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This new book series wishes to contribute to the discussion by looking at various
aspects of modern livestock production. This includes the acceptability of how this is
done in relation to the ethics and animal welfare, the practicality of the role of
technology and the economics of animal-based food production.

The increasing demand for cheap animal products, for higher animal welfare and
healthier animals while heavily reducing environmental load and energy use with an
ever smaller suitable workforce is putting livestock farming world-wide under
pressure. Previous research has shown that modern technology has a high potential
to address these issues by using sensors and sensing systems to automatically capture
quantitative information directly from the animal; this is referred to as Precision
Livestock Farming (PLF).

However, it has also been shown that important issues remain to be solved:
(i) lack of cooperation between animal scientists, veterinarians, bio- and other
engineers and economists, (ii) lack of implementable systems which relate sensors,
image and sound analysis to key indicators on farms, (iii) lack of understanding how
PLF creates value for the different stakeholders and (iv) suitable business models to
further adoption of PLF. Furthermore, the divide between consumer understanding
and the reality of modern livestock production is widening with the urbanisation of
the population and the increased use of intensive farming systems.
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Preface

There is an increased requirement to solve accurately the animal nutritionist’s
problem of what will happen if a particular animal is fed in a particular way whilst
kept in a specific environment at a specific point in time. The pressure arises from the
need to develop more efficient livestock systems that reduce their impacts to the
environment and enhance food security whilst at the same time provide improved
animal welfare. It is associated with the fact that novel feedstuffs that meet the above
criteria are entering the supply chains, whilst at the same time supply chains of
traditional feedstuffs are being disrupted due to conflict, climate change and changes
in human dietary habits, among other factors. The solution to the nutritionist’s
problem is compounded by the fact that there is a change in the way we manage
livestock, including the move towards large-scale units that rely less and less on
human input in order to improve system efficiency and reduce labour shortages and
costs.

Technological advances may enable the move towards such livestock systems
whilst facilitating more accurate solutions to the way we feed and manage animals.
Such technologies involve automation and capture of information that can be
communicated to devices or networks that may allow decision-making in real or
near-real time. One class of these technologies are the smart technologies, which are
based on sensors operating on electronic technologies and are capable of capturing
information about the various components of livestock systems. Their utility to the
livestock sector is being enhanced by rapid advancements in the fields of computer
and electronics, and their adaptation to provide tailor-made solutions.

It is within the context of this background that this book was developed. The
principle of smart nutrition involves the utilisation of smart technologies in feeding
and managing livestock. As an idea it is not a new one, but technological
developments now enable the application of its principles to livestock systems
where it was previously thought impossible. This is the case of feeding extensively
kept ruminants in environments that may be challenging, due, for example, to their
spatial heterogeneity. In addition, technological developments also enable data
capture, transmissibility and storage, which are the usual bottlenecks in the applica-
tion of such technologies on farm. It is, therefore, likely that we will be increasingly
relying on such technologies in the future.
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vi Preface

This book is essentially divided in two parts, although this distinction is not made
explicitly. In the first part, we deal with advances in technologies that enhance or
enable the capture of relevant information. At the same time advancements in fields
of biology, such as in molecular agriculture, now enable the characterisation of
animal and plant genomes to enable genotype selection in a faster and more targeted
manner. The second part of the book deals with the applications of smart nutrition to
a variety of livestock systems, ranging from intensively, indoor-managed systems
for broilers and dairy cows to more extensively, outdoor-managed systems for beef
cattle and sheep. Most of the book chapters have heuristic value as their authors were
given the remit to consider how these systems may look in the future and how this
can be achieved through the application of smart nutrition. The book concludes by
considering the consequences of smart nutrition on the environmental impact of
livestock systems, due to the current global focus on this issue. It is possible that the
application of smart nutrition will confer other benefits in the future.

Like all multi-author endeavours, the book took a bit longer to be completed than
desired. Because of this, several chapter authors expressed their concerns that their
chapters may become outdated during the editing process, especially because new
information in the field arises almost on daily basis. Given the heuristic value of the
chapters I do not have similar concerns about outdateness. I am obviously grateful
for the patience shown by my collaborators, but also for their rising to my challenge
of writing chapters that were developing principles, so that will not be overtaken
rapidly. I particularly enjoyed our collaboration and I hope that they also enjoyed it
in return. I expect that some of the enjoyment of this interaction is reflected in the
quality of the book and appreciated by its readership.

Belfast, UK Ilias Kyriazakis
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Putting Smart into Nutrition 1
Ilias Kyriazakis

Abstract

The solution to the central problem of nutritionists, of what will happen if a
particular animal is fed in a particular way whilst kept in a specific environment at
a specific point in time, relies on sufficient and accurate descriptions of animal
genotype and phenotype, feeding regime, and other dimensions of the environ-
ment. Such descriptions are the main focus of this chapter. Due to scientific
advances, we are becoming aware of descriptions of these components and their
consequences in ways we have not previously thought of. Examples include:
(1) description of animal resilience, i.e., its ability to maintain high health and/or
performance when it is challenged by a perturbation; (2) measurements of
emissions, such as greenhouse gases, indicative of feed digestion and utilisation;
and (3) descriptions of an animal’s social and infectious environment that have
the potential to affect animal performance. Some of these measurements are now
made possible through smart technologies, i.e., technologies that rely on elec-
tronic devices, that automatically capture information and, through communica-
tion with other devices or networks, generate information in real time. In this
chapter, I also consider additional descriptions of the animal, its feed, and its
environment that, although desirable, are currently not able to be captured by
(smart) technologies. In this respect, the chapter has a heuristic value and may
guide future developments in the field. The final part of the chapter addresses the
issue of granularity in the descriptions. The topics of frequency and resolution are
considered; in the extreme, smart technologies will make it possible to collect
information on a continuous, real-time basis. As far as animal phenotype resolu-
tion is concerned, the focus may be not on the individual phenotype, leading to
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# Springer Nature Switzerland AG 2023
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precision nutrition, but on (small) groups of animals that may require a specific
management intervention at a point in time, leading to targeted nutrition, or on
herd or flock ‘phenotype’. This will depend on the type of livestock we are
dealing with and what we aim to achieve through their production system.
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composition · Individual nutrient requirements · Infectious environment ·
Livestock · Near-infrared reflectance spectroscopy · NIRS · Nutrient
requirements · Nutrient excretion · Phenotype · Precision feeding · Smart
technologies · Smart nutrition · Targeted nutrition · Social environment ·
Sustainable feed · Sustainable livestock

1.1 Introduction

Animal nutritionists are challenged with what will happen if a particular animal is
fed in a particular way, whilst kept in a specific environment at a specific point in
time. By definition, the challenge is in three parts: (1) What is the kind of animal in
terms of its potential (e.g., the maximum growth it can achieve, or quantity of milk it
can yield), and what is its state at this specific point in time (e.g., has it been
previously affected by disease or how has it been fed up to the particular point in
time)? (2) What knowledge about the feeding regime, including the properties of the
feed(s) offered to the animal is required? Please note that the prediction of what
amount of the feed will be consumed is part of the nutritionists’ problem, although in
some instances the amount of a particular feed offered may be known a priori, such
as in the cases of restricted feeding. (3) What are the necessary and adequate
dimensions of the environment that need to be known in order to make the
predictions? A schematic description of the challenge and the interactions of its
parts are given in Fig. 1.1.

Fig. 1.1 A schematic
description of the challenge
faced by nutritionists when
predicting the output of an
animal: how is this particular
animal going to perform,
whilst given access to a
particular feed, whilst kept in
a certain environment?



1 Putting Smart into Nutrition 3

Clearly, the dimensions of the feed and the environment that can be used to
describe them may be numerous, but the emphasis here is on the necessary and
adequate. It has been argued that increasing unnecessarily the complexity of inputs,
such as phenotype or environmental descriptions, to a predictive (nutritional) system
would lead to a poor predictive performance (Emmans & Kyriazakis, 2001). How-
ever, increasingly we recognise ‘novel’ nutritional and environmental dimensions
that may be of relevance and have not been previously considered as part of the
challenge. A case in point is the social environment where the animal is kept in, as
the interaction of an animal with its conspecifics may affect its performance in ways
not previously considered (Wellock et al., 2003a). The same applies to a certain
extent to the assessment of genotype and phenotype, especially as interest in novel
traits may apply. The increased interest in animal resilience, i.e., its ability to
maintain high health and/or performance when it is challenged by a perturbation,
as a novel trait is a good case in point (Doeschl-Wilson & Kyriazakis, 2012).

Quantitative assessments of the above dimensions have been limited in the past
by being laborious, time-consuming and frequently imprecise. They may also cause
animal disturbance and therefore affect animal welfare. For example, measurements
of liveweight and conformation, or body composition have not always been straight-
forward, been associated with inaccuracy as, for example, the animal moves within
the weighing crate, and frequently required separation of the animal from its group.
The same applies to the assessment of the chemical composition of a feed, which has
been based on wet chemistry and therefore its assessment needed some time to yield
outcomes. The move towards livestock units with a larger number of animals and
higher animal-to-staff ratios, and the need to operate efficiently in order to minimise
undesirable impacts, such as environmental ones, will exaggerate these limitations. It
is the thesis of this book that there are now novel technologies, such as Smart
Technologies, that may help us to overcome such limitations and thus lead to a
more efficient or even precise management of livestock systems.

Smart Technologies are technologies that rely on electronic devices, such as
sensors, to capture automatically information, and through communication with
other devices or networks and the use of data analytics and artificial intelligence,
are able to generate outputs that can be used, for example, for the management of a
livestock system (Berckmans, 2017). Smart Nutrition is defined here as the method
of feeding animals that involves the utilisation of smart devices. Subsequent chapters
in this book will focus upon such technologies and their current or potential use in
livestock systems in the context of smart nutrition. The overall aim of this chapter is
to focus upon the necessary and adequate descriptions of the animal, its feed, and its
environment. By doing so, it will effectively generate a wish list; smart technologies
may or may not be able to generate such information on all their dimensions. In this
respect, the chapter will also have a heuristic value and may guide future
developments in the field. The final part of the chapter addresses the issue of
granularity in these descriptions. The topics of their frequency and resolution are
considered here.
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1.2 Animal Genotype and Phenotype Assessment

The respective questions of where an animal wants to be and at what state it
currently is, can be two simple definitions of the terms genotype and phenotype.
Whether an animal will achieve its ‘potential’, i.e., where it wants to be, will depend
on the environment it is kept in, including its nutritional environment, which will
define how the animal performs at a specific point in time.

In principle, the genome of an animal, i.e., its DNA sequence, is finite and can be
characterised fully for an individual. Through very rapid advancements in genetics
and genomics, there are currently several different types of genetic markers used for
the purposes of animal genotyping (Schlötterer, 2004). The current preferred geno-
mic markers of choice are the single nucleotide polymorphisms (SNPs), which are
now widely used, due to the development of relatively low cost to generate infor-
mation on thousands of SNPs simultaneously in an automated process. Such geno-
mic tools are used now for a variety of purposes in livestock management, ranging
from genomic evaluations, to monitoring of major genes, and congenital defects to
ultimately facilitating more precise management decisions. Given their wide avail-
ability and applicability, they will not be considered any further here. The emphasis
of this section is on traits that can be used for phenotype assessment; in a later
section, the desired frequency of measuring them is discussed.

1.2.1 Phenotype Assessment

A list of phenotypic traits that may be of interest in the context of a nutritionist’s
challenge is in Table 1.1. The list is not meant to be exhaustive, but indicative. Many
of these traits essentially relate to animal life history, as they define its state and how

Table 1.1 Phenotypic traits that may be of relevance in describing current animal state

Morphological traits Physiological traits Behavioural traits

Body size (weight) Reproductive traits Activity

Body length Body temperature Posture

Temperature of a body component Feeding behaviour

Body width Gastrointestinal function & capacity Drinking behaviour

Body height Heart rate Coping reactivity

Body condition Respiratory rate

Udder size Secretions (incl. composition)

Including composition with e.g. Milk

Excretions (incl. composition)

Faeces

Urine

Respiratory emissions

Immunological status

Infectious status



this has been reached at a particular point in time. Some of these traits may be highly
correlated, for example, animal body weight may correlate with animal length or
height, and the duration an animal spends visiting a feeder is highly correlated with
the amount of feed it will consume. In such cases, such correlations should be
considered, especially when redundancy in the phenotypic assessments may be
desirable, due to the sheer numbers of animals and records involved.
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At a first glance, there might be some glaring omissions from the list in Table 1.1.
However, this is because the rule of method used for the Table was not to include
traits that are composite and therefore can be deduced from other traits. This
included one of the central traits in animal management, that of feed utilisation
efficiency. Again, the example of the trait resilience is a good case in point.
Resilience is a combination of resistance, i.e., the ability to limit pathogen replica-
tion within the body, and tolerance, which is the ability to limit the impact of a
perturbation on health and performance (Doeschl-Wilson & Kyriazakis, 2012). In
the case of an infection, the former can be assessed by the immunological or
infectious status of the animal, whereas the latter can be assessed through a time
series of measurements of performance.

Morphological Traits The traditional morphological traits of interest relate to body
size at a particular point in time. There has been a lot of progress in assessing and
recording body liveweight automatically, for obvious reasons. This trait is of course
composite and does not tell us much about, for example, body composition or how
the chemical components of the body are distributed within its tissues. Two animals
may have an identical liveweight, but very different weights of fat and protein in
their body, which is likely to affect their response to feeding and nutrition
(Kyriazakis & Emmans, 1990). However, this trait has been included on the list,
because, currently at least, is one of the most frequently used assessments of animal
performance.

Additional body size traits of interest may include linear measurements such as
body length, body width, and body height. In certain respects, these were also used
in the past, especially for animals of breeding value, but they may now have
additional value in the context of smart nutrition, as they may combine and provide
composite or novel traits, as indicated above. For example, a combination of these
traits captured automatically via 3D cameras may lead to estimates of liveweight
without the need to weigh an individual animal.

Physiological Traits The obvious traits of interest may relate to the reproductive
state of the animal, such as whether it has attained puberty, whether it is pregnant,
how many foetuses it carries, its parity, the stage of lactation or egg production, etc.
There has been a long-standing interest in quantifying these traits in a non-invasive
and accurate manner.

There is an increasing interest in assessing non-invasively and/or remotely the
current physiological state and function of an animal, in terms of, for example, body
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temperature, gastrointestinal function, heart, and respiratory rate. This includes the
assessment of the temperature of a particular body part as it will relate to the function
of specific organs or the presence of inflammation (Greenwood et al., 2016).
Valuable information may be obtained by assessing the composition of secretions
or excretions by the animal, such as its milk, urine, faeces, and respiratory emissions.
The latter is of particular interest in the context of assessing the environmental
impact of livestock systems (FAO, 2017). All these traits may provide the necessary
or desired information about how the animal has reached this point in time, including
whether it is or has been under physiological stress, and information on how the
animal may cope with its current environment.

6 I. Kyriazakis

Some of the above measurements may also relate to the assessment of the state of
animals in relation to a past or present infection. There is an increased recognition
that experience with an infectious challenge may affect the amount an animal will
eat, how fast it will grow and how it will partition in its body nutrient resources
(Sandberg et al., 2007). For example, infection is usually accompanied by a reduc-
tion in voluntary feed intake (pathogen-induced anorexia), which may or may not be
compensated once the animal has recovered. In Sect. 1.4.1, I detail novel
developments in the assessment of the infectious environment. Some of these
developments also apply to assessing the immunological or infectious status of the
animal as a phenotypic state.

Finally, I have included here feed intake consumed over a certain period of time
as a physiological trait. Please note that whilst the prediction of the feed intake to be
consumed by a particular animal is part of the nutritionist’s challenge, the amount of
feed and nutrients that has been consumed up to the point of interest should be
viewed as phenotypic traits. This is because these intakes can affect the capacity of
the animal to consume a subsequent feed, its body composition, and its capacity to
grow beyond this point (Whittemore et al., 2003).

Behavioural Traits It is now widely appreciated that animal behaviour can tell us a
lot about animal state and behavioural traits can be exploited for the benefit o
managing modern livestock systems. Some of these traits, such as activity-related
ones (e.g., locomotion and posture), relate to how the animal performs, as higher
activity is associated, for example, with increased maintenance energy requirements.
Some other traits may be related to the coping reactivity of the animal in challenging
environments (Matthews et al., 2016). Such traits may include strategies individual
animals adopt in the face of competition for feed and water resources, increased
environmental temperature, or even avoidance of pathogens (Sandberg et al., 2006).
Although currently coping-related traits are not well defined, coping reactivity has
been included in Table 1.1, due to the increased interest in this trait in relation to
animal health and welfare, and even production efficiency (Rauw et al., 2017).

There has been a widespread interest in the quantification of the feeding and
drinking behaviour traits of livestock. Such traits include the number of visits to the
feeding or drinking source, duration and frequency of visits, number of visits clustered
within a meal, etc. The interest arises from the significance these traits may have in the



control and regulation of feed and water intake (Emmans & Kyriazakis, 2001).
Although it is suggested that such behavioural traits are a means to an end, it is
possible that some of these traits may actually play a role in how a feed is utilised once
consumed, or that they may be of significance in challenging environments, such as
those with high competition at the feeding sources.
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1.3 Assessment of the Nutritional Environment

The interest in the assessment of the chemical composition of a feedstuff and the
utilisation of the feed consumed by the animal has been the central problem of
animal nutritionists. Formally the former is a property only of the feedstuff, whereas
the latter is a function of both the feedstuff and the animal, as there is variation in
how individual animals digest and utilise different feedstuffs and feeds. Therefore,
no single value for a feed can be ascribed to these. Traditionally, however, animal
nutritionists have dealt with the latter as being a function of only the feedstuff and the
resultant feed consumed by the animal; this is the principle upon which Nutrient
Composition tables are based, when they provide values, for example, for the
Digestible Energy or a digestible amino acid content of a feed. This is also the
assumption made here, but the issue has also been raised in the previous section,
regarding the previous experience of an animal on a feed potentially affecting its
capacity to accommodate or digest it (Whittemore et al., 2003).

The challenge of assessing the nutritional environment is different for animals
kept indoors, which are usually offered a homogeneous feed, and animals kept
outdoors which are faced with a more complex nutritional environment whilst
foraging; for this reason, these two problems of assessing the nutritional environ-
ment are dealt with separately here.

1.3.1 Indoor-Managed Livestock

Although ultimately the animal may be offered a feed of a particular ingredient
composition at a particular point in time, there are considerable sources of variation
that may result in uncertainty over its chemical composition. Feed ingredients may
vary substantially in nutrient composition, due to growing conditions, hybrid or
variety differences, planting and harvest dates, and storage and feed out conditions
(Symeou et al., 2016). In addition, variation in feed composition may arise from the
feed manufacturing process, such as mixing and processing, including, for example,
the drying process in the production of distillers’ dry grain solubles (DDGS;
Pedersen et al., 2007).

Traditionally, feed ingredient and feed composition were assessed by wet chem-
istry, but this has gradually been replaced by methods, such as spectroscopy (e.g.,
near-infrared reflectance spectroscopy (NIRS)), which enable rapid assessment of
their chemical composition. Due to the rapidity of these methods, they have the
potential to be incorporated in various points in the feed production system. The



challenge would be to ensure that they operate in real time if they are to be used in
the context of smart animal nutrition.
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A significantly greater challenge is the assessment of the properties of the feed
that relate to its digestion and utilisation within the animal. The traditional approach
to achieve this has been reliant on in vitro methods validated on a wide range of
feedstuffs to measure the potential digestibility of a feed. As this approach is also
reliant on wet chemistry, it is also characterised by the limitations mentioned above.
Research efforts should and are being directed towards the development of rapid
assessment methods that can be incorporated into smart animal nutrition processes.
The challenge of these approaches would be their validation on a wide range of
feedstuffs. With increasing incorporation of alternative feedstuffs, co-products, and
by-products into livestock feeds, the challenge increases in its complexity.

In theory, rapid assessment of the nutritional properties of feeds once consumed
may be based on the non-digested residues of nutrients excreted in the faces. The
rationale behind this approach is that these assessments may contain information on
feed characteristics and nutrient digestibility, even though the feed had been
transformed as it passes through the gastrointestinal tract of the animal. The chal-
lenge of assessing the properties of the feed which relate to their amino acid
digestibility is even greater, given the issues associated with the conversion of
amino acids lower down in the digestive tract (Moughan et al., 2018).

One particular issue is the description of the heterogeneous feeds offered to
indoor-kept livestock. This is the case of the Total Mixed Ration (TMR) offered to
cows which may consist of forage (e.g., silage) and a concentrate mix. In these cases,
the animal may select within its feed and consume more or less nutrients from its
theoretical composition. This selection may matter in the longer term, both on the
basis of imbalanced nutrition and excretion of nutrients. An (incomplete) solution to
this problem would require knowledge of the composition of what has been left in
the feeding trough. As far as I am aware this challenge does not seem to have been
considered thus far.

1.3.2 Outdoor-Managed Livestock

When dealing with pasture properties, one is interested in pasture biomass and
composition, and plant growth rate. All these properties are highly dependent on
weather, soil, and pasture management. There are now monitoring tools that are able
to predict the effects of these variables on grass growth and availability (https://
www.grasscheckgb.co.uk/). Even when these variables can be accounted for, it is
challenging to account for plant and species distribution, even when the desired
pasture is meant to be a monoculture. Different plant species may establish their own
microenvironments within a pasture and therefore would not be evenly distributed.

The complexity of assessing pasture availability and nutritional quality has been a
long-standing challenge for animal and forage scientists (Harmoney et al., 1997).
The ability to accurately measure pasture biomass would estimate forage availability
and determine livestock management, such as stocking rates for grazing to achieve a



certain output. Pasture available biomass is a function of plant growth and offtake
due to animal grazing. Neither of these processes are linear, as plant growth can vary
spatially within a pasture, and animals would be expected to select at various scales
(e.g., between different plants and within different parts of the same plant). Previous
methods to determine these properties have been either tedious (e.g., clip samples) or
inaccurate, especially when measured by mechanical means (Harmoney et al., 1997).
Therefore, the challenge is to develop rapid methods that assess pasture properties,
preferably via a single measurement taken at regular intervals. The approach taken to
determine feedstuff and feed composition via spectroscopy suggested for indoor-
managed animals may be applicable here. The question would be how and where
from to obtain a representative sample to determine the relevant properties (e.g., at
ground level or above ground). Additional challenges would arise from the fact that
methods of assessment developed to predict biomass in pastures with pure or evenly
distributed mixtures, may be inadequate in pastures without even species distribu-
tion. It is likely, therefore that these methods may require to be site- and sensor-
specific (Wachendorf et al., 2018).
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1.4 Environmental Monitoring

In this section, I consider environmental properties other than the nutritional envi-
ronment. It has been long established that certain properties of the environment
where an animal is kept have the potential to influence its performance and health.
For example, high environmental temperature and humidity have the potential to
affect adversely the output of animals, mainly through their adverse effects on feed
intake (Wellock et al., 2003b). It is, therefore, unsurprising that there has been a
long-standing interest in developing sensors to enable the monitoring of such
environmental properties and subsequent corrective action. Such sensors include
ambient temperature and humidity, concentration of noxious gases, such as ammo-
nia (NH3) and carbon dioxide (CO2), and airflow and air quality monitoring. The use
and accuracy of some of these sensors are very well established and are connected to
barn operations, for example, when the environment is too hot or too cold, they
trigger a change in the mechanical ventilation in pig and poultry houses. For some
other sensors, such as those of NH3 concentration monitoring, improvements in their
accuracy are required, due to the frequent need for calibration due to drifting.
However, given the increased interest in monitoring the excretion of such gases
due to their link with the potential environmental impact of livestock systems, an
effort to achieve this is currently being made.

1.4.1 Monitoring the Infectious Environment

One aspect of environmental monitoring that has been frequently overlooked is the
quantification of the infectious environment. This is not due to the lack of recogni-
tion of the potential of the infectious environment to influence both livestock health



and performance (Sandberg et al., 2007), but mainly because it has been difficult to
measure infectious agent distribution and concentration. In the past, the animal itself
has been used as a ‘sensor’ for the monitoring of the infectious environment
(Sandberg et al., 2006). Increase in pathogen burden in the animal itself or in its
excretions has been used as a tool for management intervention, such as medication.
One of the traditional ways of monitoring concentration of pathogens has been
measurements of what is excreted in the environment, for example in the faeces,
or accumulates in the manure or litter. This may be more relevant for pathogens
transmitted via the faecal-oral route, but not always for pathogens that are transmit-
ted through other routes, such as respiratory ones.
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An additional bottleneck of using the animal itself as a ‘sensor’ for quantification
of the infectious environment has been the delay between the sampling of the animal
and the assessment of the sample obtained. However, significant effort is currently
being made to overcome this delay and obtain an almost ‘real time’ assessment of
pathogen burden. This is the principle of ‘pen-side diagnostics’. In addition, alterna-
tive ways of infectious environment monitoring that do not involve the animal as the
‘sensor’ are currently being considered. These would be of greater value for ‘true’
and even ‘real-time’ assessment of the infectious environment. One of the promising
approaches to achieve this is through the monitoring of Volatile Organic
Compounds (VOC) in the barn environment. VOC are odours given off by all living
organisms, including pathogens. In principle, as the condition of the living organism
changes, the VOC concentration given off must also change. By monitoring the
change in these ‘smells’ in the environment, one can envisage that one can assess the
reason for the change, especially if it relates to the infectious burden. This is the
approach currently being taken by a variety of specialist providers such as
Roboscientific (http://www.roboscientific.com/technology/) who aim to sample
automatically the air in a barn at regular intervals and then automatically analyse it
to test for changes in the VOC. The challenge in this approach is to relate these VOC
to the presence of specific pathogens and importantly to the risk of infection
from them.

1.5 Granularity of Assessments

1.5.1 Frequency of Assessment

Obviously, the more frequent the measurement of the environment and animal
dimensions are, the higher the accuracy of the assessment of the dimension would
be and the more likely it would be to account for other sources of uncertainty, such as
temporal variation. This would be particularly the case for the assessment of
phenotypic traits that are associated with large errors, such as liveweight, or for
traits that may be affected by random events within the farm, such as in the case of
behavioural traits. The same would apply for the variation in feedstuff and ingredient
composition, such as for example in the variation in the dry matter of silage due to



the conditions of its storage, or of coproducts that are affected by large plant-to-plant
variation (Schroeder & Sedivec, 2018).
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In the context of precision livestock management, part of which Smart Nutrition
is, there are benefits if real-time quantification of a change in the environment or the
animal is accompanied by immediate action to prevent any adverse effect on the
animal and consequences on the system operation. This is the case, for example,
when a sensor detects an increase in the ambient temperature, which is followed by
changes in the mechanical ventilation within a farm building (e.g., an increase in fan
speed). The same may apply when a pathogen detection in the farm environment
triggers a preventative action, such as medication. In such a case the sooner the
pathogen is detected, the higher the chances of success of the action.

However, animal digestion and metabolism do not operate like a ‘switch’, even
for fast-growing animals like broilers, or high-yielding ones like dairy cows. For
example, the process of digestion of a feed may take several days, especially for
ruminant animals. In addition, animal metabolism is characterised by great plasticity
and to a certain extent the existence of body reserves dampens any fluctuations in the
nutritional environment. The mechanism of metabolic compensation, where an
animal can compensate for a short-term reduction in nutrient intake, allows the
animal to achieve this (Kyriazakis & Emmans, 1990). In addition, changes in
behaviour may also enable the animal to cope with perturbations in its environment
that have the potential to affect its nutrient intake. Non-dominant animals within a
group have a more opportunistic feeding behaviour, such as frequent and shorter
visits to a feeder in order to achieve their ‘desired’ feed intake. Cattle in the tropics
graze more intensively at dawn when the environmental temperature is lower. Given
this plasticity in physiology and metabolism, it is not surprising that feeding
strategies that aim to regulate nutrient intake in the very short term have not yielded
the desired outcomes (Molnar et al., 2018).

It is likely that technological advances will enable the assessment of phenotypes
in several dimensions relevant to Smart Nutrition. They will enable the assessment
of novel phenotypes, as is the case for behaviour traits, and may enable reassessment
of traditional phenotypic traits, such as liveweight. There would be the challenge and
indeed the temptation, to collect such data from a large number of animals instanta-
neously or almost real time. This will present several challenges, some of which are
detailed in subsequent chapters of this book and are mainly associated with high
dimensionality, data storage, and transmission, as well as date labelling and individ-
ual identification. It is possible that in the context of smart animal nutrition, such
high dimensionality might not be necessary both in the context of the phenotypic
traits and their temporal granularity.

1.5.2 Resolution of Assessment

Environment, Including Nutritional Environment There are now very clear
recommendations about the number of samples required for the characterisation of
the composition of forage, feed ingredients, and resultant feeds fed to animals



(Schroeder & Sedivec, 2018). The recommendations vary with the type of feedstuffs
offered and account for the potential sources of variation that may arise in each of
these feedstuff categories. For example, silage samples should be taken to represent
several locations in the silo to ensure representation, and should be collected after
fermentation is complete. Even for feeds stored in bags, which are assumed to have
been mixed thoroughly, sampling is recommended because settling within a bag can
be quite common.

12 I. Kyriazakis

Although the placement of environmental sensors in agricultural buildings has been
a long-standing focus of farm building specialists, the increased availability of novel
sensors has reignited the interest in their quality, positioning, and numbers required
to assess a certain environmental property (Curi et al., 2017). The positioning of the
sensors is crucial in providing the correct information to any system responding to it,
such as is the case of the automated control in the number of exhaust fans that need to
be switched on or off to return to desired environmental conditions. The number of
sensors required to monitor a farm building is also important, given the creation of
‘microclimates’ within the building. This will clearly depend on what environmental
property one aims to monitor. For example, Curi et al. (2017) modelled the required
positioning of only 3 sensors for dry bulb temperature and relative humidity in
poultry barns of various sizes, to support the ventilation system during critical
periods of summer. For novel sensors, such as those aiming to monitor the infectious
environment, very little information is known about their positioning and crucially
their numbers.

Animal Knowledge about a particular animal phenotype at a particular point in
time would help to provide the conditions needed to achieve desired outputs, e.g.,
through nutrition. This is the principle of precision nutrition, which is developed in
some of the subsequent chapters. It relies on phenotype assessment being linked to
the ability to identify correctly an individual, so that the animal receives the nutrition
appropriate to its needs at a particular point in time. For some animal systems, this
may be desirable or aspirational, e.g., dairy cattle and other livestock of breeding
value, but it is unlikely to apply to less-value-per-animal systems such as pigs and
poultry (Halachmi et al., 2019). For the latter systems, other resolutions of the animal
phenotype may apply.

Resolution of an animal phenotype assessment will depend on what it is aimed to
be achieved and how easy it is to measure it. For example, in extensive systems of
production, it may be difficult to obtain measurements of every individual within a
flock or a herd due to their spatial distribution. One method currently under devel-
opment relies on the assessment of animal phenotype without individual identifica-
tion. In some cases, the assessment of phenotype happens at specific points of the
pen or the barn, and depending on its outcome, the animal is directed to another point
of the pen where it receives a diet suited to the group of individuals with similar
phenotypic characteristics (targeted nutrition). For example, in the Nedap pig
feeding system (https://www.nedap-livestockmanagement.com/finding-efficiency-



automated-sorting-scales/), pigs are weighed as they move towards the feeder and
drinker and are separated in sub-groups according to their liveweight (e.g., light and
heavy pigs) to receive a diet suitable to their sub-group body weight.
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Variations of the above method may include assessment of the phenotype of
‘sentinel’ animals within a group, which are considered representative of the whole
group. Feeding decisions may then depend on the assessment of their phenotype.
Finally, a simple application of smart nutrition would be when the phenotype of a
whole group of animals is monitored, without individually identifying them. In this
case, the interest may be on the group average and variation within the group, so that
feeding decisions according to these may take place. This is an improvement of the
current phase-feeding system, which recognises the need to feed several diets to
animals for a relatively short period of time to match closely animal requirements.

1.6 The Way Forward

Advances in sensor technologies in tandem with biological understanding are likely
to give rise to an ever-increasing number of animal and environment dimensions of
high granularity (high-dimensional data). The challenge, therefore, would be to
define which dimensions are actually useful and relevant in terms of animal nutrition
and management. For example, there is an increased awareness about both the
positive and negative role plant secondary metabolites play in the consumption,
digestion, and utilisation of feeds (Ku-Vera et al., 2020). It is likely that analytical
methodologies would be able to generate information about the feed content of such
secondary metabolites in the near future. The question is would such information be
of value without a biological understanding of the modes of action of these
metabolites on animal processes? A further question of relevance is how to reduce
the number of dimensions captured to the actually relevant ones, especially when
dimensionality is (artificially) high. There are now methods which enable this
dimension reduction, especially when dealing with phenotype-related dimensions
(Perez-Enciso & Steibel, 2021).

Ultimately the penetration and adoption of smart technologies in livestock
systems will depend on the type of livestock we are dealing with and what it is
aimed to be achieved by its system of production. For example, Perez-Enciso and
Steibel (2021) argued that some livestock systems are more likely to adopt smart
technologies precisely because of the difficulties associated with capturing and
phenotyping their livestock, and because of the number of individuals involved.
Aquaculture was used as a case in point, but one can imagine that the same
arguments may apply to large-scale broiler production. On the other extreme are
extensively kept ruminants, due to the challenges associated with tracking
individuals distributed over large areas, the accurate description of the environment,
and the transmissibility of the data captured. However, given the rapid evolution in
the field of sensor technologies, it is likely that the sky will be the limit (Gonzales
et al., 2018).



14 I. Kyriazakis

Like all technologies with the potential to be used by livestock systems, a defining
factor for their adoption would be their cost and the return on investment they offer.
Different economic and governance models that may enhance the adoption of smart
technologies are currently being considered. Some of them deal with consequences
that may not have an immediate tangible economic value, such as improvements in
animal welfare or reductions in environmental impact (Pomar et al., 2011). Given the
direction of evolution of livestock systems, such consequences may actually guide
our need to adopt smart technologies.

Smart Nutritionwas defined above as the method of feeding animals that involves
the utilisation of smart devices. The focus of the chapter was on the information that
needs to be captured by these devices to implement it. The component of Smart
Nutrition that deals with the communication of smart technologies with other
devices or networks, and the use of data analytics and artificial intelligence, to
generate actions such as feed delivery or precise diet composition was considered
outside the scope of this chapter, as it will be considered in detail by subsequent
chapters. Addressing these issues is by no means a trivial exercise.
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Matching Feed Characteristics to Animal
Requirements Through Plant Breeding 2
Leif Skøt, Christina Marley, David Lloyd, Alison Kingston-Smith,
and Mike Humphreys

Abstract

There is an urgent need to reduce the environmental impact of livestock farming,
and in this review, we focus on how forage, grain and protein crops through plant
breeding can make a contribution to this. Systematic forage plant breeding is only
100 years old, and the genetic variation present in most forage crops is only just
starting to be fully utilized. Perennial ryegrass is an example of how plant
breeding has led to the development of varieties with increased digestibility and
yield. However, new breeding targets will have to be identified, as we increase
our understanding of the interactions between plants and the animals that con-
sume them. Forage crops of the future must be able to utilize water and nutrients
more efficiently to maximize production per given land area. Forage legumes fix
their own nitrogen for the benefit of their own growth. As they are most often
grown in mixtures with grasses, this also benefits the companion species. Indeed,
multi-species swards can produce higher quantities of forage dry matter
(DM) from lower N inputs and improve the productivity of grazing ruminants.
Legumes also provide other ecosystem services, including improved soil struc-
ture and habitat for insect pollinators. Forage and grain legumes can also provide
a source of homegrown protein for non-ruminant livestock animals. EU currently
imports over 75% of its use of protein crops for its animal feeds. Increasing
Europe’s protein self-sufficiency requires an increase in the use of grain legumes,
such as pea, soybean and faba beans. They, in turn, need to be better adapted to
new climes, biotic stresses, as well as increased yield and protein content and
composition. Basic breeding methods for outbreeding and inbreeding crops are
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outlined, and current breeding targets are discussed in relation to animal nutrition
and their contribution to reducing the environmental impact of livestock farming.
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2.1 Introduction

Livestock production is increasing rapidly and accounts for 40% gross value of
agricultural production on a global level. A number of factors contribute to this.
They include an increasing global population, rising living standards and consequent
changes in dietary habits in many developing countries (World Agriculture –
Towards 2015/2030 – An FAO Perspective; http://www.fao.org/3/y4252e/y4252
e00.htm#TopOfPage). Twenty-six percent of the planet’s ice-free land is used for
livestock grazing and 33% of arable land is used for livestock feed production
(https://www.fao.org/3/ar591e/ar591e.pdf). In 2019, there were 143 million pigs,
77 million bovine animals and 74 million sheep and goats in the EU-27. Just over
half of the EU-27’s meat production was from pigs (22.8 million tonnes) in 2019,
and the EU-27 produced 13.3 million tonnes of poultry meat in 2019, a new high. In
the UK there were 23 million sheep, 4.8 million pigs and 9.3 million bovine animals
(https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_pro
duction_-_livestock_and_meat).

Livestock systems provide one-third of the protein consumed by humans, with
two-thirds of these systems being forage-based and from global grasslands. The
majority of ruminant livestock are still being fed forage crops, grown in areas that
may be unsuitable for arable crops. This is usually grassland, which is in itself
unusable for human consumption, but through livestock farming, is converted to
high-value protein and other essential nutrients, that are more bioavailable than from
plant sources. Grassland livestock systems will therefore continue to play a major
role in farming and the provision of high-value nutrition. In more intensive ruminant
livestock production, forage is replaced by or supplemented with starch-, oil- or
protein-rich grain or pulse crops. In non-ruminant livestock production such as pigs
and poultry systems, feed is sourced from soybean and other pulses, oilseed rape,
sunflower, maize, wheat, barley and other grain crops.

Livestock agriculture is a significant contributor to greenhouse gas (GHG)
emissions, being responsible for about 14.5% of the worlds’ anthropogenic GHG
emissions (Gerber et al., 2013). Most of this comes from methane (CH4) emissions
through enteric digestion by ruminant livestock, and from nitrous oxide (N2O) via
urine, excreta, manure, fertilizer application and management (Rojas-Downing et al.
2017).



2 Matching Feed Characteristics to Animal Requirements Through Plant Breeding 19

One impact of extreme weather conditions due to climate change is the detrimen-
tal effects of soil moisture content of soil structure and biology and carbon influx.
Grassland soils are more susceptible to compaction, due to grazing livestock or farm
machinery when the soil moisture content is high and organic matter is low (Hamza
& Anderson, 2005). However, grasses with extensive root systems may improve soil
qualities through soil-root interactions (Kell, 2011; Humphreys et al., 2014;
Marshall et al., 2016).

Discounting the extreme solution of eliminating livestock agriculture, which
would generate major issues with food security, grassland use, soil fertility,
increased use of pesticides and major humanitarian upheaval, more efficient use of
resources could and should make significant contributions to reducing GHG
emissions (Garnett, 2009; Peyraud, 2017). By better matching feed characteristics
with the requirements of the animal, we can improve the sustainability of and reduce
the environmental footprint of livestock farming. Grass and legume forage is the
most sustainable feed for ruminant livestock animals, and there are many
opportunities and an urgent need for research into how we best use grassland to
convert it to nutritious and protein-rich food for humans, while reducing the envi-
ronmental footprint. Similarly, we need to maximize production of animal feed crops
sustainably in order to minimize the percentage of arable land it uses. In the
following sections, we will focus on the most important aspects of nutrition of
ruminant and non-ruminant livestock, current trends in crop breeding, and highlight
ways in which our self-sufficiency in protein, particularly for non-ruminant animal
feed can be increased through plant breeding.

2.2 Nutrition, Digestion and Utilization

2.2.1 Forage Composition and Digestibility

Ruminants are an important part of the food supply providing a means of converting
fibrous feed grown on low-quality land to a high-quality product (milk and meat).
This is because of the synergistic relationship with the rumen microbiota, which is a
complex mixture of microbial organisms (Huws et al., 2018). Advances in sequenc-
ing technology have enabled us to understand the relationship between the ingested
feed and the rumen microbiota in detail. Ingested feed is colonized by bacteria and
fungi, which use the components of the forage as substrates for fermentation, driving
microbial growth. It is the increase in microbiota that feeds the animal directly,
because a proportion of the microbial biomass passes from the rumen to the acidic
abomasum. This enables extensive hydrolysis of microbial cells and absorption of
nutrients into the animal’s bloodstream. There are successional phases of coloniza-
tion, with particular communities of microbiota responding to and producing eco-
logical niches (Edwards et al., 2008). In addition, the composition of the colonizing
population is a result of the (bio)chemistry of the forage. For instance, the profiles of
timing and number of phases in colonization of forage grasses and clovers could be
differentiated by 16S sequencing (Wilkinson et al., 2018; Mayorga et al., 2016),



Therefore, understanding of early events in colonization, in addition to gross
changes in steady state rumen fermentation will enable a better matching of delivery
of feed nutrients to the rumen with enhanced incorporation and lower waste outputs.
The two key wastes are methane and nitrogen, both due to inefficient use of feed in
the rumen.
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Ruminants are important components of global food security, but they use forage
protein inefficiently (~30% incorporation) resulting in significant environmental
problems and a need for supplementary protein feed to achieve productivity targets.
Hence, dietary crude protein contents alone are not adequate measurements of the
protein values of feedstuffs for ruminants, because of imbalances in ruminal protein
use profiles. This is the result of the efficiency of microbial protein synthesis and
rates of protein degradation in the rumen. Protein use efficiency is increased in the
presence of soluble carbohydrate. The asynchrony hypothesis (Hoover & Stokes,
1991) is based on the imbalance between the provision of protein and carbohydrate
in ruminant diets. The rumen microbiota requires soluble carbohydrates, and degra-
dation of structural carbohydrates to drive microbial growth. In the absence of
sufficient carbohydrates, the hyper-ammonia-producing bacteria can de-aminate
peptides to generate energy. This typically yields ruminal ammonia in excess of
what is required for microbial protein synthesis thus contributing to inefficient use of
dietary protein and environmental pollution from deposition of ammonia in urine
and faeces. By increasing the immediate availability of soluble carbohydrate to the
rumen microbiota the conversion efficiency of nitrogen can be improved signifi-
cantly, resulting in higher protein in milk (Merry et al., 2006; Edwards et al., 2007;
Miller et al., 2001).

One of the most important factors influencing the feed value of forages and
therefore the performance of animals consuming that forage is forage digestibility.
In a review of the effect of grass silage digestibility, a 10 g/kg increase in digestive
organic matter in the dry matter (DOMD) was found to increase ewe liveweight post-
lambing by an average of 1.3 kg and increase lamb birth weight by an average 52.3 g
when offered to pregnant ewes. In beef cattle, the effect was an increase in
liveweight gain by an average of 22.8 g d-1. In finishing lambs, the same increase
in silage digestibility was found to improve liveweight gain in finishing lambs by an
average of 9.3 g d-1. In dairy cows, the effect observed was an increased milk yield
by an average of 0.33 kg d-1 (Keady et al., 2013). Increased forage digestibility is
often associated with a higher content of water-soluble carbohydrates (WSC), and
this is discussed in Sect. 2.3.3.1.

2.2.2 Supply of Nutrition to the Animal

Barley is widely used as a feed for dairy and beef cattle because of its easily
digestible starch, and relatively high protein content, including methionine, lysine,
cysteine and tryptophan (Nikkhah, 2012). For ruminant nutrition, the issues are
similar to those outlined above in forages, namely the balance and timing of
carbohydrates and protein provision in their diets. On the other hand, lactic acidosis
can result, if the starch is very easily digested by the rumen microbes. This disrupts



fibre digestion and reduces feed intake (Black et al., 2005). In terms of metabolizable
energy available, there are significant differences between the performance of
different barley varieties for cattle, but also for non-ruminants (Black et al., 2005).
In pigs, the hindgut can contain a microbial population, so if the feed is unprocessed
much of the starch is digested there, rather than in the intestine and stomach. This can
lead to poor utilization of feed and reduced feed intake. Poultry is dependent upon
their gizzard to disrupt the cell walls of the grain and expose the starch to digestive
enzymes.
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Energy in an animal’s diet can also be supplied as lipid. Fat supplements are often
in dairy cow nutrition to increase dietary energy density, increase metabolizable
energy intake and maximize milk yield without the risks associated with feeding an
excess of fermentable carbohydrates (Jenkins & McGuire, 2006). A potential
approach to improving the nutrient supply of grass-fed animals is via enhanced
total lipid content within grass feed. Increasing lipids in grasses will also signifi-
cantly improve the supply of omega-3 PUFA (polyunsaturated fatty acids), which
has beneficial effects in terms of animal health and fertility. Supplying high PUFA-
containing oils may affect methane production in the rumen (Martin et al., 2011) and
approaches to reduce this are an important component of climate change mitigation
strategies (Scollan et al., 2010). There are significant concerns about the potentially
negative effects of meat and milk fat consumption on human health (Garnett, 2009).
However, forage-fed animals produce meat and milk with a lipid composition more
favourable to human health than that derived from concentrate-fed animals (Daley
et al., 2010). This is particularly associated with a more ‘beneficial’ ratio of PUFA to
saturated fatty acids as fresh forages have a high PUFA content with total lipid
comprising 50–75% 18:3n-3 and 6–20% 18:2n-6 (Dewhurst et al., 2003). Studies
have shown a genetic correlation with FA composition suggesting the potential for
genetic improvement leading to the development of high FA grasses (Dewhurst
et al., 2003; Barrett et al., 2015). Perennial ryegrass varieties with a FA content that
enhances still further the beneficial impact of forage feeding would be an important
tool in the development of a sustainable livestock sector meeting the needs of the
value chain and consumers.

2.2.3 Protein Supply

2.2.3.1 Forages
Legume forages are an important source of soil mineral nitrogen, known to increase
the DM yields of subsequent cereal crops when sown in rotations (Marley et al.,
2013) contributing up to 75 kg/ha of residual N available to following crops. This
provides an opportunity to reduce reliance on purchased inorganic fertilizers
(Lüscher et al., 2014; Peyraud et al., 2009). Legumes achieve this function through
their ability to host N-fixing rhizobia (Garg & Renseigné, 2007). The diverse high-
protein legume forages available in grassland systems include: white clover (Trifo-
lium repens), red clover (Trifolium pratense) and lucerne (Medicago sativa). The
attributes of white clover (crude protein (CP) 28%) are well-established within



grassland systems worldwide as a high-protein forage with superior digestibility
across the grazing season vs other forages. Red clover is high yielding with high
nutritive value (CP 19–22%), and highly palatable to ruminants. It is primarily
conserved as silage, but can be grazed (Marley et al., 2007). Lucerne (alfalfa) has
a high protein content (17–20%), and due to its deep rooting systems, has comple-
mentary responses to climatic conditions compared to red clover, with red clover and
lucerne being high yielding in wet and dry conditions, respectively (Peterson et al.,
1992; Humphries & Auricht, 2001). Overall, legumes supply essential nutrients from
mid-summer to late summer, compensating for the decline in yield of grass swards.
Feeding these forages individually to ruminants improves feed intake, doubling feed
conversion and increasing productivity vs grass only (Marley et al., 2007), and they
can be incorporated into livestock systems as traceable, low-cost sources of high-
quality protein for ruminants.
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In addition, red clover contains the enzyme polyphenol oxidase (PPO) at high
activity (Lee, 2014). The enzyme catalyses the oxidation of diphenolic compounds
to quinones, and they in turn form complexes with proteins when cells are damaged
for example through ensilage (Sullivan & Hatfield, 2006; Lee et al., 2004;
Theodorou et al., 2006; Lee et al., 2009c). This makes the proteins more resistant
to rumen degradation, decreasing proteolysis and permitting more of the feed N to
reach the abomasum (Sullivan & Hatfield, 2006; Jones et al., 1995; Winters et al.,
2008; Lee, 2014). The potential for PPO to act in a fresh feed situation has also been
demonstrated. A proteomics approach comparing red clover wild type and a mutant
lacking PPO activity showed, even in the few minutes during which the animal
produced the down bolus through mastication, cell damage allowed mixing of
cellular compartments and complexing of PPO with proteins from cytoplasm and
chloroplasts (Hart et al., 2016). The potential for exploitation of PPO to enhance
protein protection is not limited to red clover and has been detected in meadow
grasses such as cocksfoot (Lee et al., 2006).

The enzyme has also been associated with a reduction of lipolysis, and an
increase in the content of polyunsaturated fatty acids in animals (Lee et al.,
2009a, b). The mechanism by which this happens is not elucidated yet, but some
of the suggestions include deactivation of plant and microbe lipases and binding of
quinones to glycerol-based lipid-reducing lipolysis (Van Ranst et al., 2011).

Like many other forage legumes, the red clover genome contains a large family of
PPO genes, which suggests a complex regulation of activity both temporally and
spacially in the plant (De Vega et al., 2015; Winters et al., 2009; Webb et al., 2013;
Sullivan et al., 2004). Nevertheless, a naturally occurring mutant with very low PPO
activity was identified in red clover (Winters et al., 2008). This appears to be
inherited as a single recessive mutation, which indicates simple Mendelian genetics.
This germplasm represents a very useful resource for further study of the genetics,
physiology and biochemistry of PPO in red clover.

2.2.3.2 Grain and Pulse Legumes
Agricultural use of soya for animal feed rather than human consumption represents
another challenge. Europe and China both import a significant and increasing



amount of soybean protein for animal feed. According to the Food and Agriculture
Organization of the United Nation (FAOSTATS), whilst China is one of the top ten
producers of soya, it is also the largest consumer, responsible for 60% of global
imports (USDA, 2018). The EU is only 5% self-sufficient in soya and imports
13 million tonnes of soya-based crude protein (FEFAC, 2017). Soya is the main
protein component in concentrate diets for dairy, whilst for beef & sheep production
concentrate diets use soya, oil seed rape and palm kernel cake and meal. It is also a
significant proportion of the diet of non-ruminant animals (i.e. pigs and poultry).
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The lack of sustainability of soybean production and supply as well as price
fluctuations contribute to this as a major issue, highlighting a need for strategies to
reduce reliance on soya bean meal. Nevertheless, soybean is the most important and
preferred source of high-quality vegetable protein for animal feed manufacture.
Soybean meal has a high crude protein content of 44–50% and a balanced amino
acid composition, complementary to maize meal for feed formulation. A high level
of inclusion (30–40%) is used in high-performance non-ruminant diets (https://
www.fao.org/3/y5019e/y5019e03.htm#TopOfPage). There are alternative grain
legumes in more temperate regions in the form of pea, beans, faba beans and
lupin. Each has advantages and disadvantages in terms of management, amino
acid profile and anti-nutritional factors. Field peas (dried peas) for example are
harvested ripe. Dried peas are used whole or split and fed to livestock. “Protein
peas” are field peas that have been developed in Europe in the 1980s as a high-
protein, white-flowered, low-tannin, low-antitrypsin protein source for animal feed-
ing. Field peas used for animal feeding (feed peas) can be fed raw or processed in
order to improve their nutritional value. This demonstrates the potential for breeding
of alternative protein crops for animal feed. Nevertheless, there is also potential for
soybeans for continuing improvement and possibly wider adaptation to different
growing conditions, particularly in a European context, in locations where grain
soybeans cannot (presently) be economically produced. Development and exploita-
tion of soybean genetics may be an appropriate strategy in some regions, together
with developing other alternative plant protein sources. This is illustrated in a major
European project to increase Europe’s protein self-sufficiency (http://eucleg.eu/),
where soybean features together with pea, faba bean, alfalfa and red clover (Saleem
et al., 2021).

2.2.4 Nutrition from Cereal Crops

Barley, maize and wheat, as well as other cereals, are extremely important sources of
livestock diets. Nutrient content in different grain crops used for animal feed is
shown in Table 2.1. Cereals are used as a source of energy and protein in animal
feed. Barley has more CP than maize, and also a higher content of the amino acids
Lysine, Methionine, Cysteine and Tryptophan. Hull-less barley varieties (that do not
have a tightly attached hull, which is easier to remove) have more CP and starch than
hulled varieties. Barley has lower starch content than corn, wheat and rye, but its
relatively simple structure in barley makes it easily digestible in the rumen,



particularly if it has been pre-processed, as in dry-rolling. This allows for a more
efficient utilization of protein (see Sect. 2.2.1). However, too much of easily
accessible starch can cause acidosis and consequently poor feed conversion, and
animal health issues. It is therefore important to mix the barley grain with a more
fibrous diet.
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Table 2.1 Nutrient composition (g/kg) of barley and other cereals used in animal feeds

Nutrient Barley Hull-less barley Maize Wheat Rye

Dry matter 880 880 880 880 880

Crude protein (CP) 115 132 88 135 121

Undegradable CP g/kg CP 280 350 500 250 200

Neutral detergent fibre 181 120 108 118 180

Acid detergent fibre 60 20 30 40 100

Starch 570 650 720 770 620

Fat 19 20 38 22 15

Ash 23 19 14 17 19

Lysine 4.3 5.0 2.1 3.5 4.0

Methionine + cysteine 4.2 5.6 3.0 5.1 3.6

Tryptophan 1.8 1.5 0.9 1.5 1.4

NEL Mcal/kg 1.71 1.75 1.78 1.82 1.71

Data are from Nikkhah (2012)
NEL is net energy for lactation

2.2.5 Other Essential Nutrients

Although levels vary throughout the season, mineral (e.g. calcium, magnesium) and
trace element concentrations (copper, zinc, boron) in legume forages are higher than
grasses when grown on the same soil sites (Lindström et al., 2013; Fisher et al.,
1996). Utilizing forage legumes will assist in developing more sustainable
approaches to the management of essential nutrients within soil-plant-animal
interactions, reducing the need for fertilizers or feed additives.

2.3 Plant Breeding

2.3.1 Breeding Methodology

2.3.1.1 Outbreeding Forage Crops
Forage crop breeding objectives are complex because they are defined with animal
production in mind, and have to be translated into physiological and biochemical
criteria which can be assessed at the population and individual plant level. Two
important developments were reported. Fagan (1924) used chemical analysis to
assess the nutritive value of the herbage. Secondly, Stapledon et al. (1924) first



presented the concept that agronomic work was moving away from a purely botani-
cal outlook. Subsequently, results of analysis of palatability of pasture species were
published (Davies, 1925). By 1932 the ‘S’ varieties (or strains) of ryegrass were
being developed alongside studies on chemical composition and palatability. The
breeding work had to be driven by clearly defined agronomic objectives as a
prerequisite to breeding operations regardless of the crop type (Breese & Davies,
1969; Wilkins & Humphreys, 2003).
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A new era of plant breeding was initiated in the late 1980s, focussing on
increasing the efficiency of ruminant milk and meat production, with emphasis on
digestibility and WSC. Lolium or ryegrass was then the key genus fulfilling a range
of purposes.

In recent years the need to reduce the environmental impact of livestock produc-
tion has been recognized. Traditional crop breeding has tended to focus on yield and
the ability of crop varieties to resist or tolerate disease. Overall, there is an increasing
interest in the role that quality traits can play in improving the efficiency of
production. Improvements are needed to bring it towards zero carbon emissions.
Significant progress has been made in reducing the use of industrially produced
nitrogen fertilizers, synthesized from fossil fuels, by using mixed swards that
incorporate nitrogen-fixing forage legumes. Current varieties used in seed mixtures
are bred independently of each other. There is great potential to focus on improving
the relationship between the grass and clover components of the sward by trialling
breeding lines together and, for example, optimizing the transfer of fixed nitrogen
from the clover to the grass. However, little work of this nature has been conducted
to date largely for logistical reasons. The amount of phenotypic assessment required
would be prohibitive without the use of automated evaluation.

Further environmental benefits can be made by optimizing the balance of quality
traits in forage, namely WSC, crude protein, lipid content, neutral detergent fibre
(NDF), and acid detergent fibre (ADF). Increasing WSC content in ryegrass is a trait
that has been a breeding target (Wilkins & Humphreys, 2003). These sugars are
rapidly released from the grass within the rumen, providing substrate for rumen
microflora to ferment. This results in a reduction of cell wall breakdown in the rumen
and reduces degradation of protein in the rumen, increasing the efficiency of protein
uptake by the ruminant and with significantly less nitrogen being excreted as
ammonia and nitrous oxide. This results in improved forage digestion, increased
dry matter intakes, higher liveweight gains and higher carrying capacity in the field,
and in the case of dairy production, increased milk yields (Lee et al., 2002; Moorby
et al., 2006) (see also Sect. 2.2.1).

Increasing lipid content in forage modifies the microbial community structure in
the rumen, decreasing the proportion of methanogenic protozoa and thus reducing
methane emissions (Patra et al., 2017). Moreover, unsaturated fats compete with
methanogens for hydrogen (Vargas et al., 2020). This, coupled with the health
benefits of increasing polyunsaturated fats in milk and in meat means that breeding
for increased lipid content in forage is currently a major focus. It is also likely that the
crude protein content of forage legumes can be optimized for reduction of nitrogen
losses. This will again depend largely on being able to accurately model the



interaction of companion species in a mixed sward (see Sect. 2.4.1.5). However, it
should be recognized that for livestock fed exclusively by grazing, possibilities for
complementing the diet are limited.
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Most temperate forage crops, including grass and forage legumes are out-bred,
often with a high degree of self-incompatibility (Vogel & Pedersen, 1993). Unlike
inbreeding species in which pure-line cultivars are produced, forage crops are
generally population cultivars, in which each individual plant in a population is
genetically distinct, but bears sufficient similarity to other members of the population
to satisfy statutory requirements for it to be accepted as a cultivar. Development of
population-based varieties using recurrent selection schemes aims to increase the
frequency of desirable alleles in the population, while still maintaining a high degree
of heterozygosity to prevent inbreeding depression. The simplest form of this ismass
selection or recurrent phenotypic selection (Burton, 1974). An initial spaced plant
nursery is established from progeny of intermating parents (polycross). After 3 years
of evaluation, the best plants are selected and intermated in a polycross. The progeny
is used to establish a new spaced plant nursery, starting a new cycle of selection. This
carries on until the genetic gain is sufficient to release a potential new variety. This is
best suited for traits with high heritability, and not effective for quantitative traits.
Genotypic selection relies on progeny testing. Seed from mother plants are used to
establish progeny rows. The mother plants are maintained asexually. After 2–3 years
of evaluation, the best mother plants are identified and used as parental material for
further breeding and/or variety generation. Among and within family selection, the
best plants within progeny rows (families) or swards are selected for further crossing
to establish a new generation. Breeding schemes for cross-pollinating crops are
described in more detail in textbooks and reviews e.g. (Vogel & Pedersen, 1993;
Stoskopf et al., 1993; Casler & Brummer, 2008; Conaghan & Casler, 2011, Resende
et al., 2013). Many forage breeding programmes use an iteration of this scheme: A
founder population is planted in the field and selected on the basis of a number of
traits, including heading date synchrony, presence/absence of disease, stature etc.
Selected individuals are polycrossed in pollen-proof isolation houses, seed harvested
as half-sib families and the mother plants retained (Wilkins & Humphreys, 2003;
Grinberg et al., 2016; Skøt and Grinberg, 2017). Half-sib families are sown as small
plots, and on the basis of performance in these trials, mother plants selected for
variety production. Saved seeds of the best half-sib families from the initial
polycross are then taken forward for the next generation of selection (Fig. 2.1).

The selection intensity required to successfully improve a population for a single
trait depends on the heritability of that trait and the variability of the trait in the
original population. Rates of selection of around 5–10% are typical. In out-breeding
species, there is a further need to consider both the selection intensity and the need to
select sufficient mother plants to avoid inbreeding depression. Where selection for
multiple traits (for example, yield and quality traits) is required the size of the
original population needed can rapidly become difficult to manage without a degree
of mechanization. This is especially true for species like white or red clover, that are
cultivated in mixed swards, which need to be assessed in the presence of a suitable
companion grass and, in conventional trials, are botanically separated by hand to



calculate the content of each component. This inevitably leads to the need to grow
and assess large numbers of field plots which, for space considerations and due to
seed limitation at early generations, are generally small in size: for half-sib plots, this
can be in the order of 1 m2 per plot.
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Fig. 2.1 Illustration of one cycle of the among and within family selection and breeding
programme

2.3.1.2 Cereals and Grain Legumes
The cereals and grain legume crops we are concerned with as animal feed sources,
are inbred or can self-pollinate. This means that pure-line cultivars are made from
crosses of two or more original parents. Three basic methods will be described here:
bulk, pedigree and bulk/pedigree methods (Brown et al., 2014). All three begin with
an initial cross between two parents. In the bulk method, the hybrid F1 and
subsequent generations perhaps up to F5 are grown as bulk populations. As the
crop is mostly inbreeding, seed will be produced predominantly by self-pollination.
At the F6 stage, single plants with the desirable traits are selected and seed from a
head are grown in rows. Seed from the best head-rows is bulk-harvested and used in
early yield trials. Seed from selected plots is used in subsequent advanced yield
trials. Advantages of this method include its relatively low cost, and conscious
selection is not imposed until the F6 generation, by which time the populations are
mostly homozygous, and not segregating. On the other hand, there is a long time
between the initial crosses and yield trials.
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In the pedigree method, the progeny from the F1 hybrid are grown as single
plants, and seed from the selected F2 plants are grown in head rows. A number of
plants from each of the best rows of the F3 generation are selected, and seed are
grown in head rows again. This is repeated until F6 when near homozygosity is
reached. The highest yielding rows are selected for early yield trials. This is a more
costly and laborious scheme compared to the bulk method.

As the name suggests, the bulk/pedigree method combines the features of both
schemes. As in the pedigree method individual F2 plants are selected, and seed from
those plants are grown in head rows. Selections are made among the rows of F3
plants, and seed are bulk harvested to allow for preliminary yield trials at the F4
stage. Selected plots are bulk harvested and plot trials are conducted on the F5
generation. At the F6 stage, single plant selections are made again, and the progeny is
grown as plant rows. Seed from selected rows is harvested and used in a new round
of yield trials in F8 and beyond for advanced yield trials. This scheme makes it
possible to discard inferior material at an early stage of the breeding process. The
method requires more resources for evaluation in the early stages. Most breeding
schemes aimed at developing pure lines are based on variations of this method.
Techniques such as doubled haploidy and single seed descent have been developed
in some species in order to accelerate the progress to homozygosity.

2.3.2 Genomic Selection

Conventional crop breeding strategies have limitations in terms of improving quan-
titative traits with low to moderate heritability. This includes traits such as yield,
quality and persistence, particularly for perennial forage crops. Molecular marker
technology has enabled the detection of genomic regions controlling trait variation,
but it has had limited impact on crop breeding. This is partly due to the lack of
relevant traits controlled by major loci. Genomic selection (GS) has the potential to
overcome some of these limitations. The concept of GS was first described by
Meuwissen et al. (2001). It uses a genome-wide set of DNA markers (usually single
nucleotide polymorphisms – SNPs) anticipated to be in linkage disequilibrium
(LD) with quantitative trait loci (QTL) of importance to the breeding programme.
All the markers are analysed jointly in order to explain the total genetic variance by
summation of all marker effects. These estimates are used to predict the breeding
values of selection candidates. A training population that is intensively genotyped
and phenotyped is used to develop a genomic prediction model based on the effect of
each marker. This is then used to calculate the genomic estimated breeding values
(GEBV) of candidates for selection, that are genotyped, but not phenotyped. The
basic principle of GS is outlined in Fig. 2.2.

GS has revolutionized livestock breeding programmes worldwide, and is widely
used in dairy cattle (Hayes et al., 2009; Hickey et al., 2017). GS also offers
opportunities to increase the efficiency and effectiveness of plant breeding
programmes and has been evaluated for large commercial breeding programmes
for several crops including maize, barley, wheat, oats and sugar beet (Asoro et al.,



2013; Wurschum et al., 2013; Zhao et al., 2012). GS could benefit plant breeding by:
(i) reduce generation time, (ii) reduce or omit the need for lengthy half-sib progeny
testing in outbreeding crops and (iii) increase selection pressure for difficult-to-
phenotype traits (such as seed yield). Providing genetic gain in forage yield can be
maintained through GS, omitting the HS progeny test in the population improvement
cycle would halve the generation time and thus result in doubling the genetic gain
(see Fig. 2.1).
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Fig. 2.2 Principle of genomic selection

The potential value of GS in perennial ryegrass is being assessed, and is at various
stages of application (Hayes et al., 2013; Lin et al., 2016; Fè et al., 2015, 2016;
Resende et al., 2014; Grinberg et al., 2016; Skøt & Grinberg, 2017; Faville et al.,
2018; Arojju et al., 2020).

In inbreeding crop breeding schemes, it would be valuable to be able to predict
the performance of inbred lines derived from two parents. This would potentially
reduce the number of crosses that needed to be made, and thus save resources. The
programme PopVar (Mohammadi et al., 2015; Sallam & Smith, 2016;
Osthushenrich et al., 2017) is an example of genomic prediction that has the
potential to predict the performance of inbred lines based on the performance of
the original parents, and some assumptions regarding recombination frequencies.

2.3.3 Breeding for Forage Quality

Forage quality is most often associated with high digestibility and palatability
(sensitivity to anti-nutritional factors and preferences for feed). A definition of forage



quality is its potential to produce a desired response in the animal (Ball et al., 2001).
A number of variables that influence forage quality includes palatability. This
depends upon things such as plant texture and leafiness, whether the material is
infected with disease, how sweet it is or antinutritional factors. Another variable is
intake. This again is associated with palatability. A third variable is digestibility –
how much of the food will be digested and absorbed by the animal and utilized for
further growth? The nutrient content of the intake is also important. The forage dry
matter is composed of non-structural parts, sugars, proteins, lipids and starch, and
structural parts include the cell walls (cellulose, hemi-cellulose and lignin). Some
forage crops also contain antinutritional compounds, such as tannins (tannins can,
however, also have beneficial effects on ruminant nutrition – see later), alkaloids,
cyanoglycosides and phytoestrogens (again, the latter can also be beneficial for
ruminant animals).
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2.3.3.1 Water-soluble Carbohydrates and Digestibility
Humphreys (1989) showed that WSC content (mostly fructans) in perennial ryegrass
is a polygenic or quantitative trait and that there was genetic variation among
ryegrass varieties for digestibility, WSC and crude protein (N). He demonstrated a
positive correlation between WSC and digestibility, and a slight negative correlation
between WSC and N. An understanding of the microbial utilization of protein and
carbohydrate in the rumen was developed, and this established the rationale for high
WSC as a key breeding target (Kim et al., 2007; Lee et al., 2002; Moorby et al.,
2006; Marley et al., 2007). It was hypothesized that increasing the water soluble
carbohydrate (WSC) fraction of grasses would lead to improved ruminant utiliza-
tion. Underpinning research on the biochemistry, metabolism, enzymology and
genetics of WSC (fructan) metabolism in perennial ryegrass complemented this
work (Wilkins & Humphreys, 2003; Turner et al., 2008).

There has been a continued emphasis on breeding for improved WSC and
digestibility, but without compromising the other important traits, such as forage
yield, disease resistance, seed yield and uniformity of flowering time (Wilkins, 1991;
Wilkins & Humphreys, 2003). Balancing the selection for all important traits is one
of the major challenges in forage crop breeding (Wilkins & Humphreys, 2003;
Casler and Brummer, 2008; Conaghan & Casler, 2011).

Perennial ryegrass varieties with increased WSC content can increase milk
production by up to 6% more milk per cow over the grazing season, increase dry
matter intakes by up to 2 kg/head per day and a 3% improvement in diet digestibility
(Moorby et al., 2006). Research on beef showed that high WSC varieties increased
forage intake by around 25%, contributing to 18–35% higher daily liveweight gain
enabling slaughter weights to be reached more quickly (Lee et al., 2002). In the lamb
sector, high sugar grasses have led to a 10–15% higher daily liveweight gains with a
20% higher carrying capacity of swards containing the HSG varieties (Marley et al.,
2007). Meta-analyses have concluded that an increase in the ratio of WSC:N
correlates with an increase in N content in milk per unit of N ingested in the dry
matter, and a reduction of N in the urine per unit N ingested (Edwards et al., 2007;
Soteriades et al., 2018). The latter shows that a farm management system with high



sugar grasses leaves a lower environmental footprint, a small decrease in contribu-
tion to global warming potential and resource depletion, compared to one with
standard varieties.
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2.3.3.2 Fatty Acid Content
Lipids are normally stored in the seed, where they serve as a source of energy during
germination. The energy content of lipids is roughly twice that of carbohydrates and
proteins, so it would be of potential value to increase lipid content in forage rather
than in the seed. The value of fatty acids in forage is twofold: The energy content
increases the metabolizable energy (ME) per unit of dry matter ingested, and thus the
potential for reducing methane emissions per unit of dry matter intake (Grainger
et al., 2010). Lipids in grass forage are mainly found in the membranes of the stroma
of chloroplasts, and they are rich in polyunsaturated fatty acids, particularly linolenic
acid (C18:3) and linoleic acid (C18:2). Studies on various types of ryegrass material
have shown that the total fatty acid content varies between 1% and 5% of dry matter
content (Dewhurst et al., 2001; Palladino et al., 2009; Hegarty et al., 2013). The
heritable part of this variation suggests that it is possible to breed for increased fatty
acid content in ryegrass, and targets of 7–8% of dry matter have been suggested
(Barrett et al., 2015). Milk fat depression in grazing cattle may happen at higher
concentrations (Flowers et al., 2008). However, such high concentrations of fatty
acids in ryegrass have not been achieved yet. It is also unknown what consequences
it would have for other main constituents of the forage such as WSC and proteins.

A transgenic approach for increasing lipid content was described in Arabidopsis
thaliana (Winichayakul et al., 2013). A lipid-encapsulation gene cysteine-oleosin
was constitutively expressed together with diacylglycerol acyltransferase in order to
increase energy content through the production of encapsulated lipids in the foliage.
The concentration of lipids increases to 8% of dry matter. A similar approach was
used in perennial ryegrass, and a 100% increase in lipid content was claimed for the
GM plants compared to the controls (Barrett et al., 2015). While such goals may be
possible to reach, the prospect of releasing GM varieties of wind-pollinated crops is
not realistic at present.

2.3.3.3 Phosphorus
Phosphorus is the most important soil nutrient with regard to successful legume
production due to the important role that phosphorus plays in facilitating the
effectiveness of their symbiosis with rhizobia (Smith & Read, 2008). Legumes
play a key role in the sustainability of agriculture, through their ability to host
N-fixing rhizobia. Phosphorus requirements for optimal clover productivity for
example are typically higher than non-legumes due to root nodules for N2-fixation
being P sinks (Sprent, 1999). Genetic variation for P acquisition and utilization has
been demonstrated in a number of crops (Wissuwa & Ae, 2001; White et al., 2005),
and associated QTLs identified (Ni et al., 1998). The viability of selecting for PUE in
grasses is indicated by work on wheat demonstrating wide genetic variation in
response to P supply (Osborne & Rengel, 2002).
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The efficiency of use of this finite resource by livestock animals is of paramount
importance. In animal feed, such as maize and soybean, P is usually present as phytic
acid (myo-Inositol-hexakisphosphate) and salts thereof (phytate) (Kebreab et al.,
2012). This is poorly utilized by non-ruminant animals (Nelson et al., 1968),
resulting in environmental problems from excretion of P from pigs and poultry.
Optimized feeding strategies can reduce excretion of P from the animal, and addition
of microbial phytase enzymes improves P availability (Kebreab et al., 2012). The
latter has been utilized in a transgenic strategy in which oilseed rape was engineered
to produce more phytase enzyme in the seed by introducing a phytase gene from
Aspergillus ficuum (Zhang et al., 2000).

Chemical mutagenesis methods have been used to generate mutants with lower
phytate and a corresponding increase in inorganic Pi in the seeds of maize, soybean,
barley and pea, for example (Raboy, 2001; Raboy et al., 2000; Wilcox et al., 2000;
Warkentin et al., 2012; Rasmussen & Hatzack, 1998). All of them have reduced
phytate in the seed with a concomitant increase in inorganic Pi. However, the further
development of such promising germplasm has been hampered by deleterious
pleiotropic effects such as reduced seed germination (Raboy, 2001; Meis, 2003),
seed yield (Raboy et al., 2000) and vegetative growth (Pilu et al., 2005).

Several of the low phytic acid (LPA) lines are due to mutations in genes on the
phytic acid biosynthesis pathway (Raboy, 2007). The lpa1–1 mutant has, however,
been shown to be in a locus encoding an ABC transporter gene, the role of which in
phytate metabolism is not clear, and this knowledge was used to generate transgenic
maize and soybean lines by silencing the gene in an embryo-specific manner (Shi
et al., 2007). Transgenic maize and soybean lines were identified with low phytic
acid and high Pi.

It should also be noted that phytic acid chelates with cations. The poor utilization
of phytate in non-ruminant animals (and in humans) can lead to deficiencies in Fe3+

and Zn2+ (Raboy, 2007), and strategies to lower the phytate content in seeds would
also help to prevent such deficiencies.

2.3.3.4 Grass Staggers or Hypomagnesaemia
Magnesium (Mg) is essential for living organisms as it is part of many basic
processes. Low Mg status (hypomagnesaemia) causes a condition called tetany, or
staggers in cattle and sheep. This occurs at significant frequencies (Kumssa et al.,
2019). A more efficient alternative to using feed mixes, supplements or directly
administering Mg is to ensure that the grass grazed by animals in the field, or eaten as
hay or silage, contains sufficient Mg. Genetic variation in Mg content in ryegrass
exists, and perennial ryegrass varieties, and hybrids of Italian and perennial ryegrass
with high Mg have been identified (Kumssa et al., 2020). The genetics of Mg
concentration in ryegrass is being investigated and phenotypic and genotypic data
used to inform perennial ryegrass breeding programmes.

2.3.3.5 Phytoestrogens
Certain legumes, notably red clover can contain high levels of the phytoestrogens
formononetin (7-hydroxy-4′-methoxyisoflavone) and biochanin A (5,7-dihydroxy-



4′-methoxyisoflavone). These compounds have been found to indirectly caused
infertility in grazing ewes. Their mode of action is that these phyto-oestrogens are
metabolized by the rumen microorganisms to daidzein (7-hydroxyisoflavone) and
the isoflavan equol (7,4′- dihydroxyisoflavandiol) (Nilsson et al., 1967).
Concentrations of equol in the blood can be determined to confirm the cause of
infertility (Braden et al., 1971). It is the equol that has been found to have a direct
effect on ewe fertility (Shutt & Braden, 1968; Cox & Braden, 1974) with equol
concentrations in blood being the main method used to determine the levels of
phyto-oestrogens in vivo (Braden et al., 1971). To overcome these effects, early
plant breeding efforts to select for reduced phytoestrogen content in red clover began
in the early 1980s (Gosden et al., 1984). This resulted in varieties, which are low in
phytoestrogens, such as “Formica” (Boller, 1997). However, phytoestrogens in
clovers can also have a beneficial effect on liveweight gain in sheep. In males,
improved meat and carcass characteristics were found to be due to their anabolic
effects (Moorby et al., 2004, Pace et al., 2006). Considerable progress has been made
in the breeding of red clover with both enhanced and reduced levels of the main
phytoestrogens, and this information has enabled the phytoestrogens from red clover
to be also extracted and used for their health benefits in humans. Thus, there is an
incentive to breed for bespoke varieties used for specific purposes rather than
exclusively as forage for ruminant animals. Marley et al. (2011) concluded that to
reduce the risks of infertility when offering forage legumes containing
phytoestrogens to ruminant livestock, there was a need for a better understanding
of factors that can alter the concentrations of oestrogens present in the plant and on
the plant (as myco-oestrogens) when offered fresh and conserved as hay or silage.
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2.3.3.6 Condensed Tannins
Certain forage legumes are known to contain condensed tannins (Mueller-Harvey
et al., 2019). They have been of interest because they prevent bloat in ruminants
(Jones et al., 1973) by binding to excess dietary protein, and reducing the protein
degradation in the rumen as the tannin-protein complex is stable and insoluble in the
pH of the rumen. As the tannin-protein complex then dissociates at pH < 3.5 and
solubilization of protein occurs (Jones & Mangan, 1977), this in turn improves N
utilization efficiency and increases the delivery and absorption of essential amino
acids in the duodenum (Douglas et al., 1995). Condensed tannins are also known to
have anthelminthic properties in the rumen, with research showing that lambs
grazing birdsfoot trefoil had lower faecal egg counts and internal helminth parasites
compared to lambs grazing ryegrass (Marley et al., 2003). Condensed tannins are
present in significant amounts in birdsfoot trefoil and sainfoin, among forage
legumes, but are not expressed significantly in the more commonly used legumes
such as red and white clover and lucerne (Mueller-Harvey et al., 2019). Research has
also shown that there can be considerable variation amongst different Lotus species
and birdsfoot trefoil cultivars in condensed tannin concentrations (Marley et al.,
2006). There has thus been significant interest in triggering expression of tannin
biosynthesis genes in forage legumes through transgenic approaches (Hancock et al.,
2012; Dixon et al., 2013). A thorough review of condensed tannins in forage crops



was published recently (Mueller-Harvey et al., 2019), and the reader is referred to
that for more detailed information on the biochemistry and physiology of these
compounds.
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2.4 Building on Successes – What Plant Breeding Can Deliver
for Livestock Nutrition

2.4.1 Forage Legumes

Forage legumes will play an increasingly important role as we move towards more
sustainable agricultural systems. They perform a number of important ecosystem
services, by fixing their own nitrogen from the atmosphere, improving soil structure
and health, and providing a habitat for insect pollinators (McKenna et al., 2018;
Lüscher et al., 2014). Many white and red clover breeding programmes target traits
which are aimed to increase farmer uptake of these crops and thus increase their use.
This includes improved persistency and grazing tolerance for red clover, abiotic
stress tolerance and resource use efficiency in white clover.

2.4.1.1 White Clover
White clover, Trifolium repens L., is the most important forage legume of temperate
regions (Frame et al., 1998; Duke, 1981; Abberton, 2007). It is typically cultivated
for grazing purposes in a mixed sward with a companion grass, most commonly
perennial ryegrass in the UK (Harris, 1987; Frame et al., 1998). It has a prostrate
growth habit and spreads along the ground via stolons, rooting at nodes and
producing trifoliate leaves at the nodal apices (Frame et al., 1998).

The benefits of inclusion of white clover in forage are well established. Its leaves
and petioles have very high dry matter digestibility (DMD) of around 80%, while
having a high crude protein content of around 25% DM (Søegaard, 1993; Allinson
et al., 1985). Inclusion of white clover both in grazed swards and in silage increases
voluntary intake by 10–15% (Lüscher et al., 2014). It increases milk yields in dairy
cattle by 1–3 kg d-1 compared with cattle fed solely on ryegrass (Ribeiro-Filho et al.,
2003; Phillips & James, 1998; Wilkins et al., 2006). Liveweight gains of animals are
also increased by inclusion of white clover in fodder (Yarrow and Penning, 2001).

Perhaps the most significant benefit that white clover imparts to grassland agri-
culture is its ability to fix atmospheric nitrogen N2. The amount of nitrogen fixed in
the field is difficult to estimate accurately and highly dependent on soil conditions
but is in the order of 150–250 kg N ha-1 year1 (Boller & Nösberger, 1987; Ledgard
& Steele, 1992). While the majority of this fixed nitrogen is utilized by the legume
host, a proportion passes into the rhizosphere, where it can be taken up directly by
companion grasses. It is thought that around 75 kg N ha-1 a-1 is transferred directly
to the companion grass in this way (Pirhofer-Walzl et al., 2012).

Nitrogen fixation enables livestock production with low inputs of synthetic N
fertilizer. Outputs from sheep grazed continuously on mixed clover-ryegrass swards
with no synthetic N input are around 80% of that of sheep grazed on ryegrass



monocultures receiving 420 kg N ha-1 a-1 (Orr et al., 1990). Loss of N to the
environment through release of nitrogenous gasses and through leaching of nitrate is
also substantially reduced when using mixed clover-ryegrass swards compared with
ryegrass monocultures under high synthetic N fertilization (Parsons et al., 1991).
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A key consideration in the breeding of white clover is the fact that it is used in
grazed mixed swards. While yield and yield stability are important, more critical is
the interaction between the clover and its companion grass and its response to
grazing. A large range of morphological variability exists in ecotypes and cultivated
varieties of white clover, with varieties on the Recommended List for England and
Wales ranging from a leaflet area of 423 mm2 to 1591 mm2 (British Grassland
Society, 2015). Leaf size reflects the overall morphology of the plant, with small-
leaved varieties being lower-growing with smaller stolon internode length and,
hence, denser stolon networks with larger numbers of rooting points. While larger-
leaved varieties are higher yielding, small-leaved varieties are more resistant to
grazing. Small-leaved varieties tend to be used for more intensive grazing purposes
and large-leaved varieties for conservation use and for more lax rotational grazing
(Frame et al., 1998).

White clover occurs naturally from the subtropics to the arctic and over a wide
altitudinal range (Williams, 1987), but it has relatively modest tolerance for extremes
of abiotic stress, for instance to winter damage (Collins & Rhodes, 1995) and water
stress (Barbour et al., 1996; Brink & Pederson, 1998). It also has limited resistance to
pests and diseases (Barnett & Gibson, 1975; Pederson & McLaughlin, 1989;
Pederson & Windham, 1989).

Research initiated in the 1990s (Meredith et al., 1995) underpinned the breeding
of novel white clover varieties derived from introgression of the rhizomatous trait
from Caucasian clover (T.ambiguum M. Bieb) as a route to improving drought
tolerance of white clover and persistence under grazing (Abberton & Marshall,
2005). A programme of hybridization and backcrossing to the white clover parent
produced hybrids that are white clover-like in appearance, but which incorporate the
rhizomatous growth habit (Abberton et al., 2003). The first variety ‘AberLasting’
from the programme was added to the UK National List in 2016, and is now in trials
and commercial production.

Field experiments demonstrated that improved resilience to drought and frost
compared to white clover was attained without compromising dry matter yield and
forage quality, partly due to a greater root biomass at depth (Marshall et al., 2003).
This genetic material is now included in the white clover breeding programme
enabling the rhizomatous trait to be introduced into a range of recipient types to
further improve grazing tolerance (Lloyd et al., 2017).

2.4.1.2 Red Clover
Red clover (Trifolium pratense L.) shares many of the properties of white clover, but
cultivated varieties tend to have a more upright growth habit, with mature plants
growing from a single crown with a strong, deep tap root. This limits its suitability
for use in grazed swards as damage to the crown by the grazing action of ruminants
or by trampling will kill individual plants with no facility for regeneration. However,



red clover’s much higher yield in comparison to white clover makes it an attractive
option for cutting managements, particularly for conservation in silage.
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Red clover is known for its limited persistency, and it has typically been
cultivated as a biennial. Substantial progress has been made in recent years to
improve its persistency, with newer varieties like AberClaret maintaining good
yields for as much as four harvest seasons (Marshall et al., 2017). Development of
tetraploid varieties marked a considerable improvement in dry matter yield in the
mid-twentieth century (Boller et al., 2010). However, there are challenges with seed
production in tetraploid varieties that are difficult to resolve through breeding
(Vleugels et al., 2016), and modern diploid varieties often match or outperform
the best tetraploids.

A lack of persistency in red clover is likely in most cases to be due to susceptibil-
ity to pathogens. In the UK, the pathogens of most concern are the soil-borne
ascomycete, crown rot (Slerotinia trifoliorum Eriks.) (Vleugels et al., 2013) and
stem nematode (Ditylenchus dipsaci Kühn) (Skipp & Christensen, 1990). The
development of red clover varieties with reliable resistance to these pathogens is a
central goal for introducing greater persistency and yield stability.

2.4.1.3 Birdsfoot Trefoil
The use of birdsfoot trefoil (Lotus corniculatus) in agriculture in the United King-
dom is negligible, even though it is native to the UK (Bonnemaison & Jones, 1986),
and has been recognized as a forage legume there for almost 250 years, and that it is
grown extensively in many countries (Seaney & Henson, 1970). One reason for this
may be the fact that, of all the legumes, birdsfoot trefoil is one of the slowest to
establish (Armstrong, 1974). Furthermore, experiments on the use of birdsfoot
trefoil in grazed upland sites, showed that it was susceptible to poor over-wintering
and low subsequent productivity and survival (Davies, 1969; Charlton, 1973).
However, recent field trials at IBERS with birdsfoot trefoil varieties developed in
South America have shown great promise in mixed swards in terms of ability to
compete with the companion grass and persistence compared to white clover
controls (David Lloyd, unpublished).

Moreover, birdsfoot trefoil has several attributes that give it potential advantages
over the more widely grown forage legumes. It does not cause bloat (Jones et al.,
1973; Ross & Jones, 1974) is more resilient on soils of low fertility than white clover
(Duke, 1981) is extremely drought-tolerant (Duke, 1981), and highly palatable to
stock in all seasons, up to flowering (Armstrong, 1974). It reduces internal parasites
in sheep (Marley et al., 2003) and contains condensed tannins, which have been
shown to improve rumen bypass of dietary protein (Mueller-Harvey et al., 2019).
Condensed tannins can affect the proteomic profile of forage during degradation by
rumen micro-organisms (Hart et al., 2016). These features may prove to be valuable
under new climatic conditions and within farm systems reducing reliance on chemi-
cal fertilizer inputs.
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2.4.1.4 Festulolium
Festulolium cultivars are species combinations involving either whole or part ryegrass
(Lolium) and fescue (Festuca) genomes. They have been developed with the aim of
expressing the forage yields and quality found in ryegrass combined with resilience to
onsets of abiotic stresses typified by fescues (Humphreys & Thomas, 1993). Globally,
due to drivers for sustainable responses to climate change, they have attracted
increasing interest, and to date, a total of 78 such alternative cultivar species
combinations (Humphreys & Zwierzykowski, 2020) have been developed. The
majority incorporate perennial or Italian ryegrass with meadow or tall fescue, but
recently alternative species have been used, e.g. Atlas fescue (Festuca mairei) from
North Africa and Festuca arundinacea var glaucescens from Southern Europe. This is
exemplified by AberRoot (perennial ryegrass ×Atlas fescue) and the Aberystwyth and
INRAe cultivars AberLink and Lueur (Italian ryegrass × F. arundinacea var
glaucescens) (Humphreys & Zwierzykowski, 2020). They can assist in providing
efficiencies in ruminant nutrition (Humphreys et al., 2014; Kamau et al., 2020), which
are outlined below.

Due to ingestive mastication and perception of stress processes by plant cells
nutrient composition of feed in the rumen is not stable. This has been proposed to
affect microbial colonization thereby impacting on efficiency of feed utilization in
the rumen. The timing of these events corresponds with periods of initial microbial
attachment to the ingested forage (Huws et al., 2015), thus providing a plentiful
supply of protein breakdown products, typically exceeding that which can be
incorporated into microbial protein and giving rise to significant amounts of excreted
nitrogen. Plant-mediated proteolysis (PMP) directly affects the efficiency of rumen
transformations and generation of N2O via soil processes (Kingston-Smith et al.,
2003, 2005, 2012). Forage genotypes differ in their rates of PMP, providing poten-
tial to reduce protein waste through targeted plant selection and breeding. While we
have repeatedly observed extremely rapid PMP in white clover, exceeding that in red
clover or Lolium spp. (ryegrass), the mechanism and genetics underlying PMP are in
the early stages of understanding. While there is no simple relationship between rate
of proteolysis and total protease activity (Kingston-Smith et al., 2006), there is a link
with initial protein content (Kingston-Smith et al., 2005), and control plant stress
hormones (Kingston-Smith et al., 2012) or presence of secondary metabolites (Hart
et al., 2016). PMP can be manipulated via its genetic control (Humphreys et al.,
2014). Work with Festulolium hybrids has indicated that protein stability in rumen-
simulated conditions differs between grass species and is related to gene dosage.
Furthermore, protein stability of F. arundinacea var glaucescens is four times that of
Lolium species, and when the Festuca genotype is combined with Lolium spp. the
extent of protein retention can be maintained or even exceeded (Humphreys et al.,
2014).

The potential of Festulolium in protein protection has been demonstrated in vitro
(Humphreys et al., 2014). When Festulolium was used in a more realistic continuous
flow system it was observed that certain hybrid varieties could support fermentation
rates no different from those of a market-leading ryegrass, but with significantly
lower ammonia release. This was achieved without compromising microbial protein



synthesis (Kamau et al., 2020). This indicates that Festulolium are capable of
providing a high-quality ruminant feed, which can decrease the impact of livestock
production.
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2.4.1.5 Multi-species Swards
With climate change, farming practices need to adapt to develop resilience in food
production and forage breeding is needed to meet this challenge. It is now
recognized that grasslands are key providers of essential ecosystem services
(Marshall et al., 2016), and that pastures of mixed forage species can be as produc-
tive as fertilized grass swards (Finn et al., 2013). Livestock research has also shown
the potential for individual high-protein forage species to provide sustainable protein
feed for livestock (Marley et al., 2007), with certain forages also having mechanisms
that affect protein utilization due to reduced plant protein breakdown (Hart et al.,
2016; Humphreys et al., 2014). This provides new opportunities to exploit species-
rich pastures through the design of species mixtures based on the forage quality and
complementarity of the individual species components.

Multi-species swards have been shown to have the potential to produce higher
quantities of forage dry matter (DM) from lower N inputs (Finn et al., 2013) and to
improve the productivity of grazing ruminants (Roca-Fernández et al., 2016). Com-
pared to monocultures, the interspecific interactions of multi-species forage mixtures
result in higher levels of dry matter productivity as a result of niche facilitation and
complementarity in the forage species in the sward community (Finn et al., 2013).
Increasing the diversity of forage mixtures is now widely acknowledged as a route to
improve both biomass and protein yield per ha of land and to also promote the
ecosystem functions delivered by grassland systems (Sturludóttir et al., 2014).
Strategic selection of forage species for sward mixtures can facilitate complementar-
ity niche functions and deliver different beneficial ecosystem services. This includes
above-ground niche spatial growth patterns and differing rooting biomass and
architecture. This increases the opportunities for sward mixtures which can maxi-
mize resource use efficiency under differing and extreme climatic conditions (Wood
et al., 2015). For example, the maintenance of an optimal botanical composition of
high-protein forages over the lifetime of the system, through the use of multiple
legume species that specifically vary in their rates of establishment and persistence
can help deliver protein supply to grazing livestock (Sanderson et al., 2016).

2.4.2 Breeding Crops for Non-ruminants

In this section we will focus on cereal and grain legume breeding, but also include a
subsection on efforts to use forage protein for non-ruminant animal feed. Cereal and
grain legume breeding strategies are outlined in Sect. 2.3.1.2. Yield increase is an
intrinsic part of these methods, so we will not specifically deal with this breeding
target here. Likewise, breeding to increase P utilization in non-ruminant animals was
dealt with in Sect. 2.3.3.5. Here we will concentrate on protein yield and quality.
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2.4.2.1 Protein in Cereals
About 70–80% of the world’s maize production is used for animal feed. Maize seed
contains between eight and nine percent protein, but the quantity of two essential
amino acids, lysine and tryptophan, is below the nutritional requirements for mono-
gastric animals https://www.fao.org/3/y5019e/y5019e0c.htm#TopOfPage. Improv-
ing the protein quality in maize has therefore been of major importance. The timeline
for the development of Quality Protein Maize (QPM) from the discovery of the
opaque-2 mutant with higher content of lysine and tryptophan through subsequent
breeding to improve the endosperm quality and reduce undesirable pleiotropic
effects has been described in detail (Prasanna et al., 2001, 2020) and (Maqbool
et al., 2021). Nutritional evaluation of QPM has been performed with poultry (Panda
et al., 2013). The benefits of deeding QPM grain to poultry include better weight
gain, more efficient feed conversion and reduced need for supplemental nutrition. In
pigs, some studies have also recorded better feed conversion ratio and reduced need
for supplementary nutrition (Mpofu et al., 2012), and overall there is good evidence
to indicate that QPM improves the feed value for both poultry and pigs (https://www.
fao.org/3/y5019e/y5019e0b.htm).

Barley for animal feed has primarily been bred for high protein content. As with
other cereals, the seed protein is also deficient in lysine, but high in non-essential
amino acids such as proline and glutamate. These are not used by the animal, ending
up in the manure causing nitrogen pollution issues. Doll and Koie (1975) reported
the development of a mutant with a 40% increase in lysine. There were, however,
problems with agronomic performance in terms of seed size and yield, hampering
the development of new varieties. More recently antisense and RNAi technology
were used to generate transgenic barley with reduced content of glutamine and
proline, and increased levels of lysine, by changing the balance of seed storage
proteins (Lange et al., 2007; Sikdar et al., 2016).

2.4.2.2 Protein in Grain Legumes
Feed rations for non-ruminant livestock are largely made up of cereals and protein
feed. The EU is highly reliant on the import of soybean meal to fulfil this require-
ment. Most of this is from soya imported from South America. Approximately 20%
of this is thought to be connected with illegal deforestation (Rajão et al., 2020).
Replacing imported soybean meal with domestically produced protein is not
straightforward. Soybean meal has the benefit of being inexpensive, readily available
and, perhaps most importantly, far more familiar to feed compounders. A range of
alternative plant-based protein sources has been proposed, most notably peas and
faba beans. It is also feasible to breed soybean for more temperate regions, thus
increasing the scope for more protein self-sufficiency in more temperate regions
(Saleem et al., 2021). Soybean seed protein also has a well-balanced composition of
amino acids except for low methionine. Soybean contains anti-nutritional factors,
chiefly trypsin inhibitors and lectins (Liener, 1994), but they can be removed by heat
treatment (Dei, 2011). Of lesser importance are oligosaccharides, goitrogens and
oestrogens (Dei, 2011). Genetic variation among soybean germplasm in the content



of trypsin inhibitor and lectin has been demonstrated along with concomitant
changes in feed value in rats (Gu et al., 2010).
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Conventional breeding for improved content of methionine in seed protein has
met with limited success. There is plenty of evidence indicating genetically con-
trolled variation in methionine content (Panthee et al., 2006; Krishnan and Jez,
2018), but reliable methods to screen large numbers of plants for amino acid content
have not yet been developed, and this represents a limitation (Krishnan & Jez, 2018).
A transgenic approach whereby genes encoding zein have been introduced into
soybean has resulted in very modest increases in the production of the heterologous
protein in soybean seed (Dinkins et al., 2001). A promising avenue for improving the
content of Sulphur containing amino acids appear to be the targeting of Sulphur
metabolism in the plant (Krishnan & Jez, 2018). The success of this will depend on a
good genetic and biochemical understanding of the relevant metabolic pathways.

Commercial varieties of dry peas (Pisum sativum L.), contain between 21 and
24% protein. Water-insoluble globulins form the main part of this, with vicilin being
the largest fraction, followed by legumin and convicilin. Vicilins and convicilins are
viewed as lower-value proteins due to their absence of Sulphur-containing amino
acids in contrast to legumins, which have a sulphur amino acid complement or
around 1–2%. The water-soluble albumins are also higher in sulphur amino acids
than globulins, but have antinutritional properties, and reduce liveweight gain in
livestock (Vaz Patto et al., 2015). Another anti-nutritional factor in pea seed is
trypsin inhibitor (Clemente et al., 2015).

While natural variation can be used to alter legumin/vicilin ratios and albumin
content, disruption of seed metabolism through induced mutation may have the
potential to alter protein composition more radically, providing a resource that can
be used by breeders to specifically tailor the nutritional value of peas for animal feed
(Domoney et al., 2013). A thorough review of the genetic basis for pea seed protein,
starch, anti-nutritional factors and micronutrients can be found in Robinson and
Domoney (2021).

Faba bean (Vicia faba L.) has a higher protein content than pea at around 26–29%
in commercial varieties, with the dominant fraction being legumin. A major barrier
to greater adoption of faba bean as animal feed, particularly for poultry, has been the
presence of the pyrimidine glycosides vicine and concvicine (Crépon et al., 2010).
Low vicine/convicine varieties of faba bean were first registered in 2019 and show
promise for replacing animal feed, although it is likely that this will only impact
soybean meal use in the premium food market in the short term.

Pathogens are a major source of yield decline in pulses. Of particular concern in
pea are downy mildew (Peronospora viciae), pea wilt (Fusarium oxysporum), foot
and root rots caused by various fungal species and powdery mildew (Erysiphe pisi)
in late-maturing crops, and the main pests include pea and bean weevil (Sitona
lineatus), pea aphid (Acyrthosiphon pisum) and pea moth (Cydia nigricana). In faba
beans, leaf and pod spot (Aschochyta fabae), chocolate spot (Botrytis fabae) and,
later in the season, rust (Uromyces fabae) are the major yield limiting diseases. This
can be controlled by applications of fungicides, but improving resistance to these
diseases is an important breeding target (Rubiales et al., 2015; Maalouf et al., 2019).



In faba bean pea and bean weevil, stem nematode (Ditylenchus spp.), bruchids
(Bruchus rufimanus) and black bean aphid (Aphis fabae) are the most serious
pests. Screening for resistance to stem nematode has yielded some promising results
(Stoddard et al., 2010).
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Table 2.2 Comparison of amino acid content between soybean seed and red clover foliage in
percent weight terms

% weight His Thr Cys Lys Tyr Met Val Ile Leu Phe

Soybean meal 1.2 1.6 0.5 2.7 1.7 0.6 2.1 2.2 3.5 2.3

Red clover protein
isolate

3.8 5.8 0.5 4.4 5.3 1.2 4.6 3.4 8.4 6.5

2.4.2.3 Protein for Non-ruminants from Forage
An alternative approach is to use protein extracted from sources not normally usable
by non-ruminants. Of particular interest is the use of protein extracted from clover
grown either with or without grass (Stødkilde et al., 2018). This has a number of
potential advantages over pulse-derived protein. Grassland agriculture can be
practiced on a wider range of land types than many arable crops, clovers are
perennial and their cultivation relies far less on applied insecticides and fungicides.
As Table 2.2 shows the content of the important Sulphur-containing amino acids in
red clover foliage compares favourably with that in soybean seed.

Red clover varieties can be harvested for 3 years or more with no yield penalty
(Marshall et al., 2017). Mature red clover roots penetrate far deeper than those of
pulses, have better drought tolerance, and provide soil conditioning for successor
crops (Lüscher et al., 2014). Red clover harvested for protein thus makes an ideal
break in rotation on arable land, to interrupt the cycle of blackgrass and improve soil
structure and organic matter content (https://cereals.ahdb.org.uk/media/1388190/
gs100-livestock-and-the-arable-rotation.pdf). Furthermore, as the protein is
extracted and removed, there is no requirement for investment in animal facilities
in the producing farm. In an extracted form, red clover protein can provide a
replacement for soybean protein that could be sold into existing markets and
moreover, the extraction process would yield useful by-products including pinitol
and isoflavones (currently used in an expanding health food supplement market) and
residual fibre (value as ruminant feed, for AD or use in biocomposites).

2.5 Conclusions and Future Outlook

Ruminant animals are able to convert a fibre-rich forage diet into high-quality meat
and milk products rich in protein for human consumption. This benefit is, however,
offset by inefficiencies in rumen fermentation that contribute to emission of signifi-
cant quantities of methane and nitrogenous waste. The challenge is to identify how
nutritional requirements of ruminants can be satisfied by high-quality forages with a
smaller environmental footprint. Systematic forage plant breeding has its beginnings



100 years ago, and early programmes resulted in important yield gains (4–5% per
decade). Gradually, quality traits took on more importance (e.g. enhanced disease
resistance and digestibility), resulting in varieties with high WSC content, and less
fibre. The requirement for more sustainable production systems means that we are
faced with the challenge of having to produce high-yielding, high-quality forages
that enable efficient animal production with minimal environmental impact. In order
to achieve this, we will have to identify opportunities for maximizing nutrient use
efficiency in both forage crop and livestock animal components. Perennial ryegrass
has been and is very successful due to its high yield, forage quality and persistency.
New breeding targets will have to be identified as we increase our understanding of
the interactions between plants and the animals that consume them.
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Forage crops of the future must be able to utilize water and nutrients more
efficiently to maximize production per given land area. We may have to consider
alternative plant species to those currently in use, to increase the level of protein self-
sufficiency or find alternative uses of existing forage crops, such as extraction of
protein for non-ruminant livestock, high-value metabolites for industrial biotechnol-
ogy or the health industry, and biorefining for energy production. This provides us
with scope for significant improvements in key traits, such as forage quality and
energy content, anti-nutritional factors and disease resistance. Genomic selection is
among the new technologies that can help us to increase the speed of plant and
animal breeding. It is already used successfully in dairy cattle and is gradually
gaining importance in plant breeding. A prerequisite for all genetic improvement
is continued research to reveal, which genes or parts of the genome are important for
the traits we are seeking to improve.

In cereals and pulse legumes conventional breeding (including induced mutagen-
esis) for improved balance of essential amino acids in the seed protein is hampered
somewhat by the lack of methods for screening large numbers of samples for amino
acid concentration, but also by the occurrence of deleterious pleiotropic effects such
as reduced seed size and yield and impaired vegetative growth. Overcoming these
hurdles is not trivial, but essential. The development of QPM varieties demonstrates
that it is possible to breed for improved protein composition in seed crops. Trans-
genic methods are also pursued in order to improve the protein composition in seed
crops. The development of such germplasm into commercial varieties has not yet
happened. Gene editing is a novel tool, which can target specific genes for changes
in their coding sequence. A detailed description of this methodology is beyond the
scope of this chapter, but it has enormous potential for the future.
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Abstract

Smart nutrition represents an innovation in farm animal nutrition and is one of the
most promising ways to promote safe, high-quality animal products such as meat
and milk, high animal welfare, and minimal impact on the environment. Smart
livestock nutrition implies also the design of high nutritious diets for feeding
animals in line with their needs and requirements. This goal can be achieved not
only by selecting ingredients characterized by high nutrient density and digest-
ibility, but also by looking for sustainable ingredients, including “circular”
ingredients from waste and from nature. Using such alternative feed ingredients
in the diet of farm animals is interesting for several reasons. Food leftovers are
one way of converting losses from the food industry into ingredients for the
animal feed industry, thereby keeping nutrients in the food chain. These materials
can be extremely rich in carbohydrates, free sugars, and, depending on their
origin, also in fats. Food leftovers, such as former food products (FFPs) and
bakery by-products (BBPs) are subject to considerable processing including
technological (milling, etc.) and heat treatments (cooking, extrusion, etc.).
These impact not only the availability of nutrients and the kinetics of digestion
but also on GIT/rumen health/functions and the animal response. FFPs and BBPs
are safe from a microbiological point of view since; their microbiological loads
are always below established tolerance levels. Using leftovers as feed also
responds to the requirements of the circular economy. Understanding that food
that is not suitable for human consumption is actually a resource rather than a
waste product, our food industry can limit the amount of waste sent to landfill,
thus saving costs and reducing the environmental impact of the food production
chain. This approach can be considered a virtuous example of smart livestock
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nutrition and feeding that can and will become an option in sustainable animal
production optimization.
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3.1 Introduction

Smart livestock nutrition is a breakthrough in animal feeding and represents a way to
design and apply specific feeding approaches that meet animal needs in real time.
The aim is to increase the nutrient utilization and the productive performance of
animals and more in general to provide high welfare, safe and high-quality animal
products with a low environmental footprint. However, to reach this goal, several
issues have yet to be addressed.

Food and nutritional security depend on the livestock economy and the related
constant supply of certain ingredients used as feed. The continuing population
growth is likely to increase the food-feed competition between humans and animals
in terms of crop consumption, land, and water use (WWF, 2014; FAO, 2018).
According to FAO (2018), livestock consumes one-third of global cereal crops.
Monogastrics (pigs and poultry) are the main competitors in terms of human-edible
crop consumption, since their diets are based mainly on food grains that could be
consumed directly by humans. On the contrary, almost all of the diet for ruminants is
based on human-inedible crops. In terms of production, producing 1 kg of boneless
meat requires an average of 3.2 kg of human-edible feed in monogastric systems and
2.8 kg in ruminant systems (FAO, 2018). Furthermore, ruminants add value to the
food chain by converting natural resources that otherwise would not be usable by
humans into food such as milk (FAO, 2018). Another example is soybean, which is
the world’s primary plant protein. Eighty-five percent of all soybeans are cultivated
for feed purposes, primarily for pigs and poultry (WWF, 2014). These protein
sources require large arable lands and a huge consumption of water for their growth.

Along with the food-feed competition, reducing greenhouse gas emissions
(Patthanaissaranukool & Polprasert, 2016; Benavides et al., 2020) and water use
(Flachowsky & Meyer, 2015; Dutta et al., 2020) are key issues for smart livestock
nutrition and production. The concept of sustainability is therefore the pillar of this
path of change.

There is a compelling need to reduce the use of crops in exchange for other feed
sources with a similar nutritional profile, to improve their use and thereby decrease
the ecological pressure from the feed production (Pinotti et al., 2019a). Both feed



producers and animal science researchers are thus investigating alternative protein/
energy sources for animal nutrition such as insects, algae, and food losses.
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FAO estimates an annual loss or waste of global food products between 30% and
50% before and after reaching the consumer (FAO, 2018). When landfilled, food
leftover products lead to methane emissions and soil pollution. Use of proper
processing technologies can offer more sustainable alternatives to the landfills.
Examples are the aerobic composting (AC) and anaerobic digestion (AD) for man-
aging food leftovers. Both the AC and AD help mitigate climate burdens by reducing
landfill methane emissions as well as through life-cycle carbon (LCC) reductions via
fertilizer and/or energy substitution (Shurson, 2020).

The re-entering of food leftovers from the food industry into the food chain could
represent a more advantageous approach compared to AC and AD. Exploiting food
leftovers to feed livestock, in fact, could be an effectiveway of improving this sector from
a circular economy point of view, creating both economic and nutritional value (Fig. 3.1).

Typical food leftovers used in feed ingredients are biscuits, bread, breakfast
cereals, chocolate bars, pasta, savory snacks and sweets, dairy, and other patisserie
products (Guo et al., 2015; Giromini et al., 2017; Tretola et al., 2017a; Pinotti et al.,
2019a). Since such products are not conventionally used as feed ingredients, in order
to ensure optimal growth performance and health their nutrient value needs to be
assessed before integrating them into animal diets. Because of the lack of a complete
and detailed knowledge of the properties of these foods and their safe use in animal
nutrition, the use of food leftovers as sustainable feed ingredients is still limited. To
fill this gap, this chapter examines the state of the art of food leftovers and discusses
their nutritional properties, technological implications, and possible safety issues
when used as alternative feed ingredients. Their incorporation into livestock systems
that incorporate smart animal nutrition principles, is also discussed briefly.

Natural
Resources

Food
Manufacturing Consumption Waste Pollute

Food
Manufaturing

Consumption and
Losses

Food as Feed

Fig. 3.1 Flow chart representation of the concept of moving from a linear to a circular economy
based on food reuse in agri-food systems
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3.2 General Characteristics of Food Leftovers Re-used
in Animal Nutrition

“Food leftovers,” “ex-food,” and “former foodstuffs” all have the same meaning and
refer to foodstuffs, other than catering reflux, that were manufactured for human
consumption in full compliance with food laws, but which are no longer intended for
human consumption for practical or logistical reasons or due to manufacturing
problems, packaging or other defects and which do not present any health risks
when used as feed (EU, 2013; Guo et al., 2015; EFFPA, 2016; Pinotti et al., 2019a).
There are two main categories. Firstly, leftovers originating from the food industry,
where bakery by-products (BBPs), such as bread and sometimes pasta, are the major
source of nutrients. Secondly, confectionery products—former food products
(FFPs)—are mainly composed of sugar-rich products such as biscuits, waffles, and
chocolates. Snacks and other salty foods (chips and crackers) are usually part of the
first category. There are thus two main types of food leftover on the market, namely
salty materials (i.e. BBPs) and sweet materials (FFPs); however, sometimes they are
mixed together.

An estimated 3–3.5 Mt of ex-food are currently processed annually in the EU
(EFFPA, 2016). These foods are already recycled in animal nutrition; however, their
use is still limited (3.3% of total amount potentially available in the EU) compared to
the total EU food waste (EFFPA, 2016; Pinotti et al., 2019b; Luciano et al., 2020).
For the same products (mainly BBPs used in animal nutrition), the annual production
in the United States is estimated at over 500,000 tons (Liu et al., 2018). Figure 3.2
shows some examples of food leftovers that reach the former foodstuff processors
before being converted into animal feed ingredients.

Both FFPs and BBPs are food leftovers that can be used as feed ingredients in
monogastrics, such as pigs, and ruminants (EFFPA, 2016; Pinotti et al., 2021). Both
categories of food leftovers stored by former foodstuff processors are reprocessed
and, after being unpacked, sorted, dried, ground, and sieved, they can replace some
of the existing raw materials used in various compound feeds. Some products such as
sweets and dairy powders can be water dissolved and processed to obtain syrups.
These syrups can replace molasses, which are used as a binding agent during the
pelleting of feed (Pinotti et al., 2019a, b). Sweet materials can also be used directly.
For example, Guo et al. (2015), proposed that chocolate candy feed, over 50% of
which consists of simple sugars, could partially replace lactose in nursery pigs.

In fact, most of these products are often characterized by a high content of simple
sugars (sucrose, lactose, fructose, and glucose) and sometimes fats. As a conse-
quence, FFPs are generally highly caloric and can be used in monogastric omnivo-
rous (poultry and pigs) diets as alternative energy sources in the place of cereals
(Pinotti et al., 2019b). This is fundamental nowadays, especially for modern lean pig
strains (average daily gain > 1 kg), which have high energy requirements and need
nutritious and energy-dense ingredients (Luciano et al., 2020).

The re-use of food leftovers in the food/feed supply chain as feed ingredients
aligns with the principles of smart livestock nutrition, thus increasing the efficiency
as well as the sustainability of animal-based products. First, food leftovers could be



used in the diet for animals in need of high amounts of one or more of energy, simple
sugars, and fats. Furthermore, the carbohydrate content of food leftovers is highly
digestible because of the thermal processing they undergo, thus working in favor of
animals that need easy-digestible carbohydrate intake (Ottoboni et al., 2019).
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Fig. 3.2 Examples of former foodstuffs in the European former food processing industry. (Copy-
right Dr Luciano Pinotti, reproduced with permission)

Second, the reduction of the biomass of food leftovers sent to landfills and its
recycling as feed ingredients decreases the environmental footprint of livestock
nutrition. For this latter point, the synergy between the manufacturing plants of
food leftovers and the livestock system is crucial to determine a constant and
efficient supply of this feed ingredient.

The main issues regarding the use of food leftovers and dealing with smart
livestock nutrition challenges focus on the evaluation of the quality of animal
products, because few and incomplete data have been generated in this field so far.

3.3 Nutritional Quality of FFPs

Table 3.1 reports the main composition of both FFPs and BBPs and highlights that
food leftovers are extremely rich in carbohydrates, and depending on their origin,
also in fat (Liu et al., 2018; Pinotti et al., 2019b; Luciano et al., 2020). Of the
carbohydrates, simple sugars (e.g. sucrose, lactose, glucose, fructose) represent a



significant quota, especially when confectionary products are considered (Guo et al.,
2015).
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Table 3.1 Comparison between the nutritional composition of different batches of food
leftovers (former food products and bakery by-products (FFPs, BBPs)) and two conventional
cereals (wheat, barley)

Item (% DM) FFP BBP Barley Wheat

Dry matter 88.0 88.0 88.0 88.0

Crude protein 10.9 11.4 11.0 12.4

Crude fat 9.8–10 6.50 2.80 2.10

Crude fibre 2.20–2.70 3.60 5.50 2.70

Starch 42.0–55.0 44.7 51.6 59.2

Sugars 14.0–20.0 14.2 2.20 2.40

Metabolizable energy (ME) growing swine (MJ/kg) 15.0–17.0 14.6 12.9 14.4

Data are expressed as percentage of dry matter (DM). Adapted from Giromini et al. (2017), Liu et al.
(2018), and Luciano et al. (2020)

Giromini et al. (2017) assessed the composition, together with the in vitro
digestibility, digestible and metabolizable energy of various types of food leftovers
and showed that FFPs have a composition comparable to that of the cereals conven-
tionally used in pig diets (Liu et al., 2018). Table 3.1 compares FFPs and BBPs with
wheat and barley, two cereals commonly used in pig nutrition.

As shown in Table 3.1, from a nutritional point of view, food leftovers (FFPs and
BBPs) cannot be considered a significant source of protein as they have a low
nitrogen content, which implies a low protein content (about 10% on DM basis).
Both FFPs and BBPs have a higher fat content than cereals: 10% in FFPs, while it is
only around 2% in wheat. This high-fat content is also accompanied by a high starch
content, which means that the different food leftovers make high energy-density
feedstuffs.

Giromini et al. (2017) reported that food leftovers have a similar nutritional
composition to wheat grain, although with a higher energy (metabolizable energy,
ME) content. The energy value reported for FFPs was 16.95 MJ/kg for ME for
growing pigs. Fats and starch are the main contributors to this energy content.

An additional nutritional property of food leftovers is high digestibility, which
ranges from 79% to 93% DM, depending on the ex-food mixture used in their
preparation. Although these results relate to only a few examples of different
ex-foods on the feed market, food leftovers are energetic feed ingredients with a
high value for feeding animals (Giromini et al., 2017; Liu et al., 2018; Luciano et al.,
2020). Their composition, however, can vary and some compositional features
(i.e. free sugar content) require further study in order to ensure an appropriate
inclusion in animal diets.

A key difference with cereals is that food leftovers such as FFPs and BBPs are
generally cooked. This thermal processing results in a more digestible starch com-
pared to the unprocessed starch commonly used in feed (Giuberti et al., 2012; Rojas
& Stein, 2017; Ottoboni et al., 2019; Chen et al., 2020; Lombardi et al., 2020;
Torbica et al., 2021; Zhang et al., 2021). The digestibility of polymeric compounds



such as starch is normally sensitive to the species and philological phase of the
animals. However, high temperatures can modify the structures of the polymers
resulting in a more highly digestible starch than the unprocessed cereals. This higher
starch digestibility is an advantage not only for growing and/or finishing pigs but
also for newly weaned piglets in which the gastrointestinal tract has not yet matured
(Tretola et al., 2019a; Thomas & van der Poel, 2020). For example, Yin et al. (2010)
observed that diets formulated with high-digestible starch increased the digestive
and absorptive function of the small intestine and regulated amino acid metabolism,
increasing their serum concentration and digestibility in weaned pigs.
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Fig. 3.3 Rate of carbohydrate digestion (/min), k, of cereal grains (unprocessed maize and heat-
processed wheat), former food products (FFPs), and feed formulated without (Feed CTR) or with
the inclusion of FFPs (Feed FFP30%) and relative standard deviation. (Adapted from Ottoboni
et al., 2019)

Food and feed processing can modulate the kinetics of carbohydrate/starch
digestion. The predicted glycemic index (pGI) is a parameter that can be used to
classify the different sources of carbohydrates according to their digestibility, in
order to choose the most valid option (Rojas & Stein, 2017; Ottoboni et al., 2019;
Torbica et al., 2021). Ottoboni et al. (2019) recently evaluated the pGI, hydrolysis
index, and carbohydrate digestion kinetics of different food leftovers, and of differ-
ent diets containing and not containing FFPs as a cereal substitute. Figure 3.3 reports
data on the hydrolysis (HI) and pGI of different feed ingredients and experimental
diets. According to the classification proposed by Giuberti et al. (2012), in terms of
the carbohydrate digestion rate, maize meal used as a control feed ingredient, was
digested relatively slowly (0.021 ≤ k ≤ 0.070/min), while heat-processed wheat and
all FFPs were digested rapidly (k > 0.071/min).

Data clearly indicate that including 30% FFPs as a substitute for conventional
cereals (wheat, barley, corn) has a large impact on the carbohydrate digestion rate
(k-Y axis), which indicates the rapid digestion of the carbohydrate fraction. In
addition, the in-vitro digestibility, together with HI, pGI indexes, and DE and ME



values of FFPs were higher or comparable to the values found in cereal grains such
as wheat. The main reason for this pattern is likely that all food leftovers are
produced starting with cooked ingredients, in which the starch and other
carbohydrates have been heat-treated (Rojas & Stein, 2017; Ottoboni et al., 2019;
Chen et al., 2020; Thomas & van der Poel, 2020; Torbica et al., 2021; Zhang et al.,
2021).
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Regarding proteins, FFPs and BBPs are not a considerable source of CP, but their
values are in line with the common cereals (Table 3.1). As seen above, high-
temperature treatments can improve the digestibility of the starch content. Further-
more, high temperatures are also applied to promote the hydrolysis process by the
solubilization of organic compounds to increase the bioenergy yield of food
leftovers. However, high-temperature treatments promote also Maillard reactions
and the formation of melanoidins, thus reducing the protein and sugar content and
the VFA production. The optimization of the parameters of the hydrothermal process
is a valid option to reduce the adverse effects of high temperature on food leftovers
(Liu et al., 2021). In any case, this issue needs to be further addressed. Food industry
leftovers should not, therefore, be considered as landfill waste and their use as an
energetic resource in animal nutrition should be encouraged.

3.4 Food Leftovers in Pig Diets

The use of alternative feedstuffs, and especially food leftovers, is not new for the pig
industry. Pigs are omnivorous; therefore, they can be fed with a mixture of nutrients
as typically found in food leftovers (Pinotti et al., 2021).

Recent studies have investigated the effects of substituting 30% conventional
cereals for 30% FFPs in the diet of post-weaning piglets on growth performance
(Tretola et al., 2019a) and gut microbiota (Tretola et al., 2019b). Both in vitro and
in vivo digestibility values were higher for FFPs diets compared to the control diet.
Neither the average daily gain or feed intake were affected by dietary treatment.
Conversely, piglets on the FFPs diets showed a lower feed conversion rate. This,
therefore, suggests that integrating FFPs into post-weaning diets as cereal substitutes
up to a level of 30% has no detrimental effects on pig growth performance (Tretola
et al., 2019a). The same effects have been reported in later studies when the
substituting rate of FFPs for cereal and other conventional ingredients in pig diets
was up to 30% (Luciano et al., 2021a, b). Higher inclusion rates merit further
investigations.

Gut health is crucial to ensure well-being and proper performance. The high
digestible starch could therefore affect the gut microbiota in piglets. The inclusion of
30% FFPs in the diet of post-weaning piglets reduced the abundance and the
biodiversity of gut bacterial population, compared to the control diet (Tretola
et al., 2019b). However, subsequent studies observed any effect (Tretola et al.,
2022). Therefore, the effect of FFPs on gut microbiota needs to be further addressed.
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3.5 Food Leftovers in Ruminant Diets

The inclusion of FFPs and BBPs has been investigated mainly in monogastrics, such
as pigs, and much less in ruminants. Both FFPs and BBPs are usually high in sugar,
oil, and starch content, thus resulting in high energy content. This considerable
amount of energy can affect rumen fermentation. Sugars ferment faster than starch or
fibre in the rumen, although the rates of hydrolysis and fermentation vary greatly
depending on the type of sugar and on the rumen environment.

Some of these aspects were addressed in vitro by Humer et al. (2018) using BBPs
in a protocol that mimics the rumen physiology. Diets including high levels of BBPs
(30–45% DM) have shown a better in vitro rumen degradation of starch, while the
degradation of crude protein and fibre decreased. Specifically, the inclusion of BBPs
by up to 30% of the DM had no detrimental effects on pH, fibre degradability and
ruminal microbiota, and enhanced propionate production. In contrast, a higher
inclusion level (45% DM) reduced rumen microbiota biodiversity, impaired ruminal
fermentation, and fibre degradation, thus making these inclusion levels unsuitable, at
least in vitro (Humer et al., 2018).

In 2020, Kaltenegger et al. (2020) evaluated the effects of integrating leftover
BBPs in the diet of mid-lactating dairy cows on DM intake, milk production, and
metabolic rumen profile. They gradually substituted 15% and 30% cereal grains with
BBPs in dairy cow diets. Since the sugar and fat content in BBP-based diets was
higher than in the control diet, there was a shift in nutrient profile from glucogenic to
lipogenic. In particular, the DM intake was higher in cows fed with BBP-based diets.
The increased nutrient and energy availability enhanced milk production and
stabilized ruminal pH. The authors also found that feeding 15% BBP reduced the
risk of sub-acute ruminal acidosis (SARA) in dairy cows, whereas 30% resulted in
lower blood glucose and insulin levels, thus increasing the risk of SARA. This,
therefore, suggests that in itself the rapid disappearance of sugar does not necessarily
lead to health problems in dairy cows (Kaltenegger et al., 2020).

The inclusion of food leftovers in ruminant diet can be beneficial but needs to be
further addressed with long-term studies and using different sources of food
leftovers. In any case, the use of food leftovers for ruminants reduces both the
waste biomass and the natural resources needed to crop the feed ingredients for
ruminants. Furthermore, ruminants can upgrade co/by-products in high-quality
animal products such as meat and milk.

3.6 Implications of the Use of Leftovers in Animal Feedstuffs

Food safety is one of the key aspects of smart livestock nutrition. Therefore, the
inclusion of food leftovers into animal diets need to be addressed also considering
the issues regarding food safety. The health of the animal ensures safer foods for
human consumption, as well as preventing the use of therapeutic treatments
(e.g. antibiotics). In this context, there are two fundamental aspects to consider:
the microbiological load that can be affected by any contamination from moulds and



yeasts, the presence of packaging materials, and the issues regarding the logistics of
the use of food leftovers in animal nutrition.
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3.6.1 Safety Issues

Microbial Contamination
Recycling food leftovers entails grinding, mixing, drying, and possibly thermal
treatments. All these processes affect not only the nutritional characteristics but
also safety. One key aspect is the total number of microorganisms present in food
leftovers. An interesting study by Tretola et al. (2017a) investigated the number of
microorganisms in several FFPs in terms of total viable count (TVC). The TVC
provides a quantitative estimation of the concentration of microorganisms such as
bacteria, yeasts, or moulds spores in a sample. The count represents the number of
colony-forming units (CFUs) per g (or per ml) of the sample. The various FFPs
examined by Tretola et al. (2017a) showed how safe the samples were with a high
level of hygiene. The mean TVC, which verifies the general hygienic conditions of
food and feedstuff, was 4.92 ± 0.25 Log CFU/g. None of the samples exceeded the
microbial load generally recognized in food and feed as the threshold limit above
which spoilage can occur. Even considering the contamination of individual
microorganisms, the result did not change: for all the organisms considered, the
values were below the threshold.

In the same study, the counts of several microorganisms, such as Staphyloccocci,
Escherichia coli, and Bacillus cereus, were found to be close to the detectable limit
(Tretola et al., 2017a). The same was applied to Clostridia, with values well below
the critical threshold, considering that 4 CFU/g logs is not considered risky. How-
ever, the major risk for the microbial contamination of animal feed is Salmonella
spp. Of note, in all FFPs tested in the study (Tretola et al., 2017a), Salmonella spp.
was never detected, thus matching the standard established by the main health
authorities for the animal feed sector (Pinotti et al., 2019b; Luciano et al., 2020).
These results, however, were expected, as the FFPs tested were dry and cooked at
high temperatures during the production processes, which probably enhanced their
microbiological stability. This is also very similar for yeasts and moulds, neither of
which was detected in the materials tested (Tretola et al., 2017a).

Packaging Remnants
A further safety issue in food leftover applications in animal nutrition is related to the
packaging materials. For example, the packaging of bakery products such as bread
and biscuits must ensure their quality during transport and storage. In terms of types
of materials, food packaging varies widely according to the food materials consid-
ered which are then used in the food leftovers formulation and preparation (van
Raamsdonk et al., 2011; Tretola et al., 2017a, b, 2019c).
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Processing methods to convert food leftovers into feed ingredients do not gener-
ally include the mechanical pre-removal of packaging materials (van Raamsdonk
et al., 2011). The typical un-packaging process of food leftovers is as follows:

1. The packaging is broken down and reduced in size.
2. The now accessible products are processed into a ready product.
3. The remains of the packaging materials are finally removed.

More specifically, food leftovers are unpackaged automatically in order to pro-
cess a large amount of product. Feed processors routinely mechanically remove
packaging from packaged food in the feed plant; however, despite the removal of
most of the packaging, small amounts of wrapping materials remain in the resulting
feed. Consequently, a small amount of packaging remnants in the final product
(feed) appears to be unavoidable (Tretola et al., 2017a, b, 2019c). Typical remnant
residues in food leftovers include paper/paperboard, aluminium foil, and plastic (van
Raamsdonk et al., 2011; Tretola et al., 2017b; Calvini et al., 2020; Luciano et al.,
2022). The efficiency in the unpacking process can enormously vary between
different FFPs processors, leading to final products with more or less packaging
residues.

Tretola et al. (2019c) found that paperboard was the most detected contaminant
followed by aluminium foil, and then plastic. Plastic is a synthetic material obtained
by the polymerization of different monomers and therefore is also resistant at high
temperatures. Microplastics are usually defined as plastic particles which are smaller
than 5 mm (van Raamsdonk et al., 2020). Particles of 1–2 mm or larger can normally
be detected visually, manually extracted, and quantified based on weight. This
procedure has become a daily practice in the monitoring of former foodstuffs for
their use in animal feeds (Tretola et al., 2017b; Calvini et al., 2020; van Raamsdonk
et al., 2020). However, in spite of this variability in packaging materials, packaging
remnants in FFPs are usually negligible (<0.10 g/100 g), which makes them safe
(Tretola et al., 2017a, b, 2019c; van Raamsdonk et al., 2011).

Other Potential Contaminants
Other contaminants such as pesticides, toxins, and heavy metals have been detected
mainly in crop, animal, and fish by-products. Since both FFPs and BBPs come from
food primarily intended for human consumption, the level of these contaminants and
more in general of the other hazardous contaminants seen above has been already
assessed. After the processing to formulate them as feed ingredients, both FFPs and
BBPs can be considered valid and safe.

Finally, some FFPs often contain chocolate and cocoa bean shells. Such
ingredients are a source of theobromine, a substance that can be toxic and anti-
nutritive at some levels and for some species (Rojo-Poveda et al., 2020). That is why,
to ensure the safety of the feedstuffs, the European Food Safety Authority (EFSA)
established the maximum permitted level of theobromine in the feed at the level of



300 mg/kg for complete feedstuffs, with the only exception of 700 mg/kg in a
complete feedstuff with a moisture content of 12% for adult cattle (EFSA, 2008).
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The inclusion of cocoa husks in pig diets did not affect growth performances and
feed intake and improved the intestinal microbial balance (Magistrelli et al., 2016).
Despite the potential risk of theobromine in feedstuffs, the balanced inclusion of
theobromine in pig nutrition could exert beneficial effects on multiple levels.
Negative effects on milk yield and fat content appear from 15 mg/kg theobromine
in the diet of dairy cows (EFSA, 2008).

The characterization of the FFPs composition in polyphenols is also important, as
hydrolysable tannin degradation products are possibly poisonous to ruminants
(Hagerman et al., 1992). Therefore, attention must be given so that the advantages
of feeding polyphenols are not offset by negative properties of tannins on feed
intake, digestion, metabolism, and animal productivity.

3.6.2 Logistical Issues

The nature of food leftovers can sometimes represent logistical issues to incorporate
them into modern smart nutrition systems, which rely on principles of precision. A
major challenge is the seasonality of food leftovers, and its effect on nutrient
composition. The chemical composition of the leftovers received by the FFPs
processors can significantly vary during the entire year and become difficult to
assure a final product with characteristics that are kept homogeneous independent
of season. It is therefore essential for the FFPs processors to have a large portfolio of
heterogeneous food leftovers that can be mixed together to obtain standard products
that may differ in their ingredient formulation, but with a standardized chemical
composition. Some of these principles are explored further in Chap. 4.

Another challenge is the handling of processed food leftovers from the
manufacturing plant to the farm system and their incorporation into the ration. The
manufacturing plant should be likely near the farming system or in any case where
food leftovers are then used. The fact that manufacturing plants from abroad provide
the processed food leftovers would reduce the beneficial impact of the use of food
leftovers on environmental sustainability. The optimization of the logistics regarding
processing (e.g. high-temperature treatments), transport, supply, and storage of food
leftovers to the farm systems is crucial to ensure that the nutritional features of food
leftovers are preserved.

3.7 Conclusions

Mitigating environmental impact is crucial for sustainable production in the live-
stock sector. This can be achieved by reducing food waste through recycling, and
especially by enhancing the management of food leftovers, with the added benefit of
being alternative feed ingredients. Replacing traditional feed ingredients with food
leftovers could also lead to reduced competition between humans and animals for



raw materials, such as common food cereals, and for land and water use. FFPs and
BBPs are thus potential resources rather than waste products sent to landfill or
otherwise disposed of in the natural environment.
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From a nutritional point of view, food leftovers have a high content of sugars and
starch, and depending on their origin, also fat. Accordingly, these products thus have
a high value for animal feed because they often contain high amounts of energy. In
addition, the food leftovers considered in this review are safe from a microbiological
point of view since the microbiological loads reported in the literature were always
below the tolerance levels established by various feed/food safety standard agencies
(e.g. the Health Protection Agency and European Regulations). However, the use of
food leftovers also involves safety issues related to packaging remnants being nearly
always present in these products. However, their residual content can be negligible
and therefore not an issue for the safe use of food leftovers in animal nutrition.

All these features make the reprocessing of food leftover biomass a highly
attractive, sustainable, and abundant source of nutrients for the feed sector. This
practice aligns with the principles of smart livestock nutrition for the provision of
feeds of consistent nutrient composition. Therefore, the use of food leftovers can be
considered a win-win opportunity for the environment and economy, without
depleting natural resources, but reducing pollution in production processes, thus
maintaining an ecological balance.

Some logistical concerns should be considered and further addressed for the food
leftovers processing, collection, and transport.
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Assessment of the Nutritive Value
of Individual Feeds and Diets by Novel
Technologies

4
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Abstract

Feed accounts for the largest cost item in livestock production. Optimising the
feed to the animal needs is therefore pivotal to efficient animal production and to
minimise environmental and climate impacts. Classically, feed has been
optimised based on table values and with the possibility for adjustment due to
differences in chemical composition of ingredients. The latter requires tedious
and costly wet chemical methods and has further the limitation that it cannot be
used for the measurement of the nutritive value in real time. Near-infrared
reflectant spectroscopy (NIRS), which utilises the interaction between light and
matter, holds the potential to be used as online tool for measurements not only of
nutrient composition, but also on nutritional value, provided that sufficiently large
reference databases are available. This chapter discusses the recent progress in the
development of calibration equations for the measurements of the digestibility of
nutrients and energy values based on NIR scans of feedstuffs and diets and faecal
residues, and how NIRS can be used to control the quality of feeds from a feed
mill in real time and optimise the provision of nutrients for animals during growth
and production. The use of NIRS calibrations developed based on faecal residues
as a tool to select pigs with improved nutrient digestibility and value is also
described and discussed. Real-time quality control of feeds provided to the animal
has a central role in the implementation of smart nutrition in livestock systems.
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4.1 Introduction

Feed accounts for approximately two-thirds of the cost of livestock production.
Accurate feed value information is therefore pivotal to optimal livestock production
as it influences not only the feed efficiency but is also of great importance for
minimising the environmental and climate change impacts from livestock systems.
The nutritional value of a feed, however, varies widely between and within feeds due
to factors like nutrient concentration and the digestibility of nutrient fractions that
among other things are influenced by genetic, agronomic, harvest, storage, and
processing. Cereal grains provide the majority of energy for monogastric species
and have been found to vary considerably in terms of digestible energy (DE) (Bach
Knudsen et al., 1987; Just et al., 1983a; van Barneveld, 1999; van Barneveld et al.,
2018; Beams et al., 1996). For instance, in Australia where the impact of geography
and climate is much larger than in most other regions, the difference in DE of
70 cultivars of wheat was up to 3.7 MJ/kg dry matter (DM), and for 125 cultivars
of barley up to 4.3 MJ/kg DM (van Barneveld et al., 1999; van Barneveld, 1999).
The Danish feedstuff database with cereals samples from much less diverse geo-
graphic regions also shows significant variations in nutrient concentration, DE, and
metabolisable energy (ME); 187 barley samples differed by 2 MJ/kg DM, and
41 wheat samples by 1 MJ/kg DM of ME (Just et al., 1983b). It was also found
that although the ME content of wheat in general is higher than that of barley, the
barley samples with the highest ME were higher than the wheat samples with the
lowest ME values. Factors of the feed that may influence the availability of not only
energy content but also amino acids include protein source and type, starch
characteristics, fat source and type, non-starch polysaccharides, and anti-nutritional
factors (Cozannet et al., 2010; van Barneveld, 1999; Just et al., 1984b; Noblet &
Perez, 1993; Bach Knudsen et al., 2013).

The most important factors for optimal nutrient utilisation are accurate
estimations of the availability of energy and protein. Inaccurate estimation of these
values of a feed may lead to a reduction in target animal performance, increased
waste from animal production, and a higher environmental footprint of livestock
production (Millet et al., 2018; Wang & Zijlstra, 2018). Optimisation of the feed is
therefore pivotal to obtaining efficient animal production. This is commonly done by
optimisation of feed mixtures based on table values (Patience, 2018) and, in some
cases, by analysing the nutrient fractions (e.g. protein, fat, fibre) and using this
information to adjust the energy value of the diet (Henry et al., 1988; Noblet &
Perez, 1993; Just et al., 1984b). However, the digestibility of a nutrient fraction may
vary considerably from feed to feed, which results in rather inaccurate estimates of



the nutritive value of actual batches (Just et al., 1983b), and since it is not possible to
perform in vivo evaluations of the individual feed ingredients because of time and
cost, there is a need to develop quick and reliable methods for the determination of
the nutritive value of single feedstuffs for feed formulation and for control of
complete feeds. So far, in vitro methods validated on a wide range of feedstuffs to
measure the potential (maximal) digestibility have been the best option to account
for variation in the nutritive value of a feed (Boisen & Fernández, 1997; Chen et al.,
2014), but in vitro methods are not suited for measurements of the nutritive value in
real time. For this purpose, near-infrared reflectant spectroscopy (NIRS) has a
potential and has been widely used to evaluate the nutritional quality of agricultural
products for several decades (Norris, 1996). NIRS has also the potential to be used as
a technology to estimate the nutritive value in real time, but a limiting factor for the
development of robust calibrations is the need for large reference databases (Wang &
Zijlstra, 2018; van Barneveld et al., 2018). The main purpose of the current chapter is
to give an overview of NIRS methods for predicting nutrient composition, digest-
ibility of nutrients and energy, DE and ME of feedstuffs and diets, and optimise feed
utlisation. The core of the chapter is based on the work performed in the European
Union Horizon 2020 project Feed-a-Gene (Adapting the feed, the animal, and the
feeding techniques to improve the efficiency and sustainability of monogastric
livestock production systems) based on NIR scans of feedstuffs and diets from the
Danish feedstuff evaluation system for pigs (Just, 1975, 1982; Just et al., 1983b).
The outcome of that is used to speculate how NIRS can be used in smart-farming
systems as a tool for online control of nutrient composition and quality in feed-
processing plants and barns.
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4.2 Principles in the Development of NIRS Calibrations

Spectroscopy is the scientific discipline that studies the interactions of light with
matter. Light can be of different wavelengths, represented by the electromagnetic
spectrum. The near-infrared (NIR) region of the electromagnetic spectrum ranges
from 780 to 2500 nm (Fig. 4.1). In terms of wave numbers, the near-infrared region
is 14,300–4000 cm-1, the mid-infrared range is 4000–200 cm-1, and the far infrared
is 200–10 cm-1. Absorption of light in the NIR region causes molecules to vibrate
and rotate when subject matter is exposed to a particular NIR wavelength and if the
vibration of the molecules is of the same frequency as the exposure wavelength.
Under these conditions, an amplified signal is reflected and measured by a detector.
In a simplified way, chemical bonds can be considered as weak springs holding
together two or more atoms. These springs will vibrate naturally, and when energy
from the light is added to the system they will vibrate more energetically. However,
atoms in molecules are constrained by quantum mechanisms allowing only a few
specific energy levels. When only two atoms are involved then the only vibration
will be seen as a stretching, whereas when three or more atoms are involved the
bonds can also bend, giving rise to a whole series of different vibrations. Stretch
vibrations require more energy than bending vibrations, and different chemical



bonds (C-H, O-H, and N-H) vary in strength and hence the amount of energy
required for the bond vibration to move from one level to the next. The absorptions
in the NIR region, however, are generated from fundamental vibrations by two
processes: overtones and combinations. Overtones will produce a series of
absorptions approximately at multiples of the frequency. Combinations are rather
more complex than overtones, as they share energy from fundamental absorptions.
While the number of possible overtones from a group of fundamental absorptions in
a molecule is limited to a few, a very large number of combinations will be observed
as illustrated in the publication by Davies (2014) for NIR spectrums of chloroform
(CHCl3) containing only C-H bonds, methanol (CH3OH) which contains
combinations of C-H and O-H, and sucrose (C12H24O12); the latter showing broad
areas of absorption which are caused by multiple narrow, overlapping absorptions.
Even more complicated absorption bands are found when analysing complex com-
posed matrixes (Griffiths, 2002; García-Sánchez et al., 2017). The overtone of the
functional groups and the combination of vibrations of the molecular bonds in close
proximity to them provide information on the matrix of a sample. For instance, the
total protein content can be determined chemically by measuring N concentration
(including non-protein N), whereas N-H, peptide linkage, α-helix, and β-sheet
information can be measured spectroscopically (Barth, 2007; Workman & Weyer,
2012). Fat can be measured chemically as the ether extract, whereas information
about the carbon chains (CH2), ether links (C-O), and double bonds (C=C) can be
derived spectroscopically (Westad et al., 2008; Yoshida & Yoshida, 2003).
Carbohydrates can be determined chemically as sugars, starch, non-starch
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Fig. 4.1 Illustration of near-infrared spectroscopy of cereal samples. The abscissa is the wave-
length in nanometre and the ordinate is the log (1/R) where R is the ratio of the intensity reflected
from the sample and the intensity reflected from the standard



polysaccharides or by less specific analytical methods (crude fibre (CF), acid
detergent fibre (ADF), neutral detergent fibre (NDF)), whereas functional groups
of O-H, C-OH side groups, and C-O-C glycosidic bonds can be measured spectro-
scopically (Workman & Weyer, 2012; Zhbankov, 1992). Thus, the NIR spectra
reflect structural information concerning the chemical component-specific nutrients
induced by molecular vibrations of functional groups at a given wavelength
(Shurvell, 2002; Weyer & Lo, 2002). These overtones and combination bands are
called secondary vibrations and are weaker than the fundamental vibrations of the
corresponding infrared bands, which makes NIR spectra complex with few signifi-
cant peaks. The fact that NIR spectroscopy measures the same basic molecular
vibrations (C-H, O-H, and N-H) as a variety of overtone and combination tones of
virtually the entire near-infrared region gives rise to strongly overlapping, almost
holographic NIR spectra that are exceptionally information-rich but at the same time
are extremely difficult to interpret in the traditional manner (Blanco & Villarroya,
2002). NIR spectroscopic data, however, are characterised by being highly co-linear
(i.e. two adjacent wavelengths are normally positively correlated with high correla-
tion coefficients). A way of extracting information about these highly informative
spectra is by applying chemometrics, a combination of mathematical and statistical
methods, which is optimal for handling co-linearity (Agelet & Hurburgh, 2010).
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Chemometrics have found widespread use for linking NIR spectra composing of
broad overlapping chemical and physical information of all sample components in
ill-defined absorption bands to known analytically measured variables as illustrated
in Figs. 4.1 and 4.2. In short, it can involve the following steps:

1. Mathematical data pre-treatment of the spectra to normalise the data and maxi-
mise the signal

2. Reduction, in some cases, of variables (as spectra is multivariate), e.g. the
removal of data points from parts of the spectra that add no information

3. Establishing calibration models with multivariate calibration methods based on
the relation between the spectra and measured chemical or biological data set

4. Validation of calibration models by an independent data set

The most widely used pre-processing techniques in NIR spectroscopy can be
divided into scatter-correction methods (multiplicative scatter correction (MSC),
Inverse MSC, Extended MSC, Extended Inverse MSC, de-trending, standard normal
variate and normalisation) and spectral derivatives (Rinnan et al., 2009). Mathemat-
ical pre-treatment of spectra is carried out to reduce noise or background information
(smoothing techniques) and increases signal from the chemical information (differ-
entiation). Different spectral pre-processing methods and model types can be used to
minimise baseline offset and spectra distortions due to scattering such as standard-
normal-variate or multiplicative scatter correction along with detrending and the use
of second-order derivative for smoothing (Barnes et al., 1989; Agelet & Hurburgh,
2010; Rinnan et al., 2009).

The next step in the calibration development is to correlate either raw or
pre-processed NIR spectra with one or more chemical-physical or biological



property of a set of samples (Fig. 4.2). Before model building, it is common practice
to assess for outliers by principal component analysis (PCA) and determination of
standardised Mahalanobis distance; the latter is a measure of how many standard
deviations a point is from the sample mean. The first assumption when carrying out a
calibration is that there exists a linear correlation between analyte or property to be
measured and its absorbance according to Beer’s law. Several calibration methods
work under these assumptions with multiple linear regression, principal component
regression, and partial least squares as the best-known and used calibration methods
(Agelet & Hurburgh, 2010). The calibration performance is usually evaluated using
a combination of the following parameters: the regression coefficient (RSQ), stan-
dard error of cross-validation (SECV), coefficient of cross-validation (1-VR), stan-
dard error of prediction corrected for bias (SEP), relative SEP, ratio of performance
deviation (RPD), and range error ratio (RER) (Sapienza et al., 2008). The RSQ
describes the fit when the reference values are plotted against the predicted values
where values closer to 1 are a better fit. The SECV shows how well the calibration
model predicts the reference values when some samples are selectively removed.
Lower SECV values indicate higher precision in model accuracy. 1-VR is the
fraction of explained variance determined by cross-validation. The SEP evaluates
the performance of the model on a set of independent samples indicating how the
model will perform on new samples. The RPD is calculated by dividing the standard
deviation (SD) by the SEP. The RPD gives an indication on whether the SEP values
are low enough in comparison with the variation seen in the population used to make
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Fig. 4.2 Illustration of the relation of the NIR scans to chemical and biological data by multivariate
data analysis for the development of prediction and validation models



the model. RDP values greater than 2 are preferred. The RER is the ratio of the range
to the SD. Values greater than 10 are preferred. Relative SEP is calculated by
dividing the SEP by the mean of the measured values and multiplying by 100.
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The strongest and best-validated models are those where the calibration model
can be tested on an independent data set which should be at least 20 samples
according to the international standard (ISO-12099, 2017). While the number of
samples is not a problem for most chemical components, it is far more difficult for
biological parameters, such as digestibility of nutrients and energy, DE, or ME. In
most but not all cases, the model accuracy cannot be better than the accuracy of the
reference data. Since the chemical components are determined by higher accuracy
than biological data, the accuracy of the prediction models for biological traits will
usually be lower than that of chemical constituents.

4.3 Determination of Macronutrient, Digestibility, and Energy
Value by NIRS

The energy value of a diet is determined by its chemical composition, the digestibil-
ity of the nutrients, and the utilisation of the nutrients (Just, 1975; Noblet & Henry,
1993). Usually, the energy value of a diet is expressed as DE, ME, or net energy
(NE) (van Milgen et al., 2018; Just, 1975; Noblet & Henry, 1993). DE takes into
account the energy of all the nutrients that apparently can be digested by the animals
during passage of the entire gastrointestinal tract, ME accounts for the loss of energy
that occurs in urine and gases, and the NE content corresponds for the difference
between ME content and the so-called heat increment and the energy expenditure for
“normal” physical activity (van Milgen et al., 2018). In popular terms, ME can be
considered as a measure of the amount of energy a feed or diet provides for the
animal, and NE is the response of the animal to the amount of energy provided. The
usability of the different measures for energy of a feed has been debated for many
years (Just, 1982; Noblet & Henry, 1993), and NE has usually been considered the
most appropriate as it takes into account all the losses that occur when diet energy is
transformed into animal products (Noblet, 2006). However, NE values for a feed
depend on the characteristics of the feed, nutrients absorbed and the metabolic status
of the animal with different NE values being derived for the same feed depending on
genotypes, stage of growth, different physiological stages, and different climate
conditions (Kil et al., 2013). Although NE from a theoretical standpoint is superior
to DE and ME (Just, 1982; Noblet, 2006; Noblet & Henry, 1993), it cannot be used
as a control measure in feed manufacture or as a tool for online monitoring of the
composition and value of a feed as it partly relies on the animal response to the feed.
As a practical approach, we therefore need to find methodologies that based on traits
of the feed can be used as proxies for the feed values (van Barneveld et al., 2018).
The in vitro method for organic matter digestibility is one such method (Boisen &
Fernández, 1997), but since it relies on wet chemical methodologies for estimating
the in vitro digestibility values it cannot be used for online control of the feed value
(van Barneveld et al., 2018). NIRS has the potential to be used to predict the DE and



ME values of the feed (Feed NIRS) along with the macronutrient composition,
provided sufficient reference values are available (Fig. 4.3). In addition to
establishing a direct link between the NIRS and the ME values, it is also possible
based on NIRS estimates to calculate the ME using information from NIRS data on
the composition of macronutrients (protein, fat, crude fibre, and NFE) combined
with NIRS estimates of the digestibility of the same nutrients (Noel et al., 2022). A
more recent approach has been to develop NIRS prediction models from the
composition of faeces and to use these models to predict dietary nutrient composi-
tion, the digestibility of macronutrients, and energy and net energy of the feed
(Paternostre et al., 2021; Bastianelli, 2013; Nirea et al., 2018; Schiborra et al., 2015).
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Fig. 4.3 Measurements of nutrient fractions, digestibility, digestible energy, metabolisable energy
and net energy by near-infrared spectroscopy (NIRS) calibration to feed and dietary composition and
composition of faeces. The calibrations in Feed NIRS are based on information on chemical
composition of feeds and diets, digestibility of nutrients and energy, and digestible and
metabolisable energy and used to predict the same parameters in independent data sets. The
calibrations in Faecal NIRS are based on information on chemical composition of faeces and
digestibility of nutrients and energy and used to predict the same parameters in independent data sets

4.3.1 Macronutrients

NIRS has long been used to predict the proximate composition of feeds and raw
materials such as the content of crude protein (Williams & Cordeiro, 1979), amino
acids (Chen et al., 2013), ADF, NDF, and starch (Barton, 1991; Campo et al., 2013),
and recently also non-starch polysaccharides (ABVista, 2020). Some companies
have built their own calibration databases by accumulation of data produced in their



own laboratories, whereas smaller companies can buy/rent calibration equations
from the equipment manufacturer or from specialised companies as for instance
(ABVista, 2020; CVAS, 2021; EVONIK, 2021) which propose calibration for
almost all types of feeds and raw materials.
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In a recent study, we scanned via NIR the individual feedstuffs and mixed diets
that have been evaluated for energy content and protein quality for more than
40 years in the Danish feedstuff evaluation system (Just, 1975, 1982; Just et al.,
1983b). In brief, a total of 858 feedstuffs and diets were divided into three groups:
cereals, supplemental ingredients (co-products and protein-rich materials), and
mixed diets as well as having all samples together in the total group (Noel et al.,
2021, 2022). The samples were analysed for the chemical composition (ash, protein,
fat, crude fibre, nitrogen-free extract (NFE), sugar + starch, starch, NDF, and ADF)
and energy and the digestibility of protein (DAPro), fat (DFAT), crude fibre (DCF),
NFE (DNFE), total fibre (DcTF), hemicellulose (DcHemi), and energy (DDE)
(Table 4.1). Total fibre was calculated (cTF) as cTF = 100-(ash+fat+protein+CF)
and hemicellulose (cHemi) as cHemi = NFE-(sugar+starch). The samples in the
total data set and the three groups (cereals, supplemental ingredients, feed mixtures)
were randomly divided into a calibration and validation set with an 80:20 split.
Before model building, the samples were assessed by PCA, and spectral outliers
were determined by having a standardised Mahalanobis distance (GH) greater than
3. Groups of samples that were very different from the majority, including pure
starches, pure sugar, roughage samples, and animal products, were removed from the
data set. The remaining samples were re-assessed with PCA analysis to determine
spectral outliers. Possibly mislabelled samples were also determined before model
building by using modified partial least squares method and were removed as
outliers. Cross-validation was used to determine the number of factors to include
in the model and to validate the models (Noel et al., 2022). The number of factors to
be included in the models was chosen to include as much information as possible
without overfitting by assessing when the SECV reached its lowest value.

In spite of the diversity in types of feedstuffs and diets, the models developed on all
sample types had high RSQCAL (0.92–0.98) in calibration for energy-contributing
compounds and good fit in the validation with RSQVAL (0.9–0.98), almost as high as
for the calibration set and with a slope close to 1 (Table 4.1). However, ash was poorly
predicted, and gross energy was also only moderately well modelled (RSQVAL 0.84).
Taken as a whole, our work on the chemical constituents showed good fit between the
predicted and measured values even on this very diverse sample set. The NIRS
calibrations can therefore be considered an alternative to conventional proximate analy-
sis, with the advantage of being non-destructive, non-polluting, and almost immediate.

4.3.2 Digestibility and Energy Value

On the same data set of feedstuffs and diets from the Danish feedstuff database, we
also performed NIRS calibrations on the total tract (TT) digestibility of energy, crude
protein, fat, CF, NFE, total fibre (cTF), and hemicellulose (cHemi) (Table 4.1) (Noel
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et al., 2022). The calibration set used 393–549 samples and the validation set of
100–135 independent samples. The calibration models can be considered good for
DDE and DNFE with RSQCAL of 0.94 and 0.97, adequate for DApro and DFAT
(RSQCAL 0.85 and 0.73), but generally poorer for the digestibility of the fibre
fractions (DCF, DcTF, and DcHemi) with RSQCAL in the range 0.53–0.7. The
variation in the RSQVAL set followed in general that of RSQCAL and was as expected
at a lower level. It appears that the standard error of the prediction models was
influenced by the concentration of the nutrients in the feed and the accuracy of the
in vivo digestibility estimate. For instance, the SECV and SEP of DFAT were
approximately double as high as DAPro, which again was double as high as of
DNFE following, in inverse order, the mean concentration of the nutrients in the
feeds (Table 4.1). A contributing factor for the higher SECV and SEP of fat and
protein than of NFE is the larger in vivo variation in digestibility estimates (Fig. 4.4).
The largest variation in the in vivo estimates of digestibility was seen for the fibrous
components (CF, cTF, cHemi) (Fig. 4.4), which is caused by variation between
animals in the retention time of fibrous components in the large intestine and
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Fig. 4.4 Relative standard error, expressed as percentage of the mean, of NIR calibrations and
measured digestibility values
SECV standard error of cross-validation of the NIR calibration as a percentage of the mean value,
SEP standard error of prediction of the NIR calibration as a percentage of the mean value;
Experimental SE, average standard error obtained when measuring the digestibility or
metabolisable energy in vivo expressed as percentage of the mean value. Error bars represent ±
one SD. DDE digestible dietary energy, DAPro digestible apparent protein, DFAT digestible fat,
DCF digestible crude fibre; DNFE, digestible nitrogen-free extract, DcTF digestible calculated total
fibrea, DcHemi digestible calculated hemicelluloseb, ME metabolisable energy
aTotal fibre calculated by subtracting protein, ash, sugars+starch and fat from dry matter
bHemicellulose calculated by subtracting sugars+starch from nitrogen-free extract
Modified data from Noel et al. (2022)



variation in microbial fermentation in the large intestine (Glitsø et al., 1998; Wilfart
et al., 2007a, b).
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A limiting factor for the development of strong NIR calibrations for digestibility
and ME is the number of samples evaluated using a similar technique. In the study of
Noel et al. (2022), it was also found that the model developed on the total database
was better than those developed on groups (cereals, supplemental ingredients, and
mixed diets) and better than those developed on cereals and reported in Table 4.2. In
the study of van Barneveld et al. (1999), 157 samples of wheat, barley, sorghum,
triticale, and maize obtained from in vivo studies performed in Australia, Canada,
France, and New Zealand were used for calibration, and 27 for validation. The
RSQCAL was 0.76 for whole grain and 0.72 for milled grain, which could be
improved by 11% for whole grain and 14% for milled grain when proper adjustment
was done for differences between sites for the in vivo studies. The adjustment due to
site differences reduced the SECV for whole grain from 0.52 to 0.38 MJ/kg DM and
for milled grain from 0.60 to 0.43 MJ/kg DM (van Barneveld et al., 1999). It appears
likely that the results reported in the publications by Black and Spragg (2010) and
van Barneveld et al. (2018) include some of the samples already reported by van
Barneveld et al. (1999). In a study in Canada on 25 barley samples used for
calibration and 12 samples used for validation, the RSQCAL and SEC were estimated
to be 0.97 and 19.8 kcal kg-1, respectively, which could account for 74% of the
variation in barley DE content in the validation set which had SEP of 75.0 kcal kg-1,
more than three times higher than the SEC (Zijlstra et al., 2011). These data are
essentially in line with data from an earlier study with barley that found an RSQCAL

of 0.93 and a 1-VR of 0.69 and SEC (MJ/kg DM) of 0.128 and SECV of 0.279
(McCann et al., 2006) as well as the study of Pujol et al. (2007) where an RSQVAL of
DOM of 0.87 was reported. Similarly, in a study by Li et al. (2016) using 86 maize
samples for calibration and 29 for validation, the RSQCAL, 1-VR, and RSQVAL were
0.89, 0.87, and 0.86, respectively, when comparing the NIRS-estimated values with
DE determined directly in experiment with pigs. RSQCAL and RSQVAL in the same
order were reported with 24 sorghum samples used for calibration and 9 for valida-
tion (Hu et al., 2019). A good correlation was also found in the study of Zhou et al.
(2012) with maize distillers grains with solubles (DDGS) where 69 samples were
used for calibration and cross-validation and 23 samples for external validation. In
this study, RSQCAL, 1-VR, and RSQVAL were 0.98, 0.93, and 0.91 and with SEC,
SECV, and SEP(C) of 0.19, 0.33, and 0.31 MJ/kg DM, respectively. In our own
subgroup of cereals, we found RSQCAL and RSQVAL for DE and ME of 0.85 and
0.79 and 0.76 and 0.73, respectively. Much poorer results for DE and DAPro
compared to the chemical constituents were reported by Garnsworthy et al. (2000),
probably because of limited variation in the samples and a small subset. Of the
studies reported in Table 4.2, it is only the studies reported by Aufrere et al. (1996)
and Paternostre et al. (2021) that are based on compound feeds.

ME of samples from the Danish feedstuff database could be modelled directly by
NIR with RSQCAL, 1-VR, and RSQVAL in the order of 0.91, 0.87, and 0.84,
respectively. For the RSQ’s, the values were only slightly lower than those of DE,
and the SEC, SECV, and SEP(C) of 118.2, 141.7, and 162.8 kcal/kg DM,
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respectively, can also be considered as acceptable. To further validate the use of
NIRS to predict the energy value of individual feedstuffs, NIRS-estimated ME
(eME) values were compared with ME values based on table values (Fig. 4.5a),
experimentally determined values (Fig. 4.5b) or based on NIRS prediction of the
nutrient composition and NIRS prediction of the digestibility of the individual
nutrient fractions (Fig. 4.5c) or directly estimated from the NIR model for ME
(Fig. 4.5d). The eME calculated in Fig. 4.5c was expressed by the following
equation:
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Fig. 4.5 Comparison of estimated metabolisable energy (eME) predicted by a NIRS equation for
ME (part C) or with NIRS equation for macronutrients and digestibility of macronutrients (part D)
with measured values of ME for 218 cereal and alternative ingredient samples. Panel A shows the
eME using table values and panel B eME from experimentally determined values. The dotted line
represents Y = X
Modified data from Noel et al. (2022)

eME KJð Þ= 10þ 20:5×X1 þ 36:7×X2 þ 14:7 ×X3 þ 17:3 ×X4



where X = digestible protein, X = digestible fat, X = digestible CF and
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1 2 3

X4 = digestible NFE (Just et al., 1984a).
The RSQ of the cereals and individual ingredients could be improved from 0.89

obtained from using table values only to 0.94, when using NIRS-estimated nutrient
fractions and NIRS-estimated digestibility or estimated directly from the NIRS
calibration. The RSQ of the latter approaches was only slightly lower than obtained
when estimating ME experimentally from measured nutrient fractions and measured
digestibility. For mixed diets estimated by the calculated eME and the inclusion
percentage of their individual components, however, the RSQCAL was lower, 0.84
compared to 0.89 for individual feedstuffs, and the improvements that could be
obtained by estimating the ME directly from NIRS calibrations were only slightly
higher (RSQCAL = 0.85) than by using table values only. When evaluating the
outcome of the mixed diets the lower variability in data is important to take into
account. Thus, the results of the study of Noel et al. (2022) show that NIR can be a
useful and strong tool not only for estimating the chemical composition but also for
the digestibility of nutrients and energy as well as ME. Thus, with the NIRS
technology, we have a very promising tool to be further developed as online control
of energy digestibility and metabolism in connection with the production of the feed
in feed factories and in mixing of cereals and protein-rich ingredients for feeding
systems in barns (Fig. 4.3).

4.3.3 Faecal Composition and Digestibility

Recent studies have also looked at the possibility of using NIRS directly on
non-digested nutrient residues in faecal samples (FNIRS) to predict the total tract
(TT) digestibility of nutrients (Bastianelli et al., 2015; Nirea et al., 2018; Schiborra
et al., 2015; Paternostre et al., 2021) and to estimate the nutrient composition of diets
(Schiborra et al., 2015) (Fig. 4.3). The rationale behind this is that the FNIRS contain
information on diet characteristics and the TT of nutrients even though it has been
transformed as it passes through the gastrointestinal tract of the animal. The results
from two of the studies on the composition of faeces are shown in Table 4.3. The
samples for the study of Schiborra et al. (2015) were obtained from five different
digestibility experiments performed in Germany, Nigeria, and China involving
36 very different diets, the samples for the study of Bastianelli et al. (2015) from a
digestibility experiment performed on one diet in France, but fed to animals of
different genetic background, and the samples from the study of Nirea et al. (2018)
from digestibility experiments performed in Norway and Denmark with four differ-
ent diets. The RSQCAL and RSQVAL for the chemical composition of the faeces
(Table 4.3) are generally lower than seen for the feed data (Table 4.1), presumably
because the calibrations are based on fewer samples and because there may be more
interfering compounds present in faeces than in the feed. The results obtained on
FNIRS in terms of RSQCAL, 1-VR and RSQVAL and SEC, SECV, and SEP(C) for
DE and DOM, however, are in general comparable to the results obtained with the
calibrations developed directly on the feeds (Table 4.1). In a further development,
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(Paternostre et al., 2021) combined NIRS-spectra of feed and faeces, which gave rise
to further improvements in the RSQVAL (Table 4.3). As was the case for the
calibrations and prediction models for the TT digestibility of protein and fibrous
components developed on the feed (Tables 4.1 and 4.2), the prediction models
developed for these nutrient constituents on faeces are generally less precise than
for energy and OM (Table 4.3). The potential with the FNIRS technology compared
with the estimation of nutrient digestibility from the feed is that it can be used for
large-scale phenotyping at farm level (Bastianelli et al., 2015; Nirea et al., 2018).

90 K. E. B. Knudsen et al.

4.4 Determination of Amino Acids and Their Digestibility
by NIRS

A correct supply of dietary protein and amino acids is important for optimal growth
and protein accretion in pigs (Moughan et al., 2018b), as undersupply will have a
strong negative impact on animal performance, and oversupply a negative impact on
the environment in terms of nitrogen leaching to the aquatic environment, to
drinking water, and nitrogen fallout from evaporation from animal housing and
slurry storage facilities (Millet et al., 2018). Protein quality evaluation aims to
determine the capacity of the feedstuffs and diets to meet the protein and essential
amino-acid requirements, which is defined in terms of intakes required to meet
metabolic needs for maintenance plus those associated with the protein needs for
growth, egg production, pregnancy and lactation in females (Moughan et al., 2018b).
The capacity of protein sources to meet the demand of animals is determined by the
absolute and relative quantities of dietary indispensable amino acids in feed, the
digestibility of the protein in the gastrointestinal tract, and the bioavailability of
amino acids (Fig. 4.6) (Moughan et al., 2018a, b). This has classically been done by
analysing the amino acid concentration and composition of the feed and estimating
the ileal or TT digestibility of amino acids, but since amino acids in the large
intestine are deaminated and converted into microbial protein and ammonia, it is
generally agreed that the digestibility of amino acids should be estimated at the ileum
(Moughan et al., 2018b; Stein et al., 2007). Originally, apparent ileal digestibility
was used, but, today, standardised ileal digestibility of amino acids is used, which
essentially is a factor conversion of apparent ileal digestibility data (Stein et al.,
2007).

4.4.1 Amino Acids

NIRS is widely accepted as a methodology to predict amino acid composition in
cereals and protein-rich feedstuffs, as an alternative to wet chemistry methods (Chen
et al., 2013). Many models exist for different types of samples: sunflower meal
(Fontaine et al., 2001), peas (Fontaine et al., 2001), cereal ingredients (Fontaine
et al., 2002; Hoehler et al., 2005), millet (Chen et al., 2013), dried distillers grains
with solubles (DDGS) (Zhou et al., 2012), processed animal proteins or meals (Dale



et al., 2012; Fontaine et al., 2001; Hoehler et al., 2005), rice (Fontaine et al., 2002;
Zhang et al., 2011; Wu et al., 2002), rapeseed (Chen et al., 2011; Fontaine et al.,
2001), quinoa (Escuredo et al., 2014), peanuts (Wang et al., 2013) and soya bean
(Fontaine et al., 2001; Pazdernik et al., 1997). The developed models were all
developed on individual feedstuffs and showed that RSQVAL was dependent on
the variability in the data set, but there were also differences in the models developed
depending on the feed matrix. For instance, RSQVAL for lysine and methionine was
0.72 and 0.61 in maize, 0.86 and 0.89 in wheat, 0.93 and 0.84 in soya bean meal and
full-fat soya, and 0.93 and 0.87 for meat meal products (Fontaine et al., 2001, 2002).
NIRS has also shown promising results with reasonably high RSQ coefficients
(0.814–0.963) for all amino acids but lysine (0.687) on compounds feeds
(50 samples) with considerable variability in their composition and physical
properties (Gonzalez-Martin et al., 2006). The statistical prediction descriptors –
SEP, SEP(C) and bias – indicated that amino acid values in feed predicted with
NIRS were comparable to those obtained with the chemical ion-exchange HPLC
method (Gonzalez-Martin et al., 2006).
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Fig. 4.6 Simplified model for protein digestion in the gastrointestinal tract and protein metabolism

In our own work we found that the models based on samples from cereals,
supplemental feed ingredients, and feed mixtures analysed together (Table 4.4)
were less accurate (higher prediction error), but more robust (valid with a larger
range of sample types and values) than models built on cereal, supplemental feed
ingredients and feed mixtures separately (Noel et al., 2021). The calibration
equations for crude protein and amino acids in the study of Noel et al. (2021) also
showed high RSQCAL (0.91–0.99) and almost as good for validation (RSQVAL

0.87–0.97) as found elsewhere (Fearn, 2014). The SECV and SEP were low and
in good agreement with each other, and the RSQ values for the total validation set
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were much better than for the separate cereal and feed mixtures validation sets and
similar to the supplemental ingredients (Noel et al., 2021). However, compared to
calibrations derived from single sample types (i.e. wheat or maize (3–6.7%)
(Fontaine et al., 2002), soya bean/soya bean meal (1.75–4.38%) (Fontaine et al.,
2001), brown rice flour (3–15%) (Zhang et al., 2011), and soya bean (FOSS
instrument, PLS model 2–16%) (Kovalenko et al., 2006)), the relative SEP values
were higher but comparable to the ISO standards when the analysis was done in
different laboratories (6.2–23.3 %) for determination of amino acids in chicken feed
and maize (ISO-13903 2005). However, the overall SEP is higher than the repro-
ducibility (~2–5%) of the reference method for amino acids reported by Fontaine
et al. (2001).
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4.4.2 Ileal and Total Tract Digestibility of Amino Acids

In a nutritional context, it is also important to know the digestibility of protein and
the digestibility of protein and amino acids in the gastrointestinal tract (FAO, 2013;
Stein et al., 2007). Estimates from NIRS calibrations have been used to predict the
digestibility of poultry feed ingredients for some amino acids, allowing for more
precise formulations on different batches (Hoehler et al., 2005; van Kempen et al.,
1996; van Kempen & Simmins, 1997) than is possible by using crude protein as a
proxy (van Kempen & Simmins, 1997). A preliminary study with 20 barley samples
also demonstrated that NIRS could predict the digestibility of lysine, methionine,
and cysteine in pigs (Pujol et al., 2007). However, our own study, reported in
Table 4.4 based on 102 samples of cereals, supplemental feed ingredients, and
mixed diets, is the largest hitherto (Noel et al., 2021). The RSQ values for predicting
the digestibility of the amino acids were, as expected, lower than the RSQ for
quantifying the amino acids, as variation in the digestibility of amino acids not
only is caused by the feedstuff but also the presence of antinutritional factors as well
as the influence of the endogenous secretion. Nevertheless, the RSQ for the digest-
ibility of the most important indispensable amino acids (lysine, methionine, cysteine,
threonine) is in general high with values above 0.76 and with low SECV values
(<5%). From the study of Noel et al. (2021) it can also be noted that the RSQ values
overall were better for the TT digestibility of amino acids than the apparent ileal
digestibility parameters shown in Table 4.4. This is probably because the TT
digestibility of amino acids is a closer reflection of the influence of the feed whereas
for the apparent ileal digestibility the endogenous contribution would be larger (Noel
et al., 2021). Moreover, sampling of ileal digesta is more variable compared to
sampling of faeces. Taken as a whole, the developed models can be considered good
enough to give usable estimates on the ileal and TT digestibility of amino acids
although more samples undoubtedly would make the calibrations stronger.
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4.5 Perspectives in Using NIRS for the Determination
of the Nutritive Value and Incorporation into Smart
Nutrition

As suggested above, NIR can be a useful and strong tool for estimating the chemical
composition of individual feeds and feed mixtures, the digestibility of nutrients,
amino acids, and energy, as well as DE and ME. The models can be used to adjust
diet composition when using feed batches with variable composition, thereby
helping the industry to deliver a uniform nutrient quality of feed mixtures. The
models can further be ported to online equipment that can be installed in feed
processing plants to enable more or less automatic adjustment of feed composition
to ensure that the feed produced is holding a uniform nutritive value (Baeten et al.,
2016; van Barneveld et al., 2018) (Fig. 4.7). Such an approach is illustrated in
Fig. 4.8 where NIRS was used in a feed mill to adjust the diet composition depending
on the content of protein and DE in wheat (van Barneveld et al., 2018). Over the
course of 1 h of production, the crude protein concentration of the wheat varied by
4%, and the DE concentration by 1.2 MJ/kg. Further, the mean DE concentration
was ~0.6 MJ/kg lower than the commonly used table value of wheat of 14.0 MJ/kg,
which would usually be employed in the diet formulation. van Barneveld et al.
(2018) stated that if diets were formulated as a starter feed, some piglets would
receive a diet equating to 14.0 MJ DE/kg, while others would receive a diet
equivalent to 14.7 MJ/kg, and the nutritionist would be expecting delivery of feed

Fig. 4.7 Schematic representation of implementation of NIRS at a feed mill to adjust the feed
composition with the purpose of producing mixed feed with a uniform composition and implemen-
tation in a barn to provide mixed feed according to the animal requirement



equating to 15.0 MJ DE/kg to these pigs and therefore provide a major source of
variation in pig growth. The example provided in Fig. 4.8 will be similar and in some
cases even more important in the production of feed mixtures for poultry, because of
their very rapid body growth of poultry, which makes poultry very sensitive to
variation in nutrient content and value. Moreover, assuming that the feed for farm
animals in the future will have to be based on more co-products or alternative
ingredients than used today, online adjustment of the feed composition will be
even more important.
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Fig. 4.8 Real-time near-infrared spectroscopy (NIRS) analysis of faecal digestible energy (MJ/kg
as received) and crude protein (%) concentration of wheat included in pig diets over the course of
1 h of production. Elapsed time is the time since the start of the recording
Data from van Barneveld et al. (2018)

The NIRS technology also holds the potential for online adjustment of feed
composition over the course of the growth period of both pigs and poultry
(Fig. 4.7). The requirement of indispensable nutrients in proportion to energy decline
as the animals grow and in cases where the feed for a barn is provided as a mix of
cereals and protein concentrate, NIRS can be used to gradually adjust the mixing of
the two ingredients according to the animal growth trajectory and thereby need. In
theory, it would also be possible to adjust the feed composition on the basis of the
need of the individual animal, but this will require feeding devices for the provision
of feed on individual basis. For now, this prospect is most relevant for individually
housed animals such as sows, but can potentially also be used for growing animals,
provided that such feeders become available. Moreover, provided that sensors are
available to monitor the animal capacity to grow, it would be possible to build NIRS
into a system that can provide personalised nutrition according to such animal
capacity for growth and nutrient utilisation.

The recent development of FNIRS to estimate the TT digestibility of energy
and nutrients (Schiborra et al., 2015; Bastianelli et al., 2015; Nirea et al., 2018;



Paternostre et al., 2021) further holds the potential of being used in connection with
pig-breeding programmes for selection of pigs with improved digestibility of energy
and nutrients (Bastianelli et al., 2015; Nirea et al., 2018). Once a robust calibration
equation is established, large-scale digestibility prediction using FNIRS can be used
to get an estimated breeding value and genetic parameters to study the genetics of
digestibility in pig-breeding programmes. Such an approach can be even more
relevant in the future in connection with the use of farm animals to recycle biomass
and nutrients into the food system that would otherwise be lost to food production
(van Zanten et al., 2019).
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Abstract

The genome and phenome are both forms of big data in that they can be
characterised by volume, variety, velocity, value, veracity and variability. A
direct relationship exists between the phenotype and the genotype; the proportion
of the variability in the phenotype due to differences in the genotype of a (sample)
population is termed heritability. Phenomics in livestock generally relate to
(a) animal identification, (b) measurements of performance (either output or
inputs) and (c) measures of the prevailing environmental conditions. The use of
genomics in livestock production includes: (1) genomic predictions, (2) parentage
assignment, (3) animal/product traceability, (4) monitoring of major genes and
congenital defects including karyotype disorders, (5) estimating coancestry or
inbreeding, (6) quantifying breed composition and, importantly (7) facilitating
more precise mating and management (e.g. nutrition) decisions. Facilitated by
developments in agri-tech, such information will enable the development of
tailored genotype-specific nutritional and management regimes. Such a strategy
is not at all novel and is the basis for the diversity of production systems for
generations; genotype in such situations was, however, synonymous only with
breed. Genomics and phenomics will simply improve the granularity of differen-
tiation from being among breeds to being within breeds. Challenges include
(a) the return-on-investment, especially for phenomics, although from a breeding
perspective, the cost of phenotyping is incurred by few but realised by many,
(b) how to distil the masses of data to support decisions by diagnosing and
prescribing management and nutritional strategies, and (c) data ownership and
use. As more data accumulates on both the genotypes and phenotypes of
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individuals, the ability to estimate the genetic potential of individual animals
more accurately will improve.
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5.1 Introduction

The concepts of phenotype and genotype were first muted at the start of the twentieth
century (Johannsen, 1909). Nonetheless, the actual cited definitions of phenotype or
genotype vary in the scientific literature (Mahner & Kary, 1997). The word pheno-
type originates from the Greek φαινo (i.e. “pheno”) and τύπoς (i.e. “type”) and is
used to describe a set of observable characteristics for an individual; “pheno” means
“observe” as is the case for “phenomenon”. A phenotype, or trait, may be continuous
(also called quantitative; e.g. milk yield and growth rate) or discrete (qualitative;
e.g. did or did not succumb to disease); however, discrete traits are often treated as
having an underlying liability function thereby justifying their analysis as quantita-
tive traits.

The meaning of the word genotype is even more ambiguous. Genotype is
generally used to refer to the genetic variants an individual possesses across all its
nucleotides (i.e. DNA sequence); genotype may also simply refer to the alleles at a
particular locus (i.e. location) on the DNA sequence. Moreover, animal breeders
commonly use genotype to describe a particular strain of animal (e.g. animals of a
given breed from a particular origin). In fact, Mahner and Kary (1997) argue that a
genotype is actually a phenotype owing to the fact that this previously unobservable
unit of heredity is now actually observable through genotyping.

The phenome was described by Soulé (1967) as the phenotype as a whole. The
genome is defined as the complete set of information in an organism’s DNA (Alberts
et al., 2002), including the mitochondrial DNA (and the chloroplast DNA in the case
of plants). Phenomics as a discipline was originally defined as the systematic study
of phenotypes on a genome-wide scale (Bilder, 2008). A more apt definition,
however, is arguably the acquisition of high-dimensional phenotypic data on an
organism-wide scale (Houle et al., 2010); this definition though assumes it is the
acquisition which is the crux of phenomics and not other elements like the transfer,
storage, editing and downstream analysis of the data, but it also considers that it must
be organism-wide. Furthermore, Greenwood et al. (2016) extended the definition to
specifically consider real-time data acquisition coupled with environment-level



features, the latter being important for downstream analysis. Biler et al. (2009) stated
how phenomics must be transdiscipline, requiring expertise in genetics, molecular
biology, cell biology, systems biology, mathematical modelling, statistics and infor-
mation sciences all effectively communicating and collaborating on large-scale
projects.
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Genomics is cited to be the study of the structure, function and intragenomic
interactions within the genome (Berry et al., 2011). Genomics may also be defined as
the collective characterisation and quantification of all of an organism’s genes, their
interrelations and influence on the organism (WHO, 2002).

Phenomics and genomics are intrinsically linked. The expression of a phenotype
is a function of the genotype of the individual. The study of genomic variants
associated with performance often requires a phenotype for which to relate to;
more recent strategies attempt to locate genomic variants affecting performance
without actually using phenotypic data (VanRaden et al., 2011) albeit phenotypic
data are still used to validate the discoveries. While the discipline of genomics has
flourished from investment in recent decades (Houle et al., 2010), the field of
phenomics, in livestock at least, has not been so fortunate. Nonetheless, adoption
by agriculture of modified technological solutions applied in other domain areas,
complemented with bespoke products for phenotyping, is addressing the phenomic
gap. In fact, dissecting the influence of genomic features on a whole array of animal
performance characteristics is now more limited by available phenotypes than by the
availability of genotypes.

The objective of this chapter is to describe the fundamentals of genomics and
phenomics, especially in how they relate to big data followed by commentary on the
likely future developments in these data sources. Importantly, how both data sources
can be combined to help deliver on smart nutrition and management is also
demonstrated and discussed.

5.2 Big Data

The genome and phenome are both forms of big data. While many definitions of big
data exist, the characteristics of big data can be represented by 6 (or more) V’s:

• Volume
• Variety
• Velocity
• Value
• Veracity
• Variability

Volume Both the genome and phenome are classic examples of high dimensional
data (i.e. volume), but while the genome is complex, its complexity pales in
comparison to the dimensionality of the phenome. Although the potential number
of genomic features for livestock is in billions, strong homogeneity in many regions



of the genome implies that the number of features that actually vary among
individuals is, at best, in the (tens of) millions with only a few (usually 3 representing
biallelic single nucleotide polymorphisms [SNPs]) values per feature (i.e. variant).
Phenomics in livestock (as well as plants) is more and more being characterised by
image measures both of which require considerable resources to store and transfer
between locations. While consideration of data storage space is important, so is disk
speed and network speed including bandwidth (Cole et al., 2011); for example, using
solid-state disk drives for temporary storage where the available random-access
memory is insufficient. In fact, whether the raw data should be stored ad infinitum
should be explored on a case-by-case basis. In some instances, it may be cheaper to
regenerate the data as could be the case for day-to-day herd management where data
could be discarded once the animal exits the farm.
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Variety The genome is finite and usually based on just one individual (unless host-
pathogen interactions are modelled) while the phenome is often based on, or
influenced by, multiple individuals each with complex interactions. While most
genomic studies are based on SNPs, other structural variants like microsatellites,
copy number variants, inversions, deletions and translocations do exist. Nonetheless,
the variety of genomic data and also the format of the data provided by service
providers (e.g. variant fall format [VCF] files, SNP-chip output files) is relatively
consistent across platforms, service providers and jurisdictions. The same is not true
of phenotypic data which suffers from a whole variety of different ontologies of
phenotypes, types of phenotypes and technologies to measure phenotypes
(Hocquette et al., 2011); this contributes to a variety of resulting file formats and a
whole range or variety of different features that can be measured on an individual.

Velocity The genome of an individual does not change over time; hence, one
measure is sufficient per individual. The velocity at which phenomic data are
generated, however, can be rapid with continuous measurements often the norm
with some sensing systems (Greenwood et al., 2016). Being able to rapidly transfer
and mine such data in a computationally efficient and effective manner is crucial for
effective SMART nutrition or precision management; edge computing is one option
to reduce the volume of data transfer whereby the analyses are executed nearer to
source thereby contributing to lower latency and reduced requirements for data
transmission.

Value The cost of genotyping was often a barrier to data generation; even sequenc-
ing costs are continuously reducing implying a relatively low value for genotype
data per se. While some phenotypes are relatively inexpensive to generate, or in
some instances may be viewed as free if paid for by others (e.g. liveweight, milk
yield), deeper phenotypes like environmental metrics, feed efficiency, or granular
measures of product quality or immune/metabolic status can be expensive to gener-
ate. Low-cost strategies, nonetheless, have some potential to predict some of these
phenotypes; for example, video analysis to predict feed intake (Chizzotti et al.,
2011). Because only one genotype exists per individual, and this does not change



over the lifetime of the individual, the value of the (entire) phenome is often
multiples greater than that of the genome.
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Veracity Genotyping or sequencing is more often than not undertaken by highly
accredited laboratories using highly reproducible platforms like SNP chips (Berry
et al., 2016). While DNA quality or handling can impact the veracity of the resulting
data, strict quality control measures on the resulting genotype data (Berry et al.,
2021b; Purfield et al., 2016) or sequence data (Bacci, 2015) are also often imposed to
discard unreliable data. Nonetheless, genomic data are not always free of error;
genotype-by-sequencing (Elshire et al., 2011) as an approach to genotyping can
contain a large fraction of missing data which requires imputation. Imputation, in
itself, introduces error (Berry & Kearney, 2011; Judge et al., 2016). Finally, calling
of structural variants such as copy number variants is not consistent across calling
algorithms (Rafter et al., 2018). Nevertheless, veracity of phenotypic data tends to be
more of an issue given the heterogeneity of the tools used to measure the phenome,
but also the contribution of the (past and present) environment to the eventual
phenotype. These environmental influences are not always recorded for adjustment
in the statistical model but, of course, also include human error in measurement or
assessment. Many traits used in breeding programs are actually subjectively scored
either by producers themselves (Pabiou et al., 2012) or by trained professionals
(Berry et al., 2004; Ring et al., 2018). Similarly, many animal characteristics used in
day-to-day animal management are subjectively scored (e.g. body condition score,
locomotion score, lesion scores). This impacts the veracity of the phenotypic data.

Variability Genotype data tend to have a common format; even though there are
two main vendors of SNP chips globally, the file output from both platforms can be
identical (albeit with a difference in the metric depicting confidence in the called
genotype). No matter what service provider generates the data, the outputs are the
same. Moreover, service providers tend to have a regular workflow so the data often
arrives at a constant rate and can be pre-planned. Phenotypic data, however, are
highly variable for many traits both in when the data are generated and enters the
database (e.g. seasonal calving systems for cattle, but also in the definition of traits
like feed efficiency in different jurisdictions but also even within jurisdiction).

All-in-all, relative to genomic data, in the context of big data, phenomics tends to
have a greater volume of a large variety of variable data generated at high velocity
while also generally suffering from greater veracity.

5.3 Relationship Between Penotype and Genotype

Understanding the relationship between the variation in the phenotype and genotype
is important for understanding the potential role of genomics in SMART nutrition
and animal management. The relationship between the genotype and the phenotype
can be described by the commonly used equation (Visscher et al., 2008):
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σ2P = σ2G þ σ2E þ σ2GxE þ σ2G,E

where σ2P is the phenotypic variance, σ2G is the total genetic variance, σ2E is the
environmental variance, σ2GxE is the variance due to the genotype-by-environment
interaction, and σ2G,E is the variance attributable to the covariation between the total
genetic effects and the environmental effects. The variance due to the covariation
between the genetic and environmental effects is almost always ignored and while
the existence of genotype-by-environment is acknowledged in livestock (Dillon
et al., 2006; Roche et al., 2018), the extent of such interactions in most populations
is often not viewed as worthy of consideration in most genetic evaluations, in
ruminants at least. Nonetheless, genotype-by-environment interactions may be
more important in the pig and poultry industry where a nucleus of genetically elite
animals managed in a very controlled environment may be the source of germplasm
to be used in commercial production systems, mainly consisting of crossbred
animals (Wientjes & Calus, 2017). More importantly, however, acknowledging
and exploiting genotype-by-environment is crucial for precision nutrition and man-
agement so that the germplasm on farm is aligned with the management and feeding
system.

The heritability describes what proportion of the phenotypic variance is attribut-
able to the additive genetic variance and is defined as

h2 =
σ2A
σ2P

where h2 is the (narrow sense) heritability, σ2A is the additive genetic variance (i.e. the
variance due to additive genetic effects), and σ2P is the total phenotypic variance.
Hence, the heritability depicts the relationship between the phenotype and genotype
describing how well differences in genotypes among individual accounts for the
inter-individual differences in the observed phenotypes. A heritability value of 0.5
(considered “high”) means that, on average, half of the phenotypic differences
among individuals are estimated to be due to (measurable) genetic differences. In
fact, clearly demonstrating how the heritability represents the association between
phenotype and genotype, a simple estimate of genetic merit for an individual can be
calculated as:

bA= h2 P- μð Þ
where bA is the predicted genetic merit of the individual, h2 is the (narrow sense)
heritability, P is the phenotypic value for the trait of interest for the given individual,
and μ is the population mean adjusted for nuisance factors such as age. Rearranging
the equation provides an estimate of the phenotypic performance potential based on
animal genetic merit which is obviously important for management and can there-
fore be used to calculate if genetic potential is being realised. This equation holds



irrespective of whether additive genetic merit is based on ancestry, own perfor-
mance, or genomic data.
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Heritability is important for determining the potential response to selection
through breeding; by extension, the (realised) heritability can be deduced from the
observed response to selection. Genetic gain per year can be described by the
formula (Rendel & Robertson, 1950):

ΔG=
i � r � σ

L

where ΔG is annual genetic gain, i is the selection intensity, r is the accuracy of
selection, σ is the genetic standard deviation and L is the generation interval.
Heritability influences the accuracy of selection. All else being equal, the lower
the heritability, the greater the number of records required to achieve a given
accuracy of selection and thus genetic gain (Fig. 5.1). Nonetheless, the impact of
low heritability on genetic gain can be overcome by having more information
(i.e. phenotype or genotype) available, thus contributing to a higher accuracy of
selection and thus genetic gain. Hence, despite historical commentary that low
heritability equates to slow genetic gain, rapid genetic gain is indeed possible for
low heritability traits (with exploitable genetic variation); in fact, genetic gain for
low heritability traits can be faster than that for high heritability traits if all other
parameters of the genetic gain equation are superior. Irrespective, the role of
phenomics and genomics in achieving genetic gain is clear; more so, the relationship
between phenotype and genotype implies a trade-off between accurate phenotypes in
the pursuit of high heritability and thus a necessity for fewer records to achieve a
high accuracy of selection, versus less accurate phenotypes contributing to a lower
heritability and thus a requirement for more phenotypic records to achieve that
elusive high accuracy of selection extending to rapid genetic gain. This is also
important for management purposes as the accuracy with which the expected
phenotypic performance is derived is a function of the accuracy of the estimate of
genetic merit. While most animals will be well dead before they achieve a good
accuracy of estimated genetic merit from relatives and own performance, genomics
short-circuits this, enabling a high accuracy at birth (or whenever sampled).

The estimated heritability of a trait for a given population is also a crucial
component for undertaking a statistical power calculation for genome-based associ-
ation studies or indeed genomic predictions (Fig. 5.1). While many genome-based
association studies state they are attempting to discover genomic variants associated
with the phenotype, in reality, they cannot explain more variability in the phenotype
than the (broad sense) heritability. Thus, the genomic association studies or genomic
predictions are really attempting to explain the variability in the genetic merit of
individuals. Low heritability implies a proportionally large environmental variance.
Hence, like any experimental study (e.g. nutritional trial), the study size needs to be
greater to negate any impact of greater environmental variability; the same holds for
low heritability traits in genome-based association studies or genomic predictions.



The limitation to how much of the phenotypic variance can be explained by genomic
variants is important for management purposes and fully appreciating the scope of
genomic information in influencing management decisions. It is, nonetheless, likely
that heritability estimates in most studies are under-estimates but also that fact that
these heritability estimates do not account for the non-additive genetic component.
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Fig. 5.1 For heritability values of 0.35, 0.20, 0.10, 0.05 and 0.03 (in order of increasing darkness
of lines), (a) the number of progeny required to achieve a given accuracy of selection using
traditional ancestry-based genetic evaluations and (b) the number of records of phenotyped and
genotyped animals to achieve a given accuracy of genomic evaluations (based on 1000 effective
chromosomal segments and 80% of the genetic variance accounted for by the genotyped markers)
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5.3.1 Increasing Heritability Through Better Phenotyping

Heritability, as defined previously, is the proportion of phenotypic variance attribut-
able to (additive) genetic variation; phenotypic variance here is comprised of genetic
variation and non-genetic variation which includes random noise:

h2 =
σ2A
σ2P

=
σ2A

σ2A þ σ2E

where h2 is the (narrow sense) heritability, σ2A is the additive genetic variance (i.e. the
variance due to additive genetic effects), σ2P is the total phenotypic variance, and σ2E
is the non-genetic variance often comprised of residual noise. Hence, assuming no
change in genetic variance, reducing the extent of the residual variance will lead to
an increase in heritability with all its associated benefits as already detailed.
Phenomics has a huge role in reducing this residual noise:

• Performance measures: Obviously phenomics is crucial to generating phenotypic
performance data on individuals. While sensors and technical equipment are
synonymous with phenomics, research has also clearly demonstrated heritable
genetic variation in traits subjectively scored by producers (Pabiou et al., 2012) or
professionals (Berry et al., 2004; Ring et al., 2018); strong genetic correlations
between the subjectively-scored traits and the eventual goal trait measured some-
time later in life have been proven to be strong (Pabiou et al., 2012). Hence,
subjectively-scored data still has uses in breeding programs and actually
constitutes a large proportion of the emphasis of breeding goals of some farmed
animals (Berry et al., 2021a). Nonetheless, technology is likely to be a major
contributor to not only the generation of vastly more quantities of data on a wider
variety of phenotypes, but also potentially the accuracy of such data. Moreover,
electronic solutions such as Radio Frequency Identification (RFID) equipment
can impact the precision to which a phenotype (e.g. liveweight, milk yield) can be
assigned to an individual, minimising any source of human error in recording.
The same is true for image and video analysis for quantifying behavioural traits or
other traits like body condition score.

• Repeated records: The heritability of the mean of repeated records for an individ-
ual is greater than the heritability of a single measure (Judge et al., 2018). In fact,

the heritability of the mean of n records is h2 = nh2

1þ n- 1ð Þtwhere h
2 is the heritability

of the mean of the observations, h2 is the heritability of a single observation, n is
the number of observations per individual and t is the correlation among the
repeated observations (Berry et al., 2017a, b). Hence, phenotyping strategies to
generate multiple records per animal are useful; in such situations for genetic
evaluations, a repeatability statistical model is generally used (Mrode, 2014).
Nonetheless, before embarking on generating multiple records per individual, the
appropriate calculations (and logistical requirements) should be undertaken to
evaluate whether a superior approach would be to phenotype more individuals
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once, rather than phenotype the same individuals multiple times; this is the trade-
off between heritability and number of observations which both impact the
accuracy of selection but also the number of phenotyped animals can impact
the selection intensity.

• Deep phenotypes: The observed phenotype of an animal is a function of not only
the physical genome of the animal, but also how it is transcribed and translated
into the eventual phenotype. Moreover, some phenotypes (e.g. methane produc-
tion) are not only a function of the genome of the host, but also how that interacts
with the genomes of other species (microbes) residing within the host. Being able
to drill down to the different layers of expression (i.e. the transcriptome) may
contribute to higher heritability estimates. Of course, such detailed phenotypes
can also be extremely informative in day-to-day animal management. However,
the collection of such granular data in a large population of animals taking
cognizance of how it varies spatially across tissues and temporally across time
may not be feasible, at least for a large number of transcripts. Moreover, should
genetic variability exist in how the genome is transcribed or translated to proteins
and the eventual phenotype, basing selection decisions on such deeper
phenotypes may not be sensible if genetic variability either directly, or through
an interaction with the environment, influences the expression pathway.

• Statistical modelling: Prior to the estimation of phenotypic variance, and subse-
quently its contributing variance components, the contribution of systematic
environmental effects to the variance is removed. Such systematic environmental
effects on livestock include animal gender, age, herd and feeding system, to name
but a few. Hence, phenomics also has a role in firstly measuring or identifying
such environmental influences, but also accurately allocating the correct level of
each environmental factor to each individual observation and, in doing so, reduce
the extent of residual variance. Advanced statistical modelling approaches
(e.g. random regression models; Mrode, 2014) can also be used to more accu-
rately model the data and error term while taking advantage of longitudinal data.
As well as being useful in improving the accuracy of genetic evaluations,
improved statistical modelling is crucial to disentangle nuisance effects from
the underlying animal phenotypes for management purposes.

• Parentage: Genetic evaluations are founded on being able to correctly identify the
parents of an individual from which the entire ancestry can be compiled. This is
used to trace relationships among animals which are linked with performance
metrics enabling the estimation of genetic merit for each animal in the family
(including descendants with no performance records). Accurate parentage record-
ing is therefore not only crucial to accurate genetic evaluations, but also to
reducing the residual variance and thus increasing the heritability. By extension,
correct parentage information is important for precision management, not only
when designing mating plans to avoid inbreeding, but also when determining the
genetic potential of animals. In the case of heterospermic inseminations in, for
example, pigs, or mob mating in other species (e.g. sheep, cattle), genomics
would be required to ascertain the sire (Berry et al., 2019a, b; McClure et al.,
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2013) unless differences in distinctive heritable features (e.g. head colour) existed
among the candidate sires.

5.4 Advances in Genomic Tools

Many different types of genetic markers exist and the history of such have been
elegantly described by Schlötterer (2004) from allozymes to restriction fragment
length polymorphisms and microsatellites, and eventually single nucleotide
polymorphisms (SNPs) which are generally now the marker of choice. A SNP is a
variation at a single nucleotide position of the DNA sequence which differs between
individuals of the same species. Interest, however, also exists in structural variants
like copy number variants (Rafter et al., 2018), and both insertions and deletions
(Väli et al., 2008). Microsatellites are still used in parentage testing and forensics
(and population genetic studies albeit being replaced by SNPs) in some species and
in some jurisdictions. Microsatellites are highly polymorphic, have a high mutation
rate and are both abundant and relatively well distributed across the genome; they are
not easily amenable to multi-plexing and automation.

The shift towards the widespread use of SNPs was mainly to facilitate more
readily automation and scoring of genotypes, thus contributing to a high throughput
at a reasonable cost. This benefit is important to secure high adoption rate thus
contributing to more accurate information to be used in SMART nutrition and other
management decisions. Other advantages of SNPs (Schlötterer, 2004) include their
low mutation rate, high abundance and the ease at which they can be considered in
meta-analyses from multiple data sources given their high concordance across
genotyping platforms and laboratories (Berry et al., 2016). Procedures exist to
impute or predict microsatellite alleles from flanking SNP haplotypes (McClure
et al., 2013). The high throughout potential of SNPs is enabled by the development
of what is nowadays termed SNP-chip. Two main vendors of SNP-chips currently
exist, both of which have considerable experience over many years: these are
Illumina and ThermoScientific (formerly Affymetrix).

The genotyping process for SNP-chips using Illumina technology is based on
hybridisation technology and described in detail by Zhao et al. (2018). For bialleleic
SNPs, two oligonucleotide probes are synthesised based on the flanking sequence
for the nucleotide under investigation. The target sequence, which is fluorescently
labelled, generates a signal following hybridisation with the two probes. The allele at
the nucleotide position is subsequently called based on the emitted fluorescence
intensity. Using a reference dataset of many samples, a proprietary clustering
algorithm is applied to the fluorescent levels to distinguish between the three
potential genotypes (i.e. homozygous wild, heterozygous, homozygous mutant).

There was an initial trend to reduce the density of SNPs on panels (Boichard et al.,
2012; Judge et al., 2016) in the pursuit of reducing the overall cost. However, the
cost of the actual SNP-chip hardware itself as a proportion of the actual entire service
(i.e. collection of biological samples, DNA extraction, running the genotype plat-
form, genomic evaluations) was becoming ever-smaller and thus cost savings from



reducing panel density were being diluted. The sweet-spot to enable accurate within-
breed genomic evaluations for most species is circa. 50,000 DNA markers.
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5.4.1 Use of Genomics in Livestock Production

The range of practical uses of genomic information in livestock production is
summarised in Fig. 5.2 (Berry, 2019). These include (1) genomic evaluations,
(2) parentage assignment, (3) animal/product traceability, (4) monitoring of major
genes and congenital defects including karyotype disorders, (5) estimating
coancestry or inbreeding, (6) quantifying breed composition and (7) facilitating
more precise mating and management decisions. Of course, genomic information
is also used in many different types of research programs.

5.4.1.1 Genomic Evaluations
By far, the overwhelming uses of genomic information in livestock is in the
prediction of genetic merit of the individual and, by extension, the phenotype of
the individual. The prediction of phenotypic performance from genomic information
has been discussed at length elsewhere (Meuwissen et al., 2016). It must, nonethe-
less, be remembered that the heritability limits the predictive ability of the phenotype
from the genotype but, if considering non-additive genetic effect, this upper limit is

Fig. 5.2 Selection of uses of genomics in livestock breeding and management



dictated by the broad sense heritability. Historically genomic predictions were based
on single DNA mutations or a couple of mutations in a process termed marker-
assisted selection (Dekkers, 2004). With some exceptions like mono- or
oligogenetically inherited traits (e.g. mutations conferring congenital defects, double
muscling and fecundity as well as lethal recessive mutations), the predictive ability
of performance from a limited number of DNA markers was disappointing
(Simianer, 2016), especially between families.
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Three major developments contributed to what is now called genomic selection
(Meuwissen et al., 2001) or polygenic risk scores in humans (Torkamani et al.,
2018). The first development was the discovery of SNPs and other genomic markers
through the sequencing and assembly of the genomes of different livestock species;
the second advancement was the development of (relatively low cost) technology to
generate genotype information on thousands of SNPs simultaneously in an
automated process (i.e. SNP-chips); and the third development was the statistical
know-how on using whole genome DNA markers (simultaneously) in predicting an
outcome. All developments have advanced considerably in recent decades with new
genomic markers identified (Bouwman et al., 2018) as well as a whole plethora of
algorithms, including machine learning approaches that exploit the high dimensional
genotype data in the prediction of performance (Gonzalez-Recio et al., 2014).

Accurate genomic evaluations are predicated on a reference or calibration popu-
lation of animals that are both genotyped and phenotyped and ideally related to the
population of selection candidates; the lower the heritability for a given trait, the
greater the size of the reference population required to achieve a given accuracy
(Fig. 5.1). Accurate genetic evaluations are important if such information is being
used to tailor nutritional and management systems but must also be taken in the
context of the heritability of the trait. Genomic evaluations based on SNP-chip data
exploit what is termed linkage disequilibrium; this is the phenomenon whereby some
DNA markers tend to be co-inherited. Hence, while the causal mutation may not be
known, or the genotype of the causal mutation is not on the genotype panel, its effect
can be selected via a correlation with a nearby (co-inherited) SNP marker that is
genotyped. However, the link between the genotyped marker and the causal muta-
tion can differ between families, strains, or breeds but can also break down during
gameteogenesis. Hence, the reference population should ideally be updated with
each advancing generation especially if new family lines are introduced. Having the
genotype of the true causal mutation can help alleviate this; the genotype of the true
causal mutation exists in deep sequence data that has undergone good quality
control. Even if the true causal mutation does not pass quality control (e.g. low
minor allele frequency), the chances of being in tighter linkage disequilibrium with a
closer DNA marker (although technically this should also have a low minor fre-
quency in this situation to be tightly linked) is increased.

Developments in genomics have contributed to a gradual increase in the number
of animals that are whole genome sequenced, with the process of imputation
(Sargolzaei et al., 2014) being used to impute (i.e. predict) the whole genome
sequence of animals genotyped for only tens or hundreds of thousands of SNPs.
This is possible because chunks of DNA are inherited across generations and once



the whole genome sequence of back-ancestors is available, then these chunks (called
haplotypes) can be tagged by the genotyped SNPs and the chunk imputed. It is
nowadays not uncommon for studies to use imputed whole genome sequence data on
tens or hundreds of thousands of individuals (Purfield et al., 2019). Based on the
current state of the art, the benefit of sequence data in genomic predictions of real-life
data does not always match the investment (Meuwissen et al., 2016). This could be
due to a multitude of reasons including: (1) an inability for the prediction model to
actually locate the causal mutation(s) amongst the millions of other candidate causal
mutations especially if the allele substitute effect is small, and (2) whole genome
data, especially in the coverage often generated, contains errors which can be
compounded by imputation and thus the errors contributed through the genotypes
generated from (imputed) sequence data may actually negate any potential benefit in
prediction accuracy accruing from the greater density genotypes.
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Irrespective, access to (imputed) whole genome sequence data has enabled more
powerful and complete studies that attempt to locate the causal mutations underpin-
ning phenotypic performance; these studies are called genome-wide association
studies (GWAS). The high-level objective of many of these studies is to locate the
causal mutations which can then be genotyped on all animals and help in genomic
evaluations across families, strains, breeds and generations. Nonetheless, in the
majority of cases, only a small proportion of the genetic variance of quantitative
traits, and by extension even less of the phenotypic variance, is likely to be explained
by these mutations with some notable exceptions (DGAT1 in cattle – Georges et al.,
1995; CDH1 in Atlantic salmon –Moen et al., 2015; growth differentiation factor in
meat producing animals – McPherron & Lee, 1997). Hence, the marginal improve-
ment in predictive ability per mutation is likely to be small. Nevertheless, other uses
can be garnished from knowing the underlying causal mutations; Berry (2015)
described other potential uses of known the causal mutations contributing to pheno-
typic differences including more personalised animal management (i.e. nutrition,
medicine, reproduction) as described in Fig. 5.3. From a nutritional perspective, the
term nutrigenomics is often synonymous with feeding the genes. While major genes
do exist, it is more likely that nutrigenomics will relate more to the global genomic
estimate of genetic merit for performance based on the cumulative effect of
thousands of genetic variants as opposed to just a few. Such a concept is not at all
novel. For example, the germplasm used in confinement dairy cow production
systems differs to that used in grazing dairy cow production systems (Pryce et al.,
2014); this divergence occurred without any direct knowledge of the animal geno-
type per se but represents nutrigenomics. Nonetheless, major genes do still exist and
animals are often recommended to be managed or fed appropriately. For example,
high fecundity sheep are often fed more energy and protein-rich diets in late lactation
because of their likely greater little size compared to their lower fecundity
counterparts. Similarly, cattle with the nt821 myostatin mutation (e.g. Belgian
Blue cattle) should be fed a more energy-rich diet as growing animals to provide
sufficient energy to deliver the required nutrients for rapid muscle growth.

Pharmacogenomics can also influence management decisions. Pharmacogenomics
is the study of how an individual’s genotype influences its response to medicinal



treatment. A good example of such is the use of codeine in humanmedicine; codeine is
a class of opioid analgesics used to relieve pain, the efficacy of which is dictated by
polymorphisms in the CYP2D6 gene. Pain relief may be inadequate in individuals who
have two inactive copies of the CYP2D6 gene whose enzyme is needed to convert
codeine tomorphine (Pratt et al., 2012). Similar scenarios, not just limited to individual
genes, could exist in livestock.Moreover, even understanding genetic predisposition to
disease can help enact different management strategies. For example, enhanced screen-
ing or observations of at-risk animals could be performed. Similarly, prophylactic
measures including administering vaccines could be targeted at more susceptible
animals. Finally, nutritional or chemoprevention should be enacted for at-risk animals.
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Fig. 5.3 Usefulness of identifying causal mutations to aid in livestock management

Genome-based management decisions do not, however, have to be limited to just
within the farm gate. Genetic differences in meat-eating quality clearly exist among
species (Berry et al., 2017a, b). Peri-mortem strategies can be adapted per animal
based on its genetic prediction of meat quality thus maximising the likelihood of a
consistent and pleasurable eating experience for the consumer.

5.4.1.2 Parentage Assignment and Traceability
Because each parent donates half its DNA to its offspring, genotypes (if taken from
the correct animals) can be used to infer parent-offspring relationships. Parent-to-
offspring errors vary from 7.6% to 10.0% in sheep (Berry et al., 2016), from 10.18%
to 13.28% in cattle (Purfield et al., 2016) and from 8.4% to 14.6% in goats
(Bolormaa et al., 2008). While mis-recording parentage errors affects genetic gain
(Visscher et al., 2002), missing parentage information can also stifle genetic gain.
Accurate parentage information is also important for precision breeding. The number
of SNPs required for parentage verification and assignment, if optimally chosen, is
up to 400 (Berry et al., 2019a, b). The number of SNPs for traceability is far less if



appropriately chosen (Weller et al., 2006). For example, the probability of two
individuals carrying exactly the same genotype at 10 informative SNPs (i.e. a
minor allele frequency of 0.5) is 5.5 × 10-5 (Weller et al., 2006). Farm-level samples
are often taken routinely for some measure to track performance or animal health;
one good example is bulk tank milk samples from dairy herds which are analysed
daily or every 2 to 3 days. One such analysis undertaken is the count of somatic cells.
High somatic cell count is indicative of clinical mastitis and is a costly disease with
animal welfare repercussions. The count of alleles in the bulk tank somatic cells is
proportional to the relative contribution of each cow’s DNA to the bulk milk. By
solving a set of linear equations comparing the genotype of the bulk milk to that of
the cow, an estimate of cow somatic cell count can be derived (Blard et al., 2012).
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5.4.1.3 Breed Composition
The breed composition of the progeny from at least one crossbred parent cannot be
known with certainty without using genotype information. Breed assignment can
help deliver on consumer expectation of traceable food products, as well as verify
breed composition for herd- or flock-book registration. Furthermore, meat products
originating from certain breeds sometimes command a higher price and thus there is
an onus to verify breed composition. Accurate breed composition is also important
for proper assignment of breed groups in genetic evaluation systems. While knowl-
edge of breed is often deemed important when making nutritional and management
decisions or for grouping animals, SMART nutrition or management in the future
should be based on individual animal’s estimates of genetic merit which, itself,
incorporates breed differences. This is because as large variability in performance
traits exists within breed as among breeds (Ring & Berry, 2020). In the future,
animals of different breeds but of similar genetic merit will be penned or group
managed as opposed to just based on breed. Using routinely available cattle
genotypes from SNP chips, Judge et al. (2017) concluded that at least 300–400
SNPs (per breed) were required to accurately predict Angus and Hereford breed
proportion.

5.4.1.4 Monitoring of Major Genes and Congenital Effects
Mutations in genes of known lethal effects as well as mutations leading to congenital
defects (e.g. Duchesne et al., 2018) or in genes of known major effect (e.g. Grisart
et al., 2002) are also now routinely included on most SNP-chips. Moreover, the
flexibility afforded by SNP-chips, especially propriety SNP-chips, mean that
mutations can be added as they are discovered for screening of the population and,
where appropriate, purged from the population. Validation of the resulting
genotypes from constructed probes on the SNP-chips is crucial. As previously
discussed, knowledge of the variants an animal possesses for some major genes
will affect how the animal should be fed and managed; a good example is the muscle
hypertrophy associated with the myostatin where sustained rapid muscle growth will
require an energy-rich diet.
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5.4.1.5 Karyotyping
A karyotype is the term given to the number and appearance of chromosomes in a
cell. Changes to the number or appearance of chromosomes is called a karyotype
abnormality and the impact varies from no observable external difference, to repro-
ductive failure, to embryo death. Cytogenetics was the approach traditionally used to
karyotype individuals, but determining the number of copies of each chromosome
from routinely available SNP-chip data has been demonstrated to be possible in
cattle (Berry et al., 2017a, b) and sheep (Berry et al., 2018). Early knowledge of
whether or not a nulliparous female can become pregnant will impact management
decisions; infertile females will enter the feeding and management regime for
slaughter as opposed to that for optimal growth for pregnancy. This is particularly
important in species like cattle (and some sheep production systems) where age at
first calving is later than the age at which the female would be ready for slaughter.

5.4.1.6 Inbreeding and Mating Advice
Incorrect or missing pedigree information biases co-ancestry estimates among
potential parents. For example, the estimated relationship between two full sibs
with no parentage recorded (or incorrect parentage) is assumed zero, but genotype
information can help resolve such discrepancies. Moreover, in the absence of
genotype information, the assumed co-ancestry between two individuals is simply
the expectation. For example, full sibs, on average, share half their DNA, but
considerable variation exists around this average. By knowing the genotype of
each full-sib, the expected inbreeding of the progeny from the mating could be
predicted; it can never be known a priori due to mendelian sampling during
gametogenesis. Moreover, many lethal recessive mutations (i.e. DNA mutations
that result in the death of the embryo or foetus) have been purged out of most
populations by restrictions imposed that parents cannot be carriers of known lethal
mutations. In the future, when (almost) all animals, male and female, are genotyped,
it will be possible to develop more accurate mating advice schemes to avoid the
matings of carrier animals and minimise the accumulation of inbreeding. Moreover,
strategies such as the estimation of gametic variance of an individual (Santos et al.,
2019) could be informative in predicting the expected heterogeneity of offspring
from a given individual or mating. Knowledge of the inbreeding of an animal can
also be used to modify the genetic merit of an individual aiding better approximation
of the expected phenotypic performance of an animal; the reduction in performance
due to inbreeding is termed inbreeding depression and has been demonstrated to
exist in many species (Leroy, 2014).

5.4.1.7 Precision Management
Prediction of (genetic) predisposition to disease is a rapidly growing discipline in
human medicine (Vogenberg et al., 2010), as is personalised nutrition (Ordovas
et al., 2018). More accurate predictions of genetic merit through the exploitation of
genotypes enable tailored management strategies like feeding animals differently
depending on their genetic merit for performance. As well as potentially improving
performance, bespoke management systems can also contribute to less wastage



within the industry. Genomics can also be used to better understand host-pathogen
interactions and, from this, enact action(s) (e.g. boosting the innate immune system)
given the genotype of the pathogen. The concept of precision management in light of
information gleaned from genomic information is discussed later.
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5.5 Phenomic Tools

Phenomics in livestock generally relate to (a) animal identification,
(b) measurements of performance (either output or inputs) and (c) measurements
of the prevailing environmental conditions. The relatively recent convergence of
technologies and approaches has certainly made phenotyping more possible. Such
technologies include those associated with high-throughput phenotyping coupled
with bioinformatics and computational capabilities to mine the generated data
including hierarchical models that link the different layers underlying the eventually
expressed phenotype. While phenomics can broaden the armoury of animal or
environmental features available by measuring new traits or potential environmental
contributors to the phenotypic variability, phenomics can also measure traditional
traits better and more frequently on more animals. An example is RFID with
automated liveweight measures removing the necessity for the operator to not only
manually record the liveweight of the animal as it moves within the weigh crate, but
also correctly assign that record to the animal; the electronic transfer of the data to a
central repository also ensures rapid data transfer with minimal error. The same is
also true of automated feed intake measures or using feeding behaviour data to
identify animals off feed. This is important to enact proactive management regimes
rapidly and appropriately. Furthermore, traditional traits which may have required
the animal to be sacrificed can now be assessed on live animals (e.g. CATSCAN
used to predict carcass composition but also additional phenotypes like rumen size
and fat deposition on the pedal bone of the hoof). Of course, advances in data
analytics such as visualisation techniques and outlier detection have huge potential
as part of the quality control pipeline of future phenomic endeavours. Importantly
here though for management purposes is to be able to disentangle measurement/
statistical outliers from biological outliers; the latter is obviously extremely interest-
ing from a management perspective.

Opportunities for improved phenotyping is immense given the ongoing
developments especially in sensing systems, Internet-of-Things and data analytics.
While being able to measure traditional traits more accurately is certainly a benefit,
arguably of greater benefit will be the opportunity to measure what are called
difficult-to-measure traits on a large population of animals and, in fact transform
them to easy-to-measure traits. These measures can be used not only for both
breeding programs, but also for day-to-day animal management (e.g. oestrus detec-
tion, early detection of off-form animals, feeding schedule). Sensing systems
deployed on the animal itself to measure a whole plethora of different attributes
include technologies such as accelerometers, magnetometers, gyroscopes, visual,



sensors, audio sensors and location sensors as well as equipment to measure
temperature, gastrointestinal function, heart rate and respiratory rate (Greenwood
et al., 2016; Halachmi et al., 2019). Devices such as thermal imaging or actual
cameras to measure in multiple dimensions are now becoming affordable; these have
been complemented by developments in algorithms with advanced cognitive capa-
bility which can match or even exceed human capability in undertaking specific
tasks. Detailed reviews of the plethora of technologies available are discussed
extensively elsewhere (Greenwood et al., 2016; Halachmi et al., 2019). Halachmi
et al. (2019) concluded that wearable technologies dominate the market for sensing
in livestock but in less-value-per-animal systems (e.g. sheep, goat, pig, poultry) one
sensor, like a camera or robot per farm, rather than one sensor per animal, will
become common. Halachmi et al. (2019) also stated that the development of
methods to turn the data into actionable solutions is critical.
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While a whole range of sensing mechanisms and commercial products exist
which predict many such features, arguably the greatest benefit will be from com-
bining such information sources, complemented with available information on
ancillary animal and environmental features like animal age, prevailing weather
and genetic merit. More importantly, however, is rather than simply monitoring
and predicting performance will be the ability to diagnose positive and negative
breeding and management decisions. In other words, while early predictors of soon-
to-be-sick animals are important, being able to diagnose early why animals are
getting sick is arguably more important. This feedback mechanism is crucial for
precision management and nutritional advice but must also be sufficiently flexible
and knowledgeable to be able to account for changes in the genetic merit of the
animals over time.

5.5.1 The Emerging Phenotypes

The phenotype observed by producers (e.g. growth rate, milk yield) is often that of
greatest interest to the producer. However, such phenotypes are complex by their
very nature implying that they could be decomposed into their component traits,
which are also called the intermediate phenotypes. For example, growth rate could
be decomposed into the weight due to bone, fat and lean growth (each of which
actually has its own economic value) and even these could be sub-divided into
smaller components or even their distribution around the body. Similarly, milk yield
is a function of protein, fat and lactose (as well as other minerals, vitamins and
bioactive compounds). However, protein is comprised of caseins and whey which in
themselves are constructed from more granular components, as is milk fat. In fact,
many layers exist between the genome of an individual and its eventual phenome
including the transcriptome, the metabolome and the proteome. Also of growing
interest is the epigenome (Goddard & Whitelaw, 2014). A good example of the
importance of gene expression in the development of a phenotype is the butterfly
which morphs from the caterpillar without obviously any chance in the genome.



Sophisticated technologies now exist to quantify each of these layers on a large scale
although their expression differs temporally and spatially across the individual.
Being able to delve deeper into such layers can facilitate a greater understanding
of the underlying biological construct and help develop, not only more efficient
breeding programs, but also revised management strategies to optimise performance.
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The same is true for measuring and understanding the microbiome of livestock.
While much commentary is on the rumen microbiome, the microbiome at other
locations like the mouth (Alipour et al., 2018), reproductive tract (Clemmons et al.,
2017) and mammary system (Li et al., 2018) may also be informative. Using a
sample population of Holstein cattle, Jami et al. (2014) demonstrated how the ratio
of bacterial phyla Firmicutes to Bacteroidetes was related to milk fat yield, via its
indicator of the metabolism of the animal. Jami et al. (2014) also reported how a
reduction in Bacteroidetes in the gastrointestinal tract was associated with poorer
feed efficiency. Hungate (1966) was one of the first to develop the technique to
cultivate anaerobic microorganisms but these have now been replaced by modern
sequencing methods coupled with sophisticated downstream bioinformatics
analyses. While targeted amplicon sequencing was the traditional (and is still very
common) method for taxonomic profiling of a sample, this is now being replaced by
next-generation sequencing platforms; the former does not enable species detection
and also lack functional information (Escobar-Zepeda et al., 2015). Shotgun
sequencing enables more functional insight as well as aiding the de novo assembly
of microbial genomes. Such functional information can be extremely useful for
management purposes evaluating, at a very granular level, the impact of changing
environment (e.g. nutrition) on the function of the digestive tract but also informing,
based on past evidence, what changes need to be made to rectify any unfavourable
observations. It may not be necessary to actually undertake analyses on an individual
animal basis but instead possibly a pooled sample of contemporaries could be used
as the experimental unit for management purposes. Host genetic influences on the
microbiome have also been reported to exist with heritability estimates of between
0.02 and 0.30 for relative abundances at the genus level (Camarinha-Silvia et al.,
2017; Beaumont et al., 2016). Hence, the microbiome in itself could become a
phenotype of use not just for management purposes but also for use in breeding
programs, and importantly linking the two and, in doing, (a) identifying individuals
that deviate from expectation and (b) manage the individual(s) accordingly based
on their expected microbiome. Genomic and bioinformatics developments in
metagenomics like longer read sequencing but also quantifying the microbiome
RNA to provide accurate measures of the activity of the functional metabolic
pathways will also provide temporally informative data to help inform management
and SMART nutritional strategies.

Also important is the host-pathogen genome interaction for understanding animal
disease especially how the host can exert some control over the life cycle of the
pathogen; this can be beneficial not only to the host itself, but also potentially
reducing or halting transmission to the wider population.
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5.6 Case Studies of the Marriage of Genotype and Phenotype

5.6.1 Breeding Objectives of the Future

The breeding objective of a breeding programme is comprised of a list of traits each
appropriately weighted based on (perceived) importance. Conditions for inclusion of
a trait in a breeding objective are as follows:

1. It must be important.
2. It must exhibit exploitable genetic variation.
3. It must be measurable in a large population of animals related to the selected

candidates; if not, it must be genetically correlated with a trait which is measur-
able in large numbers.

Examples of the relative emphasis on different traits within breeding objectives of
ruminants are given by Berry et al. (2021a), with the emphasis on traits in interna-
tional dairy breeding objectives summarised by Cole and VanRaden (2018). Current
breeding objectives tend to be holistic in nature including both performance traits
(e.g. growth rate, milk production) and functional traits (e.g. reproductive perfor-
mance, birthing difficulty, health, temperament). The presence of all traits in a
breeding objective provides the framework for simultaneous selection for
improvements in all traits despite often antagonistic genetic correlations existing
among some traits.

Economic modelling is used to decide the weights on individual traits within
several breeding objectives although, in some jurisdictions and species, economic
modelling is only used as a guide with the final weights on individual traits often
decided by a committee; for some, desired gains (Cameron, 1997) exclusively is
used to decide on the weighting factors where, as the name suggests, the objective is
to achieve a desired rate of gain for some traits. Breeding objectives are routinely
updated based on new information and knowledge both on the traits of likely
importance in the future, but also their associated (future) costs and value. Because
generation intervals of some livestock species (e.g. cattle) tend to be particularly
long (6.03 to 6.71 years in cattle; McParland et al., 2007), such breeding objectives
especially, must be very futuristic.

Suites of traits poorly represented in many breeding objectives of different
species include (granular) product quality, feed (including digestive) efficiency,
environmental efficiency, as well as animal health and well-being. Spectroscopy
methods are coming to the fore as potential predictors of all such suites of traits. De
Marchi et al. (2014) reviewed the literature on the applicability of mid-infrared
spectroscopy of milk to predict granular milk quality traits while the use of near-
infrared spectroscopy for predicting the quality of meat in multiple species has also
been reported (Bresolin & Dórea, 2020). McParland et al. (2011, 2012) and Wallen
et al. (2018) both demonstrated how mid-infrared data of dairy cow milk could be
used to predict feed intake and efficiency with McParland et al. (2011, 2012) also
further demonstrating its predictive ability for energy balance of dairy cows, a trait



associated with animal well-being and resilience (Friggens et al., 2017). Dehareng
et al. (2012) reported on the ability of milk mid-infrared spectroscopy to predict
methane emissions in dairy cows; milk urea nitrogen of milk, also predicted from
mid-infrared spectroscopy of the milk (Grelet et al., 2020), is used as a proxy for
nitrogen use efficiency in dairy cows (Guliński et al., 2016). The advantage of
infrared spectroscopy as a phenotyping tool is that it is fast, non-invasive, non-de-
structive and amenable to in-line measurements. Mid-infrared spectroscopy of milk
in dairy production systems is particularly advantageous in that the samples are
already being collected on individual cows for routine milk testing with all samples
subjected to infrared analysis with the purpose of reporting back to producers the fat,
protein and lactose concentration of the milk; the producers themselves already pay
the full cost of the service so, therefore, these new phenotypes are close to free of
charge once the prediction equations are developed. Partial least square regression is
the method of choice for relating the spectral data to the gold standard phenotype;
other approaches (Wallen et al., 2018), including a suite of machine learning
approaches (Frizzarin et al., 2021), fail to consistently improve on the status quo
and any improvements in predictability tend to be small (Frizzarin et al., 2021).
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Environmental traits like methane emissions and both nitrogen and phosphorus
use efficiency are growing in importance (Stiles et al., 2018). The gold standard for
measuring methane emissions is calorimeters where the animal resides within a
relatively small enclosed area for a short period of time during which all gaseous
emissions are measured. While the measurements taken are highly precise, for
grazing ruminants at least, the animal is removed from its natural environment
with the potential consequence of not only stressing the animal and thus biasing
the emissions, but also removing potential (genetically controlled) contributing
factors to emissions like herbage selection and activity. The same can be true of
nitrogen use efficiency where the gold standard is to accurately measure all inputs
and outputs in enclosed metabolic chambers thus again removing the animal from its
natural environment. Hence, phenomic strategies must be able to balance the
precision of measurement and the applicability of the outcome to commercial reality;
such a proposition is particularly relevant for the pig and poultry industries (but of
late also the cattle industries) where selection may be exercised on deeply
phenotyped individuals managed in a highly controlled environment which may
not be representative of commercial reality. Strategies, nonetheless, do exist to
obtain relatively accurate measures of gaseous emissions from ruminants without
resorting to unrealistic calorimeter chambers. The GREENFEED system is now
commonly used in ruminant research to measure methane emissions. However,
firstly, many of these machines are being deployed on animals fed indoors, generally
young growing animals, while in reality the vast amount of methane produced is by
the mature herd who, for beef cattle at least, spend most of their time grazing. The
relevance of genetic evaluations for methane emission measured indoors on growing
animals against (grazing) mature animals is untested. The same is true for feed intake
measures, in beef cattle at least, where the measures are generally taken on the young
growing animal yet the main culprits are the mature herd. Significant genetic
variability in feed intake among dairy cows does exist and this is correlated with



feed intake in growing heifers (Berry et al., 2014), although the genetic correlations
between feed intake in lactating dairy cows fed indoors and those grazing pastures
are weak (Berry et al., 2014). It is therefore crucial that phenotyping strategies are
not undertaken solely because they can, or that the strategy of least demand is
pursued, but instead the strategy chosen is most relevant while also cognisant of
practicality.
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A suite of traits which is growing in importance for pigs and poultry, but
potentially also for dairy cows as herd size expands, is the area of social interactions
(Pérez-Enciso & Steibel, 2021). This is particularly important with the transitioning
from single-unit housing to open houses in livestock, especially within the
EU. Several technologies, however, do exist to measure social interactions
(Fernandes et al., 2020), and exploitable genetic variability in social interactions
has been demonstrated (Nielsen et al., 2018). A further phenotype of potential
interest to both breeding and management systems is resilience to the impact of
climate change be it either the stress of prevailing weather conditions
(i.e. temperature and rain), the reduced availability of feed for grazing animals
(or transitioning from one feed to another as the weather changes), as well as the
potential exposure to exotic diseases previously not encountered. While phenotypes
for many of such traits exist (Nguyen et al., 2016), as does genetic variability
(Nguyen et al., 2016), arguably most of the research here will be on the appropriate
modelling solutions to depict resilience.

Water use efficiency is also likely to become a very pressing issue in many
jurisdictions with a conflict already growing between water availability for human
use versus for animals. Steinfeld et al. (2006) argued that 64% of the world’s
population is expected to live in water-stressed basins by the year 2025. The recent
availability of mechanisms to measure water intake has facilitated the generation of
phenotypes for exploration of the underlying genetic mechanisms. Rusakovica et al.
(2017) reported heritability estimates of 0.35 to 0.50 for traits like daily number and
duration of visits for water, water intake and rate, and drinking time in turkeys
coupled with weak genetic correlations with the performance traits investigated. This
implies the presence of genetic variability and while selection for performance is
unlikely to have affected these water-related measures, it also implies that selection
for improved water use efficiency is unlikely to massively affect genetic gain for
performance (other than through a reduction in selection intensity for the latter).
Genetic variability in feeding behaviour traits has also been demonstrated to exist
(Howie et al., 2011; Kelly et al., 2020). Of course, while such behavioural
phenotypes are useful phenotypes for potential inclusion in breeding programs,
their routine monitoring can also be hugely beneficial for SMART animal manage-
ment (Borderas et al., 2009; Schirmann et al., 2016). Borderas et al. (2009), for
example, reported that sick dairy calves visited feeders less often with greater
duration per feed. Nonetheless, many such studies are explanatory analyses describ-
ing the associations between animal (health) status and behaviour while fewer have
actually progressed these explanatory models to be predictive models where the
feeding behaviour data are used to predict health outcomes sufficiently early to be



able to invoke remedial action; it is the latter which is really important and will be the
main benefit from such technologies in animal management.

126 D. P. Berry

5.6.2 Precision or Personalised Management

Personalised management is where the management of an individual is optimised to
its genotype; this is a form of genotype-by-environment interaction. Personalised
management or personalised nutrition is not a new concept in livestock production;
different feeding management in late gestation sheep has long been recommended
depending on the number of lambs in utero, as has alterations to dry period feeding
levels in sows or cows differing in body condition score. Similarly, energy-rich diets
are recommended for animals with a high genetic potential for muscle growth.
So-called polygenic risk scores (Torkamani et al., 2018) that combine genetic
predisposition (from genotype information ideally also considering non-additive
genetic effects) with (historical and prevailing) phenotypic data can greatly aid in
the day-to-day but also strategic management decisions. It is here where real
opportunities for technologies like digital twins (Haag & Anderl, 2018) have
potential.

A digital twin, as the name suggests, is a digitalised representation of an actual
physical system and can be used to evaluate the impact of different management
strategies. Digital twins have gained prominence enabled by the Internet of Things
that facilitate high dimensional and granular monitoring in real time often using a
combination of miniature sensing devices and remote sensing systems. Therefore,
digital twins rely on excellent phenomic (and genomic) data. The twin can essen-
tially model different “what if” scenarios which have obvious benefits (if accurate) in
evaluating alternative management and nutritional strategies or modifications thus
aiding in final decision-making. However, digital twins are more amenable to
representing human-made systems which can be synchronised with virtual systems
but complex natural systems like livestock may not be so amenable to good and
accurate digital representations. Importantly, a digital twin must demonstrate a return
on investment and such does not exist currently for livestock.

Genetic merit (with the possible exception of breed) is not always explicitly
considered in prediction models for developing personalised nutritional and
management strategies. Nonetheless, for heritable traits, genetic differences contrib-
ute to phenotypic differences amongst animals and should therefore be considered
when trying to synchronise management to genetic potential. For example, the
genetic standard deviation for 305-day milk yield in Irish dairy cows is 919 kg
(www.interbull.org). Therefore, using normal distribution theory, the difference
in yield between the top versus the bottom 10% of cows is expected to be
3225 kg. Similarly, assuming a genetic standard deviation in growth rate of growing
cattle of 0.13 kg/day (Crowley et al., 2010), this equates to a difference of
0.46 kg/day between the top and bottom 10% of individuals. Clearly, therefore,
genetic merit should form part of any prediction model or associated digital twin.



While genetic variability indeed contributes to phenotypic variability, other
non-genetic effects specific to individuals also contribute to the observed phenotypic
variability. Such effects are commonly termed permanent environmental effects; the
name stems from the fact that they are environmental effects (i.e. non-genetic and
thus not transmitted to descendants) but are permanent to the animal. The variance
contributed by this permanent environmental effect is the difference between the
heritability and the repeatability. For milk production in dairy cows, for example, the
heritability may be 0.30 while the repeatability may be 0.52 (Suzuki & Van Vleck,
1994) suggesting that 22% of the phenotypic variance can be due to the permanent
environmental variance. Routinely measured phenotypes as input variables to the
statistical model can be used to estimate the individual permanent environmental
effects which can then be included in the prediction model improving its accuracy.
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Estimates of the genetic merit of an animal for a given trait may also be used for
modifying the decision rules within decision-support tools. For example, a cow with
a genetic predisposition to uterine infection or ovarian cysts may be enrolled into a
routine reproductive tract ultrasonography examination. Similarly, a somatic cell
count in primiparous dairy cows of >200,000 cells/ml may cause an alert for
subclinical mastitis, but this threshold may be lower if the cow in question is
known to have genetic predisposition to mastitis. An analogy in human medicine
is when patients are asked about any family history for certain diseases by doctors
trying to more accurately diagnose ailments. Such personalised management could,
of course, also be at the level of the herd exploiting herd best linear unbiased
estimates (BLUEs) to tailor not only the breeding goal of the herd, but also the
expected response to selection for each trait given the herd BLUE for that trait
(Dunne et al., 2019; Kenny et al., 2021). However, of utmost importance is that
while models are transitioning from being descriptive to being predictive, they must
now start to aid in the diagnosis of the underlying issues along with prescription of
what to do. This requires input from subject-matter experts (i.e. SME) in relation to
animal husbandry and thus pan-disciplinary actions to achieve the end goal of
improved, more-informed decision-making are crucial.

5.7 Challenges

Developments in agri-tech and the growing accessibility of sensing systems for
measuring a whole plethora of metrics open up opportunities as well as create
challenges for future livestock breeding programmes and management. The
opportunities include the generation of vast quantities of objective measures not
only on the animal itself, but also reflections of the prevailing environmental
conditions (for use in the statistical model). Practical challenges relate to the return
on investment from the whole range of technological solutions being proposed, how
to relay summary statistics from the vast quantities of data in a usable and
understandable format to the end user (for management purposes), and finally issues
associated with data ownership. Other challenges not discussed further (but



discussed at length elsewhere) relate to trait ontology and standardisation of mea-
surement (Hocquette et al., 2012), computational resources (Cole et al., 2011),
including interoperability, as well as data mining techniques (Gonzalez-Recio
et al., 2014). More recently, the concern of data hacking and malware has come to
the fore and the potential impact this could have on day-to-day business operations
(Ritenour, 2020).

128 D. P. Berry

5.7.1 Return-on-Investment

Tight profit margins and volatility in product price (and costs of production) which
are particular features of primary agriculture are major influencers as to whether
producers could (or should) invest in genomic or phenomic technology. Hence, a
clear return-on-investment needs to be demonstrable. An approach for producers to
calculate a return-on-investment from genotyping (along with an accompanying
excel file) was provided by Newton and Berry (2020). The approach pursued was
sufficiently generic to be applicable to all species once the parameters required were
known for the population. These parameters included the number of female
replacements retained, the replacement rate, the average lifespan of females, the
reliability of genomic and traditional evaluations, parentage error rate, the heritabil-
ity and standard deviation of the breeding goal, and the genotyping cost.

The cost of phenotyping depends on the phenotype of interest. Some phenotypes
may be viewed as free since they are already collected and paid for through other
sources (e.g. recording of animal births and parentage as part of national traceability
systems) while other phenotypes may be very expensive to measure. Often when
embarking on using a new technology for phenotyping on farm, only the initial
capital cost is considered; however, there is obviously a depreciation and mainte-
nance cost of such sensor systems also as well as possible license fees. Sensor drift
can be a big issue in that accuracy can deplete with time; for example, simple things
like putting a new object into a shed (e.g. a tractor or mixed wagon) can influence the
acoustics of the shed thus potentially impacting any such sensors but the
ramifications of such may not be immediately recognised. Rather than a large initial
investment, warranty-based approaches could also be adopted; these approaches are
based on a commitment by the vendor that a given level of performance should be
achieved and only if that performance is achieved, will the purchaser pay the annual
fee. Nevertheless, the costs of phenotyping is often incurred by few but the benefits
reaped by many. Hence, considerations should be given to a levy on animals or
products to subsidise or pay for a phenotyping (and associated systems) strategy.
This could be viewed as a type of royalty or license for the generated intellectual
property. Such an approach will incentivise continuous innovation. For example,
assuming the output from the Irish dairy, beef and sheep sector is 8 billion kg milk,
550,000 tonnes of beef meat and 55,000 tonnes of sheep meat, then the charge per kg
output per one million euor cost of phenotyping animals for a breeding programme
would be just 0.013 cents, 0.18 cents and 1.8 cents, respectively.
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5.7.2 Useful and Meaningful Decision-Support Tools

Making sense of vast quantities of high-velocity data can become unwieldy and even
counter-productive. While artificial intelligence or machine learning systems are
being heralded as the saviour to precision agriculture, these algorithms, like most
before them, simple take data as inputs, process the data and generate an output
which is hopefully useful to someone. Being able to decipher such data streams into
value-creating decision-support tools that are compatible and complementary to
other such tools will be a major challenge; greater interaction with end-user focus
groups will be of utmost importance to ensure the developed tool is fit for purpose.
One such technique to help achieve this is user-centred design. User-centred design
is an iterative design process in which developers of the technology concentrate on
the users and their needs throughout the entire design and development process. The
outcome is a highly usable and accessible product. Technologies designed without
understanding context-specific needs and value-driven concerns can lead to low
adoption at farm level and societal rejection at market level. Decisions that are made
in collaboration with the end-user are better informed, more democratic and have
more legitimacy, resulting in increased trust and acceptance.

Developing areas like explainable artificial intelligence (XAI) systems will have a
major role in demonstrating how the solutions have been arrived at, and thus can be
readily understood (and therefore more accepted) by the end user; counterfactual
analysis or other recommender systems will provide direction on what decisions are
likely to best deliver gains within the confines of the respective features. Decision
capture techniques could be useful to understand why some recommendations
were not acted upon by individual farmers leading to an improvement in such
recommendations over time.

As already discussed, analytical intelligence must progress from describing what
has happened to what is likely to happen in the future (i.e. predictive modelling).
Crucially, however, the actual diagnosis of the problem must be identified and
corrective actions prescribed (Fig. 5.4; Smith, 2020) – “There comes a point
where we need to stop just pulling people out of the river. We need to go upstream

Fig. 5.4 The interaction between human intervention and analytical intelligence in arriving at a
decision (adapted from Smith, 2020)



and find out why they’re falling in” – Desmond Tutu. Accurate diagnoses and
prescription of management and SMART nutritional recommendation will have to
be underpinned by comprehensive phenotyping strategies (and genomic informa-
tion) distilled down to informative evidence of what is occurring. Correspondingly,
as the reliance on human input erodes, the trust on the underlining analytics will have
to intensify.
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Several successful value-create decision-support tools exist across species, not
least the aforementioned breeding objectives which collapse vast quantities of
information on a whole range of traits into a single index value per animal. Other
management tools based on the principles of selection index theory are also in use
(Dunne et al., 2020, 2021; Kelleher et al., 2015). In the example of the calf
transaction index proposed by Dunne et al. (2021), the value of a young calf is
predicted based on its genetic merit, some other animal-level features (e.g. gender)
but also some features of its dam (e.g. parity). More importantly, however, is its
compatibility in that it shares traits and economic values with the breeding indexes
used to select and mate the parents used to generate this calf. Hence, dairy producers
who use bulls that are supposed to generate high-value calves (Berry et al., 2019a, b)
will, on average, have calves born that are predicted to be more valuable.

While many decision-support tools, especially those based on mating advice, tend
to predict the expected mean performance, the variability in predictions will also
become important. One such approach is to calculate the expected variance in
progeny genotypes (Santos et al., 2019) which can then be used to generate the
distribution in expected (total or additive) genetic merit for all evaluated traits (and
overall breeding objective). Such a tool could be particularly useful in establishing
the risk of calving dystocia for a given mating, especially for beef-on-dairy matings
(Berry, 2021). In such circumstances, dairy producers may opt for bulls with a
slightly greater mean genetic predisposition to calving difficulty but with a greater
likelihood of producing genetically more homogenous calves and thus fewer very
large calves which may require veterinary intervention during calving.

5.7.3 Data Ownership

Data ownership is becoming a contentious issue which has not been unequivocally
addressed in livestock production at least. This is particularly important with com-
mentary on the potential monetisation of data. Of real concern for some national
genetic evaluation bodies for cattle and sheep, in particular, is the development of
proprietary genetic evaluations or even genetic evaluations within herds or groups of
herds, something which is the norm in the pig and poultry industries.

Importantly, owning a database may not necessarily automatically imply owner-
ship of the data within as the rights of the database owner only relate to the database
and not the individual elements. In some instances, the data collected on animals is
stored locally and data ownership and privacy issues are not an issue here since the
data are stored and often interrogated locally. More recently, however, the data, as
well as being stored locally, are also transferred to a central server (e.g. cloud) where



it is aggregated with other data. In such situations, the producer has potentially
surrendered the sole custody of the data. Many potential uses by others of the
information generated from producer data could include:
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1. Price discrimination for farm outputs – purchasers of farm outputs could down-
grade the price willing to pay for a product based on the knowledge that, for
example, the livestock to be sold with soon no longer meet the desired specifica-
tion so the producer is compelled to sell to avoid penalties.

2. Price discrimination for farm inputs – knowledge of the (urgent) requirement for
inputs can affect the price charged by the providers of such inputs. Economists
term this first-degree price discrimination, and in such situations, it is the service
providers that capture the benefits accruing from efficiencies at the farm level.

3. Others creating additional value from the output of the farm – purchasers of the
farm outputs could obtain a competitive advantage over competitors by market-
ing superior products from their identified clients.

4. Lesser competition – larger procurement agencies could have a distinct
competitive advantage over smaller agencies if the former has greater access to
farmer data.

5. Enforcement of regulations – access to farm data by governments, retailers, or
other actors provides evidence for violation of, or compliance with regulations
such as standards for animal welfare and environmental stewardship.

6. Improved contemporary farmer performance through access to successful man-
agement “recipes” developed by others via peer-to-peer learning.

Ownership relates to property and there are three main types of property: real
property, personal property and intellectual property; agricultural data is relatively
unique in that it is a mixture of all three types. Therefore, the producer must provide
evidence that (s)he fulfils the criteria for all three property types, namely the farmer
owns the land from which the data were generated, owns the equipment (and
possibly even developed the equipment) that created the data and generates the
intellectual property from the resulting data; once others are involved in either of the
three steps, then ownership is more ambiguous. Copyright law does not necessarily
cover data ownership generated from technological devices as it is lacking a human
creativity component (Gartner & Brimsted, 2017) and does not fall under the
definition of an “author” (Farkas, 2017). Gartner and Brimsted (2017) in their
commentary of data ownership, stated that data could constitute a trade secret in
that it fulfils the criteria of (a) being secret and (b) being attributable to a company.

5.8 Conclusions

Developments in genomics and other omic technologies have increased rapidly in
most recent decades as has the application in accelerating genetic gain. The cost of
genotyping/sequencing is also reducing. The opportunity for advancements in
phenomics is potentially far greater especially in real-time phenotypes where the



ensuing information can be rapidly relayed to the producer to undertake remedial
action, where necessary. A whole myriad of different technologies exists for
assessing a whole plethora of different phenotypes. A prioritisation matrix
(Fig. 5.5) should be used to help in making a decision on which trait(s) to pursue.
Such traits should ideally be high impact but preferably, the solutions should be low
cost. From lessons in the past, it is clear that both breeding and management
programs must coevolve to fully reap the benefits of advancements in both.
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Fig. 5.5 Prioritisation matrix for phenotyping strategies in relation to their importance for breeding
or management against the effort required to generate the data

The translation of outputs to outcomes will require the collation of data and
information from multiple sources into a series of value-creating SMART nutrition
and management tools. It is, however, important that biologists and animal hus-
bandry experts reengage with the outputs from any prediction models translating
predictions into diagnoses and prescriptions for the end user and, in doing so, reap
the full benefit of the developments in phenomics and genomics. Given the herita-
bility of many performance traits, it is crucial that accurate genomic predictions of
performance on an individual animal level are fully integrated into these tools. The
marriage of both genomic and phenomic tools will enable more precise, efficient and
effective production systems with management guidelines suggested at a farm level
while at the time recognising the heterogenity of the animals within.
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Mathematical and Statistical Approaches
to the Challenge of Forecasting Animal
Performance for the Purposes of Precision
Livestock Feeding

6

Maciej M. Misiura, Joao A. N. Filipe, and Ilias Kyriazakis

Abstract

Provision of feeding strategies tailored to the dynamic, preferably individual-
level nutrient requirements is expected to greatly reduce the mismatch between
nutrient supply and demand of most animals and could lead to minimisation of
excess nutrient excretion observed in many pig production systems. Approaches
to account for the individual variation in growth and consequent nutrient
requirements are typically recommended to be largely data-driven to minimise
the potential effects of different a priori assumptions on quantification of variation
in populations. Evidently, the ability to develop such methods is largely depen-
dent upon the availability of the relevant data, which should consist of regular
measurements of the chosen traits of interest. Historically, the acquisition of such
data has been challenging, but it is becoming increasingly more common due to
technological advancements, which automate animal identification and collection
of the necessary information. Without constraints associated with data collection,
the next key element needed for a successful implementation of precision feeding
strategies concerns testing and evaluation of mathematical, statistical and
machine learning models to predict individual pig performance and body compo-
sition from data. The development of these models is still in the early stages and
warrants further research. In this chapter, we review recent methodological
aspects of forecasting pig performance and suggest possible future research
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directions. Specifically, we focus on the following main aspects of forecasting pig
performance: (1) exploration of the available data; (2) determination of which
variables to forecast; (3) choice of suitable models; (4) estimation model parame-
ter estimation; and (5) model evaluation. We conclude that the development of a
more rigorous framework for forecasting and estimation of traits across individual
animals is likely to benefit from: (i) selection of parameter estimation methods
(needed to yield or improve values of the unknown model parameters during data
fitting) that give sufficient information on uncertainty and correlations to provide
increased robustness of estimates and forecasts; (ii) a more standardised assess-
ment of outcomes across studies to allow for a better evidence synthesis; and (iii)
reconsideration of certain modelling assumptions whose validity may hold only
for a specific range of conditions.
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6.1 Introduction

Precision feeding and management strategies for growing livestock require data-
driven solutions to the problem of how to account for variation in growth and
consequent nutrient requirements among individuals in populations (Gaillard et al.,
2020; Pomar et al., 2009, 2019). A crucial aspect in solving this problem concerns
forecasting of animal performance from past data (Pomar & Remus, 2019), which
typically consists of serial measurements of body weight and feed consumption from
electronic feeding stations and weighing platforms (Gaillard et al., 2020; Pomar
et al., 2019). Forecasts utilising these data would facilitate provision of suitably
adjusted individual-level or pen-level feeding strategies. Therefore, the inability to
generate accurate forecasts of animal performance is likely to have a considerable
impact on the overall quality of formulated feeds, potentially leading to either a
waste of valuable nutrients from over-supplementation or production losses and
welfare concerns from under-supplementation.

While precision feeding and management is an emerging research area, a diverse
array of mathematical and statistical approaches, ranging from regression to moving
average models has been utilised to forecast animal performance. This methodologi-
cal diversity is a product of factors including: (1) differences in assumptions of how
the underlying biological processes could be described using mathematical
relationships; (2) relevance and availability of data; and (3) time frame to be
forecasted, known as the forecast horizon (Bergmeir & Benítez, 2012). For example,



the amount of data could greatly influence model selection, with a general tendency
to favour simpler models when there are limited data and vice versa (Hindman,
2015; Schumacher & Dreger, 2004). Similarly, different forecast horizons, which
could be conditional upon the preferred frequency of feed adjustments may warrant
the development of different models (Hyndman & Athanasopoulos, 2018), as the
short-term growth may be reasonably approximated via simpler, linear mathematical
relationships, which do not hold over the long-term (Filipe et al., 2018).
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As the number of different approaches to predict animal performance for preci-
sion feeding and management purposes is growing (González et al., 2018), it could
be worthwhile to take a step back and examine these approaches in more detail to
gain a better understanding of their strengths and weaknesses, and thus, inform the
direction of the future research in this field. In this chapter, we use growing and
finishing pigs as an example to address this objective, but the ideas developed should
apply to the challenge in other livestock species. Consequently, the aims of this
chapter were to examine recent methodological developments concerning
forecasting growth or intake responses for precision feeding and management of
pigs. The chapter is structured to reflect the typical workflow of a modeller, which
begins with data description and visualisation, and culminates in fitting models
to data.

6.2 Data Description

For the purposes of precision feeding and management, regular pen-level or
individual-level measurements of feed consumption and body weight are typically
collected. In the current state-of-the-art farming operations, these data are recorded
as soon as animals are engaged with the appropriate devices, such as electronic
feeding and weighing stations (Nedap, 2020; Schauer Agrotronic GmbH, 2020).

Consequently, animals could potentially generate multiple data entries during
e.g. a twenty-four-hour period, as most livestock species engage in eating activities
more than once a day (Alameer et al., 2020). At an individual level, there is likely to
be considerable heterogeneity in the number of feeding bouts and amounts con-
sumed during each bout (Allcroft et al., 2004). To allow for a clearer and simpler
comparison of performance among individuals, and to aid the overall interpretabil-
ity, we consider the artificial scenario in which these data are pre-processed and
expressed at regular (e.g. daily) intervals.

Here, the starting point is the definition of the following main quantities: (1) daily
feed intake, DFIt (kg/d) at age, or time t (d), which is the sum of all feeding events
consumed during each d; (2) body weight, BWt (kg) at time t (d), which could be
e.g. an average of all bodyweight measurements taken throughout each d, or the last
bodyweight measurement recorded for each d (this information could also be
verified using alternative technologies, such as ones based on the image analysis
(Amraei et al., 2017; Fernandes et al., 2020)). Using DFIt and BWt, it is also possible
to readily define the following additional variables:
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(i) daily bodyweight gain,

DGt BWτ ið Þ BWτ i- 1ð Þ kgð Þ ð6:1Þ

(ii) period cumulative feed intake, provided that there are either no missing DFIt
data, or that missing DFIt data are suitably imputed:

CFIt =
Xn tð Þ

i= 1

DFIτ ið Þ kgð Þ ð6:2Þ

(iii) period cumulative body weight gain,

CGt =
Xn tð Þ

i= 1

BWτ ið Þ -BWτ i- 1ð Þ
� �

=BWt -BWt0 kgð Þ ð6:3Þ

where n(t) is the number of observations at time t, and τ(i), (i = 0, 1, . . ., n(t)) are the
time points when observations took place for a given animal. Combinations of some
of these variables or traits are typically utilised to develop models to forecast future
performance from data on past performance.

6.3 Determining What to Forecast

Forecasting could be defined as the prediction of values of a variable (output, Y )
based on known past values of that variable, and/or on covariate variables (inputs,
X). Forecasting could also be viewed as a two-step procedure consisting of extrac-
tion of the underlying trends from the observed data, and consequent extrapolation
of these trends into the future (Hyndman & Athanasopoulos, 2018). The starting
point is usually the identification of appropriate relationships between inputs and
outputs. To gain a quantitative insight into these relationships, mathematical models
relating inputs to outputs which aim to capture the key aspects of the observed data
are typically developed; these models usually involve one or more parameters that
are unknown in advance and must be estimated from the observed data.

If the aim is to forecast growth responses, then a reasonable output could be
BWt + H, DGt + H or CGt + H, where H is the forecast horizon and a suitable input
could be: DFIt, CFIt, time itself, or even past values of some of these variables.
Similarly, to forecast intake responses, these relationships could be reversed, so that
DFIt + H or CFIt + H are the desired outputs. Evidently, there are many different
combinations of these variables that could be utilised for model development and
selection of the most appropriate set of variables is essential to ensure optimal



forecast accuracy. However, this selection is not always immediately obvious,
particularly if the underlying biological meaning is overlooked. In the precision
feeding and management literature, growth responses are usually forecasted with
models that directly output either BWt + H (Brossard et al., 2017; Hauschild et al.,
2012; Peña Fernández et al., 2019; Quiniou et al., 2017) or DGt + H (Aerts et al.,
2003; Hauschild et al., 2020), whereas feed consumption is typically forecasted with
models that directly output DFIt + H (Hauschild et al., 2012, 2020) or CFIt + H

(Brossard et al., 2017). In most cases, these traits are directly related to time.
However, focusing on the the traits’ relationships to time is not considered to be
advantageous, as it does not have a firm biological basis (Wellock et al., 2004).
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Figure 6.1 shows scatterplots of BWt, CGt and DGt against time, CFIt or DFIt, of
an individual pig kept in typical commercial conditions growing from approximately

Fig. 6.1 Scatterplots of: (a) BWt (kg) versus time (d); (b) BWt (kg) versus CFIt (kg); (c) BWt

(kg) versus DFIt (kg); (d) CGt (kg) versus time (d); (e) CGt (kg) versus CFIt (kg); (f) CGt

(kg) versus DFIt (kg); (g) DGt versus time (d); (h) DGt (kg) versus CFIt (kg); and (i) DGt

(kg) versus DFIt (kg) of an individual growing pig from the beginning of the data collection period.
Data was collected during a typical, commercial growing-finishing phase from post-weaning
(approximately 35 kg) until slaughter weight (approximately 120 kg). In this scenario, the data
collection period did not include the period associated with weaning and thus, an explicit distinction
is made between body weight and cumulative bodyweight gain as these two variables have different
starting points. Abbreviations: BWt bodyweight at time t (d), CGt period cumulative bodyweight
gain up to time t (d),DGt daily bodyweight gain at time t (d); CFIt cumulative feed intake up to time
t (d), DFIt daily feed intake at time t (d)



35.0 kg until 120 kg. Upon visual inspection, there are notable differences in the
strength of an association between these pairs of variables. Consequently, this could
impact the ability to extract the underlying trends. For example, there are more day-
to-day fluctuations and less evident trends in the plots of DGt against time and feed
consumption (CFIt or DFIt) compared to the plots of BWt or CGt against time and
feed consumption (CFIt or DFIt). This is not unexpected from a biological stand-
point, as other unobserved mass flows (i.e. excretion of solids and fluids, water
consumption, etc.) are likely to cause short-term fluctuations, whose magnitudes are
much larger with respect to DGt than with respect to BWt or CGt. These fluctuations
could present considerable challenges in separating noise from the actual trend and
are likely to be particularly problematic when growth responses are expressed based
on DGt. To reduce the effects of these longitudinal random variations on the trend
extraction and forecasting, it could be prudent to consider either BWt or CGt instead
of DGt as the main output. In this case, the key remaining decisions concern the
choice of a suitable input, likely either time or feed consumption, and the identifica-
tion of an appropriate mathematical input-output relationship. These decisions could
benefit from considering the underlying biology. For example, it is commonly
accepted that animals grow by converting food into biomass and time by itself is
not a consistent driver of growth (Black, 2009; Whittemore & Green, 2001). Thus, a
biologically consistent growth response model could relate feed consumption over a
period of time to changes in body weight over the same period (Filipe et al., 2019);
the relationship between these two variables is likely to be nonlinear (Demmers
et al., 2018; Kuhi et al., 2004; Schulin-Zeuthen et al., 2008; Van Buggenhout et al.,
2004).
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6.4 Fitting Models to Data: Parameter Estimation Methods

Most models described in this chapter are considered to be parametric, that is, they
assume data relationships containing a limited number of parameters. Typically,
some of these parameters are unknown in advance and they have to be estimated
(learned) from data during the fitting process to yield or improve the knowledge of
their plausible values (Robert, 2007). To do this, a parameter estimation procedure is
required and typically involves minimising a predefined loss function, which
measures model misfit to data (Bergmeir & Benítez, 2012). In this section, the two
key methods for parameter estimation, namely Maximum likelihood and Bayesian
estimations, are outlined; their relative advantages and disadvantages in the context
of precision feeding and management are also discussed.

6.4.1 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most frequently utilised statistical
frameworks for parameter estimation (Stigler, 2007). In the context of precision
feeding and management, maximum likelihood estimation is also the usual



procedure for fitting models to data. It focuses on the likelihood function (Babtie &
Stumpf, 2017):
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L θjYð Þ= Pr Yjθð Þ=
Yn
t= 1

Pr Ytjθð Þ, ð6:4Þ

where Y are the data across different time points, Pr(Y| θ) is the probability of
observing Y given a mathematical model with parameter values θ. Consequently,
maximum likelihood estimation seeks to find the values of θ, bθ, that maximise the
probability of observing the given data (Robert, 2007):

bθ= argmax
θ

L θð Þ ð6:5Þ

While maximum likelihood estimation has many useful statistical properties,
such as consistency and efficiency (Clayton, 2013), and is readily available in
most software packages, it also suffers from several drawbacks, which could limit
its applicability for precision feeding and management purposes. Specifically, this
methodology generates only point estimates and gives insufficient information about
the uncertainty and correlations in the estimated parameters and variables (Babtie &
Stumpf, 2017). Thus, maximum likelihood estimation does not provide sufficient
safeguards against misprediction, which in the context of precision feeding and
management, could eventually translate into a suboptimal allocation of resources.
Moreover, these concerns are further amplified by the reports suggesting that
maximising complex likelihood functions spanning over multiple parameters is
challenging and often results in unstable solutions (Robert, 2007). Other parameter
estimation methods could not only yield better-quality point estimates, but also yield
a more extensive insight into uncertainty (Beerli, 2005; Bewley & Griffiths, 2001),
which is a crucial, but often an overlooked aspect of forecasting.

6.4.2 Bayesian Estimation

One of the main alternative approaches to maximum likelihood estimation is Bayes-
ian estimation, built on the theorem of Bayes, which can be expressed by the
following equation (Robert, 2007):

π θjYð Þ / L θjYð Þ× π θð Þ, ð6:6Þ
where π(θ| Y ) denotes posterior distribution of the unknown parameters θ, and is
proportional to the likelihood function, L(θ| Y ), multiplied by a prior distribution of
the unknown parameters, π(θ). The likelihood function is the same as in eq. (6.4) and
contains a model of how the variation in the data was generated (Bijak & Bryant,
2016). The prior distribution is specified before fitting to data and intends to capture



any information or beliefs about parameters that could be available before fitting to
data (Robert, 2007).
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An immediate advantage of Bayesian estimation compared to maximum likeli-
hood estimation is its probabilistic nature. The outcome of the analysis is an entire
distribution of the data-based values, which accounts for uncertainty and correlations
in the estimates (Babtie & Stumpf, 2017) and thus, provides better safeguards in case
of misprediction. Figure 6.2 provides a comparison between parameter estimates
obtained using either maximum likelihood estimation or Bayesian estimation for a
model of body composition (in terms of the growth of protein and the growth of
lipid) fitted to the two datasets on growing pigs. Bayesian estimation seems more
informative as it allows for a more comprehensive exploration of the obtained
solution. A further advantage of this methodology is its ability to readily handle
data that are sparse or incomplete (Dunson, 2001). For precision feeding and
management, this could be particularly relevant in scenarios where there is minor
malfunctioning of the data collection devices, or where there are issues obtaining
regular measurements from some individual animals.

Fig. 6.2 A comparison of maximum likelihood estimation (MLE) and Bayesian estimation for
learning unknown parameters of a model of body composition. Fitting was carried out separately for
two individual pigs from two distinct pig populations: (a) the two parameter estimation methods
converged to the approximately same solution; (b) the two parameter estimation methods con-
verged to two different solutions. Results of Bayesian parameter estimation are given as two
dimensional marginalised posterior distributions of sampled parameters. Results of maximum
likelihood estimation are given as single-point estimates. Abbreviations: N�

m mature protein weight
(kg), Lm mature lipid weight, b daily growth rate controlling how fast the size at maturity is reached
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The main criticism of Bayesian estimation concerns specification of prior
distributions, as this step could have a notable impact on parameter estimation. For
example, misspecification of prior distributions could result in biased inferences
(Robert, 2007). However, this concern could be readily remedied by specifying prior
distributions that do not narrowly constrain the parameter space (Gelman et al.,
2017; Gelman & Hill, 2006; Lemoine, 2019). In these cases, parameter estimation
requires no expert knowledge and is predominately data-driven, although the lack of
constraints could carry additional computational costs. It is also important to note
that a further potential vulnerability of Bayesian and maximum likelihood
estimations may occur when the distribution of data, expressed through the likeli-
hood, is unknown or inaccurate (Filipe & Kyriazakis, 2019).

6.4.2.1 Markov Chain Monte Carlo
For most models, the posterior distribution π(θ| Y ) is not usually available in its
closed form and needs to be sampled from instead. This is commonly done by
utilising the Markov Chain Monte Carlo (MCMC) methods, although other methods
such as Variational Inference or Approximate Bayesian Computation are also
becoming more prevalent (Gamerman & Lopes, 2006).

In brief, the MCMC methods aim to sample parameter values iteratively so that
their distribution after a given amount of sampling follows the underlying posterior
distribution (Robert, 2007). There is a large body of literature (Brooks et al., 2011)
concerning the development of the most efficient sampling algorithms, but the two
main common algorithms are: (1) the Metropolis-Hastings and its extensions
(Hastings, 1970; Roberts & Rosenthal, 2001) and (2) the Hamiltonian Markov
Chain and its variants, particularly the No-U-Turn Sampler (Girolami & Calderhead,
2011; Hoffman & Gelman, 2014). An illustration of how the Metropolis-Hastings
algorithms perform parameter searches is given in Fig. 6.3, adopted from Speagle
(2019). The basic idea of the Metropolis-Hastings algorithm is to start with a random
initial starting point and then sample a new candidate point around a previous one. If
this candidate point is more likely than the previous one (according to the distribu-
tion we want to sample from), then it is accepted. If it is less likely, then it is accepted
with a certain probability or rejected otherwise. Consequently, the Metropolis-
Hastings algorithm can be defined as (Gamerman & Lopes, 2006):

1. Initialise the iteration counter to j = 1 and set an arbitrary initial value for θ0 to θ.
2. Propose a new value for θ, θ′j + 1 by generating a random sample from a proposal

distribution q θ0 θ
� �

.

3. Compute the acceptance probability of the proposed move:

T θ0jþ1jθj
� �

= min 1,
π θ0jþ1 q θjjθ0jþ1

θj
� �

q θ0jþ1jθj
� �@ A:
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Fig. 6.3 Graphical illustration of the Metropolis-Hastings algorithm (adapted from Speagle
(2019)) to approximate the posterior distribution in Bayesian parameter estimation

4. Generate a random number: uj + 1 from [0, 1].

5. If ujþ1 ≤T θ0jþ1jθj , accept the proposed move and set θjþ1 = θ0jþ1. Otherwise

reject the move and set θj + 1 = θj.
6. Change the iteration counter from j to +1, return to 2 and repeat until

convergence.

The Metropolis-Hastings algorithm has been ranked among the ten most influen-
tial algorithms for science and engineering developed in the twentieth century
(Beichl & Sullivan, 2000). However, it is worth pointing out that the Metropolis-
Hastings algorithm can be slow to converge (especially for complex, multimodal
posterior distributions) and thus, may not be the most efficient algorithm in the
context of ‘real-time’ estimation.

6.5 Model Evaluation

One of the primary objectives of forecasting in the context of precision feeding and
management is to generate real-time predictions of animal performance (Pomar
et al., 2019). However, before this can be achieved in practice, it is typically
necessary to evaluate several candidate models to decide which one is the most
appropriate. In this section, we describe how this evaluation procedure could be
tackled. Note that there are inconsistencies concerning the use of forecasting terms
across different research fields and studies. To avoid any ambiguity, the reader is
referred to a comprehensive glossary of forecasting terms by Armstrong (2001).

In most cases, the process of forecasting begins with fitting a suitable model to
data via a procedure to estimate the unknown parameters of the model (Sect. 6.4).
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Once the best set of parameters is obtained, the goodness of fit of a model is further
evaluated using statistical measures, such as the Akaike Information Criteria (AIC)
(Akaike, 1974), or the coefficient of determination (R2) (Nagelkerke, 1991), which
quantify how well the observed data are replicated by the model and, in the case of
the AIC, penalise for model complexity. The subsequent step involves assessment of
errors from forecasts of the future yet unseen output values, which generates an
insight into the overall generalisability and extrapolative ability of a model. In
practice, this is usually carried out by evaluating the accuracy of forecasts generated
using data that was withheld from fitting (validation data).
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Different forecast evaluation criteria exist and they are comprehensively reviewed
by De Gooijer and Hyndman (2006). In general, the commonly used criteria
(Table 6.1) could be grouped into the following three main categories: (1) scale-

Table 6.1 Summary of the common forecast evaluation criteria categorised as: (1) scale-
dependent criteria, obtained from the estimated error between the observed data and forecasts

(et = Yt - bYt); (2) scale-independent criteria based on the percentage error, obtained from the ratio

of the estimated error to the observed data (pt = 100× Yt -bYt
Yt

Þ; (3) scale-independent criteria based
the relative error, obtained from the ratio of the estimated error to the error obtained from a naïve,

standard approach, such as a simple moving average (rt = Yt -bYt

Yt -bYtnaive

)

Criterion Common abbreviation Calculation

1. Scale-dependent
Mean squared error MSE mean e2t
Root mean squared error RMSE √mean e2t
Mean absolute error MAE mean(| et| )

Median absolute error MdAE median(| et| )

2. Scale-independent based on the percentage error
Mean absolute percentage error MAPE mean(| pt| )

Median absolute percentage error MdAPE median(| pt| )

Symmetric mean absolute percentage error sMAPE et

Symmetric median absolute percentage error sMdAPE et

3. Scale-independent based on the relative error
Mean relative absolute error MRAE mean(| rt| )

Median relative absolute error MdRAE median(| rt| )

Geometric mean relative absolute error GMRAE geo _ mean(| rt| )

Relative mean absolute error RelMAE mean jet jð Þ�
Relative root mean squared error RelRMSE √mean jet jð Þ�
Log mean squared error ratio LMR mean et

Abbreviations: Yt the data at time t, bYt the forecasted data from a model under consideration at time

t, bYtnaive the forecasted data from a naïve approach standard approach at time t
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dependent criteria (obtained from the estimated error between the observed data and
forecast); (2) scale-independent criteria based on the percentage error (obtained from
the ratio of the estimated error to the observed data); and (3) scale-independent
criteria based on the relative error (obtained from the ratio of the estimated error to
the error obtained from a naïve, standard approach, such as a simple moving
average).
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As highlighted by De Gooijer and Hyndman (2006), care should be taken when
choosing the appropriate forecast evaluation criteria. For example, while scale-
dependent measures could be useful when comparing different models in the context
of the same dataset, these measures are not recommended when comparing different
models across various datasets, especially when these datasets have different scales
(Hyndman & Koehler, 2006). This could be relevant if comparisons are made across
datasets, which consider different stages of growth or originate from animals of
different breeds or species. In precision feeding and management of pigs, there is no
standardised procedure on how forecast evaluation should be conducted, but a more
uniform approach could improve interpretation of findings across different datasets
(McNamara et al., 2016). For simplicity, it could be prudent if future studies utilise
scale-independent criteria based on the percentage error as the basis for all forecast
evaluations.

6.6 Current Forecasting Approaches

6.6.1 Double Exponential Smoothing

Double exponential smoothing (DES) (Brown, 1959), or the Holt’s linear method
(Holt, 1957) is a type of weighted moving average of past observations. While
different representations of this model are available, one of the most common
representations is in terms of variables representing latent (unobserved) states and
the observed variables. In this state-space form (Hyndman et al., 2008), DES is an
iterative process:

Yt = lt- 1 þ bt- 1 þ Et ð6:7Þ
lt = lt- 1 bt- 1 ϕ1Et 6:8

bt = bt- 1 ϕ2Et, 6:9

where lt and bt are the level (i.e. the moving average values) and change (i.e. either
increasing or decreasing value) of the trend (Hyndman & Athanasopoulos, 2018) at
time t and are typically initialised as l0 = Yt0 , b0 = Yt1 - Yt0 (Wheelwright et al.,
1998). Parameters ϕ1, ϕ2 (ϕ1, ϕ2 2 (0, 1)) are known as the smoothing parameters,
which control the weight given to each observation and should be estimated from
data. The recent observations are given more weight than the older observations and
these weights decrease in an exponential manner with time lag (Young, 2012). The
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error term, Et is the one-step within sample forecast error at t and is usually assumed
to be normally distributed, i.e.
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Et = Yt - bYtjt- 1 � N 0, σ2
� � ð6:10Þ

with zero mean and constant variance, σ2, with σ2 estimated from data.
For precision feeding in pigs, Hauschild et al. (2012) utilised the DES model to

generate one or seven d ahead forecasts of the individual BWt andDFIt of 40 growing
gilts fed ad-libitum (Pomar et al., 2007). Forecasts of BWt were reported to be more
accurate (population-level average percentage error of 1.85) than forecasts of DFIt
(population-level average percentage error of 12.5). In another study, Quiniou et al.
(2017) evaluated performance of one day ahead individual-level BWt forecasts
generated using the DES model in the context of data from 94 restrictively-fed
growing barrows and gilts from post-weaning until slaughter weight, but a different
metric was used. The chosen metric was the root mean square error (RMSE), which
does not enable a straightforward comparison with the outcomes reported by
Hauschild et al. (2012). However, Brossard et al. (2017) utilised the DES model to
generate one or seven days ahead forecasts of individual BWt andCFIt of 119 nucleus
pig fed ad-libitum from post-weaning until slaughter weight, and evaluated these
forecasts in terms of the RMSE. Overall, the RMSE reported by both Quiniou et al.
(2017) and Brossard et al. (2017) were similar, with the lowest RMSE values
reported to be around 1.20 kg.

6.6.2 The Local Linear Trend Model

In the local linear trend model, both the level and the change of the trend follow
random walks. This model has the form (Durbin & Koopman, 2012):

Yt = θ1,t þ Et, Et � N 0, σ2
� � ð6:11Þ

θ1,t = θ1,t- 1 θ2,t- 1 w1,t, w1,t N 0, σ2w1

� �
6:12

θ2,t = θ2,t- 1 w2,t, w2,t N 0, σ2w2

� �
6:13

where the initial states θ1,t0 and θ2,t0 are typically estimated from the following
bivariate Normal (N2) distribution:

θ1,t0
θ2,t0

� �
� N2

m0,1

m0,2
, σ2C1

0
0 σ2C1

� �
ð6:14Þ

Here, there are two mutually independent sources of random errors: Et and wi, t,
and as such, the local linear trend model could be classed as the Multiple Source of
Error (MSOE) state-space model (Leeds, 2000). Note that while the DES model



represented by equations in Sect. 6.6.1. contains only one source of error, it is
possible to express it in the MSOE form to further illustrate its close relationship
with the local linear trend model (Leeds, 2000).
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For precision feeding purposes, the local linear trend model was developed by
Hauschild et al. (2020) to forecast the individual-level DFIt and DGt of 130 growing
and finishing pigs, which were exposed to considerable stressors including changes
in the environmental conditions and health challenges. These authors evaluated
performance of one d ahead forecasts generated from this model using normalised
errors. Overall, these normalised errors ranged from approximately 1% to 10% and
increased with the length of the forecast horizon. It was also recommended that the
local linear trend model should be used instead of the DES model for data originating
from animals that exhibit considerable deviations from their typical growth and
feeding patterns, although the two models were not explicitly compared.

6.6.3 Dynamic Linear Regression and Recursive (Rolling) Window
Linear Regression

Just like in the classical regression, univariate dynamic linear regression (DLR)
attempts to model the causal relationship between an output and at least one input.
However, the parameters are no longer static and vary over time by typically
assuming that they follow random walks. The simplest DLR model, describing the
relationship between two variables Y and X has the form (Petris et al., 2009):

Yt = θ1,t þ θ2,tXt þ Et, Et � 0, σ2
� � ð6:15Þ

where the time-varying parameters θ1, t and θ2, t typically follow independent
Normal (N2) distributions:

θ1,t
θ2,t

� �
� N2

θ1,t- 1

θ2,t- 1
, σ2w1 0

0 σ2w2

� �
: ð6:16Þ

When σ2w1
= σ2w2

= 0 for any t, the DLR turns into the classic, static regression:

Yt = θ1 þ θ2Xt þ Et, E � N 0, σ2
� � ð6:17Þ

Note that an alternative formulation of the DLR, without an explicit specification
of random walks for parameter dynamics is also possible. Such models are also
better known as the recursive linear regression or rolling window regression models
and involve fitting to data in an iterative manner. These data are weighted using
either the rectangular or exponential window to shape the “memory” of the estimator
and these two weighting procedures are visualised in Fig. 6.4, adapted from Young,
2012. The rectangular weighting window is also the implicit basis on which these



linear regression models have been applied in the context of precision feeding and
management.
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Fig. 6.4 Rectangular data weighting and exponential data weighting (adapted from Young (2012))
that form an implicit basis of the recursive (rolling) window linear regression models; {t - m, t,
t + n, t + n + p} denote different time points, which could correspond to e.g. daily feed intake or
body weight measurements

Aerts et al. (2003) first developed recursive linear regression models with a
rectangular window size, ranging from 3 to 7 datapoints, for forecasting BWt of
2400 group-housed broiler chickens (fed either restrictively or ad-libitum) with daily
forecast horizons ranging from one to seven d. These authors compared forecast
accuracy of this model to the three static deterministic models (i.e. no time-varying
parameters), which included the classical linear regression relating CFIt to BWt, and
two nonlinear models: (i) the Gompertz model relating time t to BWt and (ii) the
diminishing returns model relating CFIt to BWt (Parks, 1982). Similar accuracy, in
terms of the mean relative prediction error, was reported for the one d ahead forecasts
from all models under consideration. However, the two nonlinear models
outperformed the recursive linear model for longer forecast horizons. This recursive
linear model was also recently evaluated by Peña Fernández et al. (2019) in the
context of forecasting individual-level BWt for 240 growing-finishing boars and gilts
fed restrictively. Forecast accuracy, in terms of the mean relative prediction error of
this model, was reported to range from 1.00% to 3.30% in forecast horizons from
one to seven d.
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6.6.4 Possible Limitations of the Current Forecasting Approaches

The mathematical properties of the models described in Sects. 6.6.1, 6.6.2, and 6.6.3
could have important consequences on their overall generalisability for precision
feeding and management purposes.

A first possible limitation relates to the assumption of linearity, as the three
aforementioned models are all linear with respect to the explanatory variables
(Hyndman & Athanasopoulos, 2018). While most responses can be approximated
by a linear relationship within a short-term window, the confidence in linear
forecasts are likely to decrease, as the forecast horizon increases from e.g. one d to
three, or seven d and so on. This is illustrated in Figure in the context of the artificial
data generated by a nonlinear process. Here, the DES model was first fitted to a
training dataset to parameterise the model, followed by forecasts of future values that
were compared to the values in a validation dataset. Clearly, the forecast error
increased systematically with increasing forecast horizon. A further concern, partic-
ularly relevant for the recursive linear regression with a rectangular window, relates
to the choice of the length of this window, as this tuning parameter is often unknown
in advance, but is required to run the model. Testing different window lengths could
be computationally expensive, particularly if this procedure needs to be repeated for
every new dataset obtained within and across breeds and species (Fig. 6.5).

The second limitation relates to the biological interpretability of the model
parameters, which is particularly challenging in the context of the DES model
(Sect. 6.6.1) and the local linear trend model (Sect. 6.6.2). The key parameters
governing these models correspond to either weighting factors of the previous
observations or to different components of stochastic processes assumed to underpin
data and thus, lack biological interpretation. As highlighted byWellock et al. (2004),
models that contain biologically meaningful parameters are usually preferred, since
they could offer additional insights regarding (e.g. feed utilisation or degree of
maturity). Consequently, this additional information could be utilised for other
purposes, such as breeding (Knol et al., 2016).

The third limitation concerns how these aforementioned models respond to
shocks, or perturbations, which in the context of precision feeding and management
could be caused by temporary physiological and/or environmental disturbances
(Kyriazakis, 1997; Kyriazakis & Tolkamp, 2011). It is expected that models that
use weighted averages of past observations or errors (Sect. 6.6.1) and models with
time-varying parameters that follow random walks (Sects. 6.6.2 and 6.6.3) will cope
with short-lived perturbations differently than deterministic, static models. For
example, consider the DLR model (Eq. (6.15)) and its static counterpart
(Eq. (6.17)). The former describes a stochastic trend, while the latter describes a
deterministic trend (Hyndman & Athanasopoulos, 2018). By model construction, in
the first case, short-lived disturbances are likely to cause a more lasting change to the



forecasted trajectory than in the second case, as illustrated in Fig. 6.6 in the context
of artificial data generated by a linear process. Consequently, it is important to
consider carefully whether a stochastic or a deterministic description of a trend is
likely to be more useful. This decision could be informed by the actual data; for
example, deterministic trends are likely to generate more robust forecasts in the
context of data from animals, whose performance is subject to infrequent and/or
comparatively minor perturbations.
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Fig. 6.5 Fitting the double exponential smoothing model to an early (training) data to estimate the
unknown model parameters, followed by forecasting of a future (validation) data. Data were
generated from an artificial nonlinear process. The vertical black line precedes the start of forecast
horizon and is the last measurement in the training data, from which forecasts of future data are
generated. Please note that the model predicts values which are below the validation data, but are
within the 95% CIs (denoted by the shaded region). Abbreviations: 95% CIs 95% confidence
intervals

6.7 Alternative Approaches

Given the limitations described in Sect. 6.6.4, we present three potential alternative
approaches that could at least partly address some of the aforementioned concerns.
Development and evaluation of these alternative approaches could be an area for the
future research.



158 M. M. Misiura et al.

Fig. 6.6 Fitting the dynamic linear regression (orange line) and the static linear regression (blue
line) to an early (training) data to estimate the unknown model parameters, followed by forecasting
of a future (validation) data. Data were generated from an artificial linear process. The vertical black
line precedes the start of forecast horizon and is the last measurement in the training data, from
which forecasts of future data are generated; shaded regions denote the 95% Cis. Abbreviations:
95% CIs, 95% confidence intervals

6.7.1 Other Exponential Smoothing Models

The DES model is one of the several models from the innovations state space
(Hyndman et al., 2002) that could be grouped together to form the monotonic
exponential smoothing family of models. These monotonic exponential smoothing
models consist of an equation that describes the observed data, Yt and equations that
describe how latent states (the level, lt and the change, bt) evolve over time. These
models could be readily compared using their forecast function, bYtþHjt , where
H denotes the forecast horizon. Models that are directly related to the DES model
are summarised in Table 6.2. While most of these models are linear (Hyndman &
Athanasopoulos, 2018), there are several nonlinear extensions that could potentially
be better suited to the task of forecasting performance in the context of precision
feeding and management. Yet, the lack of biological interpretability of
the parameters in these models and the way these models would respond to
e.g. short-term perturbations are still likely to limit their overall applicability and
generalisability for some of the pig production systems under consideration.
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6.7.2 Machine Learning: Neural Networks

In most real-life scenarios, the exact knowledge of the data generating process could
be questioned (Clark, 2004). Instead, it could be possible to rely on a purely data-
driven approach to identify suitable relationships between variables, but this largely
neglects previous empirical evidence obtained in the context of quantifying these
relationships. An example of a purely data-driven approach are the neural networks
models. First conceived as a simple mathematical representation of the human brain
(Fukushima, 1975; Ivakhnenko & Lapa, 1967), neural networks have generated
plenty of research attention in the wider forecasting literature (Huber &
Stuckenschmidt, 2020; Kourentzes et al., 2014). They have also been applied in
animal production science in the context of: (1) growth control of group-housed
broiler chickens and pigs (Ahmadi et al., 2007; Demmers et al., 2018; Johansen
et al., 2019; Roush et al., 2006); (2) prediction of feeding behaviour in pigs (Alameer
et al., 2020; Cross et al., 2018); and (3) prediction of body composition of pigs
(Fernandes et al., 2020).

In broad terms, all neural networks with the exception of the single-layer
perceptron (Auer et al., 2008) are structures, where known data inputs are introduced
at the input nodes and passed through at least one hidden layer storing some interme-
diary values of the data, which are then eventually translated into outputs (Zhang et al.,
1998). A simple example of the neural network model is given in Fig. 6.7, where
values of the three input variables X1, X2, X3 pass through the sequence of hidden
layers, where weighted sums are computed and then used as inputs in the activation
function, which introduces nonlinearity in the model. In this setting, for each node in a

Fig. 6.7 Graphical illustration of a multi-layer, feed-forward neural network with three inputs
(X1,X2,X3) that are converted to a single output (Y ) through a combination of weighted linear sums
at each node of the hidden layer (h) fed to a sigmoidal activation function (A) that introduce
nonlinearity in the model



Table 6.3 Most frequently
utilised activation functions
( f(h)) that introduce non-
linearity in each of the
hidden layer (h) of a neural
network model

ð Þ þ
ð Þ þ

ð Þ
e - 1, h< 0

n

ð Þ
c
e

c
e

hidden layer, there are several parameters, known as weights and biases (Zhang et al.,
1998), that need to be estimated from the data. An activation function is typically
either a sigmoidal or a hyperbolic function, but other functions are also increasingly
used (Huber & Stuckenschmidt, 2020) and are listed in Table 6.3. For forecasting, the
two most common types of neural networks include: (i) feed-forward neural networks,
where connections from inputs to outputs via all layers are only in one direction;
examples of these types of neural networks are the multi-layer perceptrons (Gardner &
Dorling, 1998) and radial basis functions (Mulgrew, 1996); and (ii) recurrent neural
networks, where directed cyclic graphs could be found; examples of these types of
neural networks are the long-short term memory (Hochreiter & Schmidhuber, 1997),
or gated recurrent unit (Dey & Salem, 2017) models.
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Name Equation

Logistic f h = 1
1 e- h

Hyperbolic f h = eh - e- h

eh eh

Rectified linear function f(h) = max (0, h)

Exponential linear activator f h = h, h≥ 0
h

Linear f(h) = h

Softmax f h = eh1P
hc
⋯ ehcP

hc

While neural networks could offer a flexible way of modelling nonlinear data,
these methods have also been reported to have several notable drawbacks, which
could make them impractical for precision feeding and management purposes,
namely: (a) they are structurally complex (Makridakis et al., 2018) and thus, have
limited biological interpretation and explanatory power; (b) they typically require
substantially larger amounts of training data for parameterisation than other available
methods (Forman & Cohen, 2004) and (c) they give little insight into uncertainty
(Dunson, 2018).

6.7.3 Deterministic Trend Models

For growing animals kept in relatively stable conditions that do not pose any
considerable long-term growth challenges, deterministic trend models allow a flexi-
ble way to describe a variety of different relationships between inputs and outputs.
Furthermore, several deterministic models could provide a more mechanistic
description of the underlying biological processes and thus, further increase param-
eter interpretability. A summary of the main common families of deterministic
models utilised in biological and ecological modelling is given in Table 6.4. While
these some of these models, such as the monomolecular model relating body weight
gain to feed consumption (Kuhi et al., 2004; Schulin-Zeuthen et al., 2008) are
commonly utilised in the context of animal growth modelling, these models have
not yet been fully evaluated in the context of forecasting individual-level
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performance of growing pigs. An initial evaluation of different deterministic models
utilised to forecast individual growth responses in pigs have been recently carried
out by (Misiura et al., 2020): the allometric model (power-law based) has been
reported to generate the most reliable forecasts across individual pigs, especially
when forecasts have been made over ‘longer -term’ forecast horizons exceeding
1–2 days ahead.
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6.8 Concluding Remarks

In this chapter, recent methodological developments concerning forecasting growth
or intake responses in the context of precision feeding and management of pigs were
reviewed. Overall, the development of a more rigorous framework for forecasting
and estimation of traits across individual animals is likely to benefit from: (1) selec-
tion of parameter estimation methods (needed to yield or improve values of the
unknown model parameters during data fitting) that give sufficient information on
uncertainty and correlations to provide increased robustness of estimates and
forecasts; (2) a more standardised assessment of outcomes across studies to allow
for a better evidence synthesis; and (3) reconsideration of certain modelling
assumptions whose validity may hold only for a specific range of conditions.
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Abstract

Pig farming systems face an increasingly diversified challenge to consider simul-
taneously the economic, environmental, and social pillars of sustain ability. For
animal nutrition, this requires the development of smart feeding strategies able to
integrate these different dimensions in a dynamic way and to be adapted as much
as possible to each individual animal. These developments can be supported by
digital technologies including data collection and processing, decision making
and automation of applications. Classical traits such as feed intake and growth
benefit from new technologies that can be measured more frequently. New
sensors can be indicative for other traits related to body composition, physiologi-
cal status, activity, feed efficiency, or rearing environment. A challenge for data
collection is to obtain information on a large number of animals and with
sufficient frequency, quality, and precision and use it cost-effectively. Another
challenge is to analyse the ever-increasing volume of data and use it in decision-
making. Nutritional models for pigs and sows, classically mechanistic, have to
evolve to integrate real-time data. With the development of data-driven modelling
methods (e.g., machine-learning or deep-learning), a synergy between mechanis-
tic models and data-driven approaches is required in smart pig nutrition. More-
over, the practical application of smart pig nutrition must consider the evolution
in pig farming systems towards increased diversity in terms of size, space
allowance, and outdoor access, and return on investment. Finally, the transition
of pig nutrition in the digital era must consider the social acceptance of an
increasing role of digital technologies in animal production systems.
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7.1 Introduction

In pig farming systems, feeding represents around two-thirds of the total production
cost, with a main contribution during the fattening period. Improving feed efficiency
is thus of prime importance for the economic sustainability of pig farms (Gaillard
et al., 2020a). Over the past decades, this has involved the selection of fast-growing
animals with a lower feed conversion ratio and higher lean content of carcass at
slaughter, and feeding strategies have mainly been adapted to allow the maximiza-
tion of performance (Knap & Rauw, 2008). At the same time, reproductive perfor-
mance of sows has been drastically improved, both in terms of prolificacy and
number of piglets weaned per year (Dourmad, 2019). This implies to carefully
consider the short- and long-term effects of sow nutrition on birth weight, survival,
and growth of piglets on milk production and on fertility and longevity of sows
(Dourmad, 2019). Besides the maximization of performance, new objectives arose
more recently with an increasing societal concern for the environment, animal
welfare, and reduced use of medication, making the optimization of feed formulation
and feeding strategy a much more complex challenge.

The potential environmental impact has been a major issue for pig production
since the nineties. To reduce nitrogen, phosphorus, and trace elements in pig manure,
and in gaseous and odour emissions, intensive research towards a better agreement
between nutrient supply and requirement has been undertaken mainly on growing
pigs (Dourmad & Jondreville, 2007) and more recently on gestating and lactating
sows. In practical feed formulation, this resulted in the inclusion of maximal
constraints on total P and crude protein content of diets, and the increased inclusion
of crystalline amino acids and phytase in diets. At the same time, feeding
programmes have evolved to account better for the changes in the nutritional
needs of pigs according to growing stage or reproductive status. Nutrition is thus a
major lever to mitigate the environmental impacts of pig production, through the
reduction of energy use and emissions associated with the production of feed
ingredients (Garcia-Launay et al., 2018). In this perspective, life cycle assessment
is also developing for multi-objective feed formulation to reduce the environmental
impacts arising from livestock feeding (Mackenzie et al., 2008; Garcia-Launay et al.,
2018).

In many countries, animal welfare is nowadays becoming one of the main
concerns of citizens and consumers concerning animal farming (Boogaard et al.,



2011), which has consequences for pig nutrition. Indeed, feeding strategy and feed
composition are levers affecting animal welfare, but feeding also needs to be adapted
to the changes induced by the different welfare regulations or commercial
specifications, especially in terms of housing (e.g., group-housing of gestating
sows), farming practices (e.g., cessation of castration of male pigs), or feeding
practices (e.g., providing a fibre-rich diet to gestating sows). For instance, in a
field study, Cariolet et al. (1997) showed that appropriate management of the body
condition of sows through adequate individual feeding is very important not only for
performance, but also for welfare. However, the body condition and body fatness
may be different when maximizing sow welfare compared to maximizing reproduc-
tive performance. Restricted feeding of gestating sows and fattening pigs, which
may induce competition and aggressiveness among pigs, has also been questioned
and it was shown that high-fibre diets are of major interest to induce satiety without
excessive energy intake (Meunier-Salaün & Bolhuis, 2015).
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Another important evolution in recent years is the increasing demand of society
and consumers for the reduction of medication in livestock production (Lusk et al.,
2006). This has been mainly driven by the development of microbial resistance to
antibiotics, which is a major human and animal health issue. This is a main issue for
piglets at weaning, which are at high risk of digestive disorders and frequently
receive medication. In sows, the risk of health problems is highest around farrowing
through lactation, with possible adverse effects on the sow herself and on the litter.
The nutrition of sows, especially at the end of pregnancy, around parturition and
during lactation, and of piglets during lactation and at weaning, appears a major tool
to maintain health while reducing medication through individualized supplies. This
may involve the feeding of sick individuals (i.e., detected with symptoms) during
short periods (e.g., the period of farrowing or weaning) with a specific diet (e.g.,
supplemented with an additive or natural compound) or using “targeted”medication.

Pig production systems, as well as other animal production systems, are also
questioned by society at a more global level in terms of sustainability. For instance,
the question of competition between feed for animals and food for humans is
increasingly raised, with practical implications in terms of feed ingredients. Some
production chains or countries put specific constraints on the origin of feed
ingredients, such as being non-Genetically Modified Organisms (GMO), locally
produced, without additives or medication, and without deforestation. Housing
conditions are also questioned by consumers and citizens with demands for more
space, more diversified environment, and outdoor access. All these aspects may
affect, directly or indirectly, nutrient requirements, feed formulation and feeding
equipment. The development of organic farming with specific constraints on hous-
ing, feed ingredients and additives, and the very high cost of protein sources also
raises specific questions for feed formulation. More generally, a compromise has to
be found between animal productivity and welfare.

Pig farming systems thus have to face an increasingly variety of challenges to
consider simultaneously the economic, environmental, and social pillars of sustain-
ability. For animal nutrition, this requires to develop smart feeding strategies able to
integrate these different dimensions in a dynamic way and consider as closely as



possible the specific requirements of each individual animal. In this perspective,
precision livestock farming, defined by Wathes et al. (2008) as “the management of
livestock production using the principles and technology of process engineering”,
offers renewed opportunities with application in nutrition and feeding. A general
description of the precision farming approach is illustrated in Fig. 7.1. The over-
arching approach involves data collection and operational functions running
“online” in real-time, often using models and algorithms that have been adjusted
“offline” using historical data. The digital era with the development of big data,
artificial intelligence (AI) and mathematical modelling offers a new paradigm for
livestock production (Piñeiro et al., 2019). Much more information is available on
individual animals and their environment, and at a much higher frequency. Smart pig
nutrition can benefit from the high throughput availability of data to address the
challenges pig production is facing. The number of pigs in a farm has increased
drastically over the past decades, but using sensors and robots allows considering
pigs as individuals (again). In the following sections, first we will remind briefly the
principles of precision farming approaches adapted to pig nutrition; then we will
review the information available on (i) sensors and data collection on animals,
environment, and feed (ii) the different types of models available for decision
support in precision feeding with some examples of results of these approaches.

172 L. Brossard et al.

Fig. 7.1 General principles of the precision farming approach with focus on precision nutrition
in pigs: description of the steps from data collection to automatic action, including data processing
and decision making. (Adapted from Allain et al., 2014 and Gaillard et al., 2020a)

7.2 Principles of Precision Farming Adapted to Pig Nutrition

In this section, we briefly present the principles of precision farming adapted to pig
nutrition, following the indications given in Fig. 7.1.
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7.2.1 Data Collection

The data may be collected by humans (e.g., sow prolificacy, insemination,
farrowing, measurement of backfat thickness) or by sensors or robots (e.g., occur-
rence of oestrus, feed intake, live weight, physical activity, room temperature,
humidity). These data provide information about the status of a biological trait
(e.g., body weight measured on a scale) or of its proxy (e.g., a surface measurement
from an image as a proxy for body weight, backfat thickness as a proxy for total body
lipid).

7.2.2 Data Processing

The data collection provides a large volume of data on a daily basis. In most cases,
these data have to be processed before being used and/or stored in a database. This
includes cleaning, validation, and management of missing values and outliers and
abnormal values, which requires defining thresholds. Sometimes specific algorithms
(i.e., succession of data processing and analysis steps) that have been previously
developed offline have to be applied on the collected raw data to estimate criteria
with a biological significance, for example, to convert measurements of a proxy into
an estimate of the trait of interest (e.g., use of data collected from an accelerometer,
or a camera to estimate the energry requirement for physical activity). This can be
done by averaging or smoothing the data (Friggens & Robert, 2016), which will then
serve as inputs to models to predict animal nutrient requirements.

7.2.3 Algorithm Development

In the case of precision feeding, the decisions relative to nutrition or to other
management purposes are generally based on mathematical nutrition models
designed to operate in real-time (Hauschild et al., 2012 for growing pigs; Gauthier
et al., 2019 for lactating sows; Gaillard et al., 2019 for gestating sows). The AI with
the application of machine learning from historical data in combination with real-
time data can also be used for the prediction of a risk (e.g., risk of occurrence of
health problem), an event (e.g., the ovulation), or performance (e.g., upcoming feed
intake and milk production of a lactating sow) that can be used for the determination
of nutrient supplies.

7.2.4 Implementation Through Automation

The data available in the database are used to help the farmer to take decisions (e.g.,
providing medication to a pen of pigs when a suspicion of health problem has been
detected) or to provide a robot (e.g., a smart feeder) with the required information for
the distribution of a tailored ration to a given pen or pig. In the case of precision



feeding, the implementation of the decision about the ration to be fed may be
performed by the feed distribution system (i.e., the ration to be fed is first prepared
in a centralized location and then sent to a feeder, as proposed by some commercial
systems) or by the feeder itself (i.e., the ration is prepared locally at the feeder, just
before being distributed, for instance as with Automatic and Intelligent Precision
Feeder developed by Pomar et al. (2011) for growing pigs, or some commercial
automatic feeders for sows). The preparation of the ration is often done by mixing
two diets, one with high content of nutrient and the other with low content, ensuring
that their mix will cover the range of requirements. The first approach is generally
applied for pen feeding and the second one for individual precision feeding. In both
cases, the feeding system (i.e., the system that identifies the animal, operates feed
distribution, and records the feed intake and/or feed disappearance) is used to collect
information about the feeding behaviour and feeding performance.
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7.3 Data Collection on Animals, Their Environment, and Their
Feed Use: The (R)evolution of Sensors

As see in the previous section, the first step in the application of precision feeding and
nutrition is based on knowledge about animals (e.g., status, performance) and their
environment to provide data to nutritional models estimating the nutrient
requirements of pigs and to adjust the nutrient supply accordingly. Due to size of
pig farms, this implies the collection of data more or less automatically using sensors.
In the last decade, much progress has been made in the development of sensor
technologies and sensors have become affordable for application in many domains,
including in animal feeding. Concerning smart nutrition in pigs, relevant traits to be
measured relate to performance (e.g., growth, feed and water intake, reproduction),
body composition, digestive efficiency, metabolic status, health and sanitary status
(e.g., inflammation, temperature), behaviour (e.g., social ranking, physical activity,
feeding, drinking), environment (e.g., humidity-temperature-index, light intensity,
noise), and, of course, the nutritional quality of the feeds. This implies that different
types of sensors are required to record the trait or proxy with different frequencies.
Knight (2020) indicated that sensors in livestock production can be divided into three
categories: (i) sensors attached to or inserted in the animal, (ii) sensors near the animal
that can also record environmental conditions, and (iii) “sensors” collected on the
animals (e.g., hair, urine, faeces) and analysed. Due to some particularities of pig
production (e.g., number of animals per farm, duration of productive life, size of
animals, difficulty to put wearable objects on pigs or to obtain other biological
samples), most of past literature focused on data collection from sensors near the
animals. In the following section, recent developments and challenges for the use of
sensors in smart pig nutrition will be presented, with Table 7.1 summarizing the
measured trait and the associated sensor(s).
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7.3.1 Measuring Performance

Knowledge of growth and feed intake is essential to adapt nutrition as they determine
to a large extent the nutritional requirements of the pigs. Consequently, measuring
performance has always been a key point in pig production. Although measuring
body weight is not new per se (i.e., it can be done “manually”), the development in
sensors allows to simplify and automatize the measurement. For example, body
weight is an inherently variable trait, due to eating, urinating, and defaecating
patterns. The use of sensors allows to measure body weight very frequently, thereby
allowing to assess the “value of the data”. Measuring individual feed intake in group-
housed pigs is virtually impossible, but is nowadays feasible using feeding stations
and individual animal identification (Cornou & Kristensen, 2013; Brown-Brandl
et al., 2019).

7.3.1.1 Individual Identification
Automatic identification of an animal is the first step in monitoring production
efficiency. Pigs can be identified automatically and in a reliable way by
radiofrequency identification (RFID; Cornou & Kristensen, 2013). Combining
RFID with farm equipment allows to obtain real-time data that can be sent to the
farmer or to an automated decision support system for further action. In pigs, ear-tags
with an RFID chip are used and the pig can be detected when it enters a system
equipped with a reception antenna (e.g., at the feeder). Brown-Brandl et al. (2019)
reviewed different RFID systems for livestock. Although the technique is simple, it
presents some drawbacks such as the cost of the chip, sensitivity to interference (e.g.,
from the pig itself, other pigs, and the environment), loss of tags, stress during tagging
(for both the pig and the farmer), and the removal before slaughter to recycle the
RFID ear tag (Benjamin & Yik, 2019). The development of machine-vision, based on
cameras and data treatment using AI methods, allows to track animals and, in some
cases, identify animals without marking them (Benjamin & Yik, 2019; Wurtz et al.,
2019; Alameer et al., 2020). These systems are based on a top-view camera for shape
recognition with an accuracy (given as the number of correctly identified images as
percentage of the whole dataset) up to 92% or, more recently, with a front-view
camera for facial recognition (e.g., Hansen et al., 2018; Marsot et al., 2020) with an
accuracy up to 96%. Commercial systems using facial recognition are tested in farms
in China to manage individual pig performance and health.

7.3.1.2 Body Weight
Body weight is used as input in nutritional models to predict growth and the resulting
nutrient requirements. Manual measurement of body weight is stressful for animals
and time consuming for farmers. Few farmers actually weigh their animals, but they
may have a good eye to estimate body weight visually. Different technologies exist
that automatically record body weight based on foreleg weighing (Ramaekers et al.,
1995), image analysis (Tscharke & Banhazi, 2013), walk-through systems with
machine-vision (Wang et al., 2008) or weighing scales, and photogrammetry to
determine the pig three-dimensional shape (Wu et al., 2004). Recent developments



relate mainly to machine-vision and “real” 3D images (e.g., Fernandes et al., 2019).
Available commercial systems are based mainly on weighing scales, sometimes
associated to other (feeding) systems or machine-vision, with or without individual
identification. However, these systems are mainly found in research environments
and selection farms of breeding companies. Their use in production farms is limited
due to cost or maintenance and, more importantly, the interest of measuring body
weight alone.
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7.3.1.3 Electronic Feeding Stations
As for body weight, information on feed intake is essential for precision feeding.
Feeding stations can be used to provide information on daily feed intake and feeding
behaviour, but they can also be used to distribute an individualized and daily
adjusted ration to a growing pig or a sow. These systems have been used for a
long time in genetic selection farms for individual growing pigs. In commercial
farms, these devices are mainly used for group-housed sows during gestation with
the main objective to control individual feed allowance and composition. Devices
for lactating sows are also being used more and more to favour high feed intake
while avoiding feed spillage. Investment costs probably explain why electronic
feeding stations are not widespread yet for growing pigs. However, developments
in precision feeding devices could help to increase their use, in combination with
systems to estimate body weight (Fig. 7.2).

Fig. 7.2 Example of electronic feeding station used for growing pigs (a), gestating sows (b), and
lactating sows (c) at the UE3P unit (Pig Physiology and Phenotyping Experimental Facility, https://
doi.org/10.15454/1.5573932732039927E12, INRAE Saint-Gilles, France)
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7.3.1.4 Water Consumption
Water consumption can be used as an indicator of the health status of animals and
can serve as a tool to prevent or detect diseases (Cornou and Kristensen, 2013). It is
usually measured for the whole room in the barn. Connected water flow meters
equipped with individual animal recognition systems have been developed to record
individual water consumption, and the time and quantities of each visit. These
devices are now also available as commercial versions. Machine-vision systems to
estimate water consumption have been used in experimental settings (Kashiha et al.,
2013). Water can be used to deliver antibiotics at the individual or group level,
increasing the interest of connected water dispensers to check and measure distribu-
tion of these substances.

7.3.1.5 Estimation of Body Composition
Body composition and changes in body composition during different production
stages are of great interest to individualize the diet, especially in gestating sows.
Body composition intends to inform on the partition of protein (lean), lipid (fat), and
mineral (bone) within the animal and the changes that occur during the different
phases of production (i.e., growth, gestation, lactation).

Backfat thickness is a simple indicator of body lipid mass, which is often
measured with ultrasound. However, the technique is performed manually and
should also be carried out as much as possible by the same technician. It is time
consuming, and the equipment and skilled technicians are costly (Halachmi et al.,
2019). This technique is therefore not suitable for automatic and frequent
measurements. Automatic digital recording of body composition could save labour
and deliver unbiased quantification (Spoliansky et al., 2016). Swantek et al. (1999)
reported that bioelectrical impedance may be used to accurately assess changes in
body composition of finishing pigs weighing 50 to 130 kg, but not outside this range.
They used live body weight, length, and reactance and resistance measurements in
regression equations and estimated the fat-free lean mass with high accuracy. Some
commercial devices based on this technique have been proposed but their use
remains limited. Imaging techniques that have been used to study body composition
with great precision include dual-energy X-ray absorptiometry, computed tomogra-
phy, and magnetic resonance imaging (Scholz et al., 2015). Animals need to be
anaesthetized and, because of the cost of the equipment and operation, and the low
frequency of use in terms of measured animals per day, the use of these techniques is
limited to experimental farms or for selection purposes and they are not suitable for
high throughput measurements in commercial farms. The use of camera imaging to
evaluate body condition score/conformation has been demonstrated in cows (e.g.,
with 3D camera, Le Cozler et al., 2019) and could have potential for growing pigs
and sows as well (Doeschl-Wilson et al. 2004, 2005). Automatic and frequent
measurement of body composition remains a technical challenge despite its rele-
vance for smart pig nutrition.
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7.3.2 Activity

Physical activity affects the energy expenditure of pigs. The cost of standing is much
higher in pigs than in other livestock species (Noblet et al., 1993) and standing and
walking activity in pigs is several times more energy-consuming than lying (van
Milgen et al., 2008). Activity can be recorded automatically using photo-cells, force
sensors for sows housed in crates (Oliviero et al., 2008), accelerometers for sows in
loose-housing or crates (Cornou & Lundbye-Christensen, 2012), and through
machine-vision. The application of activity measurements includes precision feeding
(e.g., to cover difference in energy requirements, Marcon et al., 2017) and farrowing
detection.

Quantification of behaviour and activity using accelerometer is realized mainly
using AI. Video analysis using machine-vision is currently receiving considerable
attention because it is non-invasive, it does not require manipulating the animal (e.g.,
to install the equipment), and it does not affect the behaviour of the animal or its pen
mates (e.g., nuisance or novelty behaviour towards the equipment). The majority of
studies attempting to use machine-vision technology to automatically detect
behaviour in pigs has been conducted on groups of growing pigs, with a few
studies targeting single-housed sows or suckling piglets (see Wurtz et al., 2019 for
a review on this topic). Conventional 2D cameras are the most commonly used
cameras (Alameer et al., 2020), even if recent studies use more and more 3D
cameras (Matthews et al., 2016). Images obtained through these cameras are
analysed using machine-vision, which relies on AI algorithms. These techniques
allow to obtain information on segmentation of individuals within the group (with
possibility to count animals), to track activity (e.g., to calculate an activity index of
individuals or of the group activity), estimate feed or water use, to detect postures or
score gaits, up to more advanced detection of specific types of behaviours (e.g., tail
biting, postures linked to thermal comfort; Wurtz et al., 2019).

7.3.3 Pig Physiological/Health Status

Smart pig nutrition can also be used in relation to the physiological and health status
of pigs. However, this requires to assess this “status” of the animal which is, by
definition, multi-dimensional. These different dimensions call for different smart
management actions, including nutrition such as the modification of feed allowance
and/or composition (e.g., amino acids, minerals, micronutrients, fibre, additives). It
goes without saying that there is no single sensor that can assess the health status of a
pig and the combined information from different sensors will be required to auto-
matically detect and characterize deviations of what could be considered as “nor-
mal”. Changes in some of the previously described measures (e.g., activity, body
weight, feeding and drinking behaviour in conjunction with the quantity eaten or
drunk) are probably the best indicators of disease (Cornou & Kristensen, 2013).
Also, biological samples can be very “revealing” about the physiological status of
the animal. However, blood sampling and taking biopsies are invasive procedures.



They are being used for research purposes but they may not be the “smartest
solutions” for smart pig nutrition in a production setting. Biological samples can
also be obtained using less- or non-invasive techniques through the sampling of
faeces, urine, saliva, hair, and breath. If the origin of the sample needs individual
identification, containment of the animal may be required.
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7.3.3.1 Pig Body Temperature
The occurrence of fever or heat stress can be detected by measuring the temperature
of pigs. Body temperature can be recorded automatically using ear-based sensors
(Benjamin & Yik, 2019), whereas skin temperature can be measured using infrared
imaging (Sellier et al., 2014). However, especially the latter is related to ambient
temperature so it should be taken always in the same area of the pig, at the same
distance, and preferentially combined to another way of measuring temperature
(i.e. rectal measurement). Image analysis using the pig’s thermoregulatory behaviour
has also been used for automatic environmental temperature control (Wouters et al.,
1990).

7.3.3.2 Sound Analysers
Sound can be recorded via microphones and the electrical signals can be processed
and categorized in real-time by computer algorithms (Benjamin & Yik, 2019).
Coughing sounds have been used for early detection of respiratory diseases.
Soundtalks R (Leuven, Belgium), a commercially available sound detection pack-
age, recognizes sounds in a localized area, enabling treatment for respiratory disease
and ventilation changes at the pen (Silva et al., 2008). Different types of sounds (e.g.,
frequencies) can also be used to quantify pain and stress (Halachmi et al., 2019).

7.3.3.3 Metabolic Biosensors
Biomarkers or detection of specific metabolites may be relevant as their variation
could help to understand animal responses and, consequently, to adjust their ration.
Neethirajan (2017) reviewed existing biosensors and associated technologies used to
detect the level of antibodies in the body as they should stay within a certain range in
absence of health disorders. This author also reviewed the microfluids used to detect
analytes of interest, or the different screening methods to detect the antibiotics in
food. These new technologies are generally quick, accurate, and reliable if they are
done in a controlled environment. Indeed, biosensors are still affected by environ-
mental factors which limit their use.

7.3.3.4 Detection of Infectious Agents
Several methods are being developed to detect pathogens. Neethirajan (2017)
reported technologies as Imaging Ellipsometry to detect viruses linked to reproduc-
tive or respiratory diseases, a label-free bio-sensing method (SERS) to detect
bacteria, and polymerase chain reaction (PCR), a highly specific and sensitive molec-
ular technique, to detect microbes from an animal sample (serum, lung tissue) or
drinking water. On-site detection can be done using PCR thanks to portable and



affordable devices. Developments are still needed to increase rapidity of diagnosis
and use of less invasive samples.
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7.3.3.5 Saliva
Saliva is a fluid, which can easily be sampled via a mouth guard with an integrated
device analysing uric acid and hydrogen peroxide and interpreting these
measurements to monitor health (Kim et al., 2015). These biomarkers are highly
selective and indicate the level of oxidative stress of the animals (Bandodkar &
Wang, 2014; Rubio et al., 2019). Identifying animals with high levels of these
biomarkers could be used to identify the origin of stress and, if relevant, adapt
their ration, for example, by adding antioxidants in the diet. Monitoring lactate
variation in saliva via carbon nanotubes and graphene is another practice, which is
being used for the detection of health conditions in animals (Mannoor et al.,
2012; Matzeu et al., 2015).

7.3.3.6 Urine
A wide range of metabolites are excreted via the urine that can potentially serve as
biomarkers for the physiological status of the animal. Using non-targeted
metabolomics, van der Peet-Schwering et al. (2020) observed that the dietary protein
content was associated with differences in a large number of metabolites in the urine,
some of which were metabolites of amino acids. Although the time and cost required
to collect and analyse the samples are currently prohibitive for use in real-time smart
pig nutrition, it may prove to be a useful tool to rank animals in terms of efficiency of
protein use at an early stage and feed them accordingly.

7.3.4 Digestibility and Feed Efficiency Assessment Through Faecal
Analysis

Although sensors can be used to detect deviations from the “normal situation” (for a
given pig or for a group of pigs), they can also be used to detect differences among
animals “in a normal situation”. Digestibility measurements typically require that
animals are housed individually in digestibility cages for several days to measure
feed intake and totally collect faeces (Labussière et al., 2019). New methods such as
near-infrared reflectance spectroscopy (NIRS) have been developed to estimate
digestibly rapidly and on a large number of animals and possibly individually
(if faeces can be collected on an individual basis). The NIRS methodology is
especially suited to account for differences in digestibility among animals
(Bastianelli et al., 2015). In contrast to the total collection methods, estimating
digestibility using NIRS only requires a representative faecal sample of the animal
(Nirea et al., 2018; Labussière et al., 2019). Nirea et al. (2018) reported that NIRS
predicted adequately the chemical composition of faeces and the digestibility of
nutrients for organic matter, crude protein, and growth energy. Labussière et al.
(2019) reported that the NIRS method provided good estimates of digestibility when
pigs were heavier than 60 kg and when fed a diet with a high fibre content.



Therefore, the NIRS method can be considered as accurate and cost-effective to
assess differences in digestibility among pigs. This information could be used to
refine prediction of nutrient utilization and requirements for individuals using
nutritional models, especially for sows where samples could be easier to collect.
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Several studies observed a relationship between the faecal microbiome and feed
efficiency (Tan et al., 2017; McCormack et al., 2019a). Methods to phenotype the
microbiota have been developed to use this information on farms. For example, the
transplantation of faecal microbiota from highly feed-efficient pigs to pregnant sows
resulted in an improvement of the feed efficiency of the offspring (McCormack et al.,
2019b). However, the transplantation of faecal microbiota had a negative effect on
growth on the offspring, which limits the application in commercial farms. Niu et al.
(2015) reported that some bacteria were correlated with apparent digestibility of
crude fibre and that the abundance and diversity of the gut microbiota varied with the
age of the pig. Therefore, targeted manipulation of bacterial populations (e.g., by
changing the fibre composition in the diet) could be used to improve digestibility and
feed efficiency (Le Sciellour et al., 2018).

7.3.5 Characterizing the Environment of Pigs

In the previous sections, we described how to characterize the animal using infor-
mation obtained through different types of sensors. Beyond these individual
characteristics, environmental factors (e.g., feed quality, temperature, humidity,
and air quality) can influence animal health, nutrient requirements, and productivity.
Environmental sensors can easily be installed in the barns to continuously monitor
characteristics that are described in this section.

7.3.5.1 Sensors to Measure/Evaluate Feed Quality (NIRS)
Feed ingredients are inherently variable in nutrient composition. Although this
variation is reduced considerably in the manufacturing of complete diets, variation
in nutritional composition remains (e.g., related to the frequency and quality of
analyses at the feed mill, the mixing of ingredients). It goes without saying that
successful application of smart nutrition relies on knowledge of what the pig actually
eats, and NIRS appears to be a fast and accurate method to estimate the nutritional
value of the diet and use this information in real time (Noel, et al. 2020; Bach
Knudsen et al., 2023).

7.3.5.2 Temperature and Humidity Sensors
A continuous control of the environment, especially the temperature and humidity, is
needed to reduce the negative effects of thermal stress when temperature is above or
below the thermo-neutral zone of the animal (which varies with age, sex, and
physiological stage). Thermal stress is not an issue limited to tropical regions because
it can also occur in temperate regions during warm Summer months (Renaudeau
et al. 2012). Thermal stress induces changes in metabolic heat production to main-
tain the animal body temperature in a physiologically safe range. Consequently, it



affects energy intake and/or maintenance requirements (Renaudeau et al. 2011).
Whether an animal experiences thermal stress does not only depend on ambient
temperature but is also linked to the relative humidity. Indeed, animals may tolerate
high temperatures under dry conditions, but this may induce heat stress under humid
conditions. This has resulted in the development of climatic indexes like the
temperature-humidity index (THI, Thom, 1959) to define the level of heat stress in
farm animals (Berman et al., 2016), including sows (Wegner et al., 2014, 2016). In
practice, temperature and humidity can be easily measured continuously and auto-
matically in barns through simple and affordable sensors, informing the farmers
about the conditions that may result in thermal stress. It gives the opportunity to
adapt the feeding strategy (e.g., energy or amino acid content, hours of distribution)
to compensate the potential decrease of intake due to thermal stress and maintain
animal productivity (Mayorga et al., 2019).
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7.3.5.3 Air Analysers
Air quality can be measured via an electronic nose, a device able to discriminate
between different odours. This can be used in barns to identify and quantify the
volatile organic compounds produced by pathogens, host–pathogen interactions, and
biochemical pathways (Guffanti et al., 2018). This non-invasive automated technol-
ogy matches with the concept of precision farming supporting farmers with early
warning systems for the identification of production, health, and welfare problems
on farms (Halachmi et al., 2019). The concentration level of noxious gases such as
ammonia (NH3) and carbon dioxide (CO2) can affect animal health and productivity
in several ways (Choi et al., 2011). For example, Massabie et al. (1997) reported that
high levels of NH3 and CO2 could decrease appetite and weight gain in growing-
finishing pigs. Therefore, air quality should be controlled continuously to optimize
the operation of the ventilation system and assure the health and productivity of
the pigs.

7.3.6 Challenges in Data Collection for Smart Pig Nutrition

The main criteria for using a technique to measure the status of a pig are: a) the
accuracy of estimation, b) the financial costs, and c) the possibilities for exploitation
in field conditions. The minimal information for smart pig nutrition includes frequent
information on growth and feed intake and, if possible, at the individual level. The
rapid evolution of techniques (e.g., machine-vision, feeders) suggests that these data
could become available and affordable for pig farms in the near future (Piñeiro et al.,
2019). They are already available for “high-value animals” such as sows or nucleus
stock. For growing pigs and piglets, their large number and short lifespan put
constraints on the devices and the management of data: how to obtain information
on a large number of animals and with sufficient frequency, quality, and precision
and use it in a cost-effective way? The “classical” information on growth and feed
intake (and thus feed efficiency) are without doubt the most promising traits to be
considered in smart pig nutrition because of the cost of feed comprises the largest



part of the production cost. Information on body composition and traits related to the
health status are also important, but they need further development to scale up in
commercial farms.
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Sensors are increasingly used jointly with AI methods. This parallel evolution
allows to collect and analyse a large volume of data. The application of AI methods
is important to rapidly and automatically analyse information that would otherwise
require a “trained eye” (e.g., machine-vision). However, even with a trained eye, it is
not possible to keep track of everything that happens in a barn 24 h a day, seven days
a week. It is indeed impossible for anyone to analyse all the data originating from
sensors, implying that some data processing and analysis will be required before the
resulting information could be potentially useful to a human being. It is therefore
important that consideration is given as to who should make a decision based on the
information originating from the sensors (i.e., the computer, the farmer, or even
the pig?). Developments in this area need to consider that there will be differences in
expectations and skills between farmers with respect to smart pig nutrition. Conse-
quently, there is no “one-size-fits-all” as certain farmers may want to have more
information and decide themselves what action to take, whereas others will rely
more on the system to act. Systems for data collection must be adapted regarding the
“farming style”, also ensuring that the minimal information is available to allow
application of smart nutrition.

7.4 Evolution of Nutritional Models

As described in Sect. 7.2 and Fig. 7.1, after data on pigs or sows and their environ-
ment have been collected, models are applied using these data to determine nutrient
requirements and then adapt feed to these requirements. This is an essential step to
help decision and smart nutrition application. Models used in smart pig nutrition
have been mainly mechanistic (i.e., they describe biological mechanisms and their
dynamics using mathematical equations). They have been used for decision support
tools (e.g., InraPorc, van Milgen et al., 2008). These models help to define quantita-
tively the functioning of a biological system based on causal relationships and they
can be used to generate predictions and recommendations in practice (Ellis et al.,
2020). However, they have limitations such as obtaining sufficient inputs on-farm.
Methods coming from AI are more and more used in precision farming. These are
data-driven methods as they predict desired outputs of a system using available data
without accounting for the biological relationships between inputs and outputs.
These methods include machine-learning that learn automatically from data. Deep-
learning methods use several layers of data treatment and transformation, for
instance through artificial neural networks, to learn from data. With the development
of these data-driven modelling methods, a synergy between mechanistic models and
data-driven approaches could be beneficial for the development of smart pig nutri-
tion (Ellis et al., 2020), using data streams to apply mechanistic models in real-
time and hybridization of both approaches to parametrize mechanistic models by
data-driven systems.
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7.4.1 Fattening Pigs

There has been a longstanding history of the development and use of nutritional
models describing growth in pigs. The first (semi-) mechanistic models (i.e., based
on mechanisms description but also empirical and statistical relationships) were
developed by Whittemore and Fawcett in the mid-seventies (1974) and they have
evolved into more mechanistic models (e.g., Halas et al., 2004) and software tools
such as InraPorc (van Milgen et al., 2008). These models rely on historical informa-
tion of (populations of) pigs to characterize the dynamics of nutrient intake, use, and
partitioning. This information is then used to estimate the requirements for different
nutrients. Although the concepts of these models can be used as decision support
tools in smart pig nutrition, the use of data is very different. Rather than using data to
characterize the animal, decision support systems in smart pig nutrition need to
predict traits such as the expected feed intake and growth in real-time so that a feed
can be given according to the expected nutrient requirement (Fig. 7.3).

Hauschild et al. (2012) developed a model to estimate the amino acid
requirements of individual growing-finishing pigs in real-time. The empirical part
of the model uses information such as feed intake and body weight recorded during
the previous days to estimate the expected feed intake and weight gain for the current
day using a double exponential smoothing forecasting time-series method. To do so,
the model requires at least seven consecutive feed intake measurements and two
body weight measurements to predict the expected daily feed intake and body
weight. Based on these predictions, the mechanistic part of the model uses factorial
equations to predict the amino acid requirements (expressed on a standardized ileal
digestible (SID) basis per kg of feed). They showed that daily feed intake and body
weight trajectories of an animal could be predicted, respectively, 1 day or 7 days in
advance, with an average mean absolute error of 12.5% and 1.9%, respectively. The
authors indicated that the forecasting of feed intake did not perform as well as for
body weight because it was calibrated to estimate a smoothed consumption
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trajectory without accounting for daily variations. Brossard et al. (2017b) used the
same method to predict daily cumulative feed intake 1 day in advance using the real
data from 8 to 20 previous consecutive days with residual mean square error of
prediction of 0.5 kg/d. They applied the multivariate adaptive regression splines
(MARS) method to predict daily or weekly body weight with at least 7 and up to
20 consecutive measurements with a residual mean square error of prediction of
1.1 kg/d. Other approaches are also being developed. Peña Fernández et al. (2019)
used dynamic linear regression models, with feed supply daily as input, for the real-
time prediction of weight and feed efficiency of individual fattening pigs. They
predicted the individual pig weight 1 day ahead or 7 days ahead with average mean
relative prediction errors of 1.0 ± 0.4% and 3.3 ± 1.3%, respectively. The difference
in criteria used to estimate the fitting capacity makes the comparison of methods
rather difficult. However, it shows the variety of methods available. The mechanistic
component of the Hauschild model was used in two animal trials (Zhang et al., 2012,
Cloutier et al., 2015). In Zhang et al. (2012), the model accurately predicted the SID
Lys requirement of pigs of 25–55 kg body weight but underestimated the
requirements of heavier animals. Cloutier et al. (2015) updated the method but
observed a slight underestimation of requirements for pigs of 25–55 kg body weight
and an adequate estimation for heavier pigs. This was explained by differences in
quality of estimation of maintenance requirements, efficiency of Lys retention and
the proportion of protein in weight gain. Three trials evaluated the overall approach
of estimating the effect of a conventional feeding system versus a precision feeding
system in growing-finishing pig operations on performance, nutrient utilization,
body composition, and environmental costs (Andretta et al., 2014; Pomar et al.,
2014; Andretta et al., 2016). Pomar et al. (2014) found that a daily phase-feeding
strategy (mixing two feeds) reduced nitrogen (N) intake by 7.3%, phosphorus
(P) intake by 4.4%, N excretion by 12.6%, P excretion by 6.6%, and feed cost by
1% compared to those of a 3-phase feeding strategy. Andretta et al. (2014) found that
a multiphase individual feeding strategy reduced the SID amino acid intake by 27%,
P excretion by 27%, and N excretion by 20% compared to those of a 3-phase feeding
strategy. Andretta et al. (2016) found that an individual feeding strategy reduced SID
Lys intake by 26%, N excretion by 30%, and feeding cost by 10% compared to those
of a group-feeding strategy. These three trials show that using precision feeding
techniques to feed growing-finishing pig diets that are tailored daily is an effective
approach to reduce nutrient excretion without compromising performance. These
results also confirm that combining precision feeding with real-time modelling of
requirements can improve feed efficiency (i.e., decrease feed cost and environmental
load). The evolution of predictive models to include real-time data and help in
decision making for smart feeding pig nutrition is at its beginning. Models can
still be improved to better estimate amino acid requirements, by better representing
the individual proportion of protein in body weight gain and the factors controlling
the efficiency of Lys utilisation in individual pigs (Remus et al., 2020a, c), or
estimate in real-time body protein mass and daily protein content of the gain
(Remus et al., 2020b). Sensors could help to characterize animals beyond growth
and feed intake, with criteria related to feed efficiency, health status, and answer to
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environmental conditions like heat stress. However, there is still a long way to go to
integrate all these aspects in models and use this in nutritional strategies. For
example, after detecting an health or environmental issue, which nutritional strategy
should be applied?. This is a challenge due to the lack of understanding (and
of nutritional models) for these stages where interactions between nutrition, man-
agement, environment, growth, and feed intake are very complex. Current technol-
ogy can feed pig groups based on their weight. Some private companies have been
started to experimentally test automatic feeders with a decision support tool allowing
precision feeding application. However this type of feeders is not yet commercially
available.
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7.4.2 Sows in Gestation and Lactation

Mechanistic models such as InraPorc (Dourmad et al., 2008) have been developed to
simulate the daily energy and nutrient partitioning in reproductive sows. These
models represent the sow as the sum of different compartments: body protein,
body lipids, body minerals, and the uterus. Equations describing the nutrient utiliza-
tion are used to predict daily energy, amino acid, and mineral flows from feed to
storage in body reserves or in foetuses, output in milk, loss as heat, and excretion in
faeces and urine. They allow to predict, on a daily basis, the energy, amino acids,
calcium, and phosphorus requirements according to production objectives, or to
simulate the changes in body condition of sows according to their performance and
nutrient intake.

These models have been recently renewed to be used for precision feeding for
lactating (Gauthier et al., 2019) and gestating sows (Gaillard et al., 2019). These
nutritional models, which aggregate the equations required for the calculation of
nutrient requirements, are connected dynamically to the flow of information
provided by different sensors or by the farmer and to feeding “robots” that handle
and implement the decisions taken to optimize the nutrient supplies to each individ-
ual sow, each day (Fig. 7.4).

This approach allows to account for the large variability of nutrient requirements
between sows in commercial farms, resulting from the variability in performance,
appetite, and body condition, and the changes occurring over time due to the
reproductive function (i.e., development of foetuses or production of milk) (Gauthier
et al. 2019; Gaillard et al. 2020a). For gestating sows, energy and nutrient
requirements are calculated according to the age, body weight (maintenance require-
ment), body condition at mating (requirement for body reserves), and expected litter
size (requirement for conceptus) of the sow. For lactating sows, the energy and
nutrient requirements are calculated according to body weight (maintenance), litter
size and growth (used to predict milk production), and appetite of the sow. Figure 7.5
illustrates the requirement for SID lysine in lactating and gestating sows from
commercial farms equipped with smart feeders. During lactation, the SID lysine
requirement is highly variable mainly due to differences in litter growth rate (as an
indicator of milk production) and sow appetite (Fig. 7.5, left panel, Gauthier et al.,



2019). During gestation, the SID lysine requirement is also highly variable and
varies with gestation stage, sow parity, and prolificacy (Fig. 7.5, right panel, Gaillard
et al., 2019).
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Fig. 7.4 Schematic representation of a decision support system, including a nutritional model, for
the precision feeding of sows. (Adapted from Gauthier et al., 2019 and Gaillard et al., 2019)

Fig. 7.5 Variability of standardized ileal digestible (SID) lysine requirement per kg feed,
according to litter growth rate during lactation (left panel, from Gauthier et al., 2019) and according
to stage of gestation (right panel, from Gaillard et al., 2019) of sows

The challenge in this approach is to get the information required for the
calculations of requirements. Body weight, physical activity of sows, and ambient
temperature are required to calculate the maintenance requirement. Body weight can
be measured at different times, for instance when moving the sows from the
gestation to the farrowing pen. Backfat thickness, which is used in combination
with body weight to determine the status of body reserves, can be measured at the
same time. The use of automatic weighing scales in the feeding stall allows to obtain
much more frequent data, and accelerometers can also be used to evaluate the
physical activity of sows (Ringgenberg et al., 2010). However, this type of “mechan-
ical” equipment may be difficult to maintain in the long term, and video and image
analyses may be a more promising, robust alternative for the real-time evaluation of



body weight (Cang et al., 2019), activity (Ahrendt et al., 2011; Labrecque et al.,
2020), and perhaps body condition.
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To operate in real time, precision feeding systems for lactating sows require to
accurately predict expected feed intake and milk production on a daily and individ-
ual basis to determine the optimal nutrient content of the ration. For feed intake, the
prediction can be performed from intake data measured during the previous days,
and in combination with prototypes of trajectory curves determined offline using
deep-learning approaches on the bases of historical data, as proposed by Gauthier
et al. (2021). In the same way, milk production, which cannot be measured, can be
estimated from historical data (from the same farm or from similar farms) of litter
growth rate and the number of suckling piglets using classical statistical approaches
(Ngo et al., 2012) or deep-learning methods. In addition to the information relative to
the body weight and activity of the sow, which affect the maintenance requirement,
precision feeding systems for gestating sows require to estimate the total litter weight
at birth, which is used to calculate the requirement for reproduction.

The interest of precision-feeding strategies for gestating sows was evaluated by
Gaillard et al. (2020b). In that study, a conventional 1-phase feeding strategy
(CF) was compared to a precision feeding (PF) strategy, which consisted of mixing
two diets with either a low (L) or a high (H) nutrient content. The SID lysine content
was assumed to be 4.8, 3.0, and 6.0 g/kg feed and the protein content to be 14, 9, and
16% in diets CF, L, and H, respectively. On average, diet L represented 89% of the
feed to be delivered by the PF strategy. Compared to the CF, the average dietary SID
Lys content was 29.5% lower with PF, while average calculated dietary P content
was 14.5% lower. The simulated proportions of sows that were given an excess or
deficient supply of SID Lys were reduced with PF. Compared to CF, the PF strategy
allowed for a 3.6% reduction in feed cost per sow during gestation, and reduced
N and P intake (by 11.0 and 13.8%, respectively) and excretion (by 16.7 and 15.4%,
respectively).

Likewise, Gauthier et al. (unpublished) evaluated the potential of precision
feeding for lactating sows. A conventional one-phase (C) feeding strategy was
compared to a precision feeding strategy which consisted of mixing two diets with
a low (L) or high (H) nutrient content. The SID lysine contents were 8.5, 4.8, and
10.5 g/kg of feed, and the protein contents were 16.0, 12.7, and 18.0% in the C, L
and H diets, respectively. On average, the rate of incorporation of diet L was 53%.
Compared to the one-phase strategy, precision feeding resulted in a 5.1% decrease in
total protein intake, an 8.5% reduction in N excretion, and a decrease of 1.5% in feed
cost. However, these results were obtained by simulation and remain to be evaluated
experimentally, including the possible effects on performance.

7.4.3 Modelling Mineral Requirements

Minerals are a major component of pig nutrition. P and calcium (Ca) are necessary
for bone development and they are involved in numerous biological functions.
Dietary P from plant origin are not well digested by pigs, and addition of mineral



P and/or phytase increases feed cost. Moreover, the oversupply and the low digest-
ibility of P also results in high P excretion, which affects the environment. Therefore,
models that precisely predict mineral requirements are needed to optimize supplies
and minimize excretion (Brossard et al., 2017a). Pigs have important mineral body
reserves that can be mobilized to support the metabolic requirements so that a
deficient mineral supply does not affect growth, at least on a short-term basis,
conversely to an amino acid deficiency. An insufficient P supply in the growing
period can be compensated for during the finishing period by increased absorption
and accretion (Gonzalo et al., 2018), without affecting performance or bone strength
at slaughter. In sows, mineral mobilization during lactation can be compensated
during the next pregnancy (Jondreville & Dourmad, 2005). This offers more flexi-
bility for mineral nutrition and more opportunities for precision feeding.
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Different models are available to calculate mineral requirements of growing
pigs and sows (Jondreville & Dourmad, 2005; NRC, 2012; Symeou et al., 2014;
Bikker & Blok, 2017). These models allow dietary P and Ca supplies to be adjusted
to pig performance and physiological status, but they do not consider the effect of
body mineral reserves on the efficiency of P and Ca absorption and retention. In
recent years, for growing pigs, more dynamic and mechanistic models have been
developed that represent P and Ca ingestion, absorption, and retention, using the
body mineral reserves as a driver for absorption and retention (Létourneau-
Montminy et al., 2015; Misiura et al., 2020). These dynamic mechanistic models
could be used to improve the decision support tools for mineral precision feeding.
However, most of these models are research models and have to be adapted to be
integrated in decision support tools for precision feeding.

When precision feeding is applied with the mixing of two diets, as is usually the
case, it may be difficult to simultaneously adapt the supplies of amino acids and
minerals due to different dynamics in the evolution of requirements to these nutrients
over time. This was the case in the study on gestating sows fromGaillard et al. (2020b),
who evaluated the effect of a precision feeding strategy based on digestible lysine
requirement. They showed that this strategy was not as efficient for P because of the
different dynamics of P and lysine requirements. They concluded that three diets would
have been required for an optimal joint fitting of mineral and amino acid supplies.

7.4.4 Inclusion of Models in a Whole System for Practical
Application

As detailed in previous sections on models, models are being developed to include
the real-time integration of data and could be integrated in whole systems (Fig. 7.1).
In practice, data from sensors providing information on body weight, feed intake,
body composition, activity and health status (through body temperature), and ambi-
ent temperature, can and will be more and more collected in real time and on
individual pigs. Models included in decision support systems can use these data
and determine the best individual ration for the next day. After an eventual checking
by the farmer, this information would be send to precision feeders allowing direct



application of precision nutrition in the farm. In a case of heating wave, the decision
support models could provide a warning and propose an adaptation of energy
content of feed to mitigate effect of heat stress. In the same way, if sensors detected
pathogens on some animals, decision support models could provide an alarm and
activate either a distribution of antibiotics through water for these animals or an
adaptation of diet to compensate deviation in requirements in some nutrients due to
the specific health issue. Such a whole integrated system requires an interoperability
of sensors, decision support tools and automates. This implies also to rethink feed
formulation and to have an adapted system (feed lines, silos) for feed management
and distribution to the feeders; indeed, precise feeding is based in many cases on the
mixing of two diets, that must be adapted to the different stages (sows, growing pigs)
in the farm. It requires also data management systems (locally in the farm and/or in
an external computer server (cloud) to give access to various information), and
adapted interfaces to allow farmer to interpret information released and help him
to activate or not some actions.
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7.5 Conclusion

Sensors and data collection in pig production evolve with the development of
precision farming. Data can be obtained more and more precisely on individual pigs
and their environment and be used for smart pig nutrition. However, there are still
challenges to measure relevant, and individual criteria indicative for the physiologi-
cal status of animals and their response to changes in nutrition or the environment.
This information is essential to refine management of production, health, and welfare
of pigs through nutrition. This requires to go beyond current nutritional models and
to consider more criteria than only feed intake and growth. Precision feeding in
fattening pigs and sows as presented in this chapter is a good example on how data-
driven and concept-driven approaches can be combined. This requires improvement
to use the full potential of both approaches and their application as decision support.
Although performance (i.e., through feed intake and growth) is relatively straight-
forward from a modelling perspective, addressing issues related to animal health and
welfare is much more complex. However, the interpretation of the dynamics of feed
and water intake and growth may prove to be useful traits to “quantify” health-
related mechanism such as resistance and resilience to external or internal stress
factors (e.g., heat, disease) (Nguyen-Ba, 2020).

Technologies evolve and so do pig farming systems. Gestating sows have been
reared in groups for several years and loose-housing systems are now developing for
lactating sows. Alternative systems are also being developed with changes in terms
of bedding, size of groups, space, and outdoor access. The competition between feed
for animals and food for humans implies the use of new or more diverse feed
ingredients. Consequently, data collection and models for smart pig nutrition have
to be adapted to this diversity of situation. This will also partly determine practical
application of smart pig nutrition. Will it be applicable only in very controlled
rearing conditions or also in alternative systems (e.g., organic, with outdoor access)?



Will it be applicable up to individual levels everywhere or at different scales
(individual, pen, room) depending on farm structure, type of feeding (liquid vs dry
feeding)? The practical application of smart pig nutrition will also depend on the
capacity to prove its economic relevance: will the gain offered by smart pig nutrition
(feed efficiency, health, welfare) be sufficient to ensure an acceptable return on
investment? Moreover, it is without doubt that automation has brought and will
bring changes in the life of farmers. Hard and repetitive tasks can mostly be done
automatically nowadays, but a farm cannot be run without a farmer. There are
different “farming styles” with different needs and expectations concerning smart
pig nutrition and in which the information and the corresponding action can be taken
by the computer, the farmer, or the pig. However, for a successful implementation of
smart pig nutrition, it should be the farmer who decides who should be in control.
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Finally, the use of Big Data has become increasingly important in society. Smart
phones and the Internet of Things rely on it and, here too, the question can be asked
of “who is in control?”, in addition to the question “whose data is it?”. Although the
attitude towards the use of these technologies varies from person to person, their
implementation in agriculture will probably be perceived with much more scepti-
cism by society, especially for use in animal production (e.g., Wathes at al., 2008;
Boogaard et al., 2011; Werkheiser, 2018). How will automation and Big Data be
seen in relation to current animal production systems, and will there be a place for
this in alternative production systems, such as organic pig production? Will automa-
tion be perceived as an opportunity to see animals as individuals and provide
individualized management (e.g., feeding, medication) or will it be perceived as a
further industrialization of pig production systems? An open discourse on these
issues and questions with society will be crucial to ensure that progress is made
based on reason than emotion.

References

Ahrendt, P., Gregersen, T., & Karstof, H. (2011). Development of a real-time computer vision
system for tracking loose-housed pigs. Computers and Electronics in Agriculture, 76, 169–174.
https://doi.org/10.1016/j.com-pag.2010.10.013

Alameer, A., Kyriazakis, I., & Bacardit, J. (2020). Automated recognition of postures and drinking
behaviour for the detection of compromised health in pigs. Scientific Reports, 10, 13665. https://
doi.org/10.1038/s41598-020-70688-6

Allain, C., Chanvallon, A., Clément, P., Guatteo, R., & Bareille, N. (2014). Elevage de précision:
périmètre, applications et perspectives en élevage bovin. Rencontres recherches ruminants, 21,
3–10.

Andretta, I., Pomar, C., Rivest, J., Pomar, J., Lovatto, P. A., & Radünz Neto, J. (2014). The impact
of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on
animal performance, nutrient utilization, and body and carcass composition. Journal of Animal
Science, 92, 3925–3936. https://doi.org/10.2527/jas.2014-7643

Andretta, I., Pomar, C., Rivest, J., Pomar, J., & Radunz, J. (2016). Precision feeding can signifi-
cantly reduce lysine intake and nitrogen excretion without compromising the performance of
growing pigs. Animal, 10, 1137–1147. https://doi.org/10.2527/jas2014-7643



7 Smart Pig Nutrition in the Digital Era 193

Bach Knudsen, K. E., Noel, S., & Jørgensen, H. (2023). Assessment of the nutritive value of
individual feeds and diets by novel technologies. In I. Kyriazakis (Ed.), Smart livestock nutrition
(pp. 71–101). Springer.

Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review.
Trends in Biotechnology, 32(7), 363–371. https://doi.org/10.1016/j.tibtech.2014.04.005

Bastianelli, D., Bonnal, L., Jaguelin-Peyraud, Y., & Noblet, J. (2015). Predicting feed digestibility
from NIRS analysis of pig faeces. Animal, 9, 781–786. https://doi.org/10.1017/
S1751731114003097

Benjamin, M., & Yik, S. (2019). Precision livestock farming in swine welfare: A review for swine
practitioners. Animals, 9, 133. https://doi.org/10.3390/ani9040133

Berman, A., Horovitz, T., Kaim, M., & Gacitua, H. (2016). A comparison of THI indices leads to a
sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity
stress. International Journal of Biometeorology, 60(10), 1453–1462. https://doi.org/10.1007/
s00484-016-1136-9

Bikker, P., & Blok, M. C. (2017). Phosphorus and calcium requirements of growing pigs and sows.
CVB documentation report; No. 59. Wageningen Livestock Research. https://doi.org/10.18174/
424780

Boogaard, B. K., Boekhorst, L. J. S., Oosting, S. J., & Sørensen, J. T. (2011). Socio-cultural
sustainability of pig production: Citizen perceptions in the Netherlands and Denmark. Livestock
Science, 140(1–3), 189–200. https://doi.org/10.1016/j.livsci.2011.03.028

Brossard, L., Dourmad, J. Y., Garcia-Launay, F., & van Milgen, J. (2017a). Modelling nutrient
requirements for pigs to optimize feed efficiency. In J. Wiseman (Ed.), Achieving sustainable
production of pig meat (Volume 2: Animal breeding and nutrition) (pp. 185–208). Burleigh
Dodds Science Publishing.

Brossard, L., Taoussi, I., van Milgen, J., & Dourmad, J. Y. (2017b). Selection of methods to analyse
body weight and feed intake data used as inputs for nutritional models and precision feeding in
pigs. In D. Berckmans, & A. Keita (Eds.), Precision Livestock Farming’17. 8th European
Conference on Precision Livestock Farming (ECPLF), Nantes, France, September 2017
(pp. 574–583).

Brown-Brandl, T. M., Adrion, F., Maselyne, J., Kapun, A., Hessel, E. F., Saeys, W., Van Nuffel, A.,
& Gallmann, E. (2019). A review of passive radio frequency identification systems for animal
monitoring in livestock facilities. Applied Engineering in Agriculture, 35, 579–591. https://doi.
org/10.13031/aea.12928

Cang, Y., He, H., & Qiao, Y. (2019). An intelligent pig weights estimate method based on deep
learning in sow stall environments. IEEE Access, 7, 164867–164875. https://doi.org/10.1109/
ACCESS.2019.2953099

Cariolet, R., Vieuille, C., Morvan, P., Madec, F., Meunier-Salaün, M. C., Vaudelet, J. C.,
Courboulay, V., & Signoret, J. P. (1997). Evaluation du bien être chez la truie gestante bloquée.
Relation entre le bien être et la productivité numérique. Journées de la Recherche Porcine, 29,
149–160.

Choi, H. L., Han, S. H., Albright, L. D., & Chang, W. K. (2011). The correlation between thermal
and noxious gas environments, pig productivity and behavioral responses of growing pigs.
International Journal of Environmental Research and Public Health, 8(9), 3514–3527. https://
doi.org/10.3390/ijerph8093514

Cloutier, L., Pomar, C., Montminy-Létourneau, M. P., Bernier, J. F., & Pomar, J. (2015). Evalua-
tion of a method estimating real-time individual lysine requirements in two lines of growing-
finishing pigs. Animal, 9, 561–568. https://doi.org/10.1017/S1751731114003073

Cornou, C., & Kristensen, A. R. (2013). Use of information from monitoring and decision support
systems in pig production: Collection, applications and expected benefits. Livestock Science,
157(2), 552–567. https://doi.org/10.1016/j.livsci.2013.07.016

Cornou, C., & Lundbye-Christensen, S. (2012). Modeling of sows diurnal activity pattern and
detection of parturition using acceleration measurements. Computers and Electronics in Agri-
culture, 80, 97–104. https://doi.org/10.1016/j.compag.2011.11.001



194 L. Brossard et al.

Doeschl-Wilson, A. B., Green, D. M., Whittemore, C. T., Schofield, C. P., Fisher, A. V., & Knap,
P. W. (2004). The relationship between the body shape of living pigs and their carcass
morphology and composition. Animal Science, 79(1), 73–83.

Doeschl-Wilson, A. B., Green, D. M., Fisher, A. V., Carroll, S. M., Schofield, C. P., &Whittemore,
C. T. (2005). The relationship between body dimensions of living pigs and their carcass
composition. Meat Science, 70(2), 229–240. https://doi.org/10.1016/j.meatsci.2005.01.010

Dourmad, J. Y. (2019). Evolution of the feeding approach in sows during the last decades. In A. P.
Yagüe (Ed.), Nutrition of hyperprolific sows (pp. 107–132). Novus International.

Dourmad, J. Y., & Jondreville, C. (2007). Impact of nutrition on nitrogen, phosphorus, Cu and Zn in
pig manure, and on emissions of ammonia and odours. Livestock Science, 112(3), 192–198.
https://doi.org/10.1016/j.livsci.2007.09.002

Dourmad, J. Y., Etienne, M., Valancogne, A., Dubois, S., van Milgen, J., & Noblet, J. (2008).
InraPorc: A model and decision support tool for the nutrition of sows. Animal Feed Science and
Technology, 143(1-4), 372–386. https://doi.org/10.1016/j.anifeedsci.2007.05.019

Ellis, J. L., Jacobs, M., Dijkstra, J., van Laar, H., Cant, J. P., Tulpan, D., & Ferguson, N. (2020).
Synergy between mechanistic modelling and data-driven models for modern animal production
systems in the era of big data. Animal, 14(S2), s223–s237. https://doi.org/10.1017/
S1751731120000312

Fernandes, A. F. A., Dórea, J. R. R., Fitzgerald, R., Herring, W., & Rosa, G. J. M. (2019). A novel
automated system to acquire biometric and morphological measurements and predict body
weight of pigs via 3D computer vision. Journal of Animal Science, 97, 496–508. https://doi.
org/10.1093/jas/sky418

Friggens, N., & Robert, P. E. (2016). Faire émerger les informations clés des données de l’élevage
de précision. In S. Chastant-Maillard & M. Saint-Dizier (Eds.), Elevage de précision
(pp. 12–28). Editions France Agricole.

Gaillard, C., Gauthier, R., Cloutier, L., & Dourmad, J. Y. (2019). Exploration of individual
variability to better predict the nutrient requirements of gestating sows. Journal of Animal
Science, 97(12), 4934–4945. https://doi.org/10.1093/jas/skz320

Gaillard, C., Brossard, L., & Dourmad, J. Y. (2020a). Improvement of feed and nutrient efficiency
in pig production through precision feeding. Animal Feed Science and Technology, 268,
114611. https://doi.org/10.1016/j.anifeedsci.2020.114611

Gaillard, C., Quiniou, N., Gauthier, R., Cloutier, L., & Dourmad, J. Y. (2020b). Evaluation of a
decision support system for precision feeding of gestating sows. Journal of Animal Science,
98(9), 1–12. https://doi.org/10.1093/jas/skaa255

Garcia-Launay, F., Dusart, L., Espagnol, S., Laisse-Redoux, S., Gaudré, D., Méda, B., & Wilfart,
A. (2018). Multiobjective formulation is an effective method to reduce environmental impacts
of livestock feeds. British Journal of Nutrition, 120(11), 1298–1309. https://doi.org/10.1017/
S0007114518002672

Gauthier, R., Largouët, C., Gaillard, C., Cloutier, L., Guay, F., & Dourmad, J. Y. (2019). Dynamic
modeling of nutrient use and individual requirements of lactating sows. Journal of Animal
Science, 97(7), 2822–2836. https://doi.org/10.1093/jas/skz167

Gauthier, R., Largouët, C., Roze, L., & Dourmad, J. Y. (2021). Algorithme de prédiction en temps
réel de la consommation alimentaire journalière chez la truie en lactation. Journées de la
recherche porcine, 53. in press.

Gonzalo, E., Létourneau-Montminy, M. P., Narcy, A., Bernier, J. F., & Pomar, C. (2018).
Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences
on growth performance and body composition of growing pigs. Animal, 12(6), 1165–1173.
https://doi.org/10.1017/S1751731117002567

Guffanti, P., Pifferi, V., Falciola, L., & Ferrante, V. (2018). Analyses of odours from concentrated
animal feeding operations: A review. Atmospheric Environment, 175, 100–108. https://doi.org/
10.1016/j.at-mosenv.2017.12.007



7 Smart Pig Nutrition in the Digital Era 195

Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: Application
of real- time sensors to improve animal well-being and production. Annual Review of Animal
Biosciences, 7, 403–425. https://doi.org/10.1146/annurev-animal-020518-114851

Halas, V., Dijkstra, J., Babinszky, L., Verstegen, M. W. A., & Gerrits, W. J. J. (2004). Modelling of
nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model
description. British Journal of Nutrition, 92, 725–734. https://doi.org/10.1079/BJN20041237

Hansen, M. F., Smith, M. L., Smith, L. N., Salter, M. G., Baxter, E. M., Farish, M., & Grieve,
B. (2018). Towards on-farm pig face recognition using convolutional neural networks.
Computers in Industry, 98, 145–152. https://doi.org/10.1016/j.compind.2018.02.016

Hauschild, L., Lovatto, P. A., Pomar, J., & Pomar, C. (2012). Development of sustainable precision
farming systems for swine: Estimating real-time individual amino acid requirements in growing-
finishing pigs. Journal of Animal Science, 90, 2255–2263. https://doi.org/10.2527/jas.
2011-4252

Jondreville, C., & Dourmad, J. Y. (2005). Le phosphore dans la nutrition des porcs. INRAE
Productions Animales, 18(3), 183–192.

Kashiha, M., Bahr, C., Haredasht, S. A., Ott, S., Moons, C. P., Niewold, T. A., Ödberg, F. O., &
Berckmans, D. (2013). The automatic monitoring of pigs water use by cameras. Computers and
Electronics in Agriculture, 90, 164–169. https://doi.org/10.1016/j.compag.2012.09.015

Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdés-Ramírez, G., Paixão, T. R. L. C., Mercier,
P. P., & Wang, J. (2015). Wearable salivary uric acid mouthguard biosensor with integrated
wireless electronics. Biosensors & Bioelectronics, 74, 1061–1068. https://doi.org/10.1016/j.
bios.2015.07.039

Knap, P. W., & Rauw, W. M. (2008). Selection for high production in pigs. In W. M. Rauw (Ed.),
Resource allocation theory applied to farm animal production (pp. 210–229). CABI Publishing.

Knight, C. H. (2020). Review: Sensors techniques in ruminants: More than fitness trackers. Animal,
14(S1), s187–s195. https://doi.org/10.1017/S1751731119003276

Labrecque, J., Gouineau, F., Rivest, J., & Germain, G. (2020). Suivi individuel des porcs et collecte
de métriques comportementales en temps réel avec des caméras de sécurité. Journées de la
Recherche Porcine, 52, 379–384.

Labussière, E., Ganier, P., Conde, J. A., Janvier, E., & van Milgen, J. (2019). Development of a
NIRS method to assess the digestive ability in growing pigs. In Books of abstracts of the 70th
Annual Meeting of the European Federation of Animal Science (EAAP), Gand, Belgium, Aug
2019.Book of abstracts No. 25. Wageningen Academic Publishers, Wageningen (p. 604).

Le Cozler, Y., Allain, C., Caillot, A., Delouard, J. M., Delattre, L., Luginbuhl, T., & Faverdin,
P. (2019). High- precision scanning system for complete 3D cow body shape imaging and
analysis of morpho- logical traits. Computers and Electronics in Agriculture, 157, 447–453.
https://doi.org/10.1016/j.com-pag.2019.01.019

Le Sciellour, M., Labussière, E., Zemb, O., & Renaudeau, D. (2018). Effect of dietary fiber content
on nutrient digestibility and fecal microbiota composition in growing-finishing pigs. PLoS One,
13, e0206159. https://doi.org/10.1371/journal.pone.0206159

Létourneau-Montminy, M. P., Narcy, A., Dourmad, J. Y., Crenshaw, T. D., & Pomar, C. (2015).
Modelling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash
content in growing pigs. Journal of Animal Science, 93(3), 1200–1217. https://doi.org/0.2527/
jas2014-8519

Lusk, J. L., Norwood, F. B., & Pruitt, J. R. (2006). Consumer demand for a ban on antibiotic drug
use in pork production. American Journal of Agricultural Economics, 88(4), 1015–1033.
https://doi.org/10.1111/j.1467-8276.2006.00913.x

Mackenzie, S. G., Leinonen, I., Ferguson, N., & Kyriazakis, I. (2008). Towards a methodology to
formulate sustainable diets for livestock: Accounting for environmental impact in diet formula-
tion. The British Journal of Nutrition, 115(10), 1860–1874. https://doi.org/10.1017/
S0007114516000763



196 L. Brossard et al.

Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N.,
Omenetto, F. G., & McAlpine, M. C. (2012). Graphene-based wireless bacteria detection on
tooth enamel. Nature Communications, 3(1), 763. https://doi.org/10.1038/ncomms1767

Marcon, M., Salaun, M. C., Le Mer, M., & Rousselière, Y. (2017). Accelerometer technology to
perform precision feeding of pregnant sows and follow their health status. In D. Berckmans, &
A. Keita (Eds.), Precision Livestock Farming’17. 8th European Conference on Precision
Livestock Farming (ECPLF), Nantes, France, September 2017 (pp. 666–673).

Marsot, M., Mei, J., Shan, X., Yee, L., Feng, P., Yan, X., Li, C., & Zhao, Y. (2020). An adaptive pig
face recognition approach using convolutional neural networks. Computers and Electronics in
Agriculture, 173, 105386. https://doi.org/10.1016/j.compag.2020.105386

Massabie, P., Grainer, R., & Le Dividich, J. (1997). Effects on environment conditions on the
performance of growing-finishing pig. In Livestock environment V. 5th International Sympo-
sium on Livestock Environment, Bloomington, MI, USA, 1997. American Society of Agricul-
tural & Biological Engineers, St Joseph (pp. 1010–1016).

Matthews, S. G., Miller, A. L., Clapp, J., Plötz, T., & Kyriazakis, I. (2016). Early detection of health
and welfare compromises through automated detection of behavioural changes in pigs. Veteri-
nary Journal, 217, 43–51. https://doi.org/10.1016/j.tvjl.2016.09.005

Matzeu, G., Florea, L., & Diamond, D. (2015). Advances in wearable chemical sensor design for
monitoring biological fluids. Sensors and Actuators B: Chemical, 211, 403–418. https://doi.org/
10.1016/j.snb.2015.01.077

Mayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. C. (2019). Heat stress
adaptations in pigs. Animal Frontiers, 9(1), 54–61. https://doi.org/10.1093/af/vfy035

McCormack, U. M., Curiao, T., Metzler-Zebeli, B. U., Magowan, E., Berry, D. P., Reyer, H.,
Prieto, M. L., Buzoianu, S. G., Harrison, M., Rebeiz, N., Crispie, F., Cotter, P. D., O’Sullivan,
O., Gardiner, G. E., & Lawlor, P. G. (2019a). Porcine feed efficiency associated intestinal
microbiota and physiological traits: finding consistent cross-locational biomarkers for residual
feed intake. mSystems, 4, 324–318. https://doi.org/10.1128/mSystems.00324-18

McCormack, U. M., Curião, T., Metzler-Zebeli, B. U., Wilkinson, T., Reyer, H., Crispie, F., Cotter,
P. D., Creevey, C. J., Gardiner, G. E., & Lawlor, P. G. (2019b). Improvement of feed efficiency
in pigs through microbial modulation via fecal microbiota transplantation in sows and dietary
supplementation of inulin in offspring. Applied and Environmental Microbiology, 85,
1255–1219. https://doi.org/10.1128/aem.01255-19**

Meunier-Salaün, M. C., & Bolhuis, J. E. (2015). High-fibre feeding in gestation. In C. Farmer (Ed.),
The gestating and lactating sow (pp. 95–116). Wageningen Academic Publishers. https://doi.
org/10.3920/978-90-8686-803-2_5

Misiura, M. M., Filipe, J. A. N., Walk, C. L., & Kyriazakis, I. (2020). How do pigs deal with dietary
phosphorus deficiency? The British Journal of Nutrition, 124(3), 256–272. https://doi.org/10.
1017/S0007114520000975

National Research Council. (2012). Nutrient Requirements of Swine: Eleventh Revised Edition. The
National Academies Press. 10.17226/13298.

Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management.
Sensing and Bio-Sensing Research, 12, 15–29. https://doi.org/10.1016/j.sbsr.2016.11.004

Ngo, T. T., Quiniou, N., Heugebaert, S., Paboeuf, F., & Dourmad, J. Y. (2012). Influence du rang de
portée et du nombre de porcelets allaités sur la production laitière des truies. Journées de la
Recherche Porcine, 44, 195–196.

Nguyen Ba, H. (2020). Quantification of the feed intake response of growing pigs to perturbations –
A modelling approach. Dissertation, AGROCAMPUS OUEST.

Nirea, K. G., de Nanclares, M. P., Skugor, A., Afseth, N. K., Meuwissen, T. H. E., Hansen, J. Ø.,
Mydland, L. T., & Øverland, M. (2018). Assessment of fecal near-infrared spectroscopy to
predict feces chemical composition and apparent total-tract digestibility of nutrients in pigs.
Journal of Animal Science, 96, 2826–2837. https://doi.org/10.1093/jas/sky182



7 Smart Pig Nutrition in the Digital Era 197

Niu, Q., Li, P., Hao, S., Zhang, Y., Kim, S. W., Li, H., Ma, X., Gao, S., He, L., Wu, W., Huang, X.,
Hua, J., Zhou, B., & Huang, R. (2015). Dynamic distribution of the gut microbiota and the
relationship with ap- parent crude fiber digestibility and growth stages in pigs. Scientific
Reports, 5, 9938–9938. https://doi.org/10.1038/srep09938

Noblet, J., Shi, X. S., & Dubois, S. (1993). Energy cost of standing activity in sows. Livestock
Production Science, 34, 127–136.

Noel, S. J., Jørgensen, H. J. H., Bach Knudsen, K. E. (2020). The development of models to predict
the nutritional value of feedstuffs and feed mixture using NIRS. Poster (PDF Available) January
2020 Feed-a-gene final meeting. https://doi.org/10.13140/RG.2.2.34182.32328

Oliviero, C., Pastell, M., Heinonen, M., Heikkonen, J., Valros, A., Ahokas, J., Vainio, O., &
Peltoniemi, O. A. T. (2008). Using movement sensors to detect the onset of farrowing.
Biosystems Engineering, 100(2), 281–285. https://doi.org/10.1016/j.biosystemseng.2008.
03.008

Peña Fernández, A., Norton, T., Youssef, A., Exadaktylos, V., Bahr, C., Bruininx, E., Vranken, E.,
& Berckmans, D. (2019). Real-time modelling of individual weight response to feed supply for
fattening pigs. Computers and Electronics in Agriculture, 162, 895–906. https://doi.org/10.
1016/j.compag.2019.05.046

Piñeiro, C., Morales, J., Rodríguez, M., Aparicio, M., Manzanilla, E. G., & Koketsu, Y. (2019). Big
(pig) data and the internet of the swine things: A new paradigm in the industry. Animal
Frontiers, 9(2), 6–15. https://doi.org/10.1093/af/vfz002

Pomar, J., López, V., & Pomar, C. (2011). Agent-based simulation framework for virtual
prototyping of advanced livestock precision feeding systems. Computers and Electronics in
Agriculture, 78, 88–97. https://doi.org/10.1016/j.compag.2011.06.004

Pomar, C., Pomar, J., Dubeau, F., Joannopulos, E., & Dussault, J. P. (2014). The impact of daily
multiphase feeding on animal performance, body composition, nitrogen and phosphorus
excretions, and feed costs in growing–finishing pigs. Animal, 8(5), 704–713. https://doi.org/
10.1017/S1751731114000408

Ramaekers, P., Huiskes, J., Verstegen, M., den Hartog, L., Vesseur, P., & Swinkels, J. (1995).
Estimating individual body weights of group-housed growing-finishing pigs using aforelegs
weighing system. Computers and Electronics in Agriculture, 13(1), 1–12. https://doi.org/10.
1016/0168-1699(95)00009-S

Remus, A., del Castillo, J. R. E., & Pomar, C. (2020a). Improving the estimation of amino acid
requirements to maximize nitrogen retention in precision feeding for growing-finishing pigs.
Animal, 14, 2032–2041. https://doi.org/10.1017/S1751731120000798

Remus, A., Hauschild, L., Methot, S., & Pomar, C. (2020b). Precision livestock farming: real-time
estimation of daily protein deposition in growing–finishing pigs. Animal, 14, s360–s370. https://
doi.org/10.1017/S1751731120001469

Remus, A., Hauschild, L., & Pomar, C. (2020c). Simulated amino acid requirements of growing
pigs differ between current factorial methods. Animal, 14, 725–730. https://doi.org/10.1017/
S1751731119002660

Renaudeau, D., Gilbert, H., & Noblet, J. (2011). Effect of climatic environment on feed efficiency in
swine. In J. F. Patience (Ed.), Feed efficiency in Swine (pp. 183–210). Wageningen Academic
Publishers.

Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L., & Collier, R. J. (2012).
Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal,
6, 707–728. https://doi.org/10.1017/S1751731111002448

Ringgenberg, N., Bergeron, R., & Devillers, N. (2010). Validation of accelerometers to automati-
cally record sow postures and stepping behaviour. Applied Animal Behaviour Science, 128,
37–44. https://doi.org/10.1016/j.applanim.2010.09.018

Rubio, C. P., Mainau, E., Cerón, J. J., Contreras-Aguilar, M. D., Martínez-Subiela, S., Navarro, E.,
Tecles, F., Manteca, X., & Escribano, D. (2019). Biomarkers of oxidative stress in saliva in pigs:
analytical validation and changes in lactation. BMC Veterinary Research, 15(1), 144. https://doi.
org/10.1186/s12917-019-1875-z



198 L. Brossard et al.

Scholz, A. M., Bünger, L., Kongsro, J., Baulain, U., & Mitchell, A. D. (2015). Non-invasive
methods for the determination of body and carcass composition in livestock: Dual-energy X-ray
absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited
review. Animal, 9, 1250–1264. https://doi.org/10.1017/S1751731115000336

Sellier, N., Guettier, E., & Staub, C. (2014). A review of methods to measure animal body
temperature in precision farming. American Journal of Agricultural Science and Technology,
2, 74–99.

Silva, M., Ferrari, S., Costa, A., Aerts, J. M., Guarino, M., & Berckmans, D. (2008). Cough
localization for the detection of respiratory diseases in pig houses. Computers and Electronics
in Agriculture, 64, 286–292. https://doi.org/10.1016/j.compag.2008/05/024

Spoliansky, R., Edan, Y., Parmet, Y., & Halachmi, I. (2016). Development of automatic body
condition scoring using a low-cost 3-dimensional Kinect camera. Journal of Dairy Science,
99(9), 7714–7725. https://doi.org/10.3168/jds.2015-10607

Swantek, P. M., Marchello, M. J., Tilton, J. E., & Crenshaw, J. D. (1999). Prediction of fat-free
mass of pigs from 50 to 130 kilograms live weight. Journal of Animal Science, 77(4), 893–897.
https://doi.org/10.2527/1999.774893x

Symeou, V., Leinonen, I., & Kyriazakis, I. (2014). Modelling phosphorus intake, digestion,
retention and excretion in growing and finishing pigs: Model description. Animal, 8,
1612–1621. https://doi.org/10.1017/S1751731114001402

Tan, Z., Yang, T., Wang, Y., Xing, K., Zhang, F., Zhao, X., Ao, H., Chen, S., Liu, J., & Wang,
C. (2017). Meta- genomic analysis of cecal microbiome identified microbiota and functional
capacities associated with feed efficiency in Landrace finishing pigs. Frontiers in Microbiology,
8, 1546. https://doi.org/10.3389/fmicb.2017.01546

Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57–60. https://doi.org/10.1080/
00431672.1959.9926960

Tscharke, M., & Banhazi, T. M. (2013). Review of methods to determine weight, size and
composition of livestock from images. Australian Journal of Multi-Disciplinary Engineering,
10(1), 1–17. https://doi.org/10.7158/14488388.2013.11464860

Van der Peet-Schwering, C. M. C., Verschuren, L. M. G., Hedemann, M. S., Binnendijk, G. P., &
Jansman, A. J. M. (2020). Journal of Animal Science, 98(6), 1–13. https://doi.org/10.1093/jas/
skaa180

vanMilgen, J., Valancogne, A., Dubois, S., Dourmad, J. Y., Seve, B., & Noblet, J. (2008). InraPorc:
A model and decision support tool for the nutrition of growing pigs. Animal Feed Science and
Technology, 143(1-4), 387–405. https://doi.org/10.1016/j.anifeedsci.2007.05.020

Wang, Y., Yang, W., Winter, P., & Walker, L. (2008). Walk-through weighing of pigs using
machine vision and an artificial neural network. Biosystems Engineering, 100(1), 117–125.
https://doi.org/10.1016/j.biosystemseng.2007.08.008

Wathes, C. M., Kristensen, H. H., Aerts, J. M., & Berckmans, D. (2008). Is precision livestock
farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea
or pitfall? Computers and Electronics in Agriculture, 64(1), 2–10. https://doi.org/10.1016/j.
compag.2008.05.00

Wegner, K., Lambertz, C., Das, G., Reiner, G., & Gauly, M. (2014). Climatic effects on sow fertility
and piglet survival under influence of a moderate climate. Animal, 8, 1526–1533. https://doi.org/
10.1017/S1751731114001219

Wegner, K., Lambertz, C., Das, G., Reiner, G., & Gauly, M. (2016). Effects of temperature and
temperature-humidity index on the reproductive performance of sows during summer months
under a temperate climate. Animal Science Journal, 87(11), 1334–1339. https://doi.org/10.
1111/asj.12569

Werkheiser, I. (2018). Precision livestock farming and farmers’ duties to livestock. Journal of
Agricultural and Environmental Ethics, 31, 181–195. https://doi.org/10.1007/s10806-018-
9720-0



7 Smart Pig Nutrition in the Digital Era 199

Whittemore, C. T., & Fawcett, R. H. (1974). Model responses of the growing pig to the dietary
intake of energy and protein. Animal Production, 19(2), 221–231. https://doi.org/10.1017/
S0003356100022789

Wouters, P., Geers, R., Parduyns, G., Goossens, K., Truyen, B., Goedseels, V., & Van der Stuyft,
E. (1990). Image-analysis parameters as inputs for automatic environmental temperature control
in piglet houses. Computers and Electronics in Agriculture, 5(3), 233–246. https://doi.org/10.
1016/0168-1699(90)90014-G

Wu, J., Tillett, R., McFarlane, N., Ju, X., Siebert, J. P., & Schofield, P. (2004). Extracting the three-
dimensional shape of live pigs using stereo photogrammetry. Computers and Electronics in
Agriculture, 44(3), 203–222. https://doi.org/10.1016/j.compag.2004.05.003

Wurtz, K., Camerlink, I., D’Eath, R. B., Peña Fernandez, A., Norton, T., Steibel, J., & Siegford,
J. (2019). Recording behaviour of indoor-housed farm animals automatically using machine
vision technology: A systematic review. Plos One, 14(12), e0226669. https://doi.org/10.1371/
jour-nal.pone.0226669

Zhang, G. H., Pomar, C., Pomar, J., & del Castillo, J. R. E. (2012). L’alimentation de précision chez
le porc charcutier: Estimation des niveaux dynamiques de lysine digestible nécessaires à la
maximisation du gain de poids (In French.). Journées de la Recherche Porcine, 44, 171–176.



Smart Poultry Nutrition 8
Martin J. Zuidhof, Mohammad Afrouziyeh, Sasha A. S. van der Klein,
and Jihao You

Abstract

The growing world population will dramatically increase demand for poultry
meat and eggs, which are efficient, affordable, and high-quality protein sources.
Substantial innovation will be required for poultry producers to meet this demand
in a socially responsible way. Despite their high potential value, the real power of
sensor technologies, data acquisition, data processing, and automation is only
beginning to be harnessed by the agriculture sector. The poultry industry is likely
to undergo a fundamental transformation to precision livestock farming and smart
poultry nutrition, which will use big data to optimize real-time management and
feeding decisions. Although smart poultry nutrition can be applied at a flock
level, even greater improvements can be achieved by focusing on individuals.
This requires a shift from the current flock-level focus. Smart poultry nutrition
systems collect real-time information on the individual animal and its environ-
ment, and implement a feeding decision to provide the right amount of the right
feed to the right bird at the right time. This allows smart poultry nutrition systems
to immediately and automatically deal with the nutritional needs of birds that vary
in body weight, growth rate, or health status. From a nutritional perspective, the
primary objective is to match nutrient supply to nutrient requirements. Nutrient
requirements can be inferred from each animal’s unique age, composition, and
stage of production. Optimal feeding decisions should take into account the
current status of each animal, market conditions, environmental impact, and
animal welfare considerations. These factors can be linked in models that inte-
grate nutrient intake to animal response predictions to optimize feeding decisions,
which can then be implemented by precision feeding systems. Although it would
be advantageous to maneuver the individual bird (smallest manageable unit)
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toward a desired outcome, further research quantifying individual nutrient
responses and variation thereof is needed. Poultry supply chains will need to
collaborate with scientists in various fields, including agricultural and environ-
mental sciences, statistics, economics, computing science, and engineering to
tackle the new questions and hypotheses revealed by a new smart poultry
nutrition paradigm.
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8.1 Introduction

Precision livestock farming (often abbreviated PLF) is an enterprise-level manage-
ment system based on continuous automatic real-time monitoring, either at a group
level or ideally, at the level of an individual animal. Sensor information is used first
to inform production decisions and then to automatically implement actions to
improve efficiency, animal health and welfare, and optimize the environmental
impact of livestock production (Berckmans, 2014; Astill et al., 2020). Precision
feeding (often abbreviated PF) is providing the right animal the right amount of the
right feed at the right time. Smart poultry nutrition (SPN) is a system that makes use
of data from sensors to determine what an animal needs in real-time, and being
coupled to a feed delivery apparatus makes the right quantity of feed of the desired
composition available to a domesticated bird or group of birds. Smart poultry
nutrition and precision feeding are therefore subsets of precision livestock farming.
Arable land and water resources are diminishing while demand is growing for
transparency in food production processes. Sustainable intensification, including
precision livestock farming innovations, must be adopted (Elferink & Schierhorn,
2016) and will be instrumental in feeding the growing world population in a socially
responsible way.

Smart poultry nutrition uses state-of-the-art sensor, data acquisition, data sharing,
and data processing technologies to automate poultry feeding. It makes use of data
collected in real-time to implement optimal poultry feeding strategies. With few
exceptions, smart poultry nutrition technologies are at a pre-commercial stage.
However, the poultry industry stands to benefit greatly from precision livestock
farming and smart poultry nutrition; a fundamental industry transformation seems
inevitable. The poultry industry and the research community is currently focused on
feeding and managing large flocks. Feeding and managing individuals, which
Halachmi and Guarino (2016) termed “the per animal approach”, will yield further
optimization. Collecting information on the individual allows us to tailor feeding



decisions to appropriately address variation in body weight (BW), rates of growth
and development, and health. Sensing the current status and calculating the trajec-
tory and production level of an animal or group of animals informs models that,
when coupled with an appropriate automated system, can implement tailored feeding
and management decisions that maneuver each animal more efficiently toward the
desired economic, environmental, and social outcomes.
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A primary goal of smart poultry nutrition is to match nutrient intake with nutrient
requirements. Nutrient requirements are dynamic, changing with age, stage and level
of production, reproductive status, health status, and environmental conditions.
Meeting nutrient requirements in real-time will minimize nutrient intake, which
will reduce the cost of feeding, and minimize excretion of excess P and N (Andretta
et al., 2016; Pomar et al., 2011), and production and emission of greenhouse gases,
largely from manure (EPA, 2022). Minimizing nutrient wastage would reduce the
inputs required to feed poultry and, in turn, the arable land base required to produce
poultry feedstuffs, and reduce energy and water required for crop production.
Precision livestock farming also aims to identify the health and welfare needs of
each individual animal. Precision livestock farming and smart nutrition systems
allow managers to tend to these needs in real-time, while reducing labor costs and
improving the welfare of animals. Assuming that the cost of required technologies
will become low enough to justify use, smart poultry nutrition as a part of a precision
poultry farming system has the potential to significantly increase the sustainability of
poultry production.

8.2 Current State of Smart Poultry Nutrition

Precision feeding depends on a desired objective. This dictates the composition
and/or quantity of feed required to advance an individual from its current state to a
final desired outcome. Smart poultry nutrition systems employ sensors that measure
factors like the identity of an individual bird, body weight, body or environmental
temperature, or light intensity. These data inform the system of a bird’s current state,
and an algorithm uses that information to estimate the nutrients required to reach the
next desired state. In real-time, a feed delivery apparatus automatically implements
the most appropriate feeding decision.

The fields of precision feeding and smart poultry nutrition are in their infancy.
Until recently, monitoring of individual feed intake has been limited to manual data
collection from individually caged birds, and only in research settings. Development
of systems to automate the monitoring of feed and water intake has progressed
slowly over the last 2 decades. Puma et al. (2001) presented one of the first systems
for automated monitoring BW, and feed and water intake of individually caged
birds. This system generated continuous high-resolution data that allowed the
authors to quantify individual variation in feed and water intake. Bley and Bessei
(2008) developed the first system for monitoring individual feed intake and feeding
behavior of poultry (ducks) housed in groups. These authors identified individual
ducks using radio frequency identification (RFID) transponders attached to the wing.



Hybrid Turkeys, a commercial poultry breeding company, developed a similar
system for real-time monitoring of individual feed intake and BW of group housed
turkeys (Tu et al., 2011). Its primary intended use was to measure feed conversion
ratio (FCR), for use in genetic selection programs. Most primary breeders have
similar systems for monitoring individual feed intake, but have kept their technology
proprietary. Thus, a lot of public research and development is still needed to realize
the environmental and financial benefits of smart poultry nutrition on a global
commercial scale.
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Aerts et al. (2003) reported a system to grow broilers on a pre-determined growth
trajectory by daily monitoring of BW, and model-based feed allocation decisions.
This flock-level system used automated BW scales that were used to implement feed
allocations intended to limit growth according to a pre-defined growth trajectory.
Also at a group level, Aydin et al. (2015) developed a system for real-time monitor-
ing of broiler chicken feed intake using sound analysis of birds pecking at a feeder.
An advantage of this system was the ability to monitor feed intake in a non-invasive
way, but the system was not able to collect feed intake data at an individual bird
level.

More recently, Zuidhof et al. (2017) developed a system for controlling feed
intake and monitoring BW and feed intake of individual chickens in a free-run
setting (Fig. 8.1). The system was designed for broiler breeders, but has also been
used successfully for research with broilers (van der Klein et al., 2020c), layers (van
der Klein et al., 2020b), and heritage chicken lines (Afrouziyeh et al., 2021).
Whereas other systems to this point could monitor feed intake or BW or both, this
precision feeding system was unique in its ability to control feed intake, which is
crucial for implementing feeding decisions in a smart poultry nutrition system. Using
this precision feeding system, the research team has demonstrated consistently the
ability to grow group-housed broiler breeder pullets and cockerels with a BW

Fig. 8.1 Precision feeding system capable of controlling feed intake, and monitoring BW and feed
intake of individual group-housed birds



coefficient of variation of under 2% by the time of photostimulation (van der Klein
et al., 2018a, b; Zuidhof, 2018). This was accomplished by measuring the BW of
each broiler breeder in real-time, and allowing access to feed only when the birds
weighed less than the predefined target BW. Mika et al. (2021) recently disclosed
another pre-commercial system for control and monitoring of feed intake for indi-
vidual loose-housed poultry. Zuidhof et al. (2019) have further developed their
precision feeding system to provide up to four different diets, based on the unique
attributes of each bird that enters a feeding station. The first studies are currently
underway with the objective of investigating the impact of dietary metabolizable
energy levels and BW trajectories on body composition of hens, and subsequent
sexual maturation rates and egg production. Importantly, the same group has devel-
oped a sensor-equipped nest box to record egg production at the level of each
individual hen.
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8.3 Matching Nutrient Supply to the Nutrient Requirements
of Poultry

Classically, the concept of a nutrient requirement refers to the minimum level of a
nutrient that produces the maximum response in a specific response variable. In this
chapter, however, we will use a more practical definition of requirement, that is, the
expected quantity of a nutrient required to achieve a specific outcome. For example,
in this chapter the metabolizable energy (ME) requirement of a broiler breeder refers
to the amount of energy that we expect a bird of a defined BW to consume to
maintain itself, to grow at a defined rate, and to produce a defined daily egg mass.
Similarly, in this chapter the lysine requirement of a broiler refers to the amount of
lysine that must be consumed by the bird to maintain itself and grow at a defined rate.

The ultimate goal of feed formulation is to perfectly match the nutrients supplied
in real-time with the nutrient requirements of each individual bird, thus minimizing
nutrient waste. Phase feeding is a pragmatic but imperfect attempt to realize this goal
commercially. Phase feeding is the feeding of several diets, each for a short period of
time to roughly meet age-specific nutrient requirements. It accommodates logistical
constraints around feed manufacture, delivery, and storage, but in terms of nutrient
efficiency, it leaves a lot of room for improvement. Optimal dietary amino acid
(AA) levels decrease with age in growing meat-type poultry. In order not to limit
growth potential, dietary nutrients such as lysine are provided at approximately the
average level required during each phase. However, nutrients are almost always
either under- or overfed using this approach.

If the duration of each phase were to be reduced, overfeeding of nutrients could be
reduced substantially. Figure 8.2 illustrates theoretically how a reduction in phase
duration from 14 days to 1 day would reduce the overfeeding of nutrients while
simultaneously allowing the animals to express their genetic growth potential.
Sensors can identify an individual and measure its BW in real-time. From this
data, a precision feeding system could calculate growth rate and adjust the ratios
of nutrients provided to each individual bird to meet its real-time nutrient needs for



maintenance and growth. One practical way of adjusting feed formulation over the
growing period would be to use a precision feeding system to blend two or more
diets varying in energy:nutrient ratios, so as to provide the correct nutrient balance in
real-time.
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Fig. 8.2 Phase feeding associated inefficiencies due to excess provision of nutrients or unex-
pressed potential. The dotted line represents the nutrient requirement of broilers over a 6-week
period. The dashed line indicates the lysine provided in a 3-phase feeding program. The solid black
line indicates lysine provided using a daily adjustment in formulation. The area contained between
the dotted line and the other lines represents inefficiencies due to excess provision of nutrients or
unexpressed potential productivity

8.3.1 Smart Diet Formulation

Feed formulation is a complex process in which not only nutritional but also
economic, environmental, and social factors must be taken into consideration.
Rather than focusing on nutrient requirements in the classic sense (the minimum
nutrient level required to maximize a response), good information about growth and
yield responses to increasing nutrient levels is paramount for optimization. The NRC
committee (NRC, 1994) identified the value of using mathematical models to
identify optimal concentrations of dietary nutrients and energy to achieve poultry
production goals. Practically, it is important to deal with variability in market
conditions and feed ingredient composition. Because of nutrient variability in
feedstuffs, commercial nutritionists often over supply nutrients (Symeou et al.,
2016). This ensures that they meet their legal obligation to provide at least the
minimum level of nutrients indicated for specific diets, and typically means that
animals meet expected levels of productivity, but at an environmental and economic
cost due to excretion of excess nutrients.

Fluctuating market conditions affect feed ingredient cost and product value.
These, in turn, impact optimal dietary nutrient concentrations and ratios. Thus, it is
essential to define the product (e.g., a broiler of a certain weight), and the anticipated
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economic value of the product, including each sub-component. Optimization is only
possible when both nutrient requirements and nutrient availability from feedstuffs is
known. Thus, smart poultry nutrition requires both mathematical characterization of
nutrient responses and a precise knowledge of available nutrients in feedstuffs.
Sensor technology such as near infrared spectroscopy (NIRS), which is used to
predict proximate nutrient analysis of feed ingredients, is an important element of a
smart poultry nutrition system.
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8.3.2 Variability in Nutrient Composition of Feedstuffs

Nutrient composition of feed ingredients can vary due to plant genetics and environ-
mental conditions during crop production. If such variability is not considered,
nutrients can easily be under- or over-supplied in livestock diets (Symeou et al.,
2016). Unbalanced diets increase feeding costs by reducing animal performance and
efficiency and increase emission or excretion of unused nutrients that contribute to
environmental pollution. Therefore, variability in feed ingredient nutrient composi-
tion and availability must be considered when formulating diets. There are several
approaches to deal with nutrient variability in feed formulation.

8.3.3 Margin of Safety and Stochastic Programming

Commercial diets are usually formulated by linear programming software based on
expected nutrient levels of each ingredient. These are often unique for each formu-
lator, and based on ingredient composition tables, experience, and batch analysis.
Assuming a normal distribution in the nutrient levels of feedstuffs, formulating diets
based on the assumption of a fixed (expected, or mean) nutrient concentration would
result in under-supply of nutrients half of the time. Therefore, feed formulators use
safety margins to prevent underfeeding nutrients. This reduces the risk of
underperformance but increases the risk of excessive nutrient excretion.

A margin of safety approach was suggested by Nott and Combs (1967) as
simple way to adjust nutrient matrices to compensate for nutrient variability. They
suggested subtracting one-half of a standard deviation (SD) from mean nutrient
values. This approach increases the probability of achieving the desired nutrient
level from 50% to approximately 69%, but also increases the likelihood of
oversupplying nutrients and cost. This strategy can be adapted. Stochastic program-
ming is a programming method that incorporates variability and uses this inherent
uncertainty to predict the likelihood of specific outcomes (Pesti & Seila, 1999).
Roush et al. (2007) demonstrated that in a normal situation where nutrient variability
exists, stochastic programming enabled a formulator to precisely match a desired
probability of meeting the specified nutrient level. Hence, stochastic programming
can be used to minimize over-formulation while managing the risk of under-
performance of the animals being fed.
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8.3.4 Grain Handling

Separation of carloads of a feed ingredient delivered to a feed mill based on the
average nutrient content into above- or below-average batches is often used to
reduce nutrient variability. An approximate nutrient analysis can be easily done
using real-time NIRS technology. Alhotan et al. (2014) indicated that crude protein
variability of feedstuffs can be reduced at least 50% by separating each of the
ingredient batches based on the average nutrient into 2 bins; the reduction in crude
protein variability with the 2-bin method was a result of reduced variability of its
components, AA, and non-protein-containing compounds. As this approach can
reduce the SD of crude protein in each batch, the benefit can be surpassed using a
stochastic programming method that takes the SD of nutrients into account in feed
formulation practice. Therefore, it is recommended to separate batches based on their
average nutrient content, and use these batches as separately defined ingredients.
This would reduce performance variation and increase the probability of achieving
the desired nutrient level whether or not a stochastic feed formulation method
is used.

8.3.5 ‘Nutrient Response’ Thinking Is Critical to Deal
with Marketplace Variability

Nutrient requirement specifications published in primary breeder management
guides, the National Research Council (NRC, 1994), and in many other books are
fixed dietary nutrient levels that maximize a performance variable but do not
necessarily yield maximum profits. Maximum performance is ambiguous for several
reasons. First, there are many potential response criteria related to the dietary
concentration of nutrients (e.g., growth rate, yield, egg production, or health and
welfare). Second, nutrient requirements are usually defined based on group (flock)
responses. In reality, individual birds have different nutrient requirements because of
their unique genotype, body composition, and stage of life (Andretta et al., 2016;
Archer et al., 1999), and the environments they are exposed to. A closer match of
nutrient supply to unique nutrient requirements could be achieved in some cases by
creating small groups of animals with similar nutrient requirement (e.g., grading
broiler breeders based on their BW in a flock). This could reduce nutrient excretion
and increase profit. A shift in thinking from flock-level to individual animal nutrient
responses is necessary to realize the benefits of smart poultry nutrition (Zuidhof,
2020b).

Roland et al. (1998) suggested that nutrient requirements are not fixed, but they
vary when the objective is to maximize profit. Maximizing performance and
maximizing profit are different objectives. Practical feed formulators aim to define
a least-cost combination of ingredients that satisfies a set of nutrient specifications
that are designed to meet the nutrient needs of the average animal over a given period
of time. This is done by including constraints, usually a minimum level of a nutrient
that must be incorporated into the diet. In the absence of nutrient response data, the



art of feed formulation often depends on the formulator’s experience about how
much lower specific nutrient levels can be set without seriously compromising
performance. For nutrients that are not limiting or are inexpensive, no constraints
are needed. When feed is formulated in this way, some nutrients may be included
above the required level, with excess nutrient excretion to the environment, while
simultaneously missing the economic optimum (Castrodeza et al., 2005). Thus,
optimization must depend on a carefully constructed objective function that simul-
taneously includes profit, environmental sustainability, and social responsibility. A
shift in thinking has already begun from the concept of “nutrient requirement” to
“nutrient response” (Morris, 1983), however this has been slow to gain traction in
the poultry realm.
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Considering that there are acceptable (below maximum) levels of performance
over a range of energy and nutrient requirements, it is reasonable to let product value
and ingredient prices dictate appropriate nutrient levels when formulating the most
economical diet. Wu et al. (2005) pointed out that a wide range of dietary ME levels
(2684–2992 kcal/kg) are used by the egg industry. Using a wide range of dietary ME
levels (2535–3035 kcal/kg) for laying hens, Afrouziyeh et al. (2011) developed a
nonlinear optimization model for dietary energy. They clearly showed that egg
prices and feed ingredient costs affected the dietary ME level that maximized profit.
Similarly, total sulfur AA levels required for maximum profit varied from 562 to
859 mg/d for DeKalb Delta hens (Ahmad & Roland, 2003), depending upon feed
ingredient cost and egg prices. The relative cost of energy rich vs. protein rich
ingredients in particular can substantially affect the optimal formulation.

8.4 Mathematical Models to Aid Smart Poultry Nutrition

Models help us understand systems by linking inputs and outputs. Much research is
often required to deduce relevant mathematical functions, which describe the nature
of relationships between parts of a system, and coefficients, which describe the
relative contribution of specific characteristics of the relationship. Mathematical
models are an integral part of smart poultry nutrition. Mathematical modeling is a
tool to represent and understand parts of a system by simplification, integration, and
linkage of parts. The simulated unit can be small (e.g., an individual chicken) or
large (a flock, a farm, or feed mill). The mathematical models representing the
functionality of the system can be used to generate and test scientific hypotheses.
Mathematical models have also been used to develop tools for predictive and
decision-making purposes (Haag & Kaupenjohann, 2001). With the increasing
availability of big data within the poultry industry, there is an opportunity to
integrate information from various sources and develop practical tools. The start of
this integration of information lies in understanding the concept of nutrient conver-
sion into final products, where mathematical models can help understand nutrient
requirements and nutrient intake.

There are two main types of mathematical models: (1) empirical or statistical
models and (2) mechanistic models. Empirical models are mathematical equations



validated using data (Bonate, 2011) and are often used to understand how discrete
factors (treatments) impact performance results in poultry production (Zoons et al.,
1991). Empirical models are most useful when the parts of the mathematical
equation can be intrinsic to the reality it describes; parameters represent a real
component of the system (Thakur, 1991). This means that the parameters in these
models are biologically relevant and directly applicable in practice. This also
facilitates the development of mechanistic models from empirical work (Thakur,
1991). In the field of nutrition, mechanistic models simulate underlying biological
mechanisms or processes. When parameter values in these models change over time,
the models are referred to as dynamic. Such models allow for the evaluation of
changes and dynamics in the system of interest (e.g., Kebreab et al., 2009). In the
search for sustainable poultry nutrition practices, both types of models are needed to
understand the link between performance, nutrient requirements, and nutrient intake.
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8.4.1 Growth and Egg Production

Nutrient requirements of poultry depend on many factors such as genotype, growth
potential, body size, environment, health status, age, and physiological state (Leeson
& Summers, 2001). In general, the goal for meat production is to optimize growth of
lean tissue, often with emphasis on breast muscle tissue. Although egg production is
a paramount consideration for determining nutrient requirements of laying hens,
body weight maintenance and the rate of gain also contribute significantly to nutrient
requirements.

To this end, growth models are used to study BW relative to age, and (allometric)
maturation rate of various body parts relative to BW (Hurwitz et al., 1991; Zuidhof
et al., 2014; van der Klein et al., 2017). Well-fitting growth models for meat-type
poultry can aid the prediction of nutrient requirements and thus feed intake
(Emmans, 1981), or of optimal slaughter age, and accommodate differences in
growth responses due to changes in environmental conditions (EFG Software,
2019). The Gompertz growth function (Gompertz, 1825) or modifications thereof
(Tjørve & Tjørve, 2017; Emmans, 1981) have also been used to describe the weight–
age relationship for body parts, but these have not always fitted well, depending on
the body part (Hurwitz et al., 1991). Huxley’s equation (Huxley & Teissier, 1936)
has been more commonly used to describe the body part weight – BW relationship
(Zuidhof, 2005). With improvement of computational tools in the past years,
multiphasic models and multiphasic random regression models have been proposed
to estimate individual variation in parameter estimates (Kwakkel et al., 1993; Wang
& Zuidhof, 2004; van der Klein et al., 2020b; Zuidhof, 2020a). Random regression
models are gaining in popularity because variation around certain parameters can be
attributed to an individual. As such, not only treatment effects but variation in model
coefficients due to unique individual differences can also be estimated. A better
understanding of the growth and development of individuals allows better prediction
of the nutrients required to support that growth.
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The goal for growth in poultry reared for egg production is to optimize physical
characteristics such as body composition to support egg production. For that pur-
pose, multiphasic models could be used, which include both the rearing and adult
phase (Kwakkel et al., 1993; Zuidhof, 2020a). However, the exact relationship
between growth curve shape (model parameter estimates) and egg production
remains to be elucidated. In broiler breeders, there is a similar challenge to achieve
an optimal body composition, but the challenge to identify an optimal growing
strategy is more complicated. Broiler breeder feed restriction programs need to be
redefined after decades of almost no change in body weight recommendations in
spite of continuous genetic increases in body weight, lean yield, and efficiency.
Zukiwsky et al. (2021b) and Afrouziyeh et al. (2020) designed experiments in which
they used multiphasic Gompertz equations to design strategic new growth profiles
that were precisely implemented with a precision feeding system. Using biologically
meaningful parameters, they altered the amount and timing of pre-pubertal and
pubertal phase BW gains. A major advancement in their work was the use of
continuous model parameters to develop novel growth profiles, and this was the
first true attempt at optimization of growth trajectories.

Compared to growth models, fewer egg production models have been published.
Narinc et al. (2014) reviewed mathematical models of egg production curves and
concluded that development of models with biologically meaningful parameters is
needed. In addition, they stressed that up to now, most models have used flock level
data, instead of individual egg production results for model development and fit. If
biologically meaningful variation around curve fit can be determined, breeding
efforts could focus not on egg production itself but also on egg production curve
shape. More recently, Bendezu et al. (2019) and Sakomura et al. (2019) took more
mechanistic approaches by modeling sexual maturation, egg components, and
ovulatory cycles to predict egg weight, rate of lay, and nutrient requirements in
egg-laying poultry.

8.4.2 Energy and Nutrient Requirements

Because it is useful to employ the concept that animals eat for the purpose of meeting
their energy (Emmans, 1981) and other nutrient requirements (Gous, 2016), energy
and nutrient partitioning models are useful tools to predict feed intake. In such
models, nutrient requirements are inferred by nonlinear functions whose parameters
best fit (minimize variation) the relationship between ME intake and its ultimate
fates, such as maintenance, storage (BW gain), and egg production. The aim is to
maximize the energy available for productive purposes such as growth or egg
production. This might be achieved by reducing energy requirements for mainte-
nance through nutritional strategies such as targeted restricted feeding, or through
breeding practices. These models have their origin in Byerly et al. (1980) and
Schulman et al. (1994). Romero et al. (2009b) further developed these into nonlinear
mixed models, which allowed for estimation of maintenance requirements for
individual birds. This is a critical advancement for smart poultry nutrition, because



of its “per animal approach.” This approach also provided a novel model-based
efficiency measure, Residual Maintenance Requirement (RMEm), which refers to the
degree to which the ME requirement for maintenance (MEm) of an individual differs
from what would be expected for the average animal in a population. Random
variables (variables that account for variation of individual members of a group)
have been added to energy balance models to account for the effects of age (van der
Klein et al., 2020a), environmental temperature (Romero et al., 2009a; Pishnamazi
et al., 2015), photoperiod (van der Klein et al., 2020a), and nutritional strategies such
as varied energy intake levels (Hadinia et al., 2018) on maintenance requirements.
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Sakomura et al. (2015) used a similar factorial approach to estimate AA
requirements of broilers, based on body protein, feather loss, feather protein, rate
of deposition of feather-free body protein, and rate of deposition of feathers. The
Reading Model (Fisher et al., 1973) has been widely used to predict AA
requirements of laying hens. Further factorial refinement to account for requirements
for body maintenance (Sakomura et al., 2015), yolk, albumen, and shell on laying
and non-laying days would enhance prediction of AA requirements for laying hens,
but requires further research. Reis et al. (2018) evaluated adjustment of the factorial
models of Sakomura et al. (2015) to account for a distinct efficiency of utilization for
AA used for feather-free body and feathers. Sakomura et al. (2019) integrated
several linear models from the literature, including those predicting AA and energy
requirements, into a mechanistic model simulating egg production and energy
requirements in laying hens and broiler breeders. They suggested that these simula-
tion models, integrating information on requirements and production levels, could
aid in predicting economic efficiency, and maximizing profitability for each pro-
ducer rather than applying least cost formulation at the feed mill level. The applica-
tion of these AA requirement models would help in optimizing feed composition for
highest productive performance combined with lowest environmental output. For
example, smart poultry nutrition systems could be used to predict real-time AA
requirements for individual birds, similar to an approach used in grow-finish pigs
(Hauschild et al., 2020). However, as Bonato et al. (2016) indicated, studies
investigating mathematical models estimating protein and AA deposition and
requirements are scarce.

Calcium (Ca) and phosphorus (P) requirements are also important with respect to
bone and eggshell metabolism. Kebreab et al. (2009) and de Vries et al. (2010)
reported on the development and evaluation of a mechanistic model of Ca and P
dynamics in layers. The aim of this model was to be a tool to evaluate feeding
strategies for reducing P excretion to the environment. The model predicted an
increase in P retention in bone and egg from 8.4% to 25.4% of digestible P intake
at the lowest and highest concentration of dietary Ca inclusion, respectively.
Subsequent experimental results showed a similar increase from 11.5% to 24.1%,
respectively. Novel precision feeding strategies could also be evaluated using the
aforementioned model. For example, hens could be fed low Ca diets after oviposi-
tion, and higher Ca levels during the afternoon and night when eggs are expected to
be in the shell gland. This approach has been referred to as split feeding (van Emous
& Mens, 2021; Keshavarz, 1998). This approach would minimize mobilization of



Ca from the bone, which would increase hen welfare and reduce P excretion to the
environment. Such a scheme based on actual oviposition times from an integrated
RFID-equipped nest box would allow tailoring of feeding programs for
individual hens.
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Previously, Pomar et al. (2011) concluded that precision-fed grower-finisher pigs
reduced P excretion by 38%. There is a paucity of research on Ca and P dynamics in
broilers. Although improvements are anticipated as a result of a better match
between nutrients supplied and real-time nutrient requirements (see Fig. 8.2), there
is insufficient research characterizing individual bird nutrient requirements to know
how much a smart poultry nutrition approach might reduce environmental P output
in poultry.

8.4.3 Long-Term Effects of Nutrition

Finding an optimal nutritional strategy appears to be a growing problem in commer-
cial egg-type breeds. Layer pullets often reach sexual maturity early, which
compromises their ability to support long-term egg production (Baxter &
Bédécarrats, 2019). Producers are trying to ensure animals have a high enough
energy intake during the short period of pubertal development, while managing
lighting schedules to delay sexual maturation, in an attempt to prevent a negative
energy balance after the onset of lay. A second nutritional challenge is the calcium
and phosphorus balance related to bone and egg-shell metabolism and persistency in
egg-shell quality (Riczu et al., 2004; Molnár et al., 2016). Hence, there is a
considerable difference between nutrient requirements to develop the body for
start of lay (fat deposition, bone development, and reproductive organ development)
and during lay (sustaining egg production and egg quality, reduced body growth;
Kwakkel et al., 1991). Physiological triggers might not initiate the development of
the reproductive tract and egg production in broiler breeders if growth has not
occurred in a balanced manner during the rearing phase (Zuidhof, 2018). These
multifactorial long-term challenges also require assessment of underlying physio-
logical aspects of reproduction (Hanlon et al., 2020), where mathematical models
can also aid in understanding dynamics of reproductive signaling molecules (van der
Klein et al., 2020d). Simulation studies that employ mathematical models to estimate
body growth, egg production, and AA requirements (e.g. Sakomura et al., 2019) will
help the smart poultry nutrition community to develop testable hypotheses that will
undoubtedly contribute to optimizing poultry feeding strategies.

Nutrition can have intergenerational effects in poultry (van Emous et al., 2015;
Dixon et al., 2016). The extent of the reported effects of maternal nutrition on
offspring performance varied (Dixon et al., 2016), but it is clear that small changes
can have significant economic effects in large-scale integrated production systems.
For example, increasing maternal BW on the order of 20% increased male offspring
42-day BW by over 8% (Bowling et al., 2018; Humphreys, 2020; ad libitum fed
offspring). Thus, an integrative system approach to nutritional modeling is needed.
The more complex and multifactorial our systems become, the less likely trends or



relationships will be easily discovered and evaluated. Therefore, further steps may
require adopting machine-learning techniques (see next section).
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Poultry breeding companies have invested in tools to collect big data for individ-
ual phenotyping characteristics important for matching nutrient intake to
requirements, including individual feed intake recording systems and scales that
passively record BW measurements repeatedly. Within the field of animal breeding,
precision nutrition and the related mathematical models are also playing a significant
role. Statistical models, including the sire and animal models, have aided the
estimation of breeding values and selection of the most superior individuals for
many years. Additional computing power and improved models for breeding value
estimation including genetic information has also improved prediction accuracy for
feed efficiency traits such as residual feed intake and FCR (Abdalla et al., 2019).
Berghof et al. (2018, 2019) provide a recent development in adapting animal models
to include factors to estimate breeding values for variation in traits. This aims at
improving the resilience of birds, which would mean, for example, less deviation
from a growth curve after environmental disruption. In addition, the use of crossbred
offspring phenotypes in breeding programs also improves accuracy of breeding
value estimation (Christensen et al., 2015). Most commercial products in the poultry
industry are crosses of pure lines, therefore, selection for crossbred performance,
including feed efficiency, will help move towards more accurate selection pressure
in pure lines.

8.4.4 Further Developments

Most of the studies described above use data collected under controlled
circumstances to develop models to make predictions that support practical
decisions. Many flock-based performance and environmental parameters are already
passively collected using sensor technology. We are on the cusp of having many new
technologies available to aid precision livestock farming and smart poultry nutrition
systems. Some are already affordable, while some sensor technologies are likely
much farther from being commercially feasible. Load cells are already commonly
used to measure BW, and feed and egg weights. In combination with RFID chips and
strategically placed RFID readers, growth trajectories of individuals, individual feed
intakes, and egg weights can be measured. This information informs progress toward
production goals such as flock uniformity, efficiency, egg production, and egg size
management. Effective management of rooster BW can increase mating success, and
increase fertility and chick production (Zuidhof, 2018). Early identification of
injuries or disease can be discovered with these sensors, which can contribute to
welfare improvements. Our research group has developed an RFID-equipped
nesting box that can connect time of lay and egg weights for hens in real-time.
This information can inform within- and between-day nutrient requirements for egg
production in individual hens, increase the effectiveness of split feeding programs,
or increase egg size uniformity. When integrated in a smart poultry nutrition or



precision livestock farming system, it could help to identify and correct egg produc-
tion problems in individual hens.

8 Smart Poultry Nutrition 215

Sensors can be passive, wearable, or even active if they are able to move
throughout a production facility on rails or autonomous mobile robots. Thermistors
and infrared cameras can provide feedback about environmental temperature, or
even peripheral or core body temperature. Activity can be measured by serial image
analysis or accelerometers. Light intensity and spectral analysis can be measured,
and cameras can be used to evaluate feather condition, bird size, and bird movement.
Microphones and audio analysis can be used to detect stress, thermal discomfort, and
the presence of respiratory diseases. These data can be used to refine nutrient
requirement predictions. Sensors can measure airspeed or important environmental
gases such as CO2, O2, NH3, and H2O. Other sensors, though farther from commer-
cial implementation, are being developed to detect skin conductivity or total body
electrical conductivity, which could predict body composition that could be used to
further refine nutrient requirement estimates for individual animals. Even more
remarkable are sensors to detect glucose, bio-nanosensors to detect metabolites,
and sensors to detect pathogens (Neethirajan, 2017). As additional sensors are
added in smart poultry nutrition and precision livestock farming systems, environ-
mental controls and feeding regimes can be adjusted optimally.

Application of scientifically developed models on field data might already pro-
vide insight in discovering relationships between performance, nutrient
requirements, and nutrient intake. It could also provide decision-making tools
based on real-time data and environmental circumstances. It is clear that the models
supporting a sustainable poultry production chain will span across the different
disciplines. It will be necessary to integrate information coming from nutrient
supplier (controlling nutrient balances), poultry producer (controlling environment
affecting nutrient requirements), and breeding companies (providing the genetic
background to adapt to nutritional circumstances).

8.5 Big Data

Big data refers to the huge volumes of data that are generated automatically every
day by sensors and computers. The Internet of things (IoT), which consists of
devices with embedded sensors connected to a global network, is a huge infrastruc-
ture that makes these big data accessible. Big data is often under- or un-utilized, yet it
has the potential to transform business decisions. Big data also refers to a field of
processing and analyzing these vast amounts of data. It can be defined in three
dimensions: “volume,” “variety,” and “velocity,” which relate to quantity, form
(e.g., text, audio, and images), and the speed at which data is generated (Berman,
2013). Big data relies on high-performance hardware and software to capture, form,
manage, store, share, and visualize the data. Big data analysis can extract important
information that can reveal hidden patterns and correlations. To deal with big data,
analytical techniques such as machine learning and data mining are used.
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In the poultry industry, the field of genetics and breeding has been the only field
where big data has been extensively leveraged (Astill et al., 2020). Development has
been slowed by lack of digitalization, low or unclear value propositions, or low
perceived return-on-investment (Ellis et al., 2020). Collecting data in a conventional
way (e.g., recording BW and feed intake manually every 2 weeks in one trial) does
not meet the definition of big data. However, data can be accumulated from a large
number of trials for different flocks at different locations over a long period of time to
generate huge datasets that might be used for big data analysis. Deployment of
precision livestock farming systems that continuously monitor health, welfare,
production, and environmental impact of individual animals opens the door of
opportunity for big data analysis. Van Hertem et al. (2017) provided one of the
first examples of precision livestock farming application in the poultry industry. In
their study, five broiler farms were equipped with cameras, microphones, and
climate and feed control, and a number of variables pertaining to the environment,
behavior, and productivity were measured. They noted that although farmers were
able to visualize the data, further development and use of the data for generating
production indices or smart warning systems would be desirable. Another example is
a precision feeding system for broiler breeders that aims to increase flock uniformity
while precisely implementing desired growth trajectories (Zuidhof et al., 2019). The
system uses RFID to monitor real-time BW and feed intake data while allocating
feed to individuals only when needed. The precision feeding system generates data
from individuals at a high speed compared to traditional techniques. Zuidhof (2018)
reported the birds visited a precision feeding station on average 61 times per day,
which is a relatively high rate of data flow. Feeding and feed seeking activity of
individual birds was captured, which has been used to extract many different
additional features of individuals, including hunger, deduced from motivation to
seek feed (Zukiwsky et al., 2021b); early disease detection, deduced from changes in
feed seeking and feeding patterns; estimates of nutrient requirements and feed
efficiency that provide insights into individual bird variation (Zukiwsky et al.,
2021a; van der Klein et al., 2020a) over a variety of time frames (Afrouziyeh
et al., 2022); or even detection of oviposition events in individual hens (You et al.,
2020). In combination with RFID-equipped nest boxes, it is straightforward to
envision a split feeding approach (Keshavarz, 1998) to feeding hens based on their
unique oviposition patterns.

Visualization of each bird’s data yields unique insights not only into perfor-
mance, but also about the preferences and temperaments of individual birds. For
example, individual broiler breeders have distinct learning rates during the precision
feeding system training period. They also have preferred times of day (or night) for
feeding, unique feeding frequency and feed seeking patterns. We have also been able
to identify pathogen exposure and locomotion issues by observing changes in
feeding patterns and body weight trajectories.

Currently, nutrient requirements are flock- rather than individual-based (Liebe &
White, 2019). Since individuals within a flock have different growth potential and
reproductive rates, response-based models that link nutrient intake of individuals
with their productive outputs would be more useful for minimizing waste. Precision



livestock farming systems are still in a very early stage, but a foundation is being laid
for big data analytics in poultry production.
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8.6 Machine Learning

Machine learning is a subfield of artificial intelligence, which is a branch of
computing science. Machine learning can be broadly defined as computational
methods to improve performance and make accurate predictions based on experience
(Mohri et al., 2018). It also refers to educating computers to perform certain tasks
without explicitly programming them for those tasks. Machine learning is different
from statistical models because machine learning is data-driven, and it is less
influenced by assumptions about data distribution and the homogeneity of variances.
With respect to computational cost, machine learning is better suited for exploring
and revealing relationships in big data. Advantages of machine learning include its
ability to handle a large number of variables resulting from big data variety, and
better results can be expected with increased data volume and velocity. Generally,
the machine-learning process includes data collection, data preprocessing, feature
extraction, model selection, model training, model evaluation, tuning parameters and
hyper-parameters, and, finally, prediction.

Many different machine-learning algorithms can be selected, including
supervised learning, unsupervised learning, semi-supervised learning, reinforcement
learning, transduction, and learning to learn (Information Resources Management
Association, 2020). Among them, supervised learning, unsupervised learning, and
reinforcement learning are most commonly used. The objective of supervised
learning is to build a relationship between input and corresponding output.
Supervised learning can use regression for continuous data, and classification for
discrete data types. It separates data into groups with similar characteristics. In
contrast, unsupervised learning aims to investigate the underlying pattern in input
data without any information from output data. It often uses clustering and principal
component analysis techniques. Unsupervised learning primarily reduces
dimensionality. Reinforcement learning uses algorithms that learn to interact with
the environment with the goal of maximizing reward.

To investigate the relationship between inputs and outputs, supervised learning
models can be built using algorithms such as support vector machines and artificial
neural networks. Outputs can then be predicted by the model from different input
datasets. Regression, which predicts quantitatively, can be used in many scenarios in
the poultry industry. Felipe et al. (2015) predicted total egg production of meat
quail using phenotypes such as BW, BW gain, egg production, and egg quality
measurements as input variables. In their study, an artificial neural network
performed better than other models. Artificial neural networks can capture complex
relationships between covariates and the variable of interest. For broilers, a dynamic
neural network could predict BW from environmental variables such as light,
ventilation, humidity, and temperature (Johansen et al., 2019). The weight and
behavior of broilers can be predicted by supervised learning algorithms using images



as input data (Mortensen et al., 2016; Li et al., 2019; Johansen et al., 2019).
Supervised learning has many potential applications in the poultry industry, includ-
ing egg grading, poultry catching, and environment control (Jaiswal et al., 2005;
Omid et al., 2013; Soltani & Omid, 2015; Debauche et al., 2019). Binary and
multiclass classification can predict discrete categorical output variables such as
egg grades (Thipakorn et al., 2017), or identification of binary (yes or no) egg-laying
events based on real-time BW and feeding data recorded by a precision feeding
system (You et al., 2020). Morales et al. (2016) and Ramírez-Morales et al. (2017)
used supervised machine learning to detect egg production problems early by
analyzing egg production curves. In these studies, problematic days were manually
labelled by experts to train supervised machine-learning algorithms.
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Although machine-learning applications for poultry management and reproduc-
tion have been studied, few applications in poultry nutrition have been reported.
Despite this, machine learning has a lot of potential in smart poultry nutrition.
Nutrition is particularly complex because of the vast number of nutrients whose
dietary levels have many potential interactions. Study designs cannot handle this
complexity using a systematic factorial approach because a factorial design increases
in an exponential manner with each additional nutrient and each additional nutrient
level that researchers wish to study. Classical statistical models have been limited to
investigating a limited number of variables simultaneously. In contrast, machine
learning is good at dealing with a large number of variables in the presence of
complicated nonlinear interactions and would be a valuable tool for researchers in
poultry nutrition. Unfortunately, the livestock nutrition community as a whole lacks
the training and experience to pursue this approach to discovery.

8.7 The Future of Smart Poultry Nutrition

The ultimate goal of smart poultry nutrition is to provide the exact nutrients required
by each individual animal at the precise time that they are required. This field is in its
early days. Its focus is currently on using data more effectively, and it is fueled by
sensor data collected by precision livestock farming and precision feeding systems.
Fortunately, capture of such data is increasing rapidly in quantity and diversity in
research and commercial settings. In the poultry industry, there is increasing appli-
cation of sensor technologies, primarily in the environmental control space. To date,
there are no commercial precision feeding systems that could actually implement
smart poultry nutrition decisions at the level of the individual bird. A lot of research
and development is still needed to realize the potential of the growing amount of big
data available. Per animal level research will need to quantify nutrient responses not
only to individual nutrients, but predict complex animal responses to many nutrient-
level interactions. Integrative research is needed to better understand the effects of
nutrient intake on the metabolism of individuals in different stages of growth,
development, and production, and then link that information to feed formulation
strategies that will optimize economic, animal welfare, and environmental objectives
given dynamic market conditions. It is imperative that nutrient sensing systems such



as NIRS be integrated in real-time to minimize the guesswork around available
nutrient levels in feedstuffs, to ensure accuracy in diet formulation. Feeds will most
likely need to be formulated for blending so as to provide a continuum of potential
rations to meet the nutritional needs of each individual bird, and of course cost-
effective precision feeding systems that implement feeding decisions in real-time
will need to be developed and deployed.
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This research will require investment not only by the poultry industry, but also by
national and regional governments because of its importance for food security and
the need for the new knowledge to exist in the public domain. There is an imminent
need to produce more food for the world’s growing population, and we must find a
way to do this on an existing arable land base, with minimal negative environmental
impact. The amount of data from a growing number of sensors and sensor types will
grow exponentially in the near future. These big data, from both research and
industrial sources, can and should be integrated to refine and improve smart poultry
nutrition systems in real-time. The challenge ahead is complex, and nutritionists will
need new skillsets that will come from formal training in mathematical biology and
computing science in addition to the more traditional fields of nutrition, biochemis-
try, physiology, management, and health. To realize the benefits of smart poultry
nutrition, machine learning and other forms of artificial intelligence will undoubtedly
play an increasing role.
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Abstract

In this chapter, we discuss how digital tools can be used to achieve more
intelligent feeding and nutrition in commercial cage-based farming. Using farmed
salmon as a model species, we first outline industrial practices in cage-based
farming, and then present the state-of-the-art in how digital technologies are
being utilized in aquaculture research and industry. We then discuss how the
intelligent feeding methods of the future could be devised based on the current
state-of-the-art, and further how these could potentially be important for ongoing
industrial developments toward new production concepts for fish farming.
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development. It is thus already possible to start combining existing systems into
new technological solutions that improve our ability to monitor, adjust, and
optimize the feeding process in aquaculture fish production. This is the focus of
several ongoing research efforts that aspire to apply the principles of precision
fish farming. A similar trend is also present in the industrial sector, manifested
through the rapid growth in the portfolio of commercially available products for
feeding optimization in aquaculture.
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9.1 Introduction

This chapter focuses on digital applications within fish farming in the context of
smart fish nutrition. Our definition of digital technology here includes any type
of instrument, sensor system, apparatus, or vehicle designed to aid humans in
conducting monitoring and actions otherwise done manually. Moreover, we also
consider computer systems, mathematical models, and other theoretical constructs
intended to replace or support human analyses of a particular situation. As the term
implies, the common denominator in the tools, systems, and methods we will cover
is that they are rooted in technological and highly digitized areas of science such as
computer science, embedded systems, control engineering, and artificial intelli-
gence. We do this in the firm belief that such tools will be essential to achieve the
dual goal of enabling growth in the fish farming industry while ensuring that
production is efficient, ethical, and sustainable.

The combined effects of an increasing world population, a dwindling access to
unexploited arable land suitable for farming, and the capture fisheries industry
approaching the upper limits for sustainable capture rates have led to an imbalance
in that while the need for human foodstuffs increases, the potential for increased
production through the conventional food-producing sectors decreases. Aquaculture
needs to have a role in closing this gap and is often highlighted as a main component
in finding a solution enabling a steady food supply for a growing human population.

Modern aquaculture has become a cosmopolitan industry that extends from
extensive rearing where most of the production is determined by the ambient
environment to intensive production where nutrition supply and other key elements
in the production environment and conditions are under human control. Production
currently includes more than 100 different species of animals and plants, reared in
production units ranging from indoor tanks through semi-natural ponds to marine
sea-cages, in either freshwater, brackish water, or sea-water environments.

The 2017 global production of aquatic plants, various types of finfish, shellfish,
crustaceans, and other aquatic animals amounted to 112.000 kilotons in total
(Fig. 9.1). Of this, freshwater fish (predominantly carps, barbels, tilapia) constituted
almost 40%, followed by plants (e.g., brown, red, and green seaweeds 28%),
mollusks (e.g., clams, oysters, mussels 15%), crustaceans (e.g., shrimps, crayfish,
crabs 7.5%), diadromous fish (e.g., salmonids, eels, sturgeon 5%), marine fish (e.g.,
sea bream, sea bass 2.5%), and miscellaneous animals and animal products (<1%).

Although this is an order of magnitude lower than total terrestrial agricultural
production volumes (more than 5.200.000 kilotons in total cereals, fruit, vegetables,



and livestock), comparable numbers are found when the focus is limited to animal-
based production (Fig. 9.2).
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Fig. 9.1 Annual global aquaculture production of aquatic organisms divided into species
categories for 1950–2017. All numbers are retrieved from the FAO Fisheries and aquaculture
statistics website (FAO, 2020a)

Trends in production volume seen over the last decades clearly show that fish
production is increasing faster than other livestock production (with a possible
exception of chicken). Moreover, breaking down terrestrial livestock production
into the “big four” (i.e., cattle, pig, chicken, and sheep) reveals that aquaculture
production of fish is closing in on cattle production in terms of volume, while
shellfish and crustacean production surpassed sheep production in the
mid-nineties. All these factors imply that aquaculture is already cementing its
position as a cornerstone in providing animal protein for human consumption.

9.1.1 Scope and Structure

We set out to explore how advanced technology can be applied to feeding in
aquaculture to ensure efficient, sustainable, and welfare and health promoting fish
production. To limit the study to a manageable scope for a book chapter, we have



focused on Atlantic salmon as a model species, and on the ongrowing phase where
proper feeding and nutrition have the largest impact on both farming economy and
sustainability.
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Fig. 9.2 Comparison of different meat production sectors in both terrestrial and aquatic
environments for the world in total. All numbers are retrieved from the FAO statistics websites
for fisheries and aquaculture (FAO, 2020a) and agricultural production (FAO, 2020b)

While Sect. 9.1 provides a generic view on aquaculture production in the world,
Section 9.2 contains an overview of the salmon industry and current farming
practices, with a particular focus on feeding. Section 9.3 is focused on how digital
technology can be used to augment and improve current feeding practices, while
Sect. 9.4 finalizes the study by exploring the role digital technologies will play in the
future introduction of new methods for feeding fish in aquaculture.

9.1.2 Choosing a Model Species: Sea-Based Atlantic Salmon
Farming

Statistics show that the greatest aquaculture production is freshwater based, particu-
larly through herbivorous species such as carp and tilapia. It could hence be
considered natural to choose a species in either of these groups as a model when



talking about aquaculture production of fish. However, the production of such
species generally occurs in extensive or semi-intensive production systems, rarely
requiring the use of high-technology solutions. For instance, much of the global carp
production is conducted in ponds where they feed on aquatic plants, and thus do not
need humans to actively supply them with nutrition. This is a setting where
technologically advanced feeding systems or protocols would be unnecessary, a
notion that is also underlined by the fact that the most common species farmed in
freshwater often attain low prices at markets, rendering the economic potential for
investments into new technologies lower.
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Although intensive farming of predatory fish is arguably less sustainable than
more extensive farming of herbivorous fish, the meat attains much higher price in
international markets. The higher price is linked with a higher production cost, and
one of the key challenges in intensive fish farming is to provide the fish with proper
amounts of feed, at proper times of day, and with the right type of nutrient
composition to ensure good growth and healthy animals.

Atlantic salmon (Salmo salar) is one of the most successful species in intensive
fish farming, with around 2.4 mill. tons produced globally in 2017 (FAO, 2020a) and
the entire value chain now being industrialized. The ongrowing phase of salmon
production is most commonly conducted in marine fish farms, predominantly
located at higher latitudes that offer the environmental conditions salmon are
naturally adapted to. Several of the major salmon-producing countries (e.g., Norway,
UK, Canada) are considered high-cost countries where labor costs tend to dominate
the production costs in most industrial segments. To still be profitable in these
countries, the salmon industry has therefore developed toward larger production
units (i.e., larger cages with more fish in each) and an increased usage of technologi-
cal solutions to control and automate segments of the production process. This has
been a successful recipe, as is evident when comparing the production numbers for
diadromous fish (mainly salmon) with other livestock production volumes in
Norway (Fig. 9.3).

In this setting, Atlantic salmon serves as a good model species from aquaculture
in being the most technologically advanced form for aquatic livestock production,
and also representing one of its industrial success stories. In conclusion, one may
summarize the reasons for salmon as one of the most suitable model species as
followed:
1. Salmon is a high-value species with high profitability.
2. The salmon industry has a large global production volume.
3. Salmon is produced in large production units and with a relatively high level of

automation.
4. The industry has a high technological development rate (e.g., many new produc-

tion concepts being tested in Norway).
5. Production optimizations have potentially large positive impact on sustainability.
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Fig. 9.3 Comparison of different meat production sectors in both terrestrial and aquatic
environments for Norway divided into species categories for 1950–2017. All numbers are retrieved
from the FAO statistics websites for fisheries and aquaculture (FAO, 2020a) and agricultural
production (FAO, 2020b)

9.2 Intensive Cage-Based Aquaculture of Atlantic Salmon

9.2.1 The Natural Life Cycle of Atlantic Salmon

The life cycle of the anadromous Salmon salar (further called only salmon) begins
with fertilized eggs being hatched in the gravel beds of rivers and streams, where-
upon they live as yolk sac larvae for 3–8 weeks (Aas et al., 2010). After the yolk sac
has been consumed, the fry needs to learn how to forage to achieve the nutritional
input required for them to grow and develop. Soon after starting to feed, the fry will
develop into the parr stage, thereby adapting a more camouflaging coloration
allowing them to blend better together with their surroundings, rendering them
less susceptible to predation and more efficient as hunters. They spend up to
1–8 years as parr in their native stream, before going through a process called
smoltification, where their endocrine system and physiology is altered from being
adapted to living in freshwater to tolerating saltwater. Once this change is complete,



the fish change from being negatively rheotactic (i.e., swimming against the current
to maintain their position in a stream) to exhibiting positive rheotaxis (i.e., moving
with the current toward the sea). Meanwhile their skin changes into a silvery hue and
finish better accustomed to a pelagic life at sea.
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After arrival into the sea, the salmon migrate from their native coastline and into
the open ocean where they spend their ongrowing period that may last several years.
Although less is known about the lives of Atlantic salmon during this phase, it is
apparent that they use this time to forage and grow in preparation for their final life
stage wherein the fish return to their native stream to reproduce (Aas et al., 2010).

9.2.2 Current Practices in Aquaculture: From Egg to Market

9.2.2.1 The Salmon Production Cycle
The aquaculture production cycle for salmon starts with the harvesting of eggs from
broodstock fish. These fish are typically large individuals with a specific genetic
makeup that has been developed through targeted breeding selecting for desirable
qualities such as rapid growth, disease resistance, and low aggression. The eggs are
then fertilized and incubated in vats at hatcheries, which are facilities specifically
aimed at hatching salmon fry, which are then reared in tanks to allow them to swim
freely. When the yolk sac is consumed, the salmon fry are immediately weaned onto
a diet of formulated dry feeds, and are then reared as parr in freshwater until
smoltification. Growth and time to smoltification are accelerated through active
light and/or temperature manipulation. The fish are then transferred to the sea,
where the majority of the ongrowth is achieved through intensive feeding. Although
this phase is most commonly conducted in marine sea-cages, there is an increasing
tendency toward keeping the fish longer in the land-based facilities, mainly to reduce
the extent of time where the salmon are exposed to lice infestations or to better
control the production environment during earlier ongrowth stages. After a period
typically lasting around 18 months, the fish have reached a marketable weight of
around 5 kg, and are then slaughtered, processed, and shipped to markets for sale,
either as pure fish meat or as derived products.

Through all phases between weaning and slaughter, the farmer’s ability to
provide the fish with the right type of nutrition, at the right times and in the right
amounts, is a key success factor.

9.2.2.2 Main Industrial Challenges
Intensive salmon aquaculture first arose during the 1970s in Norway as small-scale
production conducted in wooden cages. Since then, the industry has grown rapidly,
driven by both a generally increasing demand for seafood in a growing middle-class
population and increasing demands for fresh fish in international markets. As the
industry has grown in volume, so have the challenges within areas such as animal
health and welfare, environmental impacts, sustainability, health safety and environ-
ment (HSE), and economy. Together with ectoparasites (e.g., sea-lice), pathogens,
and escapes, inefficient nutrition is one of the most important single challenges



facing the industry today, much due to its impacts across several areas. For instance,
overfeeding leads to direct economical waste and eutrophication of the near envi-
ronment, but may also attract wild fish that can act as vectors for diseases/parasites to
wild fish populations. Conversely, underfeeding will reduce fish growth and hence
economic gain, but may also impair fish welfare and health. Using new digital
methods to achieve intelligent nutrition and feeding in aquaculture can thus contrib-
ute to making the industry more economically and ethically sustainable through
several different pathways.
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9.2.3 Fish Growth: The Core Process in Intensive Fish Farming

While the hatchery-based phases conducted in freshwater mainly aim to provide the
fish with an early life history that through proper nutrition promotes good fish health
and proper development through the rest of the production cycle, the main aim of the
sea-based ongrowing phase is to make the fish grow as quickly and efficiently as
possible, essentially by converting feed into high-quality fish.

The main factor behind fish growth in intensive aquaculture is the ability of the
farmer to ensure that the fish receive the feed in proper quantities and are able to
ingest and assimilate it. Moreover, it is of key importance in this phase (as in all
preceding phases) to ensure that the nutritional composition of that feed matches the
requirements of the fish (Ytrestøyl et al., 2015; Glencross, 2020). Providing the fish
with sufficient feed at the proper time intervals also helps avoid impaired welfare
effects and keep growth rates sufficiently high.

Growth rates of salmon in sea-cages also depend on the prevailing environmental
conditions at the site. While factors such as temperature and oxygen affect growth
rates by modulating metabolic processes, other factors such as water current and
waves may induce physical effects that induce responses in the fish that may lead to
increased energy expenditure at the cost of somatic growth. Unwanted events such
as diseases and parasite outbreaks are also known to impact growth negatively both
in the short and possibly long term. Farming operations may also affect fish growth,
either directly through, for example, starvation periods prior to delousing operations
or transfer of fish between cages, or indirectly due to reduced appetite caused by
increased post-operation stress levels.

The fish growth process has several effects on both the local and the global
environment. Such impacts may be direct, as is the case with feed loss and excretion
of feces to the local environment. Both these nutrient pathways may have a nitrifying
and eutrophicating effect on local primary production, as well as impacts higher in
the trophic system in that feed spills tend to lead to aggregations of wild fish near or
beneath fish farms (Dempster et al., 2009; Sanchez-Jerez et al., 2011). Such
aggregations of wild fish contribute to dispersing the nutrient flow between fish
growth and the environment more widely among the trophic layers. However, they
may also represent an added risk factor for the dispersal of diseases among wild and
farmed fish.
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In salmon farming, and most other forms of intensive aquaculture, feed represents
the largest single cost. Specifically, the feed consumed in the ongrowing
phase represents up to 50% of the total production costs of a salmon fillet
(Fiskeridirektoratet, 2020). Suboptimal feeding thus has obvious economic
consequences for the farmer in either reducing growth resulting in longer production
cycles (underfeeding) or increased spills (overfeeding). However, overfeeding in fish
farming also has global impacts as many of the resources used in fish feed, fish meal,
and fish oil in particular are global commodities that are becoming increasingly
scarce due to overexploitation and competing claims from other industrial segments.
Ultimately, this influences sustainability, also in areas far from the actual farming
operation since many such resources are harvested in other parts of the world. For
instance, much of the fish meal and fish oil used in feed for European aquaculture
may be produced from fish captured off the coast of South America, meaning that the
impacts of the production process extend well beyond local conditions. Because of
these challenges, the fraction of marine ingredients in Norwegian salmon feed
decreased from 90% in 1990 to around 30% in 2013 as marine ingredients have
been replaced with plant resources such as soybeans, sunflower and wheat for
protein, and rapeseed for lipids (Ytrestøyl et al., 2015).

9.2.4 The Feeding Process: From Factory to Fish Gut

The feeding process in commercial salmon farming is built up as a chain of steps
from the assembly of the feed components until the pellets are ingested and
assimilated by the fish (Fig. 9.4). Each of these steps entail certain elements that
are relevant to consider when discussing digitization of fish feeding. In the follow-
ing, we will give a brief account of these elements.

9.2.4.1 From Raw Materials to Feeding Barges
Fish feed production is done in large factories typically placed in proximity of other
marine industries (e.g., fish processing plants), or logistical hotspots (typically
harbors), to ensure good access to raw materials. The first step in producing
formulated feeds for salmon farming is to select exactly which raw materials are
needed and at which proportions these should be mixed. Water is then added to the
mixture to create a “dough” that is usually extruded into cylindrical pellets and dried.
These processes need to be well balanced to ensure that the pellets are hard enough
to be transported without excessive breakage and heavy enough to sink once
delivered to the cage, while also being possible for the fish to digest efficiently.

Once the pellets are produced and ready to ship, they are packed for transport,
either by loading into 1000 kg sacks for further transport via trucks and boats or by
direct loading into silos in feed transport ships. While trucks are still used to deliver
feed to smaller sites located close to shore, most modern commercial sites are served
by feed delivery ships. These ships may hold up to about 3000 m. t. of feed and may
serve several locations while they travel along the coast. Feed is then pumped
directly from the silos onboard the ship to the silos at the feeding barge at the site.



A feeding barge may contain up to 600 m. t. of feed after delivery, which tends to last
around 1 week when production peaks in biomass in a conventional farming site
with 15 × 50 m diameter cages.
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Fig. 9.4 Illustration of the basic pathway of feed in intensive salmon farming. (1) transport of raw
materials (e.g., fish meal, soy meal, insect meal), (2) transport of extruded pellets to feeding barge
with ship/trucks, (3) delivery of pellets from barge to cage through feeding hoses, (4) distribution of
pellets with feed spreaders, finally making the pellets available to the fish

9.2.4.2 From Barge to Cage
In the earliest phases of cage-based salmon farming, the fish were manually fed
using buckets and bailers. However, for further industrialization it was necessary to
move from manual to automated feeding, leading to the advent of the automated
feeding systems that are predominant in salmon production today. These systems
consist of several components that are placed inside the feeding barge and that
together ensure that the pellets are transported from the feed silos to the cages.
Feeding is typically controlled by a human operating a computer program where
macro-scale control signals such as the amount of feed per time delivered to each
cage is provided. This information is then fed to a computer system typically running
on a programmable logic control (PLC) unit, which through logics and control
functions generates proper analog and digital output signals that are delivered to
the feeding system components. The most essential of these components include the
doser, which is a valve delivering pellets at a certain rate into a duct, and a pneumatic
blower that generates air pressure in the same duct. The pressure accelerates the
pellets into tubes attached to a unit called a cage selector. The cage selector acts as a
multiplexer in the sense that it can divert the stream of pellets delivered from the



ducts inside the feeding barge to one of several tubes (up to 700 m in length) each
extending to an individual cage.
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Fig. 9.5 Example of rotary
feed spreader describing the
various degrees of freedom
and components in such a
system. (Reprinted from
Skøien et al., 2018, Copyright
(2018), with permission from
Elsevier)

Although there exist underwater systems for delivering the feed into the cage, the
most common method by far is to use rotary surface spreaders (see example in
Fig. 9.5). These systems are designed such that flow of pellets induces a rotary
motion on the nozzle, effectually spreading the pellets in an annular ring around the
spreader. Although spreaders are often completely mechanical devices with no
actuators or motors, the spreading pattern can be modified by adjusting mechanical
settings such as the nozzle angle and diameter, or the surface position of the spreader
inside the cage, as well as the air flow rate from the blower.

If pellets are improperly stored or the system is improperly designed in relation to
the feed pellet properties, the barge-to-cage stage of the feeding process can lead to
challenges such as pellet breakage, meaning that the pellets are crushed or
disintegrated before arriving at the cage, or blockage, where pipes or tubes are
clogged by pellets. Such events can lead to excessive feed loss and temporary
unwanted up-time, both of which can have large economic consequences for the
farmer and will contribute to rendering the operation less sustainable. Common
measures to avoid such situations include avoiding sharp bends in pipes or tubes,
carefully adjusting the feed amount relative to the pneumatic pressure, avoiding too
high or low pressures or sending brushes through the system to clean the pipes.
Another potential challenge that may arise at this stage is uneven or unpredictable
feed distribution patterns upon delivery to the cage. This may ultimately influence
both productivity and fish welfare in that it is then more likely that disparities in feed
intake and competition between individuals/groups in the cage may arise. Such



effects may ultimately result in reduced well-being and growth, as it is more difficult
to ensure that they are provided enough nutrition to support their needs in growth
and maintenance.
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9.2.4.3 From Surface to Fish
Once the feed is released into the cage, the distribution is outside of human control
and more at the mercy of the prevailing conditions at the site. Firstly, when being
propelled from the nozzle, the pellets are susceptible to wind-driven effects that may
alter their course before hitting the water surface. If the wind is very strong, this may
even lead to pellets hitting outside the cage, which can to a certain extent be
countered by reducing the pressure generated by the blower to allow the feed to
land closer to the spreader. Once in the water, the hydrodynamic properties of the
site come to play in determining the fate of the pellets. Whereas wave activity can
also contribute to a certain drift and movement, especially for feed with low sinking
rates, water current is the most important factor behind underwater pellet distribu-
tion. If sufficiently strong, currents can transport the pellets out through the net wall
before they get eaten, leading to feed waste. This type of feed loss can be more
difficult to predict and observe than wind driven loss, since observation underwater
is more difficult than in air, but can to a certain extent be countered by, for example,
moving the spreader toward the upstream edge of the cage.

Although the feeding schedule for a specific cage is often derived from feeding
tables using factors such as the assumed total cage biomass, average fish size and
temperature as inputs, feeding is also dynamically adjusted based on perceived
appetite and feeding behavior. In earlier days, this was mainly based on direct
observation of the cage, looking at features such as surface activity and amount of
fish seen close to the surface. The current industrial trend toward larger cage units
has rendered this method less useful, as increased cage size means that a proportion-
ally smaller proportion of the fish are visible from the surface. Common industrial
practice has therefore now shifted to using submerged moveable cameras that are
aimed at the feed delivery area. This footage is typically fed back to the person
controlling the feeding computer software on the barge or at a remote land-based
feeding center, who then interprets how actively the fish are feeding and can adjust
the feeding rates accordingly.

Despite recent advancements in industrial practices related to feeding, the under-
water phase of feed delivery remains the part of the delivery line that is most
detached from human control. It is also likely that most of the feed waste experi-
enced in intensive fish farming occurs in this phase. Together, these aspects imply
that technological advancements enabling closer human control of feed during the
final underwater phase of feed delivery are likely to have large impacts on the
continued industrial success of salmon farming. Better feed control can aid us in
ensuring that the nutritional situation of the fish is ensured while minimizing the
economic consequences and ecological/environmental footprint of the operation.
Essentially, it can help us approach the ideal where all pellets are eaten by fish, and
where all fish are able to find pellets when hungry.
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9.2.5 Developmental Trends and New Concepts for Modern Fish
Farming

An increased scarcity in near shore locations suitable for conventional cage-based
salmon production is currently restricting the industrial growth in Norway. Fish
producers have therefore begun to explore the possibilities of developing new
concepts that can exploit previously unsuitable sites (e.g., due to environmental
exposure or limited circulation) or be placed on land. This development is further
stimulated by the introduction of the development permit scheme, where farmers can
apply for additional production permits if they develop new concepts that are
designed to specifically tackle the sustainability challenges in fish farming, espe-
cially where ectoparasites and pathogens are concerned. Since permits for salmon
production have become increasingly hard to come by and expensive (often priced at
more than $10 M each), this has led to a significant increase in the development of
new concepts.

Motivated by the benefits of moving to more exposed sites (Bjelland et al., 2015),
many of these concepts are designed to handle higher degrees of exposure to waves,
winds, and currents than traditional fish farms. These concepts range from upscaled
cylindrical cages, either featuring a single larger production volume (e.g., Ocean
Farm 1 by Salmar/Ocean Farming) or several sub-volumes within the same structure
(e.g., Mariculture by Salmar/Mariculture) to ship-based designs with several inline
production units (e.g., Havfarm by Nordlaks/NSK Ship design). However, they all
have in common that they are built using principles from offshore-related industries
such as oil and gas, and are hence built using steel and other rigid materials. Other
new concepts developed in response to this arrangement are more similar to conven-
tional cages in size but have specific properties designed to cope with one or several
of the major challenges in fish farming. Some of these aim to achieve better control
of the fish on an individual level (e.g., iFarm by Cermaq/Biosort). A third class of
new emerging concepts are more specifically aimed toward limiting the contact
between fish and parasites/pathogens by featuring semi-closed or fully closed
production volumes.

9.3 Using Digital Technology to Improve Aquaculture Feeding
Practices

In the aquaculture industry, automation and the application of technology has not
reached the same level as seen in traditional industry production. This is probably
partly because the industry has enjoyed high profit margins of late, reducing the need
for increased production efficiency, but also because biological aspects such as
behavior and genetics render a fish population in a sea-cage a highly complex system
that may be more difficult to control than systems encountered in other industries.
Zhou et al. (2018) reviewed methods and technologies for intelligent feeding control
in aquaculture, outlining several of the components and tools currently available in
research and industry. One of the main statements in that study was that the



assessment of fish appetite, feeding behavior, and growth are important fundaments
for realizing intelligent feeding algorithms (Zhou et al., 2018).
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9.3.1 Precision Fish Farming: A Framework for Applying Digital
Technology to Intensive Fish Farming

While Zhou et al. (2018) focused on aquaculture finfish production in general, we
will in the following limit our focus to solutions potentially applicable to cage-based
intensive production of marine fish. The structure of this technological review will
be built upon the principles outlined in the precision fish farming (PFF) concept
(Føre et al., 2018a). Precision livestock farming (PLF) is a term used to describe the
introduction of technology and automation principles to better monitor the
bioresponse in and assert control over livestock production (Berckmans, 2006).
Over the last decades, PLF has received increased attention from the agricultural
industry and research communities, a trend partly driven by technological develop-
ment and a need for more efficient production. PFF is a recently introduced frame-
work for adapting similar methods to fish production (Føre et al., 2018a). The
coining of the term PFF was motivated by a need to formalize a framework for
how technology and automation principles can be introduced to improve aquaculture
operations while taking the biological premises into account. As the name implies,
much of the philosophy behind PFF was adapted from PLF, but the initial seeds for
the concept were sown even further back in time by the pioneering work of Jens
G. Balchen and associates at the Norwegian University of Science and Technology
(NTNU) and Stiftelsen for industriell og teknisk forskning (SINTEF) in the 1970s
(Balchen, 2000).

Most work operations in the intensive salmon farming industry are still based on
manually controlled mechanized or manual actions, and experience-based interpre-
tation and decision making. Although the profit margins in the industry have been
high for decades reducing the economic incentive for changes in how work
operations are conducted, production challenges tend to scale with the size of the
industry. It is thus unlikely that such labor intensive, manual processes will be
sufficient for the future format of salmon farming.

While it is apparent that technology and automation play a role in improving this
situation, envisioning a complete technological system able to handle an entire
operation may be a daunting task due to all the sub-challenges and minor tasks
that need to be considered. The PFF-idea acknowledges this by proposing that all
operations in fish farms can be seen as a cycle of phases, starting with Observing the
fish, then Interpreting the fish state from the observations, then Deciding a course of
action, and finally conducting the chosen Action (Fig. 9.6). Finding technological
solutions for handling the subtasks within each phase is easier than finding a holistic
solution covering an entire operation. Conversely, the division into phases can also
help technology providers to analyze how their products or services could be used in
the industry. In sum, this means that the PFF framework can be used both as a
guideline for fish farmers how to stepwise automate specific operations, and for



technology providers to see potential roles for their specific products within farming
operations.

9 Advanced Technology in Aquaculture – Smart Feeding in Marine Fish Farms 241

Fig. 9.6 The Precision Fish Farming (PFF) concept explained by describing the proposed transi-
tion from manual and experience based (inner green ring) to knowledge based and automated
processes (outer blue ring) in the four cyclical phases of an operation (Observe, Interpret, Decide,
Act). Green arrows denote the transitions between the phases. (Reproduced from Føre et al., 2018a,
under CC BY license)

PFF can thus be used as a framework to help analyze how we can achieve more
intelligent and optimized feeding in fish farming using technology. The first step of
this process is to identify which indicators should be the output of the observe and
interpret phases, and input to the decide phase. For the feeding process, feeding
motivation might be the key indicator. Feeding motivation is known to affect fish
behavior and depends on the physiological condition of the fish, suggesting that
behavioral properties and physiological parameters known to be interlinked with
appetite could be a place to start. The second step in the analysis is to assess the
existing knowledge about the system and its dynamics, and eventual existing
mathematical models that incorporate this knowledge. Models portraying behavior
and physiology are clearly relevant when focusing on feeding. In addition, models
portraying various aspects of feed delivery and distribution should be considered, as
these can be used to describe feed availability and encounters between feed and fish,
which are crucial factors when describing feed intake. It would then be natural to



evaluate the possibility of integrating or assimilating the observational data from
sensors into the mathematical models to obtain a more reliable and complete
estimate of the states in the cage and enable the derivation of precise estimates of
appetite.
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In the long run, it is also reasonable to assume that the actual feeding might
become a feedback controlled automated process rather than being manually
(or open-loop) controlled. This implies that a third step in the analysis should
identify technology for closing the loop through, for example, automated feeding
systems or vehicles.

9.3.2 Intelligent Sensors and Instrumentation: From Data
to Information

9.3.2.1 Aim: Quantifying Key Properties in the Feeding Process
The first step in asserting control over an industrial process is to acquire the means to
continuously measure the states of the process and their development over time. This
implies a need for a reliable stream of data from sensors that describe the process
objectively with sufficient accuracy. In intensive marine salmon aquaculture, the
process of interest is the condition and development of the fish biomass inside the
cages. Traditional measures for assessing the states of this process are largely limited
to the subjective evaluation of fish states and behavior either through direct obser-
vation from the surface or through submerged video cameras. Achieving intelligent
feeding in aquaculture therefore calls for the increased application of technology to
objectively quantify how the fish look and behave. Most existing methods for
monitoring fish underwater are based on optical or acoustic principles, ranging
from local assessments using cameras, through wide range monitoring using echo
sounders/sonars, to individual-based methods such as biosensors and telemetry
(Fig. 9.7).

9.3.2.2 Optical Methods
Research Frontier
Throughout the history of aquaculture, humans have mainly relied on their visual
sense to collect information on how the fish are performing under culture. It thus
follows that the most intuitive approach to acquiring objective and continuous
information on cultured fish lies in applying technology that targets the same visual
cues that are used in conventional manual monitoring.

Manual analyses of fish in sea-cages using optics has long been an established
method in research, often in the form of short-term observations of random
individuals (Oppedal et al., 2011), either as a supportive tool (e.g., Føre et al.,
2011) or as a main source of information (e.g., Korsøen et al., 2009). Cameras
have been used as a tool to assess feeding in farmed salmon. One early example of
this was published by Kadri et al. (1991) who used cameras to manually assess
movement speeds and patterns of salmon in a small sea-cage and linking these with



appetite. Further studies from the same research group later investigated aggression
and response frequency toward feed in parr using similar methods (Kadri et al.,
1997). In a similar study, Blyth et al. (1993) used cameras to relate feed intake with
swimming speed in salmon.
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Fig. 9.7 Examples of existing monitoring tools applicable to cage-based fish farming.
(Reproduced from Føre et al., 2018a, under CC BY license)

With the advent of machine vision and other computer-based post-processing
methods, the possibilities for quantifying various features of farmed fish based on
camera footage increased drastically (Zion, 2012; Saberioon et al., 2017; Yang et al.,
2021). The number of different methods and techniques applied in this area increases
rapidly, and today includes a wide variety of different approaches including stereo-
video for 3D monitoring of motion (e.g., Torisawa et al., 2011) or size (e.g., Lines
et al., 2001), using entropy and fractal analyses to detect anomalous behaviors (e.g.,
Eguiraun et al., 2014) and using spectral analyses of hyperspectral images to
determine skin condition and dietary composition (e.g., Saberioon et al., 2019).
Further, while most studies are conducted using submerged cameras, there are also
examples of studies using elevated cameras, for example, by running aerial photos of
a cage through processing methods based on support vector machine (SVM)
(Jovanovic et al., 2016) or deep learning networks (Jovanovic et al., 2018) to assess
surface activity.

Some recent studies within this area have also targeted feeding behavior in cage-
reared fish (see An et al., 2020 for a review of some of the commonly applied
principles and methods). In a more applied study, Måløy et al. (2019) were able to
distinguish the feeding behavior of salmon from other behaviors using deep learning
methods applied to three different types of convolutional neural networks (Fig. 9.8).
Since the authors of that study used a conventional mono-camera to collect their data



during the darkest period of the year, their success illustrates the potential of using
methods from AI to acquire information on fish states even for sub-optimal data
streams. Similar methods have also been used to assess feeding activity in indoor
tanks (Liu et al., 2014; Zhou et al., 2019).
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Fig. 9.8 Example from Måløy et al. (2019) on how deep-learning methods can be used to predict
feeding behavior in farmed salmon. The approach collects data from a cage using a submerged
camera and analyses both spatial distribution and motion in the footage. Outcomes from these
analyses are then fed into a dual-stream recurrent network that makes the predictions. (Reproduced
from Måløy et al., 2019, under CC BY license)

Machine vision methods have also been applied to study the physical aspects of
the feeding process in fish farming, including the delivery of pellets to the cage
volume and distribution of pellets within the cage volume. Although most
assessments of pellet distribution on the cage surface have been based on manual
sampling, Lien et al. (2019) developed machine vision methods for automatically
detecting the splashes occurring when a pellet ejected from a feeder hits the water
surface. They applied these methods to video footage obtained with an aerial
platform hovering above a sea-cage to investigate the surface pellet distribution
patterns produced by different spreader types and configurations. There have been
more machine vision studies targeting underwater pellet distribution, probably
because manual assessment of this phenomenon is more difficult than it is above
the surface. An early study aspiring to detect and quantify underwater pellet
distributions was published by Foster et al. (1995), using illumination that rendered
the pellets as white objects in the video footage. By developing an algorithm that



detected white objects against a dark background, they were able to count pellets
automatically. In a later study, Parsonage and Petrell (2003) used an upward facing
camera and more advanced filtering to identify feeding pellets in salmon cages,
effectually resulting in more robust detection, especially in the presence of fish and
other objects in the footage. Skøien et al. (2014) had a different approach to
assessing underwater pellet density. Through machine vision coupled with Kalman
filtering and kinematic prediction of pellet trajectories, they achieved a higher
accuracy than other studies, albeit at the cost of a larger and more complicated
instrument.
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Industrial Applications
Considering the ongoing rapid developments within computers and camera technol-
ogy, it is no surprise that machine vision applications is one of the most
technologically advanced areas within the aquaculture industry. The hardware
required to realize a machine vision system has eventually become rather low cost,
and the potential gains of applying intelligent algorithms to derive objective infor-
mation from the images is therefore comparatively very high.

There are also products that use optical methods to automatically assess factors
such as feed waste, feeding behavior, and biomass development, and use these to
derive decision support data for the farmer.

9.3.2.3 Acoustics
Research Frontier
While electromagnetic waves such as light and radio signals are heavily attenuated in
water, acoustic waves (or sound) travel and propagate much more efficiently in the
wet element than in air. This is a phenomenon that has enabled marine animals,
mammals in particular, to use sound for long range underwater communication, and
that has led to major industrial innovations founded in acoustics in fisheries and
other sectors such as defense technology, geophysics, and oil and gas. Acoustics are
also well suited for acquiring data in fish farms, especially when turbidity, cage size,
and population density are at levels rendering optical methods less effective due to
limited visual range and obstruction of the visual field.

Acoustic monitoring methods can be divided into active and passive methods.
Active acoustic devices emit acoustic pulses toward the region of interest and then
actively listen for reflected acoustic energy from objects intercepting in the beam.
Although much of the basic development within active acoustic devices has targeted
other areas such as defense applications (e.g., Avera et al., 2002), seabed mapping
(e.g., Barnhardt et al., 1998), and seismic surveying for oil and gas (e.g., Waters,
1981), considerable effort has also been put into developing such devices specialized
for detecting fish in relation to capture fisheries (e.g., Rose et al., 2005) and stock
monitoring (e.g., Handegard et al., 2013). It is thus reasonable to assume that such
devices are suitable for aquaculture purposes too.
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The most common and conventional active acoustic devices used to observe fish
are echo sounders, which are typically equipped with a single transducer and that
emit a single beam and listen for reflections from objects or particles within the
beam. Echo sounders have been a tool in aquaculture research for decades, being
used to observe how the spatial distribution of fish is affected by culture conditions
(e.g., Fernö et al., 1995; Oppedal et al., 2011), farm management (e.g., Oppedal
et al., 2001, 2007), and operations (e.g., Korsøen et al., 2009). Split beam sonars are
a more advanced class of active hydroacoustic devices that are equipped with several
transducers, and hence can not only detect distance to objects but also render their
horizontal position in the beam. This potentially enables observing the movements
of individual fish in sea-cages, as shown in several studies using different species
(Arrhenius et al., 2000; Knudsen et al., 2004). On the high end of the scale are the
multibeam devices that contain transducer arrays that simultaneously emit beams in
different directions and thus are able to scan a larger volume with high resolution.
Although multibeam devices are less common as a research tool than less advanced
sonars, there have been recent studies using such devices to, for example, monitor
swimming patterns and size (e.g., Zhang et al., 2014), and tail beat frequencies (e.g.,
Helminen et al., 2021) of farmed fish.

There have been studies using active acoustics targeting feeding in salmon cages.
An early example was Bjordal et al. (1993) who used an echo sounder to observe the
presence of feed beneath the feeding area in salmon cages and made attempts at
controlling feed delivery based on these observations, essentially closing the loop. In
Juell et al. (1993), the same authors applied acoustics to another facet of the feeding
process by developing a “food detector” that acoustically detected pellets beneath
the feeding area, enabling them to control feeding based on the amount of uneaten
feed (Fig. 9.9). In a further study, Juell et al. (1994) also used echo sounders to assess
how perceived hunger level and food availability affected the behavior of salmon.

Fig. 9.9 Experimental setup employed by Juell et al. (1993) to test self-feeding using a food
detector. (Reprinted from Juell et al., 1993, Copyright (1993), with permission from Elsevier)
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Most previous studies using echo sounders have been based on manual analyses
of the data, in the sense that the user observes the echogram or a numerical map
equivalent of this, and from this derives what the fish are doing. This might change in
the future, as the recent rapid growth of methods that may be categorized as artificial
intelligence or machine learning has led to increased interest in applying such
methods to data from active acoustic devices. Since an echogram is comparable
with an optical image in terms of how the data is organized, methods for machine
vision could potentially be adapted to processing acoustic data. Due to the massive
capacity of computers in analyzing numerical data, it is now possible to quantify fish
behaviors by applying AI methods such as deep learning on hydroacoustic data (e.g.,
Måløy, 2020). Such approaches are likely to be key elements in future observation
methods for acquiring a deeper insight into what happens beneath the surface.

Passive acoustic monitoring (PAM) methods are based on using passive
hydrophones (i.e., underwater microphones) that record sounds generated by various
sources within its range. A PAM recording will typically result in a dataset describ-
ing the acoustic power as a function of frequency and time at the monitoring site, the
unprocessed version of which is typically called the soundscape. Due to the efficient
propagation of acoustic signals in water, a soundscape in the marine environment
will feature contributions from a wide variety of sources both near and far, of either
anthropogenic (e.g., boat traffic, marine constructions, seismic surveys), abiotic
(e.g., sea state, precipitation, thermal noise), or biotic (e.g., animal communication,
animal movements, and behavior) origin. If the biotic components of a soundscape
can be identified and analyzed, it is possible to obtain some information on the
presence of animals nearby, and their activities. Although much of the research in
this area has focused on cetaceans, Kasumyan (2008) did a thorough review on the
abilities for sound generation in different fish species. Their article described the
mechanisms and organs fish use to generate sound, and was later complemented with
another literature study, describing the ecological roles of sounds generated by fish
(Kasumyan, 2009).

The most prominent example of applying PAM in aquaculture research is indeed
related to feeding control and focused on developing a PAM system for detecting
feeding activity in farmed turbot (Mallekh et al., 2003). This study found that the
variance in the sound signal within a frequency range previously established as
relevant for turbot behavior (6–8 kHz, Lagardere &Mallekh, 2000) was significantly
linked with feeding activity and even ration size. Although there have not been
similar studies aimed at feeding in salmonids, the sound production capabilities of
six freshwater species, including four salmonids, were recently investigated by
Rountree et al. (2018). This study concluded that most of the sounds generated by
these species was due to air movement, and that it is possible to distinguish the
species based on PAM analyses. For instance, it is possible that the process of a fish
capturing and ingesting a pellet generates some sort of sound that might be possible
to distinguish from the background soundscape. Furthermore, feed delivery is
known to increase the swimming activity levels of farmed fish, a change in behavior
that might be detectable through the changes in water pressure caused by movement
through water.
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Industrial Applications
The need for observing the fish in large sea-cages has increased as the industrial
production volumes of intensive cage-based aquaculture have scaled up. This has led
to the establishment of companies offering hydroacoustic solutions customized for
aquaculture, including targeted monitoring of the feeding area and measurement of
individual movement speeds using split beam solutions. In addition, established
providers of sonars and echo sounders for fisheries are increasingly looking to
develop their products toward aquaculture applications. Although there are fewer
such initiatives targeting PAM, it is likely that both providers of active hydroacoustic
systems and oceanic monitoring devices will explore this market in the future.

9.3.2.4 Biosensors and Telemetry
Research Frontier
While optical and acoustic methods are based on “remote sensing” in the sense that
they do not require interaction with the animals, biosensor and telemetry methods are
based on equipping the fish with electronic devices containing sensors for measuring
variables in or near the fish (Cooke et al., 2011). These devices may either store the
resulting data in internal storage mediums (Data Storage Tags, DST) or transmit
them wirelessly to the user through acoustic/radio signals that are picked up by
acoustic or radio receivers (Thorstad et al., 2013). Figure 9.10 illustrates different
concepts related to the use of electronic tags in fish monitoring.

The origins of biosensors and telemetry applied to fish may be traced to wild fish
research (e.g., Welsh & Bellwood, 2012; Taylor et al., 2017) and conservation
efforts (Crossin et al., 2017), where the free migration of the fish render the use of
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Fig. 9.10 The choice of tag type, shape, and size, and how they are provided to the fish depends on
the aim of the study. (a) A selection of different logging (three leftmost) and acoustic (two
rightmost) tags, (b) schematic view of the components in an acoustic tag (dashed arrow = energy
flow, solid arrow = data flow), (c) fish are usually equipped with tags either by surgical implanta-
tion inside the body cavity (left) or by external attachment (right). (Sub-figure (b) Føre et al., 2011,
Copyright (2011), with permission from Elsevier)



stationary equipment such as cameras and echo sounders less efficient. Although
placing a device on or in the fish is considerably more invasive than the other
methods, this also enables the measurement of properties difficult to measure
remotely, such as physiological parameters (e.g., Cooke et al., 2004), and enables
the collection of individual data histories over time. The list of parameters that have
been measured using such devices include depth (e.g., Block et al., 1992), accelera-
tion (e.g., Kawabe et al., 2003), muscle activity (e.g., Cooke et al., 2004), heart rate
(e.g., Priede, 1983), and respiration (e.g., Martos-Sitcha et al., 2019). Biosensors and
telemetry have seen a range of applications in aquaculture research including
monitoring during crowding and transportation procedures (Brijs et al., 2018; Føre
et al., 2018a, b), welfare evaluations (Hvas et al., 2020; Svendsen et al., 2021), and
environmental responses (Johansson et al., 2009).
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Biosensors and telemetry have recently been proposed as a useful component in
the future practices for better monitoring animals in aquaculture, given that the
practical challenges of the method are properly handled (Muñoz et al., 2020; Brijs
et al., 2021; Macaulay et al., 2021). There have been some research efforts on
monitoring feeding activity in fish farms using biosensors and telemetry. Early
studies in this area focused on detecting the presence of fish inside or outside the
proposed feeding area using hyperbolic positioning of acoustic tags (Juell &
Westerberg, 1993; Begout & Lagardere, 1995, 2004). More recently, Alfredsen
et al. (2007) sought to directly detect feed intake in Atlantic salmon by measuring
the differential pressure between the opercular cavity of the fish and the surrounding
water. This method was based on the premise that the fish generate negative pressure
gradients to effectually suck the pellets into their mouth while feeding, and showed
promising results in the laboratory. While this method could potentially provide an
estimate of the actual number of pellets eaten by a fish, the need to measure the
pressure inside the operculum makes equipping the fish with such tags difficult and
invasive, especially when intended for use in sea-cages. Føre et al. (2011) sought a
different avenue in using accelerometers and depth sensors to detect patterns in
swimming activity and vertical movement observed during feeding in salmon.
Although more indirect than the differential pressure approach, this tag type
provided promising results in small-scale field trials (Fig. 9.11).

Scientific studies have shown that measuring physiological parameters may also
shed light on fish-feeding activity. For instance, Cubitt et al. (2008) successfully
applied quadratic and support vector machine (SVM) classifiers on electromyogram
(EMC) data from rainbow trout to estimate hunger/satiation levels in the fish based
on their muscular activity. Although without advanced processing methods, Lucas
(1994) did a similar conjecture linking telemetry data on heart rate in pike with their
feeding status. Since nutrition requirements, appetite, and hence feeding motivation
in fish are intrinsically linked with their physiological state, measurements of
physiological parameters may also be used as indicators of feeding behavior.
Although not yet industrialized to the same level as conventional telemetry



solutions, biosensor options for monitoring physiological and health-related
parameters are currently developing fast (Endo & Wu, 2019).
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Fig. 9.11 Example data from observing feeding-related behavior for six fish in a small sea-cage
using telemetry tags with depth. There appears to be a relationship between vertical movement
speed (solid line), vertical positioning (dashed line), and feeding events (grey vertical fields)
indicating motion toward the surface when feed is offered. (Unpublished data from the same
study as published by Føre et al., 2011)

Industrial Applications
Although there are currently several providers of both telemetry and biologging
devices, their primary market is still within conservation and wild fish research. One
of the main reasons for this is probably that such technologies are invasive in the
sense that they require the fish to be captured and equipped with the devices to
generate data. Biologgers also need to be recaptured to access the data, making them
less suitable for real-time monitoring. In addition, telemetry and logging devices
tend to incur a relatively high cost per monitored individual compared with remote-
sensing technologies such as cameras and echo sounders. Nonetheless, several such
systems have previously been successfully applied to farmed fish and provided
unique insights into their dynamics through individual data histories. It is therefore
likely that the application of such systems to monitor sentinel fish (i.e., a
sub-selection of individuals in the cage population) can have a role in completing
the observation toolbox in commercial cage-based aquaculture.
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9.3.3 Modelling and Information Fusion: Unveiling
the Unobservable

9.3.3.1 Aim: Simulate and Estimate States and Dynamics in Feeding
That Are Difficult to Measure

When aspiring to control industrial processes, one is often faced with the situation
that not all states and dynamics in the process are possible to measure directly
through affordable existing sensor technology. In such cases, it is often useful to
resort to the application of mathematical modelling, information fusion, and state
estimation. Sensor fusion comprises methods for combining real-time data from
different sensors/instruments to provide system information that is more reliable and
complete than that possible to obtain with each data source by itself. State estimation
is a technique that seeks to exploit both these features in combining mathematical
models of the system with real-time inputs from sensors in estimator or observer
structures. The model then accounts for both a priori knowledge and real-time data
on the system, enabling further reduction of uncertainties and can even provide
estimates of system states that are either difficult or impossible to measure directly.

9.3.3.2 Mathematical Modelling
Research Frontier
Mathematical modelling is extensively used as a tool in monitoring and control
purposes in many different industrial segments including oil and gas, vehicle
navigation, and manufacturing (e.g., Monteiro et al., 2012; Rogers, 2007; Defersha
& Chen, 2006). While most of the models used in these industries can be developed
based on physical or chemical systems for which there exist well-founded empirical
or theoretical equations, livestock applications require models that reflect several
aspects of biological dynamics. This has been a subject in terrestrial livestock
research for decades (e.g., Spedding et al., 1988) and has led to the emergence of
models describing feeding dynamics (e.g., Fleming et al., 2020), behavior/migration
(e.g., Guo et al., 2009), diseases (e.g., Brooks-Pollock et al., 2015), and herd
dynamics in response to management strategies (e.g., Jalvingh et al., 1990) i
terrestrial livestock production. The responses displayed by an animal toward
some sort of external stimuli does not only depend on species, size, and the type
of stimuli but also on more fuzzy elements such as the genetic heritage, social
interactions, internal state, and life history of the animal. These elements are much
less mapped and understood for fish than for terrestrial livestock, greatly
complicating the development of generic models that can reflect, for example, the
feeding patterns of salmon in sea-cage production. Similarly detailed models as
those for terrestrial livestock are thus not defined for aquaculture. However, this also
highlights the large potential of using models to better understand such systems, as it
might be difficult to observe and assess the system states based on experience.
Hence, modelling is likely to play a part in developing intelligent feeding in
intensive aquaculture.
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Getting feed pellets close enough to the fish is a precondition for feeding activity,
hence a logical first step in modelling the feeding process in a sea-cage is to model
the final stage of the feed delivery process. For cage-based fish farming, this includes
modelling how pellets are delivered to the cage. This area was targeted by Skøien
et al. (2015) who developed a model able to predict the surface distribution of pellets
delivered by a pneumatic rotary feed spreader in a sea-cage by combining modelling
approaches from robotics and ballistics. In a later study, this model was validated
using experimental data on actual feed spreading patterns and expanded to accom-
modate a range of different rotary spreader configurations (Skøien et al., 2018). Once
the feed has arrived at the cage, the next process that needs to be modelled is how the
pellets distribute beneath the surface. This was first modelled by Alver et al. (2004)
who developed a model of the 2D subsurface pellet distribution in a sea-cage using
the transport equation incorporating the effects of water movement and turbu-
lence (Fig. 9.12). This model was validated using experimental data and later
expanded to 3D and made more realistic in terms of possible inputs (Alver et al.,
2016). Using these models, it is thus possible to predict how different feeder
configurations and environmental conditions contribute to spread feed in the pro-
duction volume, and to what extent the pellets are available to the fish.

The next step in modelling the feeding process is to assess how the fish capture
and assimilate the feed. Existing models of feed intake were reviewed by Sun et al.
(2016) who identified both individual and group-based model formulations. These
included more or less direct methods such as assessing feed intake based on
measured gut content and feces production (e.g., Richter et al., 1999), models that
predict feed intake based on an assumed energetic state or body weight (e.g., Cho &

Fig. 9.12 2D-discretization of cage used to simulate the underwater distribution of pellets after
being released at the surface by Alver et al. (2004). (Reprinted from Alver et al., 2004, Copyright
(2004), with permission from Elsevier)



Bureau, 1998), and indirect methods based on chemical balance in the water (e.g.,
Trudel et al., 2000). Since obtaining measurements from the digestive tract in
sea-cage aquaculture would require crowding and capturing individuals, the direct
approaches are less likely to be useful in operational settings. Likewise, acquiring
data by measuring the chemical balance in the water is likely to be challenging
because the water in the cage is open to the surrounding environment, rendering the
isolation of chemicals related to fish feces difficult. Hence, models based on ener-
getics and weight are probably most relevant when aspiring to use models of feed
intake in intelligent feeding applications. Such models are typically linked with
some sort of growth modelling, which is probably the most modelled biological
phenomenon in aquaculture as reviewed by Dumas et al. (2010). Some growth
models are built as regression models seeking to link changes in weight to time or
some other time-dependent variable, exemplified by polynomial models and the Von
Bertalanffy model (Chen et al., 1992). On the other end of the scale are bioenergetic
models seeking to describe how intake of nutrients is divided between different
bodily functions such as somatic maintenance, reproduction, energy reserves, and
structural growth. Examples of such models include Olsen and Balchen (1992) and
various approaches based on the dynamic energy budget (DEB) formulation
(Kooijman, 2000). Although the latter model format tends to be of a more mecha-
nistic nature in aspiring to predict the stages between feed intake and body size, they
are not necessarily more accurate at predicting end weights than regression type
models (Dumas et al., 2010). Recent developments have also explored the utility of
AI and neural networks in predicting feed intake in farmed fish (Chen et al., 2020).
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Holistic models of the biological process of feeding in sea-cages that combine
models of feed delivery to the cage, feed intake, and growth can be a potent tool in
intelligent feeding applications in enabling the prediction of how the energy in the
feed propagates from pellets to fish meat. In Alver et al. (2004, 2016) the authors
used such an approach by using a simplified version of the model by Olsen and
Balchen (1992) to predict feeding motivation, which, combined with the assumption
that the fish were co-located with the feed distributed in the water, allowed
predictions of feed intake. Combining this approach with a more advanced behav-
ioral model could also have potency in also accounting for other behavioral dynam-
ics. This was done by Føre et al. (2016) who combined the model in Alver et al.
(2016) with an individual-based model of salmon behavior (Føre et al., 2009, 2013).
Using this approach, the authors were able to validate the function of the outer loop
of the holistic model (i.e., the relationship between feed delivered and growth) using
growth data from a commercial sea-cage.

Industrial Applications
Although the industry has been and is using empirical growth models when scaling
the gross feed outputs to the cages, there are few examples of industrial applications
where dynamic models are prospected to be an integral part of feed delivery. A long-
term aim of realizing this would be to integrate such models with sensory inputs
from acoustic and optical systems deployed in the cage to achieve information fusion



on the fish behavior and distribution. This would have a primary application in being
able to dynamically adjust the feeding schedule based on model outputs.
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9.3.3.3 Sensor Fusion and State Estimation
Research Frontier
In related industries such as manufacturing (e.g., Lucke et al., 2008), subsea
applications (e.g., Majumder et al., 2001), and agriculture (e.g., Khot et al., 2008;
Hamouda & Msallam, 2019), sensor fusion and state estimation have become well-
established tools for better exploiting monitoring technologies and existing knowl-
edge. The basic challenge addressed by these techniques is that the state of complex
processes can often only be partially measured, and that those measurements that are
available are typically associated with uncertainty. Sensor fusion and state estima-
tion techniques can allow the combination of separate measurements into a more
comprehensive and accurate dataset, and the estimation of unmeasured states in a
mathematical model of the process.

Although Balchen (2000) suggested a total system estimator based on Kalman
filtering to better monitor fish in the sea, information fusion and estimation methods
to combine information sources in aquaculture applications are not seeing wide-
spread use in either aquaculture industry or research (Hassan & Hasan, 2016).
However, due to the high number of animals, the largely uncontrolled environmental
conditions and the biological factors in cage-based aquaculture, it is likely that such
methods have a great potential as components in future intelligent feeding methods.

Although fusion and estimation methods are seeing more interest in the aquacul-
ture industry and research (Hassan & Hasan, 2016), and virtual studies have been
used to explore the potential of using sensor fusion to improve control in fish farming
(Garcia et al., 2011), there are few examples of real application of fusion or
estimation methods to study fish. Some of the earliest examples of applications
that may be placed in this category were not studies focused on realizing sensor
fusion as such, but rather arose as a necessity to obtain the desired information. For
example, Armstrong et al. (1999) sought to study the space use of wild salmon
juveniles and had to design a system integrating PIT-antennae with cameras to
identify individuals in the video footage. More recently, research effort has been
put into more technologically advanced studies aimed at fish in aquaculture-related
settings, using methods resembling those seen in other industries. A notable example
of such a study is found in Pinkiewicz et al. (2008) who used particle filtering and
video to track fish movement in tanks. The same authors later developed a similar
tracking method for sea-cages, using Kalman filtering to track the distribution,
positions, movements, and sizes of salmon (Pinkiewicz et al., 2011). Although
neither of these studies featured a dynamic system model, which is often a compo-
nent in classical estimator applications, they were able to greatly reduce the uncer-
tainty of parameters obtained by machine vision through data association using a
Global Nearest Neighbor approach. At present there are no behavior models suitable
for this purpose as individual-based approaches (e.g., Føre et al., 2009) do not have a
state space amendable for Kalman filtering and other estimator techniques. This



highlights that developing the components and tools for full-fledged estimation of
fish in sea-cages is a potential next step toward achieving a better overview of the
dynamics in sea-cages, and hence toward achieving intelligent feeding.
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Industrial Applications
Since there are few research applications using sensor fusion/estimation techniques
today, it follows that industrial applications of these are limited. However, there are
some initiatives that deserve some attention in the area of topside data assimilation
and association. Examples of such applications include those that offer solutions
where data is assimilated into a common platform, presenting the user with a holistic
picture they can use to make more knowledge-based decisions and those that offer
traceability solutions based on, for example, blockchain technology.

9.3.4 Automated Solutions and Autonomous Systems: Closing
the Loop

9.3.4.1 Aim: Make Operational Actions Autonomous
While sensors, mathematical models, and their combination through fusion and
estimation can help farmers to better monitor and assess the biological processes
linked to feeding and growth in aquaculture, the act of converting such information
into actual feeding schedules and strategies is still largely done by the individual
farmers, and thus depends on their personal experience in farm management.
Although this human-in-the-loop approach has proven efficient through decades of
intensive fish farming, situations where humans cannot supervise the feeding process
due to harsh weather or vast travelling distances may occur and are likely to become
more frequent in the future due to the industrial trend in moving production to more
exposed and remote sites (Bjelland et al., 2015). This challenge may in part be
solved through remote feeding, where the person controlling the feeding system is
not at the actual farming site, but rather monitors the process remotely with cameras.
An alternative approach could be to use automated solutions that convert
observations and monitoring information into control signals that actively steers
the process toward a desired state, essentially closing the loop without the need for
human intervention. Introducing such solutions would not only increase the automa-
tion level of feeding operations, but also render these operations less sensitive to
variations in experience levels between individual farmers. Moreover, unmanned
solutions for feeding can be implemented locally at the site, reducing their sensitivity
to communication-related challenges such as latency, limited bandwidth, and elec-
tromagnetic interference compared with solutions based on remote control. In sum,
improved automation in feeding can contribute to making fish husbandry and
nutrition in aquaculture more optimized and repeatable and hence contribute to
shifting the aquaculture industry toward a more knowledge-based regime.
Automated solutions and autonomous tools would be key enabling technologies in
achieving this, and we will in the following discuss how solutions from robotics and



feedback controlled and on-demand systems from research and industry could be
exploited to this end.
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9.3.4.2 Robotic Systems and Vehicles
Research Frontiers
While robotic systems specifically designed for feed distribution have been used in
land-based small-scale applications in aquaculture (Von Borstel et al., 2013), they
are not common in cage-based marine production. This is mainly because it is much
more difficult to design such systems that can operate safely and reliably in the
marine environment, than doing so in a land-based environment where the robot can
operate in air. Moreover, the amounts of feed delivered to the cages and the rate of
delivery requires heavy duty mechanical solutions that may be more difficult to
robotize precisely. One exception is found in Reshma and Kumar (2016) who
developed a theoretical concept for aerial drone-based feed delivery to fish cages,
a concept that could work for small-scale production sites.

With the current rapid technological development, it is likely that we will see future
applications that are more closely integrated with the feeding operation. Some
explored concepts could already be turned toward improving control over the
feeding process. For example, aerial drones could in combination with algorithms
for automatically assessing surface activity (Jovanovic et al., 2016) or pellet distri-
bution (Lien et al., 2019) provide information on the feeding response of the fish that
in turn could be used to improve feeding control. Other systems such as ROVs
(Remotely Operated Vehicles) could be used to obtain better control. Moreover, it is
possible that underwater robots coupled with computer vision methods (e.g.,
Martinez et al., 2003) could serve as mobile observation points for monitoring the
feeding activity of the fish, thereby providing a better overview of the feeding
motivation in a larger part of the cage. If such systems were coupled with
AI-methods able to automatically assess feeding activity (e.g., Måløy et al., 2019),
they could even have the potential of conducting autonomous feeding monitoring,
providing the farmer with a time variant proxy for fish appetite without needing to
evaluate video footage manually.

Industrial Applications
The aquaculture industry is moving toward increased use of underwater robotics
instead of human labor in tasks conducted in the sub-surface environment, particu-
larly in the marine environment. This trend has been increasing over the last decades,
much due to the increasing HSE-risks associated with moving operations to more
exposed and larger sites, but also because the technological development in other
industrial segments (particularly offshore oil and gas) has led to innovations that may
also find usage in fish farming. However, adapting such robotic tools directly into
fish farming operations is not always straight forward, as the movement from deep-
sea to fish farm environments introduces new challenges that need be handled. For
instance, the environment where the robot will conduct its missions will then feature
live fish and flexible structures, effectually changing the boundary conditions for



how an operation may be conducted. This means that some operations may require
tools specifically designed for that operation to succeed. Current industrial uses of
robotics in mariculture vary from using largely conventional ROVs to inspect cage
components (e.g., Rundtop & Frank, 2016), AUVs (Autonomous Underwater
Vehicles) used for site surveys and other environmental monitoring tasks, to vehicles
specially designed for net cleaning. However, there are so far no industrial examples
of robots used in feeding operations.
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9.3.4.3 Feedback Controlled/on Demand Feeding Systems
Research Frontier
Feedback control, where information about the current process output is used to
formulate input signals to the process designed to steer the process to a desired state,
is one of the mainstays of control theory and cybernetics. In fact, the use of the term
“closing the loop” when addressing some kind of control challenge refers to exactly
the application of feedback. Fully controlling the feeding process in intensive fish
farming will require some sort of feedback from the process, as control purely based
on prognoses and mathematical models will be ill suited to handle unforeseen
changes in the responses of the fish, or environmental conditions. Such feedback
can be realized by using process outputs obtained by either observing some property
of the fish related to feeding behavior, distribution, or appetite, or by observing feed
spills or spatial distribution to indirectly observe feed intake versus feed delivery.

Previous applications of feedback control in aquaculture have mainly focused on
smaller laboratory-based cases featuring relatively simple organisms, such as model-
based estimation and control of rotifer density in start-feeding cultures for cod larvae
(e.g., Alver et al., 2004). Although there are fewer examples from science where
such feedback control is applied to fish production, and feeding processes in
particular, some studies have sought to address this area using acoustic measures
or cameras. In a previously mentioned study, Bjordal et al. (1993) set up feedback
from an echo sounder covering the upper five meters of the water column. The
perceived fish density in the layers closest to the surface were then compared to a
predefined density threshold to determine whether feeding should be continued or
terminated, an automated solution that outperformed a fixed diet schedule applied to
the same fish. In a contemporary study, Juell et al. (1993) used a customized feed
detector to generate a feedback signal, achieving similar improvements over con-
ventional feeding schedules. The feed detector used a high-frequency acoustic pulse
to quantify the feed inside a delimited control volume, and the control system was
designed to compare this value with a predefined threshold value to determine when
feeding should be ended. A similar approach was tested by Blyth et al. (1993), who
concluded that a measure of pellet wastage was a feedback value more suitable for
controlling feeding than, for example, surface activity or swimming speed. Although
they measured pellets using a sensor whose principle was not divulged in the study,
this system was further explored in later studies (Kadri et al., 1998).

An alternative approach to feedback-control can be achieved through systems
where the fish actively induce the delivery of feed. Since the feeding process in



practice is then controlled by the fish, the level of precision attainable through
feedback control may be lower than when using more objective measures such as
feed spills and behavioral observations, potentially leading to more feed wastage. In
addition, implementing systems where individual fish need to interact with the
feeding system in industrial scale may be very challenging, especially in facilities
containing large populations of fish. However, the potential of achieving more
efficient feeding in fish farming, there have been several studies exploring the
feasibility of using self-feeding in aquaculture. In an early application of this
principle, Alanara (1992) found that rainbow trout exhibited better growth when
allowed to control feeding themselves through biting a rubber pendulum to release
feed than when faced by conventional feeding regimes. Similarly, Paspatis and
Boujard (1996) found that self-feeding of salmon where the fish activated a steel
rod trigger led to more even growth and lowered feed waste. In a more recent study,
Shi et al. (2017) used a system where the fish pulled a submerged bead to release
feed, and found that although the system did not lead to improved growth compared
with ad libitum feeding, feed waste was much lower, which coincides with the
results found in earlier studies. Self-feeding systems have also been used in
experiments with other cage-reared aquaculture species such as seabass (e.g.,
Rubio et al., 2004; Coves et al., 2006). If self-feeding systems are to be a preferred
approach, a key challenge is to ensure a feed intake leading to a sufficiently high
growth rate, as this is an equally important success factor as the reduction of feed
waste.
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Industrial Applications
Since it is obvious that efficient feedback control of feed delivery in fish farming will
have a huge potential in realizing more efficient and environmentally friendly fish
production (i.e., sufficient feed at the right time meaning better growth and lowered
feed spills), the need for scientific validation of the efficacy of this concept is less
crucial. This may potentially shorten the path from acquiring relevant measurements
to being able to offer industrially viable feedback-controlled solutions. Although the
farming industry may need some more convincing before revolutionizing their
company practices in feeding (which after all is the most important management
practice in fish farming), some technology providers are already starting to offer
solutions that are approaching fully autonomous feeding, for example, through AI
combined with acoustics or cameras.

9.4 Future Prospects and Developments

9.4.1 The Intelligent Feeding Methods of the Future

Feed utilization and production efficiency can be improved through direct measures
such as developing feed with new physical/chemical properties, using different
alloys or components in feeding systems and tubes and real-time feed characteriza-
tion. However, we believe that the largest untapped potential in achieving more



intelligent feeding and nutrition in cage-based fish farming lies in applying technol-
ogy to better understand and control the biological aspects of feeding in cages. In the
following, we will try to summarize how we envision state-of-the-art technology can
be used in future intelligent feeding methods.
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9.4.1.1 Observing and Interpreting Fish States
To properly assume control over any process, it is important to first ensure that it is
possible to fully monitor the state of the system. For feeding in fish farming, this
includes being able to assess the feeding motivation and behavior of the fish, as well
as the distribution of feed pellets in the cage volume.

The first step toward achieving this would be to develop algorithms for automati-
cally analyzing data streams of raw data from sensors, optical footage, or acoustic
echograms into numerical data that quantifies the features of interest. In the case of
feeding, potential features of interest could include changes in swimming speed and
orientation, vertical movements, changes in heart rate, and changes in blood glucose.
Algorithms that target feeding-related features directly instead of first trying to
describe the entire behavioral and physiological state and leaving the operator to
interpret these could result in a much more focused and above all objective approach
to monitoring and understanding feeding in sea-cages. For example, an optical
system aimed at feeding could be designed such that it only generates information
for the user if the swimming speed changes in a way that implies a transition between
different stages of feeding behavior. The features in the video stream that would
imply such transitions could be found using methods from machine learning using
labelled data featuring video footage from the different stages. Although such
methods often require large amounts of training and validation data to be successful,
it is common to make such algorithms adaptive, in the sense that they are continu-
ously improved when used, leading to increasing precision. In addition to
instrument-specific algorithms, it may also be reasonable to combine the data from
several sensors using sensor fusion principles, as it may be difficult to achieve a good
enough description of the state through single measurements.

In some cases, the system state is not possible to observe through measurements
alone, and it is then common to combine real-time measurements with mathematical
models of the process in so-called estimator structures. This has proven to be a
success recipe in other industrial segments, especially in situations where the
installation of enough instruments to facilitate full state observation is either too
difficult or expensive to be feasible. A precondition for using such methods is that a
sufficiently accurate and realistic model of the system dynamics exists. For feeding
in fish farming, such a model could reflect various aspects of feeding and nutrition,
including feed distribution, feeding behavior, feed intake, and digestion. In an early
example, Alver et al. (2004) suggested that the center of mass in the subsurface pellet
distribution could be estimated by combining measurements of fish distribution with
a model of spatial feed distribution model, and also proposed how this could be used
for feedback control of the feeding process. For more precise control, one could
further envision that this model could be set up to also simulate the fish population
based on various inputs (e.g., feed delivery, temperature, fish size). If combined with



monitoring methods specifically designed to capture features relevant for feeding,
such a model could result in an observer or estimator able to assess the feeding status
of the entire population. The observer would produce estimates comparable with the
measurements, and the deviations in these estimates would be used to correct the
model state. Returning to the optical measurement example mentioned above, this
would entail that the model needs to simulate fish movement during feeding and
provide an output matching the criteria for speed changes used in the optical method.
If successful, such a construction could combine real time data from a few
individuals with a priori knowledge through the model to render the feeding process
in salmon farming observable.
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9.4.1.2 Deciding and Delivering
Once the full system state is possible to observe, it can be combined with information
on other relevant concerns (e.g., remaining feed in silos, planned future operations)
into a foundation for automating the decision making and feed delivery stages of
feeding in intensive mariculture. Automated decision support systems (DSS) repre-
sent a possible technology to handle the decision stage and are currently seeing
increasing use in other industrial segments. Such systems are often designed to
combine real-time data from sensors and a priori knowledge from models in a
common foundation for making informed decisions. This could either be realized
by including these as separate data streams or by using the output of a state estimator
in the event that this has been successfully implemented. In many cases, DSS also
take experience data from human operators into account, which adds an operational
dimension to the decision process. Since feeding fish is a highly complex process,
this will most likely be wise to include in a DSS aimed at feeding, to also account for
factors that are less clearly linked with measurable values and more closely linked
with the intuition of the farmers.

Since all the aforementioned solutions would greatly increase the control over the
feeding process, a future intelligent feeding method could enact feed delivery using
the solutions that are commonly used today, for example, rotary spreaders, and still
achieve large benefits in feed utilization and nutrition. However, modifying the
delivery method could in some cases contribute to improving the situation further.
For instance, underwater feeding systems could be introduced to reduce feed loss
due to waves and wind, and to allow the fish to avoid the surface layers when
conditions for growth are more beneficial deeper in the water column (e.g., when
temperatures at the surface are very high or very low). Since underwater feeding
most likely would not be able to spread the feed as much as during surface delivery,
this could require multiple feeding points and instrumentation associated with these.

In cases where the prevailing currents are strong, another option could be to use
mobile feeding points, either surface mounted or submerged. The feeding points
could then be moved upstream to reduce the feed loss due to transport through the
net wall, potentially greatly reducing the feed loss. Models of feed distribution such
as that of Alver et al. (2016) could then be used to specify a path that reduces current-
induced feed spills while still maintaining a feed distribution likely to stimulate
efficient feeding in the fish. Feeding point mobility could either be facilitated



through permanently mounted winches and similar systems, or by using robotic free-
swimming platforms.
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Finally, although on-demand systems where the fish themselves actuate feed
delivery may be complex to introduce to large-scale systems, they could serve a
purpose in future feeding systems. This would be especially relevant in cases where
a solid foundation in real-time measurements, models, and decision support is
difficult to achieve. A potential way to cope with the challenges of scale could be
to use multiple feeding points, such that the total demand is spatially spread. This
challenge will be less important for smaller production units.

9.4.2 New Solutions for New Production Concepts

To fully explore the potential role of digital technologies in realizing the feeding
methods of the future, it is important to also consider how such solutions could be
applied in new emerging production concepts. It is likely that the feeding process in
structures built for more exposed locations (e.g., Ocean Farm 1, Mariculture,
Havfarm) will need to be done differently than in conventional cages. For instance,
feeding a larger volume entails larger challenges in ensuring that all fish are fed. This
could in part be mediated by increasing the ability to monitor the feeding activity of
the fish using automated monitoring and estimation principles, as increased control
depends on improved observational abilities. Another challenge that may be encoun-
tered when feeding at exposed sites is that larger waves and stronger winds and
currents can lead to increased feed loss. Solutions based on sub-surface feeding
could represent an avenue to tackle such challenges, as this could reduce the
exposure to effects above and near the surface. Moreover, mobile feeding systems
that are, for example, moved to the upstream area of the cage could contribute to
reducing loss due to currents.

While concepts designed to treat fish more individually (e.g., iFarm) are very
suitable for adapting management practices resembling those implied in PFF,
these may also have challenges in achieving individual control of feed intake.
Conventional feeding systems with a single feeding area may not be sufficient for
this, as they may lead to dense congregations near the feeding points. This challenge
could possibly be mediated by using multiple distributed or mobile feeding points, or
possibly through on-demand systems where the fish are identified when they trigger
the release of feed.

Although semi-closed solutions (e.g., Aquatraz) by design could lessen the feed
loss in shielding parts of the volume to currents and waves, these solutions could
probably also benefit from increasing feeding control. For fully closed solutions
(e.g., Preline, “The egg”), however, it is likely that new methods for feeding should
be introduced. Such solutions are typically based on flow through using water
retrieved at depths well beneath where pathogens and parasites are found, and may
also have some degree of water recirculation. In being closed, feed spills will not
simply be released from the volume as in open net cages but can be collected at
locations inside the volume. If quantified, this could offer possibilities in assessing



the actual feed consumption at the site accurately, which would be a very useful
input to intelligent feeding algorithms. However, this also offers a challenge, since
the amassment of uneaten feed and potential feces could lead to unwanted effects
such as algae growth and buildup of chemical compounds that may be harmful for
the fish. It is thus possible that feeding control through technology may be even more
important in closed systems.
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In addition to the new initiatives in marine aquaculture, there are also several
ongoing prospects and concepts for producing salmon on land. The ambitions of
these systems range from extending smolt production before transport to marine
cages to conducting full production cycles on land. Similar to fully closed concepts
for sea-based production, these concepts will need to cope with the excess feed and
feces during production. However, land-based facilities have advantages over
marine sites in the form of easily available infrastructure (e.g., power, network),
and that they are placed in an environment that is less harsh and demanding for the
continuous operation of advanced equipment. In that sense, it is probably possible to
achieve a higher degree of control over the feeding process in land-based sites than
in cage-based culture, and with production costs at land-based sites typically being
considerably higher than at marine sites, this is possibly a necessary component in
developing land-based production concepts that are equally profitable as sea-based
sites.
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Abstract

The nutritional management of grazing livestock in extensive conditions is
challenging because of the difficulty to measure diet selection, feed and nutrient
intake, and excretion, energy expenditure, and ultimately animal performance.
The large variability in space and time of weather, pasture characteristics, and
animal requirements and performance pose an additional challenge. However,
various sensor technologies exist today to measure key attributes related to feed
availability and quality, energy and nutrient requirements, animal performance,
and environmental footprint in near real-time. Requirements for maintenance are
a function of body weight (LW), physical activities, and environmental
conditions, which can be measured using automatic systems for LW determina-
tion, animal behaviour, and weather. Requirements for production (body growth,
gestation, and lactation) can be measured directly or indirectly via automatic LW
determination, and technologies for the detection of oestrus and birthing events.
Feed efficiency could be measured using face masks, heart rate monitors, and
open-circuit gas-quantification systems of gas exchanges (CO2, CH4, and O2).
Finally, mathematical nutrition models play a very important roll to integrate
these technologies and predict hard to measure variables. Examples of such
automatic model-data fusion approach are presented to demonstrate its potential
as part of smart nutrition systems of extensively kept livestock. The combination
of data collected automatically using digital technologies, data analytics, and
mathematical prediction models have the potential to revolutionize animal nutri-
tion of extensively reared livestock. This will improve productivity, animal
welfare, and the sustainability of these systems.
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10.1 Introduction

The management of extensively raised livestock poses multiple challenges com-
pared to intensively raised livestock, due to the difficulty to measure and control feed
availability and quality, feed and nutrient intake, feed and nutrient requirements,
waste or excretion, and animal performance such as growth rate. Furthermore,
grazing systems have inherent larger variability observed at both temporal and
spatial scales for both animals and feed (Tedeschi et al., 2019). The large variability
observed in feed and nutrient availability is a result of the plant species present and
phenological stage, weather and soil characteristics, and management factors includ-
ing fertilization, amongst other factors (Insua et al., 2019). Similarly, the large
variability in animal feed and nutrient requirements are a result of differences in
genetics, gender, age, degree of physiological maturity, and even the interaction of
these factors with feed available which determines animal response (González et al.,
2018). The variability in grazing behaviour including diet selection and physical
activities are also important factors determining the energy balance of grazing
livestock (Brosh et al., 2010). Therefore, optimizing cost of production, animal
performance, production efficiency, animal welfare, and environmental management
under extensive grazing conditions is challenging and often uncertain. The present
chapter refers to grazing beef cattle and sheep for extensively raised livestock,
without differentiating the extent of ‘extensiveness’. However, it is important to
note that animal behaviour and nutritional processes could be different in very small
(e.g., <1 ha), as opposed to very large, paddocks of several thousand hectares
commonly found in places such as northern Australia (Pearson et al., 2021). As it
is obvious, the suitability of different technologies may change with paddock size.
For example, light sensors mounted on terrestrial or unmanned aerial vehicles
(UAV) can be useful to monitor feed and nutrients available in small paddocks,
but satellite imagery could be more suitable for large paddocks.

In extensively raised livestock, one the of the most important key productivity
indicators is stocking rate as an indicator of feed demands per unit of land, which
must match the carrying capacity of the land to maintain productivity, profitability,
and sustainability (O’Reagain et al., 2014; Odintsov Vaintrub et al., 2020). Precision
livestock nutrition or precision livestock feeding is an integrated information-based
system to optimize the supply and demand of nutrients to animals for a target
performance, profitability, product characteristics, and environmental outcomes
(González et al., 2018). Energy and nutrient demands of livestock depend on factors
such as the number of animals, their LW, and their production level including



growth rate and weaning rate (Herrero-Jáuregui & Oesterheld, 2018). Carrying
capacity is the number of animal units each unit of land can sustainably carry
according to the amount of forage produced, which is in turn affected by the pasture
species present, climate (rainfall), and soil fertility (Hall et al., 1998; O’Reagain
et al., 2009). Technologies that can measure both feed or nutrient supply and
demand, or variables related to them, could have enormous benefit to the grazing
industries and help optimize livestock nutrition and production.
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Important advances have been made in the last decade to measure remotely
multiple nutritional processes and factors affecting the flow of nutrients and energy
(González et al., 2018; Odintsov Vaintrub et al., 2020). Technologies exist today to
monitor many of these processes ranging from the feed available to animals under
extensive grazing conditions, the processes occurring inside the gastrointestinal
tract, the use of energy and nutrients for maintenance and production, and finally
the excretion or wastage of nutrients via faeces, urine, or methane from enteric
fermentation (González et al., 2018). However, no review seems to be available
focusing on extensive livestock grazing with examples on how sensor technologies
and nutrition models can be used to improve the nutrition and productivity of both
the animals and the land. The objective of the present chapter is to review recent
developments in technologies and approaches to monitor and manage the nutrition
of grazing animals in extensive conditions. The first part of the chapter presents a
framework to understand the role of multiple technologies in animal nutrition and
ways to integrate their data with mathematical nutrition models. Examples are
provided on the use of different technologies and models within that framework to
demonstrate the opportunities of the approach for extensive livestock production. It
is important to note that some technologies are mostly used for research purposes at
present time, although the technology is likely to be used under commercial settings
in the near future, such as the GreenFeed (C-Lock Inc., USA) automated system to
monitor methane and carbon dioxide emissions from ruminants. The present chapter
does not attempt to infer what technologies are used or will be used for commercial
applications because this may change in the future.

10.2 A Suggested Framework for Smart Nutrition of Extensively
Raised Livestock

The opportunities for the livestock industries to capitalize on recent developments in
digital technologies and sensors require approaches beyond just collecting and
visualizing data (González et al., 2018). Nevertheless, the power of data visualiza-
tion should not be undermined (Van Hertem et al., 2017). González et al. (2018)
focused upon the opportunities presented by alternative approaches to just using the
technologies or the data provided by them such as the integration of mathematical
nutrition models, sensor data, and data science including machine learning, data
fusion, and artificial intelligence. Mathematical nutrition models refer to those that
simulate one or various nutritional mechanisms or processes involved in energy and
nutrient supply and requirements of animals such as NASEM (2016) and Freer et al.



(2007) amongst others. It was highlighted that this approach may require the
development of new nutrition models, the re-structure of existing models, or their
re-parametrization. One of the reasons for this statement is that most models were
neither developed using, nor aimed to use, data collected with the temporal and
spatial resolution that sensor technologies can do nowadays.
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González et al. (2018) provided an example of the rapid changes measured in the
growth rate of grazing animals measured with automatic weighing systems, which
were due to both changes in body components and rumen fill. However, most of the
nutrition models have been drawn from research eliminating the effect of rumen fill
through fasting animals for 12–16 h. Figure 10.1 describes such concepts where data
collected from sensors and other farm data (e.g., data manually collected in the yards
or using smartphone applications in the paddock) can be ‘fused’ or integrated to
produce new data or information with greater value than the sum of the individual
data streams (data fusion). The process of integration of such data can be achieved
via multiple approaches, including machine learning, artificial intelligence, or even
more basic statistical approaches like linear or logistic regression, or principal
component analysis (Wolfert et al., 2017; Morota et al., 2018). However, it is
important to highlight that data integration is not a requisite and single sensor data
alone can be used for the model-data fusion framework as well. An example of this
could be the use of LW data collected by automatic weighing stations to predict

Fig. 10.1 Flowchart of an automated model-data fusion framework integrating technologies with
existing models for the nutritional management of livestock. Two-way arrows emphasize the
iterative process and interactive approach of the model-data fusion concept. (Adapted from Keenan
et al., 2011)



energy and protein requirements of grazing animals according to measured LW and
target growth rate as presented by González et al. (2014b). In the model-data fusion
approach, sensor data can be used as input of mathematical nutrition models which
could range from comprehensive mechanistic models such as NASEM (2016) and
Freer et al. (2007) to simple empirical equations, such as the prediction of feed intake
from LW and daily LW change (LWC) (Minson & McDonald, 1987). However,
other studies have successfully used digital technologies such as Global Navigation
Satellite Systems (GNSS) collars to estimate the efficiency of energy utilization for
physical activities and energy expenditure for different activities (Brosh et al., 2007,
2010). Tedeschi et al. (2019) presented other frameworks based on the integration of
mechanistic models and artificial intelligence to develop hybrid mechanistic
machine-learning modelling techniques. Therefore, the options available to use the
large amounts of data collected by sensor technologies are broad.
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Once models and data have been integrated, predictions can have multiple
dimensions in space, time, and utilization or objective. For example, predictions in
space could range from predicting patch selection for grazing to predicting herd
responses in different paddocks with different vegetation. Similarly, the dimension
of time can range from predicting unobserved events or outcomes in the past, present
(nowcasting), and future (forecasting) such as animal responses to feed supplemen-
tation including methane emissions from ruminants and aboveground forage intake.
Furthermore, predictions could be made for the next day, week, month, or year
adding to the complexity of the variables and processes which may require the
application of various models (i.e., static time-point or dynamic models). Finally, the
estimations made by models can feedback into new data being collected, into
nutrition models, or both (Fig. 10.1), and this loop is expected to further improve
the value of new data and refine the model parameters. Predicted values can also be
used to evaluate the accuracy of the predictions as new data continues to be collected
and used as input of models to further improve predictions. An example was
presented by González et al. (2018) where model-data fusion was used to estimate
the amount of feed supplementation required by grazing animals to reach a
pre-determined production level and carcass endpoint based on predictions made
by mechanistic models from remotely collected LW and LWC data. Both animal
performance and supplement intake can be measured in real-time, and these data can
be used by simulation models to calculate supplement conversion efficiency
(kg LWC/kg supplement) on the left-hand side of Fig. 10.1. In addition, such results
could also be used via the right-hand side of Fig. 10.1 to further refine the models
using the new feed conversion parameters to estimate the amount of feed required to
achieve a target final LW. Outcomes from applying these approaches can then
feedback into the loop as adjustments in the amount of feed consumed can be
done in real-time to re-formulate and optimize the desired outcomes. Nonetheless,
it is important to highlight that this approach is theoretical and little research has
been conducted to demonstrate the advantages or otherwise of model-data fusion.

The selection of key technologies to collect data to achieve a desired outcome or
to respond to specific questions or hypothesis is also needed to extract greater value
from digital technologies and nutrition models (González et al., 2018). A flowchart



can be used to visualize where different technologies fit to obtain critical
measurements throughout the nutritional processes involved in the flow of nutrients
(Fig. 10.2; adapted from González et al., 2018). Figure 10.2 is not comprehensive
but allows mapping the role that some technologies can play to provide critical
information that allows understanding and quantifying the nutritional process. Some
technologies may be more suited than others for a particular application depending
on the objective or to address the most limiting factors to animal production,
profitability, or environmental sustainability. For example, the increasing impact
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Fig. 10.2 A simplified hypothetical flowchart of nutrients through an animal (solid boxes) with
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blue, NIRS near-infrared spectroscopy, LiDAR light detection and ranging, DEXA dual energy
X-ray absorptiometry, RFID radio frequency identification, CT computer tomography, MIR
mid-infrared. (Adapted from González et al., 2018).



of methane emissions in a carbon-constrained economy may result in placing larger
emphasis on reducing methane emissions compared to increasing productivity, for
which gas analysers such as the GreenFeed (C-Lock Inc., USA) could become more
relevant to manage the nutrition of grazing ruminants. The following sections of this
chapter will discuss some of the technologies available at key stages of the flow of
nutrients in the animal body following the sequence of Fig. 10.2. Examples of
applications and integration of data with prediction models will be presented to
demonstrate the approach to aid in decision making and improve the nutritional
management of extensive livestock systems.
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10.3 Feed Availability and Quality

Pasture growth rate, biomass, and quality are key attributes of importance in
extensive livestock production, which are highly dependent on weather, soil, and
management, and determine livestock production, sustainability, and welfare
throughout the year (Ash et al., 2015; O’Reagain et al., 2009). These attributes of
the vegetation available to animals are critical for managing stocking rate, length of
the grazing periods, pasture utilization rate or grazing intensity, and animal perfor-
mance. Pasture growth rate is normally measured in kg of DM/day/ha, biomass in kg
of DM/ha, and quality has often been measured through dry matter digestibility
(DMD) and the concentration of nutrients such as crude protein (CP), neutral
detergent fibre (NDF), or minerals in % of DM. This section describes some of the
most used and promising technologies to monitor the vegetation in grazing systems.

10.3.1 Vegetation Reflectance and Vegetation Indexes

The most widely used technologies to monitor the vegetation in extensive
rangelands are based on measuring ground reflectance or absorbance of light at
various sections of the light spectrum (Ali et al., 2016). The reflectance of the
vegetation depends on the type of forage such as green in actively growing vegeta-
tion or brown in senescent vegetation (visible section of the spectrum), or its
chemical composition (e.g., infrared region; Wachendorf et al., 2018). Sensors or
cameras to measure reflectance can be mounted on fixed platforms on the landscape
(Flynn et al., 2008; Hancock et al., 2015), manned ground or aerial vehicles (Insua
et al., 2019), unmanned ground or aerial vehicles (Oliveira et al., 2020; Wijesingha
et al., 2020), or satellites (Edirisinghe et al., 2011). There are obvious advantages and
disadvantages for each platform. However, for extensive grazing conditions
satellites are preferred because of the large coverage (worldwide) and area of each
overpass (several km swath width), low cost, and appropriate temporal and spatial
resolution. However, satellite imagery is affected by cloud cover which can result in
significant data loss during wet seasons. In contrast, ground or aerial vehicles are less
dependent of cloud cover, have high spatial resolution but lower coverage
(Wijesingha et al., 2020).
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Spatial, temporal, and spectral resolution are the most important considerations of
these sensors in different platforms (Wachendorf et al., 2018). Spatial resolution
refers to the pixel size projected on the ground and can also refer to image or swath
size. Temporal resolution refers to the frequency at which data can be obtained (e.g.,
number of days between satellite visit of the same point on earth), and spectral
resolution refers to the number and width of the spectral bands that can be recorded
with the sensor (Wijesingha et al., 2020). Sensors can be classified as true colour or
red, green, blue (RGB) for sensors measuring reflectance in the visible part of the
spectrum, multispectral sensors that can measure at multiple parts of the spectrum
most often including measurements in the infrared and near-infrared wavelengths, or
hyperspectral sensors with the ability to measure reflectance with high spectral
resolution such as bands every 10 nm (Paoletti et al., 2018; Wachendorf et al., 2018).

There are multiple vegetation indexes that can be calculated from the reflectance
measured at each spectral band, which reflect the characteristics of the forage such as
greenness or chemical composition (Ali et al., 2016; Wachendorf et al., 2018).
Normalized difference vegetation index (NDVI) or greenness index measures the
reflection from actively growing plants, and it is widely used as an indicator of green
forage biomass, plant growth rate, quality, and pasture health (Ali et al., 2016). The
NDVI also shows high correlation with the DMD and CP of pastures (Ausseil et al.,
2011). Vegetation indexes can capture both temporal and spatial changes in vegeta-
tion biomass and quality. However, many of these indexes are not suitable to
measure biomass of dry pastures and require calibration equations that may be site
and sensor specific (Wachendorf et al., 2018). An example of an image to show the
spatial variability obtained from a drone on a rotational grazing system is shown in
Fig. 10.3, where both the RGB and NDVI values are shown for each pixel.

Fig. 10.3 Drone imagery of pastures in true colour (Red, Green, and Blue (RGB)) and normalized
difference vegetation index (NDVI) under a rotational grazing system with beef cattle to show the
ability of the technology to capture spatial variability in actively growing forage. Green colour
indicates paddocks or areas within a paddock with high accumulation of green forage compared to
red colours which indicate very low forage availability or bare ground
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Fig. 10.4 Normalized difference vegetation index (NDVI) or greenness index of tropical pastures
in northern Australia over a period of 3 years, demonstrating the ability of satellite imagery to
provide detailed temporal changes that reflect the nutritional status of grazing livestock. Low NDVI
values indicate dry seasons and high indicate wet season with green forage accumulation

In addition, these spectral sensors mounted on satellites can provide frequent data
with some satellites offering free RGB imagery daily (e.g., https://www.planet.com/)
or free multispectral imagery every 5 days (e.g., https://eos.com/sentinel-2/) t
capture very detailed information of temporal changes in green forage biomass.
An example of the ability of these technologies to provide detailed temporal changes
through vegetation indexes is shown in Fig. 10.4 over tropical pastures in northern
Australia (Rockhampton, Queensland) using MODIS satellite (https://modis.gsfc.
nasa.gov/data/dataprod/mod13.php).

10.3.2 Biomass and Growth Rate of Pastures

An early example of the utilization of both satellite imagery and data fusion for
rangeland monitoring with applications in the nutritional management of livestock
was presented by Hill et al. (2004). The authors used satellite imagery to calculate
vegetation indexes and then integrated these with weather data to estimate pasture
growth rate for budgeting feed available for livestock and managing stocking rate.
Examples of model-data fusion approaches have also been used in pastures to
improve the estimation of pasture biomass using remote sensing data from proximal
hyperspectral sensing, Sentinel-2 satellite, and a radiative transfer model through the
calculation of leaf area index (Punalekar et al., 2018). A simpler approach was used
by Gargiulo et al. (2020) with Sentinel-2 data being used to calculate NDVI over
time and then regressed the slope of the NDVI values against time to as an estimation
of pasture growth rate (R2 = 0.74–0.94). However, biomass estimation from NDVI



showed low precision in latter study (R2 = 0.61). Landsat satellite imagery has also
been used to assess the effect of grazing management and climate on pasture
vegetation index, which was recommended for both research and commercial
applications (Donald et al., 2013). These examples show the potential of different
modelling approaches and model-data fusion applied to pastures grazed by animals
with applications to monitor feed and nutrient on offer. It is important to note that
ultrasonic sensors and light detection and ranging (LiDAR) have also been used to
measure pasture biomass with acceptable precision as reviewed byWachendorf et al.
(2018). These sensors work by emitting ultrasonic sound waves or infrared light and
then measuring the time it takes to be reflected by the pasture. This time is then used
to calculate the distance between the target object (pasture) and the sensor providing
a cloud of points that allow estimating forage height and density, and therefore
biomass (Wachendorf et al., 2018). However, these sensors are not mounted on
satellites for applications in extensive grazing and are mostly used in ground or aerial
vehicles.
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10.3.3 Pasture Quality

Scientific evidence supports the use of spectral data to measure the quality attributes
of pastures for grazing animals despite an apparent lack of commercially available
systems. Research by Ausseil et al. (2011) reported that ME, organic matter digest-
ibility, and CP concentration of pastures could be predicted from satellite-derived
vegetation indices with R2 > 68%. These relationships between vegetation indices
and pasture quality and quantity can also be reflected in the growth of the animals
(Pearson et al., 2021). Recently, Insua et al. (2019) used a model-data fusion
approach integrating UAV spectral data with mechanistic (process-based) models
of plant growth to predict pasture growth rate, digestibility, and morphology. The
latter authors predicted DMD of pasture from changes in NDF concentration
according to plant morphology from leaf growth and senescence, and leaf number
and length accounting for the severity and frequency of grazing. The authors found
that the model-data fusion approach was accurate to predict the spatial and temporal
changes in pasture biomass, neutral detergent fibre, digestibility of neutral detergent
fibre, and digestibility of dry matter with concordance correlation coefficients of
0.94, 0.71, 0.92, and 0.93, respectively. Schut et al. (2006) also demonstrated the
ability of imaging spectroscopy to measure the concentration of N, P, K, crude fibre,
NDF, acid detergent fibre, and digestibility of Lolium perenne and grass-clover
swards. Other researchers used a data fusion approach to demonstrate that the
integration of spectral satellite or hyperspectral proximal sensing and ultrasonic
data streams improved the predictions of biomass, CP, and acid detergent fibre
(ADF) by over 35% in highly heterogeneous pastures (Mockel et al., 2017; Safari
et al., 2016).

The literature cited in this section demonstrates that metrics of forage plants
relevant to manage the nutrition of animals grazing in extensive rangelands can be
measured remotely. These metrics include biomass, growth rate, chemical



composition, and digestibility or ME concentration using multispectral and
hyperspectral sensors, remote and proximal sensing. The metrics can then be used
by mathematical nutrition models such as NASEM (2016) and Freer et al. (2007) to
predict feed and nutrient intake, and performance of grazing livestock. However, the
challenge still exists in developing the prediction equations to convert the spectral
data into the relevant metrics required for the nutritional management of livestock.
Unfortunately, these equations are time consuming and expensive to obtain, and
likely to be specific for different pastures, regions, and sensors. The standardization
of field data collection, data sharing, and alliances between research groups could
result in generalized calibration equations to benefit the grazing industries.
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10.4 Energy and Nutrient Requirements

The feed and nutrient requirements of animals can be partitioned into those required
for maintenance and production (Freer et al., 2007; NASEM, 2016). The largest
influence on feed and nutrient requirements of livestock grazing in extensive
conditions comes from LW, LWC, physical activities, and the need to maintain
body temperature in some regions where ambient temperature is challenging for the
animals. In addition, energy and nutrient requirements for wool production can also
be significant in wool sheep breeds, such as Merino (Freer et al., 2007). Therefore,
LW is one of the most critical measures to estimate feed and nutrient requirements of
extensively raised livestock (González et al., 2018). The importance of animal
behaviour on energy requirements for grazing livestock has also been highlighted
in a recent review (Tedeschi et al., 2019). Distance travelled by animals searching for
feed and water in extensive conditions can also be significant (Brosh et al., 2010).
This section describes some of the technologies to measure or predict energy and
nutrient requirements for maintenance driven by LW and physical activity of the
animal. Feed and nutrient requirements are affected by growth rate, the composition
of growth, gestation, and lactation, and this is the focus of the second part of this
section.

10.4.1 Nutrient Requirements for Maintenance

The energy and nutrient requirements for maintenance under extensive grazing
conditions will be mostly influenced by the LW and the physical activities performed
by the animal (Tedeschi et al., 2019). Therefore, remote monitoring of LW and
animal behaviour may be amongst the most important variables to monitor. Many
nutrition models estimate energy requirements for maintenance as total heat produc-
tion which can be partitioned in heat for basal metabolism, muscular activity
required for physical activity, action of digestive enzymes, ruminal fermentation,
heat associated with the metabolic processes of product formation from absorbed
metabolites, thermal regulation, and waste formation and excretion (NASEM, 2016;
Tedeschi et al., 2019). This section describes some of the technologies and



approaches available to measure LW, physical activities and behavioural time
budgets, and gas exchange to measure heat production in extensively kept livestock.
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10.4.1.1 Remote Monitoring of Body Weight and Composition
Technologies exist today to measure LW and growth rate of animals in the paddock
without the need of mustering (González-García et al., 2018; González et al., 2014b).
These technologies enable real-time monitoring of the temporal and inter-individual
variability in LW and the effects of environmental and management factors on the
growth path (Brown et al., 2014; Imaz et al., 2020b). In-paddock automatic weighing
(i.e., walk-over-weighing scales, WOW) and imaging techniques (2D and 3D) are a
group of technologies to measure LW and composition of animals. Automatic
weighing scales were developed in the dairy industry decades ago (Filby et al.,
1979), nevertheless their utility for extensively managed cattle and sheep was
demonstrated only recently (González et al., 2014b, 2018; van Straten et al., 2009;
Zachut & Moallem, 2017). Additionally, imaging techniques have been used in
cattle and small ruminants (Fernandes et al., 2020). Images are used to determine
LW, or a range of body measures to predict LW and composition, although most
have been demonstrated in confined or intensive production systems (Fernandes
et al., 2020). Interestingly, the use of images in animal science has had a fast growth
in the last few years aided by the current development of digital cameras and
computer-based software for image analyses (Gjergji et al., 2020).

Automatic weighing scales collect LW data as animals walk a strategically placed
scale which can be a walk-through or walk-in system (Imaz et al., 2020a; Mendes
et al., 2011) which weighs the animals while they walk, drink water, or eat supple-
ment, respectively. The automatic weighing system contains a radio-frequency
identification (RFID) reader enabling measurements on individual animals, a
weighing platform with load cells, a data processing and storage device, and wireless
data transmission. The most common system of identification in livestock is RFID
utilizing low-frequency radio signals to transfer information between a transponder
and an antenna that collects the signal and transfers it to a decoder (McAllister et al.,
2000). This technology is the backbone of many other technologies because these
are the means to assign a piece of information measured by other sensors to an
animal. Nowadays, several companies offer integrated platforms enabling not only
animal weighing (Tru-Test Remote WoW; Simanungkalit et al., 2020), but also
validated systems for measuring feed intake, feeding behaviour, and water consump-
tion such as GrowSafe (Mendes et al., 2011; Wang et al., 2006) and Intergado
(Chizzotti et al., 2015; Oliveira et al., 2018).

The frequency of data acquisition is crucial to drive the potential accuracy to
describe the growth path of animals using remotely collected LW data (Imaz et al.,
2020a). Research has demonstrated that more frequent data collection can increase
the ability to capture detailed information to describe the effect of environmental and
managerial factors (Imaz et al., 2019, 2020b). The number of records obtained using
automatic weighing can be affected by different factors including the location of the
WOW within the farm, setup of the system and configuration, type of production
system (e.g., dairy, beef cattle), animal category (e.g., mature, or young cattle), and



nutritional management. A review of 9 studies involving cattle and sheep managed
extensively showed that the number of records varied from 0.15 to 3.74 per animal/
day (Aldridge et al., 2017; Brown et al., 2014; González et al., 2014b; Imaz et al.,
2019, 2020b; Menzies et al., 2018; Simanungkalit et al., 2020). Only two studies
presented the interval between valid LW records which were 2.48, 1.94, 1.45, and
0.76 days for calves, mature cows, weaners, and steers, respectively (González et al.,
2014b; Imaz et al., 2020a). In addition, 7 studies reviewed in grazing beef utilized
water as main attractant and 4 of them also included liquid molasses, molasses-lick
blocks, and salt and vitaminized minerals (González et al., 2014b; Imaz et al., 2020b;
Segerkvist et al., 2020; Simanungkalit et al., 2020). Menzies et al. (2018) reported a
tendency for cows to come to water less frequently during the parturition.
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In grazing sheep, González-García et al. (2018) and Brown et al. (2014) success-
fully collected LW data from ewes and lambs. However, a flock of 196 naïve sheep
(not previously experienced with WOW) required approximately 90 days to obtain
records for 80% of the flock using water as the main attractant (Brown et al., 2014).
Interestingly, non-naïve sheep in combination with water and supplement as
attractants required less than 15 days to achieve a similar percentage of the flock.
However, LW data from only 20% of the flock was recorded in less than 55 days
when naïve sheep were incentivized to walk over the system using salt blocks
instead of water, or its combination. These results indicate that multiple factors
affect the usage (i.e., attendance) of weighing systems such as feed available, type of
attractant, paddock size, number of animals in the group, nutritional management,
and environmental conditions (e.g., rain).

Definition of the body of animals can be collected in 2D and 3D using still images
or video analysis to determine LW, animal performance, and body composition in
live animals (Gomes et al., 2016; Song et al., 2018; Weber et al., 2020). This recent
increase in the use of image analysis was particularly triggered by computer-aided
analyses such as machine learning (Miller et al., 2019). Imaging techniques can be
used to collect data with minimum equipment required in contrast to the weighing
scales needed by WOW. Nevertheless, most studies were performed in confined
conditions (Fernandes et al., 2020) and little to no research can be found in beef and
sheep raised extensively (Miller et al., 2019). Findings suggest that such
technologies offer potential to measure animal performance in extensive conditions,
but grazing behaviour, the frequency of visits to the point where the images are
collected, and environmental conditions may affect the quantity and quality, and
thus the accuracy of body measurements.

Studies reported modest to high correlations between body measures obtained
from 2D and 3D imagery and LW in beef and dairy cattle (Le Cozler et al., 2019;
Ozkaya et al., 2016; Song et al., 2018; Stajnko et al., 2008; Tasdemir et al., 2011;
Weber et al., 2020). Ozkaya et al. (2016) predicted LW from body area (R2 = 0.61)
and the accuracy of such predictions were improved (R2 = 0.88) when combined
with body measures such as wither height, body length, and chest girth in Limousine
cattle. Similarly, Weber et al. (2020) estimated LW (R2 = 0.75) from 2D images of
the dorsal area of confined Nellore (Bos indicus cattle). The latter authors suggested
that automatic segmentation techniques and previous LW data from animals (e.g.,



static weighing operations) could improve the accuracy of LW prediction. Interest-
ingly, Tasdemir et al. (2011) found a high correlation (r ~ 0.98) between LW,
predicted from several body measures, and LW measured by weighing the animals.
The use of 3D imagery seems to present similar results to 2D imagery in terms of
accuracy and sources of errors affecting LW predictions, although most research has
been done in dairy cows (Song et al., 2018). Le Cozler et al. (2019) found that the
correlation between biometric measurements taken manually and those measured
with a 3D scanner ranged from 0.62 to 0.89. The study stressed that errors in manual
measurements may also exist because they are extremely difficult to perform accu-
rately on live animals.
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In addition to LW, body condition score and body composition are important to
determine animal requirements (Marcondes et al., 2012). For instance, animals with
similar LW could differ in the proportion of fat and muscle due to nutritional status,
age, and genetic factors including breed and frame (Owens et al., 1995). This is
important in cattle and sheep managed extensively, because animals may lose large
amount of LW during winter or dry seasons and regain body condition in the spring
or wet seasons. Gomes et al. (2016) reported large differences in the ability to predict
empty body fat in Angus and Nelore cattle using 3D digital image analyses. The
models developed estimated empty body fat with moderate accuracy (R2 = 0.45) in
Angus; however, no significant associations between body fat and camera-derived
measures were found in Nellore cattle. Similarly, Hyslop et al. (2008, 2009) used 2D
digital imaging in Limousin and Angus crossbred finishing steers to estimate LW
(R2 = 0.81), cold carcass weight (R2 = 0.81), bone out proportion (R2 = 0.91), and
meat and fat proportions (R2 = 0.61).

Miller et al. (2019) integrated an on-farm system with an automated 3D camera
placed at the water trough with machine learning to predict carcass parameters in
finishing beef cattle. Sixty potential predictor variables were automatically extracted
from the live animal 3D images (lengths, heights, widths, areas, volumes, and ratios)
used to develop predictive models for LW and carcass characteristics. The
predictions of carcass yield, conformation and fat ranged from R2 of 0.55–0.70.
Similar approach and results were observed by McPhee et al. (2017) utilizing a 3D
camera along with machine learning to assess rump fat and muscle score in Angus
breeding cows and steers. However, the authors highlighted the need of building
broad databases, including Bos indicus and continental cattle, to strengthen the
ability of machine learning to predict outcomes around body composition in cattle.

The continuous monitoring of LW enables a more accurate determination of
animal requirements for maintenance over time and amongst individuals. For
instance, grazing animals may go through periods of undernutrition as forage in a
paddock is depleted and matures (Burns & Sollenberger, 2002). Compensatory
growth may occur depending on age, animal category, and duration and severity
of the feed deprivation (Ryan, 1990). During such periods of undernutrition, LW
loss could range from a modest increase to severe LW loss and animals may adapt to
a lower nutritive status by stunting, if the restriction is maintained over time (Ryan,
1990). A frequent remote weighing assessment offers applications to identify timely
the effects of undernutrition and deliver supplementary feed only when it is required.



Increasing the frequency of LW data collection could also enable determination of
the duration and magnitude of compensatory growth in cattle. Similarly, a large
variability in the growth path of individual animals can be detected and provide a
different nutritional management targeting only those animals showing lower per-
formance than expected. A simultaneous assessment of LW and body composition
could be a powerful tool to predict slaughter endpoints from different breeds, feeding
regimes, and days on feed. However, a relatively low number of studies have been
published, in part, due to the constrains of physically separate muscle and fat from
slaughtered animals to assess their proportion. The growth of novel technologies
with potential to monitor body composition and LW offers unprecedented room to
explore associations between desirable body composition traits, LW, and predict
these outcomes in real-time.
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10.4.1.2 Requirements for Physical Activities
A large proportion of the energy and nutrients consumed by grazing animals under
extensive conditions can be used for physical activities such as grazing, walking,
resting, and ruminating (Tedeschi et al., 2019). Walking or travelling is the most
energy-consuming activity (Tedeschi et al., 2019) and thus it has sometimes been
considered a loss of efficiency. Nutrient requirements for physical activities have
been measured under experimental conditions mostly using indirect calorimetry,
where the consumption of O2 and production of CO2 are measured either using
respiration chambers, portable masks (Brosh et al., 2010), or more recently open-
circuit gas quantification systems such as GreenFeed (C-Lock Inc., USA; Herd et al.,
2020). These conversion factors such as MJ of ME/km travelled can then be used as
part of mechanistic nutrition models to drive the partitioning of energy and nutrients
for different biological processes (Freer et al., 2007; NASEM, 2016). Early research
has demonstrated that accounting for body composition and composition of growth
in cattle can improve the prediction of feed intake of individual animals (Guiroy
et al., 2001). Similarly, large differences between animals exist in the time budgets,
behaviour, and energy expenditure which could also be used to improve the
predictions of feed efficiency for individual animals.

Fortunately, many sensors have been developed in the last few years to allow
estimating the energy expenditure of individual animals such as GNSS devices to
measure geolocation and thus distance travelled, and accelerometers to measure
grazing, ruminating, and resting time budgets (González et al., 2015). These
technologies have been used successfully in an integrated way by Brosh et al.
(2007, 2010), along with heart rate monitors and portable masks to measure the
oxygen consumption of each heart bit. Heart rate is then measured for each
behaviour to finally determine energy expenditure of each activity. Although this
approach has only been used for research, the reduction in cost, size, and weight of
new devices to monitor animal behaviour may allow scaling up animal monitoring at
large scale under commercial conditions.

An example of a practical application of such technologies to help designing an
intensive rotational grazing system is presented herein (Fig. 10.5). We used GNSS
collars to determine the distance travelled by animals in a cell grazing system under



development in semiarid southwestern Queensland (Australia) where woody vege-
tation with high concentration of tannins (~5–7% of DM) such as mulga (Acacia
aneura) plays an important role in animal nutrition. The landscape has traditionally
been grazed with cattle and sheep with continuous grazing in large paddocks often
exceeding 8000 hectares with only 1 or 2 water points. This may result in uneven
grazing distribution because animals stay close to the water points, potentially
leaving a large proportion of forage not grazed, and thus resulting in low stocking
rate and productivity. Cell grazing systems and regenerative agriculture have
become popular in Australia and elsewhere because of the potential to improve
productivity and sustainability although the scientific evidence is conflicting (Briske
et al., 2011). Cell grazing requires a large investment in fencing and water point
development to break up large into smaller paddocks that can be grazed for only 1 or
2 days and allow resting for many months. Figure 10.5 shows tracks of five animals
moving throughout a section of the property being developed for cell grazing. The
small paddocks have an area of approximately 180 hectares (length of 2 km) and the
large paddocks of approximately 1000 hectares (length of 6 km), and a water point
every 4 km at the intersection of the paddocks. Figure 10.5 suggests that animals do
not utilize the back of the large paddocks further from water and prefer to stay within
approximately 2 km of the water point.
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Fig. 10.5 Tracks of five steers grazing Acacia aneura vegetation communities in a developing cell
grazing system with small 180-has and large 1000-has paddocks in semiarid Australia (Gonzalez,
unpublished data). Each coloured line refers to the GPS track of an individual steer over time, fences
are the black lines, and ows the water troughs

A large day-to-day and animal-to-animal variation was observed in the distance
travelled per day which ranged from 2.72 to 29.34 km/day (data not shown).
Interestingly, animals travelled 2.64 km/day more in large paddocks compared to
small paddocks (Table 10.1). Using the equations presented by Freer et al. (2007),
animals in the large paddocks required 4.15 MJ of ME/day more for travel compared
to small paddocks. Faecal samples were also obtained from these animals to measure
DMD, CP, and grass vs. non-grass proportion of the diet consumed using NIRS
technology (Dixon & Coates, 2009; Coates & Dixon, 2011). The ME concentration



of the diet consumed was then used to calculate the required feed intake for walking,
which suggested that steers in large paddocks may need to use 0.48 kg dry matter
intake (DMI)/day for the extra walking.
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Table 10.1 Distance travelled and activity level from electronic collars, estimated energy expen-
diture for travel, and diet selection of steers grazing mulga vegetation communities in a developing
intensive rotational grazing system with small (180 has) and large paddocks (1000 has) of SW
Queensland, Australia

Paddock size

Large Small P-value

Distance travelled, km/day 11.61 ± 0.376 8.97 ± 0.285 <0.001

Activity X-axis, count 46.22 ± 0.796 41.44 ± 0.602 < 0.001

Metabolizable energy walk, MJ/day 18.60 ± 0.593 14.45 ± 0.449 <0.001

Feed required travel, kg DM/day 2.43 ± 0.079 1.95 ± 0.065 <0.001

Diet DMD, % DM 56.26 ± 0.377 56.20 ± 0.311 0.91

Diet CP, % DM 12.32 ± 0.220 12.81 ± 0.181 0.09

Digestible DMI, g DM/kg LW 11.36 ± 0.104 10.16 ± 0.094 < 0.001

Faecal N, % DM 1.68 ± 0.028 1.83 ± 0.023 <0.001

Grass intake, % DMI 31.92 ± 0.994 16.68 ± 0.658 <0.001

Non-grass intake, % DMI 68.08 ± 0.994 83.32 ± 0.658 <0.001

Mulga intake, % DMI 29.15 ± 1.679 43.90 ± 1.111 <0.001

It is also important to note that paddock size affected stocking density in this
study, which may not only affect distance travelled by animals but could also affect
diet selection and intake of plants with secondary compounds that may reduce
animal performance (Briske et al., 2011). Faecal NIRS results of the study in
Queensland indicated that animals tended to consume a diet with higher CP
(P = 0.09) and excreted higher N concentration in faeces (P < 0.001) in small
compared to large paddocks (Table 10.1). These results may be explained by higher
selection of mulga in the diet of steers in small paddocks (Table 10.1), which
comprises a large proportion of the diet in this landscape and contains approximately
13% CP and up to 6% of condensed tannins (data not shown). This example
highlights the potential of NIRS technology to monitor diet quality and selection
which can then be used to improve animal nutrition, productivity, and sustainability.
The technology could expand its commercial use and applications considering the
development of simple, practical, and cheap NIRS sensors such as those used by
Coombs et al. (2021a).

The above data presents an example of potential applications and approaches
when using sensor technologies to monitor animal behaviour in extensive grazing
conditions. These technologies offer a great opportunity to remotely monitor animal
behaviour and manage them in extensive grazing. Furthermore, these technologies
can measure behaviours with multiple applications in the nutrition of livestock in
extensive conditions including grazing patch selection, time budgets (Brosh et al.,
2010; González et al., 2015), energy requirements for physical activities (Brosh
et al., 2010), and the response of animals to declining pasture availability (Manning
et al., 2017).
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10.4.1.3 Total Heat Production or Maintenance Requirements
The indirect calorimetric method used by Brosh et al. (2006, 2007) for grazing
animals with face masks to measure gas exchange and GNSS collars to measure
animal behaviour showed great utility to measure total and partial heat production or
energy requirements for each activity. However, the technique is labour intensive
and impractical to use in many animals. Interestingly, gas exchange can now be
measured in a larger number of animals and in a simpler way using open-circuit gas
exchange systems such as GreenFeed (Caetano et al., 2018). The newer GreenFeed
models (C-Lock Inc., South Dakota, USA) can measure the production or consump-
tion of CO2, O2, NH3, CH4, and H2, of exhaled breath so heat production can be
estimated from data collected when animals visit the unit to eat supplementary feed.
The technology has shown high accuracy to measure daily methane emissions (g of
CH4/hd/day) when animals attend a feed dispenser in both intensive and extensive
conditions (Alemu et al., 2017; Arbre et al., 2016). This opens many opportunities to
estimate energy requirements for maintenance in grazing livestock, which could also
be integrated with nutrition models such as those presented by Tedeschi et al. (2019).
Recently, the GreenFeed system has been used to estimate heat production of
individual animals from O2 consumption and CO2 and CH4 production using the
indirect calorimetry method (Gunter & Beck, 2018; Herd et al., 2020; Pereira et al.,
2014). However, this method requires the estimation of ME used for production
which can be obtained from measuring LW, growth rate, and composition of growth
using the model-data fusion approach as demonstrated by Herd et al. (2020).

10.4.2 Energy and Nutrient Requirements for Production

The requirements for production are determined by body growth rate, composition
of body growth, gestation stage, foetus weight and number of foetuses, lactation with
its components of milk production and chemical composition, and wool growth
(Freer et al., 2007; NASEM, 2016). This section describes options for remote
monitoring of these processes with some examples suitable for the smart nutrition
in extensive livestock production.

10.4.2.1 Requirements for Body Growth
The energy and nutrients required for body growth depend on several factors, but
mainly on growth rate and composition of growth (fat and muscle; NASEM, 2016).
One practical option to monitor, predict, and manage the nutritional requirements for
growth of grazing livestock is to measure LW, growth rate, and body composition or
body condition using remote monitoring tools described above. The efficiency at
which an animal converts feed and nutrients into body growth is very challenging to
estimate under grazing conditions because feed intake cannot be measured. The use
of mathematical prediction models of energy balance aided by automatic determina-
tion of body growth and composition are probably the most practical way to monitor
energy and nutrient requirements for a target or observed body growth (Guiroy et al.,
2001; González et al., 2018). Figure 10.6 shows an example of using automatically
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Fig. 10.6 Remotely collected body weight and growth rate, and model-estimated metabolizable
energy and protein required for maintenance and growth of steers grazing natural pastures in
southern Australia. The top panel shows live weight recorded by automatic weighing systems in
the paddock (blue circles), predicted live weight after smoothing (red line), and estimated growth
rate (green line)



collected data of both LW and growth rate to estimate the ME and nutrients required
for growth described by Freer et al. (2007). The graphs show the average LW and
daily LWC of a group of 12 steers grazing natural pastures throughout the winter and
weighed at the water point with a WOW scale. Animals were assumed to walk 5 km/
day and have an average body condition score (BCS). The energy and nutrients
required for body growth can then be added to the requirements for maintenance and
other production activities, such as gestation and lactation to obtain total ME and
nutrient requirements. The efficiency with which animals use energy for mainte-
nance and production remain a rough estimation using the coefficients calculated by
the nutrition models. However, new technologies such as those that measure gas
exchanges of individual animals could be of great assistance to estimate the
coefficients for individual animals. Similarly, body composition is most often
predicted from BCS, but new technologies could change the way this is done as
reviewed above.
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Another example to extract the value of LW data remotely collected using the
model-data fusion approach was presented by González et al. (2018). The authors
used a very similar approach to that presented above, but instead predicted energy
balance with the equations presented by Freer et al. (2007). The amount and dates to
deliver feed supplementation was then estimated daily to cover the energy deficit of
animals losing LW so that energy balance becomes zero (maintain LW). The
simulation demonstrated that the date to start and end feed supplementation, and
the amount to be provided each day based on the extent of LW loss could be
predicted. The same approach can be applied to determine the amount of feed
supplementation to achieve a target performance, but substitution rate or additive
effects should also be considered (Tedeschi et al., 2019). Large differences in the
amount of LW loss and hay required was evident between animals and the approach
demonstrated potential to manage day-to-day and animal-to-animal variability in
animal performance. However, this approach has not been demonstrated to be
feasible to date and further research is required to explore its feasibility.

10.4.2.2 Requirements for Gestation
The main factors affecting nutrient requirements for gestation are gestation stage
(day of gestation), number of foetuses, and size or birth weight of the offspring
(Freer et al., 2007). Technologies for remote monitoring of these attributes would
have tremendous benefit to the livestock industries worldwide. Remote detection or
monitoring tools of oestrus, conception date, and even simpler information such as
pregnancy status over time are needed. It is common in extensive livestock produc-
tion systems to segregate females into different groups according to the number of
foetuses and gestation stage upon pregnancy testing to facilitate their nutritional
management (Edwards et al., 2011; Young et al., 2016). The requirements of energy
and nutrients increase with day of gestation, number of foetuses, and birth weight of
the offspring, and therefore female segregation aims to manage LW through more
precise nutritional management during gestation according to these factors. Further-
more, nutritional management during gestation also increases survival and perfor-
mance of the offspring (Holst et al., 1986).
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Technologies exist today to detect oestrus events in livestock from various
mechanisms, such as pressure sensors near the tail head, accelerometers in ear
tags, collars, or pedometers (Alhamada et al., 2016; Mottram, 2016). However, the
accuracy of these or alternative devices to detect pregnancy status and date of
conception has not been assessed. There are no technologies available for the
extensive livestock industries that can measure pregnancy status or number of
foetuses remotely. Nevertheless, automatic determination of LW can be used to
monitor the nutritional status of livestock in extensive conditions throughout gesta-
tion (González et al., 2018). In addition, remote weighing can also be used to
monitor and manage reproduction in extensive livestock because of the close
relationship between body reserves, LW, and pregnancy and weaning rates (Tait
et al., 2017). van Straten et al. (2009) also demonstrated that the percentage of post-
calving LW loss has a negative impact on future reproductive performance in dairy
cows, which suggests that remote monitoring of LW may have huge applications to
manage reproduction through nutritional interventions.

Unpublished data from a study with 38 breeding Charolais cows automatically
weighed in southern Australia over 5 years (Imaz et al., 2020a) has been used to
calculate the LW trajectories of pregnant and empty cows throughout the year.
Calving occurred in July and August (week 27–35) and weaning at approximately
6 months. The LW and LWC was analysed using a mixed-effects linear regression
model with calving status as fixed effect (calved and not calved), week number as a
repeated measure on each animal ID, and year as a random effect. All animals were
managed as a group with the same treatments and grazed native pastures and oat
crops and were provided feed supplementation when required. Results showed that
cows that calved were 48 kg heavier than cows which did not calve on week
23 (calving × week P < 0.05; Fig. 10.7). In contrast, cows that calved were up to
33 kg lighter than cows that did not calve throughout the post-calving lactation
period (week 52). These results demonstrate that remote weighing can be effectively
used to detect LW changes due to gestation and therefore could be used to manage
the nutrition of pregnant females (González et al., 2018). For example, many
simulation models predict the weight of the gravid uterus from foetal age or time
since conception and expected birth weight of the calf at average condition of both
the cow and foetus. The weight of the gravid uterus can be added to the LW of the
cow at average condition which could become the target LW of the cow in optimal
BCS to be managed through more precise nutrition. However, further research needs
to be done to determine thresholds or trigger points when animals fail to put on the
required LW for a healthy and productive calf and cow. For example, there is a need
to establish the optimal and minimum LWC expected throughout gestation for the
technology to be used as a monitoring tool to manage the nutrition of pregnant
females with a concept similar to that explained above.

10.4.2.3 Requirements for Lactation
Nutrient requirements for lactation require information of daily milk production and
chemical composition such as CP, fat, and milk solids (Freer et al., 2007). However,
these measurements cannot be obtained in extensive grazing systems, because of the



impracticality and cost. One option is to predict these requirements using models
according to stage of lactation and other factors that could account for milk produc-
tion and composition such as breed, LW, maternal ability as done with estimated
breeding values for milk production, or calf weight and growth rate (Freer et al.,
2007; NASEM, 2016). These models often require input information such as
lactation stage (which is a function of birthing date), genetics determining milk
production, and BCS of the cow amongst other factors. Remote determination of
birthing date, calf birth weight, and lactation stage are important aspects to determine
the nutritional requirements and management of females. Furthermore, weaning rate
in a herd or flock is a major contributor to feed requirements or demand. In extensive
grazing systems, birthing date and lactation status can be difficult to measure due to
the limited contact between people and animals. Several sensors have been devel-
oped and trialled to measure birthing events in cattle, but their practicality, cost, and
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Fig. 10.7 Trajectory of live weight and live weight change (growth rate) of grazing Charolais cows
that calved and cows that did not calve over a period of a year. Calving occurred between July and
August and weaning between January and February



accuracy are still limited under extensive grazing conditions. The suitability of a
sensor or method to measure birthing events depends on the environmental
conditions, management such as mustering practices, and stage of gestation when
the monitoring occurs (Pearson et al., 2020). Recent research with beef cattle in
extensive grazing conditions that used two commercially available vaginal implant
tags (VIT) have highlighted some of the limitations associated with the length of
time the VIT can last in the vagina being less than 3 months, early expulsion leading
to false alerts, and high cost of the current devices (Pearson et al., 2020).
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Several other sensors have been trialled for the determination of birthing events
such as GNSS devices and accelerometers embedded in ear tags, collars, and
pedometers (Fogarty et al., 2021; Pearson et al., 2020). These devices can measure
animal behaviour with high detail, producing metrics such as speed and distance of
travel, time budgets for grazing, rumination, and resting amongst others (Chang
et al., 2020). Fogarty et al. (2021) review highlighted calf grooming, rumination, and
postural changes as potential indicators of calving and emphasized the large
variability between animals. However, the behaviour of animals in extensive
conditions is complex and affected by many factors which may result in low
specificity to detect birthing using these behaviours. A recent study that integrated
GNSS, accelerometer, and weather data detected less than 55% of the lambing
events in ewes within 3 h of birth (Fogarty et al., 2021). Another study with beef
and dairy cattle applied machine-learning techniques to data obtained from collars
with accelerometers and accelerometers attached to the tail to detect calving events
(Miller et al., 2020). The accelerometer was able to detect calving in beef and dairy
cattle with 18.7% and 26.7% of error, respectively. Therefore, the accuracy of these
sensors to detect birthing events has been generally low, particularly when used
under extensive conditions where females can remain active even on the day of
birthing (Fogarty et al., 2021; Pearson et al., 2020).

Another method trialled for remote detection of birth events is the use of
automatic weighing systems to measure LW loss of females upon expulsion of the
foetus, amniotic fluid, and placenta. Aldridge et al. (2017) and Menzies et al. (2018)
investigated the prediction of calving date in extensively managed breeding herds
usingWOW. In these studies, calving date was predicted with 59% (n= 232) to 63%
(n = 40) accuracy using weighing data from late gestation to post-calving. The low
accuracy to detect calving was due in part to large variability between cows in LW
loss with calving and low frequency of data collected around birthing events.
Figure 10.8 shows examples of two grazing cows with large and small LW loss at
the time of calving to demonstrate the concept (Chang et al., 2021). This research has
also demonstrated that calf birth weight could be predicted from the extent of LW
loss of the cow (P< 0.05; R2 = 0.56), which could also help to manage the nutrition
of cows nursing heavy calves.

Once a birthing event is detected automatically, it is important to know if the
offspring has survived to tailor the nutrition to the requirements of a dry or lactating
female in the paddock. The nutritional requirements of the dam will be partly
determined by the amount of milk produced, which is correlated to the weight of
the offspring (Gleddie & Berg, 1968). Furthermore, sheep would require the



determination of the number of lambs being raised because this has a large influence
in the nutritional requirements of the dam (Freer et al., 2007). It is common to see
females loosing LW during lactation, even with a good plane of nutrition because
energy and nutrient requirements for milk production can exceed feed intake capac-
ity depending on multiple factors (Freer et al., 2007). Therefore, LW changes of both
the cow and calves could be used to remotely determine lactation status and
nutritional requirements and manage the nutrition of lactating females. Figure 10.9
shows the LW trajectory of a Charolais cow that weaned a calf every year out of
5 years, and a cow that missed calving in year 4 under grazing conditions. Cows lose
LW after calving when lactating and the extent of LW loss was negatively correlated
to the weight of the calf weaned (P < 0.05; data not shown). In contrast, dry,
non-lactating cows maintained or gained LW during the calving season (Gleddie &
Berg, 1968). These examples demonstrate the ability of automatic weight determi-
nation to monitor the relationship between nutritional demands and LW of cows
during lactation in extensive conditions.
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Fig. 10.8 Live weight (circles with dash) and live weight change (solid line) of two (A, B) grazing
cows at the time of parturition as measured with automatic weighing systems (Chang et al., 2021).
Live weight change was 135 kg for cow A and 51 kg for cow B
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Fig. 10.9 Live weight (solid line) and growth rate (dotted line) of a breeding cow that weaned a
calf for five consecutive years (top panel) and another cow that did not calve in year 4 (bottom
panel). The weight of their calves is shown as a solid line with closed (birth) and open circles
(weaning). (Imaz and Gonzalez, unpublished data)
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10.5 Feed, Energy, and Nutrient Intake

Measuring feed and nutrient intake in grazing livestock has been the subject of
research for over a century. However, there is still no technology or methodology to
measure feed and nutrient intake of individual grazing animals with high accuracy,
in a practical and economical way, and at large scale, despite incredible
advancements in sensor technologies during the last few years. Multiple reviews
in the last few years have covered this topic of feed and nutrient intake of grazing
animals and the reader is referred to these (Galyean et al., 2016, 2018; Greenwood
et al., 2018; Smith et al., 2021; Tedeschi et al., 2021). The challenge with the grazing
animal is twofold: (1) to measure the weight of DM consumed, and (2) to measure
diet selection and quality such as digestibility, fibre, and CP concentration. Pastures
in extensive conditions are generally heterogeneous with large variability in the plant
species and chemical composition across time and space, and such changes that can
occur very rapidly (Smith et al., 2021). In general, technological approaches to
measure feed and nutrient intake in animals are based on either measuring pasture
or feed disappearance, or animal factors related to intake, such as chewing behaviour
(Smith et al., 2021).

Methods to measure feed intake from pasture disappearance are like those
mentioned above to measure pasture biomass and quality and include surface
reflectance using cameras such as RGB, multispectral and hyperspectral cameras
(Wachendorf et al., 2018). Other methods such as LiDAR, lasers, photogrammetry,
and ultrasonic sensors measure pasture height and density, however there is limited
research to judge the utility or accuracy of these techniques to measure DMI.
However, the challenge with these sensors is still the lack of accuracy to detect
intake and quality of the forage consumed by individual animals grazing in a group.
This section describes the main technologies to measure feed intake and diet
selection and quality based on on-animal sensors to measure behaviour, analysis
of faecal samples for diet quality using NIRS, and gas exchange from animals to
measure ME intake.

10.5.1 On-Animal Sensors to Measure Behaviour

On-animal sensors are the subject of ongoing research around the globe to measure
feed and nutrient intake (Smith et al., 2021). These sensors measure variables related
to feed intake such as grazing time, chewing time, biting rate, and bite size. Most of
the sensor technologies nowadays are based on accelerometers attached to an ear tag,
collar, or halter. However, other technologies with the capability to measure bite size
include noseband pressure sensors (Braun et al., 2015a, b; Champion et al., 2004;
Rombach et al., 2019; Werner et al., 2018; Zehner et al., 2017). Acoustic sensors
have also shown promise to measure chewing behaviour from metrics such as biting
and chewing rate and energy (Benvenutti et al., 2016; Galli et al., 2011; Navon et al.,
2013). These sensors can also be combined with GNSS to record the location of the
animals in the landscape helping in the classification of behaviours (Arablouei et al.,



2021; González et al., 2015). Greenwood et al. (2018) used collars with GNSS and
accelerometers to measure grazing, ruminating, walking, and resting, and reported
that sensor data explained 53% of the variability in pasture intake calculated with
rising plate meter. Most previous research have demonstrated that sensor
technologies that measure animal behaviour as a proxy of feed intake have low
precision and accuracy, or high precision can be achieved under controlled experi-
mental conditions, but the algorithms are not robust to be applied under conditions in
which these were not developed. Therefore, alternative methods such as the use of
sensor data and mathematical nutrition models will be used while the search for
robust technologies and data processing methods continues.
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Data transmission is also important in extensive grazing conditions to measure
animal behaviour and accessing the data in real-time from long distances. This
challenge applies to all technologies although the size of the components is not a
limitation for some technologies that are not moving through the landscape such as
automatic weighing stations. Mobile cellular networks are often used where avail-
able because of the low cost, speed, and amount of data that can be transferred.
However, other methods may be needed in where cellular networks are not available,
such as sensors that can transmit data directly via satellites (Pearson et al., 2020) and
via LoRa and LoRaWAN (long-range, low-power WAN) have also become very
popular in the Australian rangelands (Casas et al., 2021).

10.5.2 Faecal Near-Infrared Spectroscopy (NIRS)

Faecal NIRS has been developed for many years for use in animal production to
measure the diet consumed by animals (Boval et al., 2004; Coates, 2000). This is a
very important aspect in animal nutrition of grazing systems because faecal NIRS
measures the diet selected by the animals, rather than the diet available to the animals
(Dixon & Coates, 2009). Several measures can be obtained from faecal NIRS
including feed intake, dry matter digestibility (DMD), crude protein (CP), and
fibre and minerals concentrations (Boval et al., 2004). Under grazing conditions,
pasture growth rate, biomass, and quality change rapidly reflecting weather patterns
as demonstrated above. This affects the nutritional quality of pastures and thus
forage, energy, and nutrient intake. A long-term grazing trial performed in northern
Australia (near Charter Towers, Queensland) used faecal NIRS obtained from a
representative sample of each trial paddock approximately every 3 weeks to monitor
DMD and CP of growing steers (O’Reagain et al., 2009, 2014). The results clearly
demonstrated the effect of weather patterns and pasture quality on energy and protein
concentration of the diet selected by the animals (Fig. 10.10). Weather patterns of the
region are characterized by a wet season normally starting between December and
January and lasting for 3–4 months with the rest of the year receiving no to little
rainfall. A spike of up to 65% DMD and 13% CP occurs with the break of the wet
season, which then decreases as the pasture dries off to reach values below 45%
DMD and 2% CP during the dry season.
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Fig. 10.10 Dry matter digestibility (DMD, % DM) and crude protein content (% DM) of the diet
selected by cattle grazing tropical pastures near Charter Towers, Queensland, over a 15-year period
showing the seasonal variation in diet quality. (O’Reagain et al., unpublished)

Faecal NIRS is used commercially in Australia to manage the nutrition of grazing
beef cattle so urea, protein, or energy supplementation can be triggered at the
appropriate time of the year (Dixon & Coates, 2009). This information can also be
used to predict DMI, metabolizable energy intake (MEI), and CP intake (CPI) using
various models such as those published by NASEM (2016), González et al. (2012),
and Freer et al. (2007). Examples of model-data fusion using remotely collected LW
data, faecal NIRS, and nutrition models have previously been presented by González
et al. (2014a, 2018). The approach of using results from faecal NIRS to predict DMI,
MEI, and CPI from mathematical nutrition models is expected to produce more
accurate predictions compared to those made from forage analysis because faecal
NIRS measures the diet selected by the animal. The NIRS sensors have advanced in
the last few years significantly reducing the cost, size, and weight to currently
become smartphone sensors which have yielded results with comparable accuracy
compared to expensive benchtop NIRS devices (Coombs et al., 2021b; Dixit et al.,
2020). These sensors and the development of prediction equations to use the data
they provide could expand the utilization of this technology and simplify many of
the measurements that are difficult to make such as diet digestibility, protein content,
and proportion of diet components including grass and non-grass component.

10.5.3 Metabolizable Energy Intake

Measuring feed efficiency under grazing conditions did not seem possible until
recently because of the lack of methods to measure feed intake and diet quality at
pasture. Recently, the GreenFeed system has been used to estimate heat production
of individual animals from O2 consumption and CO2 and CH4 production using the
indirect calorimetric method (Gunter & Beck, 2018; Herd et al., 2020; Pereira et al.,



2014). This methodology can then be used to estimate ME intake if ME retained
(MER) for production can be measured or estimated, which requires body weight,
weight gain, composition of growth, and milk production and composition (Bosh
et al., 2010; Herd et al., 2020). A model-data fusion approach has been used to
estimate MER because of the difficulty to measure this in grazing conditions. Herd
et al. (2020) estimated MER using nutrition models that use LW, average daily gain
(ADG), and ultrasound fat thickness in live animals. These authors reported that ME
intake predicted from emissions measured by the GreedFeed system plus energy
retained in LW gain accounted for 85% of the variability in ME intake from feed
intake and digestibility. This approach could then be used to identify more efficient
animals at pasture from real-time measurements of CH4, CO2, and O2 (Pereira et al.,
2014).
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10.5.4 Supplement Intake of Grazing Animals

The monitoring and control of supplement intake is amongst the most important
practices to manage the nutrition, production, and the environmental footprint of
livestock under grazing conditions. Feed supplementation of grazing animals is done
for many purposes, such as covering nutrient deficiencies, improve growth rate and
LW, reduce the impact of anti-nutritive factors, improve weaning weight, improve
fertility, reduce mortality, and improve animal welfare under tough conditions such
as drought. The nutritional management of grazing cattle and sheep is frequently
orientated to increase growth rate and weaning rate using energy and protein
supplementation because these are the most common limiting factors (Caton &
Dhuyvetter, 1997; Poppi & McLennan, 1995). The response to supplementation
depends on multiple factors such as type of supplement and chemical composition
(mineral, energy, protein), mode of delivery (lick blocks, loose), processing of
ingredients, and infrastructure (feeders, bunks, on the ground) amongst others. The
consumption of supplements has been traditionally controlled using salt, increasing
the hardness of lick blocks, or delivering restricted amount to avoid consumption
above certain quantities (Tedeschi et al., 2019).

However, there have been multiple developments in the last few years to measure
and control supplement intake of grazing animals using electronic feeders of differ-
ent designs such as electronic hoppers that drop a predetermined volume of pellets,
feeders on load bars that recognize the RFID to measure the intake of each visit by
animals, and electronic feeders with pneumatic gates (González et al., 2018; Imaz
et al., 2020b). One of the unique characteristics of supplement intake in grazing
animals has been the large variability in supplement intake both between animals
and over time depending on the forage available in the paddock and the type of
supplement delivered (Imaz et al., 2019). Feeding behaviour around feed supple-
mentation in grazing animals is markedly different from animals consuming a total
mixed ration. Unpublished data from previously published studies (Imaz et al.,
2020b) has been used to analyse the frequency distribution of the length of time
between successive visits to the supplement of grazing growing cattle (Fig. 10.11).



This frequency distribution is markedly different from the 2 or 3 populations of
intervals that dictate hunger and satiety in animals fed total mixed ration (Yeates
et al., 2001). It is unclear what each population of intervals mean or reflect but could
also have implications for the nutritional management of animals in grazing
conditions to achieve the target performance or supplement intake (Imaz et al.,
2020b). Furthermore, the large variability in supplement intake between animals
(Imaz et al., 2020b) and over time (Reuter et al., 2017) suggests that controlling
supplement intake of individual animals could improve group productivity. How-
ever, no published papers have demonstrated this approach in grazing animals and
the opportunities with controlling individual feed intake are unclear to date.

298 L. A. González et al.

Fig. 10.11 Histogram of the
length of the interval between
any two consecutive
supplement feeding events in
grazing cattle

These electronic feeders could help defining effective supplementation strategies
for grazing livestock including type of supplement, frequency of delivery, amount of
supplement, and animal response (Caton & Dhuyvetter, 1997; Farmer et al., 2001;
Löest et al., 2001).

10.6 Feed and Nutrient Excretion

Information of the amount or concentration of nutrients being excreted by animals
has several applications in the livestock industries because it can determine the
proportion or amount of nutrients retained if intake is known and because the
excretion of nutrients can have significant impacts on the environmental footprint
of livestock production (Dijkstra et al., 2011). Nutrient excretion occurs mainly via
urine, faeces, and exhaled gaseous emissions, such as methane, even though
nutrients can also be excreted via sweating or saliva, which is considered insignifi-
cant for the present review. Technologies to measure the volume, weight, and
nutrient concentration of each of these excretions are available and have the potential



to be adopted in extensive grazing. Many livestock industries around the world are
constrained by the amount of waste and nutrient concentration in the waste pro-
duced, because of the risk for environmental pollution and the need to manage the
waste appropriately (Velthof et al., 2015).
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Faecal NIRS can also be used to measure the concentration of nutrients being
excreted in addition to predicting their concentration of the consumed diet (Dixon &
Coates, 2009; Jancewicz et al., 2016; Tolleson & Angerer, 2021). This is an area of
great interest due to the need to manage the environmental stewardship of livestock
production and faecal NIRS is one of the most practical ways to measure the
concentration of nutrients such as N and P in faeces for grazing livestock. Faecal
NIRS analysis can also provide information of the concentration of N in faces which
shows a similar pattern to diet N and DM according to seasonal changes (data not
shown).

Urine sensors have also been developed to detect urination events, volume, and N
concentration in cattle with high accuracy and precision (Marshall et al., 2021;
Misselbrook et al., 2016). In addition to providing a tool to manage the environmen-
tal footprint of grazing animals, these tools could also be used to manage their
nutrition because of the relationship that exists between nutrient concentration in
faeces and urine and nutrient intake (Dixon & Coates, 2009; Marshall et al., 2021).
Further development of these technologies could also find application for the
environmental management of livestock production although pollution from faeces
and urine is not expected to be an important issue in extensive livestock production.

Another area of tremendous interest at present is measuring methane emissions
from grazing ruminants which can be measured at the individual or group level
under grazing conditions. Information on greenhouse emissions of grazing animals
can be used to manage their nutrition aiming to improve productivity and reducing
GHG emissions. Jones et al. (2011) used open path lasers to measure the concentra-
tion of gases in the air and derive emissions factors of grazing Angus cows that were
pregnant in the summer with 55% DMD of the pasture, and nursing calves in the
winter when pastures had 81% DMD. The authors reported that the technology was
able to detect lower CH4 emissions in animals fed low compared to those fed high-
quality diets, and in cows with low compared to high estimated breeding values
(EBV) for residual feed intake.

Using the GreenFeed system at pasture, Velazco et al. (2017) reported a negative
association between daily CH4 production and EBV for residual feed intake, and a
positive association between CH4 and LW and ADG. A vast body of evidence exists
on the use of the GreenFeed system to measure gas emissions at pasture and
therefore this technology seems promising for a range of applications in the process
of quantifying and mitigating greenhouse emissions and selecting animals for feed
efficiency (Herd et al., 2014; Todd et al., 2018). This technology is expected to be a
valuable tool to understand emissions in extensive grazing conditions, particularly in
those rangeland environments where diet selection is difficult to replicate and many
plants with secondary compounds could exist.
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10.7 Smart Animal Nutrition and Production in Extensive
Conditions

There are several options to improve the nutritional management of grazing animals
using smart methodologies and technologies. These options can be divided into
those that: (1) manage the nutrition of the entire herd or flock to achieve the desired
outcomes at the group level such as improving the performance of the herd,
profitability, or reducing methane emissions, (2) improve the nutritional manage-
ment of groups of animals within a herd or flock, and (3) improve the nutritional
management of individual animals.

Several examples were provided above on the power of integrating multi-sensor
data and models to increase the value of the information and the decision-making
process. However, there are not many examples in the literature that have
demonstrated how technologies can be used to manipulate animal nutrition under
extensive grazing conditions above and beyond a scenario without technologies.
In-paddock weighing and electronic feeding systems with feed control can enable
individual animal feeding under grazing conditions (González et al., 2018). Imaz
et al. (2019, 2020b) used a combination of automated LW monitoring, electronic
feeders with the capacity to monitor and control supplement intake, and auto-
drafting gates to draft animals to different sections of a yard enclosing the water
point according to RFID or weight. The approach was useful to understand the
dynamic relationships between forage biomass and quality, attendance to the WOW
and supplement intake. Smart livestock nutrition could be done either using the
electronic feeders with pneumatic gates, the auto-drafter, or both. These technologies
allow identifying animals with high or low performance but more importantly allow
controlling the nutrition of individual animals according to growth potential, breed,
target carcass endpoint, and a target environmental footprint amongst other
opportunities. However, a more complex situation could arise with feed supplemen-
tation having a strong interaction with forage biomass in the paddock, which could
lead to ‘true’ supplementation where pasture intake is not reduced, substitution
where pasture intake is reduced as supplement intake increases, and complementa-
tion where pasture intake is increased such as in the case of urea supplementation
with low-quality forages (Löest et al., 2001; Tedeschi et al., 2019). This is further
complicated by the constantly changing pasture biomass and quality due to animal
selection, plant growth and senescence, and environmental conditions. Traditionally,
feed supplementation at pasture has been done targeting a predetermined intake and
performance at the group level (Tedeschi et al., 2019). However, smart nutrition of
grazing livestock should consider the response of animals to declining pasture
availability and quality and the monitoring and control of feed intake of individual
animals under extensive conditions. The challenge with feed supplementation at
pasture is to provide the supplement at the right time, the right amount, and to the
right animals (González et al., 2018). Little research exists to date demonstrating the
feasibility to control the amount of supplement intake of individual animals in
extensive grazing conditions. Wyffels et al. (2020) presented an interesting example
of the integration of technologies (electronic feeders and GPS collars) to study the



behavioural change of cows when provided feed supplementation while grazing
winter mixed grass prairie. The authors reported high variation between individual
animals, a reduction in grazing time, and an increase in distance travelled as
supplement intake increased. Therefore, these technologies also showed the ability
to improve the understanding of factors that can be affected by nutritional
interventions and manage them more precisely.
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The manipulation or control of growth rate using digital technologies and data
analytics offer a great potential to control the time animals take to reach market
specifications such slaughter weight, carcase composition and quality at slaughter, or
both. The technologies and approaches described in this chapter, and many other
alternatives, could be used to optimize productivity, profitability, and environmental
outcomes. Growth rate of grazing animals can be manipulated using multiple
nutritional and non-nutritional strategies such as hormonal growth promotants,
which also interact with nutritional management. Increasing growth rate to reach
market weight earlier could have a tremendous impact on profitability and intensity
of greenhouse emissions as demonstrated with data presented in this chapter and
González et al. (2018). The concept of providing feed supplementation to grazing
animals at the precise time and amount either to a group or individual animals to
achieve target growth rate and slaughter time is the most obvious. In addition, auto-
drafters or electronic feeders could also be used to provide the type of supplement
required to individual animals or groups such as providing energy and protein
supplements to lactating cows or roughage to dry cows with lower requirements.
The authors also envision supplementation strategies supplying key metabolites
under certain instances such as methionine or choline to high-producing dairy
cows or animals under negative energy balance or stress (Vailati-Riboni et al., 2017).

10.8 Conclusion

Recent developments and the on-going refinement of technologies and
methodologies to monitor performance and nutritional processes of extensive live-
stock production open incredible opportunities to improve production, welfare,
profitability, and sustainability. Key technologies for precision livestock nutrition
in these conditions include those for body weight and composition determination,
forage biomass and quality, supplement intake, and gas metabolic gas production.
The integration of sensor data with mathematical models seems to be gaining
popularity because of synergies between these. This approach could make a signifi-
cant contribution to improve the nutritional management of extensively managed
livestock, and thus productivity, profitability, animal welfare, and environmental
footprint. Areas of future research and development include those related to improv-
ing the estimation of feed and nutrient intake, and the development of mathematical
models adapted to use data collected at high frequency and detail for individual
animals.
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The Potential Contribution of Smart Animal
Nutrition in Reducing the Environmental
Impacts of Livestock Systems
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Stephen George Mackenzie

Abstract

The aim of this chapter is to evaluate the role Smart Animal Nutrition can play in
improving the environmental sustainability of livestock production, focusing on
the quantitative evidence presented to date of environmental impact mitigation.
The modelling challenges for quantifying the potential environmental benefits of
Smart Nutrition technologies are discussed first, with a focus on life cycle
assessment (LCA) modelling. How LCA models treat new technologies, and
the functional units by which livestock products are evaluated, are important
areas for further methodological development for the evaluation of Smart Nutri-
tion Technologies. A handful of LCA evaluations of Smart Nutrition technologies
exist to date, mainly focused on precision feeding technologies in pig and poultry
systems. These studies have consistently found that Smart Nutrition technologies
can mitigate environmental impacts of these systems to some extent. Beyond
these systematic evaluations using LCA modelling, a wider range of studies
presenting important experimental evidence that Smart Nutrition can tackle
vital hotspots of environmental impact from animal production such as methane
emissions from ruminants are considered. Beyond the empirical evidence of
mitigation potential presented to date, this chapter discusses the potential to
consider directly environmental impact objectives in the application of Smart
Nutrition technologies. The application of LCA modelling for this purpose with
respect to breeding, feeding, and environmental management of livestock has
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started to be demonstrated conceptually. Novel applications of complementary
modelling frameworks will be vital for livestock production as it looks to meet its
key sustainability challenges.
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11.1 Introduction

For more than a decade, since the release of Livestock’s Long Shadow (Steinfeld
et al., 2006) the livestock industry has been under intense pressure to reduce its
negative environmental impacts and produce animal products sustainably, while at
the same time meeting the increased demand for livestock products (Thornton, 2010;
FAO, 2017). Many scientists and activists are now calling for drastic reductions in
meat consumption, and personal choices around eating meat are now viewed by
some as the most important decisions that individuals make with respect to the
environmental impact of their consumption habits (Poore & Nemecek, 2018;
Springmann et al., 2018). Although it should be noted others still suggest personal
choices in areas such as transport are more sensitive with respect to greenhouse gas
(GHG) emissions than food consumption habits (Ivanova et al., 2020). In many areas
of the global north, the industry is also facing significant competition from cultured
meat and meat replacement products, soya-based proteins, fungal-based protein
products, and cultured animal cells. A significant selling point of these products is
that their consumption is less environmentally damaging (CBInsights, 2017; Rick
Morgan, 2018) and more socially acceptable given that its mass production is not
associated with the ethical issues around animal welfare (Coleman et al., 2015). In
contrast with these calls to reduce meat consumption, current global production
trends are the opposite with meat production output having tripled globally since
1970 and set to continue rising towards 2050 to meet growing consumer demand in
rapidly growing economies such as China and India (FAO, 2017). Faced with
competing pressures to meet global demand and become more environmentally
sustainable there is significant interest, hope, and an increasing number of claims
that technological innovation within the livestock sector can rise to these challenges
(Makkar, 2016; Berckmans, 2017; Lovarelli et al., 2020).

The production of feed for animals is the source of around 20% of the GHG
emissions caused by food production in total when accounting for land use change
(Ritchie, 2019). Feed production is the source of around half of GHG emissions from
pork (48%) and poultry production (57%). For cattle, feed production contributes
36% of the total GHG emissions, as enteric methane production constitutes the
majority of GHGs from these systems (Gerber et al., 2013). Moreover, feed inputs



can have significant influence on enteric emissions as well as levels of nutrient
excretion and the resulting environmentally sensitive emissions in the management
of manure in livestock production systems. For example, pig production and its
associated manure is regarded among the largest contributors to acidification of
ecosystems and eutrophication of fresh water bodies, arising from livestock
(de Vries & de Boer, 2010; McAuliffe et al., 2016). Specific case studies have
shown that manipulating diet formulations can reduce overall acidification by up to
17% in pig production and 10% in broiler production compared to least cost diets
(Mackenzie et al., 2016a; Tallentire et al., 2017).
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With feeding practices so sensitive for the environmental impacts of animal
production, it is little wonder that a significant body of research has tried to identify
strategies for altering feed inputs to reduce the environmental impact of livestock
production (Wanapat et al., 2015; Mackenzie et al., 2016a; Tallentire et al., 2018;
Garcia-Launay et al., 2018). Within this area of research, an important and
expanding line of enquiry has been to ask “what is the potential of Smart Animal
Nutrition to mitigate negative environmental impacts caused by livestock production
and thus improve the sustainability of the industry?” (e.g. Banhazi et al., 2012;
Fischer et al., 2020; Pomar & Remus, 2019). What constitutes “Smart Animal
Nutrition” has several potential definitions and perspectives on this are discussed
at length throughout this book. For the scope of this chapter, we will simply discuss
innovations that represent technological advances in livestock feeding. The potential
environmental impacts of physical on-farm technologies such as precision feeding
and smart grazing systems are discussed, as well as how environmental impact
considerations can be integrated directly into traditional feed formulation algorithms.

The focus of this chapter will be to analyse and discuss relevant research
presented to date that can begin to answer this question. However, first it is important
to discuss the available methods and modelling challenges for quantifying any
potential environmental benefits that may arise from Smart Animal Nutrition.

11.2 How to Quantify the Potential Environmental Impacts
of Smart Nutrition

As interest and scrutiny has grown regarding the environmental impacts of
livestock production, so has the level of research effort to establish relevant methods
that quantify the impacts of the sector. These efforts range from establishing, for
example, the overall impacts of pig or beef production systems at the global or
national scale, down to the impact of individual products such as cheese or chicken
as bought by consumers (MacLeod et al., 2013; Opio et al., 2013; Eshel et al., 2014;
Poore & Nemecek, 2018). While a plethora of methods to assess environmental
impact exist that can be applied to food production systems (Cerutti et al., 2011), the
life cycle assessment (LCA) framework has become a widely accepted way to
holistically assess the environmental impact of livestock systems (Peyraud &
Macleod, 2020).
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11.2.1 Life Cycle Assessment and Livestock Systems

An LCA is an analysis technique to assess environmental impacts associated with some
(cradle to gate) or all (cradle to grave) stages of a product’s life. Depending on the system
in question, these stages include raw material extraction through materials processing,
manufacture, distribution, use, and disposal (definition adapted from (Muralikrishna &
Manickam, 2017)). Originally developed for industrial processes, LCA quantifies the
impacts arising over the life cycle of a product or service (per unit of product) and allows
to compare production methods, looking at the incoming and outgoing flows (Curran,
2012). While LCA is commonly used to evaluate the environmental impact of a system
per unit of productive output, the methodology has been shown to be scalable to the
evaluation of systems at the global level (MacLeod et al., 2018). There are several books
and encyclopaedia entries that cover the basic concepts of LCA (Guinée, 2002; Curran,
2012;Muralikrishna &Manickam, 2017), so please refer to these for detailed theoretical
discussion and first principles behind themethod. Several international standards includ-
ing ISO 14044, ISO 14046, ISO 14067, and PAS 2050 have been established to
standardise methodologies for LCA models as well as specific environmental impact
calculations such as Carbon Footprinting and Water Footprinting. To demonstrate how
LCA is applied when modelling livestock systems, Fig. 11.1 provides an outline of the
system components to be considered when designing an LCA model of pig production
as set out by the FAO technical advisory group on the subject in 2018 (FAO, 2018).
Subsequently, Fig. 11.2 shows the model components of a cradle to farm-gate LCA and
the specific emission sources considered in an assessment of the environmental impact of
housing technologies in pig production systems (Pexas et al., 2019).

Fig. 11.1 The components of pig farming systems to be considered when designing system
boundaries of LCA studies of pig production. (Reproduced from FAO assessment guidelines for
the assessment of environmental performance of pig supply chains (FAO, 2018))
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Fig. 11.2 The model components of a cradle to farm-gate LCA and the specific emission sources
considered in an assessment of the environmental impact of housing technologies in pig production
systems. (Reproduced from Pexas et al., 2019)

The widespread extent to which the methodology has now been used to evaluate
the impacts of livestock systems was highlighted in a recent meta-analysis of LCA
studies of food production which included 570 LCA studies of different livestock
systems and excluded many more (Poore & Nemecek, 2018). The findings of that
review and others (e.g. de Vries & de Boer, 2010; Clune et al., 2017) have been
consistent – that is, 1 kg of beef caused greater greenhouse gas emissions and used
more land overall than other livestock products. Beef production is then followed by
production of 1 kg of pork, chicken, eggs, and milk with respect to the intensity of
GHGs and land use per unit of product. Despite this, reviews on the subject have
highlighted the huge range in methods applied when conducting LCA of livestock
systems, which represents a significant barrier to the credibility of individual studies
and wider understanding of their findings. This inconsistency led to several FAO
technical advisory groups being established; these groups subsequently published a
series of methodological recommendations for applying LCA to different livestock
systems, as well as important parts of the livestock supply chain such as feed
production (e.g. FAO, 2016a, b, 2018). These guidelines are important reference,
as they represent a form of consensus on how to apply LCA to specific livestock
systems and should provide some methodological consistency on how LCA is



applied to livestock systems. Importantly, the FAO guidelines are very clear that
LCA of livestock systems should account for multiple impact categories. There is
slight variation between the documents for different species but generally these
include: GHGs, water use, land use, acidification, and eutrophication (FAO,
2016a, c, 2018). As set out clearly by the Our World in Data project, food production
systems are responsible for much larger relative proportions of global water use
(70%), land use (50%), and eutrophication (78%) than GHGs (26%) (Ritchie, 2019).
Livestock systems contribute a significant amount to all these issues and any
assessment aiming to show that innovations are improving the environmental
sustainability of livestock production needs to demonstrate this beyond the narrow
frame of GHGs. There are, of course, methodological areas of debate as application
of LCA in this area becomes more sophisticated and widespread. Those that are
particularly relevant when considering the impacts of Smart Animal Nutrition are
discussed below.
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11.2.2 Functional Units

LCA models are designed to contrast different scenarios to provide the same
“function”, whether the model compares different products or different methods to
produce the same product (Weidema et al., 2004). As such, a functional unit is
chosen in each scenario to represent the function that a production system serves.
The currently accepted convention, and standard way of representing functional unit
in LCA of meat production systems, is to use a variation on edible meat or carcass
weight with no further properties describing the nutritional quality of the meat
produced (e.g. ADAS, 2015; FAO, 2016a, 2018). This means potentially important
chemical and physical characteristics of outputs from different production systems
are not considered and cannot be compared. This situation contrasts with the
standard functional unit used in dairy LCA of fat and protein-corrected milk
(FPCM) (FAO, 2016a) using methods such as that set out by Bartl et al. (2011). A
few studies of dairy systems build further on this to include either FPCM produced
per land occupied or to include the meat produced and sold from dairy systems in the
functional unit, but the vast majority use a mass or volume measurement of FPCM
(FAO, 2016a).

More broadly in LCA of food production systems, there has been a trend towards
developing nutritional functional units based on a set of nutritional properties for
food products, which match guidelines for human dietary requirements (Saarinen
et al., 2017). For LCA of livestock production systems, McAuliffe et al. (2018a, b)
presented such a methodology based on using important nutritional properties for
high-protein foods adapted from the methods of Saarinen et al. (2017) for Finnish
food systems. Adoption of such methods is in its early stages in livestock LCA, but it
can significantly impact on how environmentally sustainable different production
systems are viewed to be (Centre for Innovation and Excellence in Livestock, 2020).
As a methodical approach, nutritional functional units used in an LCA, for example,
of pig farming systems will value production systems whose animals have carcass



compositions more suited to human dietary requirements (for instance by having
higher lean meat content). This framing for the analysis of environmental impacts
may highlight further benefits from Smart Nutrition beyond simply increasing
productivity in livestock systems. Figure 11.3, reproduced from the Our World in
Data platform, shows how functional units can change the outcome of LCA
comparisons of animal products.
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11.2.3 Applying LCA to New Technologies

Interest in the potential benefits of novel technologies for the sustainability of
production systems, as well as the need to examine any claims made by those with
commercial interests, means that LCA studies are often used to quantify their
potential environmental impacts. Livestock systems are no exception, with many
studies investigating the potential implications of novel technologies in feeding
(e.g. Andretta et al., 2017), breeding (e.g. Ottosen et al., 2019), and environmental
management (e.g. Pexas et al., 2021) for the environmental impacts of production
systems. Smart Nutrition technologies, and many of the studies discussed in this
chapter, fall into this category. How LCA deals with emerging technologies and how
to evaluate them in a consistent manner has been the topic of several recent reviews
and discussions papers (Arvidsson et al., 2018; Thonemann et al., 2020; Bergerson
et al., 2020; Moni et al., 2020; van der Giesen et al., 2020). Some of the major
challenges of examining emerging technologies through LCA identified in these
reviews that are particularly relevant to the case of Smart Nutrition technologies are
listed in the following text.

11.2.3.1 How to Scale Up a Model for a Product or Technology When
the Available Data Is Likely Based on Small-Scale Pilots?

Bergerson et al. (2020) outlined four classifications for analysing new technologies
through LCA depending on the maturity level of both the technology and the
potential market that it is entering, outlining the major issues to consider in each
case. Most new technologies for livestock production systems would fit the classifi-
cation of “low maturity” technologies operating in a “high maturity” market under
this rubric, given that demand for livestock products and thus material inputs to
livestock production systems is well established. Smart Nutrition technologies fit
well in this classification; as such, it is important to be aware of the particular
challenges encountered for this type of assessment.

Bergerson et al. (2020) identified that in such cases, the largest source of
uncertainty in LCA calculations comes from necessary assumptions of how the
technology will change from small-scale pilots to widespread commercial imple-
mentation. In the case of livestock LCA this issue arises, for example, in attempts to
evaluate the potential impact of newly marketed feed ingredients, such as insect meal
or algae in animal diets when these ingredients are only being produced on a pilot
scale (Halloran et al., 2016; Tallentire et al., 2018). Moni et al. (2020) propose nine
levels of classification of “technology readiness levels” and strategies for dealing
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Fig. 11.3 A ranking of the greenhouse gas emissions caused by various livestock products when
the functional unit is 100 g of protein or 1000 kcal energy, respectively. (Reproduced from Ritchie,
2019)



with cases at different levels on this scale in LCA studies. The overriding issue at
most levels on this scale of technological and market maturity is how to overcome
large uncertainties when projecting scaled up production models. Assumptions made
in this area of an LCA model are likely to be sensitive to the outcomes and the
existence of these highly sensitive and uncertain parameters can undermine the
credibility of ex-ante LCA models of emerging technologies (Bergerson et al.,
2020). In the case of using emerging products as ingredients in animal diets, LCA
modellers run into further difficulty as lack of widespread use of an ingredient means
its implications for animal performance may also be uncertain with data coming
from small-scale experiments. Attempts to identify solutions to this issue in LCA
modelling have been wide-ranging and there is little consensus on a consistent
methodological framework to follow (Thonemann et al., 2020). Generally, there is
consensus that (a) greater levels of uncertainty should be attached to any scenarios
scaling up technologies at an early stage in their development (van der Giesen et al.,
2020), (b) methods from chemical engineering to scale up process models could be
usefully applied more widely to address this issue in LCA studies (Piccinno et al.,
2016), and (c) that scenarios constructed for this purpose should be defined through
consultation of experts on the technologies in question wherever possible (van der
Giesen et al., 2020).
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11.2.3.2 How to Account for Changes Over Time in the Background
Databases Used in LCA Modelling?

Most LCA models have a foreground system, which is the focus of the study, where
possible primary data is utilised as much as possible to ensure subsequent modelling
is as representative and accurate as possible. For example, in the case of livestock
systems, this may include animal performance data, data recording on farm
emissions (e.g. ammonia or methane), and the ingredient composition of animal
diets, on farm energy use and on farm water use. However, to maintain a reasonable
scope for any LCA study, secondary data sources are, out of necessity, utilised to
model processes outside the foreground system both upstream and downstream in
the supply chain. For example, in LCA of livestock systems this can include the
production feed materials. If there is primary data on crop production available, then
secondary data will likely be used to model the production of chemical fertilisers as
inputs to crop production. In the extremely unlikely case that primary data can be
utilised to model fertiliser production, secondary databases would almost certainly
be used to model generation of electricity as an input to fertiliser production along
with many other processes in the LCA model.

The use of these background databases is a tricky area for any LCA that tries to
compare current production systems with those of either the past or future. Several
papers on how to treat emerging technologies in LCA have identified the need to
ensure consistency between foreground and background data in LCA models of
emerging technologies (Arvidsson et al., 2018; Moni et al., 2020; van der Giesen
et al., 2020). For instance “background data, should represent the future situation



for when any new technology is defined to be commercially operational” according
to van der Giesen et al. (2020). Many general discussions on the subject have
emphasised how important this is, given that background data will often constitute
at least 95% of unit processes modelled in an LCA, with the sensitivity of these data
varying greatly between different models. However, to follow this suggestion in
LCA of livestock systems is easier said than done. Is it realistic to expect LCA
modellers to predict the relative changes to crop production systems, or going back
up the supply chain, fertiliser production, and energy generation when looking to
model future scenarios for livestock production?
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Currently, there is not an off the shelf database where researchers can source such
scenarios readily. Arvidsson et al. (2018) acknowledge that there are practical issues
to consider for this aspect of LCA modelling and suggest that where possible,
impacts relating to background are omitted or reported separately when evaluating
emerging technologies in LCA. While such a recommendation may make sense in
certain cases, it hardly seems relevant for the case of Smart Nutrition in LCA where,
for example, the entire benefit of the technology being evaluated may come from
altering the composition of animal diets to achieve increased animal performance.
Impacts modelled using secondary datasets in the production of feed materials
cannot be easily separated in such a modelling exercise and may influence any
projected environmental impact reductions from the technology in question. This is
not an easy issue to deal with in LCA modelling of livestock systems, however one
recommendation this chapter would make is to utilise a suitable uncertainty analysis
to mitigate the problem. Some uncertainty analysis methods separate uncertainty that
is unique to each scenario being modelled from that which is shared (Leinonen et al.,
2012; Groen et al., 2014; Mackenzie et al., 2015). As such, a range of scenarios in
the background and foreground data can be included (e.g. in crop yields) in the LCA.
The use of techniques such as Monte-Carlo simulations for two scenarios run in
parallel can allow researchers to account for such uncertainty and still get useful
answers as to the likelihood that Smart Nutrition technologies will provide environ-
mental impact reductions even accounting for these uncertainties (Mackenzie et al.,
2016b).

The methodological challenges discussed above are relevant for the future design
of LCA studies to investigate the potential of Smart Nutrition to improve the
environmental sustainability of livestock systems. However, they represent
on-going methodological debates in the wider LCA community and there are few
published examples to date where such methodological issues have been addressed
in LCA evaluations of Smart Nutrition technologies in livestock. This should be
taken into account when reading later discussion in this chapter of the LCA studies
that have been carried on Smart Nutrition in livestock. However, researchers have
begun to quantify the benefits of Smart Nutrition technologies using both LCA and
other methodologies, with the technologies for precision feeding in pigs and poultry
an interesting case in point.
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11.3 Precision Feeding in Pig and Poultry Production

Precision feeding is a technology that is viewed as having the potential to mitigate
environmental impacts from pig and poultry production systems while also deliver-
ing economic benefits (Pomar et al., 2011; Banhazi et al., 2012; Andretta et al., 2017;
Tullo et al., 2019; Misiura et al., 2021a). Precision feeding differs from traditional
(phase) feed formulation strategies where all the animals within a population receive
the same diet throughout the entire feeding phase (e.g. using the mean of the
population to define the nutrient requirements and thus diet specifications (Symeou
et al., 2015). In precision feeding systems, diets are tailored to individual
specifications for each animal based on measurements such as body weight, feed
intake, and average daily gain (Remus, 2018). Generally, in pig and poultry systems
the most practical way of tailoring diets for individuals is to deliver a mix of two
(or in some recent cases more) pre-formulated feeds to meet a bespoke set of
nutritional requirements based on these measurements. There have been several
examples of precision feeding systems for pig and poultry production presented in
scientific literature in recent years (Pomar et al., 2009; Banhazi et al., 2012; Zuidhof
et al., 2017; Remus, 2018; Gaillard et al., 2020).

At the time of writing, two LCA studies have been conducted to determine the
potential of precision feeding to reduce the environmental impact of pig production
systems (Andretta et al., 2017; Monteiro et al., 2017). Andretta et al. (2017) analysed
precision feeding for Brazilian pig production. They compared a conventional three-
phase feeding program for grower/finisher pigs with precision feeding individual
(PFI) animals with daily specifications. The PFI scenario reduced GHGs by up to
6%, reductions in acidification and eutrophication of up to 5% were also observed
across several regional scenarios for Brazilian pig production compared to conven-
tional phase feeding. Monteiro et al. (2017) used LCA and an established pig
nutrition model (InraPorc) to compare two-phase conventional feeding strategies
with precision feeding of grower/finisher pigs in both French and Brazilian pig
production systems. They concluded precision feeding produced average reductions
in GHGs (6.1%), acidification (12.7%), and eutrophication (10.7%) in comparison to
two-phase feeding. Some of the differences in the potential acidification and eutro-
phication reductions between the two studies may be explained by the fact that
Monteiro et al. (2017) tested precision feeding against a baseline of two-phase
conventional feeding compared with a three-phase conventional feeding scenario
in Andretta et al. (2017). The three-phase feeding strategy itself would likely reduce
P and N excretion in comparison to the two-phase scenario. However, the relative
small difference in impacts between the two-phase and four-phase conventional
feeding scenarios of Monteiro et al. (2017) shows that this does not entirely explain
the difference in their results for acidification and eutrophication. Both studies used
functional units of 1 kg and 1 tonne of live weight pig at the farm gate, and it was
against this output that all impacts were modelled for the conventional and precision
feeding scenarios. As discussed earlier in the chapter, this approach means that any
consequences from precision feeding for carcass composition that may occur, for
example, by increasing leanness (Lovato et al., 2017; Remus, 2018; Remus et al.,



2019) could not be accounted for. This means that as they are currently
implemented, LCA studies of precision feeding systems may not account for key
improvements to the animal products being produced in terms of nutritional value.
An alteration of functional unit to, for example, environmental impact per 100 g
protein produced might at least begin to capture such changes, see Sect. 11.2.2 for
further discussion on functional units.
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In addition to complete LCA studies, several investigations into precision feeding
have demonstrated improvements to key performance metrics that are known to be
sensitive variables for the environmental impacts of pig and poultry production
systems. Feed conversion ratio in the grower finisher phase, along with N and P
intake in diets, have been shown to be highly sensitive production variables for the
environmental impact of pig production in local sensitivity analyses of LCA models
(Mackenzie et al., 2015; Groen et al., 2016). The relative importance of N intake for
environmental impacts from pig systems was further emphasised in a recent global
sensitivity analysis of a pig production system model, where it was shown to account
for 64% of variance in acidification and 52% of variance in eutrophication (Cadero
et al., 2018). As such, to a certain extent, demonstrations that precision feeding is
able to either improve feed efficiency or reduce N and P intake/excretion can be
taken as good proxy indicators that precision feeding has the ability to reduce the
environmental impacts of pig and poultry production systems. There is evidence that
precision feeding can result in significant improvements to both feed efficiency and
nutrient utilisation in both pig and poultry production. For example, precision
feeding systems in grower/finisher pigs have been shown to have the potential to
reduce N and P intake and excretion by around 25% while still meeting daily nutrient
requirements for individual pigs and reducing overall feed costs (Pomar & Remus,
2019; Gaillard et al., 2020).

For poultry production systems, fewer peer-reviewed studies have been published
in this area than for pigs. In experiments conducted on broiler breeders, precision
feeding was able to marginally improve feed conversion ratios, reduce body weight
variability across the flock, and increase breast muscle in pullets compared to
conventional feeding (Zuidhof, 2018, 2020; Zukiwsky et al., 2021). The utilisation
of protein in feed tends to be slightly more efficient and more consistent in broiler
and layer systems when compared to pig production (Flachowsky & Kamphues,
2012; Pomar & Remus, 2019). Due to this reduced variability in protein utilisation,
the potential for reducing N excretion by precision feeding in poultry systems is
likely a little lower than in pig production.

However, in terms of overall potential reductions to GHGs, acidification and
eutrophication estimated by the two LCA studies conducted to date (Andretta et al.,
2017; Monteiro et al., 2017) should be kept in mind for context when discussing
these. In general, the overall potential of precision feeding to reduce environmental
impacts from these systems should be viewed as a potential marginal improvement
rather than a step-change. Nobody has yet presented peer-reviewed evidence that
precision feeding can reduce environmental impacts caused by pig and poultry
production systems by more than 13% in any major impact category. For GHGs,
the maximum reduction shown to date is 6%. However, precision feeding still has



real potential to deliver both reductions to overall environmental impacts along with
economic benefits for the sector representing a potential win-win technology when
viewed through both lenses. Importantly, for the prospects of precision feeding
providing environmental sustainability benefits, promising data has been presented
for pigs suggesting, if not conclusively, that improvements to protein retention
efficiency are sustained even under conditions of heat stress (dos Santos et al.,
2018). An ability to improve performance at raised temperatures will be key to the
technologies rolled out in growing markets such as Brazil, India, and South Africa
where average temperatures are relatively high, but also to its robustness in deliver-
ing both economic and environmental benefits around the globe in the face of rising
temperatures due to climate change.
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11.4 Smart Nutrition in Ruminant Systems

Fundamental differences in biology and husbandry between ruminants and mono-
gastric animals mean that Smart Nutrition technologies take different forms in
ruminant production systems compared to those for pigs and poultry. The overall
commercial value of each animal is much higher in ruminant systems, particularly in
the case of dairy production, than for pigs and poultry. As such, the dairy sector has
had a longer history developing and implementing precision livestock farming
technologies than pig and poultry production (Rowe et al., 2019). This means a
huge variety of measurements and data are available to researchers in pursuit of
smart solutions to reduce environmental impacts in ruminant production, as
demonstrated in Fig. 11.4, which shows a schematic of nutrient flows in dairy
systems and the available technologies to measure key nutritional processes
(Gonzalez et al., 2018).

Specific concerns regarding environmental impacts and the potential nutritional
routes to mitigation also have different emphasis for ruminant production systems
compared to those of monogastric animals. Cattle production systems are responsi-
ble for the majority (around 65%) of GHGs from livestock production (Gerber et al.,
2013) and dairy production systems are by far the most intensive of any livestock
production system in terms of water use per 100 g of protein (Poore & Nemecek,
2018). As such, the discourse on pathways to environmental sustainability is much
more focused on reducing their GHGs and particularly enteric methane production
for ruminants. The potential of individual ingredients or dietary supplements to
reduce methane emissions in feedlot cattle systems has now become the focus of
intense research activity. The most eye catching findings to date have suggested that
the addition of Asparagopsis taxiformis (red seaweed) can reduce methane enteric
methane production by as much as 80% in feedlot systems (Roque et al., 2021). It
should be noted that while initial findings such as these are promising, investigations
into the methane reduction potential of seaweed as a dietary additive are at an early
stage, with a recent systematic review on the subject finding only five peer-reviewed
trials using seaweed in cattle diets (Honan et al., 2021) and commercial scale
production of seaweed for cattle diets still just an ambition (Roque et al., 2021).
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Fig. 11.4 A schematic of nutrient flows in dairy systems and the available technologies to measure
key nutritional processes. (Reproduced with permission from Gonzalez et al., 2018)



Beyond seaweed, there is a huge range of supplements with methane reducing
potential under investigation and commercial development, some of which have
advanced much further on the road to commercialisation. For example,
3-nitroxypropanol (3NOP, sometimes marketed as Bovaer) has been shown to
reduce methane yield for beef (-17% +/- 4%) and dairy (-39% +/- 6%) feedlot
systems (Dijkstra et al., 2018) and has been shown to reduce methane production in
feedlot systems in over 15 peer-reviewed studies (Honan et al., 2021). Both 3NOP
(estimated cost £38 per head annually) and Nitrate (£27 per head annually) supple-
mentation of cattle diets were cited in recent evidence submitted to support the 6th
UK carbon budget as realistic, scalable pathways for methane reduction in UK dairy
production (Eory et al., 2020). Producers of such supplements in some cases plan to
capitalise on expanding participation in carbon markets in order to make their
products commercially viable. For example, the producers of
Mootral# (an additive made from garlic and citrus extracts) are now able to sell
“CowCredits” deemed to be equal to 1 tonne of methane emissions per animal
supplemented with Mootral# annually, under a methodology approved by the
Verified Carbon Standard programme. CowCredits were given permission to trade
on the Carbon Offsetting and Reduction Scheme for International Aviation
(CORSIA) market in 2021 and were launched at a price of €70 per tonne of CO2

(Bloomberg, 2021).
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Beyond supplementation of individual ingredients, significant focus has been
placed on utilising Smart Technologies in ruminant nutrition to reduce enteric
methane emissions (Gonzalez et al., 2018). The use of precision feeding to restrict
the food intake of lactating Holstein cows has been shown to reduce their methane
emissions of less efficient animals within the herd (Fischer et al., 2020). Their
experiment identified the 10% of the herd with the lowest residual feed intake
(RFI) through individual animal feed intake and performance monitoring. They
then restricted feed intake across the herd to the levels of the lowest 10% in terms
of RFI. This treatment resulted in a 10% reduction in the g/day of methane emitted
from the least efficient animals. However, it is unlikely this would translate into an
overall reduction in GHGs from the production system if analysed in an LCA.
Restricted feeding actually resulted in an increase in the methane emissions per
litre of FPCM as milk yield reduced by greater than 10% compared to ad libitum
feeding. Aside from targeting methane reductions specifically, there has been signif-
icant focus on applying strategies of individualised feeding to ruminant systems to
improve the productive performance of both beef and dairy cows. For example,
White and Capper (2014) demonstrated that formulating diets weekly to account for
variability in outdoor temperature was able to increase milk yield, dry matter intake,
and the feed efficiency when compared to less frequent formulations. In effect, this
strategy was able to meet the energy requirements of dairy cows more precisely by
accounting for the impact of temperature on their metabolism, thus making the farm
more productive and profitable. This example highlights a difference between the
application of precision feeding in ruminant systems compared to pig and poultry
production, as in the latter two temperatures are often controlled as much as possible.
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The technologies investigated by White and Capper (2014) and Fischer et al.
(2020) are case studies of systems where feed is provided to dairy cattle in a way that
is analogous to pig and poultry systems. However, grazing systems account for a
significant proportion of beef, dairy, and lamb production around the world, with
livestock grazing around 25% of the global land surface (FAO, 2020). As such, the
potential of Smart Nutrition applications to reduce the environmental impact of these
systems is a vital subject that requires significant investment.

11.4.1 Smart Grazing Systems

While for extensive grazing systems it may have traditionally been impractical to
take important measurements such as animal live weight on a frequent basis, remote
sensing technologies now mean that such data can be collected daily without the
need for humans to handle animals (e.g. Imaz et al., 2020). The availability of such
information opens the door to a greater range of interventions to enhance productive
performance and drive down GHG emissions from grazing production systems.
When reviewing pathways to methane emission reductions in grazing beef systems,
Thompson and Rowntree (2020) identified the use of nutritional supplements to
improve the efficiency of feed energy use as an important pathway for methane
emission reductions. For example, supplementation of concentrates to improve the
productive performance of grazing animals is a well-established practice and has
been shown to have the potential to reduce methane intensity (g CH4/kg product) by
up to 27% and 31% in beef and dairy systems, respectively (van Gastelen et al.,
2019). However, the availability of real-time individualised data on live weight open
up the possibility to reduce methane emissions further. This could be achieved, for
example, by targeting animals performing less well within the herd with greater
nutritional supplementation of concentrates in the diet. Another important pathway
for methane reduction identified by Thompson and Rowntree (2020) was to improve
forage quality through a combination of considering both the type and maturity of
forages being offered. Zubieta et al. (2021) suggest that through proper consideration
of herbage mass in pasture and striking the optimum balance between herbage mass
accumulation and quality in tropical grazing pastures, significant reductions in
methane intensity are possible. In combination with appropriate stocking densities
and rotational grazing there is potential to reduce the rate of methane produced by
grazing cattle and sheep to 0.2 kg CH4/kg LW gain, a potential 55% reduction
(Zubieta et al., 2021). Again, Smart Technologies have the potential to revolutionise
this area and make such reductions in the methane intensity, and thus the GHGs
caused by grazing systems a reality. For example, in temperate climates, above
ground hyperspectral imagery (HSI) and multispectral imagery (MSI) collected from
unmanned aircraft, satellite images, and handheld cameras can now be utilised to
predict above ground biomass and crude protein content in real time for a grazing
paddock (Askari et al., 2019). In semi-arid climates unmanned aircraft and satellite
images can be used to estimate available forage mass and soil water content so that
available soil nutrients and water are utilised productively without degrading avail-
able resources in the long term (DiMaggio et al., 2020; Kimura & Moriyama, 2020).
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While there are currently no LCA studies that have systematically evaluated the
GHG reducing potential of Smart Technologies in grazing systems, this is a research
avenue likely to be explored extensively in the next few years. For instance,
McAuliffe et al. (2018b) analysed the GHGs caused by individual animals in grazing
beef systems, suggesting that LCA models projecting aggregate emissions based on
average performance were underestimating GHGs in some cases. They suggest this
is due to insufficient consideration given to poorly performing animals, whose
emissions were exponentially greater as average daily gain decreased. The
modelling framework they established could be applied to investigate various
Smart Technologies in grazing systems that aim to improve the nutritional perfor-
mance of ruminants and reduce environmental impacts, as it has the ability to capture
the reductions these technologies make to the environmental impacts of poorly
performing animals within the herd.

An important methodological point to consider with respect to GHGs from
grazing systems is the recent emergence of the new metric GWP* (Allen et al.,
2018; Lynch et al., 2020). The method is an adaptation of the GWP100, which
calculates the Global Warming Potential of all emissions over a 100-year timescale
and has become the standard for expressing GHG emissions in the scientific litera-
ture (Lynch, 2019; Thompson & Rowntree, 2020). In summary, GWP* differs in
how it calculates the contribution of short-lived climate pollutant emissions, such as
methane and nitrous oxide to global warming, and under this methodology their
potency is determined predominantly by changes in their emission rate. The meth-
odology is more explicit in disaggregating CO2 and non-CO2 GHGs and calculates
peak temperatures caused by GHG emissions using a “linear combination of
cumulative CO2 emissions to the time of peak warming and non-CO2 radiative
forcing immediately prior to that time” (Allen et al., 2018). This has important
potential implications for how GHGs are calculated for grazing ruminants as the
method treats methane emissions as significantly less potent in GHG terms in cases
where emission levels are stable compared to GWP100. Through specific application
of the method at various scales (sector level, national level, farm level), it may be
possible through a cumulative and sustained shrinking of the methane emissions that
some grazing systems are viewed as having minimal contribution to global warming.
This is unlikely to be the case for feedlot ruminant production or monogastric
production systems where the production of feed for animals is associated with
significant levels of GHGs (Poore & Nemecek, 2018), including, for example, the
burning of fossil fuels to produce fertiliser which produces CO2 directly. However,
as authorities on the GWP* methodology have noted, the longer we fail to reduce
GHGs globally, increasing the cumulative stock of CO2 emitted, the smaller the
possible rate of sustainable methane emissions (Lynch et al., 2020).

Smart Nutrition technologies represent an important avenue of innovation in
future livestock production systems and in many cases reduce environmental
impacts from these systems as a by-product of achieving economic objectives. How-
ever, as discussed next there is increasing interest in using technological innovations
specifically for the purpose of improving the environmental sustainability of live-
stock production.
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11.5 Nutritional Strategies that Target Reductions
in Environmental Impacts

As Gonzalez et al. (2018) described in relation to ruminants, combining precision
nutrition technologies with simulation modelling has the potential to make individ-
ual technologies much more powerful in modern livestock farming. The interest in
this area of science has been heightened by the perceived potential of these data
driven technologies to improve economic outcomes for livestock producers and
companies (e.g. White & Capper, 2014). With application of the right modelling
frameworks, livestock production systems optimised for reduced environmental
impacts can also be designed. However, there will of course be trade-offs between
economic and environmental objectives, particularly when markets do not include
any valuation of the true external cost to society caused by environmental impacts
(Moran, 2021). The challenge of aligning economic and environmental objectives as
closely as possible presents itself starkly to livestock producers, policy makers, and
investors at present. Overcoming this challenge will not be possible without models
that systematically quantify the environmental impacts of livestock systems and use
this information directly in decision-making. Researchers have begun to demonstrate
that through integration of LCA models into more conventional modelling
frameworks for breeding (Macleod et al., 2019; Ottosen et al., 2019) and feeding
(Mackenzie et al., 2016a; Tallentire et al., 2017; Garcia-Launay et al., 2018;
Marques et al., 2022), it is possible to minimise the environmental impacts of
livestock production systems through linear optimisation algorithms. Figure 11.5
shows a simple representation of this for combining an LCA model and a traditional
diet formulation algorithm in pig systems as presented in Mackenzie et al. (2016a).

Fig. 11.5 A schematic of combing an LCA model with a diet formulation algorithm to formulate
livestock diets for objectives that explicitly consider the environmental impacts of the system.
(Adapted from Mackenzie et al., 2016a)



In that exercise, by accounting for the environmental impacts from producing feed
ingredients and nutrient excretion, diets were formulated for environmental impact
objectives including minimising GWP100, eutrophication, and acidification. That
study showed that in some Canadian pig production systems GWP100 could be
reduced by as much as 25%. Garcia-Launay et al. (2018) among others have adopted
similar approaches to show the cost benefit trade-offs in formulating diets to reduce
environmental impacts in pigs, which give insights regarding the cost of environ-
mentally sustainable animal diets, although their work did not account for the
impacts of nutrients excreted in manure. Marques et al. (2022) recently integrated
the linear optimisation of diets for both multiple environmental and economic
objectives with a nonlinear profit-maximising diet model for French feedlot beef
systems. In their scenarios a combination of improved animal performance, reduced
upstream GHG emissions in the feed supply chain and reduced on farm methane
emissions contributed to a maximum 8% reduction in system level GHGs per kg
carcass weight, when optimising solely to minimise GHGs. The trade-off for this
reduction in GHGs was a 13% drop in overall profitability of the simulated farm.
Their analysis also showed that a 4% overall potential reduction in GHGs can be
achieved at a cost of €22/kg CO2 eq/kg carcass weight or around €56/tonne CO2

eq. This example makes for an interesting comparison with the €70/tonne CO2 eq
CowCredits for supplementation of Mootral# discussed previously in Sect. 11.4.
Achieving reductions in GHGs through diet optimisation can be more cost effective
in some cases compared to implementing specific technologies like feed
supplements, but there are currently no direct economic incentives for producers to
reduce GHGs through this route. Marques et al. (2022) did not account for the
potential of including new ingredients that can reduce enteric methane emissions
such as red seaweed, 3NOP, or Mootral# in their diet formulation algorithms.

11 The Potential Contribution of Smart Animal Nutrition in Reducing. . . 329

The potential of improving precision feeding outcomes based on targeted breed-
ing strategies in livestock animals has been proposed as a route to much greater
reductions in environmental impacts than those observed to date (Pomar & Remus,
2019; van der Peet-Schwering et al., 2020; Misiura et al., 2021b). Research on the
potential to reduce the environmental impacts of livestock systems has already
demonstrated that when combined, appropriately designed feeding and breeding
strategies can result in large reductions of the targeted environmental impact. For
example, Tallentire et al. (2018) formulated broiler diets to test the potential of
combined feeding and breeding strategies to reduce the environmental impacts of
broiler production systems. The results of that study demonstrated that even if slow
growing birds were selected over time to meet welfare standards, reductions of up to
55% in GWP100 could be achieved by formulating diets to minimise this impact
category. A similar approach was recently applied to pig production systems by
Soleimani and Gilbert (2021), although in that case they demonstrated the concept of
designing diets for pigs of two different genetic trait profiles of pigs within the same
production system and modelled the individual responses to this within a herd. Using
this approach, they were able to demonstrate moderate overall reductions of up to
11% for GWP100, acidification, and land use by using multi-objective functions to
reduce overall environmental impacts, the trade-off being increased levels of



eutrophication. Their results showed greater potential to reduce environmental
impacts in pigs with the lower levels of RFI. The work by Soleimani and Gilbert
(2021) generally represents a step towards explicitly accounting for environmental
impacts when formulating diets to specifications for individual animal genetic
profiles. As the concept of precision feeding and individualised feeding programmes
become more commonplace in livestock systems, integrating them with LCA
frameworks could enable them to realise their true potential to reduce the environ-
mental impact of livestock production systems by design.
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Furthermore, retrospective analyses have identified that significant improvements
to the environmental impact intensity of livestock products have been achieved over
time (Putman et al., 2017, 2018; Pelletier, 2018; Ottosen et al., 2021). These trends
are often attributed to genetic improvements in production animals due to effective
breeding strategies, alongside improved management and nutritional provision by
producers. However, an analysis by Ottosen et al. (2021) of the causes behind the
reductions in the environmental impact intensity of British pig production systems
found that a trend in the market price and availability of feed ingredients which
altered the diets being fed to pigs were also an important factor in driving impact
reductions. These findings further emphasise that breeding strategies and improving
feed efficiency alone may not necessarily bring significant further reductions to the
environmental impacts of livestock systems. Careful consideration of the environ-
mental impacts of ingredients used in animal diets and the consequences of forage
offered to grazing livestock will need to be considered in order to make large
improvements to the environmental sustainability of livestock systems.

11.6 Conclusions

A plethora of technological applications of Smart Nutrition are being developed
across livestock systems, made possible by advances in remote sensing, the
automated real-time analysis of image and sounds, and greater understanding of
animal genetics. Many of these technologies are expected to improve the environ-
mental sustainability of livestock farming systems. Systematic evaluation of these
claims and the true potential of these technologies to mitigate environmental impacts
using LCA modelling is in its infancy with only a handful of complete LCA
evaluations of Smart Nutrition technologies found in the research for this chapter.
The evaluations completed to date have consistently found that even through
conventional application to maximise the economic returns for producers, Smart
Nutrition technologies can mitigate to some extent environmental impacts. It is
likely that as application of Smart Nutrition technologies widen, more studies will
be conducted to assess their mitigation potential using LCA.

Broadly speaking, the LCA modelling frameworks to evaluate livestock systems
are now established, although further methodological development is expected both
in how LCA models treat new technologies and the accepted functional units by
which livestock products are evaluated. Furthermore, the development and accep-
tance of methodologies such as GWP* with respect to the global warming potential



of short-term greenhouse gases may alter sustainability objectives for grazing
livestock systems and mean less focus being placed solely on the reduction of enteric
methane emissions.
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As discussed in Sect. 11.5 of this chapter, there is potential to go further and
directly consider environmental impact objectives in the application of Smart Nutri-
tion. This potential is largely unrealised in commercial settings at the time of writing,
but such applications may prove powerful for those looking to use Smart Nutrition as
a way to revolutionise the sustainability of livestock production systems. This
chapter has looked at the potential application of precision livestock technologies
through the lens of Smart Nutrition. However, the potential to utilise LCA models to
optimise breeding, feeding, and environmental management of livestock has begun
to be demonstrated in various research papers. Such novel applications and
combinations of different modelling frameworks will be important tools in the
arsenal of the livestock sector as it looks to meet the important sustainability
challenges facing it to play its part in future food systems.
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