles of these animals. Therefore, add 1 to g'»1#, glmlm o220 and
g*™*", using the same coding as for the rows of G, as in Section 10.3. For paternal
MQTL allele of animal 3, p? = 0.1 and d,,, ,, equals 5.556. Add (1-0.1)%5,,, =4.50
to g'"'7, (1 - 0.1)0.1(h3! p) 05t0g1p1’” —~(1-0.1)h; ; o= -5.00 to g'73,(0.1)*h;, 1p— 0.056
to gl (-0.1)h; 1p = 0.556 to g3 and b [17 3 O g3, For the maternal allele of
ammal3 pt=09and b3 , =5.556. Add (1 - 0.97%h3, ,, = 0.056 to g, (1 - 0.9)
0.9(h5, 1) = 0.5 to g% ~(1 - 0.9)h3.,. = ~0.556 0 g, (0.9)%h7, . = 4.50 to
g2mam (-0, Nh3p3, = —0.500 to g¥¥" and by, 5 to g5, 5 . Applymg the rules to all

ammals in the pedlgree gives G las:

1p im 2p 2m 3p 3m 4p 4m 5p 5m

ip 5556 1.000 0.000 0.000 -5.000 0.000 -0.556 0.000 0.000 0.000
im 1.000 5.556 0.000 0.000 -0.556 0.000 -5.000 0.000 0.000 0.000
2p 0.000 0.000 1.056 0.500 0.000 -0.556 0.000 0.000 0.000 0.000
2m 0.000 0.000 0.500 5.500 0.000 -5.000 0.000 0.000 0.000 0.000
3p -5.000 -0.556 0.000 0.000 14.556 1.000 0.000 -5.000 0.000 -5.000
3m 0.000 0.000 -0.556 -5.000 1.000 5.667 0.000 -0.556 0.000 -0.556
4p -0.556 -5.000 0.000 0.000 0.000 0.000 10.925 0.597 -5.967 0.000
4m 0.000 0.000 0.000 0.000 -5.000 -0.556 0.597 5.622 -0.663 0.000
5p 0.000 0.000 0.000 0.000 0.000 0.000 -5.967 -0.663 6.630 0.000
5m 0.000 0.000 0.000 0.000 -5.000 -0.556 0.000 0.000 0.000 5.556

Similarly, the inverse of G;! can be obtained using Eqn 10.11 (Van Arendonk
et al., 1994) as:

-1 let 1 0 , -1lss; =S
G, = + (gii -5 G, i—lsi) , (10.16)
| 0 0 ’ - 1

The application of Eqn 10.16 for the calculation of G;'is briefly illustrated. It has
been shown earlier that G;' for the MQTL alleles of the first two animals is an
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identity matrix of order 4. The matrix G;' with the paternal MQTL allele of animal
3 added can be computed as:

081 009 0 0 —-0.9
- 009 001 0 0 —-0.1

-1 Gva O -1
G, =] " +(1 - 0827 0 0 00 0
| 0 0 0 0O 00 0
09 -01 0 0 1

[ 5.500 0.500 0.0 0.0 -5.000
0.500 1.056 0.0 0.0 -0.556
=( 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
|-0.500 -0.556 0.0 0.0 5.556

10.6 Prediction of Breeding Values with Marker Information

The model in Eqn 10.2 for breeding value prediction with marker information can be
written in matrix notation as:

y=XB+Zu+Wv+e (10.17)

where y is the vector of observation, B is the vector of fixed effects, u is the random
vector for additive genetic effects due to loci not linked to ML, v is the random vector
with allelic effects at the MQTL and e is random residual effects. The matrices X, Z
and W are incidence matrices. Var(u) = A o7, var(v) = G 02, var(e) = Io*and cov(u, v) =
cov(u, e) = cov(v, e) = 0.

The MME for the above linear model are:

XX XZ X'W Bl [xvy
ZX  ZZ+AJ'oy, Z'W al=|2y (10.18)
WX WZ WW+G'a, |[[V| LW

where:

o, = o*/c? and a, = 6¥/c?
e u e v

10.6.1 An illustration

Example 10.2

Using the data for Example 10.1, the breeding value of animals for QTL not linked
to ML (simply referred to subsequently as breeding values), additive MQTL effects
are predicted for the beef calves and sex effects are estimated. It is assumed that
02=0.3,02=0.05 and 02 = 0.6. Therefore, ¢, = 0.6/0.3 = 2 and «, = 0.6/0.05 = 12.
The parameters are expressed as a proportion of the phenotypic variance. Note that
the total genetic variance 6% = (62 + 207) = 0.3 + 2(0.05) = 0.40. Thus 40% of the
phenotypic variance is due to additive genetic variance, of which 25% can be
explained by the MQTL.
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The matrix X is formed as discussed in Example 3.1, Z is an identity matrix and
the matrix W is:

1100 0 0 0 O0 0O
001 10O0O0O0TO0O0
W=(0 00 0110000
0 000O0OO0OT1TT1O0OTPO0
0000 O0O0OO0OTO0OT1S1

The matrices A;'and G;'have been calculated for the example data. The remaining
matrices in the MME are calculated through matrix multiplication and addition. The
MME are too large to be shown, but solving the equations by direct inversion gives
the following results:

Effects Solutions
Sex
Male 7.357
Female 5.529
Animals Breeding values
1 0.092
2 —-0.091
3 0.341
4 0.329
5 0.515
MQTL alleles of animals Additive effects
1p 0.064
im 0.011
2p -0.065
2m -0.011
3p 0.083
3m -0.004
4p 0.028
4am 0.076
5p 0.043
5m 0.086

The additive genetic effects of the MQTL accounted for about 45% of the total
genetic merit of animals 1 and 2 but only about 20% for animals 3 and 5.

In Germany, with Holstein dairy cattle, the method used in Example 10.2 has
been used to incorporate QTL information into routine estimation of breeding values
(Szyda et al., 2003). In the study, 13 markers were used for routine genotyping of
animals, and regions representing QTL for milk, protein, fat yields and somatic cell
counts were identified on several chromosomes. The QTL information has been
incorporated into BLUP, analysing DYD as the dependent variable. As a percentage
of the polygenic variance, the variances of the MQTL in their study varied from 3 to
5% for milk, fat and protein yields in the first lactation.
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10.7 Directly Predicting the Additive Genetic Merit at the MQTL

Another approach to reduce the number of equations in the MME is to directly
predict the combined additive genetic effects for the paternal and maternal alleles at
the MQTL of an individual. The number of equations per animal would therefore
be two: one for the additive genetic effects not linked to the MQTL and the other
for MQTL. This implies predicting the additive genetic effects at the MQTL at the
animal level; therefore, a covariance matrix (A ) for the MQTL at the animal level
is needed. The covariance matrix A can be obtained from G, as A =BG B’; where
B =1 ®][1 1], with # being the number of animals, and ® denotes the Kronecker
product. For Example 10.1, the matrix B = W in Section 10.5 and A is:

1.000 0.000 0.500 0.950 0.945
0.000 1.000 0.500 0.050 0.055
A,=|0.500 0.500 1.000 0.590 0.631
0.950 0.050 0.590 1.162 1.072
0.945 0.055 0.631 1.072 1.228

Equation 10.11 can be used to obtain the inverse of A . However, the vector s,
containing the contributions from ancestors is needed and this can be computed using
Eqn 10.10. The vector s, for the ith animal needed to calculate A;! is shown in Table 10.1.

The inverse of A is:

4.966 0.286 -0.148 -2.723 -1.382

0.286 1.519 -1.068 0.013 0.249

A, =|-0.148 -1.068 2.245 -0.298 -0.732
-2.723 0.013 -0.298 5.978 -2.971
-1.382  0.249 -0.732 -2.971 4.836

The model for the prediction now becomes:

y=XB+Zu+Wq+e (10.19)
where all terms are as defined in Eqn 10.17 except that W is now identical to Z and
relates additive genetic effects at the MQTL to animals. Both matrices Z and W are
identity matrices and are of the order of animals. The vector q is the vector of additive
genetic effects at the MQTL and is equal to the sum of the additive genetic effects

of the paternal and maternal alleles for the animal. The variance—covariance matrix
of q =2A 02 = Aycj, since 0'3 = 202. The MME for the above model are:

Table 10.1. Vector (s,) with contributions at the MQTL from ancestors
(animals 1 to 4) to animals 2 to 5 using the pedigree in Example 10.1.

Elements in s, relating to animal

Animal 1 2 3 4

2 0.0000

3 0.5000 0.5000

4 0.8600 -0.0400 0.1800

5 0.2857 -0.0514 0.1514 0.6143
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XX XZ X'W Bl [xy
ZX  ZZ+A)w W a|=|zy (10.20)
WX WZ W'W+A e, |[a] LWy

with:

o, =o0%c? and o, =oc?%0c?
e “u e’ g

10.7.1 An illustration

Example 10.3
Using the same data set as in Example 10.1 and the same genetic parameters, the pre-
diction of additive genetic effects breeding values at the QTL not linked to the MQTL,
and combined additive genetic effect of the MQTL at the animal level, is illustrated.
From the parameters, o, = 0.6/0.3 = 2 and o, = 0.6/0.10 = 6. The design matrices
X and Z are as defined in Example 10.2 and W is now equal to Z. The MME is too
large to show but the matrix W'RW + A-la, is:
30.796 1.716 -0.888 -16.338 -8.292
1.716 10.114 -6.408 0.078 1.494
WR'W+A'a,=| -0.888 —6.408 14.470 -1.788 —4.392
-16.338 0.078 -1.788 36.868 -17.826
-8.292  1.494 -4.392 -17.826 30.016

Solving the MME gave the following solutions:

Effects Solutions
Sex
Male 7.356
Female 5.529
Animal Additive genetic effects not linked to MQTL
1 0.091
2 -0.091
3 0.341
4 0.329
5 0.515
Animal Combined additive genetic effects at the MQTL
1 0.076
2 -0.076
3 0.079
4 0.104
5 0.130

The solutions for the additive effect at the MQTL are the same as the sum of
estimated effects in Examples 10.1 and 10.2. The application of this model may be
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limited to populations of small size as the tabular method of calculating A and its
inverse may not be computationally feasible in large populations.

10.8 Predicting Total Additive Genetic Merit

Van Arendonk (1994) showed that total additive genetic merit (a) for animals that
includes marker information could be predicted directly. This implies that only a
single equation is needed for an animal in the MME to predict breeding values with
marker information included. Let Eqn 10.17 be written as:

y=XB+Za+e (10.21)

where a = u + Kv with u and v as defined in Eqn 10.17. The matrix K, which relates
allelic effects to animals, is identical to W in Eqn 10.17 when all animals have obser-
vations. The variance—covariance matrix of a (V) is:

V, = var(u + Kv)
= var(u) + Kvar(v)K’
= A o2+ KG K'o?
= A o2+ 2A o7
= Auo'ﬁ + AV(F;

The combined numerator relationship matrix among animals with marker informa-
tion included (A ) is:

A, =A,02/0% + A 02/0 (10.22)
with:
2_ 2 2
o;=0,+0,

The MME for Eqn 10.21 are:

XX Xz X'W} H _ {X'Y] (10.23)

Z’X  ZZ+Ale, Z’W ||a| |Z%
where:
a=o*/c?

The use of Eqn 10.23 would require the inverse of A to be calculated. Initially,
A is computed using Eqn 10.22, then A-! can be calculated using Eqn 10.11, with
the vector s, containing the contributions from ancestors computed using Eqn 10.10.
The calculation of both matrices is illustrated in the following example.

10.8.1 Numerical application

Example 10.4
Using the same data set as in Example 10.1 and the same genetic parameters, the total
additive genetic effects of animals, which included marker information, are directly

Use of Genetic Markers in Breeding Value Prediction 169 ]



predicted. From the genetic parameters in Example 10.1, 62 = 62 + 02 = 0.3 +
0.1 = 0.4 and o2 = 0.6; therefore, a = 6?/6? = 0.6/0.4 = 1.5. The Z matrix in
Egn 10.21 is now an identity matrix considering animals with records.

The matrix A below was calculated as the sum of A

u(0.3/0.4

) and AU(

matrices A and A have been calculated in Examples 10.2 and 10.4.

A,=|0.500

1.000 0.000 0.500
0.000 1.000 0.500

0.500 1.000

0.800 0.200 0.710
0.705 0.295 0.814

0.800 0.705
0.200 0.295
0.710 0.814
1.228 1.018
1.018 1.338

’ The

0.1/0.4

The vector s, for the ith animal needed to calculate A-! is shown in Table 10.2.
The matrix A7! calculated using Eqn 10.11 is:

2.2641
0.4854

Al =|-0.4101

a

-1.2080
-0.1314

0.4854
1.5007
-1.0218
0.0030
0.0327

The MME (Eqn 10.23) for

2.000 0.000
0.000 3.000
1.000 0.000
0.000 1.000
1.000 0.000
0.000 1.000
0.000 1.000

-0.4101 -1.2080 -0.1314
-1.0218 0.0030 0.0327

2.7536 -0.3673 -0.9544
-0.3673  2.9811 -1.4088
-0.9544 -1.4088 2.4619

the example data is as follows:

1.000  0.000
0.000 1.000
4.396 0.728
0.728 3.251
-0.615 -1.533
-1.812  0.005
-0.197  0.049

1.000
0.000
-0.615
-1.533
5.130
-0.551
-1.432

0.000
1.000

~1.812 -0.197 ||

0.005

-0.551 —-1.432|| %
5472 2.113|| %

-2.113

1
|

0.000]f A
1.000

0.049 || % | =

4.693 L9 ]

Table 10.2. Vector (s,) with contributions from ancestors (animals
1 to 4) to animals 2 to 5, using the pedigree in Example 10.1.

Elements in s, relating to animal

Animal 1 2 3 4

2 0.0000

3 0.5000 0.5000

4 0.5900 -0.0100 0.4200

5 0.0534 -0.0133 0.3877 0.5722

[15.3]

17.5
6.8
4.5
8.5
6.0
7.0
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Solving the MME equations gave these results:

Effects Solutions
Sex
Male 7.356
Female 5.529
Animal Total additive genetic merit including marker information
3 0.167
4 -0.167
5 0.419
6 0.432
7 0.645

The application of Eqn 10.21 is valuable as only one equation is fitted per animal,
but its application to a large data set may be limited because of the tabular method
of calculating the relationship matrix needed and its inverse.

10.9 Analysis of Data with QTL Bracketed by Two Markers

This section deals with the extension of the model of Fernando and Grossman (1989)
by Goddard (1992) to handle situations in which MQTL is bracketed between two
markers. The use of marker information when MQTL is bracketed between two
markers should enhance the accuracy of EBVs compared with information with a
single marker.

10.9.1 Basic model

Consider a chromosome with a series of marker loci with at most one QTL located
between each pair of markers:

Mo w

j+1

Each animal inherits two alleles at the Q, locus: one from its sire and the other from
its dam. A marker haplotype consisting of the marker alleles at M; and M, would be
associated with each of the MQTL alleles. Let the jth chromosome segment that ani-
mal 7 inherited from its sire be of the marker haplotype (k/) and the value of the
MQTL allele be v, or simply v, . Similarly, let the value of the MQTL allele from
its dam be v, . Summed over all chromosome segments, the breeding value of ani-
mal i (a) is:

i

a; =u+ Zvii(p) + Z”ii(m
] ]
Similar to Eqn 10.3 the model for the phenotypic record of animal i is:

y, =x,B+u, +Zvi7.(p) +Zvﬁ<m) te
] j

(m)
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or in matrix notation the model is:
y =xB+Zu+ZWfV/ +e
i
The terms are as defined in Eqn 10.17. The vector v, contains the effects of the paternal
and maternal MQTL alleles at each locus. The summation is over chromosome segments
bounded by markers. The variance of u and v, are as defined in Eqn 10.19, such that:
- 2
Val‘(V/.) = Gvi]v/'

Assuming j = 2, the BLUP equations for the above model are:

X'X XZ X'W, X'W, B
Z’X  ZZ+A'a, Z'W, Z'W, i
WX W/Z W/ W+ G,lo, W;W, v,
W)X  W,Z W, W, W, W, +G,r0; )\ V2
X'y
|2y (10.24)
1Y
Wiy
where:

— ~2/~2 — ~2/~2 _ ~2/~2
a, = oo, a,=oc’ and o= 0l/o],

10.9.2 Calculating the covariance matrix, G

Consider a single MQTL bounded by two marker loci with marker distances as follows:

in °n
[ [ [

pr qr (p+q=1)

r

With the assumption of no crossover, the recombination rates are (Haldane, 1919) between:

M, and M, = a = 0.5(1 - e%)
M, and Q = b =0.5(1 - e
Q and M2 =C= 05(1 - e‘2q7)

Similar to the situation with a single marker, the variance of v depends on the
relationship among the v terms. The MQTL alleles in the progeny can be expressed
in terms of parental MQTL. Thus given, for instance, that the genotype of the sire is:

1 Va1 1

| i i
2 Vers 2
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The sire will produce the following four types of gametes on the basis of marker
haplotypes:
1 2 2 1 2 2

Assuming no double recombination between markers, the frequency, means and
approximate means for the four gametes (Goddard, 1992) are:

Haplotype Frequency Mean Approximate mean
1 1 3(1-a [(1-b(1 -0/ -alv,, +[bcl -alv, v,
1 2 %a [(1 = b)c/alv,,, + [b(1 - ¢)/a]v,,, QVgyq + PVypp

1 1a [b(1 - ¢)/alv,, + [(1 - b)c/a]v,,, PVyq + QVgpo

2 (1 -a) [bcl1 - alv,,, + [(1 = b)(1 - /1 - a]v,,, Vopo

Given, for instance, that » = 0.2, p = 0.8 and g = 0.2, then 4, b and ¢ are 0.1649,
0.1370 and 0.0385, respectively. The means for the haplotypes are 0.99v, and 0.01v
for (1 1), 0.2v_, and 0.8v_, for (1 2), 0.8v_, and 0.2v_, for (2 1) and 0.01(v_,)
and 0.99(v_,) for (2 2). The approximate means are very similar to these estimates.
The maximum errors associated with the above approximate means are when p = g = 0.5
for haplotypes (1 1) and (2 2) (Goddard, 1992). Using the approximate means, the value
of the MQTL in each gamete can be written in terms of the parental MQTL as:

Vo11 10 &
£
Voo |_|9 P (Usll j 4| 2 (10.25)
Vo2t P 9|\ Vi &1
Vo22 0 1 €

where ¢ is the deviation of each gamete from the mean of the haplotype. Since v,
is identical to v, and v ,, to v_,, with the approximate means, then £, = ¢, = 0
Egn 10.25 may be expressed as:

v=Pv+e

where P is as defined in Section 10.5 and has at most two non-zero elements, which
sum to unity. Thus:

v=(I-P)le
Therefore:
G = var(v) = (I = P)~'var(g)((I - P)~')
and:
G- = (I- PYH-(I - P) (10.26)

where Ho? = var(e) and H is a diagonal matrix. Since ¢, = €,, = 0, var(g,,) = var(e,,) = 0.
The main interest therefore is in calculating var(g,,) and var(g,,). The calculation of
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either var(g,) or var(g,,) is similar to that for var(g) in Section 10.5. For instance, for
the oth progeny:

€12 = Vopp ~ 4(Vqq) = (V)
var(g,,) = var(v_,,) - g*var(v,) - p*var(v,,) - 2gpcov(v_,, V)
=02 - (1 - p)*cl+ p*c:-2(1 - p)po?F,
=262((1 - p)p - (1 - p)pF)
= 202 (1 - pip(1 - F) = 207 pq(1 - )
var(g,,)/o? =H = 2pq(1 - F)
Therefore, if the sire is not inbred, the diagonal element of H for progeny o(h, )
with the allele v, , equals 2pq. If the sire is unknown, b = 1. Similarly, for a
progeny o with allele v ,,, b, = 2gp if the sire is known, otherwise 0 if the sire is
unknown.

The matrix G can be calculated using rules similar to those defined in Section
10.3. The relationship of the MQTL paternal allele of a progeny o with MQTL
alleles of individuals 1 to (0 — 1) can be calculated using Eqn 10.7, with p? = p
when o inherits marker haplotype v, or p? = (1 - p) when o inherits marker
haplotype v ,,. Similarly, for the maternal MQTL allele, Eqn 10.8 can be used with
p” = p when o inherits marker haplotype v, or p” = (1 - p) when o inherits
marker haplotype v_,,.

Using Eqn 10.26, Goddard (1992) derived the following rules for calculating G;'.

00

1. Replace v ,, with v_, in all equations and then delete the row and column for v_ ,
in G'. Similarly, replace v_,, with v,,. Set G™! to zero.
2. For progeny allele v ,,, add:
q/2p to the element corresponding to (v ,,, V)
p/2q to the element corresponding to (v ,,, v
1/2pq to the element corresponding to (v
-1/2p to the element corresponding to (v, v ,,) and (v_,, v ;)
-1/24q to the element corresponding to (v

522)
0122 UolZ)

0122 Y511
22 Vo12

! ) and (v,,, vy,
1/2 to the element corresponding to (v, v,,) and (v ,,, v ;)

For a progeny allele v ,,, replace p with g and v_, with v_,, in the rules above.

4. For an allele v, without known parents, add 1 to element corresponding to (v, v,)

W

Goddard (1992) indicated that the use of the approximate means to calculate P
implies that v, and v_,, are forced to be identical even if double crossover occurs.
Therefore, it might be desirable to use a correlation (r) slightly less than unity between
v, and v ,,. This is achieved by using:

_ 2 2
v =1 -4, +r4v,, + €,

Then the row and column for v, are retained in G;!, and, in the above rules, v _,, is
replaced by v_,, and p by r*/4.

10.9.3 An illustration
Example 10.5

Consider that the four calves in the following data set have the following genotype at
two linked loci.

[ 174 Chapter 10



Genotype at the two linked markers

Animal Sire Dam Marker 1 Marker 2
1 - - 11 22
2 - - 33 44
3 1 3 12 44
4 4 3 21 14

Assuming no double crossing over, the genetic parameters as in Example 10.2 and
letting p and g be equal to 0.8 and 0.2, respectively, predict the effects of the sex of
the calf, additive genetic effects (breeding values) not linked to the MQTL for animals
and additive genetic effects for the MQTL alleles of animals.

The alleles at the MQTL can be defined from the genotypes at the two linked
marker loci. Thus the paternal and maternal MQTL alleles for animal 1 will be v,
and v,,, respectively. Correspondingly, those for animal 4 will be v ,, and v_,,
respectively. As in Example 10.3, ¢, = 0.6./0.3 = 2 and «, = 0.6/0.05 = 12. With the
assumption of no double crossing over, for calf 3, v ,, = v _,, (calf 2); therefore, the
row and column for v_,, are deleted from G, and the MME.

The design matrix Z is an identity matrix of order four and W is:

1100000
1100000
1100000
0011000
0011000 )
W = and WW=[0012100
0001100
0001100
0000011
0000011
0000011

The covariance matrix G, is:

[1.000 0.000 0.000 0.000 0.200 0.800 0.040]|
0.000 1.000 0.000 0.000 0.800 0.200 0.160
0.000 0.000 1.000 0.000 0.000 0.000 0.000

G, =10.000 0.000 0.000 1.000 0.000 0.000 0.800
0.200 0.800 0.000 0.000 1.000 0.320 0.200
0.800 0.200 0.000 0.000 0.320 1.000 0.064

10.040 0.160 0.000 0.800 0.200 0.064 1.000 ]

The calculation of G, with elements g(7,j) for the first few animals is as follows.
For the first two animals, both parents are unknown; therefore, the diagonal element
of G for either the paternal or maternal allele is 1 for these animals. Calf 3 inherited
marker haplotype v_, from its sire; therefore, p? = p in Eqn 10.7. Thus:

g(3p3p,1p1p) =(1- p)g(lplp,lplp) + pg<1m1m,1p1p) = 6](1) + P(O) =4 = 0.2
g(3p3p,1m1m) = (1 - p)g(1p1p,1m1m) + pg(lmlm,lmlm) = Q(O) + P(l) =p= 0.8
g(3p3p,2p2p) = (1 - p)g(lpm,zpzp) + pg(lmlm,Zpr) = CI(O) + p(O) =0
g(3p3p,2m2m) =(1- p)g(lplp,ZmZm) + P8t aman) = 4(0) + p(0) =0
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The marker haplotype inherited by calf 4 from its sire is v, ; therefore, p? = g in
Eqn 10.7. Thus:

g(4p4p,1plp) ( )g(lplp,lpHI) + qg(lmlm,ww) = P(l) + 5](0) =p= 0.8
8lapapimin) = (1 = &L 41 1m1m) + A8 1stmtmrn) = P(0) + q(1) =g =0.2
g(4p4p,2p2p> ( )g(lp]p,2p2p> + qg(1m1m’2p2p) = p<0) + Q(O) =0

g(4p4p,2m2m) = (1 q)g(w]p’zmzm) + qg(lm]m,Zmlm) = P(()) + C](O) =0
g(4p4p,3m3m> = (1 q)g(lplp,3m3m) + qg(lmlm,3m3m) = P(‘ﬁ + Q(P) = qu =0.32

The inverse of G is:

[ 3.125  1.000 0.000 0.000 -0.625 -2.500 0.000 |
1.000 3.125 0.000 0.000 -2.500 -0.625 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000
G,'=| 0.000 0.000 0.000 3.000 0.500 0.000 -2.500
-0.625 -2.500 0.000 0.500 3.250 0.000 -0.625
-2.500 -0.625 0.000 0.000 0.000 3.125 0.000
| 0.000 0.000 0.000 -2.500 -0.625 0.000 3.125]

The matrix G™! was computed using the rules outlined earlier. Thus for the first two
animals (first four alleles), add 1 to the diagonal elements since parents of both calves
are unknown. For paternal allele of calf 3, add 1/2pg to the diagonal element
(3p3p,3p3p) of G, g/2p to element (1plp,1plp), p/2q to element (1mlm,1mlm),
-1/2p to elements (1p1p,3p3p) and (3p3p,1plp), -1/2q to elements (1ml1m,3p3p)
and (3p3p,1m1m) and 0.5 to the elements (1p1p,1m1m) and (1mlm,1plp).

The matrix A-! for the example data can be calculated using the usual rules; therefore,
the MME can easily be set up from the design matrices and inverse of the covariance
matrices given. Solving the MME by direct inversion gave the following results:

Effects Solutions
Sex of calf
Male 7.475
Female 5.091
Breeding values for animals
1 0.034
2 —-0.034
3 0.246
4 0.280
Additive effects for animals at the MQTL
1p —-0.008
im 0.005
2p —-0.047
2m 0.049
3p 0.024
4p 0.010
4m 0.059

A similar model to that in Example 10.5 has been used by Boichard ez al. (2002)
for incorporating MQTL information into genetic evaluation for milk production
traits in young bulls.
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1 1 Computation of Genomic
Breeding Values and
Genomic Selection

11.1 Introduction

In outbreeding populations, the incorporation of molecular information in breeding
programmes on the basis of the linkage analysis, as discussed in Chapter 10, is limited,
as the marker maps are rather sparse and linkage between the markers and QTL may
not be sufficiently close enough to persist across the population. Thus the linkage
phase between marker and QTL must be established for every family in which the
marker is intended to be used for selection.

However, a huge amount of variation has been discovered in the genome at the
DNA level as a result of sequencing the genomes of most livestock species. The
most abundant form of variation is the single nucleotide polymorphisms (SNPs).
An SNP is a DNA sequence variation occurring when a single nucleotide (A, T, C
or G) in the genome differs between paired chromosomes in an individual. For
example, two sequenced DNA fragments from different individuals, AAGCCTA to
AAGCTTA, contain a difference in a single nucleotide. In this case we say that
there are two alleles: C and T. Generally, SNPs are diallelic. In view of the high
frequency of SNPs in the genome, and developments in genotyping technology that
mean many thousands of SNPs can be genotyped very cheaply, they have been
proposed as markers for use in QTL analysis and in association studies in place of
microsatellites.

The main emphasis of this chapter is the use of SNPs to directly compute EBVs
of animals, which are often called direct genomic breeding values (DGV). This is usu-
ally combined with some measure of the traditional EBV, say parent index, from an
animal model to produce what is termed genomic breeding values (GEBV), which are
officially published and used for the selection of animals.

The use of GEBV in the selection of animals has been referred to as genomic
selection. Genomic selection requires that markers (SNPs) are in linkage disequilib-
rium (LD) with the QTLs across the whole population. LD can be defined as the
non-random association between the alleles of two loci (e.g. between alleles of a
marker and a QTL). Given a marker locus, A (with alleles A, A,), and a QTL locus,
B (with alleles B, and B,), on the same chromosome, LD can be measured as the
squared correlation (7?) between the marker and the QTL as:

D freq(A,B,)*freq(A,B,) - freq(A,B,)*freq(A,B,)
= D¥/[freq(A,)*freq(A,)*freq(B,)*freq(B,)]

The > between the marker and the QTL indicates the proportion of the variance for
the QTL that can be explained at the marker.

© R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values, 177 ]
3rd Edition (R.A. Mrode)



The basic assumption is that the use of SNPs as markers enables all QTL in the
genome to be traced through the tracing of chromosome segments defined by adja-
cent SNPs. It is assumed that the effects of the chromosome segments will be the same
across the population as a result of the LD between the SNPs and QTL. Thus it is
important that marker density is high enough to ensure that all QTL are in LD with
at least a marker.

The main advantages of genomic selection are similar to those outlined in
Chapter 10 with MAS. Briefly, it results in a reduction of the generation interval, as
young animals can be genotyped early in life and their GEBV computed for the pur-
poses of selection. In the dairy cattle situation, GEBV computed early in life can be
used to select young bulls, thereby reducing the cost of progeny testing, provided the
GEBV are accurate enough. In addition, higher accuracy of GEBV, about 20-30%
above that from a parent average, has been reported for young bulls. The computa-
tion of GEBV for an individual on the basis of the SNPs it has inherited means that
the differences in the genomic merit of full-sibs can be captured.

The implementation of genomic selection involves estimating the SNP effects in
a reference population that consists of individuals with phenotypic records and geno-
types. This is then followed by prediction of GEBV for selection candidates that do
not yet have phenotypes of their own.

11.2 General Linear Model

The general linear model underlying genomic evaluation is of the form:
y=Xb+> Mg, +e (11.1)

where m is the number of SNPs or markers across the genome, y is the data vector, b
the vector for mean or fixed effects, g, the genetic effect of the ith SNP genotype and
e is the error. The matrices X and M, are design matrices for the mean or fixed effects
and the ith SNPs, respectively. The matrix M is of dimension 7 (number of animals)
and m. The assumption is that all the additive genetic variance is explained by all the
marker’s effects such that the estimate of an animal’s total genetic merit or breeding
value (a) is:a= ZM g;- However, if it is assumed that a certain proportion of the addi-
tive genetic variance is not explained by markers, then the model can be extended to
include a residual polygenic effect (u), which is the proportion of the additive genetic
variance not captured by markers. The model can then be written as:

y=Xb+ZMigi+Wu+e (11.2)

where W is the design matrix linking records to random animal or sire effects if an
animal or model has been fitted.

11.3 Coding and Scaling Genotypes

As explained in Eqn 11.1, M is the genotypic matrix that contains which marker
alleles each individual inherited. The genotypes of animals are commonly coded as
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2 and 0 for the two homozygotes (AA and BB) and 1 for the heterozygotes (AB or
BA). If alleles are expressed in terms of nucleotides, and the reference allele at a locus
is G and the alternative allele is C, then the code is 0 = GG, 1 = GC and 2 = CC.
The diagonal elements of MM’ then indicate the individual relationship with itself
(inbreeding) and the off-diagonals indicate the number of alleles shared by relatives
(VanRaden, 2007).

Commonly, in genomic evaluations (VanRaden, 2008), the elements of M are
scaled to set the mean values of the allele effects to zero and account for differences
in allele frequencies of the various SNPs. Let the frequency of the second or alterna-
tive allele at locus j be p; and then elements of M can be scaled by subtracting 2p,. Let
the element for column j of a matrix P equal 2p, then the matrix Z, which con-
tained the scaled elements of M, can be computed as Z = M — P. Note that the sum
of the elements of each column of Z equals zero. Furthermore, the elements of Z can
be normalized by dividing the column for marker j by its standard deviation, which
is a§§umed to be /2pi(1 - ;) This is assuming that the locus is at Hardy Weinberg
equilibrium. However, in this chapter Z computed as M — P has been used.

11.4 Fixed Effect Model for SNP Effects

Several methods for genomic selection were presented by Meuwissen et al. (2001), and
one such method includes the least squares approach with chromosome segments or
SNPs considered as fixed. There is no assumption made about the distribution of the
SNP effects and it usually involves two steps.

1. Analysis of each SNP using the simple model in Eqn 11.1, with g, defined as the
vector of fixed ith SNP effect.

2. Select the k most significant SNPs and estimate their effects simultaneously (in the
same data) using a multiple regression with the term for SNP effects in Eqn 11.1 equal to:

k
Z Mg,

This approach suffers from two major limitations. First, the estimation of effects
based on an SNP selected by single SNP analysis will result in overestimation of
the SNP effects, as the large amount of multiple testing ensures the selected SNPs are
those with positive error terms. Second, determining the level of significance for the
choice of SNPs to include in the final analysis is far from straightforward.

In an animal breeding context, assuming the few SNPs that have significant effects
on a trait have been identified, then these SNPs can fitted as fixed effects in a model
that includes the polygenic effect as a random effect. Thus the genomic breeding value
for animal i (GEBV,) can be computed as a sum of the direct genomic breeding value
(DGV)) calculated from the marker (SNP) effects as Mg, and the polygenic effects ().

Such a linear model could be written as:

y=Xb+Zg+Wu+e (11.3)

where g represents the fixed marker or SNP effects, Z is the scaled matrix of geno-
types defined in Section 11.2, which relates SNPs to phenotypes, and other terms are
defined as in Eqn 11.2.
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The equations for obtaining the solutions for SNP and polygenic effects are:

X'’X XR'X XZ b) (X’
Z’X Z'X 77 gl=|zy (11.4)
WX WX  WW+Alg)la)] Wy
where:
a=o?c?

If the vector of observations, y in Eqn 11.3, are de-regressed breeding values of bulls
(see Section 5.5.2), then each observation may be associated with differing reliabilities.
Thus a weighted analysis may be required to account for these differences in bull reli-
abilities. The weight («2,) for each observation could be the reciprocal of the effective
daughter contribution (see Section 5.5.2) or wt, = (1/rel,,) — 1, where rel, is the bull’s
reliability from daughters with parent information excluded (VanRaden, 2008). Then the
MME are:

XR'X XR'X XR'Z b) [XRly
ZR'X ZR'X ZR'Z g|=|ZR"y (11.5)
WR'X WR'X WR'W+A'o| U] [WRy

where R = D and D is a diagonal matrix with diagonal element i = wt,.

Example 11.1

Given below is the real genotype for the first ten SNPs of a popular dairy bull and
those of his sons and some other unrelated bulls genotyped using the 50K Illumin chip.
The genotypes of animals are coded as described in Section 11.3. The observations are
the DYDs for fat yield, and the effective daughter contribution (EDC) for each bull is
also given. The EDC can be used as weights in the analysis. It is assumed the genetic
variance for fat yield is 35.241 kg? and residual variance of 245 kg2, and animals 13
to 20 are assumed as the reference population and 21 to 26 as selection candidates.
Assuming that the first three SNPs have been identified as having the most significant
effect, the aim is to fit Eqn 11.3 with and without weights using these three SNPs:

Fat

Animal Sire Dam Mean EDC DYD SNP Genotype
13 0 0 1 558 90 2 0 1t 1 0 O O 2 1 2
14 0 0 1 722 1834 1 0 O O O 2 0 2 1 O
15 13 4 1 300 127 1 1 2 1 1 0 0 2 1 2
16 15 2 1 73 1454 0 0 2 1 0 1 0 2 2 1
17 15 5 1 52 59 0 1 1. 2 0 O 0 2 1 2
18 14 6 1 87 77 1 1 0 1 0 2 0 2 2 1
19 14 9 1 64 102 O 0 1 1 0 2 0 2 2 O
20 14 9 1 103 48 0 1 1 0 O 1 0 2 2 O
21 1 3 1 13 76 2 0 0 0 O 1 2 2 1 2
22 14 8 1 125 88 0 0 O 1 1 2 0 2 0 O
23 14 11 1 93 98 0 1 1 0 O 1 0 2 2 1

Continued
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(Continued)

Fat
Animal Sire Dam Mean EDC DYD SNP Genotype
24 14 10 1 66 92 1. 0 0 0O 1 1 0 2 0 O
25 14 7 1 75 15 0 0 0 1 1 2 0 2 1 0
26 14 12 1 33 133 1 0 1 1 0 2 0 1 0 O

EDC, effective daughter contribution; DYD, daughter yield deviation.

The prediction of marker effects and polygenic effects for the reference population and
selection candidates can be done simultaneously by including A~ for all animals but using only
the fat yield records for the reference animals. Thus y" = (9.0 13.4 12.7 15.4 5.9 7.7 10.2 4.8).
The incidence matrix X = I, with g = 8 (the number of animals in the reference population).

COMPUTING THE MATRIX Z

The computation of Z requires calculating the allele frequency for each SNP. The
allele frequency for the ith SNP was computed as:

Z m;

]

2*n
where 7 = 14, the number of animals with genotypes, and 72, are elements of M. The
allele frequencies for the ten SNPs were 0.312,0.179, 0.357,0.357, 0.143, 0.607, 0.071,
0.964, 0.571 and 0.393, respectively. However, only the first three SNPs are needed for
this example, therefore Z is of order 8 by 3 with elements 2, = m,;—p,, with j =1, 3. Thus:

1.357 -0.357 0.286
0.357 -0.357 -0.714
0.357 0.643 1.286
-0.643 -0.357 1.286
-0.643 0.643 0.286
0.357 0.643 -0.714
-0.643 -0.357 0.286
-0.643 0.643  0.286

The W matrix is a diagonal matrix for the eight reference animals with records. This is aug-
mented with 12 columns of zeros to account for ancestors 1 to 12. For the weighted analysis,
the R was a diagonal matrix with the diagonal elements equal to the EDC of the first eight
animals in the data set. The matrix A-! is computed using the usual rules for all 26 animals
and o = 245/35.241 = 6.952. Solving the system of equations gives the following results:

Unweighted analysis Weighted analysis
Mean effect
9.895 9.178
SNP effect
1 0.607 2.655
2 -4.080 -4.640
3 1.934 2.951
Continued
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(Continued)

Unweighted analysis Weighted analysis
Reference animals
DGV Polygenic DGV Polygenic
13 2.834 -0.299 7.070 -0.001
14 0.293 0.256 1.464 0.000
15 0.081 0.142 2.726 0.000
16 3.554 0.254 4.711 0.002
17 —-2.460 -0.085 -2.880 -0.001
18 -3.787 0.271 -3.176 0.002
19 1.620 -0.092 1.760 -0.002
20 —-2.460 -0.181 -2.880 -0.002
Selection animals
DGV Polygenic DGV Polygenic
25 0.900 0.000 4.119 0.000
26 -0.314 0.128 -1.191 0.000
27 —-2.460 0.128 -2.880 0.000
28 0.293 0.128 1.464 0.000
29 -0.314 0.128 -1.191 0.000
30 2.227 0.128 4.415 0.000

With this small amount of data, it seems that when records are properly weighted,
polygenic effects were very close to zero. The GEBV for reference and selection ani-
mals equals Zg + 1. This would be equal to 2.535 for animal 13 for instance. The Z
has been given for reference animals and for the selection candidates the correspond-
ing matrix Z, is:

1.357 -0.357 -0.714
-0.643 -0.357 -0.714
-0.643 0.643 0.286

0.357 -0.357 -0.714
-0.643 -0.357 -0.714

0.357 -0.357 0.286

11.5 Mixed Linear Model for Computing SNP Effects

Several methods that fit SNP effects as random have been presented by various
researchers (Meuwissen et al., 2001; VanRaden et al., 2008; Habier et al., 2011). The
most common random model used in the national evaluation centres for genomic
evaluation, especially of dairy animals, assumes the effect of the SNP are normally
distributed and all SNP are from a common normal distribution (e.g. the same genetic
variance for all SNPs). There are two equivalent models with these assumptions:

1. A model fitting individual SNP effects simultaneously. In this model (SNP-BLUP),
DGVs for selection candidates are calculated as DGV = Zg, where g are the estimates
of random SNP effects. This method involves knowing o2, but this may not be the
case in practice, and 0'§ may have to be approximated from o2, the additive genetic
variance. In such situations, this method is also referred as ridge regression.
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2. A model estimating breeding values directly, with the (co)variance among breeding
values Go? fitted, where G is the genomic relationship matrix. The matrix G repre-
sents the realized proportion of the genome that animals share in common and is
estimated from the SNPs.

These models will now be described in more detail.

11.5.1 SNP-BLUP model

In matrix form, the mixed linear model for estimating SNP effects can be written as
(Meuwissen et al., 2001; VanRaden, 2008):

y=Xb+Zg+e (11.6)

where g is a vector of additive genetic effects corresponding to allele substitution
effects for each SNP and all other terms defined as in Eqn 11.3. The matrix Z relates
SNP effects to the phenotypes. The sum of g over all marker loci is assumed equal to
the vector of breeding values (a), i.e. DGV = a = Zg. The MME for Eqn 11.6 are:

X'R'X XR!'Z b) (X'Ry

ZR'X ZR'Z+1a)\g) \zZRy (11.7)
where o = 07/ and R is a diagonal matrix of weights (see Eqn 11.5). The MME in
Eqn 11.7 can easily be set up and solutions obtained for each SNP and the fixed
effects. However, in practice, the value of 62 may not be known and o2 could be

g g
obtained either as o = 02/m, with m = the number of markers, or as o7 = 02/2Xp,

(1-p). The latter is f)referred as it takes into account the differences in allele frequenc1es

With the latter, o = 25p(1-p)* [02/02], with 62 being the additive genetic variance for the
traitand p; is as defined in Section 11.3. Hayes and Daetwyler (2013) indicated that there
is a potentlal problem with this estimate as it assumes the LD between SNP and QTL is
perfect and all genetic variance is captured by the SNP. This may not be the case in practice
and they recommended the method described by Moser et al. (2010) for estimating o
through cross-validation. The method involves estimating SNP effects with different values
of orand predicting DGV in validation data sets that have not contributed to the estimation
of SNP effects. The value of & that minimizes the mean square error between the DGV and
y is taken as the appropriate estimate. This process can be repeated, dropping out different
subsets of the data and obtaining an estimate of & by averaging across data sets.

Example 11.2

Using the data and genetic parameters given in Example 11.1, SNP effects are pre-
dicted using Eqn 11.6 and all ten SNPs. Then DGVs are computed for the reference
and validation animals. Initially, analyses are carried out without weights, thus R = Io?.
Then the data were re-analysed using EDCs as weights, with R in Eqn 11.7 being a
diagonal matrix containing EDCs for reference bulls.

COMPUTING THE REQUIRED MATRICES AND o

The allele frequencies for the ten SNPs have been calculated in Example 11.1. Using
those frequencies, 22171.(1 - pl.) =3.5383. Thus a = 3.5383%(245/35.242) = 24.598.
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The matrix X in Eqn 11.7 is the same as X in Example 11.1 and Z computed as
Z=M-Pis:
1.357 -0.357 0.286 0.286 -0.286 —1.214 -0.143 0.071 -0.143 1.214
0.357 -0.357 -0.714 -0.714 -0.286 0.786 -0.143 0.071 -0.143 -0.786
0.357 0.643 1.286 0.286 0.714 -1.214 -0.143 0.071 -0.143 1.214
-0.643 —-0.357 1.286 0.286 -0.286 —-0.214 -0.143 0.071 0.857 0.214
—0.643 0.643 0.286 1.286 -0.286 -1.214 -0.143 0.071 -0.143 1.214
0.357 0.643 -0.714 0.286 -0.286 0.786 -0.143 0.071 0.857 0.214
—0.643 -0.357 0.286 0.286 -0.286 0.786 -0.143 0.071 0.857 -0.786
-0.643 0.643 0.286 -0.714 -0.286 -0.214 -0.143 0.071 0.857 —-0.786

The MME in Eqn 11.7 can then be easily set up. The solutions for the mean and
SNP effects from solving the MME, either using weights or no weights, are shown in
Table 11.1. The DGV for the reference animals is then computed as Zg. The results
are shown in Table 11.2.

Similarly, the DGV of the validation animals are computed as Z,g, where Z,
contains the centralized genotypes for the selection candidates. Thus for the
unweighted analysis:

0.087
-0.311

a, 1.357 -0.357 -0.714 -0.714 -0286 -0.214 1.857 0.071 —-0.143 1.214 \| 0.262
a,| |-0643 -0.357 -0.714 0286 0.714 0.786 -0.143 0.071 —1.143 -0.786 ||-0.080
a,| |-0.643 0643 0286 -0.714 -0286 -0214 —0.143 0.071 0.857 0214 || 0.110
a, 0.357 -0.357 -0.714 -0.714 0.714 -0214 —0.143  0.071 —1.143 —0.786 0.139
s | |-0643 0357 -0.714 0286 0714 0.786 —0.143  0.071 —0.143 —0.786 0.000
5 0.357 -0.357 0286 0286 -0.286 0.786 —0.143 -0.929 —1.143 —0.786 )| 0.000
* -0.061
-0.016

0.027

0.114

-0.240

“1 0.143

0.054

0.354

11.5.2 Equivalent models: GBLUP

An equivalent model to Eqn 11.6 is the application of the usual BLUP MME but with
the inverse of the numerator relationship matrix (A-!) replaced by the inverse of the
genomic relationship matrix (G!) (Habier et al., 2007; Hayes et al., 2009). This tends
to be referred to generally as GBLUP. The DGVs are computed directly from the
MME as the sum of the SNP effects (a = Zg), with the assumption that SNP effects
are normally distributed. Assume the following mixed linear model:

y=Xb+ Wa+e (11.8)

where y is the vector of observations, a is the vector of DGVs and W is the design
matrix linking records to breeding value (random animal or sire effect if an animal
or sire model has been fitted) and e is random residual effect. Given that a = Zg, then:

var(a) = ZZ'O‘;
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Table 11.1. Solutions for mean and SNP effects from various models.

Unweighted Weighted
Mean effect

9.944 11.876

SNP effects solutions
1 0.087 -0.633
2 -0.311 -3.041
3 0.262 3.069
4 -0.080 -1.267
5 0.110 2.600
6 0.139 4.447
7 0.000 0.000
8 0.000 0.000
9 -0.061 -3.240
10 -0.016 1.883

Table 11.2. Direct genomic breeding (DGV) values from various models.

Selection  SNP-BLUP
SNP-BLUP  GBLUP index (weighted)

Reference animals

13 0.070 0.069 0.070 —2.651
14 0.111 0.116 0.111 1.307
15 0.045 0.049 0.045 0.611
16 0.253 0.260 0.253 1.007
17 0.495 -0.500 -0.495 -5.693
18 -0.357 —-0.359 -0.357 -4.358
19 0.145 0.146 0.146 0.502
20 -0.224 -0.231 -0.225 -5.718
Selection candidates
21 0.027 0.028 0.028 —-0.006
22 0.114 0.115 0.115 6.513
23 -0.240 -0.240 -0.240 -3.835
24 0.143 0.143 0.143 2.701
25 0.054 0.054 0.054 3.273
26 0.354 0.353 0.353 6.350

Noting that:

L o
¢ ZZP,(l_P,)
then the matrix ZZ’ can be scaled such that:

__ 77

©=250,0)
and var(a)=Go?2 The above division scales G to be analogous to the numerator rela-
tionship matrix (A). The genomic inbreeding coefficient for individual i is G, - 1, and
the genomic relationship between individuals i and k, which are analogous to the
relationship coefficients (Wright, 1922), can be obtained by dividing the elements G,
by the square roots of the diagonals of G, and G,. The matrix G is generally positive
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semi-definite but can be singular if two individuals have identical genotypes or the
number of markers (1) is less than genotyped individuals (7). If number of markers are
limited (2 < 7), an improved non-singular matrix G_, can be obtained as wtG + (1 — wt)A.
VanRaden (2008) indicated that wt = 0.90, 0.95 and 0.98 gave good results.

Another method for computing G involves scaling ZZ’ by the reciprocals of
the expected variance of marker loci (VanRaden, 2008). Thus G = ZDZ’, where
D is diagonal with:

1
= ml2p, 1))
The MME for Eqn 11.8 are:
m -1 m -1 N m -1
X'R™X XR'W b=XRy (11.9)
WR'X WR'W+G'o)la WR™'y
where a now equals 02/02.

This approach for genomic evaluation has the advantage that existing software
for genetic evaluation can be used by replacing A with G and the systems of equations
are of the size of animals, which tend to be fewer than the number of SNPs. In pedi-
gree populations, G discriminates among sibs, and other relatives, allowing us to say
whether these sibs are more or less alike than expected, so we can capture informa-
tion on Mendelian sampling. Also, the method is attractive for populations without
good pedigree, as G will capture this information among the genotyped individuals
(Hayes and Daetwyler, 2013).

Note that Eqn 11.9 assumes all the additive genetic variance (62) is captured by
the SNP, but this may not be the case if the linkage disequilibrium between SNP and
QTL is not perfect. Later, in Section 11.6, a model is discussed that might capture any
residual polygenic variance not captured by the SNPs. Another possible limitation is

that there are no direct rules for computing G-! and in large populations the compu-
tation may not be feasible.

Example 11.3
The data in Example 11.1 is analysed using Eqns 11.8 and 11.9 and the same genetic
parameters to compute DGVs for both the reference and validation animals without
using weights.

The matrix X in Eqn 11.9 is the same X as in Example 11.1, W is a diagonal
matrix for the eight reference animals with records and o = 245/35.25 = 6.950.

The G matrix constructed from Z for the ten SNPs as:

77

22P,<1 - P,)
with 25p (1 - p) = 3.5383 is:
13 1472
14 -0.446 0.746
15 0.988 -0.930 1.634
16 0.059 -0.446 0.422 0.907
17 0.685 -0.950 1.048 0.402 1.593
18 -0.163 0.180 -0.365 -0.163 -0.102 0.746

19 -0.708 0.201 -0.627 0.423 -0.365 0.201 0.786
20 -0.547 0.079 -0.183 0.301 -0.203 0.079 0.382 0.826
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21 0.887 0.100 0.120 -0.526 -0.183 0.100 -0.728 -0.567 2.280

22 -0.789 0.402 -0.708 -0.506 -0.446 -0.163 0.140 -0.264 -0.526 1.190

23 -0.203 -0.143 0.160 0.362 0.140 0.140 0.160 0.604 -0.224 -0.486 0.665

24 -0.143 0.483 -0.345 -0.708 -0.648 -0.365 -0.345 -0.183 0.120 0.705 -0.405 1.068

25 -0.829 0.362 -0.748 -0.264 -0.486 0.079 0.382 -0.022 -0.567 0.867 -0.244 0.382 0.826

26 -0.264 0.362 -0.466 -0.264 -0.486 -0.203 0.100 -0.304 -0.284 0.584 -0.526 0.382 0.261 1.109

For the purposes of comparison, the G matrix computed from 41866 SNPs (G ) with
23p (1 = p;) = 15555.80 and the A computed from a five-generation pedigree are
shown below:

ngl =

13 0.957

14 -0.108 0.973

15 0.452 -0.116 1.182

16 0.209 -0.058 0.424 1.025

17 0.234 -0.083 0.425 0.312 1.037

18 -0.040 0.438 0.097 -0.047 -0.043 1.151 symmetric

19 -0.089 0.458 0.039 -0.067 -0.070 0.426 1.175

20 -0.093 0.460 0.053 -0.058 -0.063 0.432 0.707 1.183

21 0.077 -0.082 0.064 0.104 0.082 -0.071 -0.069 -0.069 1.031

22 -0.056 0.418 0.093 -0.046 -0.038 0.408 0.355 0.342 -0.044 1.139

23 -0.005 0.464 -0.038 -0.035 -0.038 0.206 0.223 0.215 0.011 0.280 0.993

24 -0.070 0.468 0.075 -0.027 -0.053 0.403 0.521 0.550 -0.079 0.424 0.260 1.198

25 -0.052 0.416 0.098 -0.009 -0.031 0.386 0.363 0.342 -0.038 0.370 0.219 0.419 1.125
26 -0.070 0.493 -0.084 -0.039 -0.044 0.258 0.241 0.270 -0.072 0.253 0.178 0.259 0.214 1.009

13 1.008

14 0.033 1.037

15 0.545 0.021 1.041

16 0.288 0.021 0.536 1.016

17 0.285 0.031 0.541 0.293 1.020

18 0.047 0.580 0.036 0.028 0.032 1.062

19 0.033 0.613 0.021 0.021 0.031 0.365 1.095 symmetric

20 0.033 0.613 0.021 0.021 0.031 0.365 0.613 1.095

21 0.099 0.031 0.082 0.118 0.074 0.028 0.031 0.031 1.021

22 0.046 0.586 0.032 0.031 0.039 0.351 0.373 0.373 0.044 1.068

23 0.096 0.569 0.067 0.043 0.047 0.329 0.357 0.357 0.042 0.338 1.050

24 0.041 0.574 0.027 0.019 0.026 0.331 0.406 0.406 0.028 0.335 0.335 1.056

25 0.033 0.548 0.035 0.039 0.039 0.315 0.336 0.336 0.037 0.321 0.310 0.310 1.029
26 0.035 0.588 0.023 0.024 0.039 0.337 0.376 0.376 0.036 0.347 0.341 0.348 0.325 1.070

The matrix A is more similar to G, than to G, thus with more SNPs, the genomic
relationship matrix captures more relationships.

The matrices required for Eqn 11.9 have been described. Solving Eqn 11.9 gives
the DGVs directly for both the reference and selection animals and these are shown
in Table 11.2. The solution for the mean effects was 9.944. Thus the model gave the
same results as the SNP model.

11.5.3 Equivalent models: selection index approach

VanRaden (2008) presented a selection index approach which is equivalent to Eqn 11.9.
The method is of limited use in practice as it is assumed that the solutions of the vec-

tor of fixed (b) effects are known. It does, however, demonstrate the equivalence of
the selection index approach to GBLUP.
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Selection index equations to predict DGV (a) are constructed as the covariance
between y and a multiplied by the inverse of the variance of y and the deviation of y
from fixed effects solutions. Thus:

-1
a:G[G+R[G—;D (y - Xb) (11.10)

The vector of estimates of SNP effects (g) can be obtained from Eqn 11.10 as:

1 o’ - ~
s=|—— | 7z|G+r|% ~Xb (11.11)
i (ZZP,-G—P/J ( ' (65]] o

The DGV of validation candidates without records can then be computed with the
selection index approach as:

5\
5=C(G+R(G—3D (y — Xb) (11.12)

a

where C is the genomic covariance between animals with and without records com-
puted as:

Y
22 p,‘ (1 - P,)

with Z, being the matrix of centralized genotypes for the validation animals (see
Example 11.3).

Example 11.4

The data in Example 11.1 is again analysed using Eqn 11.10 and the same genetic
parameters to compute DGVs for the reference animals without using weights. The
solution of 9.994 has been assumed for the mean.

The X matrix in Eqn 11.10 equals X in Example 11.1, the G matrix is of order
8 for the reference animals only and corresponds to the first eight rows and columns
of G computed in Example 11.3 and R = I?, assuming no weights are used in the
analysis.

Solutions from solving Eqn 11.10 are shown in Table 11.2. Similarly, the DGV
of the selection candidates were obtained by Eqn 11.12 and these are also shown in
Table 11.2. The same solutions were obtained for both reference and validation ani-
mals as obtained from the SNP or GBLUP models.

11.6 Mixed Linear Models with Polygenic Effects

The genomic BLUP model used to estimate SNP effects in most livestock populations
is based on chips with densities of about 60K, and it is usually assumed that these
SNPs explain all the genetic variation for the traits analysed. However, fitting a
residual polygenic effect (RP) may account for the fact that SNPs may not explain all
the genetic variance and it has also been found to render SNP effects less biased
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(Solberg et al., 2009). Liu et al. (2011) have demonstrated that the optimum level of
RP may differ for traits of different heritabilities but tends to vary between 10 and
20% of the genetic variance.

A mixed linear model with polygenic effects included is of this form:

y=Xb+Wu+Zg+e (11.13)

where u is the vector of random residual polygenic effects, W is the design matrix that
relates records to animals and other terms are defined as in Eqn 11.6. If a SNP-BLUP
model is fitted, the MME to be solved are:

XR'X XR'W XR'Z b) (XRly
WR'X WR'W+A'a, WR'Z||G|=| WRy (11.14)
ZR'X ZR'W ZR'Z+1a, ||8) (ZRy

where @, = 6%/02, with 62 equal to the chosen percentage of the additive genetic vari-
ance fitted as polygenic effect and o, = 62/0%, with o2 calculated to account for the
percentage of additive genetic variance attributed to the polygenic effect. Thus o, =
(0% — 02)/m with m = number of markers or 2Zp (1 - p.)*[0%/(0? - 72)].
a u . . X / ;e a u .
However, if a GBLUP model is to be fitted, then the mixed linear model is:

y=Xb + Wu+ Wa + e (11.15)

where a is the vector of DGVs and all other terms are as defined in Eqn 11.8. The
MME to be solved are:

XR'X XR'W  XR'Z* b) (XRy
WR'X WR'W+A'e, WR'W |[d]|=|WRy (11.16)
WR'X WR'W WR'W+Gla,)(a) [WRy

where:

o, = 02/c* and «, = 6%/(02 - 02)
e u e a u

Example 11.5
The data in Example 11.1 is analysed assuming the same genetic parameters to
compute DGVs for the reference animals without using weights. It is also assumed
that 10% of the additive genetic variance is due to residual polygenic effect in the
model. The analysis has been carried out using both Eqns 11.14 and 11.16 without
any weights.

Given that 02 = 35.241, then 02 = 0.1%35.241 = 3.5241. Therefore, for both
Eqns 11.14 and 11.16, o, = 6%/0?% = 245/3.5241 = 69.521. However, for Eqn 11.14,
a, = 0}/0; and now equals 2%p (1 - p)*[o /(0 - 0;)] = 3.5383*(245/(35.241 - 3.5241) =
27.332, while in Eqn 11.16, &, = 0°/(0? - 62) = 7.725.

The matrix Z in Eqn 11.14 is as defined in Example 11.2, while W in Eqns 11.14
and 11.16 have been set up in Example 11.3. The matrix A-! is for the eight reference
animals. All matrices for Eqns 11.14 and 11.16 have therefore been defined. The mean
and SNP solutions from solving the MME in Eqn 11.14 are given in Table 11.3.
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Table 11.3. Mean and SNP effects from
SNP-BLUP model with polygenic effects.

Mean effects
9.940
SNP effects
0.078
-0.280
0.234
-0.075
0.098
0.128
0.000
0.000
-0.054
-0.018

QOWoONOOUPA~WN =

—_

Table 11.4. Direct genomic breeding values from models with polygenic effects.

SNP-BLUP model GBLUP
Polygenic DGV Polygenic DGV
Reference animals
13 0.011 0.066 0.011 0.064
14 -0.007 0.102 -0.007 0.106
15 0.043 0.071 0.043 0.074
16 0.076 0.299 0.076 0.305
17 -0.015 -0.473 -0.015 -0.477
18 -0.025 -0.343 -0.025 -0.345
19 -0.021 0.115 -0.021 0.115
Selection candidates
20 -0.056 -0.254 -0.056 -0.260
21 0.005 0.028 0.005 0.029
22 —-0.006 0.102 —-0.006 0.102
23 -0.004 -0.220 -0.004 -0.220
24 -0.008 0.125 -0.008 0.125
25 -0.003 0.051 -0.003 0.051
26 -0.006 0.316 -0.006 0.315

The mean solution from solving Eqn 11.16 was 9.940. The DGVs for the reference
and validation populations from both sets of MME are given in Table 11.4. As
expected, Eqns 11.14 and 11.16 gave similar results, but for this example, the inclusion
of 10% polygenic effects decreased the range of SNP solutions slightly but increased
the range for DGVs.

11.7 Single-step Approach

Since the genomic predictions are usually based on a subset of data used for national
evaluation, the DGV are usually combined with some measure of conventional breeding
values to incorporate additional information in the conventional evaluations.
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The combined evaluations are called genotypic breeding values (GEBV) and these are
usually the published values for selection. The combination of DGVs and the conven-
tional evaluations is based on some sort of selection index approach. The selection index
presented by VanRaden ez al. (2009) was:

GEBV = wt,DGV + wt,PTA, + wt,PTA,

for animals in the reference population. Similarly, for selection candidates with no
daughter information:

GEBV = wt DGV + wt,PA, + wt,PA,

where PTA, and PTA, are predicted transmitting abilities from the official evalu-
ations based on all records and the evaluations of only the bulls in the reference
population using the A matrix, respectively. Correspondingly, PA, and PA, are
parent averages from the respective evaluations. The weights (wt,) were computed
as ¢’V-'. The matrix V is of order 3 x 3 with diagonal elements equal to the reli-
abilities for DGV, PTA, (PA,) and PTA, (PA,), respectively. The off-diagonal ele-
ments were calculated as v, = v,,, v,; = v,, and v,; = v,, + (v}, — v, )(v;5; = v,,)/
(1 —v,,). The vector ¢ has elements v, ,, v,, and v,;.

Misztal et al. (2010) presented a method called the single-step approach that
combines conventional and DGVs in one step, resulting in the direct prediction of
EBVs for non-genotyped and GEBV for genotyped animals.

Assume the following mixed linear model:

y=Xb+ Wa +e (11.17)

where y = vector of phenotypes or de-regressed breeding values, a = vector breeding
values and W is a design matrix that relates records to all animals including genotyped
and ungenotyped animals. Suppose a is portioned as a, for ungenotyped animals and
a, for genotyped animals, then:

var a ) _ Ay Ap O'f=A+ 0 0 0_5 (11.18)
a, A, G 0 G-A,

where A, is the relationship matrix for only the genotyped animals.
It has already been shown in Section 11.5.2 that a, = Zg and var(a,) = Go=
Based on selection index theory, a, can be predicted from the genotyped animals
(Legarra et al., 2009) as:
a,=A AL Zg+ o
where o is the residual term, such that:
var(a;) = ApA5,G A A + A - AL A A
and this reduces to:
var(a)) = A, + ApAL(G - A) A A,

Finally, cov(a,, a,) = A ,A7,G.

Putting all terms together into a matrix H, a covariance matrix of breeding
values including genomics information (Legarra et al., 2009; Christensen and Lund,
2010) is:
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(Hn H,, ] _ A +ALAL(G-AL)AL A, ARASG
H,, H,, GA LA, G

The matrix H could be regarded as a matrix that combines pedigree and genomic
relationships.

The single-step methodology involves the use of matrix H, and Aguilar et al. (2010)
and Christensen and Lund (2010) found the inverse of H has the following simple form:

5 L (0 0
H =A"+ 4o
0 G -A7,

where A3} is inverse of the relationship matrix for genotyped animals.

This implies that by replacing A-! with H! in the usual MME, direct prediction of EBVs
and genomic evaluations can be obtained for ungenotyped and genotyped animals.
Therefore, the MME for the single-step procedure (Eqn 11.17) are:

m -1 m -1 ~ =1
X'R'X X'R'W b)_(XRTy (11.19)
WR'X WR'W+H"'a)\a WR™y
where:
a = o?/o?

The main advantage of the single-step approach is that existing software for
genetic predictions can easily be modified to implement this method. However, the
computation of H™! requires efficient computation of G™'. Thus this could be a major
limitation, with large numbers of animals genotyped, since there are no simple rules
for computing the inverse of G. Another complication is that G must be on exactly
the same scale (e.g. scaled to the same base animals) as A, otherwise animals with
genotypes will have biased GEBV.

Example 11.6
The data in Example 11.1 is analysed using Eqn 11.17 assuming the same genetic
parameters, but the data is modified as follows. The first five animals (13 to 17) are
treated as ungenotyped animals with records, the next five animals (18 to 22) are
regarded as genotyped animals with records, while the remaining four animals (23 to 26)
are regarded as genotyped animals with no records. A weighted analysis was carried out
using the EDCs.

Therefore, the A,, matrix for the nine genotyped animals was extracted from the
last nine rows of A given in Example 11.3.

The G matrix is computed as:

77’
22 p,‘ (1 - P,)
for the nine genotyped animals. However, due to the small size of the data, the G

used in the analysis was computed as G = 0.95G + 0.05A (Misztal et al., 2010), to
enable inversion of the matrix (see Section 11.5.2). The matrix G then is:
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0.762 0.209 0.093 0.096 -0.137 0.149 -0.330 0.091 -0.176

0.209 0.801 0.394 -0.690 0.152 0.170 -0.307 0.380 0.114

0.093 0.394 0.839 -0.537 -0.232 0.592 -0.154 -0.004 -0.270

G= 0.096 -0.690 -0.537 2.217 -0.497 -0.211 0.115 -0.537 -0.268
-0.137  0.152 -0.232 -0.497 1.184 -0.445 0.686 0.840 0.572
0.149 0.170 0.592 -0.211 -0.445 0.684 -0.368 -0.216 -0.483
-0.330 -0.307 -0.154 0.115 0.686 -0.368 1.067 0.378 0.380
0.091 0.380 -0.004 -0.537 0.840 -0.216 0.378 0.836 0.264
-0.176 ~ 0.114 -0.270 -0.268 0.572 -0.483 0.380 0.264 1.107

The H-! for this example was constructed from the inverses of A in Example 11.1, of
G and A,, shown above. The matrices in Eqn 11.19 have all been defined and solving
these equations with o = 245/35.241 = 6.952 gives the following solutions:

Mean effects

6.895
EBVs for animals with records
13 3.114
14 1.697
15 4.200
16 3.842
17 2.861
GEBYV for genotyped animals
18 1.477
19 1.410
20 0.572
21 0.691
22 1.526
23 0.036
24 0.564
25 1.765
26 0.527

It is not possible to compare these results with the other models considered so far in
this chapter as the data structure was modified.

11.8 Bayesian Methods for Computing SNP Effects

The assumption of equal variance explained by all loci in the SNP-BLUP or GBLUP
model has the advantage that only one variance has to be estimated. However, this
may be unrealistic across all traits, which may have different genetic architecture.
Also, one of the problems with GBLUP is that it does not allow for moderate to large
QTL effects; if these are actually present they will be severly reduced. The other prob-
lem is that with GBLUP, SNP effects cannot be zero, they always have (often very
small) effects. Meuwissen et al. (2001) presented a Bayesian method that assumes
t distributions at the level of the SNP effect, modelled using different genetic variances
for each SNP (the so-called BayesA method) and another method in which some SNPs
are assumed to have effects following a #-distribution, and others have zero effects

Computation of Genomic Breeding Values and Genomic Selection 193 ]



(BayesB). Other variations of the Bayesian methods such as BayesC and BayesCrn
(where some SNPs are assumed to have zero effects, and others are assumed to follow
a normal distribution) have been published by Habier er al. (2011). This section
presents some of these methods.

11.8.1 BayesA

Instead of the assumption of a normal distribution for SNP effects as in the SNP-
BLUP model, another possible assumption is that the distribution follows a Student’s
t-distribution. This allows for a higher probability of moderate to large SNP effects
than a normal distribution. However, the ¢-distribution is not easy to incorporate
into prediction of marker effects, so a mathematically tractable way of achieving this
is to assume that each SNP effect comes from a normal distribution but ¢? can be
varied among the SNPs. Thus if o7 is large then g will be large and if o7 is small,
then ¢ will likely be small as it will regress towards zero (Hayes and Daetwyler,
2013). This leads to modelling the data at two levels: first at the level of the data
that is similar to SNP-BLUP to estimate the SNP effects and second at the variances
of the chromosome segments or SNPs, which are assumed to be different at every
segment or locus. The procedure uses a Gibbs sampling approach, which involves
sampling from the posterior distributions conditioned on other effects. If the reader
is not familiar with Gibbs sampling, they may want to read Chapter 16, where appli-
cation of the Gibbs sampling for the estimation of genetic parameters is discussed.

Thus given the linear model in Eqn 11.6, the conditional distribution that gener-
ates the data, v, is:

y | b,g,02 ~ N(Xb + Zg + Rc?)

Prior distributions

Specification of the Bayesian model involves defining the prior distributions. Usually,
an improper or ‘flat’ prior distribution is assigned to b. Thus P(b) ~ constant.

The overall mean effect (b) is then sampled from the following conditional distri-
bution as:

X'Xb|g, 0, ooy ~ N(X'(y - Zg), X'X0?)
Therefore:

blgio-gziao-fﬂy ~ N(b,(X"X)"'07) (11.20)

where b = (X’X)"'X'(y - Zg)

A scaled inverted chi distribution, ¢ ~%(v, S) is usually used as priors for the vari-
ance components, with v being the degrees of freedom and S the scaled parameter
(Wang et al., 1993). Thus for the residual variance, prior uniform distribution (}2(-2, 0))
or flat prior can be assumed. Sampling is then from the following conditional pos-
terior distribution:

o2 le ~y(n—2ele;) (11.21)
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where e, = (y, - xb - zg); i = 1, n with 7 equal to the number of records or animals.
Similarly, 0';. is sampled from the following conditional posterior distribution:

oulg ~ X (w+k,S+gg) (11.22)

with v = 4.012 and S derived as:
6'2!1/ -2)
v

where 6 is the a prior value of G;i and k; equals 1 for the ith SNP.

Other researchers (Xu, 2003; Ter Braak et al., 2005) have published similar
approaches with different priors for estimating o2.

Finally, g. for the ith SNP is sampled from the following distribution as:
o2,y ~N(8, (Ziz, + a)'o?); i #] (11.23)

2
g; | ba i Ggia

with:
§ = (zjz,+ @) 'z(y - Xb - zg) and & = 07/0},

The Gibbs sampling procedure then consists of setting initial values for b, g, 6*and
0'§, and iteratively sampling successively from Eqns 11.20 to 11.23, using updated
values of the parameters from the 7 round in the i + 1 round. Assuming that p rounds
of iteration were performed, then p is called the length of the chain. The first j samples
are usually discarded as the burn-in period. This is to ensure that samples saved are
not influenced by the priors but are drawn from the posterior distribution. Posterior
means are then computed from the saved samples.

Example 11.7

Using the data in Example 11.1, the application of BayesA is illustrated using
residual updating (Legarra and Misztal, 2008). The data for the reference animals
is analysed by fitting the model in Eqn 11.6. Thus 7, the number of records, is 8
and a flat prior has been assumed for b. It is also assumed that v = 4.012 and S is
derived as:

6w —2)

7 = 0.352

where 6> =0.702 . Note that the matrix of genotypes Z used in the computation
below has not been centralized and there Z equals M in Section 11.2.

The starting value for b was computed as b = (X’X)-'X"y = 79.1/8 = 9.888 and
those for g and 0';. were 0.05 and 0.702, respectively, for all SNPs. The starting value
for o7 was set as 2.484, thus o7, = 02/2Xp (1 - p;) = 0.702. The starting values for

DGV for animals in the reference population were computed as a = Zg. Thus:

a’=(0.450.30 0.55 0.45 0.45 0.50 0.40 0.35)

Initially, a vector of residuals é was computed as é=y - Xb - Zg. Thus:
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é, 9.0) (9.888) (0.45) ( -1.388
é,| [13.4| [9.888] {0.30 3.213
é, | [12.7] |9.888] |0.55 2.263
é,| |15.4] |9.888| [0.45| | 5.063
e | | 5.9 |9.888| |0.45| | —4.438
8, 7.7 |9.888| [0.50| | -2.688
6| |102] |9.888| [0.40| | —0.088
8, 48) (9.888) 10.35) (-5.437

From the above, &é = 99.345, and thus given the value of 8.131 sampled from the
inverted ¥ distribution with 7 — 2 degrees of freedom, 6?11 = 99.345/8.131 = 12.218,
using Eqn 11.21. The superscript in brackets denotes the iteration number.

Then sample b!" using Eqn 11.20, with b calculated as (xf’x)‘ll'é = 9.456 after
initially updating &, the vector of residuals to include information on b as:

¢&=¢+Xbwithi=1,7n

Assuming the random number generated from a normal distribution is 0.873 and
(x/x)'0%=12.218/8 = 1.527, then b "l = (9.456 + 0.873/(1.527) = 10.535.
1 e
After sampling for b, the € is updated to exclude the information on b as:

¢&=¢-Xbwithi=1,7n

Using Eqn 11.22, o, for the ith SNP effect is sampled from the inverted x* distribu-
tion with degrees of freedom 5.012 and S = 0.352 computed earlier. For the first SNP,
g7 = 0.003, thus given the value of 11.422 sampled from the inverted x> distribution
0'§1[1] = (S + g%)/11.422 = 0.031. The variance estimates for other SNPs in the first
iteration are shown in Table 11.5.

Finally, estimates of g" are sampled from the normal distribution using Eqn 11.23.
First update the vector of residuals to include information on the jth SNP. Thus for
the jth SNP effect:

Table 11.5. SNP solutions and variances from BayesA and BayesB.

BayesA BayesB

First iteration Posterior means First iteration Posterior means

SNP Effects Var Effects Var Effects Var Effects Var
1 0.289 0.031 0.018 0.170 2.187 1.105 0.038 0.316
2 0.279 0.049 -0.064 0.179 -1.565 0.516 -0.107 0.319
3 -0.010 0.070 0.058 0.179 -0.156 0.124 0.067 0.293
4 0.023 0.097 -0.023 0.176 -0.309 0.118 -0.034 0.300
5 0.045 0.052 0.022 0.167 0.413 0.363 0.047 0.328
6 -0.321 0.050 0.025 0.171 -0.521 0.161 0.031 0.283
7 0.411 0.256 -0.006 0.186 0.000 0.000 0.009 0.335
8 0.408 0.056 -0.008 0.168 -0.010 0.431 0.008 0.261
9 0.115 0.034 -0.003 0.162 0.000 0.000 -0.006 0.294
10 -0.578 0.152 -0.008 0.165 0.000 0.000 -0.017 0.286

Var, SNP variances.
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&=¢&+z, 8 withi=1,n

Thus for the first SNP effect, §, = (z,z,, + @)~'z/¢,= (7 + 393.201)7(-2.775) = -0.007.
Assuming the random number generated from a normal distribution is 1.692
then g!' can be sampled as g,/ = -0.007 + 1.6924/(12.218/400.201) = 0.289. After
computing g !, the residual vector is updated as (& = & - z,g,!"l, i = 1, n) before
computing the next SNP effect. The estimates of g,!!! to g 'l are given in Table 11.5.
The next cycle of sampling then begins again with sampling residual variance without
setting up of the vector of residuals.

For this example, the Gibbs sampling chain was ran 10,000 times, with the first
3000 considered as burn-in period. The posterior means computed from the remain-
ing 7000 samples for b and o2 were 9.890 kg and 33.119 kg?, respectively. The esti-
mates for § and o7, are given in Table 11.4.

The DGV of animals in the validation set can then be predicted using the solu-
tions for the SNP effects in Table 11.5 as Z,g, where Z, is a matrix of genotypes for
the validation of test animals given in Example 11.2.

11.8.2 BayesB

The basic assumption in BayesA is that there is genetic variance at every loci or chromo-
some segment. It is possible that some SNPs will have zero effects as they are in genomic
regions with no QTL. The prior density of BayesA does not account for such SNPs
with zero effects as BayesA density peak at 02 = 05 in fact its probability of 62 0is
infinitesimal (Meuwissen et al., 2001). It is p0551b1e that genetic variance may be
observed in relatively few marker loci containing QTL. Meuwissen et al. (2001)
introduced BayesB to address this situation. Thus the prior distribution of BayesB is
a mixture distribution with some SNPs with zero effects and the rest with a #-distribution
(Hayes and Daetwyler, 2013). BayesB, therefore, uses a prior that has a high density,
m, at oﬁ = 0 and has an inverted chi-squared distribution for 0'2 > 0. Thus the prior
distribution for BayesB is:

= 0 with probability ©
O';i ~ % 2(v, S) with probability (1 - =) (11.24)

where S is the scaling parameter, v the degrees of freedom and = is assumed known.

They set S to be to 0.0429 and computed it as in Eqn 11.22 while v was set to 4.234.

While the Gibbs sampling algorithm used for BayesA can also be used for BayesB,

it will not, however, move through the entire sampling space as the sampling of

= 0 is not possible if (g’g) is greater than zero. Also, if 0' = 0, the sampling of g

has an infinitesimal probablhty This problem is overcome by samphng 0'2 and g
simultaneously from the distribution:

p(os:8ly*) = plosly*) x p(gloy, v*) (11.25)

where y* is the data vector y corrected for the mean and all genetic effects apart
from g, The first term in Eqn 11.25 implies sampling o2, without conditioning on g,
and then sampling from the second term of Eqn 11.25 for g, conditional on ¢ and y*
as in BayesA. The distribution p(o2]y*) cannot be expressed in the form of a known

distribution, therefore Meuwissen get al. (2001) used the Metropolis—Hastings (MH)

Computation of Genomic Breeding Values and Genomic Selection 197 ]



algorithm to sample from p(cr2 ly*) using the prior distribution, p(O'Z) as the driver
distribution to suggest updates for the MH chain as follows:

1. Sample 07, ., from the prior distribution p(0'2)
2. Replace tlgxe current o, by o, ., with a probablhty of k:

gi(new)
k = minimize{p(y*|0ginew /P (y*|0g); 1)

and then go to step 1:
where p(y* |0'2) is the likelihood of the data given G;i' The likelihood can be
calculated as:

1 w1
%] <2 -1/2(y*’'VTy)
l(y |Ggi) Tlle y y (11.26)

where V = z; (IO'2 )2/ +Io%and |V] is the determinant of V. Note that if 0'2 is zero, as will
happen in the course of the MH sampling, then V = Io2

The computation of the required likelihood is easier to implement in a log-likelihood
form. Fernando (2010) presented the following algorithm for the log-likelihood:

logLH = -0.5(log(V)) + (((z;y*)' V') z;y*) (11.27)
with:
V= (zi’zildgt.’zi’zi) +z/2*02or V = z/2,* 0% when Géi is zero

In practice, a required number of MH cycles are implemented per cycle of Gibbs
sampling. The implementation of each MH cycle involves:

1. Using Eqn 11.26 or 11.27 compute an initial likelihood (LH1) using the current 0'2

Note that the current 0'§ could be zero and LH1 is also computed but with V appro-
priately defined.

2. Then commence the MH cycle, by drawing r from a uniform distribution. Set

G;z(new) to be zero. If r < (1 - 1), sample a &2 2 tnew) from the driver distribution using
Eqn 11.25. Compute likelihood (LH2) using ‘62 and calculate k as k = minimize

gi(new)

(LH2/LH1; 1). Note that if log-likelihood Eqn 11.27 is used, then k = exp(LH2 — LH1).
The value of k is compared with a number s drawn from a uniform distribution. If s
is less than k, then accept oé(new and then set LH1 = LH2. Go to step 1 and begin

another MH cycle until required MH cycles are complete.
After the required number of MH cycles, if 62 % inew) 18 > 0 then g, is sampled as in BayesA,

otherwise g, = 0. Similarly, the sampling of *b and o2 is implemented as described in
BayesA.

Example 11.8
The application of BayesB is illustrated using the data in Example 11.1 with residual
updating. The data for the reference animals is analysed with the model in Eqn 11.6.
The initial parameters are the same as outlined for BayesA in Example 11.7 and the
starting value of m was set at 0.30.
The starting values for b, g, 0' and a were the same as for BayesA. The sampling
procedure for parameters is the same as for BayesA apart from sampling for o,
Initially, the vector of residuals, &, is set up and this has been given in Example 11.7.
Therefore, in the first iteration ¢!l = 99.345/8.131 = 12.218.
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Similarly, b "l = (9.456 + 0.873,/(1.527) = 10.535, as in Example 11.7.

Using the steps outlined for the MH cycle for BayesB, o, for the ith SNP effect is
then sampled, which could result in either 62, = 0 or oZ > 0. In this example, 20 MH
samples were evaluated per each round of Gibbs sampling, and for the first SNP, the
estimate of 62 = 1.105. Therefore, §, was sampled from the normal distribution using
Eqn 11.23 as described in Example 11.7 but with o = 12.218/1.105 = 11.057. In this
example, 0'21. and g, for SNP,, with i = 7, 9 and 10 were zero in the first round of iteration.
The solutions for G;. and g, for the first round of iteration are presented in Table 11.5.

The Gibbs sampling was run for 10,000 cycles, with the first 3000 regarded as the
burn-in period. The posterior means computed from the remaining 7000 samples for b
and o, were 9.792 kg and 34.930 kg?, respectively. The estimates for § and o7, are given
in Table 11.5. The DGV of animals in the validation set can then be predicted using the solu-
tions for the SNP effects in Table 11.2 as Z,8, where Z, is defined as in Example 11.7.

11.8.3 BayesC

Habier ef al. (2011) indicated the estimation of individual SNP variances in BayesA
and BayesB has only one additional degree of freedom compared with its prior,
and so the shrinkage of SNP effects is largely dependent on the scale parameter, S.
To overcome this limitation, they proposed BayesC, which involves estimating a sin-
gle variance that is common to all SNPs, thereby reducing the influence of the scale
parameter. Similar to BayesB, BayesC allows for some SNPs to have zero effects with
probability m while the remaining SNPs have non-zero effect with probability (1 - w).
Habier et al. (2011) indicated that since the priors of all SNP effects have a common
variance, the effect of an SNP fitted with probability (1 - ) comes from a mixture of
multivariate Student’s ¢-distributions.

In BayesC, it is assumed that 7 is known and the decision to include SNP, depends
on the full conditional posterior of an indicator variable §.. This indicator variable
equals 1 if SNP, is fitted, otherwise it is zero. Thus the decision to include the ith SNP
involves computing the probability k& of 6, = 1 as k = 1/{1 + (p(y* | §, = 0, ©)/
ply* 16, =1, 0'§, ©))}, where (p(y* | 8, = 1, ©)) denotes the likelihood of the data given
that SNP; is fitted with common variance 62, © refers to accepted values for all other
parameters, (p(y* | 8, = 0, ©)) denotes the fikelihood of the data model without the
ith SNP and where y* is the data vector y corrected for the mean and all genetic
effects apart from g,.

The computation of the required likelihood is easier to implement in a log-likelihood
form. Fernando (2010) presented such an algorithm based on the log-likelihood.

Given current estimates of G;, and o logLH1 with §, = 1 is computed as:

logLH1 = -0.5(log(V)) + (z]y*)'V-'z]y* + log(1 - =) with
V= (z;zilaé, z)2) + 2,202

Similarly, the log-likelihood when &, = 0 is computed as logLHO = -0.5(log(V)) +
(z]y*)'V-'z]y* + log(r) but with V = z/z.* 62
Then compute probability k of 6. = 1 as k = 1/(1 + exp(logLHO — logLH1)).

If k is greater than r, where 7 is a random drawn from a uniform distribution,
then SNP, is fitted and gl is sampled from the normal distribution using Eqn 11.23,
otherwise gl = 0.

Computation of Genomic Breeding Values and Genomic Selection 199 ]



After sampling the vector g, (‘72 is sampled from the following conditional poste-
rior distribution as:

o; g ~x"w+k", S+gg) (11.28)

with terms defined as in Eqn 11.22 but with degrees of freedom equal to v + kI,
where kUl is the number of SNPs with non-zero effects fitted in the jth iteration.

Example 11.9

The data in Example 11.1 is used to illustrate BayesC by applying the model in
Eqn 11.6. The assumptions and the starting values for b, § and a were the same as outlined
for BayesA in Example 11.7. The starting value of © was assumed at 0.30 while the
starting value of Gé was set at 0.702.

The sampling procedure for 62 and b were as outlined in BayesA and therefore
with the same solutions in the first iteration. Then for the ith SNP, the probability of
g, having a zero effect or otherwise was computed as described earlier in this section.
In the first iteration, the first SNP has a non-zero effect; therefore, §, = (z,z,, + &)

= (7 + 17.045)"' (-2.775) = -0.115, with o = 12.218/0.702. Assuming the ran-
dom number generated from a normal dlstrlbutlon is 0.748, gl[1J was sampled using
Eqn 11.23 as g, = -0.115 + 0.7484/(12.218/24.045) = 0.418. In the first round of
iteration, two SNPs (5 and 10) had zero effects. The solutions for g, in the first itera-
tion are presented in Table 11.6.

The sampling of common variance was done using Eqn 11.28. For this example,
eight SNPs had non-zero effects in the first iteration; therefore, 62 in the first iteration
was sampled from the inverted Xz distribution with degrees of freedom now equal to
8+4.012=12.012,5=0.352 and =g’ =1.435. Thus given the value of 16 294 sampled from
the inverted y? distribution, then in the first iteration 62 M= (S+2g?)/16.294 = 0.110.

The Gibbs sampling was run for 10,000 cycles, w1th the flrst 3000 regarded as
the burn-in period. The posterior means computed from the remaining 7000 samples
for b, o?and 0'§ were 9.828 kg, 32.377 kg? and 0.184 kg2, respectively. The estimates
for g are given in Table 11.6.

Table 11.6. Solutions for SNP effects from BayesC and BayesCrn.

BayesC BayesCn
SNP First iteration Posterior means Posterior means
1 0.416 0.015 0.010
2 -0.360 -0.045 -0.029
3 -0.590 0.044 0.028
4 0.465 -0.014 -0.018
5 0.000 0.014 0.013
6 0.360 0.025 0.010
7 -0.586 -0.002 0.004
8 -0.307 0.009 0.003
9 -0.041 -0.013 -0.011
10 0.000 -0.002 -0.006
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11.8.4 BayesCn

In BayesC there is the implicit assumption that the probability, © > 0, i.e. a SNP has
zero effect, is regarded as known. Habier et al. (2011) argued that the shrinkage of
SNP effects is affected by m and should be estimated from the data and proposed
BayesCn, which incorporates this estimation step. Thus compared to BayesC,
the additional feature of BayesCn is estimating © from the data. The sampling
procedure for parameters in BayesCr is therefore the same as BayesC apart from
the additional step of sampling for m. Thus only the procedure for sampling 7 is
described.

The parameter @ is sampled from a beta distribution, with shape parameters
(m — RV + 1) and (k7 + 1), with m equal to the total number of SNPs in the analysis
and k1 is the number of SNPs with non-zero effects fitted in the jth iteration.

Example 11.10

The application of BayesCr is illustrated using the data in Example 11.1. The refer-
ence animals are analysed by applying the model in Eqn 11.6 using residual updat-
ing. The initial parameters are the same as outlined for BayesA in Example 11.7.
The starting values of © and o2 were set at 0.30 and 0.702, respectively.

The sampling procedure for 6% and b were as outlined in BayesA and therefore
with the same solutions in the first iteration. Then for the ith SNP, the probability of
g, having a zero effect or otherwise was computed as described earlier in this section.
In the first iteration, the first SNP has a non-zero effect; therefore, g, = (z/,z,, + &)*

= (7 + 17.045)" (-=2.775) = -0.115, with o = 12.218/0.702. Assuming the ran-
dom number generated from a normal dlstrlbutlon is 0.748, g, (11 was sampled using
Eqn 11.23 as g,!! = -0.115 + 0.748,/(12.218/24.045) = 0. 418. In the first round of
iteration, two SNPs (5 and 10) had zero effects and the solutions for g were the same
as obtained for BayesC (Table 11.6).

The sampling of common variance follows the same procedure for BayesC,
again with the degrees of freedom equal to the number of SNPs with non-zero
effects. For this example, eight SNPs had non-zero effects in the first iteration; there-
fore, 02 in the first iteration was sampled from the inverted y? distribution with
degrees of freedom now equal to 8 + 4.012 = 12.012, S = 0.352 and X g’ =1.435.
Thus given the value of 16.294 sampled from the inverted x2 distribution, then in
the first iteration o2l!1=(S + % §7)/16.294 = 0.110.

Then nl'! was sampled 'from the beta distribution with shape parameters
((m — kM + 1) = 3) and ((k™ + 1) = 9), given eight SNPs had non-zero effects.
A value of 0.339 was sampled for 7.

A total of 10,000 cycles was implemented for the Gibbs sampling and the first
3000 were discarded as the burn-in period. The posterior means computed from the
remaining 7000 samples for b, o7, o; and m were 9.898 kg, 32.343 kg?, 0.162 kg?
and 0.51, respectively. The estimates for 8 g were given in Table 11.6.

The estimates for b and o2 were very consistent for the Bayesian models consid-
ered. Similarly, BayesC and Bayean gave very similar estimates of o2, which were
consistent with estimates for BayesA but SNP solutions were different from the dif-
ferent models. The estimates of 0'2 for BayesB were almost double those from the
other models.
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11.9 Cross-validation and Genomic Reliabilities

As described in previous sections, the computation of SNP effects is usually in a refer-
ence population using animals with observations. In the case of the dairy industry, the
estimation of SNP effects has been carried out using mostly bulls with high reliability
as the reference population with deregressed breeding values (DRB) used as observa-
tions. Recently, some countries have started including cows in the reference popula-
tions, which require weighting the cow records appropriately. Ideally, it is necessary
that the estimates of SNP effects are validated in another data set, which has not
contributed any information to the reference population to assess accuracy of predic-
tion. In practice, the cross-validation should be evaluated in differently randomly
sampled validation data sets to avoid any bias.

The DGV computed for the validation data sets are compared with their DRP.
An estimate of the correlation between the DGV and the DRP in the validation ani-
mals provides an estimate of the accuracy of genomic predictions, although this does
not take into account the accuracy of the DRP themselves. For the purposes of illus-
tration, the correlation between the DGVs from the SNP or GBLUP models with the
DRPs for the validation animals in the data for Example 11.1 is 0.49, which gives a
reliability of 0.24. The accuracies or reliabilities from the cross-validation studies are
usually referred to as realized reliabilities.

Theoretical reliabilities, as calculated in traditional BLUP, can also be computed
from the inverse of equations similar to those used to compute DGVs. For individuals
with observations, reliabilities for the DGV can be computed (VanRaden, 2008) by
first computing B as follows:

-1
2

B = G(G+R(G—§J] G
O-ﬂ

Then reliability for animal i = rel, = 1 - (b} 0?/02), where b, is the diagonal element
of B for the animal. Similarly, for validation candidates with no records, B is:

2 -1
B=C (G+R(G§D ol
Gﬂ

Then reliability is computed from the diagonal elements of B as described for the
reference animals.

However, these theoretical reliability estimates tend to be too high. These can be
scaled by the realized reliabilities from the cross-validation study. In addition, with a
large data set, the inversion required for the computation of the reliabilities could be
a source of limitation to the use of the methodology.

11.10 Understanding SNP Solutions from the Various Models

The vector g can be computed from the second row of the MME in Eqn 11.7. Thus:
§ = (ZR'Z + 1) (ZR"\(y - Xb))
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For the ith SNP, this can be expressed (Mrode et al., 2010) as

& = (z/r'z, + 0)'2,/r'2,(yd), j = 1, n (the number of animals)

2 = wt(yd) (11.29)

where yd, is the SNP deviation for the ith SNP, i.e. data information for that SNP
corrected for all effects apart from the SNP and the SNP deviation can be defined as
yd; = (27'2) "2 (v~ 2,8 - Xb) k#iand wt, = (2772, + @)7'z/7"'2,. The DGV,
of animal j therefore is:

DGV, = ZZ wt,(yd,)

For illustration purposes, the SNP solution for SNP 1, g, in Example 11.2, can be
computed using Eqn 11.29 as follows:

The Z in Example 11.2, (z)%,) = 3.878, and (zl' z;, + 0) = 28.476.
The SNP deviation, yd, = 0. 638 therefore wt, = 3.878/28.476 = 0.136 and g, =
0.136 (0.638) = 0.087. Similar calculatlons 1nd1cated that for SNP 7, yd, = -0.001,
wt, = 0.007, and &, = 0.00.

In the case of Bayesian methods, there is an additional component as a result of
sampling from the conditional posterior distribution of g, such that:

g =wt(yd) + N(&, (z/7'z, + ) o%) (11.30)

The second term on the right-hand side of Eqn 11.30 tends towards zero averaged
over all samples after the burn-in period.

Equation 11.29 indicates that with the SNP-BLUP model, the SNP solutions are
a function of the SNP deviations, which could be regarded as the unregressed SNP
allele substitution effects and the weight. Given that « is constant for the SNP-BLUP
model, the weight is therefore very dependent on the allele frequencies. Thus alleles
of lower frequencies will have a lower weight on their SNP deviations. In the calcula-
tions above, the weight for SNP1 with an allele frequency of 0.312 was much higher
than that for SNP 7. Mrode et al. (2010) obtained a correlation between the weights
and allele frequencies of 0.99 from the SNP-BLUP model. However, for BayesA and
BayesB, the estimation of individual variances meant that ¢, and therefore weights,
were different for each SNP. Thus SNP deviations were differentially weighted not
only on the basis of their allele frequencies but also on the basis of their genetic vari-
ance, i.e. by the amount of available information.
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12 Non-additive Animal Models

12.1 Introduction

The models considered in the previous chapters have dealt with only additive
genetic effects. Henderson (1985) provided a statistical framework for modelling
additive and non-additive genetic effects when there is no inbreeding. This chapter
covers some of these models. The ability to separate non-additive genetic effects
implies removal of some of the confounding that would otherwise bias the results
from the analysis. Moreover, the availability of estimates of non-additive genetic
effects for individuals could be used in mate selection, which would maximize the
use of both additive and non-additive genetic variance. In this chapter, the predic-
tion of dominance and epistatic effects using mixed model methodology is dis-
cussed. In practice, the application of non-additive models in genetic evaluation
has been limited due to lack of genetic parameters and due to the fact that these
effects tend to be highly confounded with others, such as common maternal
environment.

12.2 Dominance Relationship Matrix

Dominance genetic effects result from the action of pairs of alleles at a locus
on a trait. If two animals have the same set of parents or grandparents, it is
possible that they possess the pair of alleles in common. The dominance rela-
tionship between two such animals represents the probability that they have
the same pair of alleles in common. Thus for a group of animals, the domi-
nance genetic relationship matrix (D) among them can be set up. The domi-
nance relationship between an individual x with parents s and d and y with
parents f and m in a non-inbred population can be calculated (Cockerham,
1954) as:

dxy = 0.25(usfudm +u ufm) (12.1)

where u, represents the additive genetic relationship between i and j. For instance, for
two full-sibs with both parents unrelated to each other:

d=0.25[(1)(1) + (0)(0)] = 0.25

with the assumption that there is no common environmental variance.
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Thus D can be generated from the additive genetic relationship. However, the
prediction of dominance effects requires the inverse of D. This could be obtained by
calculating D by Eqn 12.1 and inverting it: this is not computationally feasible with
large data sets. Hoeschele and VanRaden (1991) developed a methodology for
obtaining a rapid inversion of D and this is presented in Section 12.4. Initially, the
principles involved in using D! from Eqn 12.1 for the prediction of dominance
effects are discussed.

12.3 Animal Model with Dominance Effect

The model with dominance included is:
y=Xb+Za+Wd+e (12.2)

where y = vector of observations, b = vector of fixed effects, a = vector for random
animal additive genetic effects, d = vector of random dominance effects and e = random
residual error.

It is assumed that:

var(a) = Ao2, var(d) =Do?% and var(e) = o2

var(y) = ZAZ' + WDW’ + 152
The MME to be solved for the BLUP of a and d and the BLUE of b are:

X'X X'Z XW|[b] [ Xy
ZX 7Z+A'q, ZW ||a|=| Zy (12.3)
WX WZ WW+A'o, ||d] | WYy

with a, = 0?/6% and o, = 62/6%. However, we are interested in the total genetic merit
(g) of the animal, which is g = a + d. The MME could be modified such that the total
genetic merit is solved for directly. Since g = a + d, then:

var(g) = G = Ac? + Do’
The MME become:

XX XZIb|_| XYy (12.4)
Z’X Z'Z+Gol||g| |ZYy
The individual components of g can be obtained as:

A= 02AG'¢ and

d= 02DG'g
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12.3.1 Solving for animal and dominance genetic effects separately

Example 12.1
Suppose the data below are the weaning weights for some piglets in a herd.

Pig Sire Dam Sex Weaning weight (kg)
5 1 2 Female 17.0
6 3 4 Female 20.0
7 6 5 Female 18.0
8 0 5 Female 13.5
9 3 8 Male 20.0
10 3 8 Male 15.0
11 6 8 Male 25.0
12 6 8 Male 19.5

The aim is to estimate sex effects and predict solutions for animal and dominance
genetic effects, assuming that o2 = 120, 62 = 90 and &7 = 80. This has been illustrated
below, solving for animal and dominance effects separately (Eqn 12.3). From the
above parameters, o, = 1.333 and o, = 1.5.

SETTING UP THE MME

The matrix X relates records to sex effects. Its transpose, considering only animals
with records, is:

’

11110000
00001111

The matrices Z and W are both identity matrices since each animal has
one record. The transpose of the vector of observations y’ = [17 20 18 13.5 20
15 25 19.5].

The other matrices in the MME, apart from A-! and D-!, can be obtained
through matrix multiplication from the matrices already calculated. The inverse of
the additive relationship matrix is set up using rules outlined in Section 2.4.1. Using
Eqn 12.1, the dominance relationship matrix is:

[1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000]
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.062 0.062 0.125 0.125
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 1.000 0.250 0.125 0.125
0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.250 1.000 0.125 0.125
0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.125 0.125 1.000 0.250

10.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.125 0.125 0.250 1.000 |
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and its inverse is:

[1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000]
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

“10.000 0.000 0.000 0.000 0.000 0.000 1.028 0.000 -0.032 -0.032 -0.096 -0.096
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 -0.032 0.000 1.084 -0.249 -0.080 -0.080
0.000 0.000 0.000 0.000 0.000 0.000 -0.032 0.000 -0.249 1.084 -0.080 -0.080
0.000 0.000 0.000 0.000 0.000 0.000 -0.096 0.000 -0.080 -0.080 1.092 -0.241

10.000 0.000 0.000 0.000 0.000 0.000 -0.096 0.000 -0.080 -0.080 -0.241 1.092 |

The matrices A~'er; and D', are added to Z’Z and W'W in the MME. The MME
are of the order 26 by 26 and are too large to be presented. However, the solutions
to the MME by direct inversion of the coefficient matrix are:

Effects Solutions
Sex
Female 16.980
Male 20.030
Animal BV Dve
1 -0.160 0.000
2 -0.160 0.000
3 0.059 0.000
4 0.819 0.000
5 -0.320 0.136
6 1.259 0.705
7 0.555 0.237
8 -0.998 -0.993
9 -0.350 0.000
10 -1.350 -1.333
11 1.061 1.428
12 -0.039 -0.038

2BV, DV, solutions for random animal and dominance effects,
respectively.

The results indicate that males were heavier than females by about 3.05 kg
at weaning. The breeding value for animal i, , from the MME can be calcu-
lated using Eqn 3.8, except that yield deviation is corrected not only for fixed effects
but also for dominance effect. Thus the solution for animal 6 can be calculated as:

a, = n,((a + a)/2) + my(y, - by = dg) + ny(2a, - &) + ny(24,, - &) + ny(@, - &)
= 1,(0.059 + 0.819)/2 + 1,(20 - 16.980 - 0.705) + 7,(2(~0.039) - (-0.998))
+ 15(2(1.061) = (<0.998)) + 1,(2(0.555) - (<0.320))

=1.259
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where 7, = 20, /wt, n, = 1/wt, n, = 0.5, /wt, with wt equal to the sum of the numerator
of n,, n, and 3(n,).
The solution for the dominance effect of animal 7 from the MME is:

i - [_az[;c,,a,.} by b d )} /W,,az)

where ¢, is the inverse element of D between animal i and 7, and # is the number of
records. For instance, the dominance effect of animal 6 is:

A

d = (0 + (20 - 16.980 - 1.259))/(1 + 1.5) = 0.705
The dominance effect for an individual represents interactions of pairs of genes
from both parents and Mendelian sampling; it therefore gives an indication of how

well the genes from two parents combine. This could be used in the selection of
mates.

12.3.2 Solving for total genetic merit directly

Example 12.2
Using the same data and genetic parameters as in Example 12.1, solving directly for
total genetic merit (a4 + d) applying Eqn 12.4 is illustrated.

SETTING uP THE MME

The design matrices X and Z are exactly the same as in Eqn 12.3. However, in Eqn 12.4,
G = Ac? + Do The matrix D has been given earlier and A can be calculated as outlined
in Section 2.2. Then G-'62is added to Z'Z to obtain the MME (Eqn 12.4). Solving the
MME by direct inversion of the coefficient matrix gives the following solutions:

Effects Solutions

Sex
Female 16.980
Male 20.030

Animal + dominance Animal + dominance
1 -0.160 7 0.792
2 -0.160 8 -1.991
3 0.059 9 -0.349
4 0.819 10 -2.683
5 -0.184 11 2.489
6 1.963 12 -0.078

The vector of solutions for additive genetic effects can then be calculated as a =
02AG-'g and as d = 0;DG"'g for dominance effects, as mentioned earlier. It should
be noted that the sum of & and d, for animal i in Example 12.1 equals the solution
for animal 7 above, indicating that the two sets of results are equivalent. The advan-
tage of using Eqn 12.4 is the reduction in the number of equations to be solved.
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12.4 Method for Rapid Inversion of the Dominance Matrix

Hoeschele and VanRaden (1991) developed a method for computing directly the
inverse of the dominance relationship matrix for populations that are not inbred,
by including sire and dam or sire and maternal grandsire subclass effects in the
model. However, only the inclusion of sire and dam subclasses is considered in
this text. Dominance effects result from interaction of pairs of genes and are not
inherited through individuals. Since animals receive half of their genes from the
sire and half from the dam, the dominance effect of an individual could be
expressed as:

d=fy,+¢€ (12.5)

where f represents the average dominance effect of many hypothetical full-sibs pro-
duced by sire (S) and dam (D) and € is the Mendelian sampling deviation of the
individual from the S by D subclass effect. Variance of S by D subclass effects, 0']%, is equal
to the covariance among full-sibs due to dominance, i.e. 6% = 0.250% therefore,
var(g) = 0.7503%. On the basis of Eqn 12.5, Hoeschele and VanRaden developed sim-
ple recurrence formulae for dominance effects using pairs of animals (sire and dam)
and interaction between their parents.

For a particular sire and dam subclass (f;,), the combination effect results
from the interactions between the sire and the parents of D, interactions of the
dam with the parents of S and interactions of the parents of S with the parents of D.
Thus:

fsp = O'S(fs,sn + fS,DD + fSS,D + fDS,D)
- O'Zs(fss,sz) + fSS,DD + fDS,SD + fDS,DD> +e (12.6)

where SS and DS denote sire and dam of sire, respectively, and SD and DD corre-
sponding parents for the dam. Equation 12.6 can also be obtained by regressing f,, on
its parent subclasses effects as:

fsp = b,fpar te

where f, is a vector of eight parent subclasses in Eqn 12.6 and b is a vector of
corresponding partial regression coefficients with:

b” = cov(f, fpm)/var(fpm) (12.7)
and:
var(e) = G}% - b’Var(fW)b (12.8)

The covariance between subclasses in Eqn 12.7, for instance between f, and
fpao 18

cov(fsps fon) = (Agpapy + Asapp)OF (12.9)
with a; being the additive relationship between i and j. Thus:
coV(fsps fss.pp) = (s55dp pp + A5 ppap ss)07 = (0.5(0.5)) + (0(0)) = 0.2507

and:

coV(fsps fssp) = (agsp p + aS,SDaD,S)G;% = (1(0.5)) + (0(0)) = 0.50'/%
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If the nine subclasses in Eqn 12.6 are identified by 1, 2, 3,4, 5,6,7,8 and 9 (i.e. f,, = 1,

fs.sp = 2, etc.), the covariances between £, and its parent subclasses (cov(f;p,, fpm)/of)
using Eqn 12.9 are:
2 3 4 5 6 7 8 9
1 [0.5 0.5 0.5 0.5 025 0.25 0.25 0.25] (12.10)

and the relationship matrix among parent subclasses (Var(fpar)/a%) using Eqn 12.9 is:

[1.0 0.0 0.25 0.25 0.5 0.0 0.5 0.0]
0.0 1.0 0.25 025 0.0 0.5 0.0 0.5
0.25 0.25 1.0 0.0 0.5 05 0.0 0.0
0.25 025 00 1.0 0.0 0.0 0.5 0.5
0.5 00 05 00 1.0 0.0 0.0 0.0
0.0 05 05 0.0 00 1.0 0.0 0.0
0.5 00 0.0 05 0.0 0.0 1.0 0.0

|10.0 05 0.0 0.5 0.0 0.0 00 1.0

(12.11)

From the two matrices above (Eqns 12.10 and 12.11) the regression coefficients
(Eqn 12.7) are:

b’ =10.5 0.5 0.5 0.5 -0.25 -0.25 -0.25 -0.25] (12.12)

which are identical to the coefficients in Eqn 12.6. It should be noted that there is
no need to add more remote ancestors of S and D as the partial regression of these
are zero.

12.4.1 Inverse of the relationship matrix of subclass effects

The recurrences in Eqn 12.6 could be represented as:
f=Qf+e (12.13)

where f is the vector of sire by dam subclasses and the row i of Q contains the elements
of b from Eqn 12.7 in columns pertaining to identified parent subclasses of subclass 7.
The relationship matrix for subclasses in fis F = Var(f)/G}%. From Eqn (12.13):

f=I-Q)'e
The variance—covariance of f is:

var(f) = Foz = (I - Q)'R(I - Q)"'o;
with:

RG}% = var(g)

Therefore:

F'=(I-Q)R!I-Q) (12.14)
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The diagonal elements R can be obtained from Eqn 12.8. The off-diagonals are
zeros if all ancestor subclasses providing relationship ties are included in f. To ensure
a diagonal R, Hoeschele and VanRaden specified two conditions to be used in decid-
ing which subclasses should be included in f as known. These are:

1. A subclass should remain in f if any of its parent subclasses remain in f.
2. A subclass should remain in f if f contains two or more of its immediate progeny
subclasses.

Equation 12.14 implies that F-! can be calculated from a list of subclasses and
their parent subclass effects by computing for the ith subclass, 7 (the diagonal ele-
ment i of R™!) and ¢, (the ith row of (I - Q)). Then the contribution of the ith subclass
to F-' is calculated as c,¢;7". In summary, the following procedure could therefore be
used to calculate F-!:

1. List animals and their sires and dams. Parents not in the list of animals with more
than one progeny should be added to the list while those with one progeny may be
treated as unknown.

2. Form a list of all filled (S and D known) subclasses and add ancestor subclasses that
provide ties. Ancestors are identified by listing subclasses for the sire with parents of the
dam and for the dam with parents of the sire for each filled subclass and then repeating
this process for the subclasses just added until no further ancestors are known. The same
sex subclasses of animal 7 with animal j and of animal j with animal i should be treated
as identical when listing ancestor subclasses. The list of subclasses is sorted such that
progeny subclass precedes its parent subclasses. Commencing with the oldest ancestor
subclass, subclasses could be regarded as unknown if they are not filled, have no known
parents and provide no ties for at least two filled descendant subclasses.

The number of connections provided by an ancestor subclass may be approxi-
mately determined from counts formed when ancestor subclasses are being identi-
fied originally. Progeny subclass (f,,) would contribute 1 to parent subclasses of
type fg s and f , but -1 to parent subclasses of type f .. The substraction of 1
is due to the fact that f; ¢, and £ , are regarded as progeny subclasses of f ¢, and
both may have come from one ;. It should be noted, however, that some sub-
classes which should be deleted for having a count of less than 2 may be needed in
order to achieve a diagonal R. Thus if both fS,SD and fSS,D are known, for instance,
it may be necessary to add back subclasses of type f ¢, if they have been deleted
for a count of less than 2.

3. Go through the list of all subclasses and calculate contributions (coefficients) of
each subclass 7 to F-! as r''c,c/. The vector ¢, contains non-zero coefficients, which is
equal to 1 in subclass i and equal to -b for parent subclasses, with b computed as in
Eqn 12.7.

4. Sort the coefficients by columns within rows and sum those with identical columns
and rows to obtain F-1,

12.4.2 Prediction of dominance effects

So far, the discussion has been on the inverse of the relationship matrix for subclass
effects but the major interest is the prediction of dominance effects.
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Since the inheritance of dominance effects is from subclass effects, dominance
effects can be predicted by the inclusion of the inverse of the relationship matrix (D.)
among dominance effects and subclass effects in the MME. From Eqns 12.5 and 12.13,
the dominance (d) and subclass effect (f) may be predicted as:

o ot

with:

d 5 B 0.751 0] ,
Var|:f]_Dﬁo-d and Var|:e]_|: 0 O.ZSR]Gd

where S is the incidence matrix relating d to f, and B equals d minus Sf. Therefore:

[ o B

and the inverse of D, can be computed as:

oot ! o) o1 -s 15
*_[—S’ I—Q’} 0 4R [0 I—Q} (1219

From the above, the inverse of D, is similar to F-! with coefficients of 4 on the
diagonals of dominance effects, -4 of off-diagonals linking dominance to subclass
effects, and the coefficients contributed by the subclass effects are multiplied by 4. The
matrix D! can then be included in the MME, resulting in the prediction of both
dominance and subclass effects. The only disadvantage is that the inclusion of sub-
class effects in the MME will increase the order of equations, but the method can

easily be applied to large data sets.

12.4.3 Calculating the inverse of the relationship matrix among
dominance and subclass effects for example data

Example 12.3
Using the pedigree information in Example 12.1, the calculations of F-! and D;! are
illustrated.

SETTING UP F-1

Application of rules 1 to 2 in Section 12.4.1 for calculating F~! generated Table 12.1.
Creating a list of filled subclasses in the first pass (pass 1) through the pedigree in
reverse order generated subclasses A to E (sorted by sire) in Table 12.1. Passes 2 and
3 through this list identified all ancestor subclasses (subclasses F to N). Counts to
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Table 12.1. List of filled sire x dam subclasses and ancestor subclasses.

Sire x
dam
subclass Pass Counts from
_ subclass progeny Known parent
O] D added subclasses Status (0] subclasses
A 6 8 1 KN 1 2 3 6
B 6 5 1 1 KN 2 3 6
C 3 8 1 1 KN 3 6
D 3 4 1 KN 4
E 1 2 1 KN 5
F 4 8 2 1 UK
G 3 5 2 1+1-1=1 KN 6
H 6 1 2 1 UK
| 6 2 2 1 UK
J 4 5 2 1+1-1=1 UK
K 3 1 3 1+1-1=1 UK
L 3 2 3 1+1-1=1 UK
M 4 1 3 1+1-1=1 UK
N 4 2 3 1+1-1=1 UK

®, consecutive label for subclasses.
S, sire; D, dam; KN, known; UK, regarded as unknown.
¢, consecutive number for known subclasses.

determine whether ancestor subclasses are treated as known or unknown were
calculated as specified earlier. Subclasses of the types f ¢, and f ¢, received a count
of 1 and -1, respectively, from progeny subclass f,. Thus subclass /55 received a
count of 1 from each of its progeny subclasses, f; ; and f, ;, and a count of -1 from
fs.s- Again, f, | received 1 each from f, , and f, and -1 from fs.s- Proceeding through
the ancestor subclasses (F to N), those with a count of 1 and with at least two prog-
eny subclasses known are regarded as unknown. Only the ancestor subclass f; 5 was
regarded as known because two of its progeny subclasses (f; ; and f ;) were known
although it had a count of 1.

Using rule 3, the contribution of subclass i regarded as known (subclasses 1 to 6
(see Table 12.1)) to F-! is then calculated as ¢ /7. For example, for the subclass Tos
(subclass 1), three parent subclasses are known: 2, 3 and 6, which are of the subclass
type fs pps fss.p and fgg pp» respectively. Therefore, b{ [0.50.5-0.25],¢;=[1 -b]] =
[1-0.5-0.50.25]. The matrix, F,, the relationship among parent subclasses 2, 3 and
6 (see 12.14) is:

2 3 6
1.00 0.25 0.50

F;=/0.25 1.00 0.50
0.50 0.50 1.00
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The contribution of f, ; to F-! therefore is:

12 3 6
1.00 -0.50 -0.50 0.25
;s =[-0.50 025 025 -0.125 [1.778
~0.50 025 025 -0.125
0.25 -0.125 0.125 0.0625

where 7' = 1/(1 - (b{F,b,)) = 1/(1 - 0.4375) = 1.778 (see Eqn 12.8).
Processing of all subclasses gives F~! as:

1 2 3 4 N 6

[ 1.778 —0.889 -0.889 0.000 0.000 0.445 |
-0.889 1.778 0.445 0.000 0.000 —0.889
F'=|-0.889 0.445 1.778 0.000 0.000 -0.889
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000
| 0.445 -0.889 -0.889 0.000 0.000 1.778

The methodology can be verified by calculating the dominance relationship
matrix among animals as D = (0.25)SFS” + 1(0.75), which should give the same D as
that calculated using Eqn 12.1. S, as defined earlier, relates dominance effects to sub-
class effects. For the example pedigree:

56 7 910 11 12
10000 0 1 1]
210010 0 00
¢-3/0001 1 00
410100 0 0 0
51000 0 0 0
60000 0 0 0|

and:

D = (0.25)SFS” + 1(0.75)

5 67 9 10 11 12

[1 0 0 0 0 0 0

010 0 0 0 0
{001 0.0625 0.0625 0.125 0.125
10 0 0.0625 1 0.25 0.125 0.125

0 0 0.0625 0.25 1 0.125 0.125

0 0 0.125 0.125 0125 1 0.25

|0 0 0.125 0.125 0.125 025 1 ]
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which is the same as the D (Section 12.3.1) calculated from the pedigree using Eqn 12.1.
Let D! be partitioned as:

D_l_{D:h D:112:|
T -t -1
D.;i Do

where Dl is the top 12 by 12 block for dominance effects for animals, Dy is
the bottom 6 by 6 block for subclass effects and D}, is the block for dominance
by subclass effects. For the example data using Eqn 12.15, the submatrices of D'
are:

D1, = diag (4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3, 4/3)

0000 O 0 0 0 0 0 -1.333 -1.333]
0000 O 0 -1.333 0 O 0 0 0
D = 0000 O 0 0 0 -1.333 -1.333 0 0
1210000 O -1.333 0 0 0 0 0 0
0000 -1333 0 0 0 0 0 0 0
0000 O 0 0 0 0 0 0 0

1. -1
D:1; is the transpose of D;,1, and:

[ 7111 -3.556 -3.556 0 0  1.778]

-3.556 7111 1.778 0 0 -3.556

L -3.556 1.778 7111 0 0 -3.556
D=1 0 0 40 0 0
0 0 0 0 40 0

| 1.778 -3.556 -3.556 0 0  7.111]

The matrix D' can be included in the usual MME for the prediction of domi-
nance and subclass effects.

12.5 Epistasis

Epistasis refers to the interaction among additive and dominance genetic effects; for
instance, additive by additive, additive by dominance, additive by additive by domi-
nance, etc. The epistasis relationship matrix can be derived from A and D as:

A#A for additive by additive
D#D for dominance by dominance
AA#D for additive by additive by dominance

where # represents the Hadamard product of the two matrices. The #j element of the
Hadamard product of the two matrices is the product of the ij elements of the two
matrices. Thus if M = A#B, then m, = (“-,-)(b,-,-) where the matrices A and B should be
of the same order.

Non-additive Animal Models 215 ]



The model in Eqn 12.2 can be expanded to include epistatic effects as:
y=Xb+Za+Wd+Sep +e

where ep is the vector of interaction (epistatic) effects. The evaluation can be carried
out as described in Section 12.3 but the major limitation is obtaining the inverse of the
epistatic relationship matrix for large data sets. However, VanRaden and Hoeschele
(1991) presented a rapid method for obtaining the inverse of the epistatic relationship
matrix when epistasis results from interactions between additive by additive (A x A)
genetic effects when the population is inbred or not. The approach is similar to the
method described for obtaining the inverse of the dominance relationship matrix and
it involves including sire x dam subclasses; consequently, the details of the method have
not been covered in this section. The method involves calculating the inverse of U, the
relationship matrix among epistatic and subclass effects, and U-! is then included in
the usual MME for the prediction of epistatic and sire x dam subclass effects.

The rules for obtaining U-! for a population that is not inbred are given in the
next section, with an illustration.

12.5.1 Rules for the inverse of the relationship matrix for epistatic
and subclass effects

The inverse of U can be computed by going through a list of individuals and their
parents and sire x dam subclasses. See rules 1 and 2 in Section 12.4.1 on how such a
list should be set up. The contribution of individual 7 in the list to U~ is computed
by the following rules:

1. For an individual i with both parents and subclass effects known, the contribution
to Ul is:

c s d(sd)
16 -4 -4 -16
—4 14 (1/12) (12.16)
4 1 1 4

-16 4 4 16

2. For an individual with both parents known but subclass effects treated as
unknown, the contribution to U is:

c s d
16 -4 -4
-4 1 1|(1/14) (12.17)
-4 1 1
3. If only one parent, say s, is known, then the contribution is:
c s
16 —4
1715 12.18
[ 4 1]( ) (12.18)
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4. If both parents and subclass are unknown, add 1 to the individual diagonal.

5. For sire x dam subclasses, the contribution of the ith subclass to U-! is the same
as for the inverse of the dominance matrix (see rule 3 in Section 12.4.1) except that
the coefficients are multiplied by 8.

6. Sort coefficients by row and by columns within a row, and sum coefficients with
identical row and columns to obtain U

The method can be verified by inverting U~! to form U. The animal by animal sub-
matrix of U should be equal to the epistatic relationship matrix calculated as A#A.

12.5.2 Calculating the inverse relationship matrix for epistasis
and the subclass matrix for an example pedigree

Example 12.4
The calculation of U! is illustrated below using the pedigree information in
Example 12.1.

The identification of sire and dam subclasses and their ancestors subclasses
treated as known has been discussed in Section 12.4.3. Thus the list of animals and
known subclasses is:

Animal Sire Dam

O©CoOoONOOUGA~WN =

10
11
12

DO WWOOOTW-—+O0O0O0O0O0o
0o UILOTANOOOO

Subclasses Parent subclasses

6,8 6,5, 3,8, 3,5
6,5 3,8,3,5

3,8 3,5

3,4

1,2

3,5

In setting up U~', animals 1 to 12 have been regarded as rows 1 to 12 while sub-
classes have been assigned rows 13 (subclass (6,8)) to 18 (subclass (3,5)). The first
four animals have both parents and sire—dam subclasses unknown and therefore each
contributes 1 to their respective diagonals. The parents of animals 5, 6, 7, 10, 11 and
12 and their sire x dam subclass effects are known; therefore, the contributions of
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each of these animals to U~! are computed using rule 1 in Section 12.5.1. For animals
8 and 9, only one of their parents is known and rule 3 is applicable when processing
these animals. The calculation of the contributions of subclass effects has been given
in Section 12.4.3 (Example 12.3); these are multiplied by 8, as mentioned earlier.
After processing all animals and subclass effects, the top 12 by 12 submatrix of U™
(block for animals only) is:

[ 1.083 0.083 0.000 0.000 -0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000]
0.083 1.083 0.000 0.000 -0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1250 0.083 0.000 -0.333 0.000 0.167 -0.333 -0.333 0.000 0.000
0.000 0.000 0.083 1.083 0.000 -0.333 0.000 0.000 0.000 0.000 0.000 0.000
-0.333 -0.333 0.000 0.000 1.483 0.083 -0.333 -0.267 0.000 0.000 0.000  0.000
0.000 0.000 —0.333 -0.333 0.083 1.583 -0.333 0.167 0.000 0.000 —0.333 -0.333
0.000 0.000 0.000 0.000 -0.333 -0.333 1.333 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.167 0.000 -0.267 0.167 0.000 1.400 -0.333 —0.333 -0.333 —-0.333
0.000 0.000 —0.333 0.000 0.000 0.000 0.000 -0.333 1.333 0.000 0.000 0.000
0.000 0.000 —0.333 0.000 0.000 0.000 0.000 —-0.333 0.000 1333 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.333 0.000 -0.333 0.000 0.000 1333 0.000
| 0.000 0.000 0.000 0.000 0.000 -0.333 0.000 -0.333 0.000 0.000 0.000 1.333]

The top 12 by 12 submatrix of the inverse U™! is the epistatic relationship matrix
for the animals and is:

[1.000 0.000 0.000 0.000 0.250 0.000 0.063 0.063 0.016 0.016 0.016 0.016 |
0.000 1.000 0.000 0.000 0.250 0.000 0.063 0.063 0.016 0.016 0.016 0.016
0.000 0.000 1.000 0.000 0.000 0.250 0.063 0.000 0.250 0.250 0.063 0.063
0.000 0.000 0.000 1.000 0.000 0.250 0.063 0.000 0.000 0.000 0.063 0.063
0.250 0.250 0.000 0.000 1.000 0.000 0.250 0.250 0.063 0.063 0.063 0.063
0.000 0.000 0.250 0.250 0.000 1.000 0.250 0.000 0.063 0.063 0.250 0.250
0.063 0.063 0.063 0.063 0.250 0.250 1.000 0.063 0.063 0.063 0.141 0.141
0.063 0.063 0.000 0.000 0.250 0.000 0.063 1.000 0.250 0.250 0.250 0.250
0.016 0.016 0.250 0.000 0.063 0.063 0.063 0.250 1.000 0.250 0.141 0.141
0.016 0.016 0.250 0.000 0.063 0.063 0.063 0.250 0.250 1.000 0.141 0.141
0.016 0.016 0.063 0.063 0.063 0.250 0.141 0.250 0.141 0.141 1.000 0.250
10.016 0.016 0.063 0.063 0.063 0.250 0.141 0.250 0.141 0.141 0.250 1.000 |

It is equal to the epistatic relationship matrix calculated as A#A. The matrix U-! can
then be incorporated into the usual MME:s for the prediction of epistatic and subclass
effects.
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13 Analysis of Ordered
Categorical Traits

13.1 Introduction

Some traits of economic importance in animal breeding, such as calving ease or litter
size, are expressed and recorded in a categorical fashion. For instance, in the case of
calving ease, births may be assigned to one of several distinct classes, such as diffi-
cult, assisted and easy calving, or litter size in pigs might be scored 1, 2, 3 or more
piglets born per sow. Usually, these categories are ordered along a gradient. In the
case of calving ease, for example, the responses are ordered along a continuum meas-
uring the ease with which birth occurred. These traits are therefore termed ordered
categorical traits. Such traits are not normally distributed, and animal breeders have
usually attributed the phenotypic expression of categorical traits to an underlying
continuous unobservable trait that is normally distributed, referred to as the liability
(Falconer and Mckay, 1996). The observed categorical responses are therefore due
to animals exceeding particular threshold levels (z) of the underlying trait. Thus with
m categories of responses, there are 712 - 1 thresholds such that ¢, <, <¢; ..., ¢, . For
traits such as survival to a particular age or stage, the variate to be analysed is coded
1 (survived) or 0 (not survived) and there is basically only one threshold.

Linear and non-linear models have been applied for the genetic analysis of cat-
egorical traits with the assumption of an underlying normally distributed liability.
Usually, the non-linear (threshold) models are more complex and have higher com-
puting requirements. The advantage of the linear model is the ease of implementation,
as programs used for analysis of quantitative traits could be utilized without any
modifications. However, Fernando ef al. (1983) indicated that some of the properties
of BLUP do not hold with categorical traits. Such properties include the invariance of
BLUP to certain types of culling (selection) and the ability of BLUP to maximize the
probability of correct pairwise ranking. Also, Gianola (1982) indicated that the vari-
ance of a categorical trait is a function of its expectation and the application of a
linear model that has fixed effects in addition to an effect common to all observations
results in heterogeneity of variance.

In a simulation study, Meijering and Gianola (1985) demonstrated that with no
fixed effects and constant or variable number of offspring per sire, an analysis of a
binary trait with either a linear or non-linear model gave similar sire rankings. This was
independent of the heritability of the liability or incidence of the binary trait. However,
with the inclusion of fixed effects and a variable number of progeny per sire, the non-
linear model gave breeding values that were more similar to the true breeding values
compared with the linear model. The advantage of the threshold model increased as the
incidence of the binary trait and its heritability decreased. Thus for traits with low
heritability and low incidence, a threshold model might be the method of choice.
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The principles required to apply a linear model for the analysis of categorical traits
are the same as discussed in the previous chapters; therefore, the main focus of this
chapter is on threshold models, assuming a normal distribution for the liability.
Cameron (1997) illustrated the analysis of a binary trait with a threshold model using
a logit function. In this chapter, sample data used for the illustration with the threshold
model have also been analysed with a linear model for the purposes of comparison.

13.2 The Threshold Model
13.2.1 Defining some functions of the normal distribution

The use of the threshold model involves the use of some functions of the normal
distribution and these are briefly defined. Assume the number of lambs born alive to
ewes in the breeding season is scored using four categories. The distribution of liabil-
ity for the number of lambs born alive with three thresholds (z) can be illustrated as
in Fig. 13.1, where N. is the number of ewes with the jth number of lambs and are
those exceedmg the threshold point #,_;, whenj > 1 and j <m -1.

With the assumption that the hablhty (1) is normally distributed (/ ~ N(0,1)), the
height of the normal curve at t; ( (])(t])) is:

#(t) = exp(=0.5t*) / 21 (13.1)

For instance, given that t;=0.779, then ¢(0.779) = 0.2945.

The function ®() is the standard cumulative distribution function of the normal
distribution. Thus ®(k) or ®, gives the areas under the normal curve up to and
including the kth category. Given that there are m categories, then ®, = 1 when the
kth category equals m. For a variable x, for instance, drawn from a normal distribu-
tion, the value ®_can be computed, using a subroutine from the IMSL (1980) library.
Thus if x = 0.560, then ®(0.560) = 0.7123.

P(k) defines the probability of a response being observed in category k assum-
ing a normal distribution. This is also the same probability that a response is
between the thresholds defined by category k. Thus P(k) or P, may be calculated as

/T

Ny [Np|Ng| N,

Fig. 13.1. The distribution of liability for number of lambs born alive with four categories
and three thresholds.
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P(k) = ©(k) - D(k - 1) with ®(k — 1) = 0, when k = 1; or expressed in terms of thresh-
olds defining the category k, P, = ®t, - ®t, . For instance in Fig. 13.1, the
probability of response in the k category (P,) can be computed as:

13.2.2 Data organization and the threshold model

Usually, the data are organized into an s by m contingency table (Table 13.1), where
the s rows represent individuals or herd—year subclasses of effects, such as herd, and
the m columns indicate ordered categories of response. If the rows represent individu-
als, then all 7z, will be zero except one and the . = 1, forj = 1,..., s.

The linear model for the analysis of the liability is:

y=Xb+Zu+e

where y is the vector of liability on a normal scale, b and u are vectors of fixed and
random (sire or animal) effects, respectively, and X and Z are incidence matrices
relating data to fixed effects and responses effects, respectively. Since y is not
observed, it is not possible to solve for u using the usual MME.

Given that H" = [t, b, u’], where t is the vector for the threshold effects, Gianola
and Foulley (1983) proceeded to find the estimator H that maximizes the log of the
posterior density L(H). The resulting set of equations involved in the differentiation
were not linear with respect to H. They therefore provided the following non-linear
iterative system of equations based on the first and second derivatives, assuming a
normal distribution to obtain solutions for At, Ab and Au:

Q L'X L'Z At p
XL XWX X'WZ Ab |=| X'y (13.4)
Z’L ZWX Z'WZ+A'G'| [Au] [Zv -A'Gu

Table 13.1. Ordered categorical data arranged as an s by m contingency table.

Categories®
Subclasses 1 2 . k . m TotalsP
1 n11 n12 n1k n1 m n1.
{721 :n22 {72k :an n2
J
S ns1 ns2 nsk t nsm ns.

an, = number of counts in category k of response in row j.
b _N'M
My = Dk
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with G = Io? or o7, if a sire or an animal model is being fitted in a univariate situation.
They presented equations for the calculation of the matrices in Eqn 13.4, which are outlined
below. The calculation of most of these matrices involves P,, (see Eqn 13.2) and it is initially
described. P, the response in the kth category under the conditions of the jth row, is:

ij:q)(t_a')_q)(tkl_ j)'kzl m-1;7=1,..,s (13.5)
where 4, = (xb + zu), with x, and z; being the jth row of X and Z, respectively.
This equation is no different from that in Section 13.2. 1, but it shows that the dis-
tribution of response probabilities by category is a functlon of the distance between
a.and the threshold. Similarly, the height of the normal curve at ¢, (Eqn 13.1) under
the conditions of the jth row becomes:

¢/k = ¢(tk - af) (13.6)

The formulae for computing the various matrices and vectors in Eqn 13.4 are
outlined below.
The jth element of vector v can be calculated as:

R Y
y =2 m [%} (13.7)
k

]

The elements of the matrix W, which is a weighting factor, is computed as:

'”( B ‘z’fk)z (13.8)
Y,

The matrix Q is an (m — 1) by (m - 1) banded matrix and the diagonal elements
are calculated as:

s P, + P,
G = D1, o0 9%, fork=1to (m-1) (13.9)
A Py Py

and the off-diagonal elements are:
J ¢ k+1 ¢‘k
Quee = 2.~ fork=1 to(m=2) (13.10)
=1 (k1)

with the element Dty = Diesryee
The matrix L is of order s by (m - 1) and its jkth element is calculated as:

= _n/.@k(@k L ‘Pka (13.11)

lez P/(k+1)

The vector p is accumulated over all subclasses and its elements are:

Di ={ilni—ni(k+1)]@k}; k=1m-1 (13.12)

L Pk P

The remaining matrices in Eqn 13.4 can be computed by matrix multiplication.
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13.2.3 Numerical example

Example 13.1

The analysis of categorical traits is illustrated below, using the calving ease data
described by Gianola and Foulley (1983) but with a relationship matrix included for
the sires and the age of dam effect omitted from the model. The data consisted of
calving ease scores from 28 male and female calves born in two herd-years from cows
mated to four sires. Cows were scored for calving ease using three ordered categories:
1 = normal birth, 2 = slight difficulty and 3 = extreme difficulty. The data set is pre-
sented in Table 13.2.

The following pedigree was assumed for the four sires:

Animal Sire Dam

0
0
1
3

A WON =
[eNeNeNo)

The sire variance used in the analysis was assumed to be %. In the underlying
scale, residual variance equals one; therefore, 62/0% = 4 - h*/b* = 19. Thus the 62 assumed
corresponded to a heritability of 0.20 on the underlying scale.

Table 13.2. Distribution of calving ease score by herd—year and sex of calf subclasses.

Category of response?
Sex of Sire of 9o P

Herd calf calf

—_

2 Total

Male
Female
Male
Female
Male
Female
Male
Female
Male
Female
Male
Male
Female
Male
Female
Male
Male
Female
Female
Male

A PRABREADOONN=2LE 222 W0WWONNONN = = =
MN 2000220 4AN—-O—=-WO = 2 2
OO0 2012000000222 00—~+00O0
o000 —+t00 22000000 —+000O0 w
NN = 2 a N =2 =2 NN = =NWUN ==

NDMNODMNDMNDDMNDMNDDNODNODNODNON =S = 2 g

a1, normal birth; 2, slight difficulty; 3, extreme difficulty.
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The vectors of solutions in Eqn 13.4 for the example data are:

t' = (t, t,), since there are two thresholds

b’ =(h1 hz 771 772)

’
u = (u, u, uyu,)

where b, and 7, represent solutions for level 7 of herd-year and the sex of calf effects,
respectively; and u is the vector of solutions for sires.
The inverse of the relationship for the assumed pedigree is:

1.3333 0.0000 -0.6667  0.0000

~,_| 0.0000 1.0000 0.0000 0.0000
~|-0.6667 0.0000 1.6667 -0.6667
0.0000 0.0000 -0.6667  1.3333

For the example data, the transpose of matrix X, which relates subclasses to herd—
year and sex of calf effects, and that of matrix Z, which relates subclasses to sires, are:

1111111110000 O0O0O0O0O0O00PO

X’ = oOoo0o00O0OO0OO0OOO1TI1TI1TTI1TTI1TTI1TTI1TT1TTI1TT1TT1
110101010101 1010110°01
0101010101O0O01O0T1TO0O0T1T1TO0
and:

1 11000O0OO0OO0OT1TT1T1O0O0O0O0OO0O0O0O0

77— 00011 10O0O0O0O0OO0OT1TT1TO0OO0OO0OO0OOQO0O0
100000011 100000T1T100T00
O0000O0OO0OO0OOO0ODOODOOODOITTI1ITTI1TTI1IT1

Starting values for t, b and u are needed to commence the iterative process. Let b =
u = 0, but starting values for ¢, can be computed from the proportion of records in all
categories of response preceding . In this example, there is only one category before ¢,
and 0.679 of the records are in this category. The first two categories precede ¢, and 0.857
of the records are observed in both categories. Using these proportions, the values of 7 can
be obtained from the usual table of standardized normal deviates of the normal distribu-
tion. From these proportions, ¢, = 0.468 and ¢, = 1.080 and these were used as starting
values. However, using various starting values of ¢, Gianola and Foulley (1983) demon-
strated that the system of equations converged rapidly. It seems, therefore, that the system
of equations is not very sensitive to starting values for ¢. The calculations of the various
matrices in the equations have been illustrated below using solutions obtained after the
first iteration. The solutions obtained at the end of the first iteration and the updated
estimates for the effects (which are now the starting values for the second iteration) are:

Solutions at the end of iteration one Updated® estimates after iteration one
At, = -0.026992 t, = 0.441008
At, = -0.035208 t, =1.044792
Ab, = 0.000000 h, = 0.000000

Continued
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(Continued)

Solutions at the end of iteration one Updated? estimates after iteration one
Ah, = 0.286869 h, = 0.286869

An, = 0.000000 n, = 0.000000

An, = -0.358323 n2 =-0.358323

Au, = -0.041528 =-0.041528

Au, = 0.057853 u2 =0.057853

Au, = 0.039850 u, = 0.039850

Au, =-0.065178 u, =-0.065178

aThe updated estimates were obtained as the sum of the starting values and the solutions at the end
of the first iteration.

The following steps are involved in calculating P, which is required to calculate
subsequent matrices in Eqn 13.4 for the example data. In each round of iteration and
for each subclass, i.e. forj = 1,...s:

1. Initially calculate (¢, - ) in Eqn 13.5 for k = 1,... m — 1. Therefore:
d/.kz(tk—a/.)=tk—x].—zifork= 1,...m-1
where x; and z; are the jth rows of X and Z.
For the example data in the second iteration:
dy=t -h-10-a
d,; =0.441008 - 0 - 0 - (-0.041528) = 0.482536
dy=t,-h -1 -
d,, =1.044792 - 0 - 0 - (-0.041528) = 1.086320
dy =t = h-1,-1,
d,, =0.441008 - 0 - (-0.358323) - (-0.041528) = 0.840859

R
NS

=t,-h -1,-1,
d22 =1.044792 - 0 - (-0.358323) - (-0.041528) = 1.444643

d201=t1_h2_ﬁ1":’4
d201 =0.441008 - 0.286869 - 0 - (-0.065178) = 0.219317
d202=t2‘h2‘ﬁ1":’4
d202 =1.044792 - 0.286869 - 0 - (-0.065178) = 0.823101

2. Usmg the values of d ., computed above, calculate ([) . (see Eqn 13.6) and @, for
k = 0,..., m. Note that i in all cases, when k = 0, ¢, = @, = 0 and when k = m, (]),k =0
and CI)Zk =1.

In the second round of iteration for the example data:
¢, = $(0.482536) = 0.355099 and @, ;= ©(0.482536) = 0.685288
0., = $(1.086320) = 0.221135 and ®,,= (1.086320) = 0.861331
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¢,, = $(0.840859) = 0.280142 and @,,= ©(0.840859) = 0.799787
¢, = $(1.444643) = 0.140516 and @,,= ®(1.444643) = 0.925721

0y = ¢(0.219317) = 0.389462 and @, ;= ©(0.219317) = 0.586799
0y, = ¢(0.823101) = 0.284311 and @, ,= ©(0.823101) = 0.794775

3. Then calculate P].,2 as ®y - D, fork=1,....,m
In the second round of iteration, for Example 13.1:

P, =®, - ®, =0.685288 - 0 = 0.685288
P, =®, - ®, =0.861331 - 0.685288 = 0.176044
P, =®,-®,=1.0-0.861331 = 0.138669

P, = ®,, - ®, = 0.799787 - 0 = 0.799787

P,, = ®,, - , = 0.925721 - 0.799787 = 0.125934
P,, = ®,, - ®,, = 1.0 - 0.925721 = 0.074279

P,y = By, - @,y = 0.586799 - 0 = 0.586799

Py, = @y, - D, = 0.794775 - 0.586799 = 0.207976
P,y = By - @y, = 1.0 - 0.794775 = 0.205225

The calculation of the remaining matrices in the MME can now be illustrated
for the example data. The first elements of W using Eqn 13.8 for the example data
are:

(0-0.355099)* ,(0.355099 —-0.221135) , (0221135 -0)?
0.685288 0.176044 0.138669

W11 =

}:0.638589

and:

W = diag[0.638589 0.518748 0.638589 0.554385 1.332860 1.663156
1.323206 0.548036 0.661603 1.233768 0.710404 0.710404 1.293402
0.728641 0.641496 0.725614 0.705526 0.609417 1.218834 1.411052]

For the vector v, the first element can be calculated from Eqn 13.7 as:

1(0-0.355099) 0(0.355099 —0.221135) 0(0.221135-0)

+ + =—-0.518175
0.685288 0.176044 0.138669

v1=

and the transpose of v is:

v/ = [-0.518175 -0.350270 -0.518175 1.012257 0.943660 -1.179520 0.120754
1.029729 -0.561257 -0.963633 -0.677635 1.366976 1.039337 -0.737615
0.751341 1.304294 0.505592 -0.470090 -0.940181 -1.327414]
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The matrix L is order 20 by 2 for the example data. The elements in the first row
of L from Eqn 13.11 can be calculated as:

Iy = (_1)(0.355099)[(0.355099 -0) (0.221135 —0.355099)]: 0454223
0.685288 0.176044
112:(_1)(0'221135)[(0.221135 —-0.355099) (0—0.221135)} 0184365
0.176044 0.138669

The matrix L has not been shown because it is too large but the elements of the last
row, Ly, and [, ,, are -0.910795 and -0.500257, respectively.
The elements of Q calculated using Eqns 13.9 and 13.10 are:

1(0.355099)%(0.685287 + 0.176044) 1(0.280142)%(0.799787 +0.125934)

= (0.685286 *0.176044) * (0.799787 *0.125934)

N 2(0.389462)%(0.586799 +0.207976)
(0.586799*0.207976)

=25.072830

—{1(0.355099)(0.221135) . 1(0.280142)(0.140516) N

912 =

0.176044 0.125934
2(0.389462)(0.284311) _ ., sccs9g
0.207976]

1(0.221135)%(0.176044 + 0.138669) . 1(0.140516)7(0.125934 +0.074279)
122 (0.176044 *0.138669) (0.125934*0.074279)

, 2(0.28431 1%(0.207976 +0.205225)
(0.207976 *0.205225)

=17.928093

Since Q is symmetric, q,, = q,,-
Lastly, the elements of p can be calculated using Eqn 13.12 as:

p1=0.355099( t 0 +0.280142 1 0 j+
0.685287 0.176044 0.799787 0.125934

20
0.586799  0.207976

+O.389462( j=—0.288960

and:

p2=0.221135( 0o __ 0 j+0.140516( o __ 0 J+
0.176044 0.138669 0.125934 0.074279

o 0
0.207976  0.205225

+0.284311( ):0.458984
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The matrices in Eqn 13.4 can now be obtained by matrix multiplication and A~
is added to Z’WZ. The matrix Z'WZ + A-'G™! is illustrated below:

29.783773  0.000000 -12.666731 0.000000

7WZ+ AIG = 0.000000 24.572445 0.000000 0.000000
-12.666731 0.000000 35.566685 -12.666731

0.000000 0.000000 -12.666731 29.278162

Then Eqn 13.4 is:

[ 25.073 -12.567 -5.733 -6.773 -6.366 —6.140 -3.123 -3.977 -2.699 -2.707]
-12.567 17.928 -2.146 -3.215 -3.220 -2.141 -1.327 -1.595 -1.201 -1.238
-5.733  -2.146 7.879 0.000 4.595 3.284 1.796  3.550 2.533 0.000
-6.773  =3.215 0.000 9.989 4992 4.997 2.655 2.022 1.367 3.945
—-6.366  —-3.220 4.595 4.992 9.586 0.000 2.698 2.062 2.710 2.117
-6.140 -2.141 3.284 4997 0.000 8.281 1.753  3.511 1.190 1.828
-3.123  -1.327 1.796 2.655 2.698 1.753 29.784 0.000 -12.667 0.000
-3.977 -1.595 3.550 2.022 2.062 3.511 0.000 24.572 0.000 0.000
-2.699 -1.201 2.533 1.367 2710 1.190 -12.667 0.000 35.567 -12.667
| -2.707 -1.238 0.000 3.945 2.117 1.828 0.000  0.000 -12.667  29.278]

Aty | 1-0.289]
A, 0.459
Ab, | | -0.021
Ny | |-0-149
AR, || —0-099
Ad, | | -0.071
Ag | | -0-104
Al -0.021
A, 0.031
| A, | [-0.076]

The equations were solved with the solutions for Ai)l and An, set to zero. The
equations converged rapidly, and solutions at various different iteration numbers
and the final solutions are given below. Solution from an analysis using a linear model
with an « value of 19 are also shown:

Iteration number

Solutions from

Effects 1 2 3 7 linear models
Threshold

1 0.4410 0.4375 0.4378 0.4378 + 0.442 -

2 1.0448 1.0661 1.0675 1.0675 + 0.47 -
Herd—year

1 0.0000 0.0000 0.0000 0.0000 = 0.00 0.0

2 0.2869 0.2763 0.2774 0.2774 + 0.49 1.0604

Continued
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(Continued)

lteration number

Solutions from

Effects 1 2 3 7 linear models
Sex of calf

Male 0.0000 0.0000 0.0000 0.0000 + 0.00 0.0

Female -0.3583 -0.3577 -0.3589 -0.3590 + 0.48 0.5193
Sires

1 -0.0415 —-0.0431 -0.0434 -0.0434 + 0.22 0.2229

2 0.0579 0.0586 0.0592 0.0592 + 0.21 0.2751

3 0.0399 0.0410 0.0412 0.0412 = 0.22 0.3162

4 -0.0652 -0.0653 -0.0660 -0.0660 + 0.22 0.0985

aStandard errors.

The standard errors associated with the results from the last iteration were computed
from the square root of the diagonals of the generalized inverse. Sire rankings from
the linear model were similar to those from the threshold model except for sires 2 and 3,
which ranked differently.

Usually of interest is calculating the probability of response in a given category
under specific conditions. For instance, the proportion of calving in the jth category of
response, considering only female calves in HYS subclass 1 for sire 1 can be estimated as:

= b =1, - #,) = D(0.4378 - 0 - (-0.3590) - (~0.0434))
8402) 0.800

t - — ) - Ot - b - A, - #,) = B(1.0675 - 0 - (0.3590)
0. 0434)) ®(0.800) = d(1.4699) - ®(0.800) = 0.129

P,=1-®(-h -1, -a)=1-0(1.4699) = 0.071

Oz
(0
(
- (-

Calculating this probability distribution by category of response for all sires gives
the following:

Probability in category of response

1 2 3
Sire 1 0.800 0.129 0.071
Sire 2 0.770 0.145 0.086
Sire 3 0.775 0.142 0.083
Sire 4 0.803 0.129 0.068

The results indicate that the majority of heifers calving in HYS subclass 1 for all four
sires were normal, with a very low proportion of extreme difficulties.

Since sires are used across herds, the interest might be the probability distribution
of heifer calvings for each sire across all herds and sexes. Such a probability for each
sire in category 1 of response per herd-year-sex subclass (Z,,;) can be calculated as
follows:

Zy= O — (bt A +it));  k=1,2 j=1,2,i=1,.,4
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Since there are four herd—year-sex subclasses, the probability for sire 7 in category 1
(S,,) can be obtained by weighting Z,,; by factors that sum up to one. Thus:

o))

i=1 k=1

MN

e ltkm

1

3
i

where a,, =a, +a,, +a, +a,, =1.Inthe example data, a,, = a,, = a,, = a,,= 0.25.
Similarly, the probability for each sire in category 2 of response per herd-year—sex
subclass (Z,43+) can be calculated as:

ZZIaji = Zlkji” - Zlk/’i

where:
Zoe =0ty — (bt i+ )k =1,25j=1,25i = 1,...4

Finally, the probability for each sire in category 3 of response per herd-year—sex
subclass (Z3kii) can be calculated as:

Z3kji =1- szji‘*
For Example 13.1, the probability distribution of heifer calvings for each sire

across all herds and sexes in all categories are as follows:

Probability in category of response

1 2 3
Sire 1 0.695 0.175 0.131
Sire 2 0.659 0.188 0.153
Sire 3 0.665 0.186 0.149
Sire 4 0.702 0.172 0.126

13.3 Joint Analysis of Quantitative and Binary Traits

Genetic improvement may be based on selecting animals on an index that combines
both quantitative and categorical traits. Optimally, a joint analysis of the quantitative
and categorical traits is required in the prediction of breeding values in such a selec-
tion scheme to adequately account for selection. A linear multivariate model might
be used for such analysis. However, such an analysis suffers from the limitations
associated with the use of a linear model for the analysis of discrete traits mentioned
in Section 13.2. In addition, such a multivariate linear model will not properly
account for the correlated effects of the quantitative traits on the discrete trait.
Foulley et al. (1983) presented a method of analysis to handle the joint analysis of
quantitative and binary traits using a Bayesian approach. It involves fitting a linear
model for the quantitative traits and a non-linear model for the binary trait. This sec-
tion presents this methodology and illustrates its application to an example data set.

13.3.1 Data and model definition

Assume that a quantitative trait, such as birth weight, and a binary trait, such
as calving difficulty (easy versus difficult calving), is being analysed. As in
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Section 13.2.2, the data for calving difficulty could be represented in an s by
2 contingency table:

Response category

Row Easy calving Difficult calving
1 ny, ny =Ny
2 n?1 ny, _ Ny,
:S r;s1 ns. _ ns1

where the s rows refer to conditions affecting an individual or grouped records. Note
that #,, or n, — n, in the above table can be null, as responses in the two categories
are mutually exclusive, but 7, # 0.

Assume that a normal function has been used to describe the probability of
response for calving ease. Let y, be the vector for observations for the quantitative
trait, such as birth weight, and y, be the vector of the underlying variable for calving
difficulty. The model for trait 1 would be:

Vi=XB +Zu +e (13.13)
and for the underlying variable for trait 2:
Vo= XB, + Zyu, + e, (13.14)

where B, and u, are vectors of fixed effect and sire solutions for trait 1, and X, and
Z, are the usual incidence matrices. The matrices X, and Z, are incidence matrices
for the liability. The matrix Z, = Z, and X, = X,H, where H is an identity matrix if
all factors affecting the quantitative traits also affect the liability. However, if certain
fixed effects affecting the quantitative trait have no effect on the liability, H is
obtained by deleting the columns of an identity matrix of appropriate order corre-
sponding to such effects. It is assumed that:

(el ) _ (Rn R, )
var =
€ R, R,

uy
var =A®G (13.15)

u,

where G is the genetic covariance matrix for both traits and A is the numerator rela-
tionship matrix.

Let ® = [B,, T, u,, V], the vector of location parameters in Eqns 13.13 and 13.14 to be
estimated, where T =B, - bHB, and v = u, - bu,, where b is the residual regression coeffi-
cient of the underlying variate on the quantitative trait. The calculation of b is illustrated in
the next section. Since the residual variance of liability is unity, the use of b is necessary to
properly adjust the underlying variate for the effect of the residual covariance between both
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traits. The use of b can be thought of as correcting calving difficulty for other ‘risk’ factors
affecting calving and, in this example, the birth weight of the calf. Thus Eqn 13.15 may
be written as:

u, ()
var = =A®QG,
u, —bu, Y

where:

1 0)(g I -b1
Gcz( )(11 gng)( ) (13.16)
—bl 1 821 8822 0 I

with g, being the elements of G.

Usmg a Bayesian approach, Foulley et al. (1983) calculated the mode of the pos-
terior density of 8 by equating the derivatives of the log-posterior density of 0 to zero.
The resulting system of equations were not linear in 0. They set up the following
iterative system of equations for 0 to be estimated:

X, R{'X, X| R;'Z, 0 0
Z'R'X, Z/Ry'Z,+A'g!' 0 A-lgl?
0 0 X, WX, X;Wl’ iz,
0 A-lg?! Z WX,z Wiz, + Alg?
ﬁ[il X R51Y1 0
4! _ Z RI1Y1 Alg 12v[i—1] (13.17)

At | X g1 1o
Al Z; q[i—l] A—l ZZVIi—ll

The matrices and vectors in Eqn 13.17 have been defined earlier, apart from q and W.
Initially, P, the probability of response in category k, given the conditions in the jth row,
is defined’ for the category trait. With only two categories of response for calving
difficulty, then from Eqn 13.5:

P,=®(t-a) and P,=1-P,

with 4; regarded as the mean of the liability in the jth row or as defined in Eqn 13.5.

However with only one threshold, the value of ¢ by itself is of no interest; the
probability of response in the first category for the jth row can then be written
as:

P, =t -a) = Du)

where pi; can be defined as the expectation of y,; given B, u and y, , and this is worked
out in the next section.
The vector q is of order s by 1 with elements:

q;=~{nyd, +(n, -n,)dy}, j=1...,s (13.18)

where d ~¢(u)/P,, and d,= = ¢u/(1 - P), with P, calculated as ®(u).
W i 1s an s by s dlagonal matrix with the followmg elements:

w; = 1, + n,d*, + (n, - n,)d* j=1,.,s (13.19)

2
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Calculating u and the residual regression coefficient

From Eqn 13.14, the model for the jth row of the contingency table may be written as:
Yy =XB, + Zu, + ey,

where X}, and 7)), are vectors j of the X, and Z,, respectively. Similarly, observations
for trait 1, corresponding to the jth row of the contingency table, may be modelled as:

vy =X By +Zju + e
Let p; be the expectation of y, given B, u and y,. Thus:

1 = E(y,1Bys By uys uy, ) = x3,B, + Z)u, + Ele, ey ) (13.20)
given that e, is only correlated with e, .. Assuming e,  and e,; are bivariately normally

distributed:

o
E(el/' l 91/) = %(91/)
O-el

_ 0-62
=N [%Jelf (13.21)

where 62 is the residual variance of trait i, 0,,, and r,, are the residual covariance and

.61 . . . 61) . z . . .
correlation between traits 7 and k, and o, is the residual standard deviation of the ith
trait. Similarly:

2 2
Var(YZj|B1J Bz: u;, u,, Y1/) = Var(€2/|€1i) = O-Ez(l - 712)

Since the unit of the conditional distribution of the underlying trait, given B,, B,, u, u,

and y,; is the standard deviation, then from the above equation:

1
O, =—F7—=
(1-73)
Therefore, Eqn 13.21 can be written as:
Ele, e, =, [iJ; e, = be, (13.22)
O 1- 7'122

In general, Eqn 13.20 can be expressed as:
p=X_pB, +Zu, + be
= X,B, + Zyu, + bly, - X,B, - Zuy) (13.23)

The above equation may be written as:

u=X,(B, - bHB,) + Z,(u, - bu,) + by,
W=X7T+ZyV+ by (13.24)

with the solutions of factors affecting calving difficulty corrected for the residual
relationship between the two traits and y; = (y, - X,B, — Z,u,) or y; may be calcu-
lated as:

y; = (y, —¥,), where ¥,is the mean of y,.
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13.3.2 Numerical application

Example 13.2

The bivariate analysis of a quantitative trait and a binary trait is illustrated using the
data presented by Foulley et al. (1983) but with a sire—-maternal grandsire relationship
matrix included for the sires and pelvic opening omitted from the analysis. The data
consisted of birth weight (BW) and calving difficulty (CD) on 47 Blonde d’Aquitaine
heifers, with information on region of origin, sire of the heifer, calving season and sex
of the calf included. Calving difficulty was summarized into two categories: easy or
difficult calving. The data set is presented below:

Heifer Sex of Heifer Sex of
origin Sire Season calf BW CD? origin Sire Season calf BWT CD=®
1 1 1 M 4.0 E 1 4 2 M 470 D
1 1 1 M 375 E 1 4 2 F 510 D
1 1 1 F 415 E 1 4 2 F 39.0 E
1 1 2 F 400 E 2 4 1 M 445 E
1 1 2 F 430 E 1 5 1 M 405 E
1 1 2 F 420 E 1 5 1 F 435 E
1 1 2 F 3.0 E 1 5 2 M 425 E
2 1 1 F 460 E 1 5 2 M 488 D
2 1 1 F 405 E 1 5 2 M 385 E
2 1 2 F 39.0 E 1 5 2 M 52.0 E
1 2 1 M 414 E 1 5 2 F 480 E
1 2 1 M 430 D 2 5 1 F 410 E
1 2 2 F 340 E 2 5 1 M 505 D
1 2 2 M 470 D 2 5 2 M 437 D
1 2 2 M 420 E 2 5 2 M 51.0 D
2 2 2 M 445 E 1 6 1 F 516 D
2 2 2 M 490 E 1 6 1 M 453 D
1 3 1 M 416 E 1 6 1 F 36.5 E
2 3 1 M 360 E 1 6 2 M 50.5 E
2 3 1 F 427 E 1 6 2 M 46.0 D
2 3 2 F 325 E 1 6 2 M 450 E
2 3 2 F 444 E 1 6 2 F 360 E
2 3 2 M 46.0 E 2 6 1 F 435 E
2 6 1 F 365 E

aCD, calving difficulty; D, difficulty, E, easy.

A summary of the data, in terms of marginal means of calving variables by level
of factors considered, is shown in the following table:

Factor Number Birth weight (kg) Frequency CD?
Heifer origin 1 30 43.02 0.267
2 17 43.02 0.176
Calving season 1 20 42.23 0.200
2 27 43.61 0.259

Continued
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(Continued)

Factor Number Birth weight (kg) Frequency CD?
Sex of calf M 25 - 0.360

F 22 - 0.091
Sire of heifer 1 10 40.55 0.000

2 7 42.99 0.286

3 6 40.53 0.000

4 4 45.38 0.500

5 11 45.46 0.364

6 9 43.43 0.333

aFrequency of calving difficulty.

The following sire—-maternal grandsire relationship matrix was assumed among
the sires:

Bull Sire Maternal grandsire
1 0 0
2 0 0
3 1 0
4 2 1
5 3 2
6 2 3

The inverse of the sire—-maternal grandsire relationship matrix obtained for the
above pedigree using the rules in Section 2.5 is:

1.424 0.182 -0.667 -0.364 0.000 0.000
0.182 1.818 0.364 -0.727 -0.364 -0.727
-0.667 0.364 1.788 0.000 -0.727 -0.364
T1-0.364 -0.727 0.000 1.455 0.000 0.000
0.000 -0.364 -0.727 0.000 1.455 0.000
| 0.000 -0.727 -0.364 0.000 0.000 1.455]

The residual variance (62,) for BW was assumed to be 20 kg? and the residual correla-
tion (r,,) between BW and CD was assumed to be 0.459. Therefore, from Eqn 13.20,
b equals 0.1155. The matrix G assumed was:

0.7178 0.1131
0.1131 0.0466

Therefore, from Eqn 13.16:

(1 0)(0.7178 0.1131)(1 -0.1155) (0.7178 0.0302
€ 1-0.1155 1)l0.1131 0.0466)\0 1 - 10.0302  0.0300
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Thus the heritabilities for BW and CD are 0.14 and 0.18, respectively, with a
genetic correlation of 0.62 between the two traits.

The model in Eqn 13.13 was used for the analysis of BW, thus B, is the vector of
solutions for origin of heifer, calving season and sex of calf and u, is the vector of
solutions for sire effects. The same effects were fitted for CD, with T being the vector
of solutions for the fixed effects and v for the sire effects. Let 0 be as follows:

B; = (dp dp S15 Sy fp fz)
u) = (dy, iy, iy,

T = (dia d;’ S;, 5;9 f;, f;)

’
v = (vls Vys V35 Vg Vs, V6)

Uy Ty, 1)

where d/(d)), s(s) and f(f/) are level 7 of the effects of heifer origin, calving season and
sex of calf, respectively; for BW (CD), iy, and v, are the solutions for the sire j for BW
and CD, respectively.

The matrix X, which relates records for BW to the effects of heifer origin, calving
season and sex of calf, can be set by principles already outlined in previous chapters.
For the example data, all fixed effects affecting BW also affect CD; therefore, H is an
identity matrix and X, = X. Similarly, the matrix Z, = Z,. The remaining matrix in
Egn 13.17 can be obtained through matrix multiplication and addition.

Equation 13.17 needs starting values for T and v to commence the iterative process.
The starting values used were solutions (T and v?)) from Eqn 13.17 with Wi-11 = I
q¥Y = a vector of (0,1) variables (1, difficulty; 0, otherwise) and vI-11 = 0. The solu-
tions to Eqn 13.17 using these starting values are shown in Table 13.3, with equa-
tions for the second levels of calving season and sex of calf effects set to zero because
of dependency in the systems of equations. Using these solutions, the calculation of
q'% and W in the next round of iteration are illustrated for the first and last two
animals in the example data.

First, w in Eqn 13.18 is calculated for these animals using Eqn 13.24.

For animals 1 and 2:

Xt+2Z,v=(d;+38 +f +V)=0.1873 + -0.0874 + 0.2756
+(<0.1180) = 0.2575

Therefore, from Eqn 13.24, using the mean of birth weight, u, is:

p, =0.2575 + 0.1155(41 - 43.02) = 0.0242
and:

M, = 0.2575 + 0.1155(37.5 - 43.02) = -0.3800

For animals 46 and 47:

Xt+Zyv=(d,+5 +f,+V,)=0.1484 + -0.0874 + 0.0 + 0.0079 = 0.0690
Therefore, from Eqn 13.22:

= 0.0690 + 0.1155(43.5 - 43.02) = 0.1244

and:

Uy, =0.0690 + 0.1155(36.5 - 43.02) = -0.6841
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Table 13.3. Solutions to Example 13.2 using Eqn 13.17.

lteration number

Linear
Trait* Factor 0 1 4 8 13 model
BW  Heifer origin
1 41.6633 41.5471 41.6262 41.6182 41.6195 41.6175
2 422530 42.1409 422178 42.2099 42.2112 42.2022
Calving season
1 -1.2350 -1.2345 -1.2346 -1.2343 -1.2344 -1.2387
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sex of calf
Male 3.1589 3.1890 3.1687 3.1690 3.1690 3.1845
Female 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sire
1 -0.4155 -0.2633 -0.3671 -0.3580 -0.3595 -0.3268
2 0.1048 0.1687 0.1246 0.1311 0.1300 0.1171
3 -0.3315 -0.2280 -0.3007 -0.2939 -0.2950 -0.2641
4 0.1364 0.3365 0.2035 0.2139 0.2122 0.1886
5 0.2730 0.3261 0.2893 0.2979 0.2965 0.2688
6 0.1545 0.2270 0.1770 0.1821 0.1813 0.1690
CD Heifer origin
1 0.1873 -1.0189 -1.4072 -1.3915 -1.3943 0.1349
2 0.1484 -1.2813 -1.7342 -1.7472 -1.7452 0.0876
Calving season
1 -0.0874 0.1871 0.1327 0.1415 0.1401 -0.0311
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sex of calf
Male 0.2756 0.3218 0.8621 0.8369 0.8411 0.2410
Female 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sire
1 -0.1180 0.0471 -0.0656 -0.0561 -0.0577 -0.0527
2 0.0144 0.0705 0.0319 0.0379 0.0369 0.0285
3 —0.0850 0.0185 -0.0546 -0.0477 -0.0488 -0.0427
4 -0.0380 0.1698 0.0319 0.0424 0.0407 0.0350
5 -0.0048 0.0362 0.0075 0.0163 0.0148 0.0195
6 0.0079 0.0702 0.0270 0.0315 0.0308 0.0323
aBW, birth weight; CD, calving difficulty

Using Eqn 13.18, the elements of q for animals 1, 2, 46 and 47 are:
q(1) = —{0(=1)$(0.0242)/D(0.0242) + (1 - 0)6(0.0242)/(1 - ©(0.0242))}
~{0(=1)0.3988/0.5097 + 1(0.3988/0.4903)} = —0.8134
q(2) = -{0(-1)¢(-0.3800)/d(-0.3800) + (1 - 0)¢(-0.3800)/(1 - d(-0.3800))}
-{0(-1)0.3712/0.3520 + 1(0.3712/0.6480)} = -0.5727
q(46) = —{0(=1)¢(0.1244)/(0.1244) + (1 - 0)9(0.1244)/(1 - ®(0.1244))}
—-{0(-1)0.3959/0.5495 + 1(0.3959/0.4505)} = -0.8787

(-
(-
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q(47) = —{0(=1)9(=0.6841)/d(-0.6841) + (1 - 0)6(-0.6841)/(1 — D(-0.6841))}
= —{0(=1)0.3157/0.2470 + 1(0.3157/0.7530)} = -0.4193

The diagonal elements of W for each of the four animals above can be calculated
using Eqn 13.19 as:

w(1,1) = 0.0242(-=0.8134){0(=1)[$(0.0242)/d(0.0242)]> + (1 - 0)[¢(0.0242)/
(1 - ®(0.0242))]) = 0.6419

w(2,2) = ~0.3800(=0. 5727){0( 1)[6(=0.3800)/d(-0.3800)]2 + (1 - 0)
[6(=0.3800)/(1 — ®(-0.3800))]%} = 0.5458

w(46,46) = 0.1244(~0.8787){0(=1)[$(0.1244)/®(0.1244)]> + (1 - 0)[¢(0.1244)/
(1 - ®(0.1244)]) = 0.6629

w(47,47 )= —0.6841(-0.4193){0(~1)[¢(-0.6841)/®(~0.6841)]> + (1 - 0)
[6(-0.6841)/(1 - ®(=0.6841))]2} = 0.4626

The equations were solved iteratively and were said to have converged at the 15th
round of iteration when A’A/20 < 107, where A = 8 — 8¢-1), Solutions at convergence
at the 13th round of iteration and at some intermediate rounds are shown in Table 13.3.
Results from an analysis using a linear model fitting the same effects with the G
matrix and residual variances of 20 kg? for BW, 1.036 for CD and residual covariance
of 2.089 between the two traits are also presented.

The results indicate that the probability of a difficult calving is higher for a male
calf than for a female calf. Similarly, there is a slightly higher probability for calving
difficulty for calving in the first season.

In general, sire rankings from the threshold and linear models were similar,
except for sires 2 and 6 slightly changing rankings in the two models. The ranking of
sires for calving difficulty based on the results from the threshold model could be
based on @, = v + b0, using the information provided by BW. However, the interest
might be on ranking sires in terms of probability of calving difficulty, under a given
set of conditions. For instance, what is the probability that a heifer sired by the jth
bull born in region 2, calving a male calf in season 1, will experience a calving diffi-

culty? This probablhty (Vyy;) can be calculated as:

V

211j

= d)[dg + 8+ fl’ + 0+ lyl(d2 +§ + f1 - 43.02)] (13.25)
Using the above equation, this probability for sire 1 is:

\%

211; = P[-1.7452 + 0.1401 + 0.8411 + (-0.0577) + 0.1155(42.2112

+(-1.2344) + 3.1690 - 43.02)] = 0.245

Similar calculations gave probabilities of 0.275, 0.247, 0.276, 0.268 and 0.273
for sires 2, 3, 4, 5 and 6, respectively. In general, there might be interest in the
probability of difficult calving associated with using the jth sire across all regions
of origin by season of calving and sex of calf subclasses. Such a probability can
be calculated as:

V=T

ikl”Vikl zkl; (13.26)
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with V,, - estimated as Eqn 13.25 and 4, is an arbltrary weight such that £, 4, = 1.
For the example data, A can be set to be equal to & o as there are eight region- season—
sex of calf subclasses The probabilities obtained using Eqn 13.26 with A = ; were
0.167, 0.188, 0.169, 0.189, 0.183 and 0.187 for sires 1, 2, 3, 4, 5 and 6,
respectively.

The analysis of a binary trait with a quantitative trait has been discussed and
illustrated in this section. However, if the category trait has several thresholds, then
the method discussed in Section 13.2 would be used for the analysis of the categorical
trait.
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1 4 Survival Analysis

14.1 Introduction

Survival is one of the most important functional economic traits in livestock production,
affecting profitability through the rate of replacement and farm production levels.
In dairy cattle, the average herd life or survival of dairy cows has an economic value
approximately half that of protein yield on a genetic standard deviation basis (Visscher
et al., 1999). Consequently, most of the earlier research work on survival in terms of
genetic evaluation and inclusion in breeding programmes has been in dairy cattle.

Various traits have been defined as the basis of evaluating survival in the dairy
cow. These usually include some measure of survival for a period or length of life such
as stayability until certain months of life defined as a binary trait (Everett et al., 1976),
or in terms of the length of life or length of productive life (VanRaden and Klaaskate,
1993), or number of lactations (Brotherstone et al., 1997) or survival per lactation
as a binary trait. Linear models are generally used — either a repeatability model
(Madgwick and Goddard, 1989) or a multivariate model (Jairath er al., 1998).
Similar definitions of survival have been applied to other livestock species. The length
of productive life between first farrowing and culling has been analysed in pigs
(Tarrés et al., 2006; Mészaros et al., 2010). In rabbits, survival has been defined as
the length of productive life, referring to the days between date of the first positive
pregnancy diagnosis and date of culling or death (Piles et al., 2006).

14.2 Functional Survival

Another important element of evaluating survival is the concept of functional survival
or longevity. Functional longevity refers to survival that is independent of production
such as milk yield for dairy cattle or litter size in pigs. The reasoning is that voluntary
culling is based mostly on production, thus adjusting for production (usually at the
phenotypic level) in the analysis of survival produces EBVs for animals that defines
their ability to avoid involuntary culling.

14.3 Censoring

The traits used in survival analysis involve measuring the length of time between two
events, usually a start and end point (also called ‘failure’). However, at the time of
analysis, some animals might still be alive, not having had the opportunity to reach
the end point. Their measure of survival is based on their current status and does not
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therefore reflect their true measure of survival. This phenomenon is referred to as
censoring and such records are regarded as censored. There are several types of cen-
soring. When records are based on current values that are less than the unknown end
point, this is called right censoring. Left censoring can occur when, for instance, an
animal has been alive for a certain time before entering the study or the start of data
collection. Interval censoring can occur when there is a break in data collection and
the cow fails somewhere in that interval. However, the most common is right censor-
ing and this is the only type of censoring considered in this chapter.

14.4 Models for Analysis of Survival
14.4.1 Linear models

The linear models described in Chapters 3 or 5 have been used by various researchers
for the analysis of survival traits, including those defined as a binary trait (Everett
et al., 1976; Madgwick and Goddard, 1989; Jairath et al., 1998).

One of the major limitations with analysis of survival traits using a linear model
is the inability or the difficulty of accounting for censoring. Various authors have
attempted to address this problem. Brotherstone er al. (1997) introduced the concept
of lifespan, which is the number of lactations a cow has survived or is expected to
survive. Thus if p, is the probability of survival to lactation 7 + 1 of an animal that has
survived to complete lactation 7, the expected lifespan (LS) of a cow that has com-
pleted » lactations but has not had time to complete 7 + 1 is:

LS:n+Pn+P;P,M +p;p;+]pn+2+

Thus if all p values above are constant and cows have completed their first lactation
and have had no time restriction in the opportunity to express LS, then:

Prob(Ls =x) = (1 - p)P*! with x=(1,2,3...)

indicating that LS has a geometric distribution with mean = 1 + p/(1 — p) and
variance = p/(1 - p)>.

Similarly, VanRaden and Klaaskate (1993) evaluated survival using length of pro-
ductive life, and censored records were predicted using phenotypic multiple regression.
Madgwick and Goddard (1989) proposed a multi-trait model for the analysis of survival
in each lactation, with observations in individual lactations treated as a different trait.
Information on the current lactation of living cows can then be included as observed
while their later (future) lactations are treated as missing records, hence accounting for
all information.

While some of these linear models have included methods to predict expected
survival for censored animals, these models are generally inadequate to handle time-
dependent effects. Thus HYS effects, for instance, might be based on information
from first calving, even for cows that have survived several lactations.

14.4.2 Random regression models for survival

Veerkamp et al. (1999) introduced the concept of fitting a random regression model
(RRM) for the analysis of survival defined in terms of survival to the fourth lactation
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as another approach to handle censored records in a linear model. In addition, time-
dependent variables could be fitted with an RRM. The records in lactations 1 to 4
were coded as 1 if next lactation was present or 0 otherwise. For censored animals,
current lactations were coded as described but later (future) lactations were regarded
as missing. Thus for uncensored animals, there would be four observations and cen-
sored animals would have a number of observations equal to the current lactation at
which they were censored. In addition to the fixed effects of HYS of calving, quad-
ratic regressions for milk yield and age within herd, and a linear regression for
Holstein percentage, they modelled the survival records of cows fitting a fixed cubic
polynomial for lactation number and orthogonal polynomial of order 3 for additive
animal genetic effects. It is not clear why a permanent environmental effect was not
included in their model. They concluded that RRM could be considered as an alterna-
tive to a proportional hazard model in terms of handling time-dependent variables,
but that the RRM was not very efficient at handling culling towards the end of lacta-
tion 4. This was attributed to lack of adequate data in the last lactation in the study.
The same approach could be used to model survival defined in terms of days or
months of productive life. The details of the methodology of fitting an RRM have
been covered in Chapter 9, therefore only an outline is presented here.

Considering the data in Table 14.1 and assuming 60 months as the maximum
length of productive life, the data can be analysed using an RRM considering herd
and year-season—parity (YSP) as the only fixed (FIX) effects with the following
model:

nf nr nr
Ve = FIX; + Z(bjtkﬁk + Z¢jtkujk + Z‘P,'tkp;‘k + €k (14.1)
k=0 k=0 k=0

where Vi 18 the record for cow j, which is either 1 (alive) or 0 (dead) at time ¢
(tth month of productive life) associated with the ith level of fixed effects (FIX); B, are
fixed regression coefficients; u, and p,, are vectors of the kth random regression for
animal and permanent environmental (pe) effects, respectively, for animal j; ¢,, is the
vector of the kth Legendre polynomial for the cow j at time #; 7f is the order of polynomials

Table 14.1. Length of productive life (LPL) in months for some cows reared in two herds.

Cow Sire Dam Herd Parity YSP Code LPL
8 1 2 1 2 3 0 40
9 1 3 1 2 4 1 47

10 4 2 1 1 1 0 22

11 4 9 1 1 2 1 28

12 5 3 1 2 3 1 50

13 5 8 1 1 1 1 33

14 1 6 2 2 4 1 49

15 1 7 2 1 1 1 29

16 5 14 2 1 2 0 23

17 5 6 2 2 3 1 37

18 4 7 2 2 4 0 35

19 4 3 2 1 2 1 30

YSP, year—-season—parity. Code: 1, uncensored; 0, censored.
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fitted as fixed regressions; 77 is the order of polynomials for animal and pe effects; and
€k 18 the random residual. Note that for cows 8, 10, 16 and 18, which are censored,
their records consist of the number of observations equal to their last month alive when
they were censored. Thus cows 8 and 10 have 40 and 22 observations consisting of
ones, respectively. However, for uncensored cows, each has 60 observations consisting
of ones and zeros. Thus cow 9 has a record consisting of 47 ones and 13 zeros. The
model in Eqn 14.1 can be fitted as described in Section 9.3.

14.4.3 Proportional hazard models

In view of the peculiarities associated with survival traits in terms of censoring of
records and the presence of time-dependent covariates (i.e. whose values change with
time), the proportional hazard model has been considered a more appropriate
method of handling survival data. Its wide usage in the analysis of animal breeding
data has been facilitated by the ‘Survival kit’ software by Ducrocq and Solkner
(1998). A new version of the ‘Survival kit’, written in Fortran 90 with an R interface
to make it user friendly, has recently been released (Mészaros et al., 2013). The new
version offers the opportunity to account for the correlated nature of two random
effects, either by specifying a known correlation coefficient or estimating it from the
data. In addition to the computational complexities of the proportional hazard
model, the other disadvantage of the method is the difficulty of applying it in a multi-
trait situation with more than two traits. This is important as most direct measures
of survival traits are obtained late in life; therefore, various traits, mostly linear or
composite type traits such as fore-udder attachment, udder depth, mammary composite
and legs and feet composite, have been used as indirect predictors of survival.

Subsequently in this section, it is assumed that censoring is random, such that the
end time or censoring is independent for all individuals.

Defining some distributions

The basic idea is that survival time follows a distribution (for example, Fig. 14.1) and
the goal is to use data to estimate the parameters of this distribution. Let T be the ran-
dom continuous variable denoting the failure time (death) of an animal, then the survival
function S(z), which is the probability that the animal survives at least until time ¢, is:

S(t)=Pr(T>#)=1-Pr(T<t)=1-F()

where F(¢) is the cumulative distribution of T and §(¢) can be regarded as the propor-
tion of animals still alive at time .

One of the approaches for modelling the survival function is through the hazard
function h(z), which measures the risk of failure of an individual at time #. It specifies the
instantaneous rate of failure at time #, given that the individual has survived up to time .
The usefulness of the A(t) stems from the fact it can provide the failure rate over time even
when the exact nature of the survival curve is not known. It can be denoted as:

. Pr <T <t+At|T>t t
h(t):hmmeo ( At ):%
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Fig. 14.1. Distribution of length of productive life for a group of Holstein dairy cows in the
United Kingdom.

where f(z) is the density function that equals »(¢)S(). Another way of looking at the
h(t) is that for short periods of time (At), the probability that an animal fails is
approximately equal to (h(t)At) (Kachman, 1999).

Exponential distribution

Several distributions can be used to define h(z). If h(z) is assumed to be constant over
time then this is an exponential distribution. This implies that the chance of an animal
surviving, for instance, an additional 2 years, is the same independent of how old the
animal is. Assuming the exponential distribution, then h(¢) = A and S(¢) = exp(-Az),
where A is the parameter of the exponential distribution.

Weibull distribution

The Weibull distribution, which is a two-parameter generalization of the exponen-
tial distribution, has also been used to model the hazard function to account for
increasing or decreasing hazard function. With the Weibull distribution, /h(¢) and
S(¢) are:

h(t) = pAMAt)P-t and  S(¢) = exp(-(A2)p)

with p > 0 and 4 > 0. When p = 1, the Weibull distribution reduces to the exponential
distribution. The Weibull distribution has a decreasing hazard function when p < 1
and an increasing hazard function when p > 1 (Fig. 14.2). Kachman (1999) showed
that at a given A, survival functions based on a Weibull model will all intersect at ¢ =
1/A, and that at ¢ = 1/A, the percentage survival is equal to exp(-1) ~ 37%. The role of
the 4 is to adjust the intercept.

Other possible distributions to model the hazard function include the gamma
distribution, log-logistics and the log-normal distribution (Ducrocq, 1997). A sum-
mary of the commonly used distributions and parameters are given in Table 14.2.

[ 244 Chapter 14



0.45 —o—p =05
0.4 1 —m—p=1.0
0.35 -
0.3 1
0.25 -

—A—p=15

0.15 -
0.1 1
0.05 -

Hazard function

1 2 3 4 5 6 7 8 9 10
Survival time (years)

Fig. 14.2. The Weibull hazard function with a A = 0.20 and with various p values.

Table 14.2. Some commonly used survival distributions
and their parameters.

Distributions h(t) S(t) ()
Exponential A exp—(At) Aexp—(At)p
Weibull PA(AL)PT exp—(At)p PAMAL)PTexp—(At)p
Log-logistic Apt?™ 1 Apt?™!

1+ AtP 1+ AtP A+ A"

14.4.4 Non-parametric estimation of the survival function

The survival function, S(¢), can be estimated from the parametric functions mentioned above.
A non-parametric estimation of the survival function can be obtained using the Kaplan—
Meier estimator (Kaplan and Meier, 1958). Let T, represent failure times ordered from the
first occurrence to the last. At T, let the number of animals that could have died (at risk) be
denoted by 7, and the number that actually died as d,. The Kaplan—-Meier estimator then is:

S(r) = ]‘[(”"_d"]

; n.
i, i

The usefulness of the Kaplan—-Meier estimate of the survival function is that it could
be used to check if the survival trait follows a particular parametric distribution.
For instance, the appropriateness of a Weibull model can be evaluated by plotting
log(-log(8(2))) versus log(z), where 8(2) is the Kaplan-Meier estimate. This should result
in a straight line with intercept plog(#) and slope p, given that:

S(2) = exp(=(A1)p) — -log(S8(2)) = At? — log(-log(S(2))) = log(2) + plog(?)
Similarly for the exponential distribution:
S(t) = exp(-At) = -log(S(2)) = Az

Therefore, the test for an exponential model will involve the plot of —log(S(z)) versus ¢,
which should give straight line passing through the origin with slope A.
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14.4.5 Regression survival models

Initially, a fixed effects survival model is considered to introduce the concept. Assume
that x is a vector of risk fixed effect factors or variables that influence failure time and
b is the vector of corresponding solutions. One of the most popular procedures used to
associate the hazard function h(¢) and x is the proportional hazard model (Cox, 1972;
Ducrocq, 1997). The hazard function with vector of risk factors can be written as:

h(t; x) = b (t)exp(x’b) (14.2)

where / (t) is the baseline hazard function, representing the ageing process of the
whole population. Thus the hazard function has been factored into two parts.
First, the baseline hazard function (4 (¢)), which is independent of the risk factors,
and hence the ratio of the hazard functions of two animals, is equal to a constant
at any time, i.e. their hazard functions are proportional (Ducrocq, 1997). Second,
the remaining part of the equation, exp(x’b), can be regarded as the scalar that
does not depend on time and denotes the specific risk associated with animals with
the factors x and acts multiplicatively on the baseline hazard function.

When 4 (t) = A = a constant, then the baseline hazard is exponential. When the
baseline hazard function is left completely arbitrary, then the proportion model is
termed a Cox model (Cox, 1972).

With the Weibull model, the baseline hazard function can be derived as:

h(t; x) = pA(At)P-lexp(x’b)
= ptPlexp(plog(A) + x'b)
= b (t)exp(xb) (14.3)

where  (t) = pt~! models the baseline hazard function and exp(x’b), the scalar, mod-
els the relative risk above or below the baseline risk. Note that the x’b in Eqn 14.3
includes the intercept term such that x = (1, x’) and b = (plog(A), b).

The corresponding survival function (Kachman, 1999) is:

S(t; x) = exp{-tPexp(x’b)}

Stratified proportional hazard model

At times, the assumption of a single baseline hazard function for the whole population
in proportional hazard models may be inappropriate. Therefore, data may be divided
into subclasses on the basis of factors such as year or season of birth, treatment or
region. Then for individuals in a subclass ¢, a baseline hazard function can be fitted as:

h(t; x, ¢) = b, (t)exp(xb)

Therefore, the hazards of two animals A1 and A2 in the same subclass with covariates

x,, and x,,, respectively, are proportional:
h(t;x 44 €)
—2TALT — expl(x4, — X4, )b] = constant
h(t;x 5 €)

and the baseline can have a known parametric form or be left arbitrary.
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Accelerated failure time model

The accelerated failure time is another procedure to associate the hazard functions
and the risk factors. Here it is assumed that the risk factors not only act multipli-
catively but also accelerate or decelerate the failure time. Let S (¢) and S,(¢) denote
the survival functions of cows housed on concrete floors and floors with straw bed-
ding, respectively. If it is assumed that the survival of cows housed on concrete
floors is lower by a factor y than those housed on floors with bedding, then the
accelerated failure time model assumes that S,(¢) = S (y2) and y> 0 is the so-called
accelerating factor.
Thus Eqn 14.2 can be written as:

h(t; x) = b _(exp[x’b]¢)exp(x’b)

=h (t*)exp(x’b)

where this change in timescale from # to #* denotes an acceleration or a deceleration
depending on whether exp(x’b) is smaller or greater than unity (Ducrocq, 1997).

Time-dependent risk factors

In the analysis of survival data that span a good length of time, it is possible that
some of the risk factors may change with time. In livestock situations, the effect of
such factors such as year—season of calving or herd management effects are likely to
change over time. Such factors are termed time-dependent variables or risk factors.
The proportional hazard model can be extended to incorporate time-dependent
variables and Eqn 14.2 can then be written as:

h(t; x(t)) = b (t)exp(x(2)'b)

where as usual x(¢) represents a vector of risk factors, but some of them will be time-
dependent variables. Ducrocq (2000) showed that it is possible to define time-dependent
variables such as HYS as a sequence of indicator variables x(z) = (0 ... 1 ... 0) with x (#)=1
if the observation is affected by the ith HYS at time ¢, or x,(¢) = 0 otherwise.

14.4.6 Mixed survival models

Mixed survival models, usually called frailty models, refer to the extension of the
proportional hazard function to include random effects such as genetic effects. The
random or frailty term u_ is defined as an unobserved random quantity that acts
multiplicatively on the hazard of individuals or a group of animals (Ducrocq, 1997).
The random vector u,, can be defined for individual animals or daughters of a sire 7
as in a sire model. With the simple transformation a, = log(u, ), the frailty term can
be included in the exponential part of the proportional hazards. Thus the mixed survival
model can be written as:

h(t; x,z) = b (t)exp(x’b + z'a) and
S(t; x,z) = exp{-tPexp(x’b + z'a)} (14.4)
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where z is an incidence matrix for random effects and the baseline hazard function can
assume a parametric or arbitrary form. Ducrocq et al. (1988a, 1988b) and Ducrocq
(1997) discussed the various distributions (gamma or log-gammas or inverse Gaussian)
that have been assumed for the frailty term and various estimation procedures for the
parameters of the frailty model. In the following section, the parametric model pre-
sented by Kachman (1999) is used to illustrate the prediction of a in the frailty model.

The parameters of interest in a survival model with or without the frailty term can
be estimated using non-parametric, semi-parametric or parametric approaches. In this
section, a brief outline of the parametric approach is presented. The basic parametric
approach involves obtaining the joint likelihood of the survival time and the random
effects, getting the marginal likelihood of survival time by integrating over the random
effects or taking a second-order Taylor’s series expansion of the joint log-likelihood.
The joint log-likelihood for the Weibull function can be written (Kachman, 1999) as:

L(b,u,p) :Z {logh,(t;) + (x;b+z;a)— H,(¢;)exp(x;b + z;a)}

—121oglGl-1/2a’Ga

(14.5)

The posterior mode estimates of the fixed and random effects can then be obtained
by taking the first and second partial derivatives of Eqn 14.5. The resulting equations
for the estimation are:

|:X'RX X'RZ:| |:B:| [X'y "’:|

, , S | S Il [14.6]
Z’RX Z'RZ+G ]la Z'y*
where R is a diagonal matrix with elements 7, = w, X exp(xb + za), with w, =
exp(p*log(t,)) and ¢, is the survival record for animal i, and y; = ¢, - 7,{1 - (xb + za)},
with g, = 1 for uncensored records or 0 if records are censored.

The use of Eqn 14.6 involves an iterative procedure with d; = (xb + z;a) being initially

computed for record or individual 7, then 7, and y; are calculated assuming that the esti-
mate p is known for the data. Then Eqn 14.6 can be set up. Once all records have been

processed, estimates of band 4 are obtained by solvmg Eqn 14.6. The new estimates of b
and 4 are then fed into the iterative procedure again until convergence is achieved.

Example 14.1

Presented in Table 14.1 is the length of productive life in months for a group of cows in

two herds. The aim is to undertake a survival analysis using Eqn 14.6, fitting herd and

year—season—parity as fixed risk factors and random animal effects. It is assumed that p

is 1 and the genetic variance is 20. The full pedigree is incorporated into the analysis.
Considering the fixed effects, the design matrix X is:

111 1110 00O 0
0000001 1 1111
X’ = 0010010 1T O0O0O0DO
00 010O0OO0OO0OT1TO0O0T1
100 0100 0 O0T1TO0DO0
0100001 O0O0OO0OT1T0O0
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Thus given M = [X, Z], where Z is a diagonal matrix considering the cows with records and:

(3
a
then vector d = Mu. For instance, if starting values for u in the first iteration were set
to 0.1, then for the first animal, d, = mu = 0.30 withm, =(100010100000
000000).

Then for animal 7, compute 7, and y; and set up the row of equations for ith
animal. For animal 1, 7, = exp(1*log(40))*exp(0.3) = 53.994 and y, = 0 — 53.994
(1-0.3) =-37.760.

Equation 14.6 is built up and solved after all animals are processed and the itera-
tion continued until convergence. Due to dependencies in the system of equations, the
first levels of herd and year—season—parity effects have been constrained to zero. The
solutions obtained at convergence and the risk ratios (RRS) are:

Herd
Solution RRS
1 0.000 1.000
2 -1.631 0.196
Year—season—parity
Solution RRS
1 0.000 1.000
2 -2.346 0.094
3 -3.149 0.043
4 -2.982 0.051
Animal Solution RRS Animal Solution RRS
1 -0.779 0.459 11 -0.706 0.494
2 -1.233 0.291 12 -0.476 0.621
3 -0.062 0.940 13 -1.902 0.149
4 -0.750 0.472 14 -0.178 0.837
5 -0.758 0.469 15 -0.842 0.431
6 0.238 1.269 16 -0.519 0.595
7 -0.328 0.720 17 -0.115 0.891
8 -1.477 0.228 18 -0.578 0.561
9 -0.533 0.587 19 -0.290 0.748
10 -1.753 0.173

The estimates b, can be expressed in relative risk (hazard) ratio by the transforma-
tion RRS(b,) = exp(b,). This expression gives the RRS of culling due to that effect and

it follows from the assumption of the proportional hazard model:
h (t;x )b (t; x ) = exp((x, - x| )b)

implying that the relative hazard for two animals with covariates described by x and
x , respectively, is independent of time and of other covariates. Thus the RRS denotes
the relative risk of a cow being culled in a certain fixed effect class compared to a cow
in a reference class with risk set to unity. The estimates of RRS in Table 14.1 indicate,
for instance, that cows in herd 2 are 20% more likely to be culled compared to herd 1.
Also, cows in YSP subclasses 2 and 3 are 10% and 4% more likely to be culled com-
pared to cows in YSP subclass 1. For the random animal effect, the RRS estimates
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indicate the relative risk of daughters of these animals being culled. Usually these
estimates are transformed to relative breeding values, say, with mean 100 and stand-
ard deviation of 12, so they are comparable with breeding values of other traits.

The results can also be presented in several other forms. The interest may be to
predict the percentage of live daughters for sires at 40 months of productive life; for
instance, (i) in herd 1 and in the 4th YSP or (ii) across all herds and YSPs. If (i), then
for sire 1:

d =b, +b, +a =0.00+-2.982 +-0.779 = -3.761

Then using Eqn 14.4, 5(40, x,z) = exp{-40rexp(d,)} = 0.394.
For (ii), a weighted mean for fixed effect solutions might be computed based on the
number of daughters the sire has in each fixed effect subclass. Thus for sire 1:

d, = (2b, + 2b,)/4 + (1by + 0b, + 1b, + 2b )4 + 4,
= (270.0 + 2%0.196)/4 + (0.0 + 0 + -3.149 + 2%-2.982)/4 + -0.779 = -2.959
and §(40, x,z) = exp{-40rexp(d,)} = 0.126

Equation 14.6 and its application in Example 14.1 was mainly to illustrate the
basic principles of survival analysis using proportional hazard models with a frailty
term. The parameter p has been assumed known and in practice this has to be esti-
mated simultaneously, and usually more terms including time-dependent variables are
included in the models. The ‘Survival kit (Ducrocq and Solkner, 1998; Mészaros
et al., 2013) is currently used for the genetic evaluation of survival traits at the
national level by a number of countries. A summary of methods utilized for the evalu-
ation of survival at the national level for the Holstein breed on the Interbull website
(http://www-interbull.slu.se/national_ges_info2/framesida-ges.htm) indicates that eight
countries (France, Germany, Italy, the Netherlands, Hungary, Slovenia, Spain and
Switzerland) use proportional hazard models in their genetic evaluation systems.
Similarly, nine countries (Canada, Denmark, Finland, Japan, New Zealand, Sweden and
the UK) currently use a multi-trait animal model, while the USA, Israel and Australia
employ a single-trait animal model. The only country that uses a random regression ani-
mal model is Belgium (Walloon region).

14.4.7 Group data survival model

When survival is defined as a discrete trait such as number of lactations completed
or number of years completed, the Cox and Weibull models may not be suitable for
the analysis of such traits. This is because these models assume continuity of the
baseline hazard distribution and/or absence of ties between ordered failure times.
Thus, with discrete survival traits, the grouped data version of the proportional haz-
ards model introduced by Prentice and Gloeckler (1978) can be used. The group data
proportional hazard model involves grouping failure time into intervals O, = (q, , g,),
i=1,...,rwith g, =0, g, = +infinite and failure times in O, are recorded as ¢, Thus the
regression vector is assumed to be time-dependent but fixed within each time interval.
Grouped data models have been used in beef cattle (Phocas and Ducrocq, 2006) and
rabbits (Piles et al., 2006). Mészaros et al. (2010) demonstrated this grouped data
model was more appropriate in length of productive life in pigs.
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1 Estimation of Genetic
Parameters

RoBIN THOMPSON
Rothamsted Research, Harpenden, UK

15.1 Introduction

In order to carry out prediction of breeding values, estimates of variance components
are usually needed. In this chapter the estimation of variance parameters is considered
using univariate sire and animal models.

15.2 Univariate Sire Model

To motivate this work, the mixed effect sire model introduced in Chapter 3 is used.
This model (Eqn 3.15) has:

y=Xb+Zs+e
and:

var(s) = Ao?

var(y) = ZAZ'62 + R

where A is the numerator relationship matrix for sires, 62=0.250% and R = Io2 The
aim is to estimate o2and o The simplest case with this sire model is when X'is a 7 x 1
matrix with elements 1, b having one element representing an overall effect and the g
sires being unrelated, so that A = 1.

An analysis of variance can be constructed by fitting: (i) a model with the overall
effect b; and (ii) a model with sire effects, these models giving residual sums of
squares that can be put into an analysis of variance of the form:

Source Degrees of freedom Sums of squares

Overall Rank (X) = 1 YXX'X)'X'y = F

Sires Rank (Z) —rank (X) = g—1  y'2(Z2)"'Zy - yXX'X)"'X'y = S
Residual n-rank (Z)=n-gq Yy-vy2Z2'Zy=R

Essentially, the effects b and s are thought of as fixed effects to construct an
unweighted analysis. If estimates of 6Zand o2 are required, then the sums of squares
S and R can be equated to their expectation E(R) = (7 - g)o% and E(S) = (g9 - 1)0? +
trace(Z'SZ)o2 where § = I - X(X'X)-'X.
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15.3 Numerical Example of Sire Model

Consider the data in Table 15.1 for the pre-weaning gain (WWG) of beef calves. The
objective is to illustrate the estimation of variance components on a very small exam-
ple so that the calculations can be expressed concisely.

The model to describe the observations is:

yi=o0+si+e

where y, = the WWG of the ith calf, o = the overall effect, s, = random effect of the
jth sire (j = 1, 2, 3) and ¢, = random error effect (i = 1, 2, 3, 4)

In matrix notation, the model is the same as descnbed in Egn 3.1, with n = 4,
p=T1andgqg=3.

The matrix X in the MME relates records to the overall effects. For the example
data set, its transpose is:

X' =[11111]

The matrix Z then relates records to sires. In this case it is:

S O = O
_ O O =
S = O O

An analysis of variance can be constructed as:

Source Degrees of freedom Sums of squares (kg?)
Overall 1 F =48.3085

Sire 2 S =0.6075
Residual 1 R =0.1800

with:
YX(X'X) "Xy =F=(2.9 +4+ 3.5+ 3.5)%4 = 48.3025
VZ(Z'Z)'Z'y -y XX X)Xy =S = (421 + (2.9 + 3.52/2 + (3.5)%1 - 48.3085 = 0.6075
Yy -YZ(Z'Z)'Z'y =R = (2.9 + (4)% + (3.5)* + (3.5 -F-S=0.18

Table 15.1. Pre-weaning gain (kg) for four beef calves.

Calf Sire WWG (kg)
4 2 2.9
5 1 4.0
6 3 3.5
7 2 35
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In this case:

S O = O
-0 O =
S = O O

. -0.25 -0.25 -0.2
T
S= ' ' ) ’ and Z’SZ=|-0.50 1.00 -0.25
-0.25 -0.25 0.75 -0.25
-0.25 -0.50 0.75

-0.25 -0.25 -0.25 0.75

so that:
E(R) = G§= 0.18 and E(S)= 20'2 + 2. 50'2 0.6075
Then estimates of 62 and o are:

02=0.18 (kg?) and 02=0.027 (kg?)

15.4 Extended Model

The model and analysis hold if the model is extended to allow X to represent an
environmental effect with p levels. If sires are nested within levels of the environmen-
tal factor so that daughters of each sire are only associated with one level of the
environmental factor, then the above analysis could be used. If, however, as usually
happens, daughters of a sire are associated with more than one level, a slightly more
complicated analysis is appropriate.

Source Degrees of freedom Sums of squares
Fixed effects Rank (X) = p YXX'X) X'y = F
Sires corrected for fixed effects  Rank (2'SZ) = df, y'Sz(Z'sz)'Z'sy=S
Residual n —rank (X) — rank Yy-F-S=R

(Z'S2) = n-p - df, = df,

Now R and S have expectation:
=df,02 and E(S) = df,0%+ trace(Z'SZ)o>

The term involved in the trace (Z'SZ) can sometimes have a simple interpretation. If
X represents a fixed effect matrix with p levels, then the ith diagonal element of Z'SZ
is n, — En’/n . (summation is from j = 1 to p) where n, is the number of daughters of
sire 7 in fixed effect level j and n; = ¥n,; (summation is ! from j=1top)and n =3n,

(summation is from i = 1 to s). This number was called the effective number of daugh—
ters of sire i by Robertson and Rendel (1954) and measures the loss of information
on a sire because his daughters are measured in different environmental classes. This method
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of analysis is called Henderson’s method 3 (Henderson, 1953). These methods of
analysis were very popular in that they related to sequential fitting of models and
were relatively easy to compute. One problem is that the terms are generated under
a fixed effect model with V = Io2 and then sums of squares are equated to their
expectation under a different variance model. Only in special balanced cases will
estlmatlon based on R and S lead to eff1c1ent estimates of 62and o2 In general, B is based
on Z'Sy with variance matrix Z 'SZ02 + Z'SZAZ'SZo? and these can be transformed
to df, independent values Q'Z’Sy by using arguments similar to those used in Section 6.2
on the canonical transformation, where Q is a de n matrix and QZ'SZQ =1 and
Q'Z'SZAZ'SZQ = W, where W is a d1ag0nal matrix of size df with ith diagonal ele-
ment w,. The variance matrix of Q"Z'Sy is then Io2+ WoZ Then an analy51s of vari-
ance can be constructed from squaring each of the dfg elements of QZ'Sy with ith
sum of squares u#, with expectation 62 + w,0% and R is the residual sum of squares
with expectation E( = dfy02 The individual u, are distributed as chi-squared vari-
ables with variance E(u,)%. A natural scheme is to fit a linear model in 6% and o2 to ,
and R. One can also use an iterative scheme with the weight dependent on the esti-
mated parameters.

15.5 Numerical Example

For the example with data in Table 15.1, it was shown that:

0.75 -0.50 -0.25
7’S7=1-0.50 1.00 -0.25
-0.25 -0.50 0.75

so that the sires have 0.75, 1.0 and 0.75 effective daughters, respectively.
It can be found that with A =1

0.875 -0.750 -0.125
7'SZA7’SZ =|-0.750 1.500 -0.750
-0.125 -0.750 0.875

The algorithm in Appendix E, Section E.1, can be used to calculate the eigenvalues

Q so that:
Q7Z'SZQ=1 and QZ'SZAZ'SZQ=W
In this case:

Q- -0.3333 0.6667 -0.3333
| 0.7071 0.0000 —-0.7071

SoQ7Z'SZQ=1 and QZ'SZAZ'SZQ =W with:
_[1.5 0.0
~10.0 1.0
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The contrasts QZ'Sy are now:

QZ's = 0.5000 -0.5000 -0.5000 0.5000
~10.0000 0.7071 -0.7071 0.0000 Y

So the first contrast, (y, =y, =y, +¥,)/2=(2.9-4.0 = 3.5 +3.5)/2 = -1.1/2 = -0.55
is a scaled contrast comparing sire 2 with sire 1 and sire 3 and the second con-
trast (y, — y3)/\/z =(-4.0 = 3.5)/\/_ = (—0.5)/\/5 is a scaled contrast between sire
1 and sire 3.

An analysis of variance can be constructed:

Expected mean

Source Degrees of freedom  Sums of squares (kg?)  squares (kg?)

Overall 1 F = 48.3085

Sire 2 compared 1 (-0.55)? = 0.3025 02+ 1.502
with sires 1 and 3

Sire 1 compared 1 (-0.5)%/2 = 0.1250 02 + 02
with sire 3

Residual 1 R =0.1800 o2

e

Fitting a linear model in 6% and o7 to the three sums of squares 0.3025, 0.1250
and 0.1800, gives estimates of 62 = 0.143 (kg?) and 62=0.079 (kg?). If a generalized
linear model is fitted iteratively to the sum of squares with weights proportional to
the variance of the sum of squares when the procedure converges, the estimate of >
is 0.163 (kg?) and of o2is 0.047 (kg?). The estimated variances of these estimates
(from the inverse of the generalized least squares coefficient matrix) are 0.216 (kg?)

and 0.234 (kg?).

15.6 Animal Model

It has been shown that estimates can be obtained from analysis of variance for some
models. Now consider a more general model — the animal model introduced in
Chapter 3. This linear model (Eqn 3.1) is:

y=Xb+Za+e
and the variance structure is defined, with:
var(e) =Io?=R; var(a) =Ac?’=G and cov(a, e) =cov(e, a) =0

where A is the numerator relationship matrix, and there is interest in estimating o>
and o2 A popular method of estimation is by restricted (or residual) maximum like-
lihood (REML) (Patterson and Thompson, 1971). This is based on a log-likelihood
of the form:

L o H{-(y - Xb)'V-1(y = Xb) - logdet(V) - logdet(X V-1X)}
where b is the generalized least squares (GLS) solution and satisfies:

X'V-1Xb = X'V-ly
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There are three terms in L: the first is a weighted sum of squares of residuals; the sec-
ond, a term that depends on the variance matrix; and a third that depends on the vari-
ance matrix of the fixed effects and can be thought of as a penalty because fixed effects
are estimated. MME (Chapter 3) play an important part in the analysis process.

For the particular model these can be written as (Eqn 3.4):

X'X XZ|b | X'y
ZX Z7Z+A'alla| |Zy
with a= o%/c% or (1 - b?)/h*.
Extensive use is made of the prediction error matrix of a. In this case the predic-
tion error matrix is PEV = var(a — 4) = C**0? (Eqn 3.14), where C*? is associated with
the coefficient matrix of the MME.

Estimates of 62 and 02 are chosen to maximize L. It is useful to express relevant
terms in this estimation process in terms of the projection matrix P:

P =V-1- X(XV1X) X'V
Then:
L of 1){~y'Py — logdet(V) — logdet(X'V-X)} (15.1)
Estimation of a variance parameter 6, (0, = 02 0, = 62) involves setting to zero
the first derivatives:
oL/00, = (3 ){y'P(aV/aei)Py — trace[P(0V/06,)}

These equations could be thought of as equating a function of data (the first term in
the expression) to its expectation.

Normally, finding a maximum requires an iterative scheme. One suggested by
Patterson and Thompson (1971) was based on using the expected value of the second
differential matrix. In this case these are:

E(6L2/86i66i) =—(3 Jtrace[P(0V/06,)P(0V/a6))]

Using the first and expected second differentials one can update 0 using terms
that depend on the solution of the MME and PEVs. For the particular animal model
that is being considered, then:

aL/oc2 = (1){(y - Xb - Za) (y - Xb - Za)/c* — (n - p — q)/c?
— trace|C2A!]/0?} (15.2)
0L/602 = (1){a'A-"a/o* + glo? — trace[C2A |0 /6) (15.3)
and:
E(0LY00%) = ~(1){(n - p - q)lo* + trace[(C2A-)2)/c?)
E(0L2/06%) = ~(1 ){trace[{I - C2A-(62/02)P)/c*)
E(dL*/00200?%) = -( 5 ){trace[{I - C*A-!(0?%/c2)}{C*?A-1}]o?}

Thinking of the variance parameters and the first differentials as vectors @ and 0L/60
with ith (i = 1, 2) element 6, and 0L/00,, respectively, and Einf, the expected informa-
tion matrix, a matrix with z,jth element -E(aLZ/ae,.ae/.), suggests an iterative scheme
with the new estimate 0 satisfying:
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8, = 0 + Einf1(AL/08) (15.4)

There are two problems with this approach. First, the parameters might go nega-
tive and one would want estimates of variances to stay essentially positive. One popu-
lar way of avoiding this property is to note that at a maximum of the likelihood the
first differentials are zero and to manipulate Eqns 15.1 and 15.2 in the form:

(n - p)o?=(y - Xb - Za)(y) (15.5)

go? =a'A'a + trace[C22A ]2 (15.6)

so that it can be seen that ¢ is estimated from a sum of squares of residuals and ¢
is estimated from a weighted sum of squares of predicted values and their PEV. This
algorithm is an expectation maximization (EM) algorithm (Dempster et al., 1977) and
successive iterates are positive. The algorithm can be written in the form of the updat-
ing formula if Einf is replaced by a matrix that depends on the information derived,
as if one could directly observe the residuals and breeding values rather than predict-
ing them. This algorithm can be slow to converge in animal breeding applications.

A second problem is that the expected second differentials are difficult to calcu-
late. Sometimes it is recommended to use observed second differentials. These are of
the form:

(8L2/86i691.) = —y’P(@V/@O)P(@V/@O/)Py + (%)trace[P(@V/@Gl.)P(8V/691.)]

but again, these terms involve the complicated trace terms. One suggestion (Gilmour
et al., 1995) is to use the average of the expected and observed information terms.
These are of the form:

A(0L%/26,00) = ~(1){y'P(2V/00,)P(2V/26 Py}

These terms are similar to y'Py in that they could be thought of as a weighted sum
of squares matrix with y replaced by two columns (0V/6,)Py (i = 1, 2). In this
particular case:

(0VI662)Py = (y - Xb - Za)/c?
and:
(0VIoo%)Py = Zalo?

As in the formation of Einf, we can construct and base an iterative scheme on Eqn 15.3
and on Ainf, a matrix with elements —A(6L2/89i89/.). Once the iterative scheme has
converged, then the asymptotic variance matrix of 0 can be estimated from Ainf-' or
Einf-'. The animal model and estimation procedure introduced can easily be extended
to deal with other models, just as prediction procedures can be developed for a variety
of models. Software for estimating variance parameters using this average information
algorithm is described by Jensen and Madsen (1997) and Gilmour et al. (2003).

15.7 Numerical Example

Consider the data in Table 15.2 for the pre-weaning gain (WWG) of beef calves. This is very
similar to the data of Table 3.1, with the data changed to give positive variance estimates.
The model to describe the observations is:

Vi =Pi T a;+ e
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where y.. = the WWG of the jth calf of the ith sex, p. = the effect of the ith sex, a, =
7 z ]

random effect of the jth calf and ¢, = random error effect.

In matrix notation, the model is the same as described in Eqn 3.1.

Again, the objective is to illustrate the estimation of variance components 2 and
o?on a very small example so that the calculations can be expressed concisely.

In matrix notation, the model is the same as described in Eqn 3.1 withn =35, p =2 and
g = 8, with the design matrices as given in Section 3.3. Now y = [2.6, 0.1, 1.0, 3.0, 1.0]
and, using initial estimates of 6= 0.4 and 6¢* = 0.2, solutions to MME (Eqn 3.15) are:

Sex effects
Male 2.144
Female 0.602
Animals
0.117
-0.025
-0.222
-0.254
-0.135
0.032
0.219
-0.305

N O~ WN =

Then:
(y - Xb - Za)" =[0.2022 -0.3661 0.3661 0.6374 -0.8395]

[0.1884  0.0028 0.0131 0.0878 0.0180 0.0883 0.0554 0.0537]
0.0028 0.1968 -0.0041 0.0082 0.0949 0.0981 0.0479 0.0443
0.0131 -0.0041 0.1826 0.0193 0.0805 0.0090 0.0504 0.0871
0.0878 0.0082 0.0193 0.1711 0.0188 0.0510 0.0971 0.0493
0.0180 0.0949 0.0805 0.0188 0.1712 0.0679 0.0879 0.0712
0.0883 0.0981 0.0090 0.0510 0.0679 0.1769 0.0609 0.0877
0.0554 0.0479 0.0504 0.0971 0.0879 0.0609 0.1767 0.0672

10.0537 0.0443  0.0871 0.0493 0.0712 0.0877 0.0672 0.1689 |

22 ~2
C*o> =

y'Py = 4.8193, logdet(V) = -2.6729 and logdet(X'V-'X) = 2.6241 so L = -2.3852
from Eqn 15.1.

Then Eqns 15.2 and 15.3 give:
01862 = (0.5){(y - Xb - Za)'(y - Xb - Za)/c* - (1 - p - q)/c> - trace|C*A")/?)

Table 15.2. Pre-weaning gain (kg) for five beef calves.

Calf Sex Sire Dam WWG (kg)
4 Male 1 - 2.6
5 Female 3 2 0.1
6 Female 1 2 1.0
7 Male 4 5 3.0
8 Male 3 6 1.0
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oL/oc? = (0.5){8.8753 - (-12.5000) - 18.0733} = 1.6510
oL/oc? = (0.5){a’A"a/a* - g/c? + trace[C2A-] 62 /)
0L/oc? = (0.5){6.3461 - 40.0000 + 36.1466) = 1.2464

A(012/062052) = -(0.5){a'Z'Ply - Xb - Za)}/(c%c*)
A(0L¥802662) = -(0.5)11.3070 = -5.6535

and:
A(0L¥06%) = -(0.5){(y - Xb - Za)'P(y - Xb - Za)/c*)
A(@Ll/aa ) = —(0.5)16.5346 = -8.2673
A(0L%00%) = -(0.5){a’Z'PZa)/c*
A(0L*00%) = -(0.5)9.1163 = -4.5582
(
(

and:

8.2673 5.6535 0.7967 —0.9882
Ainf=[ :| so Ainf™! =|: ]

5.6535 4.5582 —0.9882  1.4450

Using Eqn 15.4 and replacing Einf by Ainf:

6, 0+ Ainf-(oL /98)<| 4] [ 0-7967 -0-9882)1.6510] _[0.4] [0.0838
0.2] |-0.9882 1.4450)(1.2464] |0.2] [0.1695

so that new estimates of 62 and 2 are 0.4838 (kg?) and 0.3695 (kg?), respectively.
Table 15.3 gives six successive iterates and log-likelihood for this data.
In the last iteration:

Ainf-! :[ 2.4436 —3.2532}

-3.2532  5.3481

so that the estimate of 62 is 0.4835 with standard error J2.4436 = 1.563 and the esti-
mate of 6% is 0.5514 with standard error v/5.3481 = 2.313.

By contrast, if estimates of 62 = 0.4 and 62 = 0.2 are used in conjunction with Eqns 15.5
and 15.6 then: (n - p)o? = (y - Xb - Za)( ) so 302 = 1.9277 so 62 = 0.6426 (kg?)
and go?2 = aAla+ trace[szA lo2so 802 =0.2538 + 1.4458 so 02=0. 2125 (kg?) with
L = -2.3852. After 1000 iterations, the algorlthm gives 02 = 0. 4842 (kg?) and o? =
0.5504 (kg?) with L = -2.1817, showing that this algorlthm is slower to converge.

Table 15.3. Estimates of o2 and o2 and L.

Iterate 02 (kg?) 02 (kg?) L

1 0.4000 0.2000 -2.3852
2 0.4838 0.3695 -2.2021
3 0.4910 0.5126 -2.1821
4 0.4839 0.5500 -2.1817
5 0.4835 0.5514 -2.1817
6 0.4835 0.5514 -2.1817
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1 6Use of Gibbs Sampling
in Variance Component
Estimation and Breeding
Value Prediction

16.1 Introduction

Gibbs sampling is a numerical integration method and is one of several Markov chain
Monte Carlo (MCMC) methods. They involve drawing samples from specified dis-
tributions; hence they are called Monte Carlo and are referred to as Markov chain
because each sample depends on the previous sample. Specifically, Gibbs sampling
involves generating random drawings from marginal posterior distributions through
iteratively sampling from the conditional posterior distributions. For instance, given
that Q" =(Q,, Q,) and P(Q,, Q,) is the joint distribution of Q, and Q,, Gibbs sampling
involves sampling from the full conditional posterior distributions of Q,, P(Q,|Q,) and
Q, PQIQ,).

Thus given that the joint posterior distribution is known to proportionality, the
conditional distributions can be generated. However, defining the joint density
involves the use of Bayes’ thereom. In general, given that the probability of two events
occurring together, P(B, Y), is:

P(B,Y) = P(B)P(YIB) = P(Y)P(BIY)
then:
P(BIY) = P(B)P(YIB)/P(Y) (16.1)

Equation 16.1 implies that inference about the variable B depends on the prior prob-
ability of its occurrence, P(B). Given that observations on Y are available, this prior
probability is then updated to obtain the posterior probability or density of B, (P(BIY).
Equation 16.1 is commonly expressed as:

P(BIY) o P(B)P(YIB) (16.2)

as the denominator is not a function of B. Therefore, the posterior density of B is
proportional to the prior probability of B times the conditional distribution of Y
given B. Assuming that B in Eqn 16.2 is replaced by W, a vector of parameters, such
that W' = (W,,W,,W,), and that the joint posterior distribution is known to propor-
tionality (Eqn 16.2), the full conditional probabilities needed for the Gibbs sampler
can be generated for each parameter as P(W IW,,W.,Y), P(W,IW W, Y) and
P(W,IW,W,,Y). Assuming starting values W1, WI° and W%, the implementation
of the Gibbs sampler involves iterating the following loop:
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1. Sample W from P(W W11, Wi, Y)
2. Sample Wi+t from P(W,IW+1, Wi, Y)
3. Sample WU from P(W Wi+t Wi+l y)

Usually, the initial samples are discarded (the so-called burn-in period). In summary,
the application of the Gibbs sampler involves defining the prior distributions and the
joint posterior density and generating the full conditional posterior distributions and
sampling from the latter.

The Gibbs sampler was first implemented by Geman and Geman (1984). In ani-
mal breeding, Wang et al. (1993, 1994) used Gibbs sampling for variance component
estimation in sire and animal models. It has been implemented for the study of covari-
ance components in models with maternal effects (Jensen et al., 1994), in threshold
models (Sorensen et al., 1995) and in random regression models (Jamrozik and
Schaeffer, 1997). It has recently been employed for the purposes of variance compo-
nent estimation and breeding value prediction in linear threshold models (Heringstad
et al., 2002; Wang et al., 2002). Detailed presentations of the Gibbs sampling within
the general framework of Bayesian inference and its application for variance compo-
nents estimation under several models have been published by Sorensen and Gianola
(2002). In this chapter, the application of the Gibbs sampler for variance component
estimation and prediction of breeding values with univariate and multivariate animal
models are presented and illustrated.

16.2 Univariate Animal Model

Consider the following univariate linear model:
y=Xb+Zu+e

where terms are as defined in Eqn 3.1 but with u = a in Eqn 3.1. The conditional
distribution that generates the data, vy, is:

ylb, u, 62 ~ N(Xb + Zu + Rc?) (16.3)

16.2.1 Prior distributions

Prior distributions of b, u, 62 and 62 are needed to complete the Bayesian specification
of the model (Wang et al., 1993). Usually, a flat prior distribution is assigned to b. Thus:

P(b) ~ constant (16.4)

This represents an improper or ‘flat’ prior distribution, denoting lack of prior know-
ledge about this vector. However, if there is information a priori about value of b in
terms of upper or lower limits, this can be incorporated in defining the posterior
distribution of b. Such a prior distribution will be called a proper prior distribution.

Assuming an infinitesimal model, the distribution of u is multivariate normal
and is:

ulA, 02 ~ N(O, Ac?) (16.5)
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A scaled inverted chi-squared distribution (x?) is usually used as priors for the
variance components (Wang et al., 1993). Thus for the residual variance:

[y 2
P62 | 2 2 (2 j _U.S,
(0 1Werse) (o) P 207 (16.6)
and the additive genetic variance:
N 2
Plo2 lv,,s2) = (o2) & Jexp[—%j (16.7)

where v, (v,) is a ‘degree of belief’ parameter and s2 (s2) can be interpreted as a prior
value of the appropriate variance component. Alternatively, prior uniform distribu-
tion could be assigned to the variance components such that:

P(G/-Z) oc constant (16.8)

where 7= 07 or 0, and an upper limit might be assigned for 7 based on prior knowledge.
Setting v, or v, to -2 and s> or s> to 0 in Eqns 16.6 or 16.7 gives Eqn 16.8.

16.2.2 Joint and full conditional distributions

The joint posterior distribution of the parameters (b, u, 62 or ¢2) is proportional

. . . L. . uo, . .
to the product of the likelihood function and the joint prior distribution. Using
Eqns 16.3 to 16.7, the joint posterior distribution can be written as:

_ n+v, " _ _ , _ _ 2
P(b, u, 0_5,632 I y) oc (O.eZ) ( 2 )eXp [_ (y Xb Zu) (};Gz)(b Zu) + Uese J

e

m+v, ’A—
(0'2)7( 2 +1)exp (uA 1u+1/usﬁ
u 2()-2

u

(16.9)

assuming 7 observations and 7z animals. Setting v, or v, and s? or s? to zero gives the
joint posterior distributions for the uniform distribution in Eqn 16.8.

The full conditional posterior distribution of each parameter is obtained by
regarding all other parameters in Eqn 16.9 as known. Thus for b:

(16.10)

P(blu,02,02,y) exp[_ (Y—Xb—zu)'(y_xb—zu)]

207

e

A corresponding distribution to the above is:
Xblu, 62, 6%,y ~ N(y - Zu, Ic?)
or:
X'Xblu, 0%, 6%y ~ N(X'(y - Zu), X'X0?)
Therefore:
blu, 62, 62y ~ N(b, (X'X)"0?
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where:

b = (X’X)"'X(y - Zu)
Thus for the jth level of b:

l;f.lb_l., u, 02, 0%,y ~ N(I;/,

(Xi,xi)_l Gf) (16.11)
with l;]. = (X] xi)‘]x; (y, - X_].b - Zu), which is equivalent to Eqn 3.5, X; is the jth row
of X and b . is the vector b with level j deleted.

Similarly, the distribution for the jth random effect is:

ulb, u_, o}, 02, y ~ N(@, (z/z; + A, 0)”'0?) (16.12)
with:

4 = (z)z; + A*I?,I.a)*h; (y -Xb-A7] ou_)
which is equivalent to Eqn 3.8.

The full conditional of distribution of the residual variance is derived from Eqn 16.9
by considering only terms that involve 6 and is in the scaled inverted x* form (Wang
et al., 1993). Thus for the residual variance:

. ) ) (g
P(c? Ibyu,0.,y)c (o) * *  Jexp| ——£%
where #,=n+v, and S =((y—Xb-Zu)(y—Xb-Zu))+v,s.)/7,
Hence:

o, |bu,05,y ~ 0,575 (16.13)

which involve sampling from an inverted y* distribution with scale parameter,
(y =Xb —Zu) (y - Xb - Zu) +v,s> and ¥, degrees of freedom.

Similarly, the full conditional distribution of 62 is also in the form of an inverted
chi-square. Thus:

N m+uu+1 o o)
P(o? Ib,u,62,y) = (67) & )exp(—’;“s“ ]

o

where ¥, =m+v, and 2 = (WA u)+v,s2) /¥
Thus:

u

o, |byu,0,,y ~ 7,5, %5 (16.14)

which involves sampling from an inverted y? distribution with scale parameter
(wA™'u)+v,s2 and ¥, degrees of freedom.

The Gibbs sampling then consists of setting initial values for b, u, 62 and 62 and
iteratively sampling successively from Eqns 16.11 to 16.14, using updated values of
the parameters from the 7 round in the 7 + 1 round. Assuming that k rounds of itera-
tion were performed, then k is called the length of the chain. As mentioned earlier,
the first j samples are usually discarded as the burn-in period. This is to ensure that
samples saved are not influenced by the priors but are drawn from the posterior
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distribution. The size of j is determined rather arbitrarily, but a graphical illustration
could help.

Several strategies can be implemented in using the Gibbs sampler and these have
an effect on the degree of correlation between the values sampled. Details of various
strategies are discussed in detail by Sorensen and Gianola (2002) and therefore not
presented here. One approach is to run a single long chain. A sample (b, u, 02, 62 is
saved at every dth iterate until a total # samples are saved and analysed. The larger d is,
the lower the degree of autocorrelation between the samples. Another strategy, known
as the multiple chain or short chain approach, involves carrying out several parallel
t runs and saving the last n#th sample from each run. Thus this approach produces
m = nt samples. The different chains will produce different realizations, even if the
same starting values are used. However, if the parameters in the model are highly
correlated, it might be useful to utilize different starting values in the different chains.

Determining convergence with the Gibbs sampler is not very straightforward, but
it is advisable, depending on the size of the problem, to run several chains and check
convergence graphically.

16.2.3 Inferences from the Gibbs sampling output

The samples saved are usually analysed to estimate posterior means or variances of
the posterior distribution. Detailed discussion of various estimation methods is given
in Sorensen and Gianola (2002) and not presented here. Given that w is a vector of
size k, containing the saved samples, then the posterior mean and variance can be
computed, respectively, as:
> flw,
=1
k

uy = (16.15)

and:

k
Z(f(wz)_

_ izl
var(gy) X

where f(w) is a function of interest of the variables in w. For instance, in the linear
animal model in Section 6.2, the function of interest would be the variance components
(02 and 02) and the vectors b and u.

The above estimates from the posterior distribution are associated with sampling
variance (Monte Carlo variance). The larger the number of samples analysed, the
smaller the sampling variance. It is usually useful to get an estimate of the sampling
variance associated with the estimates from the posterior distributions. An empirical
estimate could be obtained by running several independent runs and then computing
the between-chain variance of the estimates obtained for each run. This is not com-
putationally feasible in most practical situations and various methods are used to
estimate this variance. A number of such estimators are fully discussed by Sorensen
and Gianola (2002). A simple method that could be used involves calculating the
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batch effective chain size. Given a chain of size k, successive samples are grouped into b
batches, each of size 7. The average of the jth batch can be computed as:

The batch estimator of the variance of i in Eqn 16.14 is:

b
Z(ﬁ/ -
=1

var, (p) = W

The batch effective chain size can be obtained as:

" (k—1)var, ()

If samples are uncorrelated, then y = k. The difference between wand & gives an idea
of the degree of the autocorrelation among the samples in the chain.

16.2.4 Numerical application

Example 16.1
Using the data in Example 3.1 and the variance components, the application of Gibbs
sampling for estimation of variance components and the prediction of breeding val-
ues is illustrated. Uniform priors are assumed for the variance components such that
v,=v, =-2and s* = s> = 0. A flat prior is assumed for b, and u is assumed to be
normally distributed.

First, sample bl!, where the superscript in brackets denotes iteration number, using
Eqn 16.11, with b, calculated using Eqn 3.5 and (xl.’x)‘lo'ﬁ = (3)"'40 = 13.333. From
Eqn 3.5:

b, =[(4.5+3.5+50)-(0+0+0)]/3=4.333

Assuming the random number (RN) generated from a normal distribution, N(0,1), is
0.1704, then b, from Eqn 16.11 is:

bl'!=4.333+0.17044/13.333=4.955

Then sample b, using Eqn 16.11 with (xl.'x)‘lo'g =(2)7'40 = 20 and Bz is:
b, =[(2.9+3.9) - (0 +0)]/2 = 3.40

Assuming the RN from N(0,1) is -0.1294, then:
b1 =3.40-0.1294420-2.821

The vector of solution u; for animal j is sampled using Eqn 16.12, with &, calculated
using Eqn 3.8. Thus for animal 1:
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4,=0 and (z]z, + A‘l)la)‘lo'i =(3.667)7'40 = 10.908

The value of (zjz, + A7}, )" is taken from the diagonal element of the coefficient
matrix of the MME for Example 3.1. Assuming the RN from N(0,1) is 0.2067:

ul'!=0+0.20674/10.98 = 0.683
For animal 2, &, from Eqn 3.8 = -0.171, and (z]z, + A‘ a)'o? = (4)7140 = 10.
Then from Eqn 16.12, assuming RN from N(0,1) is -1. 8025
ubl=-0.171+-1.8025V10 = -5.871
Similarly, given that @i, from Eqn 3.8 = 1.468, (z{z, + Afla)‘lo'f = (4)7'40 = 10 and
RN = -0.5558, then:
ul=1.468-0.555810 = -0.290

For animal 4, @, = 0.0976 from Eqn 3.8, (z{z, + A{",®)~'07 = (4.667)7'40 = 8.571 and
RN = -1.8654, then:

ulll=0.0976 -1.8654+/8.571 = —5.364

Similar calculations using Eqn 16.12 gave estimates of ulll, ul'l, ul'l and ul! to be
-3.097, -2.577, -1.621 and 0.697, respectively.
The vector of residuals, € = y -Xb - Zu, is:

4.5 4.955 -5.364 4.908
2.9 2.821 -3.097 3.176
é. |=13.9|-]2.821 |-| -2.577 |=| 3.656
é 3.5 4.955 -1.621 0.165
éq 5.0 4.955 —0.697 0.742

e

N

é

[

N

~

and €€ = 48.118. Sampling from the inverted x> distribution with three degrees of
freedom (Eqn 16.13) gave an estimate of 39.870 for the residual variance.

Using Eqn 16.14, sampling for o2 is again from the inverted x> distribution, with
w'A-'u = 93.11 and degrees of freedom being 6. An estimate of 23.913 was obtained
for o2. Note that it is easier to compute w'A-'u using Eqn 2.3. Thus u'A-'u =
o' (T-'YD""T-'u = m'Dm where m = T~'u, with m being a vector of Mendelian sampling
for animals calculated using Eqn 2.2.

The next round of iteration is then commenced using the updated values com-
puted for the parameters.

16.3 Multivariate Animal Model

In this section, the Gibbs sampling algorithm developed by Jensen et al. (1994) for models
with maternal genetic effects is generalized for a multivariate situation. Given that ani-
mals are ordered within traits, the multivariate model for two traits could be written as:

W e S MR
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where terms are as defined in Eqn 5.1, with u = a. The conditional distribution of the
complete data, given that animals are ordered within traits, is:

<Y1
Y2

It is assumed that:

<U1
u,

where G is the genetic covariance matrix and A is the numerator relationship matrix.

X,b, +Z,u
by,by,u,u,, R)~ N[ T R®T (16.16)
X,b, +Z,u,

G,A>~NB,G®A} (16.17)

16.3.1 Prior distributions

Assume that proper uniform distributions are defined for the fixed effects:
P(b,) o< constant; P(b,) e constant

with:
b,(min) < b, < b,(max)

An inverted Wishart distribution (Jensen et al., 1994) is used as prior distribution for
the genetic and residual covariances. Thus the prior distribution for the residual
covariance is:

PRIV,,v,) o |RI 7 exp[-Ler(R7V )] (16.18)
The above is a p-dimensional inverse Wishart distribution (IW,), where p is the order
of R, V_ is a parameter of the prior distribution and v, is the degrees of freedom.

If V,=0and v, = —(p + 1), the above reduces to a uniform distribution. Similarly, for
the genetic covariance, the following prior distribution is assumed:

udu

PGIV,,v,) e |GI ™ exp[-L GV, )] (16.19)

with terms V and v, equivalent to V, and v, respectively, in Eqn 16.18.
The joint posterior distribution assuming 7 traits and using Eqns 16.16 to
16.19, is:

P(b,,...,b,, u,,....u , R, G)
o< P(Yy5eensy, Ibpsensb, up,u, R)p(uy,...uIG)p(G)p(R) (16.20)

16.3.2 Conditional probabilities

Using the same principles as those for obtaining Eqns 16.11 and 16.12, the condi-
tional distribution for the level k of the ith trait is:
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b, Ib, b, u,R,, G,y ~ N(b, ;,(x';,r"x;,)"); j=Lmandj=i (16.21)

with:
. o ) ) )
bi,k: (X", ) X, (ty + 1) _r”(xg,—kbi,—k +zu)
—rif(xibi+ziuj);j =1,nandj#i
Similarly, for the random animal effect, the conditional distribution for animal &
of the ith trait is:

u lu, _,u,b,R,, Gy ~ N(§, 4, (r"2 2, , +g"A} ) "), j=1,mand j = i (16.22)
with:
ﬁi,k = (z;’kriizi,k + A;jkgii)_l {z’i,k (riiyi + riiyl. - riixibi - riixibi)
- (zzf’kr’l"z/-,,e + A;’lkgiiui,k)—A;}s (g""ui,S + gi’uf-’s )}

where s represents the known parents of the kth animal.

However, instead of sampling for each level of fixed or random effects for one
trait at a time, it is more efficient to implement block sampling for each level of fixed
or random effect across all traits at once. The conditional distribution for level k of
a fixed effect required for block sampling, assuming 7z = 2, is:

b b
< b b_k,u,R,G,y>~ N[f’k ,(X,R'X,)™ (16.23)
b, b,
where:
Blak ; p-1 B | A
B =(X,e R Xk) (XkR (yk—kab_k—Zu))
2,k

which is equivalent to Eqn 5.4.
For the random animal effect, block sampling for animal k, assuming 7 = 2, the
conditional distribution is:

uy
u;

where:

b R,G N B Z,R'Z, +A; ®G)! (16.24)
Uik Ry )~ N (2 kT Apk ) :
2,k

A

it
[ b J =(Z, R"'Z, + A" ®G Y {(Z, R '(y, - Xb)-A"' ®G (&, + 1))
Uk

where s and d are the sire and dam of the kth animal.
From Eqn 16.20, the full conditional distribution of the residual variance is:

P(RIb, u, y) = P(R)P(ylb, u, R)

[ 268 Chapter 16



Including the prior distribution, the above can be expressed (Jensen et al., 1994) as:

P(R|b,u,y) oc | R [z otem) exp{—itr{R‘l (S +V, )

where 7 is the number of records and S? is:

nr A Ay a
g2 = €16 ¢ 6
e

assuming that =2 and é, =y, - Xb, - Zu,i=1, n.

Thus:

RIb, u, y ~IW,((S?+ V;)!, v, + m) (16.25)
which is in the form of a p-dimensional inverted Wishart distribution with v, + m

degrees of freedom and scale parameter (S + V).
Similarly, the conditional distribution for the additive genetic variance is:

P(Glb,u,y) < P(G)P(ulG)

Including the prior distribution, the above can be expressed (Jensen et al.,
1994) as:

P(GIb, u,y)o< | G [Erp+ira) exp[—;rr{G‘1 S:+V, 1)}}

where g is the number of animals and, assuming 7 = 2, S2 is:

2 [u}A"lu] u’]A"luzj

u

7 A-1 7 A1
u}A 'y, ulA T u,

Thus:
Glb,u,y~IW,(S2+ V)l v +q) (16.26)

which again is in the form of a p-dimensional inverted Wishart distribution with v_+ ¢
degrees of freedom and scale parameter (S + V1),

16.3.3 Numerical illustration

Example 16.2
Using the data in Example 5.1 and the variance components, the application of
Gibbs sampling to estimating variance components and predicting breeding values
is illustrated. Uniform priors are assumed for the variance components such that
v,=v,=-3and V, =V, =0.A flat prior is assumed for b, and u is assumed to be
normally distributed.

Processing data and accumulating right-hand side (rhs) and diagonals (Diag) for
level j of sex of calf effects as:
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rhslj = rhsll. +R"(y, —u,) + R%(y, - u,)
rhs, = rhs, + R*(y, - u,;) + R¥(y, - u,)

Diag, = Diag, + R

When all data have been read, calculate solutions for level j of sex effect as:

b,;

Sample b, in Eqn 16.23 as:

A

b, = by

j A

+{CHOL(Diag;"')}h
b,;
where h is the vector of normal deviates from a population of mean zero and variance 1
and CHOL is the Cholesky decomposition of the inverse of the matrix Diag.
Next, process data and accumulate right-hand side (rhs) and diagonals (Diag) for
animal 7 as:

ths = rhs,, + R'(y, - b
ths,, = rhs,, + R*(y, - b
Diag, = Diag, + R

1/-) + RIZ(yZ - bl/')
+R*(y, - b,)

1]') 2j

When all data have been read, calculate solutions for animal 7 as:

Sample u, in Eqn 16.24 as:

_ 2 .1
ui—(A J+{CHOL(D1agi )}h

Uy

All data is then processed to obtain residual effects as:

8= (é1 ] _| N -Xib, -Zy,

& Yo~ Xzf’z -Z,u,

and calculate residual sums of squares, §? = é¢’. Then compute T = (SZ + V;!)=L.
Cholesky decomposition of T is carried out to obtain LL’, where L is a lower tri-
angular matrix. Sampling from a Wishart distribution with L as the input matrix and
v, + m degrees of freedom (Eqn 16.25) generates a new sample value of R.

Similarly, to compute a new sample value of G using Eqn 16.26, first compute
T-! = (S2 + V:1)~1. Decompose T to obtain LL” and sample from a Wishart distribu-
tion with L as the input matrix and v, + g degrees of freedom. Another cycle of

sampling is then initiated until the desired length of chain is achieved. Post-processing
of results can be carried out, as discussed in Section 16.2.3.
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17 Solving Linear Equations

17.1 Introduction

Different methods can be used to solve the MME covered in the previous chapters.
These various methods could broadly be divided into three main categories:

1. Direct inversion (Section 17.2).
2. Iteration on the MME (Section 17.3).
3. Iteration on the data (Section 17.4).

The manner in which the MME are set up depends on the method to be used in solving
these equations. As shown in Section 17.4, the third method, for instance, does not
involve setting up the MME directly.

17.2 Direct Inversion

The solutions to the MME in the various examples given so far in this book have
been based on this method. It involves setting up the MME and inverting the
coefficient matrix. Solutions are obtained by multiplying the right-hand side
(RHS) by the inverse of the coefficient matrix. Thus b, the vector of solution, is
calculated as:

b=Cly
where C is the coefficient matrix and y is the RHS. Since the coefficient matrix is
symmetric, only the upper triangular portion is usually set up and inverted. The
major limitation of this approach is that it can only be applied to small data sets in

view of the memory requirements and computational difficulties of inverting large
matrices.

17.3 lteration on the Mixed Model Equations

This involves setting up the MME and iterating on these equations until conver-
gence is achieved at a predetermined criterion. The iterative procedures are based
on the general theory for solving simultaneous equations. For instance, given two
simultaneous equations with unknown parameters, b, and b,, the first equation
can be solved for b, in terms of b,. This value of b, can then be substituted in the
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second equation to solve for b,. The value of b, is then substituted in the first
equation to calculate b,. This is the principle upon which the iterative procedures
are based. In the iterative procedure, the above process is continued until the solu-
tions for the b’s are more or less the same in each round of iteration and the equa-
tions are said to have converged. There are various iterative procedures that can

be used, and some are described below.

17.3.1 Jacobi iteration

One of the simplest methods is Jacobi iteration or total step iteration.
Consider the following set of simultaneous equations:

ci1 ci2 ciz|| b Y1
ca1 ¢ || b=y,
c31 ¢ c33]lbs V3

These equations can also be written as:

cuib1+ c2ba + c13bz =y,
cab1+caba+cabs=Yy,
c31b1+c3br+c33b3=y;

or as:
Cb-y (17.1)

The system of equations is rearranged so that the first is solved for b, the second for

b, and the third for b,. Thus:

b =ei)(y, = ciabb — c13b3)
byt =(epn )y, = canb’ = ca3b?) (17.2)
bg” =(1/¢33 )(J’3 = c31b1 — c2bh)

The superscript 7 refers to the number of the round of iteration. In the first round of
iteration, 7 equals 1 and b, to b, could be set to zero or an assumed set of values that
are used to solve the equations to obtain a new set of solutions (b terms). The process
is continued until two successive sets of solutions are within previously defined allow-
able deviations and the equations are said to converge. One commonly used conver-
gence criterion is the sum of squares of differences between the current and previous
solutions divided by the sum of squares of the current solution. Once this is lower
than a predetermined value, for instance 10-%, the equations are considered to have
converged.

From the set of equations above, the solution for b, was obtained by divid-
ing the adjusted RHS by the diagonal (a,). It is therefore mandatory that the
diagonal element, often called the pivot element, is not zero. If a zero pivot ele-
ment is encountered during the iterative process, the row containing the zero
should be exchanged with a row below it in which the element in that column
is not zero. To avoid the problem of encountering a zero pivot element and
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generally improving the efficiency of the iterative process, it is sometimes rec-
ommended that the system of equations should be ordered such that the coef-
ficient of b, of the greatest magnitude occurs in the first equation, the coefficient
of b, of the greatest magnitude in the remaining equations occurs in the second
equation, etc.

The iterative procedure described above is usually called Jacobi iteration as
all new solutions in the current (r) round of iteration are obtained using solu-
tions only from the previous (r - 1) round of iteration. The Jacobi iterative
procedure is inefficient in handling systems of equations that are not con-
strained (i.e. with no restrictions placed on the solutions for the levels of an
effect) and convergence is not guaranteed (Maron, 1987; Misztal and Gianola,
1988). When a random animal effect is involved in the system of equations with
relationships included, it is usually necessary to use a relaxation factor of below
1.0, otherwise equations may not converge (Groeneveld, 1990). The relaxation
factor refers to a constant estimated on the basis of the linear changes in the
solutions during the iteration process and applied to speed up the solutions
towards convergence. When iterating on the data (Section 17.4), the Jacobi
iterative procedure involves reading only one data file, even with several effects
in the model. With large data sets this has the advantage of reducing memory
requirement and processing time compared with the Gauss—Seidel iterative pro-
cedure (see Section 17.3.2).

The Jacobi iterative procedure can be briefly summarized as follows.

Following Ducrocq (1992), Eqn 17.1 can be written as:

[M+(C-M)b=y

if M is the diagonal matrix containing the diagonal elements of C; then the algorithm
for Jacobi iteration is:

b+ = M-1(y = Cb") + bt (17.3)

When a relaxation factor (w) is applied, the above equation becomes:
b+ = w[M-1(y — Cb")] + b

Another variation of the Jacobi iteration, called second-order Jacobi, is usually
employed in the analysis of large data sets and it can increase the rate of convergence.
The iterative procedure for second-order Jacobi is:

b+ = M- (y = Cb" + b + (b - b))

Example 17.1

Using the coefficient matrix and the RHS for Example 3.1, Jacobi iteration (Eqn 17.2)
is carried out using only the non-zero element of the coefficient matrix. Solutions for
sex effect (b vector) and random animal effect (u vector) are shown below with the
round of iteration. The convergence criterion (CONV) was the sum of squares of
differences between the current and previous solutions divided by the sum of squares
of the current solution.
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Rounds of iteration

Effects 02 1 2 3 4 16 17 18 19 20

o

b, 4.333 4.333 4.381 4370 4.368 4.358 4.358 4.358 4.358 4.358
b, 3.400 3.400 3.433 3.365 3.414 3.404 3.404 3.404 3.404 3.404
a, 0.000 0.267 0.164 0.185 0.131 0.099 0.099 0.099 0.099 0.099
a, 0.000 0.000 -0.073 -0.003 -0.039 -0.018 -0.018 -0.018 -0.018 -0.018
0, 0.000 -0.033 -0.080 -0.049 -0.070 -0.041 -0.041 -0.041 -0.041 -0.041
a, 0.167 -0.138 -0.007 -0.035 0.000 -0.008 -0.008 -0.008 -0.008 -0.008
[ -0.500 -0.411 -0.248 -0.265 -0.204 -0.185 -0.185 -0.185 -0.185 -0.185
a 0.500 0.345 0.318 0.237 0.236 0.178 0.178 0.178 0.177 0.177

-0.833 -0.406 —0.390 -0.301 -0.295 -0.249 -0.249 -0.249 -0.249 -0.249
0.667 0.400 0.286 0.232 0.207 0.183 0.183 0.183 0.183 0.183
CONV 1.000 232 393 143 59% 428 168 108 41°% 3.0°

>
m:\l

aStarting values.

The starting solutions for sex effect were the mean yield for each sex subclass
and, for animals with records, starting solutions were the deviation of their yields
from the mean yield of their respective sex subclass and zero for ancestors. The final
solutions obtained after the 20th round of iteration were exactly the same as obtained
in Section 3.2 by direct inversion of the coefficient matrix. The solutions for sex effect
were obtained using Eqn 17.2. Thus in the first round of iteration the solution for
males was:

b1=%[iyk —(1)ﬁ4—<1)ﬁ7—(1)ﬁs]
T k=1

where ¢, is the diagonal element of the coefficient matrix for level i of sex effect and
m is the number of records for males.

b, =1/3(13.0 - 0.167 - (-0.833) - 0.667) = 4.333

However, using Eqn 17.2 to obtain animal solutions caused the system of equations
to diverge. A relaxation factor (w) of 0.8 was therefore employed and solutions for
animal j were computed as:

1 -
AT r—1 ~Ar—1 ~r—1 ~r—1
i, = w[(a y; —¢;b; —zk:c,zuk —u |+

where [ =j + n, t = k + n, with n = 2; the total number of levels of fixed effect, ¢, and ¢,
for instance, are the elements of the coefficient matrix between animals j and &, and
animal j and level 7 of sex effect, respectively. Thus in the first round of iteration,
solutions for animals 1 and 8 are calculated as:

A = w|{leyy(y, - ()i, - (-1.333)i, - (-2)i,)} - 2°] + 2°
w[{1/3.667(0 = 0 = (=0.223) = (=1))} = 0] + 0

0.8(0.334 - 0) + 0 = 0.267

and:

N
1]

wl{1/cy,0(vg = (1)b, = (=2)i; = (-2)d,)} - 3] + i1}
wl{1/5(5 - 4.333 - 0 - (-1))} - 0.667] + 0.667
0.

8(0.333 - 0.667) + 0.667 = 0.400
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17.3.2 Gauss—Seidel iteration

Another iterative procedure commonly used is Gauss—Seidel iteration. This is similar
to Jacobi iteration except that most current solutions are calculated from the most
recent available solution rather than the solution from the previous round of itera-
tion. Using the same set of simultaneous equations as in Eqn 17.1, solutions for b,
b, and b, in the first round of iteration become:

b;“ =(1 /611)(3’1 —c12by — 613193)
b?l =(1 /sz)(y2—621b§+1—623b§) (17.4)

b5 =(1/c33)(y;—cibi™ = c3205™)

Thus the solution for b, in the 7 + 1 round of iteration is calculated using the
most recent solution for b, (b}*!) instead of the previous solution (&), and the
current solution for b, is calculated from the current solutions for b, (b7*') and
b, (by"). If, in Eqn 17.3, L is strictly the lower triangular of C and D the diago-
nal of C, then Eqn 17.3 becomes the Gauss—Seidel iteration when M = L + D.
The convergence criteria could equally be defined as discussed in Section 17.3.1.
Generally, equations are guaranteed to converge with the Gauss-Seidel iterative
procedure. However, when iterating on the data, this iterative procedure
involves reading one data file for each effect in the model. With large data sets,
the setting up of data files for each effect could result in large memory require-
ment and the reading of several files in each round of iteration could increase
processing time.

Example 17.2

Using the same coefficient matrix, RHS and starting values as in Example 17.1 above,
the Gauss—Seidel iteration (Eqn 17.4) is carried out for the same number of iterations
as in Jacobi’s method and the results are shown below. The convergence criterion is
as defined in Example 17.1.

Rounds of iteration

Effects 0 1 2 3 4 16 17 18 19 20

b, 4.333 4.333 4.400 4.372 4364 4359 4.359 4359 4.359 4.359
b, 3.400 3.400 3.392 3.403 3.407 3.405 3.405 3.405 3.405 3.405
a, 0.000 0.333 0.194 0.149 0.115 0.098 0.098 0.098 0.098 0.098
a, 0.000 -0.083 -0.035 -0.006 -0.008 -0.019 -0.019 -0.019 -0.019 -0.019
a, 0.000 -0.021 -0.136 -0.109 -0.076 -0.041 -0.041 -0.041 -0.041 -0.041
a, 0.167 -0.119 0.001 0.004 -0.003 -0.009 -0.009 -0.009 -0.009 -0.009
0 -0.500 -0.376 -0.261 -0.218 -0.199 -0.186 -0.186 -0.186 -0.186 -0.186
g, 0.500 0.392 0.254 0.204 0.185 0.177 0.177 0.177 0477 0477

=)

—0.833 -0.364 -0.284 -0.260 -0.253 -0.250 -0.250 -0.250 -0.250 -0.250
A 0.667 0.282 0.167 0.164 0.171 0.182 0.183 0.183 0.183 0.183
CONV  1.000 1.92 34 31+% 1.0* 710 4-10 210 1-10 81

Q>\‘

CONYV, convergence criterion.
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The solutions obtained are the same as those obtained from Jacobi iteration and by
direct inversion of the coefficient matrix in Example 3.1. In addition, the equations
converged faster than when using Jacobi iteration and no relaxation factor was
applied.

Iterating on the MME could be carried out as described above, once the equa-
tions have been set up, using only the stored non-zero elements of the coefficient
matrix. In practice, it may be necessary to store the non-zero elements and their rows
and columns on disk for large data sets because of the memory requirement, and
these are read in each round of iteration.

17.4 lterating on the Data

This is the most commonly used methodology in national genetic evaluations, which
usually involve millions of records. Schaeffer and Kennedy first presented this method in
1986. It does not involve setting up the coefficient matrix directly, but it involves setting
up equations for each level of effects in the model as the data and pedigree files are read
and solved using either Gauss-Seidel or Jacobi iteration or a combination of both or a
variation of any of the iterative procedures such as second-order Jacobi. Presented below
are the basic equations for the solutions of various effects under several models and these
form the basis of the iterative process for each of the models.

The equation for the solution of level i for a fixed effect in the model in a
univariate animal situation is Eqn 3.5, which is derived from the MME and can be
generalized as:

) ;yk,— - ;wﬁ (17.5)

i

~

ni

where y,. is the kth record in level i, 7 is the total number of levels of other effects
within subclass i of the fixed effect and i, is the solution for the jth level, and #, is
the number of records in fixed effect subclass i. However, when there are many fixed
effects in the model, the above formula may be used to obtain solutions for the major
fixed effect with many levels such as HYS, while the vector of solutions (f) for other
minor fixed effects with few levels may be calculated as:

f=(X’X)"'X'(y - W - b) (17.6)

where y is the vector of observations, (X’X)~! is the inverse of the coefficient matrix
for the minor fixed effects, and w and b are vectors of solutions for effects as defined
in Eqn 17.4. The matrix X'X could be set up in the first round of iteration and stored
in the memory for use in subsequent rounds of iterations.

The solution (4) for the level j (animal j) of the random animal effect in the uni-
variate animal model is calculated using Eqn 3.8, which can be rewritten (replacing
n, by k) as:

i, = [n ol + i) + n,yd + %{koa(ﬁo - 0.5(12m0))}]/diag/. (17.7)
with:

diag]. =2(n,)o+ n, + Z{(k /2)0}
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where 7, 71, and 7, are solutions or EBVs for the sire, dam and oth progeny of animal j,
respectively; 4 is the solution of the mate of animal j with respect to progeny o; yd is
yield deviation, i.e. yield of animal j corrected for all other effects in the model; 7, = 1 or % if
both or one parent of animal j is known; 7, is the number of records; k_ is 1 or % if the
other parent of progeny o (mate of animal /) is known or not known; and o = 6%/

In the multivariate animal model situation with equal design and random animal
effect as the only random effect in addition to residual effects, the solutions for the
levels of fixed effect and animal effects are obtained using Eqns 5.4 and 5.8, respec-
tively, which are derived from the MME (Eqn 5.3).

For maternal animal model equations, the solutions for fixed effects could be calcu-
lated using Eqn 7.3. The equations for animal and genetic maternal effects are based on
Eqn 7.4, given earlier. From Eqn 7.4, the solution (i) for direct effect for animal i is:

i = [0, + 0,) + n,00(, + 1) — m,o0() — (k J2)a(101)
+1,(y, - b[ - 1, - pe,) + %{koal(ﬁo -0.5(a,,))}
+ Z{k oy (i, - 0507, /diag, (17.8)

with:
diag, = 2(n))ot, + n, + Z {(k /2) a1}

where 771, 11, 111, i1 and 77 are solutions for genetic maternal effects for animal 4, sire,
dam, oth progeny of animal i and mate of animal 4, respectively; y, is the yield for animal i
b, is the solution for fixed effect j; pe, is the permanent environmental effect for the dam
of animal 7; ,, n, and k  are as defined above and 7, = 2(,); and o terms are as defined
in Eqn 7.4.

The solution (1) for genetic maternal effect for animal 7 from Eqn 7.4 is:

m. = [0, + ) + n, 000, + 1) — myay (i) — (k,J2)0ty(i2)
+m,(y, = b, — il, - 11, - pe,) + %‘.{/eoaz(ﬁo -0.5(a,))}
+ Zol{koa3(ﬁ10 - O.S(ﬁimgte))}]/diagi (17.9)

with:
diag, = 2(n,)o + n, + Z {(k /2) 0}

Solutions for permanent environmental effect are obtained using Eqn 7.5.

The computational procedure for a reduced animal model was presented by
Schaeffer and Wilton (1987) using a bivariate analysis. The procedure is similar to
the animal model described above except that records for non-parents are written
twice, one record for each parent. Consequently, the residual variance of non-parental
records (r,) is multiplied by 2, that is:

r,=2(0%+d(0?) = 2(1 + da')o?

where d = 1 or 3 if both or one parent is known and the contribution of non-parents’
records to the diagonal of their parents is 0.5 instead of 0.25 (see Example 7.2).

The equations for solutions for levels of fixed and random effects are similar to
those defined earlier. From Eqn 7.3, if the residual variance for parental records is
defined as 7, the contribution of parental records to the RHS for level i of a major
fixed effect is:

i

RHS; = D (ri (yix — itxy)) (17.10)
k=1
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where 7, is the number of parental records in level i of fixed effect and Wy, s the solu-
tion for the jth level of other effects in the model affecting record k. The contribution
of non-parental records to the RHS is included as:

RHS; = RHS; + Y (r2(yrs = 0-3 (it + ita) = i) (17.11)

k=1
where 2, is the number of non-parental records in level 7 of fixed effect i and 7,
are solutions for the sire and dam of the non- parent with record k, ;] is the inverse
of the residual variance for the non-parental record k and @, is the solution for
level j of other effects in the model apart from random animal effects affecting record k.

Then:
RHS;

i ;i
2t 2
k=1 j=1

The equation for the breeding value of the jth animal, which is a parent with its own
yield record, a non-parental record from progeny i and information from another
progeny (o), who is itself a parent, is:

b,‘:

i, _[n old, + i) + nyry (yd)+nr2 (vd, - (0.5)a,,)
{k o, - 0.5(i1,, ))}]/dlag (17.12)

with:
diagi =2(n) o+ nyryt + (0.5)nyr;" + Z{(R /2) 0

where yd; and yd; are yield deviations for animal j and progeny 7, which is a non-
parent, 7 . is the breeding value for the mate of animal j with respect to the ith
progeny (non-parent), 7, is the number of observations (records) on animal j, 7, is
the number of non-parental records, 7' and ;' are as defined earlier and all other
terms are as defined in Eqn 17.7. Note that COIltI’lbuthl‘lS from the oth progeny in
the above equation refer to those progeny of animal j who are themselves parents
and that non-parental records are adjusted for half the breeding value of the mate of
animal ;. If animal j has no non-parental records from its progeny, Eqn 17.12 is the
same as Eqn 17.7.

The principles of evaluation based on iterating on the data are illustrated below
using a univariate animal model and a reduced animal model with maternal effects.

17.4.1 Animal model without groups

Example 17.3

Using the same data as in Example 3.1 (Table 3.1) on the weaning weight of beef
calves, parameters and model, the principles of predicting breeding values and esti-
mating solutions for fixed effects iterating on the data are illustrated using Gauss—
Seidel iteration.

DATA ARRANGEMENT

Gauss—Seidel iteration requires the data files to be sorted by the effect to be
solved for. The pedigree file is needed when solving for animal solutions.
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The pedigree file is created and ordered in such a manner that contributions to the
diagonal and RHS of an animal from the pedigree due to the number of parents
known (see type 1 record below) and from progeny accounting for whether mate is
known (type 2 record), can be accumulated while processing the animal. Thus, ini-
tially, a pedigree file is created consisting of two types of records:

1. Type 1 record for all animals in the data comprising the animal identity, record
type, and sire and dam identities.

2. Type 2 record for each parent in the data comprising the parent identity, record
type, identities for progeny and other parent (mate) if known. The type 2 records are
used to adjust the contribution of the progeny to each parent for the mate’s breeding
value when solving for animal solutions.

The pedigree file is sorted by animal and record type. The sorted pedigree file for
the example data is given below.

Animal Code Sire or progeny Dam or mate

ONOOOOGO A BRWWWMNNN = = o
=S = N === =
WPhrO=2NWN—=000000O0O0ONMO
DO WNPEANOOTOONO—LWONOO

Second, a data file is set up consisting of animal identity, fixed effects, covariates
and traits. If there is a major fixed effect with many levels, two data files need to be
set up: one sorted by the major fixed effects such as herd or HYS (file A), to be used
when solving for the major fixed effect; and the other sorted by animal identity (file B),
to be used to solve for animal solutions. Assuming sex effect to be the major fixed
effect in the example data, the data sorted by sex are as follows:

Weaning weight

Calf Sex gain (kg)
4 Male 4.5
7 Male 3.5
8 Male 5.0
5 Female 2.9
6 Female 3.9
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ITERATION STAGE

Let b and a be vectors of solutions for sex and animal effects. Starting values for sex
and animal effect are assumed to be the same as in Example 17.1.

SOLVING FOR FIXED EFFECTS. In each round of iteration, file A is read one level of sex
effect at a time with adjusted right-hand sides (ARHS) and diagonals (DIAG) accu-
mulated for the ith level as:

ARHS, = ARHS, + y,, - 4,

DIAG, = DIAG, + 1
At the end of the ith level, the solution for the level is computed as:

b, = ARHS /DIAG,

The above step essentially involves adjusting the yields for animal effects using previous
solutions and calculating solutions for each level of sex effect. For example, the solution
for level one of sex effect in the first round of iteration is:

l;1 =[(4.5-0.167) + (3.5 - (-0.833)) + (5.0 - 0.667)]/3 =4.333

After calculating solutions for fixed effect in the current round of iteration, file B and
the pedigree file are processed to compute animal solutions.

SOLVING FOR ANIMAL SOLUTIONS. DIAG and ARHS are accumulated as data for each ani-
mal and read from the pedigree file or from both the pedigree file and file B for animals with
records. When processing type 1 records in the pedigree file for the kth animal, the contri-
bution to the DIAG and ARHS according to the number of parents known is as follows:

Number of parents known

None One (sire (s)) Both
ARHS, =0 ARHS, = (§)o¢(0s) ARHS, = a(d, + 0,)
DIAG, = o DIAG, = (3 DIAG, = 2«

where 7_and #, are current solutions for the sire and dam, respectively.

When processing type 2 records in the pedigree file for the kth animal, the contri-
bution to the DIAG and ARHS according to whether the mate of animal k is known
or not is as follows:

Mate unknown Mate known
ARHS, = ARHS, + (%)a(ao) ARHS, = ARHS, + o(0, - 0.50,))
DIAG, = DIAG, + (3)c DIAG, = DIAG, + (7)o

where # and #  are current solutions for the progeny and mate, respectively, of
the kth animal. If the kth animal has a yield record:

~

ARHS, = ARHS, + y, - b,
DIAG, = DIAG, + 1
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where I;t. are current solutions for level 7 of sex effect.
When all pedigree and yield records for the kth animal have been processed, the
solution for the animal is computed as:

4, = ARHS,/DIAG,

For the example data, the solutions for animal 5 in the first round of iteration is
computed as follows.

Contribution to diagonal from pedigree is:
DIAG; = (2 + 0.5)ax = 5.00
Accounting for yield record, diagonal becomes:
DIAG, = 5.00 + 1 = 6.00
Contribution to RHS from yield is:
ARHS, = 2.9 - 3.40 = -0.5
Contribution to RHS from parents and progeny (pedigree) is:

ARHS, = ARHS, + (s, + ity) + olit, - 0.5(2,))
= -0.5 + 2(<0.083 + (<0.021)) + 2(-0.833 - 0.5(-0.119))
= -2255

and:
125 =-2.255/6.00 = -0.376

When all animals have been processed, the current round of iteration is com-
pleted. However, the iteration process is continued for sex and animal effects until
convergence is achieved. The convergence criterion can be defined as in Section 17.3.1.
In this example, solutions were said to have converged when the sum of squares of
differences between the current and previous solutions divided by the sum of squares
of the current solution was less than 10-7. The solutions for all effects in the first
round of iteration and at convergence at the 20th iteration are as follows:

Solutions
Effects At round 1 At convergence
Sex
Male 4.333 4.359
Female 3.400 3.404
Animal
1 0.333 0.098
2 -0.083 -0.019
3 -0.021 —-0.041
4 -0.119 -0.009
5 -0.376 -0.186
6 0.392 0.177
7 -0.364 -0.249
8 0.282 0.183
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These solutions are the same as those obtained by direct inversion of the coefficient
matrix in Section 3.2 or iterating on the coefficient matrix in Section 17.2. However,
as stated earlier, the advantage of this method is that the MME are not set up and
therefore memory requirement is minimal and can be applied to large data sets.

17.4.2 Animal model with groups

Example 17.4

With unknown parents assigned to phantom groups, the procedure is very similar to
that described in Section 17.4.1, with no groups in the model except in the way the
pedigree file is set up and animal solutions are computed. Using the same data,
parameters and model as in Example 3.4, the methodology is illustrated below.

DATA PREPARATION

The pedigree file is set up as described in Section 17.4.1 with ancestors with unknown
parentage assigned to groups. The assignment of unknown parents for the example
pedigree has been described in Section 3.6. However, there is also an additional
column for each animal indicating the number of unknown parents for each animal.

The pedigree with unknown parents assigned to groups and the additional column
indicating the number of unknown parents is as follows:

Calf Sire Dam Number of unknown parents
1 9 10 2
2 9 10 2
3 9 10 2
4 1 10 1
5 3 2 0
6 1 2 0
7 4 5 0
8 3 6 0

and the ordered pedigree for the analysis is:

Animal Code Sire or progeny Dam or mate Number of unknown parents

©

10 2
10
2
10
3
1
10
2
6

WWWNMNON ===
NMNN=MNDN=MNDN =
@001 o 0o o N
OCQOMNMNOONO =

Continued
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(Continued)

Animal Code Sire or progeny Dam or mate Number of unknown parents

4 1 1 10 1
4 2 7 5 0
5 1 3 2 0
5 2 7 4 0
6 1 1 2 0
6 2 8 3 0
7 1 4 5 0
8 1 3 6 0
9 2 1 10 2
9 2 2 10 2
9 2 3 10 2
10 2 1 9 2
10 2 2 9 2
10 2 3 9 2
10 2 4 1 1

The arrangement of yield data is the same as in Section 17.4.1 in the animal model
analysis without groups.

ITERATIVE STAGE

SOLVING FOR FIXED EFFECTS. This is exactly as described for the animal model with-
out groups in Section 17.4.1, with yield records adjusted for other effects in the model
and solutions for fixed effects computed.

SOLVING FOR ANIMAL SOLUTIONS. Solutions for animals are computed one at a time as
both pedigree and data file sorted by animals are read, as described for the animal
model without groups. Therefore, only the differences in terms of the way diagonals
and ARHSs are accumulated are outlined.

For the kth animal in the pedigree file, calculate:

w, = (4/(2 + no. of unknown parents))

For the type 1 record in the pedigree file for the kth animal:
ARHS, = ARHS, + (i1_+ 1,)0.5w,
DIAG, = DIAG, + w,

For the type 2 record in the pedigree file for the kth animal:
ARHS, = ARHS, + (2, - 0.54 )0.5w,

Accumulation of ARHSs from the data file is as specified in Section 17.4.1 in the
model without groups.

The solution for the kth animal is computed as ARHS,/DIAG, when all records
for the animal in the pedigree and data file have been read. The solutions in the first
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round of iteration and at convergence without and with constraint on group
solutions, as in Example 3.4, are as follows:

Solutions
Effects At round 1 At convergence At convergence?
Sex
Male 4.333 4.509 5.474
Female 3.400 3.364 4.327
Animal
1 0.333 0.182 -0.780
2 —-0.083 0.026 -0.937
3 -0.021 -0.014 -0.977
4 -0.119 -0.319 -1.287
5 -0.376 -0.150 -1.113
6 0.392 0.221 -0.741
7 -0.364 -0.389 -1.355
8 0.282 0.181 -0.782
9 0.153 0.949 0.000
10 -0.176 -0.820 -1.795

aWith solutions for groups constrained to those in Example 3.4.

When the solutions for groups are constrained as those in Example 3.4, this method
gives the same solutions. However, when there is no constraint on group solutions,
the ranking of animals is the same and linear differences between levels of effects
are more or less the same as when there is a contraint on group solutions.

17.4.3 Reduced animal model with maternal effects

Example 17.5

The principles of genetic evaluation iterating on the data with a reduced animal
model with maternal effects are illustrated using the same data set, parameters and
model as in Example 6.2. The genetic parameters were:

g1 &5 0 0] [150 40 O 0

a
m 821 8&» 0 0 -40 90 O 0
ar = =
e 0 0 g5 O 0 0 40 0
e 0 0 0 o2 0 0 0 350
and:

2 2(7(0.00336 0.01261

g 8

The inverse of the residual variance for parental records is 1/62 ="} =0.002857

and for non-parental records is 1/(c%+ dg, ) = r‘;p, where d = 3/4 or 1/2 when one or both

parents are known and the inverse of the variance due to permanent environmental
effect = 1/0'127{3 = 0.025.

Gl{g“ g”}_[o.oom 0.00336}
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DATA ARRANGEMENT

The pedigree file is set up as described in Section 17.4.1 but only for animals that are
parents. The pedigree file for the example data is:

Animal Code Sire or progeny Dam or mate

o

O©CONOOOODOUOUPRAPDPWWWNNON = = =
= = 2 O =222 =
WP ONWO—-ANOWOOO U1Oo ©u

DO =PBANWONOOOUNOW—=00MNO

A data file is set up consisting of a code to identify parents and non-parents. For
non-parents, one record is set up for each parent, comprising the parent, a code indicat-
ing it is a non-parent, the animal that has the yield record, the other parent (mate), the
sire and dam of the animal with the yield record, fixed effects, covariates (if any) and
traits. A single record is set up for parents, comprising the animal, a code indicating it is
a parent, the animal again, a field set to zero corresponding to the column for the other
parent in non-parents’ records, the sire and dam of the animal, fixed effects, covariates
(if any) and traits. The data file may be sorted in three sequences if there is a major fixed
effect in the model: sorted by major fixed effect, such as HYS (file A); sorted by animal
(file B); and third sorted by dam code (file C). For the example, file A is:

Parent/ Birth

animal Code® Animal Mate Sire Dam Herd Sex weight (kg)

5 0 5 0 1 2 1 Male 35.0

6 0 6 0 3 2 1 Female 20.0

7 0 7 0 4 6 1 Female 25.0

8 0 8 0 3 5 1 Male 40.0

9 0 9 0 1 6 2 Male 42.0

3 1 10 2 3 2 2 Female 22.0

2 1 10 3 3 2 2 Female 22.0

3 1 11 7 3 7 2 Female 35.0

7 1 11 3 3 7 2 Female 35.0

8 1 12 7 8 7 3 Female 34.0
Continued
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(Continued)

Parent/ Birth
animal Code* Animal Mate Sire Dam Herd Sex weight (kg)
7 1 12 8 8 7 3 Female 34.0
9 1 13 2 9 2 3 Male 20.0
2 1 13 9 9 2 3 Male 20.0
3 1 14 6 3 6 3 Female 40.0
6 1 14 3 3 6 3 Female 40.0

a0, parental record; 1, non-parental record.

ITERATION STAGE

The solution vectors for herd (hd), sex (b), direct animal effect (i), genetic maternal
effect (f) and permanent environmental effect (pe) are initially set to zero.

SOLVING FOR FIXED EFFECTS. Data file A is read at each round of iteration one herd at
a time with ARHS and DIAG accumulated for the ith herd as:

ARHS, = ARHS, + 7,0 (y,, = b = i, = 111, - pe,)

for parental records (Eqn 17.10):
ARHS, = ARHS, + 7,1 (y,, = b - 0.5(, + it;) - 11, - pe,)

i
for non-parent records (Eqn 17.11):

DIAG, = DIAG, + r;!

where 77! is the inverse of the residual variance of the nth record being read.
At the end of records for the ith herd, the solution is computed as:

hdl. = ARHS,/DIAG,

In the first round of iteration, the solution for the first herd is:

hd, = [r ;nlz(y1 - b - i, - 11, - pe,) + (v, —Ab i, - 1, - pe,)
(y - b - 727 -mg - Pe ) (y4 b - us - m - P€5)]/4(7’;,;)
=[r,,(35-0-0- 0 0)+(20-0 - 0—0—0)+(25—0—0—0—O)
+(40 -0 -0-0-0)/4(r,,;)
= 0.3432/0.01144 = 30.00
While reading data file A, ARHSs consisting of yield adjusted for previous animal,
maternal and permanent environmental solutions are accumulated for each level of
sex effect. Thus for the jth level of sex effect:

ARHS, = ARHS]. + r;; (Vijrse = W, — 711, = De,)

for parent records:

ARHS, = ARHS, + 71 (y,,, -
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and for non-parent records:
DIAG, = DIAG, + 1!

Afer reading file A, the solution for the j sex class is computed as:
ARHS, = ARHS, - r;'hd,
b = ARHS /DIAG,

where /;di is the current solution of herd i and nr;! is the sum of the inverse of the
residual variance for records of the jth level of sex effect in herd i. The latter is accu-
mulated while reading file A. For the example data, solutions for sex effect in the first
round of iteration are:

b, = ARHS, - 21,1 (hd,) - .\ (hd,) - 21} (hd.)/[37), + 217}
= (0.38134 - 217!, (30.0) - 77!.(33.638) - 273} (31.333)/0.01092
=3.679

After obtaining solutions for fixed effects in the current round of iteration, the
solutions for animals are solved for.

SOLVING FOR ANIMAL SOLUTIONS. As described in Section 17.4.1, animal solutions are
computed one at a time as the pedigree file and file B are read. Briefly, for a type 1
record in the pedigree file for the kth animal, contributions to DIAG and ARHS
according to the number of parents known (Eqn 17.8) are:

Number of parents known

None One (sire (s)) Both
ARHS, =0 ARHS, = 2g'"(0,) ARHS, = g''(d, + 0,)
DIAG, = g DIAG, = £ g" DIAG, = 2g"

where 4_and 7, are current solutions for direct effects for the sire and dam of the
animal k.

The ARHS is augmented by contributions from the maternal effect as a result of
the genetic correlation between animal and maternal effects. These contributions are
from the sire, dam and the kth animal (see Eqn 17.9) and these are:

Number of parents known

None One (sire (s)) Both

ARHS, = ARHS, + (

- M) 2 g2 ARHS, = ARHS, + (i + rf_)g"2
ARHS, = ARHS, — (17,)g'2 ARHS, = ARHS, - (1f,)

9'2 ARHS, = ARHS, - (17,)2g"

mlbm"\,

where 71, 71, and 7, are current maternal solutions for the sire and dam of animal
k respectively.
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In processing a type 2 record in the pedigree file for the kth animal, contributions
to DIAG and ARHS according to whether the mate of k is known are:

Mate is unknown Mate is known
ARHS, = ARHS, + % g''(a,) ARHS, = ARHS, + (0,-0.50,)9"
DIAG, = DIAG, + % g" DIAG, = DIAG, + g11

where 71 and 7 are current solutions for direct effects for the progeny and mate of
the animal k.
Accounting for contributions from the maternal effect to ARHS:

Mate is unknown Mate is known

ARHS, = ARHS, + 2 ¢'2(f,) ARHS, = ARHS, + (1, - 0.5 )g'2
ARHS ARHS, - (M )1/3g™ ARHS ARHS (7)) 15"

where 71 and 7 are current maternal solutions for the progeny and mate of the
animal k.
If the animal has a yield record:

DIAG, = DIAG,, + r;'if it is a parent
or:
DIAG, = DIAG, + (1;1)0.5 if it is a non-parent

The diagonals of non-parents are multiplied by 0.5 instead of 0.25 because records
of non-parents have been written twice (see Section 17.4).

Contributions to the RHS are accumulated as:

ARHS, = ARHS, + 7-\(y,., - bd, - b - 11, - pe)

1

for parent records and:

ARHS, = ARHS, + 77 (y,, -~ bd, — b - 0.5(d,) - 171, - pe,

1

for non-parent records. In the equations above, hdl b/ i, pe, and i are current

solutions for herd i, jth level for sex effect, Ith maternal effect level tth level of per-
manent environment effect and animal solution for the other parent (mate), respec-
tively. The solution for animal k is computed as usual when all records for the animal
in the pedigree and data file have been read as:

A, = ARHS,/DIAG,

The solution for animal 2 in the example data in the first round of iteration is as
follows.

The contribution to the diagonal from pedigree is:

DIAG, = (1 + 1 + 1)0.00756 = 0.01512
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The contribution to the diagonal from yield is:
DIAG, = DIAG, + 2(0.00059) = 0.01512 + 0.00118 = 0.0163

The contribution to the ARHS from the pedigree is zero since both parents are
unknown and solutions for progeny are zero in the first round of iteration. The con-
tribution to ARHS from yield record is:

ARHS, = 7.1y, - bd, = b, - it, - r, - pe;)
+ 1"7117()113 - hd, - b, - ity - 111, - pe,)
ARHS, = r;;(ZZ - (-2.567) -33.600-0-0-0)
+ r;}j (20 - 3.679 - 31.333) = -0.02818
Therefore:

i, = -0.02818/0.0163 = -1.729

After processing all animals in the pedigree and data file in the current round of itera-
tion, equations for maternal effects are set and solved as described below.

SOLUTIONS FOR MATERNAL EFFECT. Solutions for maternal effects are computed using
both the pedigree file and the data file sorted by dam. Records for the /th animal are
read in from the pedigree file and from file C if it is a dam that has progeny with a
yield record, while accumulating DIAG and ARHS. For the type 1 record in the pedi-
gree file for animal /; contributions to ARHS and DIAG according to the number of
parents known are as follows:

Number of parents known

None One (dam(d)) Both
ARHS, =0 ARHS, = 2 g%(m,) ARHS, = g®(rh_ + )
DIAG, = g* DIAG, = 2 g% DIAG, = 2g#

Taking into account contributions from animal effects to the ARHS due to
genetic correlation gives:

Number of parents known

None One (dam(d)) Both
ARHS, = ARHS, + (0

- )
d
ARHS, = ARHS, - (4)g?  ARHS, = ARHS, - ({)

% g12 ARHSI = ARHSI + (05 + ad)g12
4
1’3

g2 ARHS,= ARHS, - (,)2g"

For the type 2 record in the pedigree file for animal I, contributions to the ARHS
and DIAG according to whether the mate of animal / is known or not are:

Mate is unknown Mate is known
ARHS, = ARHS, + (%)g”(rﬁo) ARHS, = ARHS, + g22(n“70 -0.5m,_ )
DIAG, = DIAG, + (%)g22 DIAG, = DIAG, + (1/2)g??
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Taking into account contributions from animal effect (see Eqn 17.6) gives:

Mate is unknown Mate is known
ARHS, = ARHS, + (%) 12(u ) ARHS, = ARHS, + (4, - 0.50,, )g12
ARHS, = ARHS, - (0)( )g" ARHS ARHS (u,)( )g"?

For the animal [, which is a dam with progeny having yield records, DIAG and
ARHS from the pedigree is augmented with information from yield as:

DIAG = DIAG + 7!
and:

ARHS, = ARHS, + r[;al(yi,.klz - hd, -
for parent records and:

ARHS, = ARHS, + 7} (v, = hd, - b - 0.5(i_ + 11,)) - pe,)

for non-parent records.
After processing all records from pedigree and yield records for the /th animal,
the solution for the maternal effect is computed as:

11, = ARHS /DIAG,
The calculation of the solution for animal 5 in the first round of iteration is as follows.
The contribution from a type 1 record in the pedigree is:
ARHS; = (1, + 171,)g** + (it + 1i,)g"* - (i2,2"?)
=(0.0217 + -1.7027)0.01261 + (0 + (-1.7294))0.00336 - ((-0.5831)(2)0.0336)
=-0.02309
DIAG, = (2)0.01261 = 0.02522
The contribution from a type 2 record in the pedigree is:
ARHS = ARHS; + (g — L 171,)g* + (i1g — 1 i1,)g" - (1,1 g
=-0.02309 + (0 - 1 (0.4587))0.01261
+(1.4382 - 1 (0.8960))0.00336 - ((-0.5831)(

2

= -0.021675
DIAG, = DIAG;, + 1 g2 = 0.02522 + 0.0063 = 0.03153

12)

)0.00336)

1
2

The contribution from yield of progeny (animal 8) for dam 5 is:

ARHS; = ARHS; + 7\ (y, - hd, - b - i - pe;)
- _0.021675"% 7,1 (40 - 30,00 = 3.679 — (1.4382) - 0)
= - 0.007724

DIAG, = DIAG, + r =0.03153 + 0.002857 = 0.034387
and the solution is:
#its = -0.007724/0.034387 = -0.225

Solutions for permanent environmental effects are solved for after processing all
animals for maternal effects in the current round of iteration.
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SOLVING FOR PERMANENT ENVIRONMENTAL (pe) EFFecTs.  Only the data file sorted by dams
is required to obtain solutions for pe effects.

The records for the tth dam are read from file C while ARHS and DIAG are
accumulated as:

A A

ARHS, = ARHS, + 7! (y,,, - hd, - b~ iy, - 1i1)
for parent records and:
ARHS, = ARHS, + 731 (y,,, - hd, - b, - 0.5(i, + i) - 1)
for non-parent records.
DIAG, = DIAG, + 7!
At the end of records for the tth dam, solutions are computed as:
pe, = ARHS /(DIAG, + 1/0?)

The solution for permanent environmental effect for animal 5 in the first round of
iteration is:

ARHS; = 1} (y, - hd, - b, - i - 171,)

r,1(40 - 3.679 - 30.0 - 1.4822 - (~0.2246))
= 0.01459

DIAG; = ;! +0.025 = 0.02786

and:
pes = 0.01459/0.02786 = 0.524

Further iterations are carried out until convergence is achieved. The convergence
criteria defined in Section 17.3.1 could also be used. The solutions for the first round
of iteration and at convergence are shown below.

Solutions
Effects At round 1 At convergence
Herd
1 30.000 30.563
2 33.600 33.950
3 31.333 31.997
Sex of calf
Male 3.679 3.977
Female -2.657 -2.872
Animal
1 0.000 0.564
2 -1.729 -1.246
3 0.896 1.166
4 0.000 -0.484
5 -0.583 0.630
6 -0.554 -0.859

Continued
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(Continued)

Solutions

Effects At round 1 At convergence
7 -0.020 -1.156
8 1.438 1.918
9 -0.396 -0.553

Maternal
1 0.022 0.261
2 -1.703 -1.582
3 0.459 0.735
4 0.046 0.586
5 -0.225 -0.507
6 0.425 0.841
7 0.788 1.299
8 -0.224 -0.158
9 0.255 0.659

Permanent environment
2 -1.386 -1.701
5 0.524 0.415
6 0.931 0.825
7 0.527 0.461

These solutions are exactly the same obtained as those obtained in Section 7.3
by directly inverting the coefficient matrix.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are calculated
after convergence has been achieved, as described in Section 7.3. The solutions for
non-parents for this example have been calculated in Section 7.3.

17.5 Preconditioned Conjugate Gradient Algorithm

Berger et al. (1989) investigated the use of the plain or Jacobi conjugate gradient
iterative scheme for solving MME for the prediction of sire breeding values. They
indicated that plain conjugate gradient was superior to a number of other iterative
schemes, including Gauss-Seidel. Strandén and Lidauer (1999) implemented the use
of the preconditioned conjugate gradient (PCG) in genetic evaluation models for the
routine evaluation of dairy cattle with very large data. In the PCG method, the linear
systems of equations (Eqn 17.1, for instance) is made simpler by solving an equivalent
system of equations:

M-ICb = M'r

where M is a symmetric, positive definite, preconditioner matrix that approximates
C and r is the right-hand side. In the plain conjugate gradient method, the precondi-
tioner M is an identity matrix.
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The implementation of the PCG method requires storing four vectors of size
equal to the number of unknowns in the MME: a vector of residuals (e), a search-
direction vector (d), a solution vector (b) and a work vector (v). The PCG method can
be implemented with less memory by storing the solution vector on disk and reading
it in during the iteration. The pseudo-code for the PCG method (Lidauer et al., 1999)
is outlined below, assuming that starting values are:

b» =0, e =r-Cb=r, d?=M"'e=M"r®
Fork=1,2,...,n
v = Cd*-1

o = e/(k—l)M—le(k—l)/(dr(k_l)v)
bk = hlk-1) 4 d*k-1

elk) = elk-1) _ oy

v = M-le®

B = e Kv/(ek-1IM-1elk-1)

d® = v + Bd®*-1

If not converged, continue iteration until converged, and ® and B are step sizes in the
PCG method.

17.5.1 Computation strategy

The major task in the PCG algorithm above is calculating Cd, where C is the co-
efficient matrix of the MME. The vector d is the search direction vector and every
iteration of the PCG minimizes the distance between the current and the true solu-
tions in the search direction. Strandén and Lidauer (1999) presented an efficient
computation strategy for computing Cd for a multivariate model. Assuming, for
instance, that data are ordered by animals, the MME for the multivariate model
(Egn 5.2) can be written as:

b

a

i=1

ZX R_1 . Zx R"1 y

HEE
ZZiRz'_1Yi
i1

ZZ R;'x/ Zz,-R,-"lz’+A"1 ®G™

i=1

N
J inRi_IYi

where N is the number of animals with records, x’and z’, are matrices having rows with /,
equal to the number of traits observed on animal i. Denote w" =[x'Zz]] and V as:

(00
o A®G
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Computing Cd then implies calculating:

N N
D wRIW d+Vd=) v, +v, (17.13)

i=1 i=1

If solving the MME with iteration on the data for a univariate model without any
regression effects, this calculation can be achieved by accumulating for each individ-
ual i, the product v, = T,d, where the coefficients in T, = wR'w/ can be deduced
without performing any of the products, as w, contains zeros and ones only and R;™!
is a scalar or R is factored out (Eqn 3.4). For a multivariate model, the principles
for computing T, are essentially the same but with scalar contributions replaced by
matrix R, Strandén and Lidauer (1999) suggested the following three-step method
for calculating the product wR-/d:

1. & 1. *
s, —~w/d; s, Rls; v, ws

where vectors s, and s; are of size equal to the number of traits observed on individual
i (I). They demonstrated that this three-step approach reduced substantially the num-
ber of floating point operations (multiplications) compared with a multivariate accu-
mulation technique as used by Groeneveld and Kovac (1990). For instance, given that
g, is the number of effects over traits observed for individual i, the number of floating
point operations were 720 with [, = 3 and g, = 15 using the multivariate accumulation
technique compared with 78 with the three-point approach. They also suggested that
v,=V-'din Eqn 17.13 can be evaluated in a two-step approach:

X I®ANd; v, « (G ®I)x

17.5.2 Numerical application

Example 17.6
The application of PCG to solve MME is illustrated using data for Example 3.1 for
a univariate model and iterating on the data.

COMPUTING STARTING VALUES

Initially, the pedigree is read and diagonal elements of A~! multiplied by o are
accumulated for animals, where the variance ratio o is 2, as in Example 3.1. This is
straightforward and has not been illustrated, but elements for animals 1 to 8 stored
in a vector h are:

h'=[3.667 4.0 4.0 3.667 5.0 5.0 4.0 4.0]

Second, read through the data as shown in Table 3.1 and accumulate right-hand
side (r) for all effects, diagonals for the levels of sex of calf effect and add contribution
of information from data to diagonals from A~'¢ for animals. Assuming that diago-
nals for all effects are stored as diagonal elements of M, such that the first two
elements are for the two levels of sex of calf effect and the remaining elements for
animals 1 to 8, then r and M are:

r=[13.0 6.8 0.0 00 0.0 45 29 39 3.5 5.0]
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and:

M = diag[3.0 2.0 3.667 4.0 4.0 4.667 6.0 6.0 5.0 5.0]
The starting values for PCG can now be calculated. Thus:

b? =0, e=r-Cb®=y and d?=M"'r
Thus:

d®=14.333 34 0.0 0.0 0.0 0.964 0.483 0.650 0.70 1.0]

ITERATIVE STAGE

Reading through the data and performing the following calculations in each round of
iteration, start the PCG iterative process. Calculations are shown for the first round
of iteration.

The vector v = Cd is accumulated as data are read. For the ith level of fixed effect:

v(i) = v(i) + 1(d(i)) + 1(d(anim,))

where anim, refers to the animal k associated with the record. Thus for the level 1 of
sex of calf effect:

v(1) = 3(4.333) + d(anim,) + d(anim,) + d(animg) = 15.663
As each record is read, calculate:
z = 4/(2 + number of unknown parents for animal with record)
x = -0.5(z)a if either parent is known, otherwise xx = 0
xm = 0.25(z)oc  if both parents are known, otherwise xm = 0

If only one parent, p, of animal k is known, then accumulate:
v(anim,) = v(anim,) + 1(d(i)) + M, ,(d(anim,)) + xx(d(animp)) (17.14)

where d(i) refers to the ith level of the fixed effect and M, , the diagonal element of
M for animal k.
Accumulate the contribution to the known parent, p, of k at the same time:

v(anim,) = v(anim,) + xx(d(anim,))
If both parents p and j of animal k are known, then accumulate for animal k as:
v(anim,) = v(anim,) + 1(d(i)) + M, ,(d(anim,)) + xx(d(anim ) + d(anim)) ~ (17.15)
Accumulate for both parents as:
v(anim,) = v(anim,) + xx(d(anim,))

)
v(anim ) (animp) + xm(d(anim))

]

v anlm) = V(amm) + xx(d(anim,,)

(
(
( )
V(anlm) = V(amm) + xm(d (ammp))

Solving Linear Equations 295 ]



After processing all animals with records, the contribution for animals in the
pedigree without records is accumulated. The equations for accumulating contribu-
tions for these animals is the same as shown above except that the coefficient for d(7) in
Eqns 17.13 and 17.14 is zero instead of one, indicating no contribution from records.

For example, for animal 4 with only the sire known:

v(4) = v(4) + d(1) + M, ,(d(anim,)) + (~2/3)e(d(anim,)) = 8.833

Add contribution from progeny when processing the record for animal 7:
v(4) = 8.833 + -1.00(d(anim,)) + 0.25¢(d(anim;)) = 7.917

The vector v for all effects is:
v = [15.664 7.933 -2.586 -2.267 -2.317 7.917 5.864 5.300 4.938 8.033]
Next o is computed using matrix multiplication and scalar division as:
o=95.1793/120.255 = 0.7915

The solution vector is then computed as bV = b + ©d?. The vector b is:
b’ =13.430 2.691 0.0 0.0 0.0 0.763 0.383 0.514 0.554 0.791]

The updated vector of residuals e!!) is computed as e!”) — @v. For the example data e!)
is:

e¢’M=[0.602 0.521 2.047 1.794 1.834 -1.766 -1.741 -0.295 -0.408 -1.358]
The vector v is then computed as M-le'). For the example data, v is:
v'=10.201 0.260 0.558 0.449 0.458 -0.378 -0.290 -0.049 -0.082 -0.272]

Next, compute the scalar . The denominator of § is equal to the numerator of
 and this has already been computed. Using the example data:

B=4.634/95.179 = 0.0487

Finally, dV, the search-direction vector for the next iteration is computed as
v + $d9. This vector for the example data is:

d'™ =10.412 0.426 0.558 0.449 0.458 -0.331 -0.267 -0.017 -0.048 -0.223]

The next cycle of iteration is continued until the system of equations converges.
Convergence can either be monitored using the criteria defined in Example 17.1 or
the relative difference between the right-hand and left-hand sides:

" ||y _ Cb(r+1)
Iyl
where:
A
I« = (2]

Using the convergence criteria used in Example 17.1, the iteration was stopped at
the 10th iteration when equations converged to 8.37%7. Some intermediary and final
solutions are shown in the following table.
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Iteration number

Effects 1 3 5 7 10
Sex of calf
Male 3.430 3.835 4.280 4.367 4.359
Female 2.691 3.122 3.154 3.377 3.404
Animals
1 0.000 0.475 0.170 0.092 0.098
2 0.000 0.224 0.116 0.012 -0.019
3 0.000 0.272 0.058 -0.056 -0.041
4 0.763 0.390 0.032 -0.029 -0.009
5 0.383 0.249 -0.072 -0.155 -0.186
6 0.514 0.547 0.435 0.194 0.177
7 0.554 0.193 -0.178 -0.231 -0.249
8 0.791 0.537 0.334 0.171 0.183

The equations converged at the 10th round of iteration compared with 20 iterations

on the data in Example 17.3.
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Appendix A: Introduction to Matrix
Algebra

The basic elements of matrix algebra necessary to understand the principles involved
in the prediction of breeding values are briefly covered in this appendix. Little or no
previous knowledge of matrix algebra is assumed. For a detailed study of matrix
algebra, see Searle (1982).

A.1 Matrix: A Definition

A matrix is a rectangular array of numbers set in rows and columns. These elements
are called the elements of a matrix. The matrix B, for instance, consisting of two rows
and three columns, may represented as:

B{bu bi> 513}

by ban by
or:

2 4 5
B =
6 8 9
The element b, is called the i/ element of the matrix, the first subscript referring to
the row the element is in and the second to the column. The order of a matrix is the
number of rows and columns. Thus a matrix of » rows and ¢ columns has order 7 x ¢
(read as 7 by ¢). The matrix B above is of the order 2 x 3 and can be written as B, ..

A matrix consisting of a single row of elements is called a row vector. A row vec-
tor consisting of three elements may be represented as:

c=[2 6 —4]

Only one subscript is needed to specify the position of an element in a row vector.
Thus the ith element in the row vector ¢ above refers to the element in the ith column.
For instance, c; = -4.

Similarly, a matrix consisting of a single column is called a column vector. Again,
only one supscript is needed to specify the position of an element, which refers to the
row the element is in, since there is only one column. A column vector d with four
elements can be shown as below:

=20
60
d=
8
2
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A scalar is a matrix with one row and one column.

A.2 Special Matrices
A.2.1 Square matrix

A matrix with an equal number of rows and columns is referred to as a square
matrix. Shown below is a square matrix G of order 3 x 3.

G =

S A~

1
2
4

o N N

The ij elements in a square matrix with 7 equal to j are called the diagonal elements.
Other elements of the square matrix are called off-diagonal or non-diagonal elements.
Thus the diagonal elements in the G matrix above are 2, 2 and 8.

A.2.2 Diagonal matrix

A square matrix having zero for all of its off-diagonal elements is referred to as a
diagonal matrix. For example, a diagonal matrix B can be shown as below:

o O

B =

S O W
S~ O

1

(o]

When all the diagonal elements of a diagonal matrix are one, it is referred to as an
identity matrix. Given below is an identity matrix, I:

10 00
I=0100
0 010
0 0 01

A.2.3 Triangular matrix

A square matrix with all elements above the diagonal being zero is called a lower
triangular matrix. When all the elements below the diagonal are zeros, it is referred
to as an upper triangular matrix. For instance, the matrices D, a lower triangular
matrix and E, an upper triangular matrix, can be illustrated as:

400 391
D=| 1 3 0|; E=|0 4 8
2 7 9 00 6
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The transpose (see A.3.1) of an upper triangular matrix is a lower triangular matrix
and vice versa.

A.2.4 Symmetric matrix

A symmetric matrix is a square matrix with the elements above the diagonal equal to
the corresponding elements below the diagonal, i.e. element 7 is equal to element ji.
The matrix A below is an example of a symmetric matrix:

2 40
A=|4 6 3
0 3

A.3 Basic Matrix Operations
A.3.1 Transpose of a matrix

The transpose of a matrix A is usually written as A" or AT and is the matrix whose ji
elements are the 7j elements of the original matrix, i.e. a;l. = a,. In other words, the
columns of A" are the rows of A and the rows of A’ the columns of A. For instance,
the matrix A and its transpose A are illustrated below:

;A,:314
210

Note that A is not equal to A" but the transpose of a symmetric matrix is equal to
the symmetric matrix. Also (AB)" = B’A’, where AB refers to the product (see A.3.3)
of A and B.

3
A=]1
4

S =N

A.3.2 Matrix addition and subtraction

Two matrices can be added together only if they have the same number of rows and
columns, i.e. they are of the same order and they are said to be conformable for addi-
tion. Given that W is the sum of the matrices X and Y, then w.. = x.. + y... For example,
: . i =i i

if X and Y, both of order 2 x 2, are as illustrated below:

40 10 -2 20
X= ;0 Y=
39 -25 4 40
Then the matrix W, the sum of X and Y, is:

W o 40 +(-2) 10+20] [38 30
- 39+4 -25+40]| |43 15
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Matrix subtraction follows the same principles used for matrix addition. If B=X -Y,
then b, = x, - y,. Thus the matrix B obtained by subtracting Y from X above is:

40 - (-2) 10-20 42 -10
B=X-Y-= =
39-4 -25-40 35 -6S5

A.3.3 Matrix multiplication

Two matrices can be multiplied only if the number of columns in the first matrix
equals the number of rows in the second. The order of the product matrix is equal to
the number of rows of the first matrix by the number of columns in the second. Given
that C = AB, then:
m n 2z
ZZZ%%

=l

i=1i=1k

~.

where 72 = number of columns in B, # = number of rows in A and z = number of rows
in B. Let:

Then C can be obtained as:

¢, = 1(2) + 4(4) + -1(6) = 12 (row 1 of A multiplied by column 1 of B)
¢y, =2(2) + 5(4) + 0(6) = 24 (row 2 of A multiplied by column 1 of B)
¢y, = 3(2) + 6(4) + 1(6) = 36 (row 3 of A multiplied by column 1 of B)
¢, = 1(5) +4(3) + -1(1) = 16 (row 1 of A multiplied by column 2 of B)
¢y, = 2(5) + 5(3) + 1(1) = 26 (row 2 of A multiplied by column 2 of B)
53 = 3(5) + 6(3) + 1(1) = 34 (row 3 of A multiplied by column 2 of B)
12 16
C=|24 26
36 34

Note that C has order 3 x 2, where 3 equals the number of rows of A and 2 the
number of columns in B. Also, note that AB is not equal to BA, but IA = Al = A, where
Iis an identity matrix. If M is the product of a scalar g and a matrix B, then M = b, i8>
i.e. each element of M equals the corresponding element in B multlphed by g.

A.3.4 Direct product of matrices

Given a matrix G of order 7 by m and A of order ¢ by s, the direct product is:

g A gle}

G®A=
|:g21A 82A
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The direct product is also known as the Kronecker product and is of the order nt by
ms. For instance, assuming that:

1
G= 0 3 and A =
5 20

O =
A = O
- AN

the Kronecker product is:

[10 0 20 5§ 0 10]
0 10 40 0 S5 20
20 40 10 10 20 5
S 0 10 20 0 40
0 5 20 0 20 80
[10 20 5 20 80 20

G ®A=

The Kronecker product is useful in multiple trait evaluations.

A.3.5 Matrix inversion

An inverse matrix is one which when multiplied by the original matrix gives an identity
matrix as the product. The inverse of a matrix A is usually denoted as A~! and, from
the above definition, A'A = I, where I is an identity matrix. Only square matrices can
be inverted and for a diagonal matrix the inverse is calculated simply as the reciprocal
of the diagonal elements. For instance, the diagonal matrix B and its inverse are:

1

30 O 3 00

B=|0 4 0| and B'=10 i 0
1

0 0 18 00 1

For a 2 x 2 matrix, the inverse is easy to calculate and is illustrated below. Let:

an  an

an an
First, calculate the determinant, which is the difference between the product of the
two diagonal elements and the two off-diagonal elements (a,,4,, - a,,4,,). Second,

the inverse is obtained by reversing the diagonal elements, multiplying the off-diagonal
elements by -1 and dividing all elements by the determinant. Thus:

1 ax —an
-1
Al =————
aiial2 — ai2dazi1 L~ az1 at
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For instance, given that:

AL {8 4} e A 1 { 4 —4} :{ 0.50 —0.50}
6 4 (8)(4)—(6)4) | -6 8| |-0.75 1.00

Note that A~'A = I = AA-!, as stated earlier. Calculating the inverse of a matrix
becomes more cumbersome as the order increases, and inverses are usually obtained
using computer programs. The methodology has not been covered in this text. It is
obvious from the above that an inverse of a non-diagonal matrix cannot be calculated
if the determinant is equal to zero. A square matrix with a determinant equal to zero
is said to be singular and does not have an inverse. A matrix with a non-zero deter-
minant is said to be non-singular.

Note that (AB)~! = B-'A-!. The inverses of matrices may be required when solving
linear equations. Thus given the following linear equation:

Ab=y
pre-multiplying both sides by A-! gives the vector of solutions b as:
b= A‘ly

A.3.6 Rank of a matrix

The rank of a matrix is the number of linearly independent rows or columns.
A square matrix with the rank equal to the number of rows or columns is said
to be of full rank. In some matrices, some of the rows or columns are linear
combinations of other rows or columns; therefore, the rank is less than the num-
ber of rows or columns. Such a matrix is not of full rank. Consider the following
set of equations:

3x, + 2x, + 1xy =y,
4x, + 3x, + Ox; =y,
Tx,+ 5x, + 1x; =y,
The third equation is the sum of the first and second equations; therefore, the vector

of solutions, x(x” = [x, x, x,]), cannot be estimated due to the lack of information. In
other words, if the system of equations were expressed in matrix notation as:

3 2 1 X1 yl
4 3 O X2 | = yZ
7 5 1| x3 yS4

that is, as:
Dx = y

a unique inverse does not exist for D because of the dependency in the rows. Only
two rows are linearly independent in D and it is said of to be of rank 2, usually writ-
ten as (D) = 2. When a square matrix is not of full rank, the determinant is zero and
hence a unique inverse does not exist.
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A.3.7 Generalized inverses

While an inverse does not exist for a singular matrix, a generalized inverse can, how-
ever, be calculated. A generalized inverse for a matrix D is usually denoted as D~ and
satisfies the expression:

DDD=D

Generalized inverses are not unique and may be obtained in several ways. One of the
simplest ways to calculate a generalized inverse of a matrix, say D in Section A.3.6,
is to initially obtain a matrix B of full rank as a subset of D. Set all elements of D to
zero. Calculate the inverse of B and replace the elements of D with corresponding
elements of B and the result is D-. For instance, for the matrix D above, the matrix B,
a full rank subset of D, is:

B = 32 and B! = 3 =2
4 3 -4 3

Replacing elements of D with the corresponding elements of B after all elements of D
have been set to zero gives D~ as:

3 =20
D7 = —4 3 O
0 00

A.3.8 Eigenvalues and eigenvectors

Eigenvalues are also referred to as characteristic or latent roots and are useful in
simplifying multivariate evaluations when transforming data. The sum of the eigen-
values of a square matrix equals its trace (sum of the diagonal elements of a square
matrix) and their product equals its determinant (Searle, 1982). For symmetric matri-
ces, the rank equals the number of non-zero eigenvalues.

For a square matrix B, the eigenvalues are obtained by solving:

B-dll=0

where the vertical lines denote finding the determinant.
With the condition specified in the above equation, B can be represented as:

BL = LD
B = LDL-! (a.1)

where D is a diagonal matrix containing the eigenvalues of B, and L is a matrix of
corresponding eigenvectors. The eigenvector (k) is found by solving;:

(B - dJ), =0

where d, is the corresponding eigenvalue.
For symmetric matrices L is orthogonal (that is, L-' = L’; LL” = I = L’L); therefore,
given that B is symmetric, (Eqn a.1) can be expressed as:

B = LDL’

Usually, eigenvalues and eigenvectors are calculated by means of computer programs.
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Appendix B: Fast Algorithms
for Calculating Inbreeding
Based on the L Matrix

In this appendix, two algorithms based on the L matrix for calculating inbreeding are
discussed.

B.1 Meuwissen and Luo Algorithm

The algorithm given by Quaas (1976) invoves the calculation of one column of L at
a time. The algorithm requires n(n + 1)/2 operations and computational time is pro-
portional to 7%, where 7 is the size of the data set. It suffers from the disadvantage of
not being readily adapted for updating when a new batch of animals is available
without restoring a previously stored L. Meuwissen and Luo (1992) presented a
faster algorithm, which involves computing the elements of L row by row.

The fact that each row of L is calculated independently of other rows makes it
suitable for updating. The row i of L for animal i gives the fraction of genes the ani-
mal derives from its ancestors. If s, and d, are the sire and dam of animal i, then
I, =1, =0.5. The ith row of L can be calculated by proceeding through a list of i’s
ancestors from the youngest to the oldest and updating continually as [, =1, + 0.5,
and [, = [, + 0.5[,, where j is an ancestor of i. The fraction of genes derived from
an ancestor is:

= 20-51 ik

kep;

where P, is a set of identities of the progeny of j. However, /; = 0 only when k is not
an ancestor of 7 or k is not equal to i. Thus if AN is the set of identities of the number
of ancestors of 7, then:

li=. 0.5

keANNp,

that is, the summation of 0.5/, is over those k animals that are both ancestors of i
and progeny of j. This forms the basis of the algorithm given below for the calcula-
tion of the row i of L, one row at a time. As each row of L is calculated, its contribu-
tion to the diagonal elements of the relationship matrix (a,) is accumulated. Initially,
set row i of L and a,, to zero. The list of ancestors whose contributions to a, are yet
to be included are added to the vector AN (if not already there) as each row of L is
being processed.
The algorithm is:

F,=-1

0=

For i =1, N (all rows of L):
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AN, =i
D, =1[0.5 - 0.25(F_ + F,)], if both parents are known; otherwise use appropriate
the formula (see Chapter 2)
Do while AN; is not empty.
j = max(AN)), (j = youngest animal in AN,)
If s; is known, add s; to AN;:

ll.s/ = lis, + 0.511.1.
If df is known, add di to AN
ll.d/ = lid, + 0.511.1.

a;=a,+ lt.zf D/‘i
Delete j from AN,
End while:

Fi = al,l. -1

B.1.1 lllustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animals 1 and 5.
For animal 1:

a,; =0
AN, = 1,1, =1

Since both parents are unknown:
D, =1

Processing animals in AN :
j =max(AN)) =1
Both parents of j are unknown:
ap=ay+ 5D =(191=1
Delete animal 1 from AN,; AN, is now empty.
F=1-1=0
For animal 5:
as, =0
AN, =5,1,=1
D, = 0.5, since neither parent is inbred.
Processing animals in AN :
j = max(AN;) =5
Add sire and dam of 5 (animals 4 and 3) to AN:
l,=1,+0.5l,=0.5
[y =15+ 0.5, =0.5
ass = ag + 12D =1%0.5) = 0.5

557755 7
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Delete animal 5 from AN,; animals 4 and 3 left in AN..
Next animal in AN.:

j = max(AN;) = 4
Add sire of 4 (animal 1) to AN.:
ls]zl +0.5/,=0.25
=g+ 154D44 = 0.5 + (0.5)%(0.75) = 0.6875

Delete ammal 4 from AN_; animals 3 and 1 left in AN..
Next animal in AN.:

j = max(AN;) = 3

a

Since animal 1, the sire of /, is already in AN, add only the dam of 3 (animal 2) to AN.:

I, =1, + 0.5, =025+ (0.5)0.5 = 0.5
I, =15, + 0.5l =0+ (0.5)0.5 = 0.25

ags = ag; + 153D33 = 0.6875 + (0.5)%0.5 = 0.8125

Delete animal 3 from AN,; animals 1 and 2 left in AN..
Next animal in AN.:

j = max(AN;) =
Both parents are unknown:
ass s+ D, =0.8125 + (0.25)*1 = 0.875

Delete ammal 2 from AN,; animal 1 left in AN..
Next animal in AN,:

j = max(AN;) = 1
Both parents are unknown:
ass=ag + 13D =0.875 + (0.5)°1 = 1.125
Delete 1 from AN ; AN, is empty.
F,=1.125-1=0.125

which is the same inbreeding coefficient as that obtained for animal 5 in Section 2.2.

B.2 Modified Meuwissen and Luo Algorithm

The approach of Meuwissen and Luo given above was modified by Quaas (1995) to
improve its efficiency. The disadvantage of the above method is that, while calculating
a row of L at a time (Henderson, 1976), it is accumulating diagonal elements of A, as
in Quaas (1976), and this necessitates tracing the entire pedigree for i, but what is really
needed is only the common ancestors. Thus a more efficient approach is to accumulate
a as Ll,l, D, (Henderson (1976) and calculate F, as 0.5a., = X,/ ,1,,(0.5D,,).
Instead of computlng the ith row of L, only the non-zero elements in the rows for the
sire and dam of 7 are calculated. Quaas (1995) suggested setting up a separate ancestor

list (AS,) for s; and another (AD,) for d; then F, = 0.5a_, =X, U/l .1, (0.5D,,).

[ 308 Appendix B



Similar to the approach of Meuwissen and Luo (1992), the two lists can be set
up simultaneously while processing the ith animal by continually adding the parents
of the next youngest animal in either list to the appropriate list. If the next youngest
in each list is the same animal, say k, then it is a common ancestor and F, is updated
asF,=F, +1,1,,(0.5D,,). When ancestors of one of the parents have been processed,
the procedure can be stopped, and it is not necessary to search both lists completely.
The algorithm for this methodology is:

F,=-1
For i =1, N:
F,=0

If 5, is known, add s, to AS, [ = 1.
Ifd is known, addd to ADd, ldd =1.
Do while AS, not empty and AD, not empty.

j = max(AS,), k = max(AD, )

If j > k then (next youngest j is in AS):
If s, is known, add s, to AS 5 [ =] +051
Ilelsknown add d 1o AS 3 [, =1, + 0.5,
Delete j from AS_
Else if k > j then (next youngest k is in AD,):
If 5, is known, add s, to AD 5 [, =1, +0. 51d,e
If d, is known, add d, to ADd,5l, l,d +0511
Delete k from AD
Else (next youngest ancestor j = k is a common ancestor):
If s, is known, add s;to AS; [ =1+ 0.5,

add s to ADd, lds/ lds, + 0. 51
If d is known, add d to AS; | ld + 0. 51

sid; =

add dto AD; [, = I, + 0.5,
E=F+110.5D )

g

si dif
Delete j from AN, and AD,
End if
End while
End do

B.2.1 lllustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animal 5, which is inbred.
For animal 5:
F, =0

Both parents known, s =4 and d = 3.

Add 4 to AD; [, = 0.5
Add 3 to AD; [, = 0.5
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Processing animals in AS, and AD.:

j=4;k=3

j > k therefore.
Add sire of 4, animal 1 to AS,; [,, =1, + 0.5[,,=0.5
Delete animal 4 from AS,.

Next animals in AS, and AD;:

j=1,k=3

k > j therefore.
Add sire of 3, animal 1 to ADy; [, = [, + 0.51,, = 0.5
Add dam of 3, animal 2 to AD,; [, = [;, + 0.5/;,, = 0.5
Delete 3 from AD,.

Next animals in AS, and AD:

j=1,k=2

k>j
Both parents of 2 are unknown.
Delete 2 from AD,.

Next animals in AS, and AD;:

j=1,k=1

=k
Both parents are unknown.

F, = F, + 1,,1,,0.5(D,,) = 0.5(0.5)(0.5)(1) = 0.125

which is the same inbreeding coefficient as that obtained from the algorithm in
Section B.1.
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Appendix C

C.1 Outline of the Derivation of the Best Linear Unbiased
Prediction (BLUP)
Consider the following linear model:

y=Xb+Za+e (c.1)
where the expectations are:

E(y) = Xb; E(a) = E(e) = 0
and:

var(a) = Ac? = G, var(e) = R and cov(a, e) = cov(e, a) = 0
Then, as shown in Section 3.2:

var(y) = V=7ZGZ’ + R, cov(y, a) = ZG and cov(y, e) = R

The prediction problem involves both b and a. Suppose we want to predict a
linear function of b and a, say k’b + a, using a linear function of y, say L'y, and k’b
is estimable. The predictor L’y is chosen such that:

E(L’y) = E(k'b + a)

that is, it is unbiased and the prediction error variance (PEV) is minimized (Henderson,
1973). Now PEV (Henderson, 1984) is:

PEV = var(L’y - k'b + a)

=var(L'y - a)
= L'var(y)L + var(a) - L’cov(y, a) - cov(a, y)L
=L'VL+G-LZ2G-ZGL (c.2)

Minimizing PEV subject to E(L’y) = E(k’b + a) and solving (see Henderson, 1973,
1984 for details of derivation) gives:

Ly = K(X'V-X)"'X'V-ly - GZ'V-1(y - X(X'V-1X)-1X"V-ly)

Let b= (X'V-1X)XV-ly, the generalized least square solution for b, then the predictor
can be written as:

L'y = kb + GZ'V-1(y - Xb) (c.3)

which is the BLUP of k’b + a.
Note that if k’b = 0, then:

L’y = BLUP(a) = GZ'V-!(y - Xb) (c.4)
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which is equivalent to the selection index. Thus BLUP is the selection index with the
GLS solution of b substituted for b.

C.2 Proof that band afrom MME are the GLS
of b and BLUP of a, Respectively

In computation terms, the use of Eqn c.3 to obtain the BLUP of k’b + a is not feasible
because the inverse of V is required. Henderson (1950) formulated the MME that are
suitable for calculating solutions for b and a, and showed later that k’b and a, where
b and 4 are solutions from the MME, are the best linear unbiased estimator (BLUE)
of k’b and BLUP of a, respectively.

The usual MME for Eqn c.1 are:

{X’R']X X'R"Z'][B] ) [X’R1Y:| (c.5)
ZR'X ZR'zZ+G'||a] |ZRY

The proof that b from the MME is the GLS of b and therefore k’b is the BLUE
of k’b was given by Henderson et al. (1959). From the second row of Eqn c.5:

(ZR-'Z + G 1)a= Z'R-\(y - Xb)

A= (ZR'Z + G 'ZR(y - Xb) (c.6)
From the first row of Eqn ¢.5:

X'R-'Xb + Z'R-'Z4 = X'R-ly
Substituting the solution for ainto the above equation gives:

X'R-'Xb + X'R-1Z(WZ'R-)(y - Xb) = X'R-ly
where W = (Z/R-'Z + G'1)!:

X'R-'Xb - (X'R-'Z)(WZ'R-))Xb = X'R-ly - X'R-'ZWZ'R-ly

X'(R-! - R\'ZWZ/R-)Xb = X'(R-! - R-1ZWZ'R-)y

X'V-Xb = X'V-ly
with V-1 = R-1 - R1'ZWZ'R":

b = (X'V-IX)'X'V-ly (c.7)
It can be shown that:

V1 =R'!'-R'ZWZ'R!

by pre-multiplying the right-hand side by V and obtaining an identity matrix
(Henderson et al., 1959):

V[R-' - R-1ZWZ'R-'] = (R + ZGZ/)(R"' - R-'ZWZ'R)
-1+ ZGZR"' - ZWZ'R-' - ZGZ'R-'ZWZ'R"!
=1+ ZGZR"' - Z(I + GZRZ)WZ'R-!
=1+ ZGZR" - ZG(G™! + ZRZ)WZ'R"!
=1+ ZGZ'R"' - ZG(W-)WZ'R!
-1+ ZGZ'R"' - ZGZ'R"!
=1
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Thus the solution for b from the MME is equal to the GLS solution for b in Eqn c.3.
The proof that a from the MME is equal to GZ'V-!(y — Xb) in Eqn ¢.3 was given
by Henderson (1963). Replace V-! in GZ'V-'(y = Xb) by R™! = R"'ZWZ'R-!, thus:

GZ'V-'(y - Xb) = GZ'(R"! - RIIZWZ'R)(y - Xb) _
= G(Z'R™ - ZR'ZWZ'R)(y - Xb)
= G(I - ZR'ZW)Z'R!(y - Xb) _
= G(W-! - ZR'Z)WZ'R-!(y - Xb) A
= G((Z'RZ + G™') - ZR'Z)WZ'R(y - Xb)
GZ'R'Z + 1 - GZ'R'Z)WZ'R(y - Xb)
(HWZ'R-'(y - Xb)
=WZ'R Yy -Xb) =2 (See Eqn ¢.6)

Thus the BLUP of K'b + a = k’b + a, where b and 4 are solutions to the MME.

C.3 Deriving the Equation for Progeny Contribution (PC)

Considering an individual 7 that has one record with both sire (s) and dam (d) known,
the MME for the three animals can be written (assuming the sire and dam are ances-
tors with unknown parents) as:

Us 00 ugg O usi 0 Zis 0
uds O udgd & ug Alas|=| 0 (c.8)
uis O uig & l+uy; o]l a; 1y

where the # terms are elements of A-'.
From Eqn c.8, the equation for solution of the sire is:

od =0-u 0d,-u,0d
ad =PC

S N

MSS
us

with:
PC=0-u, 0d,-u,04,

When the mate is known:
PC=0-1ad,;+(1)oa,
PC=ofd;,- +d, ) =0.5c(2a,-a)

In general, assuming sire s has k progeny:
PC, = O.SaZkZupmg(Zﬁi - cim)/%upmg

where u orog is 1 when the mate of s is known or 2 when the mate is not known.
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Appendix D: Methods for
Obtaining Approximate Reliability
for Genetic Evaluations

D.1 Computing Approximate Reliabilities for an Animal Model

Presented below is a method published by Meyer (1989) for obtaining approximate
values of repeatability or reliability for genetic evaluations from an animal model and
has been used to estimate reliabilities in the national dairy evaluation system in
Canada. The reliability for each animal is derived from the corresponding diagonal
element in the MME, adjusting for selected off-diagonal coefficients. For instance, the
section of the coefficient matrix (C) pertaining to an animal i with parents f and » and
with a record in a subclass » of a major fixed effect as HYS could be represented as:

ci —-o -a 1
-a ¢y 0S50 O
-a 050 ¢, O

1 0 0 n,

where 7, is the number of records in subclass /4 of the major fixed effect and o =
o?%/c2. If this were the complete coefficient matrix for this animal, C-! and hence true
reliability could be obtained using partition matrix results. Thus the coefficient ¢ can
be calculated as the reciprocal of the ith diagonal element of C after absorbing all
other rows and columns. For animal

- a)l(c,c L))t

= (c,-1n, - Otz(c/f+ c #Cmm = 3

and for parent f:

o =(cy- Q - (5 - Q)c,,, - Q)
with:

O =, - 1/n,)™!
Exchange m for f for parent m.

However, if there are other off-diagonals for animal i, the above equations will
yield approximations of the diagonal elements of C and hence reliability. Based on
the above principle of forming and inverting the submatrix of the MME for each

animal, Meyer outlined three steps for calculating approximate 72, which were similar
to the true 7> from her simulation study. These steps are:

1. Diagonal elements (D) of animals with records are adjusted for the effect of the
major fixed effects such as HYS. Thus:

D, =D - 1/n,
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and for animals without records:
D, =D,

where D, is the diagonal element for animal i in the MME and, in general, its compo-
sition, depending on the amount of information available on the animal, is:

Dy, =x; + no+ n,al3 + nyo/2
where x; = 1 if the animal has a record and otherwise it is zero, 7, equals 1 or 4 or 2 if
none or one or both parents are known, #,; and #,, are number of progeny with one
or both parents known, respectively.
2. Diagonal elements for parents (f and m) are adjusted for the fact the information
on their progeny is limited.

For each progeny i with only one parent known, adjust the diagonal element of
the parent as:

D2f= le‘ az(% Dl_})

and if both parents are known, adjust the diagonal of parent [ as:
D, =D, - a’Dy}

Replace subscript f with m for the other parent. For animals that are not parents:
D, =D,

3. Adjustment of progeny diagonals for information on parents.

This involves initially unadjusting the diagonals of the parents for the contribu-
tion of the ith progeny in question by reversing step 2 before adjusting progeny diago-
nals for parental information. If only one parent fis known, the diagonal is unadjusted
initially as:

Dy =Dy + a*(5Dy))
and if both parents are known as:
D, =D, - o* D,

for parent /. Exchange m for f in the above equation to calculate for parent 7.
Adjustment of progeny i diagonal then is:

Dy; =D, - ang:;}]
if only parent f is known and:
D, =D,, - a*((Dy+ D,,, - a)/(Dy; D, - ;%))

when both parents f and 7 are known.
For animals with unknown parents:

D, = D,
Reliability for progeny i is calculated as:
r? = const.(1 - aD3))

where const. is a constant of between 0.90 and 0.95 from Meyer simulation studies
which gave the best estimate of 72,
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D.2 Computing Approximate Reliabilities for Random
Regression Models

Meyer and Tier (2003) extended the method in Appendix D.1 to estimate reliabilities
for multivariate and random regression models. They outlined several steps.

D.2.1 Determine value of observation for an animal

Compute the diagonal block (D,) for animal 7 in the MME, based on the information
from the data, as:

D, = ZR;'Z,

However, to account for the limited subclass sizes of contemporary group effect, such
as HTD in dairy cattle, D, can better be calculated as:

D, =Z/(R;'- R7Y(S;)RN)Z,
where Z, and R;'are submatrices of Z and R~! for animal 7, and S, is the block of
coefficient matrix pertaining to the contemporary groups of which animal i is a member.
Then the permanent environmental (pe) effects are also absorbed into the block
corresponding to animal genetic effects:

Di=D, - ZIR'Q(QR1Q + PHQR'Z,

where Q; is a submatrix of the matrix Q defined in Section 9.3. Limited subclass
effects of pe can be accounted for by using weights w = (n, - k)/n, <1, for the mth
record, with 7 the size of the subclass to which the record belongs and k the number
of ‘repeated’ records it has in that subclass. Then R, in the above equation is replaced
with R’ = Diag(w, 7).

D.2.2 Value of records on descendants

In this second step, the contributions from progeny and other descendants are accu-
mulated for each animal, processing the pedigree from youngest to the oldest. Let E,
be the block of contributions for animal 7 that has 7, progeny. Then:

" -1
E, =1G'-4G™ [Di +;Ek +‘3‘G‘1J G

This block is accumulated for both sire and dam of the ith animal. This equation can
be derived by assuming each progeny has only one parent known and that the parent
has no other information; then the MME are set up for the animal and the parent and
the equations for the animal are absorbed into those of the parent. The above equation
will give an overestimate of the individual’s contribution to its parents if it were in a
contemporary group with many of its half-sibs. This can be discounted by weighting
contributions with a factor dependent on the proportion of sibs in a subclass. Let H,
be a diagonal matrix of weights w < 1, with w = \/(n,-s,,)/n, , where n_ is the
total number of records in the subclass for trait 72 and s, the total number of sibs of
animal i in the subclass. Calculate D; "= HD, H;, and then replace D; with D;.
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D.2.3 Value of records on ancestors

In the third step, contributions from parents, ancestors and collateral relatives are
accumulated for each animal, processing the pedigree from oldest to youngest.
However, in step two, contributions from descendants were accumulated for all
animals, hence E, for parent j of animal i includes the contribution from animal i.
The contributions of animal 7 have to be removed from E, to avoid double counting.
The corrected block is:

E,=1G"' -G '(-E,+F +4G )G

where F, is the sum of contributions from all sources of information for parent j. As
parents are processed in the pedigree before progeny, F, is always computed before
the contribution of parent j to animal 7 is required. For animal i, F, is:

Lo Lo
E=YE +D;+)E,
j=1 k=1
with £, = 0, 1 or 2 denoting the number of parents of animal i that are known.
The matrix T, of the approximate PEV and PEC for the genetic effects for animal
i1s:
T,=(F,+G)"!
The approximate reliability for a linear function of EBVs for animal 7 then is:
r7=1 - k'Tk/k'Gk

with k calculated as described in Section 9.3.4.
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Appendix E

E.1 Canonical Transformation: Procedure to Calculate
the Transformation Matrix and its Inverse

The simplification of a multivariate analysis into 7 single trait analyses using canoni-
cal transformation involves transforming the observations of several correlated traits
into new uncorrected traits (Section 6.2). The transformation matrix Q can be calcu-
lated by the following procedure, which has been illustrated by the G and R matrices
for Example 6.1 in Section 6.2.2.

The G and R matrices are, respectively:

WWG 20 18 WWG 40 11
a
PWG 18 40 PWG 11 30

where WWG is the pre-weanng gain and PWG is the post-weaning gain.
1. Calculate the eigenvalues (B) and eigenvectors (U) of R:

R = UBU’
For the above R:

B = diag(47.083, 22.917)
and:

_[0.841 -0.541
“10.541  0.841

2. Calculate P and PGP”:
P-= U\/B_1 U
_ { 0.1642 -0.0288

-0.0288  0.1904

0.403 0.264
and PGP’ =
0.264 1.269

3. Calculate the eigenvalues (W) and eigenvectors (L) of PGP’
PGP’ = LWL’

W = diag(0.3283, 1.3436)

and:
0.963 0.271
“1-0.271 0.963
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4. The transformation matrix Q can be obtained as:
Q=LP

0.1659 -0.0792 J Q_l 5.7651 2.6006
= an =
0.0168 0.1755 -0.5503 5.4495

E.2 Canonical Transformation with Missing Records
and Same Incidence Matrices

Ducrocq and Besbes (1993) presented a methodology for applying canonical trans-
formation when all effects in the model affect all traits but there are missing traits for
some animals. The principles of the methodology are briefly discussed and illustrated
by an example.

Let y, the vector of observations, be partitioned as y’ = [y,, y, | and u = [b’, a'],
where y and y_ are vectors of observed and missing records, respectively, b is the
vector of fixed effects and a is the vector of random effects. Assuming that the distri-
bution of y given u is multivariate normal, Ducrocq and Besbes (1993) showed that
the following expectation maximization (EM) algorithm gives the same solutions for
a and b as when the usual multivariate MME are solved:

E step: at iteration k, calculate §1¢ = E[yly , 6]
M step: calculate a**!1 = BLUE and BLUP solutions of b and a, respectively,
given yl!

The E step implies doing nothing to observed records but replacing the missing obser-
vations by their expectation given the current solutions for b and a, and the observed
records. The equation for the missing records for animal i is:

918 = x /bl 4 ALk 4 Ik (e.1)

If X is the matrix that relates fixed effects to animals, x| denotes the row of X
corresponding to missing records for animal i and & ¥ is the regression of the
residuals of missing records on the current estimates of the residuals for observed
traits. Thus:
alkl _ gld] = -1
ei[m] - E[eim|yiu’ u= u[ ]] - Rmv va [y

where R, ~and R are submatrices obtained through partitioning of R, the
residual covariance matrix. R represents the residual variance of observed
traits and R is the covariance between missing traits and observed traits. If
three traits are considered, for example, and trait 2 is missing for animal i, then
R is the submatrix obtained by selecting in R the elements at intersection of
rows 1 and 3 and columns 1 and 3. The submatrix R is the element at the
intersection of row 2 and columns 1 and 3. Once the missing observations have
been estimated, records are now available on all animals and the analysis can be
carried out as usual, applying canonical transformation as when all records are
observed.

The application of the method in genetic evaluation involves the following steps
at each iteration k, assuming Q is the transformation matrix to canonical scale and
Q! the back-transforming matrix:
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1. For each animal i with missing observations:
(1a) calculate y 41, given bkl and al*! using Eqn e.1;
(1b) transform ¥, to the canonical scale: ¥, = Qy,.
2. Solve the MME to obtain solutions in the canonical scale: b* &1 and a*lk+1],
Back-transform using Q"' to obtain bl**! and alt+1],
4. If convergence is not achieved, go to 1.

W

Ducrocq and Besbes (1993) showed that it is possible to update y (step 1) without
back-transforming to the original scale (step 3) in each round of iteration. Suppose
that the vector of observations for animal i with missing records, y,, is ordered such
that observed records precede missing values: y’, = [y/,, v,,], and rows and columns
of R, Q and Q! are ordered accordingly. Partition Q as (Q, 1 Q,) and Q! as:

QJ:lQJ
Q

then from Eqn e.1, the equation for Qy, or §; (see 1b) is:
}A’; = Quyiu + Qm[x’tm Ablk] + ﬁ%ﬁ + RmuR;£ (yv - Xz,'u B[kl - ﬁ&fj)] (62)

1.

However:

[@1 o'b [Q@ﬂ
bim Q"b’

and a similar expression exists for a. Substituting these values for b and a in
Eqn e.2:

=(Q,+ QR Ry, +(Q,Q" - QR, R;IQV)(x,blH + a"k)
= Q1Yiy + Q2 X»b (k] 4 3 [k]) (e.3)
with Q, =Q, + Q, R R;!and Q2 (Q,Q" - QmRvaUin

Thus for an animal with missing records, ¥; in Eqn e.3 is the updated vector of
observation transformed to canonical scale (steps 1a and 1b above) and this is calcu-
lated directly without back-transformation to the original scale (step 3). The matrices
Q, and Q, in Eqn e.3 depend on the missing pattern and if there are # missing pat-
terns, 7 such matrices of each type must be set up initially and stored for use at each
iteration.

E.2.1 lllustration

Using the same genetic parameters and data as for Example 5.3, the above methodol-
ogy is employed to estimate sex effects and predict breeding values for pre-weaning
weight and post-weaning gain iterating on the data (see Section 17.4).

From Section E.1, Q is:

_[0.1659 -0.0792 L[ 5.7651 2.6006
“10.0168  0.1755 T 1-0.5503 5.4495
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Partitioning Q and Q! as specified above gives the following matrices:
0.1659 -0.0792
Q= {0.0168:|’ Q= [ 0.1755]’
Q" =[5.7651 2.6006] and Q" =[-0.5503 5.4495]

From the residual covariance matrix in Section E.1:

R R~ =11/40 = 0.275

muv vv

The matrices Q, and Q,, respectively, are:

0.1659 -0.0792 0.1441
Q, = N 0.275 =
0.0168 0.1755 0.0654
and:

-0.0792 -0.0792
Q,= [-0.5503 5.4495] - 0.275[5.7651 2.6006]
0.1755 0.1755

[ 0.1691 -0.3750
~1-0.3748 0.8309

Employing steps 1 to 4 given earlier to the data in Example 5.2, using the various
transformation matrices given above and solving for sex and animal solutions by
iterating on the data (see Section 17.4), gave the following solutions on the canonical
scale at convergence. The solutions on the original scale are also presented.

Canonical scale Original scale
Effects VAR1 VAR2 WWG PWG
Sex
Male 0.180 1.265 4.326 6.794
Female 0.124 1.108 3.598 5.968
Animal
1 0.003 0.053 0.154 0.288
2 —-0.006 -0.010 -0.059 -0.054
3 0.003 -0.030 -0.062 -0.163
4 0.002 0.007 0.027 0.037
5 -0.010 -0.097 -0.307 -0.521
6 0.001 0.088 0.235 0.477
7 -0.011 -0.084 —-0.280 —-0.452
8 0.013 0.076 0.272 0.407
9 0.009 0.010 0.077 0.051

VAR1, Qy,, VAR2, Qy, with WWG = y, and PWG = y,.

These are similar to the solutions obtained from the multivariate analysis in Section 5.3
or the application of the Cholesky transformation in Section 6.3. The advantage of
this methodology is that the usual univariate programs can easily be modified to
incorporate missing records.
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The prediction of the missing record (PWG) for animal 4 using solutions on
canonical and original scales at convergence is illustrated below.
Using Eqn e.1:
n=b,+d, +R Ry, —b, -a,)
= 6 836 + O 016 + 0. 275(4.5 - 4.366 - 0.007)
=6.9

where y, and 4, are the record and EBV, respectively, for animal 7 and trait j, and b .
is the fixed effect solution for level k for trait j.
Using Eqn e.2:

y S Aw
|: 41:| Q,y4,+Q, (x'b +a})

Ya2
Y 0.648 0.183 0.000
+Q, +Q,
Vi 710.294 1.273 0.003
0.648 -0.446| [0.202
~10.294 0.989] |1.283
These predicted records for animal 4 are on the canonical scale and they are used for

the next round of iteration if convergence has not been achieved. These predicted
records can be transformed to the original scale as:

Vat _q" 0.202] [4.5
Vo | 1.283] |6.9

The record for WWG is as observed and predicted missing record for PWG is the
same as when using Eqn e.1.

E.3 Cholesky Decomposition

Any positive semi-definite symmetric matrix R can be expressed in the form TT’,
where T is a lower triangular matrix. The matrix T can be calculated using the
following formulae. The ith diagonal element of T is calculated as:

=Ti T A Ztl/

and the lower off-diagonal element of the ith row and the kth column of T as:
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Appendix F: Procedure for
Computing Deregressed
Breeding Values

The deregressed breeding values (DRB) of bulls used in multi-trait across-country
evaluations (MACE) are obtained by solving Eqn 5.15 for y considering data from
only one country at a time. Jairath ez al. (1998) presented an algorithm for calculating
DRP. For instance, Eqn 5.15 for country i can be written as:

IR TR 0 0 i, IRy,

R'1 RI'+ALe Ay Ay | Qg +8 | Ry, (f.1)
0 Ao, Ayt Ao || P 0

0 A0 Aoy Ao, N8 0

where p, is the vector of identified parents without EBV and A-!are blocks of the
inverse of the relationship (see Chapter 3, Section 3.6) with j = n, p and g for animals
with records, ancestors and genetic groups, respectively, and o, = (4 - h2)/b?2, the ratio
of residual variance to sire variance for the ith country. The deregression of EBV
involves solving Eqn f.1 for vy, The constant , an.d Vectors s, p;, g, and vy, are
unknown but a, the vector of genetic evaluations for sires, is known, as well as matri-
ces Q, R-jand A7 Let a, = 1, + Qg, + s,. The following iterative procedure can be
used to compute the vector of DRB, y:

1. Set 1u, p, s, and g, to 0.
2. Calculate Qg; + s, = a, - 1.
3. Compute:

— — _] —
8) (e a) L

4. Generate:
R;lyz‘ = R;llui + (R} + A;};)(Qgﬁ‘si) + A;::piai + A;giai
and 1'R3'y,
5. Now calculate:
i = (VR-1)1R -y,
6. Continue at step 2 until convergence is achieved.
7. Then compute DRB as y, = R, (R7'y)).
Using the data for country 1 in Example 5.5, the deregression steps above are

illustrated in the first iteration. For country 1, ¢, = 206.50/20.5 = 10.0732 and, con-
sidering only the bulls with evaluations, R, = diag(0.0172, 0.0067, 0.0500, 0.0400).
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The pedigree structure (see Example 5.5) used for the deregression of breeding values
in country 1 is:

Bull Sire MGS MGD
1 5 G2 G3
2 6 7 G4
3 5 2 G4
4 1 G2 G4
5 G1 G2 G3
6 G1 G2 G3
7 G1 G2 G3

The matrix A;'was calculated according to the rules in Section 5.5.2.
In the first round of iteration, the transpose of the vector Qg, + s, in step 2 above is:

(Qg, +5,)" =(9.010.1 15.8 -4.7)

The vector of solutions for p, and g, in step 3 is computed as:
[17.094  0.000 0.000 —-5.037 -0.839 -0.839 1.831]
0.000 13.736 1.831 -5.037 -2.518 -2.518 1.831
R 0.000 1.831 10.989 -5.037 -2.518 -2.518 0.916
|:P1:|= -5.037 -5.037 -=5.037 8.555 3.777 3.777 0.000
-0.839 -2.518 -2.518 3.777 4.568 2.728 0.839
-0.839 -2.518 -2.518 3.777 2.728 3.728 0.000
| 1.831 1.831 0.916 0.000 0.839 0.000 3.671]

[ 6.716 -1.831 7.326 0.000] [16.330]
0.000 7326 0.000 0.000 - |12.861
0.000 3.663 0.000 0.000|| " | |12.622
0.000  0.000 0.000 0.000 =[23.481
1.679  0.000 0.000 3.357 jj -9.801
3.357  0.000 0.000 0.000 12.375

-1.679  2.747 3.663 3.357] |-0.564

The transpose of the vector (R;'y,) in step 4 is: (30.2 9.0 10.1 15.8) and:
1'R;'y, =2235.50

Therefore, in the first round of iteration (step 4):
W, =2235.50/253 = 8.835

Convergence was achieved after about six iterations. The transpose of the vector
(R7'y,) after convergence is:

(Ri'y,) = (563.928 1495.751 385.302 -214.278)

with Ry'= diag(0.0172, 0.0067, 0.050, 0.04), the transpose of the vector of DRB
calculated in step 7 is:

v, =1(9.7229 9.9717 9.2651 -8.5711)
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Appendix G: Calculating ®, a Matrix of
Legendre Polynomials Evaluated at
Different Ages or Time Periods

The matrix @ is of order # (the number of days in milk or ages) by & (where k is the
order of fit) with element ¢, = ¢(a,) equals the jth Legendre polynomial evaluated at
the zth standardized age or days in milk (DIM). Thus g, is the ¢th DIM or age stand-
ardized to the interval for which the polynomials are defined. Kirkpatrick et al. (1990,
1994) used Legendre polynomials that span the interval -1 to +1. Defining d, . and
d, . as the first and latest DIM on the trajectory, DIM d, can be standardized to 4, as:

a,=-1+2d -d_)d -d

max min)

In matrix notation, ® = MA, where M is the matrix containing the polynomials of the
standardized DIM values and A is a matrix of order k containing the coefficients of
Legendre polynomials. The elements of M can be calculated as 72, = (/™" i = 1,...1;
j=1,...k). For instance, given that k = 5 and that ¢ = 3 (three standardized DIM), M is:

2 3 4
1 a a7 a a

_ 2 3 4
M=|1 a, a, a a
2 3 4

1 a; a; a3 a;

Using the fat yield data in Table 9.1 as an illustration, with ten DIM, the vector of
standardized DIM is:

a’=[-1.0 -0.7778 -0.5556 -0.3333 -0.1111 0.1111 0.3333 0.5556 0.7778 1.0]
and M is:

[1.0000 —1.0000 1.0000 -1.0000 1.0000]
1.0000 -0.7778 0.6049 -0.4705 0.3660
1.0000 -0.5556 0.3086 -0.1715 0.0953
1.0000 -0.3333 0.1111 -0.0370 0.0123
1.0000 -0.1111 0.0123 -0.0014 0.0002
1.0000 0.1111 0.0123 0.0014 0.0002
1.0000 0.3333 0.1111 0.0370 0.0123
1.0000 0.5556 0.3086 0.1715 0.0953
1.0000 0.7778 0.6049 0.4705 0.3660
[ 1.0000  1.0000 1.0000 1.0000 1.0000 |

Next, the matrix A of Legendre polynomials needs to be computed. The jth
Legendre polynomial evaluated at age t(P(t)) can in general be evaluated by the
formula given by Abramowitz and Stegun (1965). In general, for the ; integral:
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1 ﬁ (1) =21 o,

P.(2) =
i P — PN —2n)!

Tk
where j/2 = (j = 1)/2 if j is odd. The first five Legendre polynomials therefore are:
Py(t) = 1; P\(t) = t; P(t) = 3(3t* - 1)
Py(t) = }(S5t° - 3t); and P,(¢) =1(35¢* - 302* + 3)

The normalized value of the jth Legendre polynomial evaluated at age ¢ (¢t)) can be
obtained as:

2n+1
B

¢,‘(t) =
Thus:

)=} B6)=0.7071  g0) =3 Py(e)=1.2247(0

\fP =2.3717(2)=0.7906;  ¢(t) \fP — 4.6771(%) - 2.8067(t)
and ¢,(t) fP = 9.2808(t*)~7.9550(:%) + 0.7955

Therefore, for t = 5 in Example 9.1, A is:

0.7071 0.0000 -0.7906  0.0000 0.7955
0.0000 1.2247  0.0000 -2.8067  0.0000
A =|0.0000 0.0000 2.3717 0.0000 -7.9550
0.0000 0.0000 0.0000 4.6771 0.0000
0.0000 0.0000 0.0000 0.0000 9.2808

and @ = MA is:

[0.7071 -1.2247  1.5811 -1.8704  2.1213]
0.7071 -0.9525 0.6441 -0.0176 -0.6205
0.7071 -0.6804 -0.0586 0.7573 -0.7757
0.7071 -0.4082 -0.5271 0.7623 0.0262
0.7071 -0.1361 -0.7613  0.3054 0.6987
0.7071  0.1361 -0.7613 -0.3054 0.6987
0.7071 0.4082 -0.5271 -0.7623  0.0262
0.7071 0.6804 -0.0586 -0.7573 -0.7757
0.7071  0.9525 0.6441 0.0176 -0.6205
10.7071  1.2247  1.5811 1.8704  2.1213]
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ARHS 280
convergence criterion 281
pedigree file 278-279
predicting breeding 278
description 271-272
Gauss—Seidel iteration 275-276
genetic maternal effects 277
Jacobi iteration see Jacobi iteration
progeny 278
random animal effect 276
reduced animal model, maternal effects
see reduced animal model
(RAM), maternal effects

Jacobi iteration
convergence criterion 272,273
diagonal element 272-273
random animal effect 273
sex effect 274
simultaneous equations 272
joint and full conditional distributions
Gibbs sampling 263
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joint and full conditional distributions
(continued)
multiple chain/short chain
approach 264
parameters 262

Legendre polynomials
evaluation 325-326
linear equations
description 271
direct inversion 271
iteration, mixed model equations see
iteration, mixed model
equations
PCG see preconditioned conjugate
gradient (PCG)
longitudinal data
beef cattle 130
CFs see covariance functions (CFs)
covariance function and RRM
equivalence 155
fixed regression model 131-136
repeated measurements 130
RRM see random regression model
(RRM)
test day records 130

MACE see multi-trait across-country
evaluations (MACE)
Markov chain Monte Carlo (MCMC)
methods 260
maternal grandsire (MGS) model
description 30
inbreeding coefficients 31
pedigree 32
pertains to males 30-31
recoding sires 32
T-! and D! matrix, pedigree 32-33
without inbreeding 32
maternal trait models
animal
birth weight, beef calves 110-111
BLUE 110
design matrices 111-114
genetic and permanent
environmental effects 110
RAM 115-119
components 109
measurements 109
phenotypic expression 109

progeny performance 109
sire and grandsire 119-120
matrix algebra
addition and subtraction 302
column vector 299
definition 299
diagonal matrix 300
direct product 302-303
eigenvalues and eigenvectors 305
inverse matrix 303-304
multiplication 302
rank of matrix 304
singular matrix 305
square matrix 300
symmetric matrix 301
transpose, matrix 301
triangular matrix 300-301
MBLUP see multivariate best linear unbiased
prediction (MBLUP)
MCMC see Markov chain Monte Carlo
(MCMC) methods
MGS model see maternal grandsire (MGS)
model
mixed model equations (MME)
animal and dominance genetic
effects 206-208
total genetic merit 208
MME see mixed model equations (MME)
multi-trait across-country evaluations

(MACE)
analysis, DYD 86-87
computing
EDC 88-89

sire breeding values 89-91
dependencies 88
and DRP 87, 89
maternal grandsire model 87-88
MME 87
partitioning, bull evaluations 91-94
multivariate analysis
effects 95
factor analysis
covariances 102
FA model 105
loadings 102
multi-trait linear mixed
model 102-103
WWG and PWG 103-104
limitations 95
parameter estimation and genetic
evaluation 95
principal component analysis
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eigenvalues 105-106
MME 106
reduced rank 106-108
transformation
canonical see canonical
transformation
Cholesky see Cholesky
transformation

multivariate animal model

conditional probabilities 267-268
description 266-267

numerical illustration 269-270
prior distributions 267

multivariate best linear unbiased prediction

(MBLUP)
advantages and disadvantages 70
environments
different traits recorded,
relatives 84-86
DRB 84, 89
genetic correlation 84
MACE see multi-trait across-country
evaluations (MACE)
milk yield 84
equal design matrices with missing
records
differences, sex solutions 80
genetic parameters 78
loss of traits 78
MME 79
WWG and PWG 78-79
equal design matrices with no missing
records
accuracy 76-77
calculation, DYDs 77-78
defining 71-72
MME calculation 73-74
partitioning animal
evaluations 74-76
WWG and PWG 72-73
trait evaluation 70
unequal design matrices
computation, DYD 82-83
FAT1 and FAT2 81, 82
HYS effects 80, 81
MME 81-82

non-additive animal models

and dominance effect
genetic effects 206-208
MME and BLUP 205

total genetic merit 208
dominance relationship
matrix 204-205
epistasis see epistasis
inversion, dominance matrix
see dominance matrix
statistical framework 204
numerator relationship matrix
decomposing 23-25
inbreeding coefficient 23
inverse
A-'to zero 26
accounting, inbreeding 28-30
animals, pedigree 27
inbreeding ignorance 27
pedigree 27-28
pedigree, six animals 23
probability, identical genes 22

ordered categorical traits
animal breeding 219
binary trait 219-220
joint analysis, quantitative and binary
traits
Bayesian approach 230
data and model definition 230-233
numerical application 234-239
linear and non-linear models 219
threshold model see threshold model

PCG see preconditioned conjugate gradient
(PCG)
post-weaning gain (PWG) 72-73, 78-79
pre-weaning gain (WWG) 72-73, 78-79,
252-253,257-259
preconditioned conjugate gradient (PCG)
computation strategy 293
computing starting values 294-295
convergence criteria 296-297
genetic evaluation models 292
iterative stage 295-296
multivariate accumulation
technique 294
pseudo-code 293
progeny records
breeding value 7
calculations 7
description 6
EBV 8
half-sib progeny 8
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progeny records (continued)
intra-class correlation 7
paternal half-sibs 6
predicted breeding value 8
progeny yield deviation (PYD)
accuracy, predictions 44-46
breeding value 43
dairy cattle evaluation 42
description 42
and DYD 42
univariate animal model 43
PWG see post-weaning gain (PWG)
PYD see progeny yield deviation (PYD)

QTL see quantitative trait loci (QTL)
quantitative trait loci (QTL)
accuracy, EBVs 171
BLUP equations 172
chromosome, marked loci 171
covariance matrix calculation
design matrices 176
genetic parameters 175
genotype, sire 172
inherited marker haplotype 175
loci, marker 172
marker haplotype 174
milk production traits 176
parental MQTL 173
types of gametes 173

RAM see reduced animal model (RAM)
random environmental effects, BLUP
breeding 61
common see common environmental
effects, BLUP
component 61
repeatability model
breeding values 61-62
data analysis 61
definition 62
DYD 66
HYS effects, dairy 62-66
random regression model (RRM)

animal pe and maternal pe effects 137

animal solutions partition 142-145

breeding values 146-147

and covariance function
equivalence 155

dairy cattle test day records 137

DIM calculation 138

DYD calculation 145-146
genetic differences 136
Legendre polynomials 138
maternal traits 148
matrices, MME 138-141
spline function 147-148
reduced animal model (RAM)
ancestors 54
back-solving
direct effects 118-119
maternal effects 119
non-parents 118
data set and genetic
parameters 116-117
definition 49-51
design matrices 116-118
error 115
genetic and permanent environmental
effect 115
genetic parameters 51
maternal effects
ARHS 289
data file 284-285
fixed effects 286
genetic parameters 284
parental records 284
pedigree file 284
permanent environmental
effects 291-292
solving, animal solutions 286-288
MME 51-53, 115-116
non-parents solutions 53-54
regression survival models
accelerated failure time 247
group data 250
mixed 247-250
stratified proportional hazard 246
time-dependent risk factors 247
residual regression coefficient 223
RRM see random regression model (RRM)

S-MGS see sire-maternal grandsire (S-MGS)
SBV see associative breeding value (SBV)
selection index
accuracy 12-13
aggregate genotype prediction 16-18
animal and relatives records 15-16
data available, correlated traits 14
description 11
economic indices 18-19
matrix form 12
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multiple linear regression 12
phenotype and genetic marker
information 21

properties 11

restricted 19-20

single records, individual and
relatives 14-15

single nucleotide polymorphisms (SNPs)

chromosome segments 178
DNA sequence variation 177
fixed effect model
animal breeding context 179
and EDC 180
GEBV 182
marker effects prediction 181
MME 180
and polygenic effects 180
reference animals 181
steps 179
mixed linear model
GBLUP 184-187
selection index
approach 187-188
SNP-BLUP 183-184

sire model

description 46
design matrices and MME 47-48
in matrix notation 46

sire-maternal grandsire (S-MGS) 119-120
SNPs see single nucleotide

polymorphisms (SNPs)

social interaction

animal model

associative effects 123

MME 123

pigs 125-127

residual covariance 124-125
correlated error structure 128-129
DBV and SBV 122-123, 127-128
direct effects 121
economic and welfare problems 121
food competition 121
IGE 121
non-additive components 122

schemes 121-122
square matrix 300
survival analysis
censoring 240-241
definition 240
function 240
linear models 241
livestock production 240
non-parametric estimation 245
proportional hazard models
definition 243-244
exponential distribution 244
Weibull distribution 244-245
random regression models 241-243
regression models see regression
survival models
symmetric matrix 301

TDY see test day fat yields (TDY)
test day fat yields (TDY) 132
threshold model
calving ease score distribution 223
categorical traits 223
and data organization 221-222
functions, normal
distribution 220-221
inverse, pedigree 224
iteration, subclass 225-230
pedigree 223
probability, category 229-230
system of equations 224-225
triangular matrix 300-301

univariate animal model
Gibbs sampling output 264-265
joint and full conditional
distributions 262-264
numerical application 265-266
prior distributions 261-262

WWG see pre-weaning gain (WWG)
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