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Preface

Best linear unbiased prediction (BLUP) has become the most widely accepted method 
for genetic evaluation of domestic livestock. Since the method was first published by 
Henderson (1949) it has evolved in terms of its application in models for genetic 
evaluation, from sire, sire and maternal grandsire models in the early years, followed 
by univariate and multivariate animal models, random regression models for the 
analysis of longitudinal data and more recently, for the analysis of the genomic data 
(SNP-BLUP or GBLUP). Advances in computational methods and computing power 
have enhanced this development. Currently, most national genetic evaluation systems 
for several domestic livestock species are based on animal or random regression mod-
els using BLUP.

In view of these developments and the proliferation of information in the litera-
ture, there is no simple and straightforward text on the application of linear models 
to the prediction of breeding values. Moreover, in developing countries, where access 
to journals is limited, there is a basic lack of practical information on the subject. This 
book has been written with a good balance of theory and application to fill this gap. 
It places at the hand of the reader the application of BLUP in modelling several 
genetic situations in a single text. The book has been compiled from various publica-
tions and experience gained from several colleagues in the subject area and from 
involvement in several national evaluation schemes over the last 14 years. Relevant 
references are included to indicate sources of some of the materials.

Initially, in Chapter 1, the basic model and assumptions governing genetic evalu-
ation are presented, together with simple situations involving prediction of breeding 
values from the records of an individual. This is followed by the introduction and use 
of selection indices to predict genetic merit combining information on several traits 
and individuals. Then the general framework on the application of BLUP in genetic 
evaluation in a univariate and multivariate situations is presented in Chapters 3 to 5. 
The simplification of multivariate evaluations by means of several transformations is 
also examined, followed by maternal trait and social interaction models. Random 
regression models for the analysis of longitudinal data are discussed in Chapter 9, fol-
lowed by a chapter on incorporating genetic marker information into genetic evalua-
tions in the context of marker-assisted selection and then genomic selection. 
Non-additive genetic animal models are discussed with methods for rapidly computing 
the inverse of the relationship matrices for dominance and epistasis effects. Next, 
threshold and survival models are discussed. In Chapters 15 and 16, the basic concepts 
for variance component estimation are introduced, followed by the application of the 
Gibbs sampler in estimation of genetic parameter and evaluations for univariate and 
multivariate models. Finally, computing strategies for solving mixed model equations 
are examined, with a presentation of the several formulae governing iterative proce-
dures on the data. A knowledge of basic matrix algebra is needed to understand the 
principles of genetic evaluation discussed in the text. For the benefit of those not 
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familiar with matrix algebra, a section on introductory matrix algebra has been incor-
porated as Appendix A. It is also assumed that the reader is familiar with the basic 
principles of quantitative genetics.

Several examples have been used to illustrate the various models for genetic 
evaluation covered in the text, and attempts have been made to present formulae that 
explain how the solutions for random and fixed effects in the models were obtained 
from the mixed model equations. This illustrates to the reader how the various pieces 
of information are weighted to obtain the genetic merit of an animal under various 
models.

Every attempt has been made to ensure the accuracy of the text, but in the event 
of errors being discovered, please inform the author.

Professor Robin Thompson contributed the chapter on estimation of variance 
components despite his busy schedule and reviewed the manuscript of earlier editions. 
His contribution is immensely acknowledged. The chapter on genomic selection 
was reviewed by Drs Ben Hayes, Ricardo Pong-Wong and Professor John A. 
Woolliams and I am grateful for their valuable input. Drs Gabor Mészáros and Sue 
Brotherstone reviewed the chapter on survival analysis within a very tight schedule 
and I acknowledge their contribution. I am grateful to Professor Denny Cruz and 
Dr Victor Olori for reviewing the chapters on social interaction and on reducing the 
dimension of multivariate analysis. I am greatly indebted to Professors W.G. Hill 
and Mr G. Swanson for reviewing the manuscript of earlier editions; their com-
ments and suggestions resulted in substantial improvements in the text. Drs Martin 
Lidauer and Ismo Stranden read specific chapters or sections; I acknowledge their 
useful suggestions. The assistance of Dr Sebastian Mucha in preparing the graphs 
in the text is greatly acknowledged. In addition, experience gained from working 
with Dr Mike Coffey and the late Professors C. Smith and B.W. Kennedy has been 
valuable in writing this book. I also wish to express my thanks to Prof. R.L. Quaas 
for permission to use information from his unpublished note on inbreeding algo-
rithm; Animal Genetics and Breeding Unit, University of New England, Australia, 
for allowing me to adopt some materials from BLUP Handbook for Chapter 2 of 
the text; and Prof. Fernando R.L. to use some his material from the Iowa State 
University 2010 summer course. My sincere gratitude to my wife, Doris, for her 
immense support, and for typing part of the manuscript. Special thanks to Kevwe, 
Joshua and Esther for their cooperation, especially when I had to take time off to 
prepare the manuscript, and to many dear friends who were of great encouragement. 
Finally, to God be all the glory.

R.A. Mrode
Scotland’s Rural College

(Former Scottish Agricultural College)
Edinburgh
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1.1 Introduction

The prediction of breeding values constitutes an integral part of most breeding 
programmes for genetic improvement. Crucial to the accurate prediction of breed-
ing value is the availability of records. In a population, data available at the initial 
stages are usually on individual animals, which may or may not be related, and 
later on offspring and other relatives. Thus initially, the prediction of breeding 
values may be based on the records of individuals and few relatives. In this chapter, 
the use of individual records and information from other related sources in the 
prediction of breeding value is addressed. Also, the principles for the calculation of 
selection indices combining information from different sources and relatives are 
discussed.

1.2 The Basic Model

Every phenotypic observation on an animal is determined by environmental and 
genetic factors and may be defined by the following model:

Phenotypic observation = environmental effects + genetic effects + residual 
effects

or

yij = mi + gi + eij (1.1)

where yij is the record j of the ith animal; mi refers to the identifiable non-random 
(fixed) environmental effects such as herd management, year of birth or sex of the ith
animal; gi is the sum of the additive (ga), dominance (gd) and epistatic (ge) genetic 
values of the genotype of animal i; and eij is the sum of random environmental effects 
affecting animal i.

The additive genetic value in the g term above represents the average additive 
effects of genes an individual receives from both parents and is called the breeding 
value. Each parent contributes a sample half of its genes to its progeny. The average 
effect of the sample half of genes that a parent passes to its progeny is called the 
transmitting ability of the parent and corresponds to one-half of its additive genetic 
value. The breeding value of the progeny therefore is the sum of the transmitting 
abilities of both the parents. Since the additive genetic value is a function of the genes 
transmitted from parents to progeny, it is the only component that can be selected 
for and therefore the main component of interest. In most cases, dominance and 

1 Genetic Evaluation with 
Different Sources of Records



2 Chapter 1

epistasis, which represent intra-locus and inter-loci interactions respectively, are 
assumed to be of little significance and are included in the eij term of the model as:

yij = mi + gai + e*
ij (1.2)

with e*
ij being the sum of the random environmental effects, dominance and epistatic 

genetic values. Equation 1.2 constitutes the linear model usually employed in most 
problems of breeding value prediction in animal breeding. Usually it is assumed that 
y follows a multivariate normal distribution, implying that traits are determined by 
infinitely many additive genes of infinitesimal effect at unlinked loci, the so-called 
infinitesimal model (Fisher, 1918; Bulmer, 1980). Also, it is assumed that var(y), var(g)
and var(e*) are known and that there is no correlation between g and e* (cov(g, e*) = 0) 
nor is there any correlation among mates (cov(e*, e*) = 0). Also m, which is used sub-
sequently in this chapter to represent the mean performance of animals in the same 
management group, for instance animals reared under the same management system, 
of the same age and sex, is assumed known. From Eqn 1.2, the problem of predicting 
breeding value reduces to that of adjusting phenotypic observations for identifiable 
non-random environmental effects and appropriately weighting the records of ani-
mals and their available relatives.

From the earlier explanation, if ai is the breeding value of animal i, then:

ai = gai = 1
2
as + 1

2
ad + mi

where as and ad are the breeding values of the sire and dam, respectively, and mi is the 
deviation of the breeding value of animal i from the average breeding value for both 
parents, that is, Mendelian sampling. The sampling nature of inheritance implies that 
each parent passes only a sample one-half of their genes to their progeny. There is, 
therefore, genetic variation between offspring of the same parents since all offspring 
do not receive exactly the same genes. Mendelian sampling could be regarded as the 
deviation of the average effects of additive genes an individual receives from both 
parents from the average effects of genes from the parents common to all offspring.

The accurate prediction of breeding value constitutes an important component of 
any breeding programme since genetic improvement through selection depends on 
correctly identifying individuals with the highest true breeding value. The method 
used to predict breeding value depends on the type and amount of information avail-
able on candidates for selection. The next section discusses the prediction of breeding 
value using different sources of information. It should be noted that many applica-
tions of genetic evaluation deal with the prediction of transmitting ability, usually 
referred to as predicted transmitting ability (PTA) or estimated transmitting ability 
(ETA), which is one-half of the predicted breeding value.

1.3 Breeding Value Prediction from the Animal’s 
Own Performance

1.3.1 Single record

When one phenotypic record is the only available information on each animal, the 
estimated breeding value (EBV) (ai) for animal i can be calculated as:

âi = b(yi − m) (1.3)
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where b is the regression of true breeding value on phenotypic performance and m, as 
indicated earlier, is the mean performance of animals in the same management group 
and is assumed to be known. Thus:

b = cov(a, y)/var(y) = cov(a, a + e)/var(y)
= s 2

a /s 2
y

= h2

The prediction is simply the adjusted record multiplied by the heritability (h2). The 
correlation between the selection criterion, in this case the phenotypic value, and the 
true breeding value is known as the accuracy of prediction. It provides a means of 
evaluating different selection criteria because the higher the correlation, the better 
the criterion as a predictor of breeding value. In some cases, the accuracy of evalu-
ations is reported in terms of reliability or repeatability (r 2), which is the squared 
correlation between the selection criterion and the true breeding value. With a single 
record per animal, the accuracy is:

ra,y = cov(a, y)/(sasy)
= s a

2/(s as y)
= h

and reliability equals h2.
Expected response (R) to selection on the basis of a single record per individual 

(Falconer and Mackay, 1996) is:

R = ira
2
,ysy = ih2s y

where i, the intensity of selection, refers to the superiority of selected individuals 
above population average expressed in phenotypic standard deviation.

The variance of EBV (var(âi)) is:

var(âi) = var(by) = var(h2y)
= h4s 2

y

= r2
a,y h2s 2

y = r2
a,ys 2

a (1.4)

Example 1.1
Given that the yearling weight of a heifer is 320 kg in a herd with a mean of 250 kg, 
predict her breeding value and its accuracy if the heritability of yearling weight is 0.45.

From Eqn 1.3:

â = 0.45(320 − 250) = 31.50 kg

and:

ra y, . .= =0 45 0 67

1.3.2 Repeated records

When multiple measurements on the same trait, such as milk yield in successive 
lactations, are recorded on an animal, its breeding value may be predicted from the 
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mean of these records. With repeated measurements it is assumed that there is addi-
tional resemblance between records of an individual due to environmental factors 
or circumstances that affect the records of the individual permanently. In other 
words, there is an additional covariance between records of an individual due to 
non-genetic permanent environmental effects. Thus the between-individual vari-
ance is partly genetic and partly environmental (permanent environmental effect). 
The within-individual variance is attributed to differences between successive meas-
urements of the individual arising from temporary environmental variations from 
one parity to the other. The variance of observations (var(y)) could therefore be 
partitioned as:

var(y) = var(g) + var(pe) + var(te)

where var(g) = genetic variance including additive and non-additive, var(pe) = variance 
due to permanent environmental effect, and var(te) = variance due to random tempo-
rary environmental effect.

The intra-class correlation (t), which is the ratio of the between-individual vari-
ance to the phenotypic:

t = (var(g) + var(pe))/var(y) (1.5)

is usually called the repeatability and measures the correlation between the records of 
an individual. From Eqn (1.5):

var(te)/var(y) = 1 − t (1.6)

With this model, it is always usually assumed that the repeated records on 
the individual measure the same trait, that is, there is a genetic correlation of 
1 between all pairs of records. Also, it is assumed that all records have equal vari-
ance and that the environmental correlations between all pairs of records are 
equal. Let ỹ represent the mean of n records on animal i. The breeding value may 
be predicted as:

âi = b( ỹi − m) (1.7)

where:

b = cov(a, ỹ)/var(ỹ)

Now:

cov(a, ỹ) = cov(a, g + pe + Σte/n) = s2
a

and:

var(ỹ) = var(g) + var(pe) + var(te)/n

Expressing the items in terms of Eqns 1.5 and 1.6:

var(t) = [t + (1 − t)/n]s 2
y

Therefore:

b = s 2
a /[t + (1 − t)/n]s2

y

= nh2/[1 + (n − 1)t]

Note that b now depends on heritability, repeatability and the number of records.
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As mentioned earlier, the difference between repeated records of an individual 
is assumed to be due to temporary environmental differences between successive 
performances. However, if successive records are known to be affected by factors 
that influence performance, these must be corrected for. For instance, differences 
in age at calving in first and second lactations may influence milk yield in first and 
second lactations. Such age differences should be adjusted for before using the 
means of both lactations for breeding-value prediction.

The accuracy of the EBV is:

r a y

t t n

h n n t

a y a y

a a y

, cov( , ) / ( )

/ ( [ ( ) / ] )

[ / ( ( )

=

= + −

= + −

� s s

s s s2 21

1 1 ))]

[ / ( ( ) )]= + − =nh n t b2 1 1

Compared with single records, there is a gain in the accuracy of prediction with 
repeated records from the above equation, which is dependent on the value of repeat-
ability and the number of records. This gain in accuracy results mainly from the 
reduction in temporary environmental variance (within-individual variance) as the 
number of records increases. When t is low, this gain is substantial as the number of 
records increases. When t is high, there is little gain in accuracy with repeated records 
compared with using only single records. The gain in accuracy from repeated records 
compared with selection on single records can be obtained as the ratio of accuracy 
from repeated records (rn) to that from single records (rk):

nr

h

t +
t

n
h t +

t
n

kr
=

(1 )

=
1

(1 )

2

−

−

Using the above equation, the gain in accuracy from repeated records compared 
with selection on single records is given in Table 1.1. The increase in accuracy with four 
measurements at a low t value of 0.4 was 35%, but this dropped to only 8% when t
equalled 0.8. In general, the rate of increase dropped rapidly as the number of records 
exceeded four, and it is seldom necessary to record more than four measurements.

Table 1.1. Percentage increase in accuracy of prediction 
with repeated records compared with single records at a 
heritability of 0.35.

t-values

Number of records

2 4 6 8 10

0.4 20 35 41 45 47
0.6 12 20 22 24 25
0.8 5 8 10 10 10
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Expected response to selection on the basis of mean of repeated records is:

R ih t t na y y= + −, [ ( ) / ]2 1s

Example 1.2
Assume that a cow has a mean yield of 8000 kg of milk for first and second lacta-
tions. If the phenotypic standard deviation and heritability of milk yield in the first 
two lactations are 600 kg and 0.30, respectively, and the correlation between first and 
second lactation yields is 0.5, predict the breeding value of the cow for milk yield in 
the first two lactations and its accuracy. Assume that the herd mean for first and 
second lactations is 6000 kg.

From Eqn 1.7:

âcow = b(8000 − 6000)

with:

b = 2(0.3)/(1 + (2 − 1)0.5)) = 0.4

Therefore:

âcow = 0.4(8000 − 6000) = 800 kg

and:

ra,â = 0 4.  = 0.632

1.4 Breeding Value Prediction from Progeny Records

For traits where records can be obtained only on females, the prediction of breeding 
values for sires is usually based on the mean of their progeny. This is typical of the 
dairy cattle situation, where bulls are evaluated on the basis of their daughters. Let ỹi
be the mean of single records of n progeny of sire i and assume that the progeny are 
only related through the sire (paternal half-sibs), and so the breeding value of sire i is:

âi = b(ỹi − m) (1.8)

where:

b = cov(a, ỹ)/var(ỹ)

Now:

cov(a, ỹ) = cov(a, 1
2
as + 1

2
ad + Σe/n)

where as is the sire breeding value and ad represents the breeding value for the dams. 
Therefore:

cov(a, ỹ) = 1
2
cov(a, as) = 1

2
s 2

a

Using the same principles in as in Section 1.3.2:

var(ỹ) = [t + (1 − t)/n]s 2
y
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assuming there is no environmental covariance between the half-sib records and t, the 
intra-class correlation between half-sibs, is 1

4s 2
a /s 2

y = 1
4
h2.

Therefore:

b = 1
2s2

a / [t + (1 − t)/n]s2
y

= 1
2h2s2

y /[1
4h2 + (1 − 1

4h2)/n]s2
y

= 2nh2/(nh2 + (4 − h2))
= 2n/(n + (4 − h2)/h2)
= 2n/n + k

with:

k = (4 − h2)/h2

The term k is constant for any assumed heritability. The weight (b) depends on the herit-
ability and number of progeny and approaches 2 as the number of daughters increases.

The accuracy of the EBV is:

r a y a ya y, cov( , ) / (var( ) var( ))= � �

From the above calculations, this could be expressed as:

r =
h

h +
h

n

 = 
h

h +
a y

y

y y
2

,

1
2

2 2

2 2 1
4

2
1
4

2

1
2

1
4

2
1

s

s sh
(1 ) (1− −⎛

⎝⎜
⎞
⎠⎟

44
2

2

2 2

h
n

 = nh
+ h

=
n
+ k

)

(4 )nh

n

−

which approaches unity (1) as the number of daughters becomes large. Reliability of 
the predicted breeding value therefore equals n/(n + k).

The equation for expected response when selection is based on the mean of half-
sibs is the same as that given in Section 1.3.2 for the mean of repeated records but 
with t now referring to the intra-class correlation between half-sibs.

The performance of any future daughters of the sire can be predicted from the 
mean performance of the present daughters. The breeding value of a future daughter 
(âdaugh.) of the sire can be predicted as:

âdaugh. = b(ỹ − m)

with ỹ and m as defined in Eqn 1.8, respectively, and:

b = cov(adaugh., ỹ)/var(ỹ)

Now:

cov(adaugh., ỹ) = cov(1
2
as + 1

2
ad*,

1
2
as + 1

2
ad + Σe/n)

where the subscript d* refers to the dam of the future daughter, which is assumed to 
be unrelated to dams (d) of present daughters. Therefore:

cov(adaugh., ỹ) = cov(1
2 as,

1
2
as) = 1

4 cov(as, as) = 1
4
s2

a



8 Chapter 1

Therefore:

b = 1
4s 2

a /[t + (1 − t)/n]s 2
y

Using the same calculations for obtaining b in Eqn 1.8:

b = n/(n + k)

The b value is half of the value of b in Eqn 1.8, thus the predicted breeding value of 
a future daughter of the sire is equal to half the EBV of the sire. The performance of 
a future daughter of the sire can be predicted as:

y = M + âdaugh.

where M is the management mean.
The accuracy of the predicted breeding value of the future daughter is:

r a y a ya y daugh, .cov( , ) / (var( ) var( ))= � �

This could be expressed as:

a y
y

y y

daugh
 = 

h h +
h

n

 = 
h

.,r
h1

4
2 2

1
4

1
4

1
4

1
4

s

s s2 2 2
2

2 2(1 )−⎛
⎝⎜

⎞
⎠⎟

hh +
h

n

 = 
n

n + k

(1 )2− 1
4

1
2

which is equal to half of the accuracy of the predicted breeding value of the sire. 
Reliability of the predicted breeding value equals 1

4
n/(n + k), which is one-quarter of 

the reliability of the bull proof.

Example 1.3
Suppose the fat yield of 25 half-sib progeny of a bull averaged 250 kg in the first 
lactation. Assuming a heritability of 0.30 and herd mean of 200 kg, predict the breed-
ing value of the bull for fat yield and its accuracy. Also predict the performance of a 
future daughter of this bull for fat yield in this herd.

From Eqn 1.6:

âbull = b(250 − 200)

with:

b = 2n/(n + (4 − h2)/h2) = 2(25)/(25 + (4 − 0.3)/0.3) = 1.34
âbull = 1.34(250 − 200) = 67 kg

ra, / /y n n k~ = +/ 2 .3 . .( )( ) = + -( )( )éë ùû =25 5 4 0 0 3 0 82

The future performance of the daughter of the bull is:

y = (0.5)abull + herd mean
= 33.5 + 200 = 233.5 kg
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1.5 Breeding Value Prediction from Pedigree

When an animal has no record, its breeding value can be predicted from the evaluations 
of its sire (s) and dam (d). Each parent contributes half of its genes to their progeny, and 
so the predicted breeding value of progeny (o) is:

âo = (âs + âd)/2 (1.9)

Let f = (âs + âd)/2, then the accuracy of the predicted breeding value is:

r
a

o f
o s d

a s d

ˆ ,

cov( , ˆ ˆ )

var( ˆ ˆ )
a

a a

a a
=

+

+

1
2

1
2

2 1
2

1
2s

Now:

cov(ao,
1
2âs + 1

2âd) = cov(ao,
1
2
âs) + cov(ao,

1
2âd)

= cov(1
2as + 1

2ad,
1
2âs) + cov(1

2as + 1
2ad,

1
2âd)

Assuming sire and dam are unrelated:

cov(ao,
1
2
âs + 1

2
âd) = 1

4
cov(as, âs) + 1

4cov(ad, âd)
= 1

4var(âs) + 1
4var(âd)

Substituting the solution for the variance of EBV in Eqn 1.4:

cov(ao,
1
2âs + 1

2âd) = 1
4(r2

s + r2
d)s

2
a

From the calculation above, the term var(1
2 âs + 1

2 âd) in the denominator of Eqn 1.9 is 
also equal to 1

4(r2
s + r2

d)s
2
a, assuming random mating and the absence of joint informa-

tion in the sire and dam proofs. Therefore:

oa f
s d a

a s d a

f

a
s d, =

r + r

r + r
 =  = r +ˆr

1
4

1
4

1
2

( )

( )
(

2 2 2

2 2 2 2

2 2s

s s

s
s

rr )

where:

s f s da a= +( )éë ùûvar 1
2

1
2

From the above equation, the upper limit for r when prediction is from pedigree is 
1
2 2 0 7= . ; that is, the accuracy of the proof of each parent is unity. Note that when 
the prediction is only from the sire proof, for instance, then:

r a r n n ka s soˆ , ˆ /
1
2

1
2

1
2

2= = +

the accuracy of the predicted breeding value of a future daughter of the sire as shown 
in Section 1.4.

Expected response to selection on the basis of average proof of parents is:

R = irâo, fsa

Substituting sf /sa for r:

R = isf
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Example 1.4
Suppose that the EBVs for the sire and dam of a heifer are 180 and 70 kg for yearling 
body weight, respectively. Given that the accuracy of the proofs are 0.97 for the sire 
and 0.77 for the dam, predict the breeding value of the heifer and its accuracy for 
body weight at 12 months of age.

From Eqn 1.9:

âheifer = 0.5(180 + 70) = 125 kg

The accuracy is:

ra aˆ , . . . .= +( ) =0 5 0 97 0 77 0 622 2

1.6 Breeding Value Prediction for One Trait from Another

The breeding value of one trait may be predicted from the observation on another 
trait if the traits are genetically correlated. If y is the observation on animal i from 
one trait, its breeding value for another trait x is:

âix = b(y − m) (1.10)

with:

b = cov(ax, measurement on y)/var(measurement on y) (1.11)

The genetic correlation between traits x and y (raxy) is:

raxy = cov(ax, ay)/(saxsay)

Therefore:

cov(ax, ay) = raxysaxsay (1.12)

Substituting Eqn 1.12 into Eqn 1.11:

b = raxysaysax/s
2
y (1.13)

If the additive genetic standard deviations for x and y in Eqn 1.13 are expressed 
as the product of the square root of their individual heritabilities and phenotypic 
variances, then:

b = raxysysxhxhy /s 2
y

= raxyhxhysx /sy (1.14)

The weight depends on the genetic correlation between the two traits, their heritabilities 
and phenotypic standard deviations.

The accuracy of the predicted breeding value is:

rax,ay = cov(ax, measurement on y)/saxsy
= raxysaysax/(saxsy)
= raxyhy

The accuracy depends on the genetic correlation between the two traits and heritability 
of the recorded trait.
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Correlated response (CR) in trait x as a result of direct selection on y (Falconer 
and Mckay, 1996) is:

CRx = ihxhy raxysy

Example 1.5
Suppose the standard deviation for growth rate (GR) (g/day) to 400 days in a popula-
tion of beef cattle was 80, with a heritability of 0.43. The standard deviation for lean 
growth rate (LGR) (g/day) for the same population was 32, with a heritability of 
0.45. If the genetic correlation between both traits is 0.95 and the population mean 
for growth rate is 887 g/day, predict the breeding value for LGR for an animal with 
a GR of 945 g/day.

Using Eqn 1.10:

âLGR = b(945 − 887)

with:

b = cov(GR, LGR)/var(GR)

From Eqn 1.13:

b = (0.95(0.656)(0.671)(32))/80 = 0.167
âLGR = 0.167(945 − 887) = 9.686

The accuracy of the prediction is:

r = 0.95 .0 43 0 623.( ) =

1.7 Selection Index

The selection index is a method for estimating the breeding value of an animal com-
bining all information available on the animal and its relatives. It is the best linear 
prediction of an individual breeding value. The numerical value obtained for each 
animal is referred to as the index (I) and it is the basis on which animals are ranked 
for selection. Suppose y1, y2 and y3 are phenotypic values for animal i and its sire and 
dam, then the index for this animal using this information would be:

Ii = âi = b1(y1 − m1) + b2(y2 − m2) + b3(y3 − m3) (1.15)

where b1, b2, b3 are the factors by which each measurement is weighted. The deter-
mination of the appropriate weights for the several sources of information is the main 
concern of the selection index procedure. In Eqn 1.15, the index is an estimate of the 
true breeding value of animal i.

Properties of a selection index are:

1. It minimizes the average square prediction error, that is, it minimizes the average 
of all (ai − âi)

2.
2. It maximizes the correlation (ra, â) between the true breeding value and the index. 
The correlation is often called the accuracy of prediction.
3. The probability of correctly ranking pairs of animals on their breeding value is 
maximized.
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The b values in Eqn 1.15 are obtained by minimizing (a − I)2, which is equivalent 
to maximizing raI. This is the same procedure employed in obtaining the regression 
coefficients in multiple linear regression. Thus the b values could be regarded as 
partial regression coefficients of the individual’s breeding value on each measurement. 
The minimization results in a set of simultaneous equations similar to the normal 
equations of multiple linear regression, which are solved to obtain the b values. The 
set of equations to be solved for the b values is:

b p b p b p g

b p b p b p g

b p b p

m m

m m

mm

1 11 2 12 1 11

1 21 2 22 2 12

1 21

+ + + =
+ + + =

+

�

�

� �

22 1+ + =� b p gm mm m
(1.16)

where pmm and gmm are the phenotypic and genetic variances, respectively, for individual 
or trait m; pmn and gmn are the phenotypic and genetic covariances, respectively, 
between individuals or traits m and n.

In matrix form, Eqn 1.16 is:

Pb = G

and:

b = P−1G

where P is the variance and covariance matrix for observations, and G is the covariance 
matrix between observations and breeding value to be predicted.

Therefore the selection index equation is:

I = â = (P−1G)(y − m) (1.17)
= b(y − m) (1.18)

where m refers to estimates of environmental influences on observations, assumed to 
be known without error. The application of the selection index to some data therefore 
involves setting up Eqn 1.17. From Eqn 1.18 it is obvious that the previous methods 
for predicting breeding values discussed in Sections 1.3 to 1.6 are no different from 
a selection index and they could be expressed as in Eqn 1.17.

1.7.1 Accuracy of index

As before, the accuracy (ra,I) of an index is the correlation between the true breeding 
value and the index. The higher the correlation, the better the index as a predictor of 
breeding value. It provides a means of evaluating different indices based on different 
observations, to find out, for instance, whether a particular observation is worth 
including in an index or not.

From the definition above:

ra,I = cov(a, I)/(sasI)

First we need to calculate s 2
I and cov(a, I) in the above equation. Using the formula 

for the variance of predicted breeding value in Section 1.3.1:

s2
I = var(b1y1 + var(b2y2 + . . . + 2b1b2cov(y1, y2) + . . .
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= b2
1var(y1) + b2

2var(y2)+ . . . + 2b1b2cov(y1, y2) + . . .
s2

I  = b2
1p11 + b2

2p22 + . . . + 2b1b2p12 +. . .

or in general:

I
i=

i ii
i =

m

j=

m

i j ij
 = b p  + b b p i j2

1

2

1 1

;s
m

∑ ∑∑ ≠
⎛

⎝
⎜

⎞

⎠
⎟

where m is the number of traits or individuals in the index.
In matrix notation:

s2
I = b′Pb

Now b = P−1G; substituting this value for b:

s2
I = G′P−1G (1.19)

The covariance between the true breeding value for trait or individual i and index is:

cov(ai, I) = cov(ai, b1y1) + cov(ai, b2y2) + . . . + cov(ai, bjyj)
= b1cov(ai, y1) + b2cov(ai, y2) + . . . + bjcov(ai, yj)

or in general:

cov( )
1

i
j=

m

j ija ,I  = b g∑ (1.20)

where gij is the genetic covariance between traits or individuals i and j, and m is 
the number of traits or individuals in the index.

In matrix notation:

cov(ai, I) = b′G

Substituting P−1G for b:

cov(ai, I) = G′P−1G
= s 2

I

Thus, as previously, the regression of breeding value on predicted breeding values is 
unity. Therefore:

ra,I = s2
I/(sasI) = sI/sa

For calculation purposes, r is better expressed as:

a,I
j=

m

j ij

a
2 = 

b g

r
1

∑
s

(1.21)

Response to selection on the basis of an index is:

R = ira,Isa
= isI
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1.7.2 Examples of selection indices using different sources of information

Data available on correlated traits

Example 1.6
Assume the following parameters were obtained for average daily gain (ADG) from 
birth to 400 days and lean per cent (LP) at the same age in a group of beef calves:

Heritability Standard deviation

ADG (g/day) 0.43 80.0
LP (%) 0.30 7.2

The genetic and phenotypic correlations (rg and rp) between ADG and LP are 0.30 
and −0.10, respectively. Construct an index to improve growth rate in the beef calves. 
Assuming ADG as trait 1 and LP as trait 2, then from the given parameters:

p

p

p rp p p

11
2

22
2

12 11 22

80 6400

7 2 51 84

0 1 6400 51 84

= =

= =

= ( )( ) = - ( )
. .

. .(( ) = -

= ( ) = ( ) =

= ( ) = (

57 6

0 43 6400 2752

0 30 51 84

11
2

11

22
2

22

.

.

. .

g h p

g h p )) =

= ( )( ) =

15 552

62 06412 11 22

.

.g rg g g

The index equations to be solved are:

1

2

1
11 12

21 22

11

21

b

b
 = 

p p

p p

g

g
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−

Inserting appropriate values gives:

1

2

16400.00 57.60

57.60 51.84

2752.000

62.0
b

b
 = 

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

--
- 664

é

ë
ê

ù

û
ú

The solutions are b1 = 0.445 and b2 = 1.692.
The index therefore is:

I = 0.445(ADG − mADG) + 1.692(LP − mLP)

where mADG and mLP are herd averages for ADG and LP. Using Eqn 1.21:

r = ( ) ( )( )éë ùû =0 445 2752 1 692 62 064 2752 0 695. . . / .+

Using single records on individual and relatives

Example 1.7
Suppose the ADG for a bull calf (y1) is 900 g/day and the ADG for his sire (y2) and dam 
(y3) are 800 g/day and 450 g/day, respectively. Assuming all observations were obtained 
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in the same herd and using the same parameters as in Example 1.6, predict the breed-
ing value of the bull calf for ADG and its accuracy.

From the parameters given:

p11 = p22 = p33 = s2
y = 6400

p12 = cov(y1, y2) = 1
2
s 2

a = 1
2(2752) = 1376

p13 = p12 = 1376
p23 = 0
g11 = s2

a = 2752
g12 = g13 = 1

2s
2
a = 1376

The index equations are:

1

2

3

1
6400 1376 1376

1376 6400 0000

1376 0000 6400

b

b

b

 = 
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡
−

⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = 

2752

1376

1376

Solutions to the above equations are b1 = 0.372, b2 = 0.135 and b3 = 0.135. 
The index is:

I = 0.372(900 − m) + 0.135(800 − m) + 0.135(450 − m)

where m is the herd average. The accuracy is:

r= (0.372(2752) + 0.135(176) + 0.135(176))/2752[ ] = 0 712.

The high accuracy is due to the inclusion of information from both parents.

Using means of records from animal and relatives

Example 1.8
It is given that average protein yield for the first two lactations for a cow (ỹ1) called 
Zena is 230 kg and the mean protein yield of five other cows (ỹ2), each with two lacta-
tions, is 300 kg. If all cows are all daughters of the same bull and no other relation-
ship exists among them, predict the breeding value of Zena, assuming a heritability of 
0.25, a repeatability (t) of 0.5, standard deviation of 34 kg and herd average of 250 kg 
for protein yield in the first two lactations.

From the given parameters:

g11 = s2
a = h2s2

y = 0.25(342) = 289

and:

g12 = covariance between half-sibs = 1
4(s 2

a) = 1
4(289) = 72.25

From calculations in Section 1.3.2:

11p y t
t

n y= ( ) = +
−( )⎛

⎝⎜
⎞
⎠⎟

var �1
21

s

= (0.5 + (1 − 0.5)/2)342 = 867
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Using similar arguments:

p22 = var(ỹ2) = s2
B + 1/n(s2

W)

where s2
B is the between-cow variance and 1/n(s 2

W) is the mean of the within-cow 
variance. From Section 1.4:

s 2
B = 1

4s2
a

and for cow i in the group of five cows:

s 2
W = var(ỹ2i − s 2

B)

where ỹ2i is the mean of the first two lactations for cow i. Since all five cows each have 
two records like Zena:

s 2
W = (p11 − 1

4s 2
a)

and:

1/n(s 2
W) = 1/n(p11 − 1

4s 2
a)

Therefore:

p22 = 1
4s 2

a + 1/n(p11 − 1
4s 2

a)
= 1

4(289) + (1
5)(867 − 1

4(289)) = 231.2

The index equations are:

1

2

1
867 72.25

72.25 231.2

289

72.25
b

b
 = 

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−

The solutions are b1 = 0.316 and b2 = 0.213 and the index is:

I = 0.316(230 − 250) + 0.213(300 − 250)

The accuracy of the index is:

r = ( ) + ( )( )éë ùû =0 316 289 0 213 72 5 289 0 608. . . / .

1.7.3 Prediction of aggregate genotype

At times, the aim is not just to predict the breeding value of a single trait but that of 
a composite of several traits evaluated in economic terms. The aggregate breeding 
value (H) or merit for such several or m traits can be represented as:

H = w1a1 + w2a2 + . . .+ wmam

where ai is the breeding value of the ith trait and wi the weighting factor, which 
expresses the relative economic importance associated with the ith trait. The con-
struction of an index to predict or improve H is based on the same principles as those 
discussed earlier except that it includes the relative economic weight for each trait.

Thus:

I = P−1Gw(y − m) (1.22)
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where w is the vector of economic weights and all other terms are as defined in Eqn 1.17. 
The equations to be solved to get the weights (b values) to be used in the index are:

b p b p b p w g w g w g

b p b p b p
m m m m

m m

1 11 2 12 1 1 11 2 12 1

1 21 2 22 2

+ + + = + +
+ + + =

� �

� ww g w g w g

b p b p b p w g w g w

m m

m m m mm m m

1 21 2 22 1

1 1 2 2 1 1 2 2

+ + +

+ + + = + + +

�

� � �

� � mm mmg

In matrix notation these equations are:

Pb = Gw
b = P−1Gw

It should be noted that it is possible there are some traits in the index that are not 
in the aggregate breeding value but may be correlated with other traits in H. Conversely, 
some traits in the aggregate breeding value may be difficult to measure or occur late in 
life and may therefore not be in the index. Such traits may be replaced in the index with 
other highly correlated traits that are easily measurable or occur early in life. Con-
sequently, the vector of economic weights may not necessarily be of the same dimension 
as traits in the index, as indicated in the equations for b above. Each trait in the index 
is weighted by the economic weight relevant to the breeding value of the trait it is pre-
dicting in the aggregate breeding value.

The index calculated using Eqn 1.22 implies that the same economic weights are 
applied to the traits in the aggregate genotype across the whole population. A change
in the economic weight for one of the traits would imply recalculating the index. An 
alternative formulation of Eqn 1.22 involves calculating a sub-index for each trait in 
H without the economic weights. The final index in Eqn 1.23 is obtained by summing 
the sub-indices for each trait weighted by their respective economic weights. Thus:

I = I
i=

m

i i
1

S w (1.23)

where Ii = P−1Gi(y − m), the sub-index for trait i in H and wi = economic weight for 
trait i.

With Eqn 1.23, a change in the economic weights of any of the traits in the index 
can easily be implemented without recalculating the index.

To demonstrate that Eqns 1.22 and 1.23 are equivalent, assume that there are 
two traits in H, then Eqn 1.23 becomes:

I = I1w1 + I2w2
= P−1G1w1(y − m) + P−1G2w2(y − m)

where Gi is the covariance matrix between trait i and all traits in the index. Thus:

I = P−1(G1w1 + G2w2)(y − m)
= P−1Gw(y − m)

which is the same as Eqn 1.22.

Example 1.9
Assume the economic weights for ADG and LP are £1.5 and £0.5 per an increase of 
1 kg in ADG and 1% increase in LP, respectively. Using the genetic parameters 
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in Example 1.6, construct an index to select fast-growing lean beef calves using 
Eqn 1.22. Repeat the analysis using Eqn 1.23.

Using Eqn 1.22, index equations are:
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Inserting the appropriate values:
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Solutions for b1 and b2 from the above equations are 0.674 and 2.695, respectively. 
The index therefore is:

I = 0.674(ADG − mADG) + 2.694(LP − mLP)

Applying Eqn 1.23, the sub-index for ADG is the same as that calculated in 
Example 1.6 with b1 = 0.445 and b2 = 1.692.The sub-index for LP is:

b1p11 + b2p12 = g12
b1p21 + b2p22 = g22

which gives:

1
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The solutions are b1 = 0.0125 and b2 = 0.314. Multiplying the sub-indices by their 
respective weights gives:

IADG = 0.445(1.5)(ADG − mADG) + 1.692(1.5)(LP − mLP)
= 0.668(ADG − mADG) + 2.538(LP − mLP)

and:

ILP = 0.0125(0.5)(ADG − mADG) + 0.314(0.5)(LP − mLP)
= 0.006(ADG − mADG) + 0.157(LP − mLP)

Summing the b terms from the two sub-indices, the final b terms are:

b1 = 0.668 + 0.006 = 0.674
b2 = 2.538 + 0.157 = 2.695

Therefore the final index is:

I = 0.675(ADG − mADG) + 2.695(LP − mLP)

which is the same as calculated using Eqn 1.22.

1.7.4 Overall economic indices using predicted genetic merit

Overall economic indices that combine (PTAs) or estimated breeding values (EBVs) 
calculated by best linear unbiased prediction (BLUP, see Chapter 3) have become 
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very popular in the last decade. In addition to the recognition that more than one 
trait contributes to profitability, the broadening of selection goals has also been due 
to the need to incorporate health and welfare traits to accommodate public con-
cerns. Examples of indices constructed with PTAs or BVs of several traits and used 
in genetic improvement of dairy cattle include production index (PIN), combining 
PTAs for milk, fat and protein in the UK, production life index (PLI), which is PIN 
plus PTAs for longevity and somatic cell count in the UK; and in the Netherlands,  
index net (INET), which combines BVs for milk, fat and protein and durable per-
formance sum (DPS), which is INET plus durability (Interbull, 2000). The principles 
for calculating these indices are similar to those outlined in previous sections. Given 
that the PTAs or BVs are from a complete multivariate analysis, the optimal index 
weights (b) are the sum of the partial regression coefficients of each goal trait on 
each index trait, weighted by the economic value of the goal trait (Veerkamp et al., 
1995). Thus given m traits in the selection goal and n traits in the index, then the 
partial regressions can be calculated as:

R = G−1Gig

and:

b = Rw

where R is a matrix of partial genetic regression, Gig is the matrix of genetic covari-
ance between m goal and n index traits, G is the genetic covariance matrix between 
the index traits, and w is the vector of economic weights. It is obvious that when 
goal and index traits are the same, Gig = G and b = w. In the case where the index 
and goal traits are not the same, R can be estimated directly from a regression of 
phenotype on the EBVs for the index traits (Brotherstone and Hill, 1991). However, 
if PTAs or BVs are from a univariate analysis, rather than from a multivariate analy-
sis, the use of b above results only in minimal loss of efficiency in the index 
(Veerkamp et al., 1995).

Selection based on breeding values from BLUP is usually associated with an 
increased rate of inbreeding as it favours the selection of closely related individu-
als. Quadratic indices can be used to optimize the rate of genetic gain and 
inbreeding. This does not fall within the main subject area of this text and inter-
ested readers should see the work by Meuwissen (1997) and Grundy et al. (1998).

1.7.5 Restricted selection index

Restricted selection index is used when the aim is to maximize selection for a given 
aggregate genotype, subject to the restriction that no genetic change is desired in 
one or more of the traits in the index for H. This is achieved by the usual index 
procedure and setting the covariance between the index and the breeding value 
(cov(I, ai) for the ith trait specified not to change to zero. It was Kempthorne and 
Nordskog (1959) who introduced the idea of imposing restrictions on the general 
index procedure.

For instance consider the aggregate genotype composed of two traits:

H = w1a1 + w2a2
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However, it is desired that there should be no genetic change in trait 2; thus 
effectively:

H = w1a1

and the index to predict H is:

I = b1y1 + b2y2

To ensure that there is no genetic change in trait 2, cov(I, a2) must be equal to zero. 
From Eqn 1.20:

cov(I, a2) = b1g12 + b2g22 = 0

This is included as an extra equation to the normal equations for the b values, and a 
dummy unknown, the so-called Lagrange multiplier, is added to the vector of solu-
tions for the index weights (Ronningen and Van Vleck, 1985). The equations for the 
index therefore are:
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(1.24)

Example 1.10
Using the same data and parameters as in Example 1.6, construct an index to improve 
the aggregate genotype for fast-growing lean cattle using an index consisting of GR 
and LP but with no genetic change in LP.

From Eqn 1.23 the index equations are: 
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2752

62.064

0

The solutions for b1 and b2 from solving the above equations are 0.325 and −1.303. 
Therefore the index is:

I = 0.325(ADG − mADG) + (−1.303(LP − mLP))

The accuracy of this index (Eqn 1.21) is:

r = ( )( ) + − ( )( )⎡⎣ ⎤⎦ =0 325 2752 1 303 62 064 2752 0 544. . . / .

which is lower than the accuracy for the equivalent index in Example 1.6, but with 
no restriction on LP, and is also lower than the accuracy of prediction of breeding 
value for ADG on the basis of single records. The imposition of a restriction on any 
trait in the index will never increase the efficiency of the index but usually reduces it 
unless Ii = 0 for the constrained trait.
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1.7.6 Index combining breeding values from phenotype 
and genetic marker information

Consider a situation in which one or more genes affecting a trait with a large impact 
on profit have been identified to be linked to a genetic marker (see Chapter 10). If genetic 
prediction based only on marker information is available in addition to the conven-
tional BV estimated without marker information, then both sources of information can 
be combined into an index (Goddard, 1999). It is also possible that the conventional 
BV is based on a subset of traits in the breeding goal and marker information is avail-
able on other traits that are not routinely measured, such as meat quality traits.

A selection index could be used to combine both sources of information and the 
increase in accuracy from including marker information could be computed 
(Goddard, 1999). Given r as the accuracy of the conventional breeding BV and d as 
the proportion of genetic variance explained by the marker information, then the 
covariance between the two sources of information is dr2. If m is the BV based on 
marker information and a the BV from phenotypic information, then:

var
m

a

d dr

dr r
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Let g be the true breeding value to be predicted, then cov(g, m) = d and cov(g, a) = r2.
The normal index equations are:
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Solving the above equations gives the following index weights:

b1 = 1 − r2/(1 − dr2) and b2 = 1 − d/(1 − dr 2)

The variance of the index = reliability (r2
I) is:

r 2
I = [(1 − r2)d + (1 − d)r 2]/(1 − dr2)

The increase in reliability (r2
inc) from incorporating marker information therefore is:

r2
inc = (r2

I − r2) = d/(1 − dr 2)[(1 − r2)2]

For example, given that r2 of the conventional BV is 0.34 and marker information 
accounts for 25% of the genetic variance, then r2

I is 0.459, an increase in reliability of 
0.12. However, if r2 is 0.81, then r2

I is 0.83 and r 2
inc is only 0.02. Thus the usefulness 

of marker information is greater when reliability is low, such as in traits of low herit-
ability and also traits that cannot be measured in young animals such as carcass traits 
(Goddard and Hayes, 2002).
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2.1 Introduction

Of fundamental importance in the prediction of breeding values is the genetic 
relationship among individuals. From Chapter 1, it was found that use of the selec-
tion index to predict breeding values requires the genetic covariance between indi-
viduals to construct the genetic covariance matrix. Genetic evaluation using best 
linear unbiased prediction (BLUP), the subject of the next chapter, is heavily depend-
ent on the genetic covariance among individuals, both for higher accuracy and for 
unbiased results. The genetic covariance among individuals is comprised of three 
components: the additive genetic variance, the dominance variance and the epistatic 
variance. This chapter addresses the calculation of the additive genetic relationship 
among individuals and how to determine the level of inbreeding. Dominance and 
epistasis genetic relationships are considered in Chapter 12, which deals with non-
additive models.

2.2 The Numerator Relationship Matrix

The probability of identical genes by descent occurring in two individuals is termed 
the coancestry or the coefficient of kinship (Falconer and Mackay, 1996) and the 
additive genetic relationship between two individuals is twice their coancestry. The 
matrix that indicates the additive genetic relationship among individuals is called 
the numerator relationship matrix (A). It is symmetric and its diagonal element for 
animal i (aii) is equal to 1 + Fi, where Fi is the inbreeding coefficient of animal i
(Wright, 1922). The diagonal element represents twice the probability that two 
gametes taken at random from animal i will carry identical alleles by descent. The 
off-diagonal element, aij, equals the numerator of the coefficient of relationship 
(Wright, 1922) between animals i and j. When multiplied by the additive genetic 
variance (s 2

u), As 2
u is the covariance among breeding values. Thus if ui is the breeding 

value for animal i, var(ui) = aiis
2
u = (1 + Fi)s

2
u . The matrix A can be computed using 

path coefficients, but a recursive method that is suitable for computerization was 
described by Henderson (1976). Initially, animals in the pedigree are coded 1 to n and 
ordered such that parents precede their progeny. The following rules are then 
employed to compute A.

If both parents (s and d) of animal i are known:

aji = aij = 0.5(ajs + ajd); j = 1 to (i – 1)
aii = 1 + 0.5(asd)

2 Genetic Covariance Between 
Relatives
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If only one parent s is known and assumed unrelated to the mate:

aji= aij = 0.5(ajs); j = 1 to (i – 1)
aii = 1

If both parents are unknown and are assumed unrelated:

aji = aij = 0; j = 1 to (i – 1)
aii = 1

For example, assume that the data in Table 2.1 are the pedigree for six animals. 
The numerator relationship matrix for the example pedigree is:

1 2 3 4 5 6

1 1.00 0.00 0.50 0.50 0.50 0.25
2 0.00 1.00 0.50 0.00 0.25 0.625
3 0.50 0.50 1.00 0.25 0.625 0.563
4 0.50 0.00 0.25 1.00 0.625 0.313
5 0.50 0.25 0.625 0.625 1.125 0.688
6 0.25 0.625 0.563 0.313 0.688 1.125

For instance:

a11 = 1 + 0 = 1
a12 = 0.5(0 + 0) = 0 = a21
a22 = 1 + 0 = 1
a13 = 0.5(a11 + a12) = 0.5(1.0 + 0) = 0.5 = a31
a23 = 0.5(a12 + a22) = 0.5(0 + 1.0) = 0.5 = a32

�
a34 = 0.5(a13) = 0.5(0.5 + 0) = 0.25 = a43

�
a66 = 1 + 0.5(a52) = 1 + 0.5(0.25) =1.125

From the above calculation, the inbreeding coefficient for calf 6 is 0.125.

2.3 Decomposing the Relationship Matrix

The relationship matrix can be expressed (Thompson, 1977a), as:

A = TDT′ (2.1)

Table 2.1. Pedigree for six animals.

Calf Sire Dam

3 1 2
4 1 Unknown
5 4 3
6 5 2



24 Chapter 2

where T is a lower triangular matrix and D is a diagonal matrix. This relationship 
has been used to develop rules for obtaining the inverse of A. A non-zero element of 
the matrix T, say tij, is the coefficient of relationship between animals i and j, if i and j
are direct relatives or i = j and it is assumed that there is no inbreeding. Thus the 
matrix T traces the flow of genes from one generation to the other; in other words, 
it accounts only for direct (parent–offspring) relationships. It can easily be computed 
applying the following rules.

For the ith animal:

tii = 1

If both parents (s and d) are known:

tij = 0.5(tsj + tdj)

If only one parent (s) is known:

tij = 0.5(tsj)

If neither parent is known:

tij = 0

The diagonal matrix D is the variance and covariance matrix for Mendelian 
sampling. The Mendelian sampling (m) for an animal i with breeding value ui and us
and ud as breeding values for its sire and dam, respectively, is:

mi = ui − 0.5(us+ ud) (2.2)

D has a simple structure and can easily be calculated. From Eqn 2.2, if both parents 
of animal i are known, then:

var(mi) = var(ui) − var(0.5us + 0.5ud)
= var(ui) − var(0.5us) − var(0.5ud) + 2cov(0.5us, 0.5ud)
= (1 + Fi)s

2
u − 0.25asss

2
u − 0.25adds

2
u − 0.5asds

2
u

where ass, add and asd are elements of the relationship matrix A, and Fi is the inbreeding 
coefficient of animal i.

var(mi)/s
2
u = dii = (1 + Fi) − 0.25ass − 0.25add − 0.5asd

Since Fi = 0.5asd

dii = 1 − 0.25(1 + Fs) − 0.25(1 + Fd)
= 0.5 − 0.25(Fs + Fd)

where Fs and Fd are the inbreeding coefficients of its sire and dam, respectively. If only 
one parent (s) is known, the diagonal element is:

dii = 1 − 0.25(1 + Fs)
= 0.75 − 0.25(Fs)

and if no parent is known:

dii = 1
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For the pedigree in Table 2.1, the matrix T is:

1 2 3 4 5 6

1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 1.0 0.0 0.0 0.0
4 0.5 0.0 0.0 1.0 0.0 0.0
5 0.5 0.25 0.5 0.5 1.0 0.0
6 0.25 0.625 0.25 0.25 0.5 1.0

and D is:

D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.469)

For instance, animal 4 has only the sire known, which is not inbred, therefore:

d44 = 0.75 − 0 = 0.75

and:

d66 = 0.5 − 0.25(0.125 + 0) = 0.469

because both parents are known and the sire has an inbreeding coefficient 
of 0.125.

2.4 Computing the Inverse of the Relationship Matrix

The prediction of breeding value requires the inverse of the relationship matrix, 
A−1. This could be obtained by setting up A by the recursive method and invert-
ing it. This is, however, not computationally feasible when evaluating a large 
number of animals. In 1976, Henderson presented a simple procedure for calcu-
lating A−1 without setting up A. The procedure and its principles are described 
below.

From Eqn 2.1 the inverse of A can be written as:

A−1 = (T−1)′D−1T−1 (2.3)

The matrix D−1 is easy to obtain because D is a diagonal matrix. The diagonal 
elements of D−1 are simply the reciprocals of the diagonal elements of D computed in 
Section 2.3. T−1 is a lower triangular matrix with ones in the diagonals and the only 
non-zero elements to the left of the diagonal in the row for the animal i are −0.5 for 
columns corresponding to the known parents. It can be derived as I − M, where I is 
an identity matrix of the order of animals on the pedigree and M is a matrix of the 
contribution of gametes from parents to progeny (Kennedy, 1989). Since progeny i
receives half of its genes from each parent, the only non-zero elements in row i of M
are 0.5, corresponding to columns of known parents. Thus if both parents of progeny 
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i are unknown, all elements of row i are zero. For the pedigree in Table 2.1, T−1 can 
be calculated as:
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and:

D−1 = diag(1, 1, 2, 1.333, 2, 2.133)

2.4.1 Inverse of the numerator relationship matrix ignoring inbreeding

The relationship shown in Eqn 2.3 was used by Henderson (1976) to derive simple 
rules for obtaining A−1 without accounting for inbreeding. With inbreeding 
ignored, the diagonal elements of D−1 are either 2, or 4

3 or 1 if both or one or no 
parents are known, respectively. Let ai represent the diagonal element of D−1 for 
animal i. Initially set A−1 to zero and apply the following rules.

If both parents of the ith animal are known, add:

ai to the (i,i) element

−ai /2 to the (s,i), (i,s), (d,i) and (i,d) elements

ai /4 to the (s,s), (s,d), (d,s) and (d,d) elements

If only one parent (s) of the ith animal is known, add:

ai to the (i,i) element

−ai /2 to the (s,i) and (i,s) elements

ai /4 to the (s,s) element

If neither parent of the ith animal is known, add:

ai to the (i,i) element
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As an illustration, the inverse of the relationship matrix in Section 2.2 can be 
calculated as below. Initially list all animals in the pedigree:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 1 2
4 1 Unknown
5 4 3
6 5 2

Then set up a 6 × 6 table for the animals. For animals 1 and 2, both parents are 
unknown, therefore a1 = a2 = 1. Add 1 to their diagonal elements (1,1 and 2,2). For 
animal 3, both parents are known therefore a3 = 2. Add 2 to the 3,3 element, −1 to the 
(3,1), (1,3), (3,2) and (2,3) elements and 1

2 to the (1,1), (1,2), (2,1) and (2,2) elements. 
For animal 4, only one parent is known, therefore a4 = 4

3 . Add 4
3  to the (4,4) element, 

− 2
3 to the (4,1) and (1,4) elements and 1

3 to the (1,1) element. After the first four 
animals, the table is:

1 2 3 4 5 6

1 1 + 1
2 + 1

3
1
2

−1 − 2
3

2 1
2

1 + 1
2 −1

3 −1 −1   2

4 − 2
3

4
3

5

6

After applying the relevant rules to animals 5 and 6, the inverse of A then is:

1 2 3 4 5 6

1 1.83 0.5 −1.0 −0.67 0.0 0.0
2 0.5 2.0 −1.0 0.0 0.5 −1.0
3 −1.0 −1.0 2.5 0.5 −1.0 0.0
4 −0.67 0.0 0.5 1.83 −1.0 0.0
5 0.0 0.5 −1.0 −1.0 2.5 −1.0
6 0.0 −1.0 0.0 0.0 −1.0 2.0

Using Eqn 2.3, the inverse of A can be calculated directly. If inbreeding is ignored, 
D for the pedigree is:

D = diag(1.0, 1.0, 0.5, 0.75, 0.5, 0.5)

and:

D−1 = diag(1, 1, 2, 1.33, 2,2)
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Therefore the inverse of the relationship matrix using Eqn 2.3 is:

1.0 0.0 0.5 0.5 0.0 0.0

0.0 1.0 0.5 0.0 0.0 0.5

0.0 0.0 1.0 0.0 0.5 0.

− −
− −

− 00

0.0 0.0 0.0 1.0 0.5 0.0

0.0 0.0 0.0 0.0 1.0 0.5

0.0 0.0 0.0 0.0 0.0 1.0

−
−

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−( )T 1 ′

1.00 0.00 0.00 0.00 0.00 0.00

0.00 1.000 0.00 0.00 0.00 0.00

0.00 0.00 2.00 0.00 0.00 0.00

0.00 0.00 0.00 1.333 0.00 0.00

0.00 0.00 0.00 0.00 2.00 0.00

0.00 0.00 0.00 0.00 0.00 2.00

⎡⎡

⎣

⎢
⎢
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⎢
⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−D 1

1.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0

0.5 0.5 1.0 0.0 0.0 0.0− −
−00.5 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.5 0.5 1.0 0.0

0.0 0.5 0.0 0.0 0.5 1.

− −
− − 00

(
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⎥

−T 1)

=

1.83 0.50 1.00 0.67 0.00 0.00

0.50 2.00 1.00 0.00 0.50 1.00

1.0

- -
- -

- 00 1.00 2.50 0.50 1.00 0.00

0.67 0.00 0.50 1.83 1.00 0.00

0.00 0.50
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- -

-- - -
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-A 1

which is the same inverse obtained previously by applying the rules.

2.4.2 Inverse of the numerator relationship matrix accounting for 
inbreeding

The calculation of A−1 with inbreeding accounted for involves the application of the 
same rules outlined in Section 2.4.1 but D and therefore D−1 in Eqn 2.3 are calcu-
lated using the inbreeding coefficients of sires and dams (see Section 2.3). This 
implies that the diagonal elements of the relationship matrix are needed for A−1 to 
be properly calculated. This could be achieved by initially calculating the A for the 
group of animals and writing the diagonal elements to a file. The diagonal elements 
could be read from the file while computing A−1. For a large pedigree, this approach 
would require a large amount of memory for storage and be computationally 
demanding. However, Quaas (1976) presented a strategy for obtaining the diagonal 
elements of A while computing A−1 without setting up the relationship matrix.



Genetic Covariance Between Relatives 29

Recall from Section 2.3 that A can be expressed as:

A = TDT′
If L = T D
A = LL′ (2.4)

where L is a lower triangular matrix and, since D is diagonal, D refers to a matrix 
obtained by calculating the square root of the diagonal elements of D. Equation 2.4 
implies that the diagonal element of A for animal i is:

iia  = l
m=

i

im
2

1
∑ (2.5)

Thus for a pedigree consisting of m animals:

a11 = l11
2

a22 = l21
2 + l22

2

a33 = l31
2 + l32

2 + l33
2

�
a l l l lmm m m m mm= + + + +1

2
2

2
3

2 2...

From the above, all the diagonal elements of A can be computed by calculating L one 
column at a time (Quaas, 1984). Only two vectors of dimension equal to the number 
of animals for storage will be required: one to store the column of L being computed 
and the second to accumulate the sum of squares of the elements of L for each animal. 
The matrices L and A−1 can be computed using the following procedure:

From Eqn 2.4 the diagonal element of L for animal i is:

ii i

ii s d

ii ss dd

l  = d

l  = F  + F

l = a  + 

0.5 0.25( )

1.0 0.25(

-[ ]
- aa a  = + F a  = + Fss ss dd dd) ; with 1 and 1[ ]

Using equation [2.5]:

l l lii sm
m

s

dm
m

d
= − +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= =

∑ ∑1 0 0 25 2

1

2

1

. .

To set up A−1 at the same time, calculate the diagonal element of D−1(ai) for animal i
as ai = 1/lii

2. Then compute the contribution of animal i to A−1, applying the usual 
rules for computing A−1 (see Section 2.4.1).

The off-diagonal elements of L to the left of the diagonal for animal i are calculated as:

lij = 0.5(lsj + ldj); s and d equal to or greater than j

For the example pedigree used in Section 2.4.1 the L matrix is:

1 2 3 4 5 6

1 1.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0
3 0.5 0.5 0.707 0.0 0.0 0.0
4 0.5 0.0 0.0 0.866 0.0 0.0
5 0.5 0.25 0.354 0.433 0.707 0.0
6 0.25 0.625 0.177 0.217 0.354 0.685
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and A−1 with inbreeding accounted for is:

1 2 3 4 5 6

1 1.833 0.5 −1.0 −0.667 0.0 0.0
2 0.5 2.033 −1.0 0.0 0.533 −1.067
3 −1.0 −1.0 2.5 0.5 −1.0 0.0
4 −0.667 0.0 0.5 1.833 −1.0 0.0
5 0.0 0.533 −1.0 −1.0 2.533 −1.067
6 0.0 1.067 0.0 0.0 −1.067 2.133

The calculation columns of L and ai for the first three animals are illustrated below:

l11 1 0 25 0 0 1= - + =[ . ( )]

a1 = 1 and its contribution to A−1 is computed using the rules in Section 2.4.1
l21 = 0
l31 = 0.5(l11 + l21) = 0.5(1 + 0) = 0.5
l41 = 0.5(l11) = 0.5
l51 = 0.5(l41 + l31) = 0.5(0.5 + 0.5) = 0.5
l61 = 0.5(l51 + l21) = 0.5(0.5 + 0) = 0.25

l22 1 0 25 0 0 1= - + =[ . ( )]

a2 = 1 and its contribution to A−1 is computed using the rules in Section 2.4.1
l32 = 0.5(l12 + l22) = 0.5(0 + 1) = 0.5
l42 = 0.5(l12) = 0.5(0) = 0
l52 = 0.5(l42 + l32) = 0.5(0 + 0.5) = 0.25
l62 = 0.5(l52 + l22) = 0.5(0.25 + 1.0) = 0.625

l l l l33 11
2

21
2

22
21 0 25 0 25

1 0 25 1 0 25 0 1 0

= - - +

= - - + =

[ . ( ) . ( )]

[ . ( ) . ( )] ..707
a3 = 1/(0.707)2 = 2.0 and its contribution to A−1 is computed using 

the usual rules
l43 = 0.5(l13) = 0.5(0) = 0
l53 = 0.5(l43 + l33) = 0.5(0 + 0.707) = 0.354
l63 = 0.5(l53 + l23) = 0.5(0.354 + 0) = 0.177

Faster algorithms for computing the inverse of A accounting for inbreeding based 
on the L matrix have been published by Meuwissen and Luo (1992) and Quaas 
(unpublished note, 1995), and these are presented in Appendix B.

2.5 Inverse of the Relationship Matrix for Sires and Maternal 
Grandsires

In some cases, the prediction of breeding value is only for sires and maternal grandsires, 
the so-called sire and maternal grandsire (MGS) model. In such cases, the A−1 to be 
incorporated in the mixed model equations (MME) involves only sire and maternal 
grandsires and the rules for calculating A−1 are different from those discussed in the 
previous sections relating to pedigrees with individuals, sires and dams. With the 
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MGS model, the relationship matrix A required pertains to males and can be approxi-
mated (Quaas, 1984) as:

aii = 1 + 0.25ask (2.6)

aij = 0.5asj + 0.25akj (2.7)

where s and k are the sires and maternal grandsires, respectively, for sire i. When all 
maternal granddams are unrelated (base animals) and there are no maternal half-sibs, 
the above will yield the exact A.

The inverse of approximate A can be calculated from a list of sires and mater-
nal grandsires, applying Eqn 2.3. In this case, T−1 is a lower triangular matrix 
with ones in the diagonal and the only non-zero elements to the left of the diagonal 
in the row for the ith animal are −0.5 and −0.25 for the columns corresponding 
to the sire and maternal grandsire, respectively. The elements of D and therefore 
D−1 can be calculated in a manner similar to that described in Sections 2.3 
and 2.4. The diagonal elements of D (dii) for animal i are calculated by the fol-
lowing rules.

If both sire (s) and maternal grandsire (k) are known:

dii = [var(ui) − var( 1
2us + 1

4uk)]/s
2
u

where the u terms are breeding values. Following the same arguments as in 
Section 2.3:

d F Fii s k= - -11

16

1

4

1

16

where Fs and Fk are inbreeding coefficients for sire and maternal grandsire, 
respectively.

When only the maternal grandsire is known:

dii = [var(ui) − var(1
4 uk)]/s

2
u

d Fii k= -15
16

1
16

When only the sire is known or no parents are known, dii is as calculated in 
Section 2.3.

The elements of D−1 are reciprocals of D, calculated above. Using Eqn 2.3, A−1 can 
be calculated on the basis of T−1 and D−1, defined above, as follows:

Initially, set A−1 to zero.

If both sire (s) and maternal grandsire (k) of animal i are known, add:

d−1
ii to the (i,i) element

−d−1
ii /2 to the (s,i) and (i,s) elements

−d−1
ii /4 to the (k,i) and (i,k) elements

d−1
ii /4 to the (s,s) element

d−1
ii /8 to the (s,k) and (k,s) elements

d−1
ii /16 to the (k,k) element



32 Chapter 2

Without inbreeding, dii
- =1 16

11
.

If only the maternal grandsire (k) of animal i is known, add:

d−1
ii to the (i,i) element

−d−1
ii /4 to the (k,i) and (i,k) elements

d−1
ii /16 to the (k,k) element

Without inbreeding, dii
- =1 16

15
.

If only the sire (s) of animal i is known, add:

d−1
ii to the (i,i) element

−d−1
ii /2 to the (s,i) and (i,s) elements

d−1
ii /4 to the (s,s) element

Without inbreeding, dii
- =1 4

3
 in this situation, as in Section 2.4.1.

When s and k are unknown, add:

d−1
ii to the (i,i) element

and d−1
ii = 1.

2.6 An Example of the Inverse of a Sire and Maternal Grandsire 
Relationsip Matrix

A pedigree consisting of sires and maternal grandsires set up from the pedigree in 
Table 2.1 is:

Sire Sire of sire Maternal grandsire of sire

1 Unknown Unknown
4 1 Unknown
5 4 1

Recoding sires 1 to n, the pedigree becomes:

1 Unknown Unknown
2 1 Unknown
3 2 1

Using Eqns 2.6 and 2.7, A = 

1.0 0.5 0.5

0.5 1.0 0.625

0.5 0.625 1.125

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Note that the relationship among sires is the same as in A calculated from the full 
pedigree in Section 2.2.

The T−1 matrix for the pedigree is: − −
− −

1  = 

1.0 0.0 0.0

0.5 1.0 0.0

0.25 0.5 1.0
T

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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and:

D- 1 1 4
3

16
11= diag( , , )

Applying Eqn 2.3, A−1 is: 

−

− −
−1 = 

1.0 0.5 0.25

0.0 1.0 0.5

0.0 0.0 1.0

1 0 0

0 0

0 0
A

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
3

166
11

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1.0 0.0 0.0

0.5 1.0 0.0

0.25 0.5 1.0

−
− −

=

1. 0.485 0.364

0. 1.697 0.727

0. 0.727 1.455

424

485

364

− −
− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

To calculate the inverse of the sire and maternal grandsire relationship matrix, 
applying the rules given earlier, initially set A−1 to zero. The elements of D−1 have 
already been given above. Processing the first animal, add 1 (d−1

11) to the diagonal 
element (1,1) of A−1. For the second animal, add 4

3 (d−1
22) to the diagonal element (2,2) 

of A−1, 1
3 to the (1,1) element and − 2

3 to the (1,2) and (2,1) elements. Finally process-
ing the third animal, add 16

11 (d−1
33) to the (3,3) element of A−1, −16

11  to the (3,4) and 
(4,3) elements, −16

22  to the (1,3) and (3,1) elements, 16
44 to the (4,4) element, 16

88 to the 
(1,4) and (4,1) elements and 16

176 to the (1,1) element. This gives the same A−1 as previ-
ously calculated using Eqn 2.3.

In the next chapter, the incorporation of A−1 in the MME for the prediction of 
breeding value using BLUP is addressed.
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3.1 Introduction

In Chapter 1, the use of the selection index (best linear prediction) for genetic 
evaluation was examined; however, it is associated with some major disadvan-
tages. First, records may have to be pre-adjusted for fixed or environmental factors 
and these are assumed to be known. These are not usually known, especially when 
no prior data exist for new sub-classes of fixed effect or new environmental fac-
tors. Second, solutions to the index equations require the inverse of the covariance 
matrix for observations and this may not be computationally feasible for large 
data sets.

Henderson (1949) developed a methodology called best linear unbiased predic-
tion (BLUP), by which fixed effects and breeding values can be simultaneously 
estimated. The properties of the methodology are similar to those of a selection 
index and the methodology reduces to selection indices when no adjustments for 
environmental factors are needed. The properties of BLUP are more or less incor-
porated in the name:

 ● Best – means it maximizes the correlation between true (a) and predicted breeding 
value (â) or minimizes prediction error variance (PEV) (var(a − â)).

 ● Linear – predictors are linear functions of observations.
 ● Unbiased – estimation of realized values for a random variable such as ani-

mal breeding values, and of estimable functions of fixed effects are unbiased 
(E(a = â)).

 ● Prediction – involves prediction of true breeding value.

BLUP has found widespread usage in genetic evaluation of domestic animals 
because of its desirable statistical properties. This has been enhanced by the steady 
increase in computing power and has evolved in terms of its application to simple 
models, such as the sire model, in its early years, to more complex models such as the 
animal, maternal, multivariate and random regression models, in recent years. Several 
general purpose computer packages for BLUP evaluations such as PEST (Groeneveld 
et al., 1990), BREEDPLAN, Mix 99 (Lidauer et al., 2011) and a host of others have 
been written and made available. In this chapter, BLUP’s theoretical background is 
briefly presented, considering a univariate animal model, and its application to several 
univariate models in genetic evaluation is illustrated.

3 Best Linear Unbiased 
Prediction of Breeding Value: 
Univariate Models with One 
Random Effect
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3.2 Brief Theoretical Background

Consider the following equation for a mixed linear model:

y = Xb + Za + e (3.1)

where:
y = n × 1 vector of observations; n = number of records
b = p × 1 vector of fixed effects; p = number of levels for fixed effects
a = q × 1 vector of random animal effects; q = number of levels for random effects
e = n × 1 vector of random residual effects
X = design matrix of order n × p, which relates records to fixed effects
Z = design matrix of order n × q, which relates records to random animal effects

Both X and Z are termed incidence matrices.
It is assumed that the expectations (E) of the variables are:

E(y) = Xb; E(a) = E(e) = 0

and it is assumed that residual effects, which include random environmental and non-
additive genetic effects, are independently distributed with variance s 2

e; therefore, 
var(e) = Is 2

e = R; var(a) = As 2
a = G and cov(a, e) = cov(e, a) = 0, where A is the 

numerator relationship matrix.
Then:

var(y) = V = var(Za + e)
= Zvar(a)Z′ + var(e) + cov(Za, e) + cov(e, Za)
= ZGZ′ + R + Zcov(a, e) + cov(e, a)Z′

Since cov(a, e) = cov(e, a) = 0, then:

V = ZGZ′ + R (3.2)
cov(y, a) = cov(Za + e, a)

= cov(Za, a) + cov(e, a)
= Zcov(a, a)
= ZG

and:

cov(y, e) = cov(Za + e, e)
= cov(Za, e) + cov(e, e)
= Zcov(a, e) + cov(e, e)
= R

The general problem with respect to Eqn 3.1 is to predict a linear function of 
b and a, that is, k′b + a (predictand), using a linear function of y, say L′y (predictor), 
given that k′b is estimable. The predictor L′y is chosen such that it is unbiased (i.e. its 
expected value is equal to the expected value of the predictand) and PEV is minimized. 
This minimization leads to the BLUP of a (Henderson, 1973) as:

a ̂ = BLUP(a) = GZ′V−1(y – Xb̂) (3.3)

and:

L′y = k′ b̂ + GZ′V−1(y − Xb̂)
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where b̂ = (X′V−1X)X′V−1y, the generalized least square solution (GLS) for b, and k′ b̂
is the best linear unbiased estimator (BLUE) of k′b, given that k′b is estimable. BLUE 
is similar in meaning and properties to BLUP but relates to estimates of linear func-
tions of fixed effects. It is an estimator of the estimable functions of fixed effects that 
has minimum sampling variance, is unbiased and is based on the linear function of 
the data (Henderson, 1984). An outline for the derivation of Eqn 3.3 and the equa-
tion for L′y above are given in Appendix C, Section C.1.

As mentioned in Section C.1, BLUP is equivalent to the selection index with 
the GLS of b̂  substituted for b in Eqn 3.3. Alternatively, this could simply be illustrated 
(W.G. Hill, Edinburgh, 1995, personal communication) by considering the index 
to compute breeding values for a group of individuals with relationship matrix A,
which have records with known mean. From Eqn 1.17, the relevant matrices are 
then:

P = Is 2
e + As 2

a and G = As 2
a

with:

a = s 2
e /s 2

a or (1 − h2)/h2

Hence:

I = P−1Gy = (I + aA−1)−1y

which is similar to the BLUP (Eqn 3.3) assuming fixed effects are absent and 
with Z = I.

The solutions for a and b in Eqn 3.3 require V−1, which is not always computa-
tionally feasible. However, Henderson (1950) presented the mixed model equations 
(MME) to estimate solutions b (fixed effects solutions) and predict solutions for 
random effects (a) simultaneously without the need for computing V−1. The proof 
that solutions for b and a from MME are the GLS of b and the BLUP of a is given in 
Appendix C, Section C.2. The MME for Eqn 3.1 are:

X R X X R Z

Z R X Z R Z G
b
a

X R y

X R y

′ ′
′ ′

′
′

− −

− − −

−

−

1 1

1 1 1

1

1+
=

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡ˆ

ˆ ⎣⎣
⎢

⎤

⎦
⎥

assuming that R and G are non-singular. Since R−1 is an identity matrix from 
the earlier definition of R in this section, it can be factored out from both sides of the 
equation to give:

X X X Z

Z X Z Z A
b
a

X y

Z y

′ ′
′ ′

′
′+

=- a1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

ˆ

ˆ
(3.4)

Note that the MME may not be of full rank, usually due to dependency in the 
coefficient matrix for fixed environmental effects. It may be necessary to set certain 
levels of fixed effects to zero when there is dependency to obtain solutions to the MME 
(see Section 3.6). However, the equations for a (Eqn 3.3) are usually of full rank since 
V is usually positive definite and Xb is invariant to the choice of constraint.

Some of the basic assumptions of the linear model for the prediction of breeding 
value were given in Section 1.2. The solutions to the MME give the BLUE of k′b and 
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BLUP of a under certain assumptions, especially when data span several generations 
and may be subject to selection. These assumptions are:

1. Distributions of y, u and e are assumed to be multivariate normal, implying that 
traits are determined by many additive genes of infinitesimal effects at many infinitely 
unlinked loci (infinitesimal model, see Section 1.2). With the infinitesimal model, 
changes in genetic variance resulting from selection, such as gametic disequilibrium 
(negative covariance between frequencies of genes at different loci), or from inbreed-
ing and genetic drift, are accounted for in the MME through the inclusion of the 
relationship matrix (Sorensen and Kennedy, 1983), as well as assortative mating 
(Kemp, 1985).
2. The variances and covariances (R and G) for the base population are assumed to 
be known or at least known to proportionality. In practice, variances and covariances 
of the base population are never known exactly but, assuming the infinitesimal 
model, these can be estimated by restricted (or residual) maximum likelihood 
(REML) if data include information on which selection is based.
3. The MME can account for selection if based on a linear function of y (Henderson, 
1975) and there is no selection on information not included in the data.

The use of these MME for the prediction of breeding values and estimation of fixed 
effects under an animal model is presented in the next section.

3.3 A Model for an Animal Evaluation (Animal Model)

Example 3.1
Consider the data set in Table 3.1 for the pre-weaning gain (WWG) of beef calves 
(calves assumed to be reared under the same management conditions).

The objective is to estimate the effects of sex and predict breeding values for all 
animals. Assume that s 2

a = 20 and s 2
e = 40, therefore a = =40

20 2.
The model to describe the observations is:

yij = pi + aj + eij

where: yij = the WWG of the jth calf of the ith sex; pi = the fixed effect of the ith sex; 
aj = random effect of the jth calf; and eij = random error effect. In matrix notation the 
model is the same as that described in Eqn 3.1.

Table 3.1. Pre-weaning gain (kg) for five beef calves.

Calves Sex Sire Dam WWG (kg)

4 Male 1 Unknown 4.5
5 Female 3 2 2.9
6 Female 1 2 3.9
7 Male 4 5 3.5
8 Male 3 6 5.0
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3.3.1 Constructing the mixed model equations

The matrix X in the MME relates records to fixed (sex) effects. For the example data 
set, its transpose is:

X′ =
1 0 0 1 1

0 1 1 0 0
⎡

⎣
⎢

⎤

⎦
⎥

The first row indicates that the first, fourth and fifth observations are from male 
calves and the second row shows the second and third records are from female 
calves.

The Z matrix relates records to all animals – those with or without yield records. 
In this case, animals 1 to 3 are parents with no records and animals 4 to 8 are 
recorded. Thus for the example data, Z is:

Z =

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥

Note that the first three columns of Z are zeros and these correspond to the animals 
1 to 3, which are parents without records.

The vector y is simply the vector of the observations. For the data set under con-
sideration, it is:

y′ = [4.5 2.9 3.9 3.5 5.0]

Having set up the matrices X, Z and y, the other matrices in the MME, such as X′Z,
Z′X, X′y and Z′y are easily obtained by matrix multiplication. In practice, these 
matrices are not calculated through multiplication from the design matrices and vec-
tor of observations but are usually set up or computed directly. However, for the 
example data set, these matrices are:

X Z Z X X Z¢ ¢ ¢=
0 0 0 1 0 0 1 1

0 0 0 0 1 1 0 0
and is the transpose of

é

ë
ê

ù

û
ú

′
⎛
⎝⎜

⎞
⎠⎟

X y =
13 0

6 8

.

.
 and the transpose of Z′y is (0 0 0 4.5 2.9 3.9 3.5 5.0)

The matrix Z′Z is a diagonal matrix, with the first three diagonal elements zeros and 
the next five elements all ones.

The various matrices in the MME have been calculated, apart from A−1a.
With these matrices, we can set up what are known as the least squares equations 
(LSE) as:

′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

′
′

⎡

⎣
⎢

⎤

⎦
⎥

X X X Z

Z X Z Z
b
a

X y

Z y

ˆ

ˆ
=
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For the example data set, the LSE are:

3 0 0 0 0 1 0 0 1 1

0 2 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 00 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

b

b

a

a

a

a

a

a

a

a

1

2

1

2

3

4

5

6

7

8

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢

 = 

13.0

6.8

0

0

0

4.5

2.9

3.9

3.5

5.0

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The addition of A−1a to Z′Z in the LSE yields the MME. Using the rules outlined in 
Section 2.4.1, A−1 for the example data is:

-1A =

1.833 0.500 0.000 0.667 0.000 1.000 0.000 0.000

0.500 2.000

− −
00.500 0.000 1.000 1.000 0.000 0.000

0.000 0.500 2.000 0.000 1.00

− −
− 00 0.500 0.000 1.000

0.667 0.000 0.000 1.833 0.500 0.000 1.000 0.0

−
− − 000

0.000 1.000 1.000 0.500 2.500 0.000 1.000 0.000

1.000 1.000

− − −
− − 00.500 0.000 0.000 2.500 0.000 1.000

0.000 0.000 0.000 1.000 1.00

−
− − 00 0.000 2.000 0.000

0.000 0.000 1.000 0.000 0.000 1.000 0.000 2.00− − 00

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and A−1a is easily obtained by multiplying every element of A−1 by 2, the value of a.
Adding A−1a to Z′Z, the MME for the example data are:

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

b

b

a

a

a

a

a

a

a

a

1

1

1

2

3

4

5

6

7

8

 = 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−11
3.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.000

0.000 2..000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000

0.000 0.000 3.6667 1.000 0.000 1.333 0.000 2.000 0.000 0.000

0.000 0.000 1.000 4.0

− −
000 1.000 0.000 2.000 2.000 0.000 0.000

0.000 0.000 0.000 1.000 4.0

− −
000 0.000 2.000 1.000 0.000 2.000

1.000 0.000 1.333 0.000 0.000 4.

− −
− 6667 1.000 0.000 2.000 0.000

0.000 1.000 0.000 2.000 2.000 1.000 6

−
− − ..000 0.000 2.000 0.000

0.000 1.000 2.000 2.000 1.000 0.000 0.000

−
− − 66.000 0.000 2.000

1.000 0.000 0.000 0.000 0.000 2.000 2.000 0.00

−
− − 00 5.000 0.000

1.000 0.000 0.000 0.000 2.000 0.000 0.000 2.000 0.00− − 00 5.000

13.0

6.8

0.0

0.0

0.0

4.5

2.9

3.9

3.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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5.0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Solving the MME by direct inversion of the coefficient matrix gives the following 
solutions:

Sex effects Animals

Males Females 1 2 3 4 5 6 7 8

4.358 3.404 0.098 −0.019 −0.041 −0.009 −0.186 0.177 −0.249 0.183
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The solutions indicate that male calves have a higher rate of gain up to weaning than 
females calves, which is consistent with the raw averages for males and females. From 
the first row in the MME (Eqn 3.4), the equations for sex effect are:

(X′X)b̂ = X′y − (X′Z)â
b̂ = (X′X)−1X′(y − Zâ)

Thus the solution for the ith level of sex effect may be written as:

ˆ ˆb ai ij
j

ij
j

iy= −
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ diag (3.5)

where yij is the record and âij is the solution of the jth animals within the sex subclass 
i and diagi is the sum of observations for the sex subclass i. For instance, the solution 
for male calves is:

b1 = [(4.5 + 3.5 + 5.0) − (−0.009 + −0.249 + 0.183)]/3 = 4.358

The equations for animal effects from the second row of Eqn 3.4 are:

(Z′Z + A−1a)â = Z′y − (Z′X)bb̂
(Z′Z + A−1a)â = Z′(y − Xb̂ )
(Z′Z + A−1a)â = (Z′Z)YD (3.6)

with YD = (Z′Z)−1Z′(y − Xbb̂ ), where YD is the vector of yield deviations (YDs) and 
represents the yields of the animal adjusted for all effects other than genetic merit 
and error. The matrix A−1 has non-zero off-diagonals only for the animal’s parents, 
progeny and mates (see Section 2.4), transferring off-diagonal terms to the right-hand 
side of Eqn 3.6 gives the equation for animal i with k progeny as:

(Z′Z + uiia)âi = auip(âs + âd) + (Z′Z)YD + a uim
k

∑ (âanim − 0.5âm)

where uip is the element of the A−1 between animal i and its parents with the sign reversed, 
and uim is the element of A−1 between the animal and the dam of the kth progeny.

Therefore:

(Z′Z + uiia)âi = aupar(PA) + (Z′Z)YD + 0.5a
k

∑ uprog(2âanim − âm) (3.7)

where PA is the parent average, upar = 2(uip), with uip equal to 1, 2
3; or 1

2 if both, one or 
neither parents are known and uprog = uim, with uim equal to 1 when the mate of animal 
i is known or 2

3 when the mate is not known.
Multiplying both sides of the equation by (Z′Z + uiia)−1 (VanRaden and Wiggans, 

1991) gives:

ai = n1(PA) + n2(YD) + n3(PC) (3.8)

where:

PC =
k

∑uprog(2âanim − âm)/
k

∑uprog

is regarded as the progeny contribution and n1, n2 and n3 are weights that sum to 
one. The derivation of the equation for PC is given in Appendix C, Section C.3. The 
numerators of n1, n2 and n3 are aupar, Z′Z (number of records the animal has) and 
0.5aΣkuprog, respectively. The denominator of all three n terms is the sum of the three 
numerators.
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From Eqn 3.8, the breeding value for an animal is dependent on the amount of 
information available on that animal. For base animals, YD in the equation does not 
exist and âs and âd are zeros with no genetic groups in the model; therefore, the solutions 
for these animals are a function of the contributions from their progeny breeding values 
adjusted for the mate solutions (PC). For instance, the proof for sire 1 in Example 3.1 can 
be calculated from the contributions from its progeny (calves 4 and 6) using Eqn 3.8 as:

ˆ ( ) ( ˆ ) ( )( ˆ ˆ )

ˆ ( )

a n n a a a

a n n

1 1 3
2
3 4 6 2

2
3

1 1 3

0 2 1 2 1

0

= + ( ) + −⎡⎣ ⎤⎦ +( )
= + 22

3
2
3

1 3

0 018 1 0 354 0 019 1

0 2166

( ) − + − −⎡⎣ ⎤⎦ +( )
= =

( . ) ( )( . ( . ))

ˆ ( . )a n 00 098.

with n1 3 667= a
.  and n3 = 0.5a(2

3  + 1)/3.667 and 3.667 is the sum of the numerators of 
n1 and n3. The higher breeding value for sire 1 compared with sire 3 is due to the fact that 
the progeny of sire 1 have higher proofs after correcting for the solutions of the mates.

The solutions for an animal with a record but with no progeny depend on the aver-
age contributions from its parents and its yield deviation. Equation 3.8 reduces to:

ai = n1(PA) + n2(YD)

Thus for progeny 8, its EBV can be calculated as:

a = n1(â3 + â6)/2 + n2(y8 − b1)
= n1(0.068) + n2(5.0 − 4.358) = 0.183

with n n1 5 2 5= =2 1a ,  and 5 is the sum of the numerators of n1 and n2.
It can also be demonstrated that for an animal with a record but with no 

progeny its solution is a function of an estimate of Mendelian sampling (m) and 
parent average. From Equation c.8 in Appendix C, Section C.3, the solution for 
calf i can be written as:

(1 + uiia)âi + aucsâs + aucd âd = yi

Therefore:

âi = (1 + uiia)−1[yi − auisâs − auidâd]

If there is no inbreeding, uis = uid = −0.5uii. Therefore:

âi = (1 + uiia)−1[yi + 0.5uiia(âs + âd)]
= (1 + uiia)−1[(yi − 0.5(âs + âd)) + 0.5(1 + uiia)(âs + âd)]
= (1 + uiia)−1(yi − 0.5(âs + âd)) + 0.5(âs + âd)

âi = 0.5(as + ad) + mi (3.9)

where mi = k(yi − 0.5âs − 0.5âd) is an estimate of Mendelian sampling, and k = 1/(1 + d−1a), 
with d = 1

2 if both parents of animal i are known or 3
4 if only one parent is known. 

Alternatively, the weight (k) can also be derived as:

k = cov(m, yc)/var(yc) = cov(m, m + e)/(var(m) + var(e))

where yc is the yield record corrected for fixed effects and parent average.

k = var(m)/(var(m)+var(e))
= ds 2

a /(ds 2
a +s 2

e)
= dh2/(dh2 + (1− h2))
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where d, as defined earlier, equals 1
2
, 3

4
 or 1 if both, one or no parents are known, 

respectively. Using the parameters for Example 3.1 and assuming both parents 
known, k = 10/(10 + 40) = 0.2.

Thus for progeny 8, its EBV can be calculated as:

â8 = 0.5(â3 + â6) + k(y3 − b1 − 0.5(â3 + â6))
= 0.5(−0.041 + 0.177) + 0.2(5.0 − 4.358 − 0.5(−0.041 + 0.177))
= 0.183

Compared with calf 7, the proof of calf 8 is higher because it has a higher parent 
average solution and higher estimate of Mendelian sampling.

In the case of an animal with records and having progeny, there is an additional 
contribution from its offspring to its breeding value. Thus the breeding values of 
progeny 4 and 6 using Eqn 3.8 are:

â4 = n1(â1/2) + n2(y4 − b1) + n3(2(â7) − â5)
= n1(0.098/2) + n2(4.5 − 4.358) + n3(2(−0.249) − (−0.186)) = −0.009

with n1 = 2a( 2
3 )/4.667, n2 = 1/4.667 and n3 = 0.5a /4.667; 4.676 = the sum of the 

numerators of n1, n2 and n3; and:

â6 = n1((â1 + â2)/2) + n2(y6 − b2) + n3(2(â8) − â3)
= n1((0.098 + −0.019)/2) + n2(3.9 − 3.404) + n3(2(0.183) − (−0.041))
= 0.177

with n n n1
2
6 2

1
6 3

0 5
6= = =a a, .and ; 6 = the sum of the numerators of n1, n2 and n3.

Although contributions from parent average to both calves are similar, differences 
in progeny contributions resulted in a higher breeding value for calf 6, accounting for 
about 75% of the difference in the predicted breeding values between both calves.

3.3.2 Progeny (daughter) yield deviation

The yield deviation of a progeny contributes indirectly to the breeding value of its sire after 
it has been combined with information from parents and the offspring of the progeny 
(see Eqn 3.8). Thus progeny contribution is a regressed measure and it is not an independ-
ent measure of progeny performance as information from parents and the progeny’s off-
spring is included. VanRaden and Wiggans (1991) indicated that a more independent and 
unregressed measure of progeny performance is progeny yield deviation (PYD). However, 
they called it daughter yield deviation (DYD) as they were dealing with the dairy cattle 
situation and records were only available for daughters of bulls. PYD or DYD can simply 
be defined as a weighted average of corrected yield deviation of all progeny of a sire; the 
correction is for all fixed effects and the breeding values of the mates of the sire.

DYD has been used for various purposes in dairy cattle evaluation and research. 
It was used in the early 1990s for the calculation of conversion equations to convert 
bull evaluations across several countries (Goddard, 1985). It was initially the variable 
of choice for international evaluations of dairy bulls by Interbull, but, due to the 
inability of several countries to calculate DYD, deregressed proofs were used 
(Sigurdsson and Banos, 1995). In addition, Interbull methods for the validation of 
genetic trends in national evaluations prior to acceptance for international evalua-
tions utilize DYDs (Boichard et al., 1995). DYDs are also commonly employed in 
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dairy cattle studies aimed at detecting quantitative trait loci using the granddaughter 
design (Weller, 2001). The equation for calculating DYD from univariate animal 
model evaluations was presented by VanRaden and Wiggans (1991) and its deriva-
tion is briefly outlined here.

For the progeny (prog) of a bull i that has no offspring of her own, Eqn 3.8 becomes:

âprog = n1progPA + n2progYD (3.10)

Substituting Eqn 3.10 into the equation for PC in Eqn 3.8 gives:

PC = + −

=

∑ ∑u n PA n YD a u

u n

prog prog prog mi
k

prog
k

prog prog

[ ( ) ]

[ (

2 1 2

1

ˆ

ˆ̂ ˆ ) ˆ ]a a n YD a ui mi prog mi
k

prog
k

+ + −∑ ∑2 2

where n1prog and n2prog are the n1 and n2 of progeny. Since these progeny have no offspring 
of their own, n3prog equals zero; therefore n1prog equals 1 − n2prog. Then:

PC a a a= − + + −

=

∑ ∑u n n YD u

u

prog
k

prog i mi prog mi prog
k

pr

[( ) ( ) ]1 22 2ˆ ˆ ˆ

oog
k

prog i prog mi prog
k

i prog
k

n n YD u

u n

∑ ∑

∑

− + −

= +

[( ) ( )]

[

1 22 2a a

a

ˆ ˆ

ˆ 22 2prog i mi prog
k

YD u( )]− + − ∑a aˆ ˆ
(3.11)

Substituting Eqn 3.11 into Eqn 3.8 and accumulating all terms involving âi to the left 
side gives:

a a aˆ ˆ ˆi i prog
k

prog i prog
k

prog
k

p

n n u n u

n PA n YD n u n

− +

= + +

∑ ∑
∑

3 3 2

1 2 3 2 rrog mi prog
k

YD u( )2 − ∑â

Therefore:

1 3 3 2

1 2 3

- +
æ

è
ç

ö

ø
÷

= + +

å å

å

n n u n u

n PA n YD n u n

prog
k

prog prog
k

i

prog
k

â

22 2prog m prog
k

YD u( )- åâ

Substituting (n1 + n2) for 1 − n3 and removing the common denominator of the n terms 
from both sides of the equation, with DYD as:

DYD or PYD = -å åu n YD u nprog
k

prog m prog
k

prog2 22( )â (3.12)

the breeding value of animal i can be expressed as:

âi = w1PA + w2YD + w3DYD (3.13)

where the weights w1, w2 and w3 sum to unity. The numerators of w1 and w2 are equal 
to those of n1 and n2 in Eqn 3.8. The numerator of:

w3 = 0.5aΣkuprogn2prog

which is derived as n3 times:

Σkuprogn2prog Σkuprog
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As VanRaden and Wiggans (1991) indicated, w3 is always less than unity and therefore 
less than n3, which reflects that PYD or DYD is an unregressed measure of progeny perfor-
mance. Note that, for bulls with granddaughters, PYD or DYD does not include informa-
tion from these granddaughters. Also, in the dairy cattle situation, the information from 
sons is not included in the calculation of DYD.

Illustrating the calculation of PYD or DYD

The computation of DYD is usually carried out in dairy cattle evaluations and it is 
illustrated later for a dairy data set in Example 4.1. Using the beef data in Example 3.1, 
the calculation of PYD is briefly illustrated for animal 3, using information on both 
female and male progeny, since observations are available on both sexes.

First, the YDs for both progeny of sire 3 are calculated:

YD5 = (y5 − b2) = (2.9 − 3.404) = −0.504
YD8 = (y8 − b1) = (5.0 − 4.358) = 0.642

Therefore, using Eqn 3.12:

PYD3 = n2(5)u(5)(2YD5 − â2) + n2(8)u(8)(2YD8 − â6)/(n2(5)u(5) + n2(8)u(8))
= 0.2(1)(−1.008 − (−0.019) + 0.2(1)(1.284 − 0.177)/(0.2(1) + 0.2(1))
= 0.059

where n2(j) and u(j) are the n2 and u for the jth progeny. Note that in calculating n2(j),
it has been assumed that progeny j has no offspring. Thus n2(5) − 1/(1 + 2a(1)) = 0.2.

Using Eqn 3.12 to calculate the breeding value of sire 3 gives the value of 0.0098, 
with w1 = 0.833 and w2 = 0.167. This is different from the breeding value reported 
from solving the MME as the granddaughter information (calf 7) has not been included.

3.3.3 Accuracy of evaluations

The accuracy (r) of predictions is the correlation between true and predicted breeding 
values. However, in dairy cattle evaluations, the accuracy of evaluations is usually 
expressed in terms of reliability, which is the squared correlation between true and 
predicted breeding values (r2). The calculation for r or r 2 requires the diagonal ele-
ments of the inverse of the MME, as shown by Henderson (1975).

If the coefficient matrix of the MME in Eqn 3.4 is represented as:

11 12

21 22
and a generalized inverse of the coeffic

C C

C C

⎡

⎣
⎢

⎤

⎦
⎥ iient matrix as:

11 12

21 22

C C

C C

⎡

⎣
⎢

⎤

⎦
⎥

Henderson (1975) showed that:

PEV = var(a − â) = C22s2
e (3.14)

Thus the diagonal elements of the coefficient matrix for animal equations are needed 
to calculate PEV for animals. The PEV could be regarded as the fraction of additive 
genetic variance not accounted for by the prediction. Therefore, for animal i, it could 
be expressed as:

PEVi = Ci
22s2

e = (1 − r2)s 2
a
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ˆ

where r2 is the squared correlation between the true and EBVs. Thus:

dis
2
e = (1 − r2)s 2

a

where di is the ith diagonal element of C22.

dis
2
e /s

2
a = 1 − r2

r2 = 1 − dia

and the accuracy (r) is just the square root of reliability.

From Eqn 3.14 the standard error of prediction (SEP) is:

SEP = −

=

var ( )a a

d ii es 2 for animal

Note also that:

r2 = 1 − (SEP2/s 2
a)

The inverse of the coefficient matrix for Example 3.1 is:

0.596 0.157 0.164 0.084 0.131 0.265 0.148 0.166 0.284 0.238− − − − − − − −
00.157 0.802 0.133 0.241 0.112 0.087 0.299 0.306 0.186 0.19− − − − − − − − 99

0.164 0.133 0.471 0.007 0.033 0.220 0.045 0.221 0.139 0.134

0.0

− −
− 884 0.241 0.007 0.492 0.010 0.020 0.237 0.245 0.120 0.111

0.131 0

− −
− − ..112 0.033 0.010 0.456 0.048 0.201 0.023 0.126 0.218

0.265 0.087

−
− − 00.220 0.020 0.048 0.428 0.047 0.128 0.243 0.123

0.148 0.299 0.045− − 00.237 0.201 0.047 0.428 0.170 0.220 0.178

0.166 0.306 0.221 0.245− − 00.023 0.128 0.170 0.442 0.152 0.219

0.284 0.186 0.139 0.120 0.126− − 00.243 0.220 0.152 0.442 0.168

0.238 0.199 0.134 0.111 0.218 0.123− − 00.178 0.219 0.168 0.422

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The r2, r and SEP for animals in Example 3.1 are:

Animal Diagonals of inverse r 2 r SEP

1 0.471 0.058 0.241 4.341
2 0.492 0.016 0.126 4.436
3 0.456 0.088 0.297 4.271
4 0.428 0.144 0.379 4.138
5 0.428 0.144 0.379 4.138
6 0.442 0.116 0.341 4.205
7 0.442 0.116 0.341 4.205
8 0.422 0.156 0.395 4.109

In the example, the reliabilities of animals with records are generally higher than 
those of ancestors since each has only two progeny. The two calves in the female sex 
subclass are progeny of dam 2 and this may explain the very low reliability for this 
ancestor as the effective number of daughters is reduced. The amount of information 
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on calves 4 and 5 is very similar; each has a record, a common sire and parents of the 
same progeny, hence they have the same reliability. Calf 8 has the highest reliability 
and this is due to the information from the parents (its sire has another progeny and 
the dam has both parents known) and its record. The standard errors are large due 
to the small size of the data set but follow the same pattern as the reliabilities.

In practice, obtaining the inverse of the MME for large populations is not feasible 
and various methods have been used to approximate the diagonal element of the 
inverse. A methodology published by Meyer (1989) is presented in Appendix D and 
was used in the national dairy evaluation programme in Canada (Wiggans et al.,
1992) in the 1990s.

3.4 A Sire Model

The application of a sire model implies that only sires are being evaluated using prog-
eny records. Most early applications of BLUP for the prediction of breeding values, 
especially in dairy cattle, were based on a sire model. The main advantage with a sire 
model is that the number of equations is reduced compared with an animal model 
since only sires are evaluated. However, with a sire model, the genetic merit of the 
mate (dam of progeny) is not accounted for. It is assumed that all mates are of similar 
genetic merit and this can result in bias in the predicted breeding values if there is 
preferential mating.

The sire model in matrix notation is:

y = Xb + Zs + e (3.15)

All terms in Eqn 3.15 are as defined for Eqn 3.1 and s is the vector of random sire 
effects, Z now relates records to sires and:

var(s) = As2
s

var(y) = ZAZ′s2
s + R

where A is the numerator relationship matrix for sires, s2
s = 0.25s2

a and R = Is2
e. The 

MME are exactly the same as in Eqn 3.4 except that a = s 2
e /s 2

s = (4 − h2)/h2.

3.4.1 An illustration

Example 3.2
An application of a sire model is illustrated below using the same data as for the 
animal model evaluation in Table 3.1. Assigning records to sires, and including the 
pedigree for sires, the data can be presented as:

Sex of progeny Sire Sire of sire Dam of sire WWG (kg)

Male 1 – – 4.5
Female 3 – – 2.9
Female 1 – – 3.9
Male 4 1 – 3.5
Male 3 – – 5.0
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The objective is to estimate sex effects and predict breeding values for sires 1, 3 and 4. 
Using the same parameters as in Section 3.3, s 2

s = 0.25(20) = 5 and s 2
e = 60 − 5 = 55, 

therefore a = 55/5 = 11.

SETTING UP THE DESIGN MATRICES AND MME

The design matrix X relating records to sex is as defined in Section 3.3.1. However, 
Z is different and its transpose is:

′
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Z  = 

1 0 1 0 0

1 0 0 1

0 0 0 1 0

0

indicating that sires 1 and 3 have two records each while sire 4 has only one record. 
The vector of observations y is as defined in Section 3.3.1. The matrices X′X, X′Z,
Z′X, Z′Z, X′y and Z′y in the MME can easily be calculated through matrix multipli-
cation. Thus:

′
⎡

⎣
⎢

⎤

⎦
⎥ ′

⎡

⎣
⎢

⎤

⎦
⎥X X X Z = 

3 0

0 2
, =

1 1

1 1 0

1 , Z′Z = diag(2,2,1), X′y is as in Section 3.3.1 

and the transpose of Z′y = (Z′y)′ = [8.4 7.9 3.5]

The LSE are:

3 0 1 1 1

0 2 1 1 0

1 1 2 0 0

1 1 0 2 0

1 0 0 0 1

1

2

1

3

4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

ˆ

ˆ

ˆ

ˆ

ˆ

b

b
s

s

s

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 = 

13.00

6.80

8.40

7.90

3.50

Apart from the fact that sire 4 is the son of sire 1, no other relationships exist among 
the three sires. Therefore A−1 for the three sires is:

−

−

−

1

1.333 0.0 0.667

0.000 1.0 0.000

0.667 0.0 1.333
A  = 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The MME obtained after adding A−1a to Z′Z in the LSE are:

1

2

1

3

4

13.000 0.000 1.000 1.000 1.000ˆ

ˆ

ˆ

ˆ

ˆ

b

b
s

s

s

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

00.000 2.000 1.000 1.000 0.000

1.000 1.000 16.666 0.000 7.334

1.000

−
11.000 0.000 13.000 0.000

1.000 0.000 7.334 0.000 15.666−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

13.00

6.80

8.40

7.90

3.50
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The solutions to the MME by direct inversion of the coefficient matrix are:

Sex effects Sires

Males Females 1 3 4

4.336 3.382 0.022 0.014 −0.043

The difference between solutions for sex subclasses, L′b, where L is [1 − 1], is the 
same as in the animal model. However, sire proofs and differences between sire 
proofs (si − sj) are different from those from the animal model, although the ranking 
for the three sires is the same in both models. The differences in the proofs are due to 
the lack of adjustment for breeding values of mates in the sire model and differences 
in progeny contributions under both models. In this example, most of the differences 
in sire solutions under both models are due to differences in progeny contributions. 
The proofs for these sires under the animal model are based on their progeny contri-
butions, since their parents are unknown. This contribution from progeny includes 
information from progeny yields and those of grand-offspring of the sires. However, 
in the sire model, progeny contributions include information from only male grand-
offspring of the sires in addition to progeny yields. The effect of this difference on sire 
proofs under the two models is illustrated for two bulls below.

From the calculations in Section 3.3.1, the proportionate contribution of calves 4 
and 6 to the proof of sire 1 in the animal model are −0.003 and 0.102, respectively. 
Using Eqn 3.8, the contribution of information from the different yield records to sire 1 
under the sire model are as follows.

Contributions (CONT) from yields for calves 4 and 6 are:

CONT4 = n2(0.082) = 0.010
CONT6 = n2(0.259) = 0.031

where n2 = 2/16.667.
Contributions from yield record for male grand-progeny (calf 7) through animal 4 

(progeny) is:

CONT7 = n3(−0.086) = −0.019

where n3 = 3.667/16.667.
Therefore:

s1 = CONT4 + CONT6 + CONT7 = 0.022

In the sire model the sum of CONT4 and CONT7 is equivalent to the contribution 
from calf 4 to the sire proof in the animal model. Thus the main difference in the 
proof for sire 1 in the two models is due largely to the lower contribution of calf 6 in 
the sire model. This lower contribution arises from the fact the contribution is only 
from the yield record in the sire model while it is from the yield and the progeny of 
calf 6 in the animal model.

Similar calculations for sire 3 indicate that the proportionate contributions from 
its progeny are −0.088 for calf 5 and 0.047 for calf 8 in the animal model. However, 
in the sire model the contributions are −0.037 and 0.051, respectively, from the 
yield of these calves. Again, the major difference here is due to the contribution from 
calf 5, which contains information from her offspring (calf 7) in the animal model. 



Univariate Models with One Random Effect 49

The similarity of the contributions of calf 8 to the proof of sire 3 in both models 
is because it is a non-parent and the contribution is slightly higher under the sire model 
due to the lack of adjustment for the breeding value of the mate.

3.5 Reduced Animal Model

In Section 3.2, the BLUP of breeding value involved setting up equations for 
every animal, that is, all parents and progeny. Thus the order of the animal equa-
tions was equal to the number of animals being evaluated. If equations were set 
up only for parents, this would greatly reduce the number of equations to be 
solved, especially since the number of parents is usually less than the number of 
progeny in most data sets. Breeding values of progeny can be obtained by back-
solving from the predicted parental breeding values. Quaas and Pollak (1980) 
developed the reduced animal model (RAM), which allowed equations to be set 
up only for parents in the MME, and breeding values of progeny are obtained by 
back-solving from the predicted parental breeding values. This section presents 
the theoretical background for the RAM and illustrates its use for the prediction 
of breeding values.

3.5.1 Defining the model

The application of a RAM involves setting up animal equations for parents only and 
representing the breeding values of non-parents in terms of parental breeding value. 
Thus for the non-parent i, its breeding value can be expressed as:

a a a mi s d i= + +1
2 ( ) (3.16)

where as and ad are the breeding values of sire and dam and mi is the Mendelian 
sampling. It was shown in Section 2.3 that:

var(mi) = (0.5 − 0.25(Fs + Fd))s
2
a

Let F = (Fs + Fd)/2, then:

var(mi) = (0.5 − 0.5(F))s 2
a

= 0.5(1 − F)s 2
a (3.17)

The animal model applied in Section 3.3 was:

yijk = pi + aj + eij (3.18)

In matrix notation:

y = Xb + Za + e (3.19)

The terms in the above equations have been defined in Section 3.3.
Using Eqn 3.18, Eqn 3.19 can be expressed as:

yijk = pi + 1
2
as + 1

2
ad + mj + eijk (3.20)

For non-parents, the terms mj and eijk can be combined to form a single residual 
term e*

ijk as:

e*
ijk = mj + eijk (3.21)
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and:

var(e*
ijk) = var(mj) + var(eijk)

Using Eqn 3.19:

var(e*
ijk) = 1

2(1 − F)s 2
a + s 2

e

In general:

var(mj) = dj(1 − Fj)s
2
a (3.22)

where dj equals 1
2 or 3

4
 or 1 if both, one or no parents are known, respectively, and Fj

is the average inbreeding for both parents or, if only one parent is known, it is the 
inbreeding coefficient of the known parent. Fj equals zero when no parent is known. 
Ignoring inbreeding:

var(e*
ijk) = s2

e + djs
2
a = (1 + dja

−1)s2
e

Equation 3.20 can be expressed in matrix notation as:

y = Xnb + Z1ap + e* (3.23)

where Xn is the incidence matrix that relates non-parents’ records to fixed effects, 
Z1 is an incidence matrix of zeros and halves identifying the parents of animals, and 
ap is a vector of breeding values of parents.

The application of RAM involves applying the model:

yp = Xpb + Za + e

for parents and the model:

yn = Xnb + Z1ap + e*

for non-parents.
From the above two equations, the model for RAM analysis can be written as:

p

n

p

n
p

*

y

y
X

X
b

Z

Z
a

e

e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = + +

1

If:

X
X

X
W

Z

Z
R

R

R

I 0

0 I
 = , = and =  = 

1

2

2

p

n

p

n

e

e

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

s

s ** 1
2 = 

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

I 0

0 I D −a
s e

Then:

var(y) = WApW′s2
e + R

var(ap) = Aps
2
a

where Ap is the relationship matrix among parents and D above is a diagonal matrix 
with elements as defined for dj in Eqn 3.22.

The MME to be solved are:

ˆ

ˆ
b
a

X R X X R W

W R X W R W A

X R⎡

⎣
⎢

⎤

⎦
⎥

′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥

′
−− −

− − − = 
+ 1/ 2

11 1

1 1 1
as

−−

−′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

1

y

W R y
(3.24)
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Equation 3.24 can also be written as:

′ ′ ′ ′

′ ′ ′

X R X X R X X R Z X R Z

Z R X Z R X Z

p p p n p p n

p p

− − − −

− −

1 1 1 1
1

1 1

+ +

+

n n n

n n p1
−− − −

−

=
1

1
1

1
1 2

1

+ + 1/

+

R Z Z R Z A
b
a

X R y X

′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

′ ′

n a

p p n
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ˆ

ˆ

p n
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− −

1

1 1+

R y

Z R y Z R y

n

p p n n′ ′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1

Multiplying the equations above by Rp gives:

p p n v n p n v

p v n v

′ ′ ′ ′
′ ′ ′ ′

X X X R X X Z X R Z

Z X Z R X Z Z Z R Z

+ +

+ + +

1 1
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1 1
1

− −

− − −
1 1
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Z y Z R ya

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
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⎤

⎦
⎥

′ ′
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⎢
⎢

ˆ

ˆ
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−

−
1

⎤⎤

⎦
⎥
⎥

(3.25)

where R−1
v equals 1/(1 + Da−1).

3.5.2 An illustration

Example 3.3
The application of RAM using Eqn 3.24 for the prediction of breeding values is illus-
trated below with the same data set (Table 3.1) as in Example 3.1 for the animal 
model evaluation. The genetic parameters are s2

a = 20.0 and s2
e = 40.0.

CONSTRUCTING THE MME

First we need to set up R, the matrix of residual variances and its inverse. In the 
example data set, animals 4, 5 and 6 are parents; therefore the diagonal elements 
in R corresponding to these animals are equal to s2

e , that is, 40.0.
Calves 7 and 8 are non-parents, therefore the diagonal elements for these animals 

in R are equal to s2
e + dis

2
a, assuming that the average inbreeding coefficients of the 

parents of these animals equal zero. For each calf, di equals 1
2
 because both their par-

ents are known, therefore r77 = r88 = 40 + 1
2 (20) = 50.

The matrix R for animals with records is:

R = diag(40, 40, 40, 50, 50)

and:

R−1 = diag(0.025, 0.025, 0.025, 0.020, 0.020)

The matrix X is the same as in Section 3.3.1 and relates records to sex effects.
Therefore:

′
⎡

⎣
⎢

⎤

⎦
⎥X R X−1 0.065 0.000

0.000 0.050
=

For the matrix W, the rows for parents with records (animals 4, 5 and 6) consist 
of zeros except for the columns corresponding to these animals, which contain ones, 
indicating that they have records. However, the rows for non-parents with records 
(animals 7 and 8) contain halves in the columns that correspond to their parents, and 
otherwise zeros. Thus:
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W =

0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

0..0 0.0 0.0 0.5 0.5 0.0

0.0 0.0 0.5 0.0 0.0 0.5

⎡
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⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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and:

′ −W R W1  = 

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.005 0.00 0.0 0.005

0.0 0.0 0.0 0.03 0.005 0.0

0.0 0.0 0.0 0.005 0.03 0.0

0.0 0.0 00.005 0.0 0.0 0.03
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⎢
⎢
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⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥

The transpose of the vector of observations, y, is as defined in Section 3.3.1. 
The remaining matrices, X′R−1W, W′R−1X, X′R−1y and Z′R−1y can easily be calcu-
lated through matrix multiplication since X, R−1, W and y have been set up. 
Therefore:

′ −X R W1 =
0.000 0.000 0.010 0.035 0.010 0.010

0.000 0.000 0.000 0.000 00.025 0.025
⎡

⎣
⎢

⎤

⎦
⎥

The matrix W′R−1X is the transpose of X′R−1W.

′
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⎤

⎦
⎥ ′− −X R y W R y1 1  = =
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The LSE are:
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The relationship matrix is only for parents, that is, animals 1 to 6. Thus:

−

− −
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−− −
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Adding A−11/s2
a to the W′R−1W of the LSE gives the MME, which are:
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 = 

−1
0.0665 0.000 0.000 0.000 0.010 0.035 0.010 0.010

0.000 0.0 0.000 0.00050 00.000 0.000 0.025 0.025

0.000 0.000 0.092 0.025 0.000 0.033 0.000− −00.050

0.000 0.000 0.025 0.100 0.025 0.000 0.050 0.050

0.010 0.000

− −
00.000 0.025 0.080 0.000 0.050 0.005

0.035 0.000 0.033 0.000 0.000

−
− 00.097 0.005 0.000

0.010 0.025 0.000 0.050 0.050 0.005 0.130 0.000− −
00.010 0.025 0.050 0.050 0.005 0.000 0.000 0.130− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

0.282

0.170

0.000

0.000

0.050

0.148

0.107

0.148

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The solutions are:

Sex effects Animals

Males Females 1 2 3 4 5 6

4.358 3.404 0.098 −0.019 −0.041 −0.009 −0.186 0.177

The solutions for sex effects and proofs for parents are exactly as obtained using 
the animal model in Example 3.1. However, the number of non-zero elements in the 
coefficient matrix is 38 compared with 46 for an animal model in Section 3.3 on the 
same data set. This difference will be more marked in large data sets or in data sets 
where the number of progeny far exceeds the number of parents. This is one of the 
main advantages of the reduced animal model, as the number of equations and there-
fore non-zero elements to be stored are reduced. The solutions for non-parents can 
be obtained by back-solving, as discussed in the next section.

SOLUTIONS FOR NON-PARENTS

With the reduced animal model, solutions for non-parents are obtained by 
back-solving, using the solutions for the fixed effects and parents. Equation 3.9, 
derived earlier from the MME for an animal with its parents, can be used to back-
solve for non-parent solutions. However, the R−1 has not been factored out of the 
MME in Eqn 3.25, and so the k term in Eqn 3.9 now equals:

k = r11/r11 + d−1
i g−1 (3.26)
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Solutions for non-parents in Example 3.3 can be solved using Eqn 3.9 but with k
expressed as in Eqn 3.26. However, because there is a fixed effect in the model, mi = 
k(yc − bj − 0.5as − 0.5ad). In Example 3.3, both parents of non-parents (animals 7 and 8) 
are known, therefore:

k = 0.025/(0.025 + (2)0.05) = 0.20

Solution for calves 7 and 8 are:

â7 = 0.5(−0.009 + −0.186) + 0.20(3.5 − 4.358 − 0.5(−0.009 + −0.186))
= −0.249

â8 = 0.5(−0.041 + 0.177) + 0.20(5.0 −4.358 − 0.5(−0.041 + 0.177))
= 0.183

Again, these solutions are the same for these animals as under the animal model.

3.5.3 An alternative approach

Note that, if the example data had been analysed using Eqn 3.25, the design matrices 
would be of the following form:

X X′ ′p n ==
1 0 0

0 1 1
,

1 1

0 0
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

Z including ancestors is:

Z Z

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

=  = 
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and
0 0 0 0.5 0.5 0

0 0 0.5 0 0 01 ..5
⎡

⎣
⎢

⎤

⎦
⎥

The remaining matrices can be calculated through matrix multiplication. The MME then are:

1

1

1

2

3

4

4

6

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

b

b

a

a

a

a

a

a

2

a

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

==

−1
2.600 0.000 0.000 0.000 0.400 1.400 0.400 0.400

0.000 2.000 0.0000 0.000 0.000 0.000 1.000 1.000

0.000 0.000 3.667 1.000 0.000 1.33− 33 0.000 2.000

0.000 0.000 1.000 4.000 1.000 0.000 2.000 2.000

0.4

−
− −

000 0.000 0.000 1.000 3.200 0.000 2.000 0.200

1.400 0.000 1.333 0.0

−
− 000 0.000 3.867 0.200 0.000

0.400 1.000 0.000 2.000 2.000 0.200 5.2− − 000 0.000

0.400 1.000 2.000 2.000 0.200 0.000 0.000 5.200− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

11.300

6.800

0.000

0.000

2.000

5.900

4.300

5.9000

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and these give the same solutions as obtained from Eqn 3.24.

3.6 Animal Model with Groups

In Example 3.1 there were animals in the pedigree with unknown parents, usually called base 
population animals. The use of the relationship matrix in animal model evaluation assumes 
that these animals were sampled from a single population with average breeding value of 
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zero and common variance s2
a. The breeding values of animals in subsequent generations 

are usually expressed relative to those of the base animals. However, if it is known that base 
animals were actually from populations that differ in genetic means, for instance, sires from 
different countries, this must then be accounted for in the model. In the dairy cattle situation, 
due to differences in selection intensity, the genetic means for sires of bulls, sires of cows, 
dams of bulls and dams of cows may all be different. These various sub-population structures 
should be accounted for in the model to avoid bias in the prediction of breeding values. This 
can be achieved through a proper grouping of base animals using available information.

Westell and Van Vleck (1987) presented a procedure for grouping, which has gen-
erally been adopted. For instance, if sires have been imported from several countries 
over a period of time and their ancestors are unknown, these sires could be assigned 
to groups on the basis of the expected year of birth of the ancestors and the country 
of origin. The sires born within a similar time period in a particular foreign country 
are assumed to come from ancestors of similar genetic merit. Thus each sire with one 
or both parents unknown is initially assigned phantom parents. Phantom parents are 
assumed to have had only one progeny each. Within each of the foreign countries, the 
phantom parents are grouped by the year of birth of their progeny and any other fac-
tor, such as sex of progeny. In addition, for the dairy cattle situation, the four selection 
paths – sire of sires, sire of dams, dam of sires and dam of dams – are usually assumed 
to be of different genetic merit and this is accounted for in the grouping strategy.

With groups, the model (Thompson, 1979) is:

ij j i
k=

n

ik k ijy  = h  + a  + t g e
1

∑ + (3.27)

where hj = effect of the jth herd, ai = random effect of animal i, gk = fixed group effect 
containing the kth ancestor, tik = the additive genetic relationship between the kth and 
ith animals and the summation is over all n ancestors of animal i, and eij = random 
environmental effect. From the model, it can be seen that the contribution of the 
group to the observation is weighted by the proportion of genes the ancestors in the 
group passed on to the animal with a record.

In matrix notation, the model can be written as:

y = Xb + ZQg + Za + e (3.28)

where:

Q = TQ*

Q* assigns unidentified ancestors to groups and T, a lower triangular matrix, is obtained 
from A = TDT′ (see Section 2.3). With this model the breeding value of an animal k is: 

ak* = Qĝ + âk

The MME are:

′ ′ ′
′ ′ ′

′ ′ ′ ′ ′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡X X X Z X ZQ

X Z Z A Z ZQ

Q Z X Q Z Z Q Z ZQ

b
a

g

Z + 1− a
ˆ

ˆ

ˆ⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′

′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

X y

Z y

Q Z y

Solving the MME above will yield vectors of solutions for a and g but the ranking 
criterion (breeding value) is âk* = Qĝ + âk for animal k. Modification of the MME 
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(Quaas and Pollak, 1981) and absorption of the group equations gave the following 
set of equations, which are usually solved to obtain â* directly (Westell et al., 1988).

′ ′

′ ′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− −

− −

X X X Z 0

Z X Z Z A A

0 A A

b
a Q+ +

nn np

pn pp

1 1

1 1

a a

a a

ˆ

ˆ ˆ gg

g

X y

Z y

0ˆ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = (3.29)

where n is the number of animals and p the number of groups.
Let

A
A A

A A
−

− −

− −
1

1 1

1 1
 = 

nn np

pn pp

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The matrix A−1 is obtained by the usual rules for obtaining the inverse of the relation-
ship matrix outlined in Section 2.4.1. A list of pedigrees, consisting of only actual 
animals but with unknown ancestors assigned to groups, is set up. For the ith animal 
calculate the inverse (bi) of the variance of Mendelian sampling as:

bi = 4/(2 + number of parents of animal i assigned to groups)

Then add:

bi to the (i,i) element of A−1

− bi

2  to the (i,s), (i,d), (s,i) and (d,i) elements of A−1

bi

4  to the (s,s), (s,d), (d,s) and (d,d) elements of A−1

Thus for an animal i with both parents assigned to groups:

bi = 4/(2 + 2) = 1

Then add:

1 to the (i,i) element of A−1

−1
2 to the (i,s), (i,d), (s,i) and (d,i) elements of A−1

1
4 to the (s,s), (s,d), (d,s) and (d,d) elements of A−1

3.6.1 An illustration

Example 3.4
An animal model evaluation with groups is illustrated below using the same data set 
and genetic parameters as in Example 3.1. The aim is to estimate sex effects and predict 
breeding values for animals and phantom parents (groups). The model in Eqn 3.28 and 
the MME in Eqn 3.29 are used for the analysis. The pedigree file for the data set is:

Calf Sire Dam

1 Unknown Unknown
2 Unknown Unknown
3 Unknown Unknown
4 1 Uunknown
5 3 2
6 1 2
7 4 5
8 3 6
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Assuming that males are of different genetic merit compared to females, the unknown 
sires can be assigned to one group (G1) and unknown dams to another group (G2). 
The pedigree file now becomes:

Calf Sire Dam

1 G1 G2
2 G1 G2
3 G1 G2
4 1 G2
5 3 2
6 1 2
7 4 5
8 3 6

Recoding G1 as 9 and G2 as 10:

Calf Sire Dam

1 9 10
2 9 10
3 9 10
4 1 10
5 3 2
6 1 2
7 4 5
8 3 6

SETTING UP THE DESIGN MATRICES AND MME

The design matrices X and Z, and the matrices X′X, X′Z, Z′X, X′y and Z′y in the 
MME are exactly as in Example 3.1. The MME without addition of the inverse 
of the relationship matrix for animals and groups are:

3 0 0 0 0 1 0 0 1 1 0 0

0 2 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 00 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 00 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎡
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ˆ
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⎣
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13.0

6.8

0

0

0

4.5

2.9

3.9

3.5

5.0

0

0
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⎥
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Using the procedure outlined above, A−1 for the example data is:

1 2 3 4 5 6 7 8 9 10

1 1.83 0.50 0.00 −0.67 0.00 −1.00 0.00 0.00 −0.50 −0.17
2 0.50 2.00 0.50 0.00 −1.00 −1.00 0.00 0.00 −0.50 −0.50
3 0.00 0.50 2.00 0.00 −1.00 0.50 0.00 −1.00 −0.50 −0.50
4 −0.67 0.00 0.00 1.83 0.50 0.00 −1.00 0.00 0.00 −0.67
5 0.00 −1.00 −1.00 0.50 2.50 0.00 −1.00 0.00 0.00 0.00
6 −1.00 −1.00 0.50 0.00 0.00 2.50 0.00 −1.00 0.00 0.00
7 0.00 0.00 0.00 −1.00 −1.00 0.00 2.00 0.00 0.00 0.00
8 0.00 0.00 −1.00 0.00 0.00 −1.00 0.00 2.00 0.00 0.00
9 −0.50 −0.50 −0.50 0.00 0.00 0.00 0.00 0.00 0.75 0.75

10 −0.17 −0.50 −0.50 −0.67 0.00 0.00 0.00 0.00 0.75 1.08

and A−1a is easily obtained by multiplying every element of A−1 by 2, the value of a. The 
matrix A−1a is added to equations for animal and group to obtain the MME, which are:
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b
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ˆ
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ˆ
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 = 

−1
3.000 0.000 0.000 0.000 0.000 1.000 0.0000 0.000 1.000 1.000 0.000 0.000

0.000 2.000 0.000 0.000 0.000 0.000 1..000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 3.667 1.000 0.000 1.− 3333 0.000 2.000 0.000 0.000 1.000 0.333

0.000 0.000 1.000 4.000 1

− − −
..000 0.000 2.000 2.000 0.000 0.000 1.000 1.000

0.000 0.000 0.00

− − − −
00 1.000 4.000 0.000 2.000 1.000 0.000 2.000 1.000 1.000

1.000 0.

− − − −
0000 1.333 0.000 0.000 4.667 1.000 0.000 2.000 0.000 0.000 1.333

0

− − −
..000 1.000 0.000 2.000 2.000 1.000 6.000 0.000 2.000 0.000 0.000− − − 00.000

0.000 1.000 2.000 2.000 1.000 0.000 0.000 6.000 0.000 2.00− − − 00 0.000 0.000

1.000 0.000 0.000 0.000 0.000 2.000 2.000 0.000 5.00− − 00 0.000 0.000 0.000

1.000 0.000 0.000 0.000 2.000 0.000 0.000 2.00− − 00 0.000 5.000 0.000 0.000

0.000 0.000 1.000 1.000 1.000 0.000 0.0− − − 000 0.000 0.000 0.000 1.500 1.500

0.000 0.000 0.333 1.000 1.000 1− − − − ..333 0.000 0.000 0.000 0.000 1.500 2.167
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0.00
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There is dependency in the equations, that is, all effects cannot be estimated; 
therefore, the equation for the first group has been set to zero to obtain the following 
solutions:

Sex effects
Males 5.474
Females 4.327

Animals
1 −0.780
2 −0.936
3 −0.977
4 −1.287
5 −1.113
6 −0.741
7 −1.354
8 −0.782

Groups
9 0.000

10 −1.795
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The animal proofs above are generally lower than those from Example 3.1, the 
model without groups. In addition, the ranking for animals is also different. However, 
the relationship between the two sets of solutions can be shown by recalculating the 
vector of solutions for animals using the group solutions (ĝ) above and the estimated 
breeding values (â) from Example 3.1 as:

â* = â + Qg

where Q = TQ*, as defined earlier.
Assigning phantom parents (M1 to M7) to animals with unknown ancestors, the 

pedigree for the example data can be written as:

Calf Sire Dam

1 M1 M2
2 M3 M4
3 M5 M6
4 1 M7
5 3 2
6 1 2
7 4 5
8 3 6

and the matrix T for the pedigree is:

M1 M2 M3 M4 M5 M6 M7 1 2 3 4 5 6 7 8

M1 1.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M2 0.000 1.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M3 0.000 0.000 1.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M4 0.000 0.000 0.000 1.000 0.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M5 0.000 0.000 0.000 0.000 1.000 0.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M6 0.000 0.000 0.000 0.000 0.000 1.000 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
M7 0.000 0.000 0.000 0.000 0.000 0.000 1.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
1 0.500 0.500 0.000 0.000 0.000 0.000 0.00 1.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0
2 0.000 0.000 0.500 0.500 0.000 0.000 0.00 0.00 1.00 0.00 0.0 0.0 0.0 0.0 0.0
3 0.000 0.000 0.000 0.000 0.500 0.500 0.00 0.00 0.00 1.00 0.0 0.0 0.0 0.0 0.0
4 0.250 0.250 0.000 0.000 0.000 0.000 0.50 0.50 0.00 0.00 1.0 0.0 0.0 0.0 0.0
5 0.000 0.000 0.250 0.250 0.250 0.250 0.00 0.00 0.50 0.50 0.0 1.0 0.0 0.0 0.0
6 0.250 0.250 0.250 0.250 0.000 0.000 0.00 0.50 0.50 0.00 0.0 0.0 1.0 0.0 0.0
7 0.125 0.125 0.125 0.125 0.125 0.125 0.25 0.25 0.25 0.25 0.5 0.5 0.0 1.0 0.0
8 0.125 0.125 0.125 0.125 0.250 0.250 0.00 0.25 0.25 0.50 0.0 0.0 0.5 0.0 1.0

The transpose of the matrix Q*, which assigns phantom parents to groups is:

Q*′ =
⎛
⎝⎜

⎞
⎠⎟

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 00
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and the transpose of Q (Q = TQ*) is:

′ =Q
1 0 1 1 0 0 0.5 0.5 0.5 0.25 0.5 0.5 0.375 0.5

0 1 0 1 0 1 0 0.5 0.5 0.5 0.75

0

00.5 0.5 0.625 0.5
⎛
⎝⎜

⎞
⎠⎟

Therefore the vector of solutions using the EBVs from Example 3.1 is:

ˆ ˆ ˆa a Q g* = + =

0

0.098

0.019

.041

0.009

0.186

0.177

0.249

0

−
−
−
−

−
..183

 + 

0.898

0.898

0.898

1.346

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−
−
−
−
−−
−
−
−

−

0.898

0.898

1.122

0.898

 = 

0.8⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

000

0.917

0.939

1.355

1.084

0.721

1.371

0.715

−
−
−
−
−
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

These solutions are similar to those obtained in the model with groups. The slight dif-
ferences are due to differences in sex solutions in the two examples and this is 
explained later. This indicates that, when the solutions from the model without groups 
are expressed relative to the group solutions, similar solutions are obtained to those in 
the model with groups. Thus the differences between the solutions in Examples 3.1 
and 3.4 are due to the fact that the solutions in the former are expressed relative to 
base animals assumed to have an average breeding value of zero, while in the latter 
solutions are relative to the group solutions, one of which is lower than zero.

The inclusion of groups also resulted in a larger sex difference compared with 
Example 3.1. The solution for sex effect i can be calculated using Eqn 3.5. For 
instance, the solution for male calves in Example 3.4 is:

b1 = [(4.5 + 3.5 + 5.0) − (−1.287 + −1.354 + −0.782)]/3 = 5.474

Since yijj
å  in Eqn 3.5 is the same in both examples, differences in aijj

ˆ∑  between the 
sexes in both models would result in differences in the linear function of b. The dif-
ference between average breeding values of male and females calves is −0.02 and 
−0.214, respectively, in Examples 3.1 and 3.4. The larger difference in the latter 
accounted for the higher sex difference in Example 3.4. Males had a lower breeding 
value in Example 3.4 due to the higher proportionate contribution of group two to 
their solutions (see the matrix Q above).

The basic principles involved in the application of BLUP for genetic evaluations and 
the main assumptions have been covered in this chapter, and its application to more com-
plex models involves an extension of these principles. Equation 3.1 is a very general model 
and a could include random animal effects for several traits (multivariate model), random 
environmental effects, such as common environmental effects affecting animals that are 
reared together, maternal effects (maternal model), non-additive genetic effects, such as 
dominance and epistasis (non-additive models), and repeated data on individuals (random 
regression model). The extension of the principles discussed in this chapter under these 
various models constitutes the main subject area of the subsequent chapters in the text.



© R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values, 61
3rd Edition (R.A. Mrode)

4.1 Introduction

In some circumstances, environmental factors constitute an important component of 
the covariance between individuals such as members of a family reared together 
(common environmental effects) or between the records of an individual (permanent 
environmental effects). Such environmental effects are usually accounted for in the 
model to ensure accurate prediction of breeding values. This chapter deals with models 
that account these two main types of environmental effects in genetic evaluations.

4.2 Repeatability Model

The repeatability model has been employed for the analysis of data when multiple 
measurements on the same trait are recorded on an individual, such as litter size in 
successive pregnancies or milk yield in successive lactations (Interbull, 2000). The 
details of the assumptions and the components of the phenotypic variance have been 
given in Section 1.3.2. Briefly, the phenotypic variance comprises the genetic (additive 
and non-additive) variance, permanent environmental variance and temporary envi-
ronmental variance. For an animal, the model usually assumes a genetic correlation 
of unity between all pairs of records, equal variance for all records and equal envi-
ronmental correlation between all pairs of records. In practice, some of these assump-
tions do not hold in the analysis of real data. A more appropriate way of handling 
repeated measurements over time is by fitting a random regression model or a covari-
ance function, and this is discussed in Chapter 9. This section has therefore been 
included to help illustrate the evolution of the model for the analysis of repeated 
records over time. The phenotypic structure for three observations of an individual 
under this model could be written (Quaas, 1984) as:

var =
1

2

y

y

y

t pe g pe g pe g

pe g

3

1
2 2 2 2 2 2 2

2 2

⎡

⎣
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⎢
⎢

⎤

⎦

⎥
⎥
⎥

s s s s s s s
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+ + + +
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⎡

⎣

⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥

with: s 2
ti = temporary environmental variance specific to record i; s 2

pe = covariance 
due to permanent environmental effects (variances and covariances are equal); and 
s 2

g = genetic covariance (variances and covariances are equal). The correlation 

4 Best Linear Unbiased 
Prediction of Breeding Value: 
Models with Random 
Environmental Effects
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between records of an individual is referred to as repeatability and is (s 2
g + s 2

pe)/s
2
y.

Genetic evaluation under this model is concerned not only with predicting breeding 
values but also permanent environmental effects.

4.2.1 Defining the model

The repeatability model is usually of the form:

y = Xb + Za + Wpe + e (4.1)

where y = vector of observations, b = vector of fixed effects, a = vector of random 
animal effects, pe = vector of random permanent environmental effects and non-
additive genetic effects, and e = vector of random residual effect. X, Z and W are 
incidence matrices relating records to fixed animal and permanent environmental 
effects, respectively.

Note that the vector a only includes additive random animal effects; conse-
quently, non-additive genetic effects are included in the pe term. It is assumed that the 
permanent environmental effects and residual effects are independently distributed 
with means of zero and variance s 2

pe and s 2
e , respectively. Therefore:

var(pe) = Is 2
pe

var(e) = Is 2
e = R

var(a) = As 2
a

and:

var(y) = ZAZ′s 2
a + WIs 2

peW′ + R

The MME for the BLUE of estimable functions of b and for the BLUP of a and pe are:

ˆ

ˆ

ˆ

b
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However, the MME with R−1 factored out from the above equations give the following 
equations, which are easier to set up:

ˆ

ˆ

ˆ

b
a

pe

X X X Z X W

Z X Z Z A Z W

W X W Z W W I

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
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′ ′ ′
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′ ′ ′

⎡

⎣

⎢ −= +
+

1
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⎤

⎦

⎥
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–1
X y

Z y

W y
(4.2)

where a1 = s 2
e /s 2

a and a2 = s 2
e /s 2

pe

4.2.2 An illustration

Example 4.1
For illustrative purposes, assume a single dairy herd with the following data structure 
for five cows:
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Cow Sire Dam Parity HYS Fat yield (kg)

4 1 2 1 1 201
4 1 2 2 3 280
5 3 2 1 1 150
5 3 2 2 4 200
6 1 5 1 2 160
6 1 5 2 3 190
7 3 4 1 1 180
7 3 4 2 3 250
8 1 7 1 2 285
8 1 7 2 4 300

HYS, herd–year–season.

It is assumed that s 2
a = 20.0, s 2

e = 28.0 and s 2
pe = 12.0, giving a phenotypic vari-

ance (s 2
y) of 60. From the given parameters, a1 = 1.40, a 2 = 2.333 and repeatability 

is (s2
a + s2

pe)/s
2
y = (20 + 12)/60 = 0.53. The aim is to estimate the effects of lactation 

number and predict breeding values for all animals and permanent environmental 
effects for cows with records. The above genetic parameters are proportional to esti-
mates reported by Visscher (1991) for fat yield for Holstein Friesians in the UK for 
the first two lactations using a repeatability model. Later, in Section 5.4, this data set 
is reanalysed using a multivariate model assuming an unequal design with different 
herd–year–season (HYS) effects defined for each lactation using corresponding mul-
tivariate genetic parameter estimates of Visscher (1991).

SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to HYS and parity is:

′X  =

1 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

1 0 1 0 1 0 1 0 1 0

0 1 0

0

11 0 1 0 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The first four rows of X′ relate records to HYS effects and the last two rows to parity effects. 
Considering only animals with records, Z′ and W′ are equal and for the example data set:

Z′ =

1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1

⎡

⎣

⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Each row of Z′ corresponds to each cow with records. The matrices Z′Z and W′W
are both diagonal and equal and Z′Z is:

Z′Z = diag(2, 2, 2, 2, 2)
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Note, however, that it is necessary to augment Z′Z by three columns and rows of 
zeros to account for animals 1 to 3, which are ancestors. The remaining matrices in 
the MME apart from A−1 can easily be calculated through matrix multiplication. The 
inverse of the relationship matrix (A−1) is:

–

2.50 0.50 0.00 –1.00 0.50 –1.00 0.50 –1.00

0.50 1.50 0.00 –1.00

1A =

00.00 0.00 0.00 0.00

0.00 0.00 1.83 0.50 –0.67 0.00 –1.00 0.00

–1.00 –1..00 0.50 2.50 0.00 0.00 –1.00 0.00

0.50 0.00 –0.67 0.00 1.83 –1.00 0.000 0.00

–1.00 0.00 0.00 0.00 –1.00 2.00 0.00 0.00

0.50 0.00 –1.00 –1.00 00.00 0.00 2.50 –1.00

–1.00 0.00 0.00 0.00 0.00 0.00 –1.00 2.00

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

and A−1a1 is added to the Z′Z to obtain the MME.
The MME are too large to be shown. There is dependency in the MME because 

the sum of equations for HYS 1 and 2 equals that of parity 1 and the sum of HYS 3 
and 4 equals that for parity 2. The equations for HYS 1 and 3 were set to zero to 
obtain the following solutions by direct inversion of the coefficient matrix:

Effects Solutions

HYS
1 0.000
2 44.065
3 0.000
4 0.013

Parity
1 175.472
2 241.893

Animal
1 10.148
2 −3.084
3 −7.063
4 13.581
5 −18.207
6 −18.387
7 9.328
8 24.194

Permanent environment
4 8.417
5 −7.146
6 −17.229
7 −1.390
8 17.347
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The fixed-effect solutions for parity indicate that yield at second lactation is higher 
than that at first, which is consistent with the raw averages. From the MME, the 
solution for level i of the nth fixed effect can be calculated as:

i
f = j

inj
k

ink
l

inl ib  = y b a pe
in

n inf
ˆ ˆ ˆ ˆ /

1

diag

diagå å å- - -å nn (4.3)

where yinf is the record for animal f in level i of the nth fixed effect, diagin is the number 
of observations for level i of the nth fixed effect, binj, âink and peinl are solutions for 
levels j, k and l of any other fixed effect, random animal and permanent environmental 
effects, respectively, within level i of the nth fixed effect. Thus the solution for level 
two of HYS effect is:

b̂21 = [445 − (2b̂12) − (â6 + â8 ) − (p̂e6 + p̂e8)]/2
= [445 − 2(175.472) − 5.807 − (0.118)]/2
= 44.065

Breeding values for animals with a repeatability model can also be calculated 
using Eqn 3.8, except that YD is now yield corrected for the appropriate fixed effects, 
permanent environmental effect and averaged. Thus for animal 4:

â4 = n1[(â1 + â2)/2] + n2[((y41 − b̂1 − b̂5 − p̂e4) + (y42 − b̂3 – b̂6 − p̂e4))/2]
+ n3(2â7 − â3)

where yji is yield for cow j in lactation i, n1 = 2.8/5.5, n2 = 2/5.5 and n3 = 0.7/5.5 and 
5.5 = the sum of the numerator of n1, n2 and n3.

â4 = n1(3.532) + n2[((201 − 0.0 − 175.472 − 8.417) 
+ (280 − 0.0 − 241.893 – 8.147))/2] + n3(18.656 − (−7.063))

= 13.581

The higher breeding value for sire 1 compared with sire 3 is due to the fact that 
on average the daughters of sire 1 were of higher genetic merit after adjusting for the 
breeding values of mates. The very high breeding value for cow 8 results from the 
high parent average breeding value and she has the highest yield in the herd, resulting 
in a large YD.

The estimate of pe for animal i could be calculated as:

ˆ ˆ ˆ ( )pe a mi if
f

mi

j
ik

k
i= - -

æ

è
çç

ö

ø
÷÷

é

ë
ê
ê

ù

û
ú
ú

+å å åY bij a2 (4.4)

where mi is the number of records for animal i a2 = se
2/spe

2 and other terms are as 
defined in Eqn 4.3. Thus for animal 4:

p̂e4 = [(201 − 0.0 − 175.472 − 13.581)
+ (280 − 0.0 − 241.893 − 13.581)]/(2 + 2.333)

= 8.417

The estimate of permanent environment effect for an animal represents environ-
mental influences and non-additive genetic effect, which are peculiar to the animal 
and affect its performance for life. These environmental influences could either be 
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favourable – for instance, animal 8 has the highest estimates of pe and this is reflected 
by her high average yield – or could reduce performance (for example, cow 6 has a 
very negative estimate of pe and low average yield). A practical example of such per-
manent environment effect could be the loss of a teat by a cow early in life due to 
infection. Thus differences in estimates of pe represent permanent environmental dif-
ferences between animals and could help the farmer, in addition to the breeding value, 
in selecting animals for future performance in the same herd. The sum of breeding 
value and permanent environment effect (âi + pei) for animal i is termed the probable 
producing ability (PPA) and represents an estimate of the future performance of the 
animal in the same herd. If the estimate of the management level (M) for animal i is 
known, its future record (yi) can be predicted as:

yi = M + PPA

This could be used as a culling guide.

4.2.3 Calculating daughter yield deviations

As indicated in Section 3.3.3, daughter yield deviation (DYD) is commonly calculated 
for sires in dairy cattle evaluations. The calculation of DYD for sire 1 in Example 4.1 
is hereby illustrated.

First, the yield deviations for the daughters (cows 4, 6 and 8) of sire 1 are 
calculated. Thus for cow i, YDi = (Z′Z)−1Z′(yi − Xb − Wpe). Therefore:

YD4 = 1
2[(201 − 175.472 − 0 − 8.417) + (280 − 241.893 − 0 − 8417)] = 23.4005

YD6 = 1
2
[(160 − 175.472 − 44.065 − (−17.229)) 

+ (190 − 241.893 − 0 − (−17.229)] = −38.486
YD8 = 1

2
[(285 − 175.472 − 44.065 − 17.347) 

+ (300 − 241.893 − 0.013 − 17.347)] = 44.432

Both parents of these daughters are known, therefore n2prog = 2/(2 + 2a1) = 0.4167 
and uprog = 1 for each daughter. Using Eqn 3.12, DYD for sire 1 is:

DYD1 = [u(4)n2(4)(2YD4 - â2) + u(5)n2(6)(2YD6 - â5)

+ u(8)n2(8)(2YD8 - â7)] ( )u nprog prog+
⎛
⎝⎜

⎞
⎠⎟∑ 2

3

DYD1 = [(1)(0.4167)(2(23.4005) − (−3.084)) +(1)0.4167(2(−38.486) − (−18.207))
+ (1)0.4167(2(44.432) − 9.328)]/(3(1)(0.4167))

= 23.552

Calculating the proof of sire 1 using Eqn 3.13 and a DYD of 23.552 gives a breeding 
value of 9.058. It is slightly lower than the breeding value of 10.148 from solving the 
MME, as the contribution of the granddaughter through cow 4 is not included.

4.3 Model with Common Environmental Effects

Apart from the resemblance between records of an individual due to permanent envi-
ronmental conditions, discussed in Section 4.2, environmental circumstances can also 
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contribute to the resemblance between relatives. When members of a family are 
reared together, such as litters of pigs, they share a common environment and this 
contributes to the similarity between members of the family. Thus there is an addi-
tional covariance between members of a family due to the common environment 
they share and this increases the variance between different families. The environ-
mental variance may be partitioned therefore into the between-family or group 
component (s 2

c), usually termed the common environment, which causes resem-
blance between members of a family, and the within-family or within-group vari-
ance (s 2

e). Sources of common environmental variance between families may be due 
to factors such as nutrition and/or climatic conditions. All sorts of relatives are 
subject to an environmental source of resemblance, but most analyses concerned with 
this type of variation in animal breeding tend to account for the common environ-
ment effects associated with full-sibs or maternal half-sibs, especially in pig and 
chicken studies.

4.3.1 Defining the model

Genetic evaluation under this model is concerned with prediction of breeding val-
ues and common environmental effects and the phenotypic variance may be parti-
tioned into:

1. Additive genetic effects resulting from additive genes from parents.
2. Common environmental effects affecting full-sibs or all offspring of the same dam. 
In the case of full-sibs, it may be confounded with dominance effects peculiar to off-
spring of the same parents. Further explanation is given later on the components of 
the common environmental effect.
3. Random environmental effects.

In matrix notation, the model, which is exactly the same as in Eqn 4.1, is:

y = Xb + Za + Wc + e

where all terms are as given in Eqn 4.1 except c, which is the vector of common 
environmental effects and W now relates records to common environmental 
effects.

It is assumed that common environmental and residual effects are independently 
distributed with means of zero and variance s 2

c and s 2
e, respectively. Thus var(c) = Is 2

c,
var(e) = Is2

e and var(a) = As 2
a .

The MME for the BLUP of a and c and BLUE of estimable functions of b are 
exactly the same as Eqn 4.2 but with a1 = s 2

e /s
2
a and a2 = s 2

e /s 2
c .

4.3.2 An illustration

Example 4.2
Consider the following data set on the weaning weight of piglets, which are progeny 
of three sows mated to two boars:
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Piglet Sire Dam Sex Weaning weight (kg)

6 1 2 Male 90
7 1 2 Female 70
8 1 2 Female 65
9 3 4 Female 98

10 3 4 Male 106
11 3 4 Female 60
12 3 4 Female 80
13 1 5 Male 100
14 1 5 Female 85
15 1 5 Male 68

The objective is to predict breeding values for all animals and common environmental 
effects for full-sibs. Given that s 2

a = 20, s 2
c = 15 and s 2

e = 65, then s 2
y = 100, a1 = 3.25 

and a2 = 4.333.
The model for the analysis is that presented in Eqn 4.5 and, as mentioned earlier, 

the MME for the BLUP of a and c and BLUE of estimable functions of b are as given 
in Eqn 4.2, using a1 and a2 defined above.

SETTING UP THE DESIGN MATRICES

The transpose of the matrix X, which relates records to sex effects in this example is:

′
⎡

⎣
⎢

⎤

⎦
⎥X  = 

1 0 0 0 1 0 0 1 0 1

0 1 1 1 0 1 1 0 1 0

and Z = I, excluding parents. The transpose of matrix W that relates records to 
full-sibs is:

′
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

W =

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

The MME can be set up as discussed in Example 4.1. The solutions to the MME 
by direct inversion of the coefficient matrix are:

Effects Solutions

Sex
Male 91.493
Female 75.764

Animals
1 −1.441
2 −1.175
3 1.441
4 1.441
5 −0.266
6 −1.098

Continued
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The equation for the solution of the i level of fixed, animal and common envi-
ronmental effects under this model are the same as those given for fixed (Eqn 4.3), 
animal and permanent environmental effects (Eqn 4.4), respectively, in Example 4.1. 
The inclusion of common environmental effects in the model allows for accurate 
prediction of breeding values of animals. Assuming each dam reared her progeny and 
full-sib families were kept under similar environmental conditions, the estimates of 
common environmental effects indicate that dam 4 provided the best environment for 
her progeny compared with dams 2 and 5. Also, dam 4 has the highest breeding value 
among the dams and would therefore be the first dam of choice, whether selection is 
for dams of the next generation on the basis of breeding value only or selection is for 
future performance of the dams in the same herd, which will be based on some com-
bination of breeding value and estimate of common environmental effect.

The environmental covariance among full-sibs or maternal half-sibs might be due 
to influences from the dam (mothering ability or maternal effect); therefore, differ-
ences in mothering ability among dams would cause environmental variance between 
families. For instance, resemblance among progeny of the same dam in body weight 
could be due to the fact they share the same milk supply and variation in milk yield 
among dams would result in differences between families in body weight. This varia-
tion in mothering ability of dams has a genetic basis and, to some degree, is due to 
genetic variation in some character of the dams. In Chapter 7, the genetic component 
of maternal effect is examined and the appropriate model that accounts for the genetic 
component in genetic evaluation is presented.

(Continued )

Effects Solutions

7 −1.667
8 −2.334
9 3.925

10 2.895
11 −1.141
12 1.525
13 0.448
14 0.545
15 −3.819

Common environment
2 −1.762
4 2.161
5 −0.399
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5.1 Introduction

Selection of livestock is usually based on a combination of several traits of economic 
importance that may be phenotypically and genetically related. Such traits may 
be combined into an index on which animals are ranked. A multiple trait evaluation 
is the optimum methodology to evaluate animals on these traits because it accounts 
for the relationship between them. A multiple trait analysis involves the simultane-
ous evaluation of animals for two or more traits and makes use of the pheno-
typic and genetic correlations between the traits. The first application of best linear 
unbiased prediction (BLUP) for multiple trait evaluation was by Henderson and 
Quaas (1976).

One of the main advantages of multivariate best linear unbiased prediction 
(MBLUP) is that it increases the accuracy of evaluations. The gain in accuracy is 
dependent on the absolute difference between the genetic and residual correlations 
between the traits. The larger the differences in these correlations, the greater the gain 
in accuracy of evaluations (Schaeffer, 1984; Thompson and Meyer, 1986). When, for 
instance, the heritability, genetic and environmental correlations for two traits are 
equal, multivariate predictions are equivalent essentially to those from univariate 
analysis for each trait. Moreover, traits with lower heritabilities benefit more when 
analysed with traits with higher heritabilities in a multivariate analysis. Also, there is 
an additional increase in accuracy with multivariate analysis resulting from better 
connections in the data due to residual covariance between traits (Thompson and 
Meyer, 1986).

In some cases, one trait is used to decide whether animals should remain in the 
herd and be recorded for other traits. For instance, only calves with good weaning 
weight may be allowed the chance to be measured for yearling weight. A single trait 
analysis of yearling weight will be biased since it does not include information on 
weaning weight on which the selection was based. This is often called culling bias. 
However, a multi-trait analysis on weaning and yearling weight can eliminate this 
bias. Thus MBLUP accounts for culling selection bias.

One of the disadvantages of a multiple trait analysis is the high computing cost. 
The cost of multiple analysis of n traits is more than the cost of n single analyses. 
Second, a multiple trait analysis requires reliable estimates of genetic and phenotypic 
correlations among traits and these may not be readily available.

In this chapter, MBLUP involving traits affected by the same effects (equal design 
matrices) and situations in which different traits are affected by different factors (non-
identical design matrices) are discussed. In the next chapter, approximations of MBLUP 
when design matrices are equal with or without missing records are also examined.

5 Best Linear Unbiased 
Prediction of Breeding Value: 
Multivariate Animal Models
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5.2 Equal Design Matrices and No Missing Records

Equal design matrices for all traits imply that all effects in the model affect all traits 
in the multivariate analysis and there are no missing records for any trait.

5.2.1 Defining the model

The model for a multivariate analysis resembles a stack of the univariate models for 
each of the traits. For instance, consider a multivariate analysis for two traits, with 
the model for each trait of the form given in Eqn 3.1, that is, for trait 1:

y1 = X1b1 + Z1a1 + e1

and for trait 2:

y2 = X2b2 + Z2a2 + e2

If animals are ordered within traits, the model for the multivariate analysis for the 
two traits could be written as:
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where yi = vector of observations for the ith trait, bi = vector of fixed effects for the 
ith trait, ai = vector of random animal effects for the ith trait, ei = vector of random 
residual effects for the ith trait, and Xi and Zi are incidence matrices relating records 
of the ith trait to fixed and random animal effects, respectively.

It is assumed that:
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where G = additive genetic variance and covariance matrix for animal effect with 
each element defined as: g11 = additive genetic variance for direct effects for trait 1; 
g12 = g21 = additive genetic covariance between both traits; g22 = additive genetic vari-
ance for direct effects for trait 2; A is the relationship matrix among animals; and 
R = variance and covariance matrix for residual effects.

The MME are of the same form as in Section 3.2 and these are:
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Writing out the equations for each trait in the model separately, the MME become:
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where gij are rij elements of G−1 and R−1, respectively. It should be noted that if R12,
R21, g12 and g21 were set to zero, the matrices in the equations above reduce to the 
usual ones computed when carrying out two single trait analyses since the two traits 
become uncorrelated and there is no flow of information from one trait to the other.

5.2.2 An illustration

Example 5.1
Assume the data in Table 5.1 to be the pre-weaning gain (WWG) and post-weaning 
gain (PWG) for five beef calves. The objective is to estimate sex effects for both traits 
and to predict breeding values for all animals using a MBLUP analysis. Assume that 
the additive genetic covariance (G) matrix is:
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SETTING UP THE DESIGN MATRICES

The matrices X1 and X2 relate records for WWG and PWG, respectively, to sex 
effects. Both matrices are exactly the same as X in Section 3.3.1. Considering only 
animals with records, Z1 and Z2 relate records for WWG and PWG to animals, 
respectively. Both matrices are identity matrices since animals have only one record 
each for WWG and PWG. The matrix y is a vector of observations for WWG (y1)
and PWG (y2). Thus its transpose is:

′ ′ ′⎡⎣ ⎤⎦ [ ]y y y = =1 2
4.5 2.9 3.9 3.5 5.0 6.8 5.0 6.8 6.0 7.5

The other matrices in the MME can then easily be calculated from the design 
matrices and vector of observations through matrix multiplication. Examples of some 
blocks of equations are given below.
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From Eqns 5.2 and 5.3, the fixed effects by fixed effects block of equations for 
both traits in the coefficient matrix of the MME is:
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The right-hand side for the levels of sex effects for both traits is:
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The inverse of the relationship matrix for the example data is the same as that given 
in Example 3.1. The matrices A−1g11, A−1g12 and A−1g22 are added to Z′

1R11Z1, Z′
1R

12Z2
and Z′

2R
22Z2, respectively, to obtain the MME. For example, the matrix Z′
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12Z2 + 
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The MME have not been presented because they are too large, but solving the MME 
by direct inversion of the coefficient matrix gives the solutions shown below. See also 
the solutions from a univariate analysis of each trait.

Table 5.1. Pre-weaning gain (kg) and post-weaning gain (kg) for five beef calves.

Calves Sex Sire Dam WWG PWG

4 Male 1 – 4.5 6.8
5 Female 3 2 2.9 5.0
6 Female 1 2 3.9 6.8
7 Male 4 5 3.5 6.0
8 Male 3 6 5.0 7.5
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The differences between the solutions for males and females for WWG and PWG in 
the multivariate analysis are more or less the same as those obtained in the univariate 
analyses of both traits. The solutions for fixed effects in the multivariate analysis 
from the MME can be calculated as:
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(5.4)

where yij and âij are the sums of observations and EBVs, respectively, for calves for 
trait i in sex subclass j, b̂ij is the solution for trait i in sex subclass j and nj is the num-
ber of observations for sex subclass j. Using the above equation, the solutions for sex 
effects for males for WWG and PWG are:
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5.2.3 Partitioning animal evaluations from multivariate analysis

An equation similar to Eqn 3.8 for the partitioning of evaluations from multivariate 
model was presented by Mrode and Swanson (2004) in the context of a random regres-
sion model (see Chapter 9). Since the yield records of animals contribute to the breeding 
values through the vector of yield deviations (YD), equations for calculating YD are 
initially presented. From Eqn 5.1, the equations for the breeding values of animals are:

(Z′R-1 Z + A-1 G-1)â = Z′R-1 (y - Xb̂)

Therefore:

(Z′R-1 Z + A-1 G-1)â = (Z′R-1Z) YD (5.5)

with:

YD = (Z′R-1 Z)-1 (Z′R-1 (y - Xb̂)) (5.6)

Effects

Multivariate analysis traits Univariate analysis traits

WWG PWG WWG PWG

Sex
Male 4.361 6.800 4.358 6.798
Female 3.397 5.880 3.404 5.879

Animals
1 0.151 0.280 0.098 0.277
2 −0.015 −0.008 −0.019 −0.005
3 −0.078 −0.170 −0.041 −0.171
4 −0.010 −0.013 −0.009 −0.013
5 −0.270 −0.478 −0.186 −0.471
6 0.276 0.517 0.177 0.514
7 −0.316 −0.479 −0.249 −0.464
8 0.244 0.392 0.183 0.384
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Just as in the univariate model, YD is a vector of the weighted average of a cow’s yield 
records corrected for all fixed effects in the model.

Transferring the left non-diagonal terms of A−1 in Eqn 5.5 to the right side of the 
equation (VanRaden and Wiggans, 1991) gives:

( + ) = ( + )+ (1 1 1 1′ ′Z R Z G a G a a Z R Z YD− − − −a aanim anim par sire damˆ ˆ ˆ )

++ 0.51G a a− −aprog prog mate( ˆ )∑
where apar = 1, 2

3 or 1
2 if both, one or neither parents are known, respectively, and aprog = 1 

if the animal’s mate is known and 2
3  if unknown. Note that aanim = 2apar + 0.5aprog.

The above equation can be expressed as:
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where PA = parent average.
Pre-multiplying both sides of the equation by (Z′R−1Z + G−1aanim)−1 gives:

â W PA W YD W PCanim = + +1 2 3 (5.8)

with:

PC 2a a= ( )a a∑ ∑prog prog mate progˆ ˆ−

The weights W1, W2 and W3 = I, with W1 = (DIAG)−12G−1apar, W2 = 
(DIAG)−1(Z′R−1Z) and W3 = (DIAG)−10.5G−1Saprog, where (DIAG) = (Z′R−1Z + 
G−1aanim). Equation 5.8 is similar to Eqn 3.8 but the weights are matrices of the 
order of traits in the multivariate analysis. Equation 5.8 is illustrated below using 
calf 8 in Example 5.1.

Since Z = I for calf 8, then Eqn 5.6 becomes YD = RR−1(y − Xb) = y − Xb. Thus:
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In both traits, the contributions from PA accounted for about 26% of the breeding 
value of the calf.

In general, the estimates of breeding value for PWG from the multivariate 
analysis above are similar to those from the univariate analysis. The maximum 
difference between the multivariate and univariate breeding values is 0.008 kg 
(calf 8). The similarity of the evaluations for PWG from both models is due to the 
fact that genetic regression of WWG on PWG (0.45) is almost equal to the pheno-
typic regression (0.41) (Thompson and Meyer, 1986). However, the breeding val-
ues for WWG from the multivariate analysis are higher than those from the 
univariate analysis, with a maximum difference of 0.10 kg (calf 8) in favour of the 
multivariate analysis. Thus much of the gain from the multivariate analysis is in 
WWG and this is due to its lower heritability, as mentioned earlier. However, there 
was only a slight re-ranking of animals for both traits in the multivariate analysis.

5.2.4 Accuracy of multivariate evaluations

One of the main advantages of MBLUP is the increase in the accuracy of evaluations. 
Presented below are estimates of reliabilities for the proofs for WWG and PWG from 
the multivariate analysis and the univariate analysis of each trait.

Multivariate analysis

Diagonalsa Reliability Univariate analysis reliability

Animal WWG PWG WWG PWG WWG PWG

1 18.606 35.904 0.070 0.102 0.058 0.102
2 19.596 38.768 0.020 0.031 0.016 0.031
3 17.893 33.799 0.105 0.155 0.088 0.155
4 16.506 29.727 0.175 0.257 0.144 0.256
5 16.541 29.865 0.173 0.253 0.144 0.253
6 17.152 31.504 0.142 0.212 0.116 0.212
7 17.115 31.364 0.144 0.216 0.116 0.216
8 16.285 29.160 0.186 0.271 0.156 0.270

aDiagonal elements of the inverse of the coefficient matrix from multivariate analysis.

The reliability for the proof of animal i and trait j (r2
ij) in the multivariate analysis 

was calculated as r2
ij = (gjj − PEVij)/gjj, where PEVij is the diagonal element of the 

coefficient matrix pertaining to animal i and trait j. This formula is obtained by 
rearranging the equation given for reliability in Section 3.3.3. For instance, the relia-
bilities for the proofs for WWG and PWG for animal 1, respectively, are:

r2
11 = (20 − 18.606)/20 = 0.070

and:

r2
21 = (40 − 35.904)/40 = 0.102

Similar to the estimates of breeding values, the reliabilities for animals for PWG from 
the multivariate analysis were essentially the same from the univariate analysis as Gij = 
rpGjj (Thompson and Meyer, 1986), where the jth trait is PWG and rp is the phenotypic 
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correlation. However, there was an increase of about 20% in reliability for WWG for 
each animal under the multivariate analysis compared with the univariate analysis. Again 
much of the gain in accuracy from the multivariate analysis is observed in WWG.

5.2.5 Calculating daughter yield deviations in multivariate models

The equations for calculating daughter yield deviations (DYDs) with a multivariate 
model are similar to Eqn 3.12 for the univariate model except that the weights are 
matrices of order equal to the order of traits. The equations can briefly be derived 
(Mrode and Swanson, 2004) as follows.

Given the daughter (prog) of a bull, with no progeny of her own, Eqn 5.8 becomes:

â W PA W YDprog progprog = + ( )1 2 (5.9)

Let PC be expressed as in Eqn 5.7:

PC G a a= 0.5 (21− −a∑ prog prog mateˆ ˆ ) (5.10)

Substituting Eqn 5.9 into Eqn 5.10 gives:
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Since the daughter has no offspring of her own, W3 = 0, therefore W1prog = I - W2prog.
Then:
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2
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) âanim + W2prog (2YD - âmate)) (5.11)

Substituting Eqn 5.11 into Eq 5.7 and moving all terms involving âanim to the left-
hand side gives:
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Pre-multiplying both sides of the equation by the inverse coefficient matrix gives:

â M PA M YD M DYDanim = ( )+ ( )+ ( )1 2 3 (5.12)

where:

DYD W YD u W
prog prog

= (2 )2 2∑ ∑a aprog mate prog- ˆ (5.13)

and M1 + M2 + M3 = I, with M1 = (DIAG)−12G−1apar, M2 = (DIAG)−1(Z¢R−1Z) and M3 = 
(DIAG)−10.5G−1SW2progaprog where ( ) = ( +2 +0.5 )1 1

2DIAG Z R Z G G W1
prog¢ å- - -a apar prog .

The matrix W2prog in the equation for DYD is not symmetrical and is of the order of traits 
and the full matrix has to be stored. This could make the computation of DYD cum-
bersome, especially with a large multivariate analysis or when a random regression 
model is implemented (see Chapter 9). For instance, in the Canadian test day 
model, which involves analysing milk, fat and protein yields and somatic cell count 
(SCC) in the first three lactations, it is a matrix of order 36 (Jamrozik et al., 1997). 
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Thus for computational ease, pre-multiply W2prog with G−1, and the equation for 
DYD becomes:

DYD G W YD u G Wprog prog= (2 )1
2

1
2

− −−a aprog mate progˆ∑
The product of G−1W2prog is symmetric and only upper or lower triangular elements 
need to be stored. The computation of DYD is illustrated in Section 5.4.2, using the 
example dairy data.

5.3 Equal Design Matrices with Missing Records

When all traits in a multivariate analysis are not observed in all animals, the same 
methodology described in Section 5.2 can also be employed to evaluate animals, 
except that different residual covariance matrices have to be set up corresponding to 
a different combination of traits present. If the loss of traits is sequential, that is, the 
presence of the ith record implies the presence of 1 to (i − 1) records, then the number 
of residual covariance matrices is equal to the number of traits. In general, if there are 
n traits, there are (2n − 1) possible combinations of observed traits and therefore 
residual covariance matrices (Quaas, 1984).

5.3.1 An illustration

Example 5.2
For illustrative purposes, consider the data set below, obtained by modifying the data 
in Table 5.1.

Calf Sex Sire Dam WWG (kg) PWG (kg)

4 Male 1 – 4.5 –
5 Female 3 2 2.9 5.0
6 Female 1 2 3.9 6.8
7 Male 4 5 3.5 6.0
8 Male 3 6 5.0 7.5
9 Female 7 – 4.0 –

The model for the analysis is the same as in Section 5.2.1 and the same genetic 
parameters applied in Example 5.1 are assumed. The loss of records is sequential; 
there are therefore two residual covariance matrices. For animals with missing records 
for PWG, the residual covariance matrix (Rm) and its inverse (Rm

−1) are Rm = rm11 = 40 
and R−1

m = r11
m = 1

40
 = 0.025. For animals with records for both WWG and PWG, the 

residual covariance matrix (Ro) and its inverse (R−1
o) are:

o oR R = and
40 11

11 30

0.028 0.010

0.010 0.037
⎡

⎣
⎢

⎤

⎦
⎥

−
−

⎡

⎣
⎢

−1 = 
⎤⎤

⎦
⎥
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SETTING UP THE DESIGN MATRICES

The X′
1 and X′

2 matrices, which relate sex effects for WWG and PWG, respectively, are:

1

1

X X

X

¢ ¢

¢

 = 
1 0 0 1 1 0

0 1 1 0 0 1

0 0 0 1 1 0

0 1 1 0 0 0
é

ë
ê

ù

û
ú

é
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ê

ù
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úand =2

11 2 2X X X =  = 
3 0

0 3
and

2 0

0 2
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú¢

In setting up X′
1R

11X1, it is necessary to account for the fact that animals (one 
male and one female) have missing records for PWD. Thus:

′ ′ ′
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
X R X W W B B1

11
1

11 11= + 0.028r rm o+ = 0.025
1 0

0 1

2 0

0 2⎥⎥
⎡

⎣
⎢

⎤

⎦
⎥=

0.081 0.000

0.000 0.081

where the matrix W relates WWG records for animals 4 and 9 with missing records 
for PWD to sex effects and B relates WWG records for calves 5, 6, 7 and 8 to sex 
effects. The matrices W¢ and B¢ are:

′
⎡

⎣
⎢

⎤

⎦
⎥ ′

⎡

⎣
⎢

⎤

⎦
⎥W B=

1 0

0 1
and =

0 0 1 1

1 1 0 0

However, all animals recorded for PWG also had records for WWG, therefore:

2
22

2 2 2= = 0.037
2 0

0 2
=¢ ¢
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ê

ù

û
ú

é

ë
ê

ù

û
X R X X Xo

22r
0.074 0

0 0.074úú

and:

1
12 12

1 2X R X X X′ = ′ = =2 0.010
2 0

0 2
ro −

⎡

⎣
⎢

⎤

⎦
⎥

−
−

0.02 0.00

0.00 0.022
⎡

⎣
⎢

⎤

⎦
⎥

Excluding ancestors, the matrix Z1 is an identity matrix because every animal has a 
record for WWG. Therefore, Z1′ Z1 = I and:

Z1′R
11Z1 = diag(0.025, 0.028, 0.028, 0.028, 0.028, 0.025)

However:

Z2 = diag(0, 1, 1, 1, 1, 0)

indicating that calves 4 and 9 have no records for PWG, and:

Z2′R
22Z2 = diag(0.0, 0.037, 0.037, 0.037, 0.037, 0.0)

To account for ancestors (animals 1 to 3), Z1′R
11Z1 and Z2′R

22Z2 given above 
augmented with three rows and columns of zeros.

The other matrices in the MME can be calculated through matrix multiplica-
tion. The matrix A−1 can be set up and A−1*G−1 (where * means the Kronecker 
product) added to the appropriate matrices, as described in Section 5.2.2, to obtain 
the MME. The MME are too large to be presented but solutions from solving the 
equations are shown below, together with solutions from the univariate analyses of 
WWG and PWG.
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The differences for sex solutions for WWG from the multivariate and univariate 
analyses are very similar to those in Section 5.2 since there are no missing records in 
WWG. However, sex differences in the two analyses are different for PWG due to the 
missing records. Again, most of the benefit in terms of breeding values from the mul-
tivariate analysis was observed in WWG, as explained in Section 5.2. However, for 
the calves with missing records for PWG, there was a substantial change in their 
proofs compared with the estimates from the univariate analysis. The proofs for these 
calves for PWG are based on pedigree information only in the univariate analysis but 
include information from the records for WWG in the multivariate analysis due to 
the genetic and residual correlations between the two traits. Thus the inclusion of a 
correlated trait in a multivariate analysis is of much benefit to animals with missing 
records for the other trait.

5.4 Unequal Design Matrices

Unequal design matrices for different traits arise when traits in the multivariate analysis 
are affected by different fixed or random effects – for instance, the multivariate analysis 
of yields in different lactations as different traits. Due to the fact that calving in different 
parities occur in different years, herd–year–season (HYS) effects associated with each 
lactation are different, and an appropriate model should include different HYS for yield 
in each parity. An example where random effects might be different for different traits is 
the joint analysis for weaning weight and lean per cent in beef cattle. It might be consid-
ered that random maternal effect (see Chapter 7) is only important for weaning weight 
and the model for the analysis will include maternal effects only for weaning weight.

5.4.1 Numerical example

Example 5.3
Using the fat yield data in Chapter 4 analysed with a repeatability model, the princi-
ples of a multivariate analysis with unequal design are illustrated below, considering 

Effects

Multivariate analysis Univariate analysis

WWG PWG WWG PWG

Sex
Male 4.367 6.834 4.364 6.784
Female 3.657 6.007 3.648 5.873

Animal
1 0.130 0.266 0.077 0.273
2 −0.084 −0.075 −0.081 0.000
3 −0.098 −0.194 −0.058 −0.165
4 0.007 0.016 0.003 −0.025
5 −0.343 −0.555 −0.250 −0.463
6 0.192 0.440 0.098 0.517
7 −0.308 −0.483 −0.237 −0.460
8 0.201 0.349 0.143 0.392
9 −0.018 −0.119 0.010 −0.230
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Cow Sire Dam HYS1 HYS2 FAT1 FAT2

4 1 2 1 1 201 280
5 3 2 1 2 150 200
6 1 5 2 1 160 190
7 3 4 1 1 180 250
8 1 7 2 2 285 300

HYS1, HYS2, herd–year–season for parity 1 and 2, respectively; FAT1, FAT2, fat 
yield in parity 1 and 2.

yield in each parity as different traits and fitting a different HYS effect for each trait. The data 
with each lactational yield treated as different traits and HYS recoded for each trait is:

The aim is to carry out a multivariate estimate of breeding values for fat yield in 
lactation 1 (FAT1) and 2 (FAT2) as different traits. Assume the genetic parameters are:

R G R 1 =  =  = 
65 27

27 70
and

35 28

28 30
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− =1G

The model for the analysis is the same as in Section 5.2 but the MME are different 
from those in Section 5.2 because HYS effects are peculiar to each trait. The MME 
with the equations written out separately for each trait are:
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SETTING UP THE DESIGN MATRICES AND MME

The matrix X1 now relates HYS effects to FAT1 while X2 relates HYS effects to FAT2. 
The transposes of these matrices are:

1 2X X¢ ¢ = and  = 
1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 0 0 1
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Matrices Z1 and Z2 are equal and they are identity matrices of order 5 by 5 
considering only animals with records. The matrix A−1 has been presented in 
Section 4.2.2. The remaining matrices in the MME can be obtained as described in 
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previous sections. The MME have not been presented because they are too large. 
The solutions to the MME are:

Similar to the results in Section 5.2.2, the largest increase in breeding value under 
the multivariate analysis compared with the univariate was in FAT2. This may be due 
to the lower heritability of FAT2 compared with FAT1, as explained earlier.

Compared with the results from the repeatability model (Section 4.2.2) on the same 
data with corresponding estimates of genetic parameters, the mean breeding values for 
FAT1 and FAT2 for animals in the multivariate analysis are similar to the breeding 
value estimates from the former. The ranking of animals is the same under both models. 
Also, the differences between solutions for corresponding levels of HYS are very similar. 
In general, the repeatability model on successive records of animals is very efficient 
compared with the multivariate model, especially when the genetic correlation among 
records is high. The genetic correlation used for the multivariate analysis was 0.86. 
Visscher (1991) reported a loss of 0 to 5% in efficiency in genetic gain with a repeat-
ability model on first and second fat yield compared with the multivariate model using 
a selection index. Mrode and Swanson (1995) reported a rank correlation of 0.98 
between breeding value estimates for milk yield in first and second lactations, from a 
repeatability model and multivariate analysis for bulls with 60 or more daughters. The 
benefit of the repeatability model compared with the multivariate is that it is less com-
putationally demanding and fewer estimates of genetic parameters are required.

If there are missing records in addition to unequal design matrices for traits in a 
multivariate analysis, the analysis can be carried out using the same principles out-
lined in Section 5.3, defining different residual covariance matrices for each pattern 
of missing traits.

5.4.2 Illustrating the computation of DYD from a multivariate model

The computation of DYD from a multivariate model is illustrated using sire 1 with 
three daughters (cows 4, 6 and 8) in Example 5.3. As shown in Section 5.2, since 

Effects

Solutions

Multivariate analysis Univariate analysis

FAT1 FAT2 FAT1 FAT2

HYS
1 175.7 243.2 175.8 237.1
2 219.6 240.6 220.4 250.0

Animal
1 8.969 8.840 6.933 8.665
2 −2.999 −2.777 −2.59 −2.244
3 −5.970 −6.063 −4.341 −6.422
4 11.754 11.658 9.103 12.197
5 −16.253 −15.824 −12.992 −15.563
6 −17.314 −15.719 −15.197 −11.149
7 8.690 8.138 7.566 7.696
8 22.702 20.931 19.417 15.560
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each daughter has one record per each trait, YDij for the daughter i and trait j equals 
(yij − xijb̂). Thus:
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For all three daughters, the dams are known, therefore W2prog in Eqn 5.13 is the same 
for all daughters and is:

W Z R Z G Z R Zprog2 = ( + 2 ) ( )
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The correction of the daughters’ YD for the breeding values of the mates of the sire 
is follows:
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Since aprog equals 1 for all daughters of the bull, DYD for sire 1, using Eqn 5.13, is:
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Using Eqn 5.12, the breeding value of sire 1 can be calculated as:
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The vector of breeding value calculated for sire 1 using Eqn 5.12 is slightly lower than 
that shown earlier in the table of results as contributions from the grand-progeny of 
the sire are not included.
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5.5 Multivariate Models with No Environmental Covariance

In some cases, a multivariate analysis may be necessary when individual animals have 
records for one trait (or subset of traits) but relatives have records on a different trait (or 
subset of traits). For instance, in beef cattle, if selection is for dual-purpose sires, male 
and female calves might be reared in different environments (different feedlots) and body 
weight recorded in male calves and milk yield in female calves. The evaluation of the 
sires will be based on multivariate analysis of these two traits. A special feature of such 
a multivariate analysis is that there is no environmental covariance between the traits as 
the two traits are not observed in the same individual. In Section 5.5.1, the details of 
such a model are discussed and its application to example data is illustrated.

Also, when the same trait is measured on relatives in different environments 
such that the genetic correlation between performances in the two environments is 
not one, a multivariate analysis might be the optimum means to evaluate sires. For 
example, milk yield may be recorded on the daughters of a bull in two different 
environments, say, in a tropical environment and a temperate environment. Such 
a multivariate analysis will treat milk yield in the various environments as different 
traits. However, as the number of environments increases, the data might be associ-
ated with a heterogeneous fixed effects structure that might be difficult to model 
correctly in multivariate analysis, such that it might be useful, for practical purposes 
of implementation, to analyse not the original data but summaries of the data. A very 
good illustration of such a multivariate analysis is the multi-trait sire model used by 
the international bull evaluation service Interbull (Uppsala, Sweden), for the across-
country evaluation of dairy sires. This multi-trait sire model, commonly referred to 
as MACE (multi-trait across-country evaluations), analyses deregressed breeding 
values (DRB) of sires in different countries as different traits. The use of DRB could 
be regarded as utilizing a variable that summarizes the daughter performances of 
bulls in different countries. This avoids the need to model at the Interbull centre the 
heterogeneous fixed effects structure, such as different herd management systems 
and complex national climatic conditions associated with the daughters’ milk per-
formance records in the different countries. MACE plays a very important role in 
the international trade of dairy cattle and in Section 5.5.2 the model for MACE is 
discussed and illustrated.

5.5.1 Different traits recorded on relatives

Defining the model

In this situation, with different traits recorded on relatives in different environments, 
the different traits are not observed on the same individual, and so there is not 
environmental covariance between the traits. Therefore, the residual covariance 
matrix R is diagonal. Thus for n traits:

R = diag(s 2
e1, s 2

e2,. . .,s
2
en) = diag(r11, r22,. . .,rnn)

and:

R−1 = diag(r11, r22,. . ., rnn)
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However, var(a), where a¢ = [a1, a2,. . .,an], the vector of breeding values, is:

var(a) = A*G

where * refers to the direct product, A is the relationship matrix and G the covariance 
matrix for additive genetic effects. Schaeffer et al. (1978) discussed this model in 
detail but from the standpoint of variance component estimation.

Assuming there are two traits, the model for the analysis is as given in Eqn 5.1 
but with R and G defined as above. The MME for the BLUP of a and estimable func-
tions of b are:
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An illustration

Example 5.4
Consider the following data on the progeny of three sires born in the same herd; 
assuming that selection is for dual-purpose sires, such that the male and female calves 
are raised on different feeding regimes, with males recorded for yearling weight and 
females for fat yield:

Calf Sex Sire Dam HYS Yearling weight (kg) Fat yield (kg)

4 Female 1 Unknown – – –
9 Male 1 4 1 375.0 −

10 Male 2 5 2 250.0 −
11 Male 1 6 2 300.0 −
12 Male 3 Unknown 1 450.0 −
13 Female 1 7 1 − 200.0
14 Female 3 8 2 − 160.0
15 Female 2 Unknown 3 − 150.0
16 Female 2 13 2 − 250.0
17 Female 3 15 3 − 175.0

HYS, herd–year–season.

The aim is to estimate HYS effects for both traits and predict breeding values for 
yearling weight and fat yield for all animals, carrying out a multivariate analysis. 
Note that animal 4 is just an ancestor and has no yield record for either trait. Assume 
that the additive genetic covariance matrix (G) is:

G = 
43 18

18 30
and diag(77 7

⎡

⎣
⎢

⎤

⎦
⎥ =R , )0
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Then R−1 = diag(1/77, 1/70) and:

− −
−

⎡

⎣
⎢

⎤

⎦
⎥

1G =
0.0311 0.0186

0.0186 0.0445

The MME given earlier can easily be set up using the principles discussed so far 
in this chapter. Solving the MME by the direct inverse of the coefficient matrix gave 
the following solutions:

Effects

Solutions

Yearling weight (kg) Fat (kg)

HYS
1 411.833 193.299
2 275.955 205.344
3 – 163.315

Animal
1 −0.472 2.519
2 −3.350 0.381
3 0.856 −3.208
4 −5.142 −3.936
5 −4.778 −2.000
6 4.778 2.000
7 2.177 3.628
8 −4.940 −5.251
9 −10.234 −3.817

10 −8.842 −2.810
11 6.932 4.260
12 11.568 3.060
13 3.029 6.701
14 −6.395 −11.485
15 −2.797 −1.680
16 4.193 10.797
17 0.526 0.050

Selection of dual-purpose sires will be based on some combination of breeding 
value estimates for yearling weight and fat yield. If equal weights were given to yearling 
weight and fat yield, sire 1 would be the best of the three sires, followed by sire 3.

5.5.2 The multi-trait across-country evaluations (MACE)

The sire model for MACE was originally proposed by Schaeffer (1994) and involved 
the analysis of the DYD of bulls in different countries as different traits, with the 
number of daughters of a bull used as a weighting factor. The genetic correlations 
among DYDs of bulls in different countries were incorporated. The genetic correla-
tions accounted for genotype by environment (G × E) interactions and differences in 
national models for genetic evaluations among the countries. The genetic correlations 
among several countries used by Interbull are usually of medium to high value.
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However, due to the inability of some countries to compute DYDs for bulls, the 
deregressed proofs (DRP) of bulls became the variable of choice (Sigurdsson and 
Banos, 1995) and the weighting factor became the effective daughter contributions 
(EDC) of bulls (Fiske and Banos, 2001). The model in matrix notation is:

yi = 1mi + ZiQwi + Ziai + ei (5.14)

where yi is the vector of DRP from country i for one trait such as milk yield, mi
is a mean effect for country i, which reflects the definition of the genetic base for 
that country, wi is the vector of genetic group effects of phantom parents, ai is 
the vector random sire proof for country i and ei is the vector of random mean 
residuals.The matrix Qi relates sires to phantom groups (see Section 3.6) and Zi
relates DRP to sires. Given two countries, the variance–covariance matrix for w,
s and e is:

var
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where n and p are the number of bulls and groups, respectively, gij is the sire genetic 
(co)variance between countries i and j, and A is the additive genetic relationship for 
all bulls and phantom parent groups based on the maternal grandsire (MGS) model 
(see Section 3.6), s 2

ei is the residual variance for country i, and Di is the reciprocal of 
the effective daughter contribution of the bull in the ith country.

The variable DRP, analysed in Eqn 5.14, are obtained by deregressing the national 
breeding values of bulls such that they are independent of all country group effects and 
additive genetic relationships among bulls, their sires and paternal grandsires, which 
are included in the MACE analysis (Sigurdsson and Banos, 1995). DRP may therefore 
contain additive genetic contributions from the maternal pedigree, which are included 
at the national level but not in MACE. The deregression procedure involves solving the 
MME associated with Eqn 5.14 for the right-hand side details. The details of the pro-
cedure are outlined in Appendix F. The computation of the EDC of bulls used as the 
weighting factor for the analysis of DRP in Eqn 5.14 is dealt with in a subsequent 
section.

The MME for the above model, which are modified such that sire solutions have 
group solutions incorporated (see Section 3.6) are:

X R X R Z

Z R X Z R Z A G A Q G

Q A G Q A

1

1

′ ′

′ ′ + ⊗ − ⊗

− ′ ⊗ ′

− −

− − − − − −

− − −
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1 1 1 1 1 1

1 1
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⎠
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(5.15)

Genetic groups are defined for unknown sires and MGS on the basis of country of 
origin and year of birth of their progeny. Also, maternal granddams (MGDs) are 
always assumed unknown and assigned to phantom groups on the same basis.
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Then A−1 can be obtained by the rules outlined in Section 2.4, which can be briefly 
summarized in the table below, taking into account the contribution to the groups for 
MGDs. Given a list of pedigrees with the ith line consisting of a bull, its sire or group, 
its MGS or group and a group for its MGD, then contributions to A−1 are as follows:

Bull Sire MGS MGD

Bull d −0.5d −0.25d −0.25d
Sire −0.5d 0.25d 0.125d 0.125d
MGS −0.25d 0.125d 0.0625d 0.0625d
MGD −0.25d 0.125d 0.0626d 0.0625d

where d = 16/(11 + m) and m = 0 if both sire and MGS are known, m = 1 if the sire 
is known but MGS is unknown, m = 4 if the sire is unknown and the MGS is known, 
and m = 5 if both sire and MGS are unknown.

Usually there are dependencies among group effect equations and 1 is added to the 
diagonals of the phantom group effects in the inverse of the relationship matrix to over-
come these dependencies. Then the group solutions sum to zero, and so the solutions for 
bulls are relative to the same genetic base within each country. The addition of 1 to the 
diagonals of the phantom groups implies that group effects are random, with expected 
values of zero. Since group effects represent differences in the effects of previous selec-
tion, which should not have expected values of zero, Schaeffer (1994) indicated that this 
approach could also be regarded as a biased estimation of the fixed effects of phantom 
groups. That is, a small amount of bias in the estimates of the phantom groups is 
accepted in exchange for the hope of getting estimates with smaller mean square errors.

Computing effective daughter contribution

The use of EDC instead of the number of daughters as a weighting factor was proposed 
by Fiske and Banos (2001) from a simulation study in which they demonstrated that using 
the numbers of daughters resulted in biased estimates of sire variances used in MACE and 
international reliabilities. The computation of EDC for a bull accounts for such factors as 
contemporary group (CG) structure for the bull’s daughters, the correlation between 
observations on the same daughter and the reliability of the performance of the daughters’ 
dams. Thus the EDC provides a measure of the precision of the daughter information used 
to compute the DRP of the bull. The formula for the computation of EDC (Fiske and 
Banos, 2001), which included the performance of the dam of the daughter k of bull i is:

EDCi
k o

k o dam ok

rel

rel rel
=

− +∑
l ( )

( ) ( )( )4 1·

where the summation is over all the k daughters of the bull, l = (4 − h2)/h2, reldam(o)
is the reliability of the dam’s own performance, relk(o) is the reliability of the animal 
k’s own performance computed as:

rel
n h

n rk o
k

k
( ) ( )

=
+ −

2

1 1

with r being the reliability of the animal’s records, nk the number of lactations of the 
daughter k of the sire adjusted for the CG size computed as:
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n nk jkl
i

= −∑1 1/

where njkl is the size of the CGj in which the daughter k of sire i made her lth lactation.

An example of MACE for two countries

Example 5.5
The data set below consists of bull breeding values (kg) and DRP for fat yield for six bulls 
from two countries. Two of the bulls have evaluations in both countries and in addition 
each country had two other bulls, which were the only progeny tested in that country. 
A MACE is implemented using the data set. Assume residual variances of 206.5 kg2 and 
148.5 kg2 for countries 1 and 2, respectively, with corresponding sire additive genetic 
variances of 20.5 kg2 and 9.5 kg2. The sire genetic covariance between fat yield in both 
countries was assumed to be 12.839 kg, giving a genetic correlation of 0.92.

Assume that the sires in the data set have the following pedigree structure, with 
unknown sires, MGS and MGD assigned to group Gi, with i = 1, . . . 5.

Bull Sire MGS MGD

1 7 G3 G5
2 8 9 G5
3 7 2 G5
4 1 G2 G5
5 8 G3 G4
6 1 9 G4
7 G1 G2 G4
8 G1 G2 G4
9 G1 G3 G4

Computing sire breeding values

The matrix G−1 for Example 5.5 is:

G− =
−

−
⎛
⎝⎜

⎞
⎠⎟

1 0.31762 0.42925

0.42925 0.68539

Sire

Country 1 Country 2

EDC BV DRP EDC BV DRP

1 58 9.0 9.7229 90 13.5 14.5088
2 150 10.1 9.9717 65 7.6 7.7594
3 20 15.8 19.2651 – – –
4 25 –4.7 –8.5711 – – –
5 – – – 30 19.6 23.9672
6 – – – 55 –5.3 –9.6226

EDC = effective daughter contribution; BV = breeding value; DRP = deregressed proof.
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The inverses of the matrix of residual variances for countries 1 and 2 are:

R1
−1 = diag(0.2809, 0.7264, 0.0969, 0.1211, 0, 0)

and:

R2
−1 = diag(0.6061, 0.4377, 0, 0, 0.2020, 0.3704)

The design matrix X is:

X =
1 1 1 1 0 0

1 1 0 0 1 1
⎛
⎝⎜

⎞
⎠⎟

and:

X R X′ −1 1.2252 0

0 1.6162
=

⎛
⎝⎜

⎞
⎠⎟

The matrix Z is an identity matrix of order 12, considering only bulls with evalua-
tions. The matrix A−1 is set up using the rules outlined earlier. The remaining matrices 
in Eqn 5.15 could be obtained through matrix multiplication and addition. The 
MME are of the order of 30 by 30 and have not been shown. Solutions to the MME 
by direct inversion gave the following results:

Effects

Solutions

Country 1 Country 2

Country effect
7.268 9.036

Animal/group
A B A B

1 2.604 9.871 2.661 11.697
2 2.176 9.444 0.403 9.439
3 8.059 15.327 5.001 14.037
4 −9.865 −2.597 −5.605 3.431
5 13.634 20.902 9.728 18.764
6 −18.086 −10.818 −13.203 −4.167
7 4.310 11.578 3.071 12.106
8 7.015 14.283 4.489 13.525
9 −6.299 0.969 −5.059 3.977

G1 0.174 7.442 −0.092 8.944
G2 −0.124 7.144 0.126 9.162
G3 −0.071 7.197 0.264 9.300
G4 0.087 7.355 −0.288 8.748
G5 −0.067 7.201 −0.010 9.026

A = solutions for animals and groups from the MME; B = solutions for animals and groups 
expressed in each country scale.

The solutions for animals and groups were expressed in each country scale by 
adding the solution for country effects for country i to the animal and group solu-
tions of the ith country. As indicated earlier, the sum of the group solutions is zero. 
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In the next section, some of the bull solutions are partitioned to contributions 
from various sources to gain a better understanding of MACE.

Equations for partitioning bull evaluations from MACE

The equations for sire proofs from Eqn 5.15 are:

(Z′R−1Z + A−1 Ä G−1)â = (A−1Q Ä G−1)ĝ + Z′R−1 (y - Xĉ)
(5.16)

where:

ˆ ˆ ˆa Qg s= +

Thus Eqn 5.16 can be expressed as:

(Z′R−1Z + A−1 Ä G−1)â = (A−1Q Ä G−1)ĝ + Z′R−1 Z(CD) (5.17)

where:

CD = (Z′R−1Z)−1 (Z′R−1(y - Xĉ))

CD (country deviation) is simply a vector of weighted average of corrected DRP in 
all countries where the bull has a daughter, the weighting factor being the reciprocal 
of EDC multiplied by the residual variance in each country. Since R−1 is diagonal, CD
is equal to the vector (y − Xĉ).

For a particular bull with a direct progeny (e.g. son), Eqn 5.17 can be written as:

(Z′R−1Z + G−1abull)âbull = G−1apar (âsire + 0.5(âmgs + ĝ)) + Z′R−1Z(CD)

+ G−1∑aprog (âprog - 0.25âmate) (5.18)

where apar = 8
11,

8
15

, 2
3 or 1

2 if both sire and MGS (maternal grandsire), only MGS, only sire 
or no parents are known, respectively; and aprog = 8

11 if bull’s mate (MGS of the progeny) 
is known or 2

3  if unknown. The above values for apar and aprog are based on the assump-
tion that A−1 has been calculated without accounting for inbreeding. Note that in Eqn 5.18:

abull = 2apar + 0.5aprog

Equation 5.18 can be expressed as:

(Z′R−1Z + G−1abull)âbull = 2G−1apar (PA) + (Z′R−1Z)CD

+ 0.5G−1∑aprog (2âprog - 0.5âmate)

where:

PA = 0.5 0.25( )ˆ ˆ ˆa a gsire mgs+ +

Pre-multiplying both sides of the equation by (Z¢R−1Z + G−1abull)
−1 gives:

â W PA W YD W PCbull = + +1 2 3 (5.19)

where:

PC = ∑aprog (2âprog - 0.5âmate) ¤ ∑  aprog and W1 + W2 + W3 = I
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The matrices W1, W2 and W3 are the product of (Z¢R−1Z + G−1abull)
−1 and 2G−1apar,

Z¢R−1Z, and 0.5 1G− ∑aprog, respectively. Using Eqn 5.19, the contributions from 
different sources of information from different countries to the MACE of a bull can 
be computed.

If the progeny in Eqn 5.19 is not a direct progeny of the bull but a maternal 
grandson of the bull then aprog equals 4

11
 if mate (sire) is known or 4

15 if unknown. 
Then Eqn 5.19 becomes:

(Z′R−1Z + G−1abull)âbull = G−1apar (âsire + 0.5(âmgs + ĝ)) + Z′R−1Z(CD)

+ G−1∑aprog (âprog - 0.5âmate)

and abull now equals 2apar + 0.25aprog and 0.5âmate = 0.5âs, the sire of the progeny. 
The above can be expressed as:

(Z′R−1Z + G−1abull)âbull = 2G−1
apar

(PA) + (Z′R−1Z)CD

+ 0.25G−1∑aprog (4âprog - 2âmate)

Pre-multiplying both sides by (Z′R−1Z + G−1abull)
−1 gives the same equation as 

Eqn 5.19 but with:

PC a a= −( ) ∑∑a aprog prog mate prog4 2ˆ ˆ (5.20)

and W3 now equals ( ) ( )′ +− − − − ∑Z R Z G G1 10.251 1a abull prog

The use of Eqn 5.19 to partition proofs from MACE is illustrated for two 
bulls, one with no progeny and another with a maternal grandson. First, consider 
bull 3 in Example 5.5 that has DRPs only in country 1 and has no progeny. Therefore, 
CD3i for bull 3 in country i is:

CD31 = y31 − m1 = 19.2651 − 7.268 = 11.997 and CD32 = 0

Parent average for bull 3 (PA3i) in country i is:

PA31 = 0.5(â71) + 0.25(â21 + ĝG51) = 0.5(4.310) + 0.25(2.176 + (−0.067)) = 2.68225

and:

PA32 = 0.5(â72) + 0.25(â22 + ĝG52) = 0.5(3.071) + 0.25(0.403 + (−0.010)) = 1.63375

where âji is the breeding value of animal j in country i and ĝGji is the solution for 
group j and in the ith country.

The residual variance for bull 3 in country 1 (r31) = ( 1
20)206.5 = 10.325 and its 

inverse equals 0.09685. Both sire and MGS of bull 3 are known, therefore abull = 16
11

.
Then:

Z R G1′ +( ) =
⎛
⎝⎜

⎞
⎠⎟

+
−

−
− −Z 1 0 09685 0

0 0

0 4620 0 62436

0 62436 0
abull

. . .

. ..

. .

. .

99693

0 55884 0 62436

0 62436 0 99693

⎛
⎝⎜

⎞
⎠⎟

=
−

−
⎛
⎝⎜

⎞
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The matrices of weights (Wi) using Eqn 5.19 are:

W1

10 55884 0 62436

0 62436 0 99693

0 4620 0 62436

0
=

−
−

⎛
⎝⎜

⎞
⎠⎟

−
−

−. .

. .

. .

.662436 0 99693

0 4229 0 3614

0 3614 1 0000.

. .

. .
⎛
⎝⎜

⎞
⎠⎟

=
−

−
⎛
⎝⎜

⎞
⎠⎟

and:

W2

10 55884 0 62436

0 62436 0 99693

0 09685 0

0 0
=

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−. .

. .

. 00 5771 0

0 3614 0

.

.
⎛
⎝⎜

⎞
⎠⎟

Therefore the vector proofs of bull 3 are:
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ˆ
.

.

. .a
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=
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The contribution from the DRP of bull 3 in country 1 accounts for over 85% of the 
MACE proof in both countries, although the bull has no DRP in country 2. Thus, 
with only 20 daughters, parental contribution was not very large, although in gen-
eral, parental contributions will be influenced by the heritability of the traits in both 
countries and the genetic correlation between them.

When a bull has a proof only in country i and not in j, its proof in country j can 
be obtained (Mrode and Swanson, 1999) as:

âj = PAj − (gij/gii)(âi − PAi) (5.21)

where gii is the genetic variance in country i and gij the genetic covariance between 
countries i and j. Therefore, if interest was only in calculating the proof of bull 3 in 
country 2, it can be obtained from the above equation as:

â32 = 1.63375 − (12.839/20.5)(8.059 − 2.68225) = 5.001

Equation 5.21 can be derived from Eqn 5.18 as follows. The equation for â32 from 
Eqn 5.18 is:

(g22abull)â32 = g22apar(âsire2 + 0.5(âmgs2 + ĝmgd2) + g21apar(âsire1 + 0.5(âmgs1 + ĝmgd1)
 + (g21abull)â31

where âsirej, âmgsj and ĝmgdj are the proofs for the sire, MGS and solution for the MGD 
in country j, respectively, and gii are the inverse elements of G−1. Since abull = 2apar for 
bull 3, multiplying the above equation by (2apar)

−1 gives:

g22â32 = g22(PA2) + g21(PA1) − g21â31

g22â32 = g22(PA2) − g21(â31 − PA1)

â32 = PA2 − g21/g22(â31 − PA1)

â32 = PA2 − g21/g22(â31 − PA1)

Thus the proof of a bull in country j is dependent on the parent average of the 
bull in country j and the Mendelian sampling of the bull in the ith country.

Partitioning the proof of bull 2 with records in both countries and a 
maternal grandson (bull 3) is as follows. The country deviations for bull 2 in 
both countries are:

CD21 = y21 − m1 = 9.9717 − 7.268 = 2.7037
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and:

CD22 = y22 − m2 = 7.7594 − 9.036 = −1.2766

Parent average for sire 2 (PA2i) for country i is:

PA21 = 0.5(â81) + 0.25(â91 + ĝG51) = 0.5(7.015) + 0.25(−6.299 + (−0.067)) = 1.916

PA22 = 0.5(â82) + 0.25(â92 + ĝG52) = 0.5(4.489) + 0.25(−5.059 + (−0.010)) = 0.97725

Progeny contributions (PC) from bull 3 to sire 2 (PC32i) in country i are:

PC21 = 4(â31) − 2(â71) = 4(8.059) − 2(4.310) = 23.616

PC22 = 4(â32) − 2(â72) = 4(5.001) − 2(3.071)) = 13.862

The residual variance for bull 2 in country 1, (r21) = ( 1
150)206.5 and country 2, (r22) = 

( 1
65)148.5. Corresponding inverses were 0.72639 and 0.43771, respectively. Since both 

sire and MGS of bull 2 are known and he has a maternal grandson, abull = 2apar + 
0.25aprog = 2( 8

11) + 0.25( 4
11

) = 1.54545. Therefore:
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From Eqn 5.19, the matrices of weights (Wi) are:
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The vector of proof for bull 2 is:
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Again, similar to bull 3 above, the contributions from the DRPs in both countries 
accounted for much of the MACE proofs of the bull 2 in countries 1 and 2.

Recently, Interbull has modified the MACE systems to use sire and dam pedigree 
instead of sire and maternal sire pedigree. Partitioning of bull proofs can be done as in 
Section 5.2.3.
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6.1 Introduction

One of the limitations of multivariate analysis is the large computational requirements 
of such high-dimensional analyses. The number of effects in multivariate analyses 
tend to increase linearly with the number of traits considered. In some cases, the 
available or small number of records for some of the traits can hamper the reli-
able estimation of a large number of covariance components simultaneously. 
However, developments in methodologies to model higher-dimensional data more 
parsimoniously (Kirkpatrick and Meyer, 2004) implies that such multivariate 
analysis is more feasible in terms of parameter estimation and therefore genetic 
evaluation.

Reducing the dimension of multivariate analysis includes methods such as canon-
ical transformation and Cholesky decomposition, which involve the transformation 
of the vector of observations in addition to residual and genetic covariance matrices. 
Other approaches, such as principal component analysis and factor analysis, only 
involve reducing the rank of the genetic covariance matrix. Initially, methods that 
include the transformation of the vector of observations are discussed.

6.2 Canonical Transformation

In the example discussed in Section 5.2.2 both traits were affected by the same fixed 
effect and all animals were measured for both traits. Thus the design matrices 
X and Z were the same for both traits or, in other words, the traits are said to have 
equal design matrices. In addition there was only one random effect (animal effect) 
for each trait apart from the residual effect. Under these circumstances, the multi-
variate analysis can be simplified into n (number of traits) single trait analyses 
through what is called a canonical transformation (Thompson, 1977b). Canonical 
transformation involves using special matrices to transform the observations on 
several correlated traits into new variables that are uncorrelated with each other. 
These new variables are analysed by the usual methods for single trait evaluation, 
but the results (predictions) are transformed back to the original scale of the obser-
vations. Ducrocq and Besbes (1993) have presented a methodology for applying 
canonical transformation when design matrices are equal for all traits but with 
some animals having missing traits; details of the methodology, together with an 
illustration, are given in Appendix E, Section E.2.

6 Methods to Reduce the 
Dimension of Multivariate 
Models
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Let y be vectors of observations:

var(y) = G + R (6.1)

where G and R are variance and covariance matrices for the additive genetic and 
residual effects, respectively. Assuming G and R are positive definite matrices, then 
there exists a matrix Q, such that:

QRQ′ = I and QGQ′ = W

where I is an identity matrix and W is a diagonal matrix (Anderson, 1958). This 
implies that pre- and post-multiplication of R by the transformation matrix (Q)
reduces it to an identity matrix and G to a diagonal matrix. The multiplication of y
by Q yields a new vector of observations y* that are uncorrelated:

y* = Qy
var(y*) = W + I; which is a diagonal matrix.

Since there are no covariances between the transformed traits, they can be inde-
pendently evaluated. The procedure for calculating the transformation matrix Q is 
given in Appendix E, Section E.1.

6.2.1 The model

A single trait analysis is usually carried out on each of the transformed variables. 
The model for the ith transformed variable can be written as:

y*
i = Xb*

i + Za*
i + e*

i (6.2)

where y*
i = vector of transformed variables for the ith transformed trait; b*

i = vector of 
fixed effects for the ith transformed variable i; a*

i = vector of random animal effects 
for transformed trait i; e*

i = vector of random residual errors for the ith transformed 
trait; and X and Z are incidence matrices relating records to fixed and random effects, 
respectively.

The MME to be solved to obtain the BLUE of b*
i and the BLUP of a*

i are the same 
as those presented in Section 3.2 for the univariate model. These equations are:
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As explained earlier, it is assumed for the ith trait that:

var(a*
i) = Awii; var(e*

i) = I and var(y*
i) = ZAZ′wii + I

where wii refers to the ith element of the diagonal matrix W.
The MME are solved for b*

i and a*
i and the transformation back to the original 

scale is achieved as:

bi = Q−1b*
i (6.3)

ai = Q−1a*
i (6.4)

Thus the multivariate analysis is simplified to i single trait evaluations.
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6.2.2 An illustration

Example 6.1
The multivariate analysis for WWG and PWG in Section 5.2.2 is repeated below, 
carrying out a canonical transformation assuming the same genetic parameters.

The calculation of the transformation Q and the diagonal matrix W are given in 
Appendix E, Section E.1. Presented in Table 6.1 are the data for all calves in the original 
scale and as transformed variables (VAR1 and VAR2). The observations are trans-
formed into new uncorrelated variables using the matrix Q. Thus for animal 4, the 
record would be transformed as:

4 0

4.5
Qy =  = 

0.1659 0.0792

.0168 0.1755 6.8

0.208
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The residual variance for each of the transformed variables is 1, thus heritability for 
the ith transformed variable = wii /(1 + wii) and ai = 1/wii.

Therefore h2
1 = 0.247, h2

2 = 0.573, a1 = 1/0.3283 = 3.046 and a 2 = 1/1.3436 = 
0.744. A single trait analysis is carried out on the transformed variates for WWG and 
PWG using the model and the MME in Section 5.3.1 and solutions are transformed 
back to the original scale.

SETTING UP THE DESIGN MATRICES

The matrix X, which relates records for either VAR1 or VAR2 to sex effects, 
is exactly as the matrix X1 in Section 5.2.2. Similarly, Z is the same as Z1 in 
Section 5.2.2. For animals with records, the vector of observations y1

* and y2
* are 

equal to the column of transformed variates for WWG and PWG gains, respec-
tively, in Table 6.1. The matrices in the MME are easily obtained through matrix 
multiplication and the addition to the animal equations of A−1a1 for VAR1 and 
A−1a2 for VAR2. A−1 has been given earlier in Section 5.2.2. For instance, the 
MME for VAR1 only are:
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Solving the MME for each transformed trait by direct inversion of the coefficient 
matrix gives the following solutions on the canonical scales. Given also are solutions 
for WWG and PWG after transforming the solutions for the transformed variates to 
the original scale.
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The solutions are exactly the same as those obtained from the multivariate analysis 
in Section 5.2. The solutions are transformed to the original scale using Eqns 6.3 and 
6.4. For instance, the solutions for animal 1 for both traits on the original scale are:
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6.3 Cholesky Transformation

When all records are measured in all animals, MBLUP may be simplified by a canoni-
cal transformation as described in Section 6.2. However, if animals have some records 
missing and the loss of records is sequential then a Cholesky transformation can be 
applied (Quaas, 1984). Such situations can arise, for example, in dairy cattle due to 
sequential culling and different lactations being regarded as different traits.

6.3.1 Calculating the transformation matrix and defining the model

Cholesky transformation involves forming transformed variables (traits) that are 
environmentally independent of each other; that is, there is no residual covariance 
among them, therefore the residual covariance matrix for the transformed traits is an 

Effects

Canonical scale Original scale

VAR1 VAR2 WWG PWG

Sex
Male 0.185 1.266 4.361 6.800
Female 0.098 1.089 3.397 5.880

Animals
1 0.003 0.052 0.151 0.280
2 −0.002 −0.002 −0.015 −0.008
3 0.000 −0.031 −0.078 −0.170
4 −0.001 −0.002 −0.010 −0.013
5 −0.007 −0.088 −0.270 −0.478
6 0.005 0.095 0.276 0.517
7 −0.015 −0.089 −0.316 −0.479
8 0.009 0.073 0.244 0.392

Table 6.1. Weaning gain and post-weaning gain for beef calves on the original and 
transformed scales.

Calves Sex Sire Dam

Original scale Transformed scale

WWG PWG VAR1 VAR2

4 Male 1 – 4.5 6.8 0.208 1.269
5 Female 3 2 2.9 5.0 0.085 0.926
6 Female 1 2 3.9 6.8 0.109 1.259
7 Male 4 5 3.5 6.0 0.106 1.112
8 Male 3 6 5.0 7.5 0.236 1.400
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identity matrix. The transformation matrix T−1 is obtained by carrying out a Cholesky 
decomposition of R, the residual covariance matrix for the traits, such that:

R = TT′

where T is a lower triangular matrix. The transformation matrix T−1 is the inverse of T.
The formula for calculating T is given in Appendix E, Section E.3.

The vector of observations yki for the ith animal is transformed as:

yki
* = T−1yki

where k is the number of traits recorded and yki
* is the transformed vector.

If traits are missing in yki, then the corresponding rows of T−1 are set to zero when 
transforming the vector of observation. Thus if yki is a vector of observations of n
traits for the ith animal, the transformation of y can be illustrated as:

y11
* = t11y11

y21
* = t21y11 + t22y21

…
…
…
yn1

* = tn1y11 + tn2y21 + tnnyn1

where the tij above are the elements of T−1.
Given that the variance of yki is:

var(y) = G + R

and the variance of the transformed variables becomes:

var(y*) = T−1G(T−1)′ + I = G* + I = M + I (6.5)

where G is the covariance matrix for additive genetic effects and G* is the transformed 
additive genetic covariance matrix. Note that G* is not diagonal. Vectors of solutions 
(bi

* and ai
*) are transformed back to the original scale (bi and ai) as:

bi = Tbi
* (6.6)

ai = Tai
* (6.7)

6.3.2 An illustration

Example 6.2
The methodology is illustrated using the growth data on beef calves in Section 5.4.1. 
The residual and additive genetic covariance matrices were:

R G ==
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Now carry out a Cholesky decomposition of R such that R = TT′. For the R above:

T T =  = 
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The transformed additive genetic covariance matrix (M) is:

M T G T M= ( )
0.5000 0.380539

0.380539 1.171972
and1 1 1− − −′

⎡
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⎥ =  = 
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The transformed variables are calculated using the transforming matrix T−1. For the 
first two animals the transformation is as follows:
Animal 1:

y11
* = t11y11 = 0.1581139(4.5) = 0.712

Animal 2:

y11
* = t11y11 = 0.1581139(2.9) = 0.459

y22
* = t21y11 + t22y22 = −0.052948(2.9) + 0.1925393(5.0) = 0.809

where yij and yij* are the original and transformed observations, respectively, for 
the ith trait and jth animal. The transformed variables for all calves are shown in the 
table below.

Original traits Transformed traits

Calves Sex Sire Dam WWG PWG y1
* y2

*

4 Male 1 – 4.5 – 0.712 –
5 Female 3 2 2.9 5.0 0.459 0.809
6 Female 1 2 3.9 6.8 0.617 1.103
7 Male 4 5 3.5 6.0 0.553 0.970
8 Male 3 6 5.0 7.5 0.791 1.179
9 Female 7 – 4.0 – 0.632 –

The model for analysis is the same as in Section 5.4.1 except that the variance of 
y* now is:

var(y*) = T−1G(T−1)′ + I = M + I

The MME for the transformed variables are:
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The design matrices X1, X2, Z1 and Z2 and the inverse of the relationship matrix 
are exactly as in Section 5.4.1. The vector observations y* now contain the trans-
formed variables shown in the above table. All other matrices in the MME above can 
be derived from the design matrices and vector of observations through matrix mul-
tiplication and the addition of the A−1m11 and A−1m22 to the animal equations for trait 
one and two, respectively, and A−1m12 to animal equations for trait one by trait two 
and A−1m21 to equations for trait one by trait two that pertains to animals. The MME 
have not been shown because they are too large. However, solving the MME gives 
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the following solutions on the transformed scale. The solutions transformed to the 
original scale are also shown.

Effects

Transformed scale Original scale

WWG PWG WWG PWG

Sex
Male 0.691 1.085 4.367 6.834
Female 0.578 0.963 3.657 6.007

Animals
1 0.021 0.044 0.130 0.266
2 −0.013 −0.010 −0.084 −0.075
3 −0.015 −0.032 −0.098 −0.194
4 0.001 0.003 0.007 0.016
5 −0.054 −0.089 −0.343 −0.555
6 0.030 0.075 0.192 0.440
7 −0.049 −0.077 −0.308 −0.483
8 0.032 0.056 0.201 0.349
9 −0.003 −0.022 −0.018 −0.119

These are exactly the same solutions as those obtained in Section 5.3 without any 
transformation. The number of non-zero elements was 188 in the analysis on the 
transformed variables, compared with 208 when no transformation is carried out. 
This difference could be substantial with large data sets and reduces storage require-
ments when data is transformed. The solutions were transformed to the original scale 
using Eqns 6.6 and 6.7. Thus the solutions for male calves on the original scale are:

11

12

ˆ

ˆ
b

b
 = 

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

6.324555 0.000

1.739253 5.193746

0.690633

1.0846

4.367

6.834
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = 

6.4 Factor and Principal Component Analysis

In Sections 6.2 and 6.3, the simplification of multivariate analysis using canonical trans-
formation and Cholesky decomposition were discussed. Both approaches involved the 
transformation of the vector of observations as well as the residual and genetic covari-
ance matrices. However, for multivariate analysis with a large number of traits and with 
high genetic correlations among the traits, a factorial or principal component analysis 
might be more appropriate in reducing the dimension of such analysis. Neither of these 
methods involve the transformation of the vector of observations. The principal compo-
nent and factor analysis (FA) methods provide efficient means for reducing the rank of 
the genetic covariance matrix in multivariate analysis, resulting in the substantial spar-
sity of the MME for genetic evaluation and estimation of genetic parameters (Meyer, 
2009). Therefore, both methodologies have attracted considerable attention in multi-
variate analysis involving many traits for parameter estimation and genetic evaluation 
(Kirkpatrick and Meyer, 2004; Meyer, 2005, 2007; Tyriseva et al., 2011a, 2011b).

FA is mainly concerned with identifying the common factors that give rise to 
correlations between variables. It assumes that the traits studied are linear combina-
tions of few latent variables, referred to as common factors. Then any variance not 
explained by these common factors is modelled separately as trait specific, by fitting 
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corresponding specific factors. Since the factors are assumed to be uncorrelated, sub-
stantial sparsity of the MME is achieved.

On the other hand, PC aims to identify factors that explain the maximum amount of 
variation and does not imply any underlying model. The first PC explains the maximum 
amount of genetic variation in the data and each successive PC explains the maximum 
amount of the remaining variation. Thus for highly correlated traits, only the leading PC 
have a practical influence on genetic variation and those with negligible effect can be omit-
ted without reducing the accuracy of estimation. For example, with t traits, k independent 
principal components (k ≤ t) can be derived that explain a maximum proportion of the 
total multivariate system. Similar to the FA, the PC approach requires decomposing 
the genetic covariance matrix into pertaining matrices of eigenvalues and eigenvectors. The 
eigenvector or PC can be regarded as a linear combination of the traits and they are 
independent, while the corresponding eigenvalues gives the variance explained.

6.4.1 Factor analysis

Assume that w is a vector of n variables with covariance matrix equal to G and that 
w can be modelled as:

w = m + Fc + s

where m is the vector of means, c is a vector of common factors of length m, s is the 
vector of residuals or specific effects of length n and F is the matrix of order n × m of 
the so-called factor loadings. In the most common form of FA, the columns of F are 
orthogonal, i.e. jijj = 0, for i ≠ j and thus the elements of c are uncorrelated and assumed 
to have unit variance, var(c) = I. The columns ji are determined as corresponding eigen-
vectors of G, scaled by the square root of the respective eigenvalues (Meyer, 2009).

Usually F is not unique but is often orthogonally transformed to obtain factor 
loadings that are more interpretable than those derived from the eigenvectors. The 
specific effects (s) are assumed to be independently distributed and therefore the vari-
ance of s is a diagonal matrix S of order n. Therefore:

var(w) = GFA = FF′ + S (6.8)

The above indicates that all the covariances between the levels of w are modelled 
through the common factors while the specific factors account for the additional indi-
vidual variances of the elements of w. Thus the n(n + 1)/2 elements of G are modelled 
through the n elements of the specific variances and m(2n – m + 1)/2 elements of F and 
additional m(m − 1)/2 of F which is determined by the orthogonal constraints. For 
example if n is 4 and m = 1, then the 10 elements of G are modelled by the four ele-
ments of S and the four elements of F. FA with a small m thus provides a parsimonious 
way to model the covariances among a large number of variables. When all the ele-
ments of S are non-zero, then four traits is the minimum number of variables for which 
imposing an FA structure results in a reduction of the parameters (Meyer, 2009).

Mixed model equations

Assume the following multi-trait linear mixed model in Eqn 5.1 is presented as:

y = Xb + Za + e (6.9)
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with terms defined as in Eqn 5.1 and MME as in Eqn 5.2. If G is represented by an 
FA structure (Eqn 6.8), then an equivalent model to Eqn 6.9 is:

y = Xb + Z(Iq × F)c + Ws + e = Xb + Z*c + Ws + e (6.10)

with q being the number of individuals, c is a vector of common factor effects of 
order m, Z* = Z(Iq × F), and s is the vector for the specific factor effects. In some 
contexts, application of Eqn 6.10, i.e. with elements of S ≠ 0, is referred to as the 
extended factor analysis (XFA) compared with models with no specific effects (S = 0), 
which is simply referred to as factor analysis (FA). The MME for XFA then are:
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(6.11)

The vector âi of solutions for animal i can be obtained as:

âi = Fĉi + ŝi (6.12)

The number of equations in the MME (Eqn 5.2) for the usual multivariate model 
are equal to the number of equations for b and s in Eqn 6.11. However, there are an 
additional mq equations for the common effects and Z*, which is a vector of order m
with elements jij, is denser than Z in Eqn 5.2, which contains a single element of 
unity in a row or column. However, the section of the coefficient matrix for random 
effects is much sparser as effects are genetically uncorrelated and A−1 contributes only 
(m + n) non-zero elements compared to n2 for Eqn 5.1. For the estimation of covari-
ance estimates using REML, Thompson et al. (2003) showed that the sparsity of the 
MME with an XFA structure imposed dramatically reduced computational require-
ments compared to the standard multivariate model. Note that fitting an FA structure 
to G with no specific effects, the MME are similar to Eqn 6.11 but with the row of 
equations for s omitted, and the Z* will be a vector of order n.

An illustration

Example 6.3
The data on pre-weaning weight gain (WWG) and post-weaning gain (PWG) in 
Example 5.1 is extended to include two additional traits of muscle score (MS) and 
backfat thickness (BFAT), and data is presented below. The objective is to undertake 
multi-trait analysis imposing an XFA on G and the results obtained compared to 
those from full MBLUP or FA structure on G with no specific factors.

Calf Sex WWG PWG MS BFAT

4 Male 4.5 6.8 5.0 0.226
5 Female 2.9 5.0 3.0 0.573
6 Female 3.9 6.8 12.0 0.386
7 Male 3.5 6.0 8.0 0.290
8 Male 5.0 7.5 15.0 0.175
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Assuming that G and R, respectively, are:

G =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

20 18 4 9

18 40 9 20

4 9 25 4 5

9 20 4 5 32

40 11 16 9

11 30

.

.

and R
112 14

16 12 70 10

9 14 10 55

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Applying Eqn 6.8 to G using the function factanal in the R package (The R Development 
Core Team, 2010) gives:

F′ = (2.8532 6.3056 1.4250 3.1678) and S′ = (11.860 0.200 22.975 21.952)

This implies that the number of common factors, m, is equal to 1 for the example G
above. Thus the column vector z*i for animal i in the matrix Z* in Eqn 6.11 equals F.
Therefore, for animal i with a record, zi*′r−1zi* is 1.361. However, for animal i, Wi is 
a diagonal matrix and therefore Wi′R

−1Wi is computed as described for the MBLUP 
model in Section 5.2. Thus for animal i, Wi′R

−1Wi is:

′ =
−
− −
−

−W R Wi i
1

0 0297

0 0079 0 0419

0 0052 0 0041 0 0163

.

. .

. . .

symmetric

00 0019 0 0086 0 0011 0 0209. . . .− −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Although there were 48 equations in the MME defined in Eqn 6.11 for this 
example compared with 40 in the usual MBLUP, there were only 502 non-zero ele-
ments in the XFA compared with 620 in MBLUP, illustrating the increased sparsity 
of the MME with the XFA model. Solving the MME gave the following solutions. 
The results from the usual MBLUP gave exactly the same solutions and these have 
not been presented.

Solutions for sex of calf effects

WWG PWG MSC BFAT

M 4.352 6.795 9.412 0.231
F 3.487 5.959 7.095 0.535

Animal and specific solutions

Specific effects solutions Transformed solutionsb

COMa WWG PWG BFAT MSC WWG PWG MSC BFAT

1 0.036 −0.008 0.095 0.000 0.005 0.095 0.227 0.340 0.010
2 −0.012 −0.001 −0.073 0.021 0.000 −0.089 −0.073 0.313 −0.050
3 −0.027 0.068 0.031 0.208 0.000 −0.086 −0.169 0.031 −0.032
4 0.021 0.046 0.113 −0.021 0.000 0.168 0.136 −0.855 0.113
5 −0.064 −0.191 0.000 0.005 0.000 −0.191 −0.407 −0.539 −0.029
6 0.046 0.290 0.021 0.000 0.000 0.017 0.290 1.350 −0.082
7 −0.063 −0.813 0.208 0.000 0.029 −0.208 −0.399 −0.813 −0.015
8 0.028 −0.101 −0.021 0.000 0.000 −0.017 0.178 1.431 −0.101

aCOM, solutions for common factor. bTransformed solutions from Eqn 6.12.
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Analysis with FA model

The main differences with fitting an FA model with no specific effects is that Z* for 
an animal in Eqn 6.11 is of order n by n and the last row of Eqn 6.11 is omitted. 
Note that Z* is now a product of the eigenvectors of G and the square root of a diago-
nal matrix of eigenvalues (see Section 6.4.2). Thus Z* is:

Zi
* =

− −
− − −
2.2974 3.2100 0.1259 2.0983

1.7761 5.8683 0.1348 1.5333

0..2453 2.0018 4.4348 1.1272

0.5878 4.3506 1.7658 3.0977−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟⎟
⎟
⎟

′ =

− −
− − −

and

0.372 0.226 0.042 0.054

0.226 1.236 0.141
Z R Zi i

* *−1 00.246

0.042 0.141 0.410 0.019

0.054 0.246 0.019 0.537

− −
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟⎟
⎟
⎟

 for animal i:

Setting the MME follows the usual rules and the MME has 40 equations for the 
example but with only 388 non-zero elements. The low number of non-zero elements 
is due to the fact that only n elements of A−1 are contributed compared with n2 for 
the MBLUP. Solving the equations gives the following solutions.

Solutions for calf sex effects

WWG PWG MSC BFAT

M 4.352 6.795 9.412 0.231
F 3.487 5.959 7.095 0.535

Animal solutions

Untransformed solutions Transformed solutionsa

WWG PWG BFAT MSC WWG PWG MSC BFAT

1 −0.011 0.035 0.063 −0.008 0.095 0.227 0.340 0.010
2 −0.003 −0.005 0.066 0.028 −0.089 −0.073 0.313 −0.050
3 0.010 −0.020 0.010 0.021 −0.086 −0.169 0.031 −0.032
4 0.000 0.002 −0.177 −0.067 0.168 0.136 −0.855 0.113
5 0.015 −0.062 −0.099 0.019 −0.191 −0.407 −0.539 −0.029
6 −0.022 0.061 0.267 0.045 0.017 0.290 1.350 −0.082
7 0.003 −0.069 −0.153 0.005 −0.208 −0.399 −0.813 −0.015
8 −0.007 0.050 0.285 0.060 −0.017 0.178 1.431 −0.101

aTransformed solutions = vectors of solutions multiplied by Z*

6.4.2 Principal component analysis

Analysis with full PC model

The application of a full PC model with no rank reduction is similar to the FA analysis 
except that Z* is now a matrix of eigenvectors of order n by n and Z*′R–1Z* + (Im ⊗ A−1)
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in the second row of Eqn 6.11 is replaced by Z*′R–1Z* + (Dn ⊗ A−1), where Dn is a 
diagonal matrix of eigenvalues. Again, the last row of Eqn 6.11 is omitted. It there-
fore involves decomposing G to a matrix of eigenvectors (Z*) and corresponding 
eigenvalues (D). Thus Z* and D, respectively, are:

Z* =

− −
− − −
0.7710 0.3896 0.02940 0.5029

0.5983 0.7139 0.0268 0.3628

0..0865 0.2427 0.9288 0.2664

0.2000 0.5288 0.3685 0.7379−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟⎟
⎟
⎟

= ( )

and

diag 8 8159 67 6963 22 8286 17 6592D . . . .

Thus Zi
*′R−1Zi

* for animal i is:

Z R Zi i
* *′ =

− −
− − −
−

−1

0.042 0.009 0.003 0.004

0.009 0.018 0.004 0.007

0..003 0.004 0.018 0.001

0.004 0.007 0.001 0.030

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The MME are set up as usual. Similar again to the FA model, the PC has 40 equations 
and 388 non-zero elements. The solutions for the various effects from solving the 
MME are:

Solutions for sex of calf effects

WWG PWG MSC BFAT

M 4.352 6.795 9.412 0.231
F 3.488 5.959 7.095 0.535

Animal solutions

Untransformed solutions                                Transformed solutions

WWG PWG BFAT MSC WWG PWG MSC BFAT

1 −0.032 0.287 0.303 −0.032 0.094 0.227 0.340 0.010
2 −0.009 −0.038 0.314 0.118 −0.090 −0.073 0.313 −0.050
3 0.031 −0.163 0.047 0.089 −0.086 −0.169 0.030 −0.032
4 −0.002 0.015 −0.844 −0.279 0.170 0.136 −0.855 0.113
5 0.045 −0.511 −0.473 0.078 −0.190 −0.407 −0.539 −0.029
6 −0.062 0.496 1.276 0.186 0.014 0.290 1.350 −0.083
7 0.007 −0.571 −0.732 0.022 −0.207 −0.400 −0.812 −0.015
8 −0.018 0.413 1.362 0.252 −0.019 0.178 1.431 −0.101

6.4.3 Analysis with reduced rank PC model

The diagonal matrix D with the full PC model in Section 6.4.2 indicates that the first prin-
cipal component accounts for about 8.82% of the total genetic variance. Deleting the first 
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eigenvalue gives a diagonal D* of order 3 as D*= diag(67.6963 22.8286 17.6592). 
Then G*, a new genetic covariance matrix, can be computed as M¢D*M, where M is 
equivalent to Z* in Section 6.4.2 with a full PC model fitted but with the first column 
deleted. Thus:

G M D M∗ ∗= ′ =

14 759 22 067 3 412 7 640

22 067 36 844 9 456 21 055

3 41

. . . .

. . . .

. 22 9 456 24 934 4 347

7 640 21 055 4 347 31 647

. . .

. . . .

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

with

M

00.3896 0.02940 0.5029

0.7139 0.0268 0.3628

0.2427 0.9288 0.26

− −
− −

664

0.5288 0.3685 0.7379−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The application of reduced rank PC is similar to the full PC analysis with Z*

replaced by M and D by D*. Thus for animal i, Mi′ R
−1 Mi is:

′ =
− −

−
−

−M R Mi i
1

0.018 0.004 0.007

0.004 0.018 0.001

0.007 0.001 0.030

⎛⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The MME for the reduced PC has 32 equations and 284 non-zero elements. 
The solutions for the various effects from solving the MME are:

Solutions for sex of calf effects

WWG PWG MSC BFAT

M 4.349 6.798 9.412 0.230
F 3.480 5.963 7.093 0.533

Solutions for animal effects

Untransformed solutions Transformed solutionsa

WWG PWG MSC BFAT

1 0.295 0.305 −0.033 0.123 0.214 0.346 0.019
2 −0.037 0.314 0.118 −0.083 −0.078 0.314 −0.048
3 −0.170 0.046 0.090 −0.113 −0.156 0.025 −0.041
4 0.017 −0.844 −0.279 0.171 0.136 −0.854 0.115
5 −0.523 −0.476 0.080 −0.230 −0.390 −0.548 −0.042
6 0.511 1.279 0.185 0.069 0.263 1.362 −0.066
7 −0.576 −0.734 0.022 −0.215 −0.400 −0.816 −0.018
8 0.419 1.364 0.251 −0.003 0.171 1.435 −0.096

aTransformed solutions = vector of solutions multiplied by M

The deletion of the first eigenvalue in the reduced PC analysis had very little effect 
in terms of the EBVs of animals for traits 3 and 4. Thus there was no ranking for MSC 
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and only two animals swapped places for BFAT compared with the result from the full 
PC analysis. However, only the top four and six animals were the same for WWG and 
PWG, respectively, compared with the full PC analysis, indicating more re-ranking was 
observed in WWG due to the reduction in variance. In practice, models with reduced 
ranks are usually applied in the analysis of many traits as in Meyer (2007), resulting 
in no re-ranking in the top animals, which are mainly of interest.
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7.1 Introduction

The phenotypic expression of some traits in the progeny, such as weaning weight 
in beef cattle, is influenced by the ability of the dam to provide a suitable environ-
ment in the form of better nourishment. Thus the dam contributes to the perfor-
mance of the progeny in two ways: first, through her direct genetic effects passed 
to the progeny and second, through her ability to provide a suitable environment, 
for instance in producing milk. Traits such as birth and weaning weights in beef 
cattle fall into this category and are termed maternally influenced traits. The abil-
ity of the dam to provide a suitable environment for the expression of such traits 
in her progeny is partly genetic and partly environmental. Similar to the genetic 
component of an individual, the maternal genetic component can be partitioned 
into additive, dominance and epistatic effects (Willham, 1963). The environmen-
tal part may be partitioned into permanent and temporary environmental compo-
nents. It is the maternal additive genetic component of the dam that is passed on 
to all her offspring, but it is expressed only when the female offspring have prog-
eny of their own.

In the usual mixed linear model for maternally influenced traits (Eqn 7.1) the 
phenotype is partitioned into:

1. Additive genetic effects from the sire and the dam, usually termed the direct genetic 
effect.
2. Additive genetic ability of the dam to provide a suitable environment, usually termed 
the indirect or maternal genetic effect.
3. Permanent environmental effects, which include permanent environmental influ-
ences on the dam’s mothering ability and the maternal non-additive genetic effects 
of the dam.
4. Other random environmental effects, termed residual effects.

In this chapter, the mixed model methodology for genetic evaluation in models 
with maternal effects is discussed, considering a univariate situation, and the exten-
sion to multivariate analysis is also briefly presented. The application of BLUP to 
models with maternal effects was first presented by Quaas and Pollak (1980).

When repeated measurements for maternally influenced traits are available 
over a range of ages (for instance, body weight from birth to 630 days), a random 
regression model (see Chapter 9) might be more appropriate to analyse such a 
trait. A random regression model for maternally influenced traits is briefly defined 
in Section 9.3.6.

7 Maternal Trait Models: Animal 
and Reduced Animal Models
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7.2 Animal Model for a Maternal Trait

The model for maternally influenced traits in matrix notation is:

y = Xb + Zu + Wm + Spe + e (7.1)

where y = vector of observations, b = vector of fixed effects, u = vector of random 
animal effects, m = vector of random maternal (indirect) genetic effects, pe = vector 
of permanent environmental effects as explained in item 3 in Section 7.1, e = vector 
of random residual effects, and X, Z, W and S are incidence matrices relating records 
to fixed, animal, maternal genetic and permanent environmental effects, respectively. 
It is assumed that:

var

u

m

pe

e

A A

A A

I

I

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

g g

g g

pe

11 12

21 22

2

0 0

0 0

0 0 0

0 0 0

s

s ee
2

⎡

⎣
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⎤

⎦

⎥
⎥
⎥
⎥
⎥

where g11 = additive genetic variance for direct effects, g22 = additive genetic variance for 
maternal effects, g12 = additive genetic covariance between direct and maternal effects, 
s2

pe = variance due to permanent environmental effects and s 2
e = residual error 

variance.
The variance of y, using the same arguments as in Section 3.2, is:

var( )y Z W
A A

A A
Z

W
SI S = 

g g

g g
+pe[ ]⎡

⎣
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⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

11 12

21 22

2′
′

′+ s I e
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The BLUE of estimable functions of b and the BLUP of u, m and pe in Eqn 7.1 are 
obtained by solving the following MME:

b

u

m
pe
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ˆ
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(7.2)

with G G = 
g g

g g
=
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2
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7.2.1 An illustration

Example 7.1
Assume the data in Table 7.1 to be the birth weight for a group of beef calves. The 
aim is to estimate solutions for herd and pen effects and predict solutions for direct 
and maternal effects for all animals and permanent environmental effects for dams of 
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progeny with records. Suppose that the genetic parameters are g11 = 150, g12 = −40, 
g22 = 90, s2

pe = 40 and s2
e = 350. Then:

− ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

1 1 2

2 3
G  = 

0.00756 0.00336

0.00336 0.0126
and

a a
a a

 = 
.647 1.176

1.176 4.412

2⎡

⎣
⎢

⎤

⎦
⎥

and a4 = 350/40 = 8.75.
The model for the analysis is as presented in Eqn 7.1.

SETTING UP THE DESIGN MATRICES

Considering only animals with records, the first three rows of matrix X relate records 
to herd effects and the last two rows to pen effects. The transpose of X is:

′

⎡

⎣

⎢

X =

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

1 0 0 1 1 0 0 0 1 0

0 1 1 0 0 1 1 1 0 1

⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Excluding ancestors, each animal has one record; therefore Z is an identity 
matrix. However, Z is augmented with columns of zeros equal to the number of 
ancestors to take account of ancestors in the pedigree. The matrices W and S relate 
records through the dam to their effects, i.e. maternal genetic effect and permanent 
environmental effect, respectively. However, since maternal effect is genetic and is 
passed from parent to offspring, estimates of maternal effect are for all animals 
in the analysis while estimates of permanent environmental effects are only for 
dams of progeny with records. Thus, in setting up W, all animals are considered, 
while only four dams with progeny having records are taken into account for S.

Table 7.1. Birth weight for group of beef calves.

Calf Sire Dam Herds Pen Birth weight (kg)

5 1 2 1 1 35.0
6 3 2 1 2 20.0
7 4 6 1 2 25.0
8 3 5 1 1 40.0
9 1 6 2 1 42.0

10 3 2 2 2 22.0
11 3 7 2 2 35.0
12 8 7 3 2 34.0
13 9 2 3 1 20.0
14 3 6 3 2 40.0
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For the example data set, W (with rows and columns numbered by the relevant 
animal they relate to) is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

W =

5

6

7

8
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11
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13

14

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 00 0 0 0 0 0
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and:

5 6 7 8 9 10 11 12 13 14
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2
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1 1 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1
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⎤

⎦

⎥
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⎥

The matrix S above implies, for instance, that animals 5, 6, 10 and 13 have the same 
dam (animal 2), while animals 11 and 12 are from another dam (animal 7).

The transpose of the vector of observations is:

y′ = [35 20 25 40 42 22 35 34 20 40]

The other matrices in the MME can be calculated through matrix multiplication. 
The inverse of the relationship matrix is calculated applying the rules in Section 2.4.1. 
The matrix A−1a1 is added to animal equations, A−1a2 to the equations for maternal 
genetic effects, A−1a3 to the animal by maternal genetic equations and a4 to the diagonals 
of the equations for permanent environmental effects to obtain the MME. The MME are 
not presented because they are too large. There is dependency between the equations for 
herds and pen; thus the row for the first herd was set to zero in solving the MME by direct 
inversion. Solutions to the MME are:

Effects Solutions

Herd–year–season
1 0.000
2 3.386
3 1.434

Pen
1 34.540
2 27.691

Continued
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(Continued )

Effects Solutions

Animals
Direct effects Maternal effects

1 0.564 0.262
2 −1.244 −1.583
3 1.165 0.736
4 −0.484 0.586
5 0.630 −0.507
6 −0.859 0.841
7 −1.156 1.299
8 1.917 −0.158
9 −0.553 0.660

10 −1.055 −0.153
11 0.385 0.916
12 0.863 0.442
13 −2.980 0.093
14 1.751 0.362

Permanent environment
2 −1.701
5 0.415
6 0.825
7 0.461

The solutions show little difference between the herds, but calves in pen 1 were 
heavier than those in pen 2 by about 6.85 kg at birth. The solution for level i of the 
fixed effect n can be calculated using Eqn 4.3 except that the sum of yields for the 
level of fixed effect is corrected in addition for maternal effects. That is:

in
f = j

inj
k

ink
l

inl
t

in

 = 

y b a m
in

ˆ

ˆ ˆ ˆ

b

inf
1

diag

∑ ∑ ∑ ∑ ∑− − − − tt

in

peˆ

diag
(7.3)

where minl is the solution for level l of genetic maternal effects within level i of the nth
fixed effect and all other terms are as defined in Eqn 4.3. Thus the solution for level 1 
of pen effect is:

b̂11 = [137 − (2ĥd1 + ĥd2 + ĥd3) − (â5 + â8 + â9 + â13)
   − (2m̂2 + m̂5 + m̂6) − (2p̂e2 + p̂e5 + p̂e6)]/4
= [137 − 4.82 − (−0.986) − (−2.832) − (−2.162)]/4
= 34.540

where ĥdj is the solution for level j of herd effect.
From the MME, the solutions for direct and maternal effects for animal i with 

progeny o are:
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where n1 is the number of records for animal i; n2 is the number of progeny records with 
animal i as the dam; d = 2, 4

3  or 1 when both, one or no parents of animal i are known; 
k2 = 1 or 2

3 when both or one parent of animal i are known; k1 = 1
2 and k3 = 1 when the 

mate of animal i is known or k1 = 1
3 and k3 = 2

3  with the mate unknown and:

H = 1 2

2 3

a a
a a

⎡

⎣
⎢

⎤

⎦
⎥

For instance, the solutions for direct and genetic maternal effects for animal 5 are:
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The solution for the permanent environmental effect for dam j from the MME is:

p̂ej = (yo − b̂o − ûo − m̂j)/(n2 + a3) (7.5)

where all terms are as defined in Eqn 7.4. For animal 5, the solution for the perma-
nent environmental effect is:

p̂e5 = 40 − 0 − 34.54 − 1.917 − (−0.507)/(1 + 8.75) = 0.415

Additive genetic maternal effects represent good mothering ability, which is 
passed on from dams to progeny, while permanent environment effects refer to per-
manent environmental and maternal non-additive genetic influences on the mother-
ing ability of the dam. Thus selection of dams for the next generation in a maternal 
line would place emphasis on good genetic maternal effects in addition to a good 
estimate of breeding value. If equal emphasis is placed on both effects, dams 7 and 5 
would be the top two dams in the example while dam 2 ranks lowest. However, if the 
main interest is the performance of the future dams in the same herd, then selection 
of dams would be based on some combination of the solutions for direct, maternal 
genetic and permanent environmental effects for the dams. Again, in the example 
data, dam 2 ranks lowest while the best two dams are dams 6 and 7 if equal emphasis 
is placed on the three components.

In the case of males, the selection of sires for a maternal line, for instance, would 
be based on a combination of solutions for direct and maternal genetic effects. 
Obviously, sires 3 and 1 would be the top two bulls for such a purpose. However, if 
the emphasis is only on direct genetic effects, probably to breed a bull, then sire 8 in 
the example would be the bull of choice.
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7.3 Reduced Animal Model with Maternal Effects

In Section 3.5, the use of the reduced animal model (RAM), with only one random 
effect apart from residual error in the model, was considered. The records of non-
parents in the MME were expressed as the average of parental breeding values plus 
Mendelian sampling. This has the advantage of reducing the number of random 
animal equations in the MME. The application of RAM with multiple random effects 
in the model is illustrated in this section using the example data used for the full 
animal model in Section 7.2. The model for the analysis is the same but design matri-
ces and the variance of non-parental animals are different. From the arguments in 
Section 3.5, the model for the RAM can be expressed as:
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where yp, yn = vector of observations for parent and non-parents, respectively, 
b = vector of fixed effects, up= vector of random animal effect for parents, m = vector 
of maternal genetic effects for parents, pe = vector of permanent environmen-
tal effects and ep, en = vector of residual error for parents and non-parents, 
respectively.

The incidence matrices Z2 and Z3 relate records to maternal genetic and perma-
nent environmental effect, respectively. The matrices Zp and Xp relate records of 
parents to animal and fixed effects, respectively, while Zn and Xn relate records of 
non-parents to parents (animal effect) and fixed effects, respectively.

It is assumed that:
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where s2
ep is the residual variance for parents, which is equal to s 2

e in Section 7.2, 
s2

en is the residual variance for non-parents and is equal to I + Dg11, with D being a 
diagonal matrix containing elements djj, which are equal to 3

4 or 1
2
 depending on 

whether one or both parents are known. The matrix G and s 2
pe are defined as in 

Section 7.2. Let:
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Again, the MME provide the basis of the BLUE of estimable functions of b and BLUP 
of a, m and pe in Eqn 7.6. The relevant MME are:
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where gii are the elements of the inverse of G.
As shown in Section 3.5, each block of equations in the MME above can be 

expressed as the sum of the contributions from parents’ records and non-parents’ 
records. Thus:

X R X X R X X R X′ ′ ′− − −1 1+= p p p n n n
1

Expressing Eqn 7.7 as shown for the equations for the block of fixed effects above 
and multiplying by Rp gives:
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The a terms are as defined in Eqn 7.2 and R−1
n now equals 1/(1 + Da−1). The MME 

for the solutions of b, u, m and pe can therefore be set up as shown above or as in 
Eqn 7.7.

7.3.1 An illustration

Example 7.2
The same data set and genetic parameters as in Section 7.2 are used below to demon-
strate the principles for setting up a RAM with maternal effects in the model using 
Eqn 7.5. Recollect that:
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The residual variance for parents s2
ep = 350, and because both parents of non-parents 

in the data are known:

s2
en = s2

e + 1
2(g11) = 350 + 1

2(150) = 425

with:

R
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2

s
s0
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Then:

R = diag(350, 350, 350, 350, 350, 425, 425, 425, 425, 425)

and:

R−1 = diag(0.00286, 0.00286, 0.00286, 0.00286, 0.00286, 0.00235, 0.00235, 
0.00235, 0.00235, 0.00235)

1/s2
pe = 1

40
 = 0.025

SETTING UP THE DESIGN MATRICES

The matrix X, which relates records to fixed effects, is the same as in Section 7.2.1, 
considering only animals with records. The matrix X¢R−1X in the MME can be cal-
culated through matrix multiplication from X and R−1 already set up. For illustrative 
purposes, the matrix X¢R−1X, when expressed as the sum of the contributions from 
parents’ and non-parents’ records, is:
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where Xp and Xn are matrices relating parents and non-parents to fixed effects, 
respectively, and are:
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The matrix Z1, which relates records to animal effect is:

1 2 3 4 5 6 7 8 9

1 =Z

5

6

7

8

9

10

11

12

13

14
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0.0 0.00 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.5 0.55 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0

0.0 0.0 0.0 0.00 0.0 0.0 0.5 0.5 0.0
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The first five rows correspond to animals 5 to 9, which are parents, and each has 
one record. The last five rows correspond to the records for animals 10 to 14 (non-
parents), which are related to their parents. The matrices Z2 and Z3 are exactly the 
same as W and S in Section 7.2.1, respectively, and the vector of observation, y, is the 
same as in Section 7.2.1. Apart from the relationship matrix, all the matrices in the MME 
can easily be calculated through matrix multiplication from the design matrices 
and vector of observation set up above. The inverse of the relationship matrix is set 
up only for parents (Ap

−1), i.e. for animals 1 to 9, using the procedure outlined in Chapter 2. 
The matrix Ap

−1g11 is added to animal equations, Ap
−1g22 to the equations for maternal 

genetic effects, Ap
−1g12 to the animal by maternal genetic equations, Ap

−1g21 to the mater-
nal genetic by animal equations and 1/s 2

pe to the diagonals of the equations for per-
manent environmental effects to obtain the MME. The MME are not presented 
because they are too large. Solving the MME by direct inversion with the equation 
for the first herd set to zero gives the same solutions as from the animal model 
(Example 7.1). However, the number of non-zero elements in the coefficient matrix 
was 329 compared with 429 in the animal model, due to the reduced number of 
equations, indicating the advantages of the RAM.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are back-solved 
after the MME have been solved.

BACK-SOLVING FOR DIRECT EFFECTS

Solutions for direct animal effect for the non-parents are obtained from parent aver-
age and an estimate of Mendelian sampling using Eqn 3.27. Thus the solution for 
the non-parent i is:

ûi = 0.5(ûs + ûd) + ki(yi − b̂j − m̂d − p̂ed − 0.5(ûs + ûd)) (7.8)

with:

ki = r−1/(r−1 + d−1g−1) = 1/(1 + d−1a); a = s 2
e /s 2

a
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where d is either 1
2
 if both parents are known or 3

4 if only one parent is known. For 
the example data, both parents of the non-parent individuals are known, 
therefore:

ki = 1/(1 + 2(2.333)) = 0.17647

For animal 10, for instance, the breeding value is:

û10 = 0.5(û3 + û2) + k(y10 − b̂2 − b̂5 − m̂2 − p̂2 − 0.5(û3 + û2))

= 0.5(1.165 + −1.244) + 0.17647(22 − 3.386 − 27.691 − (−1.583)
− (−1.701) − 0.5(1.165 + −1.244))

= −1.055

BACK-SOLVING FOR MATERNAL EFFECTS

The equation for obtaining genetic maternal effects for non-parents can be derived 
as follows. From the MME, the equation for direct and genetic maternal effects for 
non-parent i is:
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where n is defined in Eqn 7.8 and other terms are as defined in Eqn 7.4.
From the above equations:

m̂i = [g22(m̂s + m̂d) + g21(ûs + ûd) − n−1g21(ûi)]/n
−1g22

m̂i = n(m̂s + m̂d) + [(g21n(ûs + ûd) − g21ûi)/g
22]

m̂i = n(m̂s + m̂d) + g21/g22(n(ûs + ûd) − ûi)

Note that:

g21/g22 = {−g12/(g11g22 − g12g21)}{(g11g22 − g12g21)/g11}
= −g12/g11

Therefore:

m̂i = n(m̂s + m̂d) + g12/g11(ûi − d(ûs + ûd)) (7.10)

When both parents are known:

m̂i = 0.5(m̂s + m̂d) + (g12/g11)(ûi − 0.5(ûs + ûd))

For instance, for animal 10:

m̂10 = 0.5(m̂3 + m̂2) + (g12/g11)(û5 − 0.5(û3 + û2))
= 0.5(0.736 + (−1.583)) + (−40/150)(−1.055 − 0.5(1.165 + −1.244))
= −0.153

The solutions for direct and maternal effects of all non-parents in the example data 
(animals 10 to 14) applying Eqns 7.7 and 7.9 are exactly the same as obtained for 
these animals in the animal model.

7.4 Sire and Maternal Grandsire Model

In some cases, due to the structure of the available data, a sire and maternal grand-
sire model may be fitted for traits affected by direct and maternal genetic effects. 
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This tends to be more common for calving traits such as calving ease or stillbirth 
(Wiggans et al., 2003). The calving event is regarded as a direct effect of the service 
sire (direct effect). This predicts how easily his progeny are born and is computed by 
fitting the service sire. The maternal effect, which predicts how easily the bull daugh-
ters calve, is computed by fitting the MGS, hence the name sire-maternal grandsire 
(S-MGS) model.

The model then is similar to Eqn 7.1 and can be written as:

y = Xb + Zs + Wmgs + Spe + e (7.11)

where y = vector of observations, s = vector of random service sire (direct) effects, 
mgs = vector of random MGS (indirect) genetic effects and other terms defined as in 
Eqn 7.1, but Z and W are now incidence matrices relating records to service sire and 
MGS genetic effects, respectively. Note that if only first lactation data is being ana-
lysed, then the pe can be omitted from the model.

It is assumed that:
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The same principles described in Section 7.2 can be used in the application of 
Eqn 7.11 to estimate breeding values and solutions for fixed effects. Note, however, 
that MME from such an analysis will produce predicted transmitting abilities (PTAs) 
(which is half of the EBV) for the service sire (direct effect) and PTAs for maternal 
effect are computed as:

PTA maternal effect = PTA for MGS from MME − 0.25*(PTA for direct effect)

The variance components for a S-MGS model can be converted to variances for an 
animal model direct and maternal effects from the details of the components of 
the variances defined above. Thus the direct genetic variance component (s2

u) = 4s2
s, the 

covariance between direct and maternal component (su,m) = 4*(s s,mgs) – 0.5s 2
u and the 

maternal genetic variance component (s 2
m) = 4s 2

mgs – 0.25s 2
u − s u,m. The computation 

of maternal genetic component (s 2
m) can be illustrated as:

s s s s s s s s sm mgs u u m u m u m u
2 2 2 1

16
2 1

4
2 1

4
24 0 25 4 0 25= − − = + + − −( . ) ( ) ., , uu m m, = s2
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8.1 Introduction

Social interaction among animals, such as competition and cooperation, can have a profound 
effect on the expressions of performance and welfare traits in domestic livestock popula-
tions (Muir, 2005; Bijma et al., 2007a). When a group of animals rely on a limiting resource 
(e.g. feed) to achieve an outcome (e.g. growth) the observed phenotype of an individual 
(e.g. growth rate) can be influenced by both the phenotype (e.g. ability to fight for food) 
and the genotype (which confers this ability) of the competitors in the group. So the growth 
rate of piglets, for instance, can be reduced due to competition for food. In laying hen pro-
duction systems, social interactions can result in mortality due to cannibalism when hens 
are housed in groups, and this poses both economic and welfare problems.

Although a major component of the social interaction among group members may 
appear to be environmental, there is a genetic component (Wolf et al., 1998) attributable 
to the genes carried by others in the group which affects how they compete; generally 
referred to as indirect genetic effects (IGE) (Cheverud and Moore, 1994; Moore et al., 
1997). A selection experiment to reduce mortality due to cannibalism in domestic chick-
ens (Muir, 1996) has shown that heritable interactions (or IGE) can contribute substan-
tially to response to selection. Selection schemes that ignore this social effect of an 
individual on the phenotypes of its group members could result in less optimum response 
or even response in the opposite direction (Griffing, 1967). This social effect or indirect 
genetic effect (Cheverud and Moore, 1994) is often referred to as an associative effect 
(Griffing, 1967). In addition, Bijma et al. (2007b) indicated that the existence of social 
interaction among individuals may increase the total heritable variance in a trait. They 
found that heritable variance in survival days expressed as a proportion of phenotypic 
variance increased from 7 to 20% due to social interactions, indicating that about two-
thirds of heritable variation is due to interactions among individuals. One possible solu-
tion for improving traits affected by social interaction is to undertake group selection 
(Griffing, 1967). However, an optimum individual selection scheme to improve traits 
affected by interactions among individuals will involve the use of models that account for:

1. direct effects due to the direct effects of the genes of the individual; and
2. indirect effects due to the associative effect of the individual on its group members.

The phenotype (Pi) of an animal i for a trait influenced by social interaction 
belonging to a group with n members where interaction occurs may be modelled as:

P A Q E A Q Ei D i D i D i S j S j S j
j i

n

j i

n

= + + + + +
≠

−

≠

−

∑∑, , , , , ,

11

where j is one of the n − 1 group mates, AD,i and AS,j are the additive direct effect and 
sum of the additive indirect effects of each of the n − 1 group mates, with corresponding 

8 Social Interaction Models
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non-additive components QD,i and QS,i and environmental components ED,i and ES,j.
The non-additive components may be combined with the environmental components 
such that the equation may be expressed:

P A E A Ei D i D i S j S j
j i

n

= + + +
≠

−

∑, , , ,

1

Therefore the phenotypic variance can be derived as:

var( var[P A E A ED i D i S j S j
j i

n

) ], , , ,= + + +
≠

−

∑
1

Given that cov(ED,i, ES,j) = 0 when i ≠ j, and cov(A, E) = 0 for all i, j, then:
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with cov((ES,j, ES,j′) = 0 
when:
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∑
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1

1 2s

Also given that cov(( , ), ,A A rS j S j jj AS′ ′= s 2  where rjj′ is the relatedness between animals j and j′, then:

var A n n n r
s j A A

j i

n

S S,
( ) ( )( )

≠

−

∑
⎛

⎝⎜
⎞
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1

1 1 22 2s s

with r equal to the mean relatedness within the groups. Finally:

cov(A A n rD i As j
j i

n

DS, , ( ),
≠

−

∑
⎛

⎝⎜
⎞

⎠⎟
= −

1
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Collecting all the terms together gives the phenotypic variance as:

s s s s s s sp A E A E A AD D S S DS S
n n r n2 2 2 2 2 21 1 2 2= + + − + + − + −( )( ) ( ) [ ( ) ]

However, the total breed value (TBV; Bijma et al., 2007a) for individual i is:

TBVi = AD,i + (n − 1) As,j (8.1)

Note that TBV is what the progeny of the individual i will inherit and is the relevant 
breeding value in computing response for selection for traits affected by associative 
effects. Therefore, the total heritable variance of the trait equals the variance of the 
TBVs (s 2

TBV) among individuals and is:

s s s sTBV A A AD DS S
n n2 2 2 22 1 1= + - + -( ) ( )

where sAD

2 , sAS

2  and sADS
 are the variance of direct breeding value (DBV), associative 

breeding value (SBV) and the covariance between DBV and SBV, respectively. The 
sign of this covariance provides a measure of the competition versus cooperation 
among group members. Negative values may be interpreted as ‘heritable competition’ 
in the sense that animals’ positive DBV on the basis of their phenotype has a negative 
heritable impact on the phenotypes of their associates. On the other hand, a positive 
covariance may be interpreted as ‘heritable cooperation’ (Bijma et al., 2007b).

Thus the ratio of total heritable variance to the phenotypic variance (t 2) for traits with 
associative effects (Bergsma et al., 2008) can be expressed as t s s2 2 2= TBV p . A comparison of 
t2 to the classical heritability (h A p

2 2 2= s s ) indicates the proportional contribution of 
indirect additive effects to the total heritable variance for traits with associative effects.
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Bijma et al. (2007a) presented this general formula for total genetic response per 
generation (DG) to selection for traits with associative effects.

ΔG {= − + + −wt n r wtTBV p TBV( )( ) ( ) },1 1 12s s k
s I

where sp,TBV is the covariance between the phenotype of the individual and TBV, r meas-
ures the degree of genetic relatedness, which is twice the coefficient of coancestry, k is the 
selection intensity, sI is the standard deviation of the index (I) that combines individual 
phenotypes and phenotypes of group members, and wt defines the weights on individu-
als versus phenotypes of group members, such that:

I = + − ∑
≠

wtP wt pi j
j i

n
( )1

Thus for a given r, n, wt and selection intensity, response is dependent on the s 2
TBV and the 

covariance between the phenotype of the individual and TBV. Therefore, response to selection 
may not necessarily follow the same direction as the selection pressure as in classical quan-
titative theory. The interactions among individuals affect both the direction and magnitude 
of selection response. Strong competition, for instance a negative sp,TBV due to a large and 
negative sADS

, will result in a response opposite in direction to the direction of selection.

8.2 Animal Model with Social Interaction Effects

Usually, data with associative effects tend to include animals that are full-sibs and 
therefore there is the need to account for the common environmental effects in the 
model. Thus the MME for a trait with social interaction effects could be written as:

y = Xb + ZDuD + ZSuS + Wc + e (8.2)

where b is the vector of fixed effects, uD and uS are the vectors for direct and associa-
tive genetic effects, respectively, c is the vector for common environmental effects and 
e is the vector for residual error.
It is also assumed that:

var
u
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and if there are n animals in a group, then for the ith animal:

var e var and( ) ( ( ), , ) ( ), ,i D i S j E EE E j n ji n
D S

= + = − ≠ = + −1 1 12 2s s (8.3)

Assuming that n = 3, with animals i, j and k in the group, then the residual covariance 
between animal i and j in the same group or pen is:

covpenmates = cov(ei, ej) = cov(ED,i + ES,j + ES,k; ED,j+ ES,i + ES,k)

= cov cov covE E E E E E nD i S i S j D j S k S k EDS, , , , , ,, , , ( )( )+ ( )+ ( ) = + -2 2s ssES

2 (8.4)

Therefore, the correlation among animals in the same group (r) can be defined as:
r s s s s= = + − + −cov( , ) / var( ) [ ( ) ] / [ ( ) ]e e e n ni j E E E EDS S D S

2 2 12 2 2

Assuming that residual covariance among different groups is zero, the residual vari-
ance structure can then be defined as var(e) = R, with r rii e ij e= =s r s2 2, ( )  for animals 
i and j in the same group and rij = 0 for animals i and j in different groups. Thus R is 
block diagonal and with n = 3, the block diagonal for one group is:
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R =
⎡

⎣

⎢
⎢
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⎤

⎦

⎥
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⎥

1

1

1

2

r r
r r
r r

s e

All elements between the various block diagonals are zero. However, Bergsma et al. (2008) 
indicated that the residual covariance within groups (covpenmates) equals the variance among 
group means (s 2

g). Thus when covpenmates or r is > 0, instead of fitting the correlated residual 
structure described above, a random group effect can be fitted as an equivalent model, with:

s s s

s

g E E

e

DS S
n2 2

2

2 2= + −( )
and residualvariance now defined as:

∗ == −s se g
2 2

Therefore, the equivalent model to Eqn 8.2 is:

y = Xb + ZDuD + ZSuS + Vg + Wc + e (8.5)

where g is the vector of random group effects with g ∼ N(0, Igs
2
g). The MME to be 

solved then are:
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However, when covpenmates is ≤ 0, then the MME to be solved are:
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Although the number of equations to be fitted for Eqn 8.6 is usually more than for 
Eqn 8.7, the systems of equations for Eqn 8.7 are denser and more difficult to set up.

8.2.1 Illustration of a model with social interaction

Example 8.1
Table 8.1 contains the growth rate data of nine pigs housed in three pens during the 
finishing period in groups of three. The pigs are from three different litters and the 
aim is to estimate the direct and associative breeding values for all pigs, estimate sex 
effect and common environment effect as some of the pigs are full-sibs. It is assumed 
that genetic variances for direct and associative effects are 25.70 g2 and 3.60 g2,
respectively, with a covariance of 2.25 g between them. Also, it is assumed that the 
variance for common environmental variance (s 2

c) is 12.5 g2 and residual variances 
for direct (sED

2 ) and associative (sES

2 ) effects are 40.6 g2 and 10.0 g2, respectively, and 
the correlation among pigs in the same pen (r) is 0.2.

The MME in Eqn 8.6 are initially used to analyse the data. Based on the given 
genetic parameters:

var 4 6 3 1 1 6 6e( ) = + − = + −( ) =s sE ED S
n2 21 0 0 0( ) . .

Since r = cov(ei, ej)/var(e) = 0.2, and cov(ei, ej) = s 2
g in Eqn 8.6, then s2

g = r var(e) = 
0.2*60.6 = 12.12.

Therefore, the residual variance relevant to the analysis using Eqn 8.6 with groups 
fitted is var(e*) = var(e) − s 2

g = 60.6 – 12.12 = 48.48 and:

e
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Setting up the incidence matrices X, V, W and ZD in Eqn 8.6 follows the pattern 
already described for other models in previous chapters, with ZD being a diagonal 
matrix for animals with records and:

V =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

relating records to pen (groups).

Table 8.1. The growth rate of a set of finishing pigs.

Animal Sire Dam Pen Sex Growth rate (g/day)*10

7 1 4 1 Male 5.50
8 1 4 1 Female 9.80
9 2 5 1 Female 4.90

10 1 4 2 Male 8.23
11 2 5 2 Female 7.50
12 3 6 2 Female 10.00
13 2 5 3 Male 4.50
14 3 6 3 Female 8.40
15 3 6 3 Male 6.40
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The matrix ZS that relates an individual to other members of the same group is:

ZS =

0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 0 0

0 00 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0
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Setting up the MME therefore follows a similar pattern to that described in previous chap-
ters. Solving the MME (Eqn 8.6) for this example gives the following set of solutions. The 
results from an analysis that ignored associative effects but fitted random animal and com-
mon environmental effects and fixed effects of sex of pigs and pen effects are also presented.

Model with associative effects
Model with no 

associative effectsa

Sex of pig effects
Male 6.006 0.000
Female 8.241 2.169

Animal effects
DBV SBV TBV

1 0.298 −0.044 0.210 0.336
2 −0.487 0.028 −0.431 −0.478
3 0.189 0.016 0.221 0.142
4 0.298 −0.044 0.210 0.336
5 −0.487 0.028 −0.431 −0.478
6 0.189 0.016 0.221 0.142
7 0.129 −0.075 −0.022 0.279
8 0.527 −0.098 0.330 0.652
9 −0.878 0.010 −0.858 −0.738

10 0.538 −0.003 0.531 0.412
11 −0.494 0.083 −0.328 −0.628
12 0.400 0.059 0.517 0.216
13 −0.578 0.019 −0.539 −0.547
14 0.156 0.004 0.164 0.162
15 0.201 0.002 0.204 0.192

Common environment effects
1 0.325 0.327
2 −0.504 −0.465
3 0.178 0.139

Group effects
1 −0.275
2 0.367
3 −0.092

DBV, direct EBV; SBV, associative EBV; TBV, total EBV = (DBV + (n − 1)SBV).
aModel also fitted pen effects, and solutions were 5.160, 7.131 and 5.838 for pens 1, 2 and 3, respectively.
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Although solutions for sex of pig and common environmental effects were gener-
ally in the same direction in models with or without associative effects, there was a 
major re-ranking of animals based on the EBVs. Griffing (1967) has indicated that 
selection schemes that ignore this social effect of an individual on the phenotypes of 
its group members could result in less optimum response, while Bijma et al. (2007a) 
observed that the presence of social interaction among individuals may increase the 
total heritable variance in a trait.

8.3 Partitioning Evaluations from Associative Models

The equations for DBV and SBV for animal i can be written as:
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with i ≠ j and j = (1, n − 1), where n is the number of animals in the same group and:
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Thus yd1 is the yield record of animal i corrected for all fixed effects and the SBVs of 
all other members in the same group, and yd2 is the average of the yield records of 
all animals in the same group apart from animal i corrected for all fixed effects, the 
DBVs and SBVs of the members of the group. Transferring the left non-diagonal 
terms of A−1 in Eqn 8.8 to the right side of the equation gives:

′ + ′ +

′ + ′ +

⎡

⎣
⎢
⎢

⎤

⎦

Z Z Z Z

Z Z Z Z
D D D S

S D S S

i i
ii

i i
ii

i i
ii

i i
ii

a a

a a

a a

a a
1 2

2 3

⎥⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+
′

′

ˆ

ˆ
u

u

PA

PA

Z Z

D

S

D

2

0

0

1 2

2 3

1

2

apar

i i

a a
a a

D

ZZ Z

yd

yd

u

S

D

i i
prog

prog
a

S )
.

ˆ⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

−
1

2

1 2

2 3

0 5
2a a

a a

ˆ̂

ˆ ˆ

u

u u
D

S S

mate

prog mate2 −
⎛

⎝
⎜

⎞

⎠
⎟

where PA1 and PA2 are the parent averages for DBV and SBV for animal i; apar = 1, 2
3

or 1
2 if both, one or neither parents are known, respectively; and aprog = 1 if the animal’s 

mate is known and 
2
3 if unknown. Note that aii = 2apar + 0.5aprog, therefore pre-

multiplying both sides of the above equation by the inverse of DIAG, with:
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where:
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Equation 8.9 is illustrated below using pig 7 in Example 8.1. For pig 7:

yd1 = (y7 - b̂1 - ûs8 - ûs9 - ĉ1 - ĝ1) = (5.50 - 6.006 - (-0.098)
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The weights indicate that the relative emphasis on parent contribution was higher 
for the SBV compared to the DBV. This might be due to the lower genetic variance 
for associative effects in the model.

8.4 Analysis Using Correlated Error Structure

The analysis of the same data using Eqn 8.7 gave the same solutions obtained from 
Eqn 8.6. Since the major difference is the structure of the residual covariance, R, this 
section has only focused on illustrating the structure of R, for this example. Although 
the number of equations using Eqn 8.7 were three less compared to Eqn 8.6, the num-
ber of non-zero elements was higher (481 compared with 462 for Eqn 8.6). This is due 
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to the correlated residual variance structure in Eqn 8.7. As mentioned earlier, residual 
error structure is block diagonal with all elements between the various block diagonals 
being zero. Thus for the example data in Table 8.1, with n = 3, the R block diagonal 
structure for one group is:
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The MME can then easily be set following the usual principles.
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9.1 Introduction

In Chapter 4, the use of a repeatability model to analyse repeated measurements on 
individuals was discussed and illustrated. The basic assumption of the model was that 
repeated measurements were regarded as expression of the same trait over time. In 
other words, a genetic correlation of unity was assumed between repeated measure-
ments. The model has been employed mostly in the genetic evaluation of milk pro-
duction traits of dairy cattle in most countries up to 1999 (Interbull, 2000). The main 
advantages of this model are its simplicity, fewer computation requirements and 
fewer parameters compared to a multivariate model (see Chapter 5). However, the 
model has some drawbacks. First, test day records within lactation are assumed to 
measure the same trait during the whole lactation length and are used to compute 
305-day yields. These test day records are actually repeated observations measured 
along a trajectory (days in milk), and the mean and covariance between measure-
ments change gradually along the trajectory. Several studies have reported that herit-
ability of daily milk yields varied with days in milk. In addition, genetic correlations 
between repeated measurements usually tended to decrease as the time between them 
increases (Meyer, 1989; Pander et al., 1992). The extension of test records to compute 
305-day yields is unable to account for these changes in the covariance structure. 
Second, the assumption that 305-day yields across parities measure the same trait 
suffers from the same limitations.

However, in beef cattle, repeated measurements of growth have been analysed 
somewhat differently, with the assumption that measurements are genetically differ-
ent but correlated traits. Usually, a multivariate model has been employed in the 
genetic evaluation of these traits. While the multivariate model is an improvement 
on the repeatability model by accounting for the genetic correlations among differ-
ent records, it would be highly over-parameterized if records were available at 
many ages or time periods. For instance, a multivariate model for daily body weight 
up to yearly weight in beef cattle as different traits will not only be over-parameterized 
but it will be difficult to obtain accurate estimates of the necessary genetic 
parameters.

An appropriate model for the analysis of repeated measurements over time or age 
(also termed longitudinal data) should account for the mean and covariance structure 
that changes with time or age and should be feasible in terms of estimating the 
required genetic parameters. In 1994, Schaeffer and Dekkers introduced the concept 
of the random regression (RR) model for the analysis of test day records in dairy 
cattle as a means of accounting for the covariance structure of repeated records over 
time or age. Almost at the same time, Kirkpatrick et al. (1990, 1994) introduced 

9 Analysis of Longitudinal Data
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covariance functions (CFs) to handle the analysis of longitudinal data, illustrating 
their methodology with growth data. The application of RR models in animal breed-
ing for the analysis of various types of data has been comprehensively reviewed by 
Schaeffer (2004). Prior to the development of the RR model for genetic evaluation, 
milk yield test day records were analysed by Ptak and Schaefer (1993) using a fixed 
regression model. The details of this model are discussed and illustrated in the next 
section, followed by its extension to an RR model. This is then followed by a brief 
presentation of CF, and the equivalence of the RR model and CF is demonstrated.

9.2 Fixed Regression Model

The theoretical framework for the fixed regression model and its application for the 
analysis of longitudinal data such as test day milk production traits were presented by 
Ptak and Schaefer in 1993. On a national scale, a fixed regression model was imple-
mented for the genetic evaluation of test day records of milk production traits and 
somatic cell counts in Germany from 1995 until 2002. The model involved the use of 
individual test day records, thereby avoiding the problem of explicitly extending test 
day yields into 305-day yield, and accounted for the effects peculiar to all cows on the 
same test day within herds (herd–test–day (HTD) effect). Therefore, corrections for 
temporary environmental effects on the day of test are more precise compared to evalu-
ations based on 305-day yields. The model also accounted for the general shape of the 
lactation curve of groups of similar age, and calving in the same season and region. The 
latter was accomplished by regressing lactation curve parameters on days in milk (hence 
the name of the model) within the groupings for cows. Inclusion of the curve therefore 
allows for correction of the means of test day yields at different stages of lactation. 
Fitting residual variances relevant to the appropriate stage of lactation could also 
account for the variation of test day yields with days in milk. The only major disadvan-
tage is that the volume of data to be analysed is much larger, especially in the dairy situ-
ation, as ten or more test day observations are stored relative to a single 305-day yield.

Similar to the repeatability model, at the genetic level, the fixed regression model 
assumes that test day records within a lactation are repeated measurements of the 
same trait, i.e. a genetic correlation of unity among test day observations. Usually, the 
permanent environmental effect is included in the model to account for environmen-
tal factors with permanent effects on all test day yields within lactation.

The fixed regression model is of the form:

y htd u pe etij i tjk
k

nf

k j j tij= + + + +
=
åf b

0

where ytij is the test day record of cow j made on day t within HTD subclass i; bk are 
fixed regression coefficients; uj and pej are vectors of animal additive genetic and 
permanent environmental effects, respectively, for animal j; ftjk is the vector of the kth
Legendre polynomials or any other curve parameter, for the test day record of cow j
made on day t; nf is the order of fit for Legendre polynomials used to model the fixed 
regressions (fixed lactation curves) and etij is the random residual. In matrix notation, 
the model may be written as:

y = Xb + Qu + Zpe + e (9.1)
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where y is the vector of TD yields, b is a vector of solutions for HTD and fixed regres-
sions, and u and pe are vectors of animal additive genetic and permanent environ-
mental effects, respectively. The variances of u and pe are as defined in Eqn 4.1. The 
matrices X, Q and Z are incidence matrices and are described in detail in the next 
section, which illustrates the application of the model. It is assumed that var(u) = As 2

u,
and var(pe) = Is 2

p, and var(e) = Is 2
e = R. The MME for Eqn 9.1 are:
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9.2.1 An illustration

Example 9.1
Given in Table 9.1 are the test day fat yields of five cows in a herd with details of 
HTD and days in milk (DIM). The aim is to estimate solutions for HTD effects, 
regression coefficients for a fixed lactation curve fitting Legendre polynomials of 
order 4, solutions for permanent environmental effects and breeding values for ani-
mal effects using Eqn 9.1. Assume that the estimated variances for additive genetic 
effects, permanent environmental effects and residual variances were 5.521 kg2,
8.470 kg2 and 3.710 kg2, respectively. Then:

a1 = s e
2/s u

2 = 3.710/5.521 = 0.672

and:

a2 = s e
2 /s p

2 = 3.710/8.470 = 0.438

Table 9.1. Test day fat yields (TDY) for some cows in a herd.

Animals

4 5 6 7 8

DIM HTD TDY HTD TDY HTD TDY HTD TDY HTD TDY

4 1 17.0 1 23.0 6 10.4 4 22.8 1 22.2
38 2 18.6 2 21.0 7 12.3 5 22.4 2 20.0
72 3 24.0 3 18.0 8 13.2 6 21.4 3 21.0

106 4 20.0 4 17.0 9 11.6 7 18.8 4 23.0
140 5 20.0 5 16.2 10 8.4 8 18.3 5 16.8
174 6 15.6 6 14.0 9 16.2 6 11.0
208 7 16.0 7 14.2 10 15.0 7 13.0
242 8 13.0 8 13.4 8 17.0
276 9 8.2 9 11.8 9 13.0
310 10 8.0 10 11.4 10 12.6

DIM, days in milk; HTD, herd–test–day.
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The modelling of the fixed lactation curve by means of Legendre polynomials 
implies the need to compute F, which is the matrix of Legendre polynomials evalu-
ated at the different DIM. The matrix F is of order t (the number of DIM) by k
(where k is the order of fit) with element fij = fj(at), which is the jth Legendre poly-
nomial evaluated at the standardised DIM t (at). Therefore F = ML, where M is the 
matrix containing the polynomials of the standardized DIM values and L is a matrix 
of order k containing the coefficients of Legendre polynomials. The calculation of F
is outlined in Appendix G and matrix F for Example 9.1 is shown in Eqn g.1.

SETTING UP THE INCIDENCE MATRICES FOR THE MME

In Eqn 9.1, let Xb = X1b1 + X2b2, then in Example 9.1, the matrix X1, which relates 
records to HTD effects, is of order ntd (number of TD records) and is too large to be 
presented. However, X′1X1 is diagonal and is:

X′1 X1 = diagonal [3, 3, 3, 4, 4, 5, 5, 5, 5, 5]

The matrix X2 of order ntd by nf contains Legendre polynomials (covariables) 
corresponding to the DIM of the ith TD yield. Thus the ith row of X2 contains 
elements of the row of F corresponding to the DIM for the ith record. The matrix 
X2, with rows for the first three TD records of cow 4 and the last three TD records 
of cow 8 is:
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Considering only animals with records, Q = Z and is a matrix of order 5 (number 
of animals) by ntd. The matrix Q′ could be represented as:
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where q′i is a vector of ones with size equal to the number of TD records for the ith
cow. The matrices Q′Q and Z′Z are both diagonal and equal. Thus:

Q′Q = Z′Z = diag[10, 10, 5, 7, 10]

The matrix A−1 has been given in Example 4.1. The remaining matrices in the 
MME could be obtained as outlined in earlier chapters. Solving the MME, with the 
solution for the 10th level of HTD effects constrained to zero, give the following results:

Effects Solutions

HTD
1 10.9783
2 7.9951
3 8.7031
4 8.2806
5 6.3813
6 3.1893
7 3.3099
8 3.3897
9 0.6751

10 0.0000
Fixed regression coefficients

1 16.3082
2 −0.5227
3 −0.1245
4 0.5355
5 −0.4195

Animal effect
EBV for daily yield EBV for 305-day yield

1 −0.3300 −100.6476
2 −0.1604 −48.9242
3 0.4904 149.5718
4 0.0043 1.3203
5 −0.2449 −74.7065
6 −0.8367 −255.2063
7 1.1477 350.0481
8 0.3786 115.4757

Permanent environmental effects
Cow Solutions for daily yield Solutions for daily yield

4 −0.6156 −187.7634
5 −0.4151 −126.6150
6 −1.6853 −514.0274
7 2.8089 856.7092
8 −0.0928 −28.3035

EBV, estimated breeding value.

The solutions for the fixed regressions are regression coefficients from which 
plots of lactation curves can be obtained. In practice, the fixed regressions are usually 
fitted within group of cows calving in the same season in the same parity and of simi-
lar age. Thus the curves obtained for various groups of cows are useful for examining 
the influence of different environmental factors on lactation curves. In Example 9.1, 
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one fixed lactation curve was fitted for all cows and a vector (v) of actual daily fat 
yield (kg) from days 4 to 310 can be obtained as:

v = =
==
ååF ˆ ˆb f
j

nf

i
ij jb

14

310

2

where F is a matrix of Legendre polynomials evaluated from 4 to 310 DIM, as 
described in Appendix G. From the above equation, v38, for instance, is:

v38 20 7071 0 9525 0 6441 0 0176 0 6205 12 2001= - - -[ ] =. . . . . .b̂

For the DIM in the example data set, v is:

(DIM) 4 38 72 106 140 174 208 242 276 310
v = [10.0835 12.2001 12.6254 12.2077 11.5679 11.0407 10.9156 11.1111 11.2500 10.8297]

A graph of the fixed lactation curve can be obtained by plotting the elements of v
against DIM.

The EBV for animals and solutions for permanent environmental effect obtained 
by solving the MME are those for daily fat yield. To obtain EBV or solutions for pe
effects on the nth DIM, these solutions are multiplied by n. This is implicit from the 
assumptions stated earlier of genetic correlations of unity among TD records. Thus 
EBVs for 305 days, shown in the table of results above, were obtained by multiplying 
the solutions for daily fat yield by 305.

PARTITIONING BREEDING VALUES AND SOLUTIONS FOR PERMANENT ENVIRONMENTAL EFFECTS

Similar to the repeatability model, EBVs of animals can be partitioned in terms of 
contributions from various sources, using Eqn 3.8. The YD for an animal is now cal-
culated as the average of corrected TD records. The correction is for effects of HTD, 
fixed regressions and pe. Thus for cow 6 with five TD records, YD6 is:

YD6 = (Q′Q)−1Q′(y6 − X1b̂1 − X2b̂2 − p̂e)
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Then the solution for additive genetic effect for animals 6 using Eqn 3.8 is:

û6 = w1((û1 + û5)/2) + w2(YD6)
= w1((−0.3300 + −0.2449)/2) + w2(−0.9844) = −0.8367

with w1 = 2(0.672)/6.344, w2 = 5/6.344 and 6.344 = the sum of the numerators of 
w1 and w2.

For animal 8 with ten TD records, the solution for additive genetic effect is:

û8 = w1((û1 + û7)/2) + w2(YD8)
= w1((−0.3300 + 1.1477)/2) + w2(0.3746) = 0.3786

with w1= 2(0.672)/11.344, w2 = 10/11.344 and 11.344 = the sum of the numerators 
of w1 and w2. The weights on YDs were 0.7882 and 0.8815 for animals 6 and 8, 
respectively. This illustrates the fact that as the number of TD increases, more emphasis 
is placed on performance records of the animal. Considering animal 4 with ten TD 
records and a progeny, her breeding value can be calculated as:

û4 = w1((û1 + û2)/2) + w2(YD4) + w3(û7 − 0.5û3)
= w1((−0.3300 + −0.1604)/2) + w2(−0.0226)
  + w3(2(1.1477) − 0.4934) = 0.0043

where w1 = 2(0.672)/11.68, w2 = 10/11.68 and w3 = 0.5(0.672)/11.68 and 11.68 is 
the sum of the numerators of w1, w2 and w3. There was a slight reduction to the 
weight given to parent average from 0.1185 (animal 8) to 0.1151 (animal 4) due to 
the additional information from progeny.

The solution for pe of an animal can be calculated as in Section 4.2.2, using Eqn 4.4. 
Here, the correction of the TD records is for the estimates for HTD effects and fixed 
regressions and animal effect. Thus for cow 6, p̂e6 can be calculated as:
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= −− −9.1650/5.4380= 1.6853

where t is a column vector of order 5 (number of TD records for the animal), with 
all elements equal to one. However, in contrast to pe estimates in Example 4.1, these 
pe estimates represent permanent environmental factors affecting TD records within 
lactation.

9.3 Random Regression Model

In Section 9.2, the advantage of including fixed regressions on days in milk in the 
model was to account for the shape of the lactation curve for different groups of 
cows. However, the breeding values estimated represented genetic differences 
between animals at the height of the curves. Although different residual variances 
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associated with different stages of lactation could be fitted with the fixed regression 
model, the model did not account for the covariance structure at the genetic level. 
Schaeffer and Dekkers (1994) extended the fixed regression model for genetic 
evaluation by considering the regression coefficients on the same covariables as 
random, therefore allowing for between-animal variation in the shape of the curve. 
Thus the genetic differences among animals could be modelled as deviations from 
the fixed lactation curves by means of random parametric curves (see Guo and 
Swalve, 1997) or orthogonal polynomials such as Legendre polynomials 
(Brotherstone et al., 2000), or even non-parametric curves such as natural cubic 
splines (White et al., 1999). Most studies have used Legendre polynomials as they 
make no assumption about the shape of the curve and are easy to apply. The RR 
model has also been employed for the analysis of growth data in pigs (Andersen and 
Pedersen, 1996) and beef cattle (Meyer, 1999). An additional benefit of the RR 
model in dairy cattle is that it provides the possibility of genetic evaluation for 
persistence of the lactation. A typical random regression model (RRM) especially 
for the analysis of dairy cattle test day records is of the form:

y htd etijk i jtk k jtk jk
k

nr

k

nf

jtk jk
k

nr

tijk= + + + +
== =
∑∑ ∑f f fb u

00 0

pe

where ytijk is the test day record of cow j made on day t within HTD subclass i; bk are 
fixed regression coefficients; ujk and pejk are vectors of the kth random regression for 
animal and permanent environmental effects, respectively, for animal j; fjtk is the vec-
tor of the kth Legendre polynomials for the test day record of cow j made on day t;
nf is the order of polynomials fitted as fixed regressions; nr is the order of polynomi-
als for animal and pe effects; and etljk is the random residual. The model in matrix 
notation is:

y = Xb + Qu + Zpe + e

The vectors y, b and the matrix X are as described in Example 9.1. However, u
and pe are now vectors of random regressions for animal additive genetic and pe 
effects. The matrices Q and Z are covariable matrices and, if only animals with 
records are considered, the ith row of these matrices contains the orthogonal 
polynomials (covariables) corresponding to the DIM of the ith TD yield. If the 
order of fit is the same for animal and pe effects, Q = Z, considering only animals 
with records. This would not be the case if the order of fit is different for animal 
and pe effects. In general, considering animals with records, the order of either 
Q or Z is ntd (number of TD records) by nk, where nk equals nr times the number 
of animals with records. It is assumed that var(u) = A∗ G, var(pe) = I ∗ P and var(e) = 
Is 2

e = R, where A is the numerator relationship matrix, ∗ is the Kronecker product 
and G and P are of the order of polynomial fitted for animal and pe effects. The 
MME are:
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9.3.1 Numerical application

Example 9.2
Analysis of the data in Table 9.1 is undertaken fitting an RR model with Legendre 
polynomials of order 4 fitted for the fixed lactation curve and Legendre polynomials 
of order 2 fitted for both random animal and pe effects. The covariance matrices for 
the random regression coefficients for animal effect and pe effects are:

G =
−
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

3 297 0 594 1 381

0 594 0 921 0 289

1 381 0 289 1 005

. . .

. . .

. . .

⎥⎥
⎥
⎥

=
− −

−
−

⎡

⎣

;

. . .

. . .

. . .

P

6 872 0 254 1 101

0 254 3 171 0 167

1 101 0 167 2 457

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and the residual variance equals 3.710 for all stages of lactation.
As indicated earlier, the above G or P matrix models the genetic or permanent 

environment covariance structure of fat yields over the whole lactation length. Thus 
the genetic covariance between DIM i and j along the trajectory can be calculated 
from G. For instance, the genetic variance for DIM i, (vii) can be calculated as:

vii = tiGt′i
where ti = fik, the ith row vector of F, for day i, and k is the order of fit. The genetic 
covariance between DIM i and j (vij) therefore is:

vij = tiGt′j
Using the G matrix in Example 9.1, the genetic variance for DIM 106 equals 

2.6433 kg2, with t106 = [0.7071 −0.4082 −0.5271], and the genetic covariance between 
DIM 106 and 140 equals 3.0219 kg, with t140 = [0.7071 −0.1361 −0.7613]. The plots 
of daily genetic and permanent environmental variances against DIM are shown in 
Fig. 9.1, indicating how these variances change through the lactation length.

SETTING UP THE MATRICES FOR THE MME

The setting of the matrix X has been described in Example 9.1. The matrix X′R−1X
can easily be obtained by matrix multiplication. Considering only animals with 
records, Q′ can be represented as:

Q

Q 0 0 0 0

0 Q 0 0 0

0 0 Q 0 0

0 0 0 Q 0

0 0 0 0 Q

′

′
′

′
′

′

 = 
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7

8
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⎥

where Q′i is the matrix of order nr by k (number of TD records for animal i). Thus 
for animal 6, Q′6 is:

Q ′6

0 7071 0 7071 0 7071 0 7071 0 7071

1 2247 0 9525 0 6804 0=

. . . . .

. . .- - - - .. .

. . . . .

4082 0 1361

1 5811 0 6441 0 0586 0 5271 0 7613
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- - -
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Fig. 9.1. The estimates of daily genetic and permanent environmental variances by days 
in milk.
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For all animals with records, Q′ R−1Q = Z′ R−1Z and are block diagonal. For 
instance, Q′ R−1Q for the first three cows (cows 4, 5 and 6) with records is:

1.348 0.000 0.335 0 0 0 0 0 0

0.000 1.647 0.000 0 0 0 0 0 0

0.335 0.000 2.035 0 00 0 0 0 0

0 0 0 1.348 0.000 0.335 0 0 0

0 0 0 0.000 1.647 0.000 0 0 0

0 0 0 0.335 0.0000 2.035 0 0 0

0 0 0 0 0 0 0.674 0.648 0.167

0 0 0 0 0 0 0.648 0.824 0.591

0

−
− −

00 0 0 0 0 0.167 0.591 1.018−
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⎥
⎥
⎥
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When all animals are considered, Q′R−1Q is augmented by nr columns and rows per 
ancestor without records (i.e. animals 1−3). The matrix G−1 is then added to Q′R−1Q and 
P−1 added to Z′R−1Z to obtain the MME. Solving the MME by direct inversion with the 
solution for level 10 of HTD effects constrained to zero gave the following results:

Effects Solutions

HTD
1 10.0862
2 7.5908
3 8.5601
4 8.2430

Continued



140 Chapter 9

(Continued )

Effects Solutions

5 6.3161
6 3.0101
7 3.1085
8 3.1718
9 0.5044

10 0.0000
Fixed regression

1 16.6384
2 −0.6253
3 −0.1346
4 0.3479
5 −0.4218

Animal Regression coeffients 305-day breeding value
1 −0.0583 0.0552 −0.0442 −12.3731
2 −0.0728 −0.0305 −0.0244 −15.7347
3 0.1311 −0.0247 0.0686 28.1078
4 0.3445 0.0063 −0.3164 74.8132
5 −0.4537 −0.0520 0.2798 −98.4153
6 −0.5485 0.0730 0.1946 −118.4265
7 0.8518 −0.0095 −0.3131 184.1701
8 0.2209 0.0127 −0.0174 47.6907

Permanent environmental effects
Cow Regression coefficients 305-day solutions

4 −0.6487 −0.3601 −1.4718 −138.4887
5 −0.7761 0.1370 0.9688 −168.5531
6 −1.9927 0.9851 −0.0693 −427.2378
7 3.5188 −1.0510 −0.4048 756.9415
8 −0.1013 0.2889 0.9771 −22.6619

The solutions for HTD and fixed regression for the RRM are similar to those from 
the fixed regression model. Lactation curves can be constructed from the fixed regres-
sion, as described in Section 9.2.1, and influences of different environmental factors on 
the curves can be evaluated. Each animal has nr regression coefficients as solutions for 
animal and permanent environmental effects. These are not useful for ranking animals 
and need to be converted to breeding values for any particular day of interest. Usually, 
in dairy cattle, values are calculated for 305-day yields and these have been shown above 
in the table of results. The EBV from days 6 to m for animal k (EBVkm) is calculated as:

EBV with tkm k j ij
j

nr

i

m

= = =
==
ååt tˆ ;u f

06

(9.2)

where t is a row vector of order nr, with the jth elements equal to the sum of the jth 
orthogonal polynomial from days 6 to m and ûk is vector for the regression coefficient 
of animal k. For Example 9.2, the matrix F for days 4 to 310 has not been shown 
because of the size but can be generated as described in Appendix G. Assuming 305-day 
breeding values are computed from days 6 to 310, then the vector t for Example 9.2 
calculated from days 6 to 310 is:

t = [215.6655 2.4414 −1.5561]
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The breeding value for 305-day yield for animal 4, for instance, can be calculated as:

t ˆ [ . . . ]

.

.

.

u4 215 6655 2 4414 1 5561

0 3445

0 0063

0 3164

74= −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

≈ ..81

Over the lactation length, daily breeding values can be computed for each animal 
from the random regression coefficients. Genetic lactation curves can be obtained for 
each animal by plotting these daily breeding values against DIM and differences 
between curves for different animals can then be studied. Let v be a vector containing 
daily breeding values for days 6 to 310, then v can be calculated as:

v Tu T= = =
==
∑∑ˆ ;k ij ij
j

nr

i

twith f
06

310

The plots of the daily breeding values for animals 2, 3 and 8 are shown in Fig. 9.2. 
The plots indicate that the animal with the highest 305-day breeding value for fat 
yield also had the highest daily breeding values along the lactation length.

If the trait being analysed is milk yield, persistence breeding values can be calculated 
from the daily breeding values. For instance, persistence predicted transmitting ability 
(PSPTA) for milk yield can be calculated (Schaeffer et al., 2000) as:

PS
PTA PTA y

yPTA =
− +280 60 280

60

100( )

where PTA60 and PTA280 are predicted transmitting abilities for day milk yield for an 
animal at days 60 and 280, respectively, and y60 and y280 are the average milk yields 
of cows in the genetic base at days 60 and 280, respectively.
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Fig. 9.2. The estimates of daily breeding values for some animals by days in milk.
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9.3.2 Partitioning animal solutions from random regression model

Equations for calculating the contribution of information from various sources to the 
solutions (random regression coefficients) of an animal from an RRM were presented 
by Mrode and Swanson (2002). These equations are the same as those presented in 
Section 5.2.3 for the multivariate model. Test day records of cows contribute to ran-
dom regressions for the animal effect through the yield deviations. The calculation of 
the vector of yield deviations (YD) is first examined. Using the same argument for 
deriving Eqn 5.7, the equation for YD for an RRM is:

YD = (Q′R−1Q)−1(Q′R−1(y − Xb̂ − Zpê)) (9.3)

While this equation is similar to Eqn 5.6 for yield deviation under a multivariate 
model, here YD is a vector of weighted regressions of the animal’s TD yields adjusted 
for all effects other than additive genetic effect, on orthogonal polynomials for DIM. 
Since YD is a vector of regressions, it can be used to generate actual yield deviations 
for any DIM using Eqn 9.2. Thus actual yield deviation (yd*) for day m, for instance, 
equals v′YD, where v is a vector of order nr with vm = fmj and j = 1,nr. The actual 
yield deviation for 305-day yield can be calculated using Eqn 9.2 but with û replaced 
with YD.

The calculation of YD for cow 6 in Example 9.2 is illustrated below. First, the 
vector of TD records for cow 6 corrected for all effects (yc) other than the additive 
genetic effect is:

yc = y6 − X1b̂1 − X2b̂2 − p̂e

c =y
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where b̂1 and b̂2 are vectors of solutions for HTD and fixed regression coefficients. 
The matrices Q′R−1Q and Q′R−1yc are:

Q R Q′ −1  = 

0.6738 0.6484 0.1674
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Using Eqn 9.3, yield deviation for cow 6 (YD6) is:

YD Q R Q Q R y6
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The actual yield deviation at 305 DIM for cow 6 using Eqn 9.2 with û replaced with 
YD6 is −1086.6450.

The equation for the partitioning of random regression coefficients for animals 
to contributions for parent average, yield deviations and progeny is:

ûanim = W1PA + W2(YD) + W3PC (9.4)

with:

PC 2u u W W W= -( ) =ååa aprog prog progˆ ˆ /mate and I1 2 3
+ + 

This is the same equation as Eqn 5.8, which partitioned breeding values under the 
multivariate model. The weights W1, W2 and W3 are as defined in Eqn 5.8, but 
here Wi is of the order of orthogonal polynomials for animal effects. Illustrating 
with cow 6, the weights on parent average (W1) and yield deviation (W2) can be 
calculated as:

W1
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The contributions from PA and YD to the random regression coefficients for cow 
6 are:
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For cow 8 with ten TD records and no progeny, Eqn 9.4 is:
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Considering cow 4, with ten TD records and a progeny:
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Equation 9.4 is useful in explaining the evaluations for animals in terms of con-
tributions from different sources of information, and how these contributions vary 
with different DIM could also be examined. However, Eqn 9.4 relates to random 
regression coefficients. Usually, the EBV at a particular stage of the longitudinal scale, 
such as 305 days for milk yield or body weight at 1 year of age, is published. Therefore, 
the interest might be in calculating the contributions from the various sources of infor-
mation to the published EBV. Using milk yield as an example, the contribution to 
305-day estimated BV from various sources of information can be calculated as:

û(305)anim = V1PA + V2YD + V3PC
û(305)anim = PA* + YD* + PC* (9.5)
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where Vi = DWi, with D being a diagonal matrix such that dii = ti, with ti being the 
element of the row vector t in Eqn 9.2, PA* = V1PA, YD* = V2YD and PC* = V3PC.
However, V1 + V2 + V3 ≠ I. Thus the estimated BV at 305 days (BV(305)anim) from 
Eqn 9.5 is:

BV u PA YD PCanim anim
i

nr

i i
i

nr

i

nr

i
i

( ) ( )
* * *

305 305
1 11

= = + +
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where the contributions to the EBV at 305 days from PA, YD and PC are:
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Using Eqn 9.5, the contributions from various sources of information can be calcu-
lated for EBV at days or ages j to n along the longitudinal scale, and this could be 
plotted to examine how the contributions vary with days or age.

Using cow 6 in Example 9.2, the matrix D used in calculating the V terms in 
Eqn 9.5 is:

D = diag(215.6655, 2.4414, −1.5561)

Using the W1 and W2 calculated earlier for cow 6:
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Therefore, contributions from PA and YD are −26.4049 and −91.9862, respectively, 
and:

BV(305)6 = −26.4049 + 91.9862 = −118.3911

Thus contribution from parent average is about 22% of the EBV at 305 days. The 
EBV at 305 days calculated above is slightly different from the value of −118.4265 
shown earlier, due to rounding.

9.3.3 Calculating daughter yield deviations

The equation for calculating daughter yield deviation under an RRM is the same as 
Eqn 5.12 presented for the multivariate models. However, with the RRM, DYD in 
Eqn 5.12 is a vector of random regression coefficients and the weights M1, M2 and 
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M3 are of the order nr. Actual daughter yield deviation for any DIM can be generated 
using Eqn 9.2.

As indicated in Section 5.2, for ease of computation, W2prog in Eqn 5.12 is pre-
multiplied with G−1, such that the equation for DYD becomes:

DYD G W 2YD u G W= -( )- -å 1 1
2 2prog mate prog proga aprog ˆ /

9.3.4 Reliability of breeding values

The reliability of an EBV depends on its prediction error variance (PEV) relative to 
the genetic variance. It can therefore be regarded as a statistic summarizing the value 
of information available in calculating the EBV. The published EBV from an RR 
model is usually a linear function of the random regression coefficients obtained by 
solving the MME. The principles for calculating PEV and reliability under this situa-
tion are presented using the diagonal elements of the inverse of the coefficient matrix 
of the MME for Example 9.2.

Let k′u define the EBV for the trait of interest for animal i from the RR model. 
The vector k = wit, where wi might be the weighting factor for the ith age or lactation 
if the study was on body weight at several ages or fat yield in different lactations 
analysed as different traits. For instance, if fat yields in lactations 1 and 2 were ana-
lysed as different traits, w′i might be [0.70 0.3], indicating a weight of 0.7 and 0.3, 
respectively, for first and second lactation EBV. The vector t defines how within lacta-
tion EBV was calculated and is the same as in Eqn 9.2. For Example 9.2, k is a scalar 
with a value of 1. Given that G is the additive genetic covariance matrix for random 
regression effect for animal effects and P is the covariance matrix for pe effects, then 
the additive genetic variance of k′u = g = k′Gk and the variance for the pe effect for 
the trait of interest = p = k′Pk. The heritability of k′u can therefore be calculated as 
(g/(g + p + e) and a = (4 − h2)/h2.

Let Cii be the subset of the inverse of MME corresponding to the genetic 
effect for the ith animal. Then for animal i, prediction error variance (PEVi) = 
k′Ciik. The reliability of k′u can therefore be calculated as 1 − PEVi/g. As an illus-
tration, in Example 9.2, k′ = wT = [215.6655 2.4414 −1.5561], g = k′Gk = 
154896.766 kg2, p = k′Pk = 323462.969 kg2 and h2 = 0.32. For animal 1, the 
matrix C11 is:

C11

2 9911 0 5159 1 2295

0 5159 0 8683 0 2480

0 2295 0 2480 0

=
-
-

- -

. . .

. . .

. . .99183
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and:

PEV1 = k′C11k = 140499.97

Therefore, reliability for animal 1 equals 1 − 140499.97/154896.766 = 0.09. The relia-
bilities for the animals in Example 9.2 are:
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Animal Reliability

1 0.09
2 0.04
3 0.07
4 0.12
5 0.15
6 0.06
7 0.10
8 0.05

In practice, calculating the inverse of the MME is not feasible for large populations 
and PEV has to be approximated. As indicated earlier, EBV from RR models are linear 
functions of the random regressions; therefore, methods to approximate reliabilities should 
simultaneously approximate PEV and the prediction error covariance (PEC) among the 
individual random regressions (Liu et al., 2002; Meyer and Tier, 2003). Such an approxima-
tion method presented by Meyer and Tier (2003) is outlined in Appendix D, Section D.2.

9.3.5 Random regression models with spline function

Random regression models with Legendre polynomials have been considered to have 
better convergence properties as the regressions are orthogonal. However, some stud-
ies have reported high genetic variances at the extremes of the lactation and negative 
correlations between the most distant test days. In order to overcome this limitation, 
some workers have fitted RRM using splines (Misztal, 2006; Bohmanova et al., 2008). 
Splines are piece-wise functions consisting of independent segments that are connected 
in knots. The segments are described by lower-order polynomials. Linear splines are 
the simplest spline function where the segments are fitted by linear polynomials 
between two knots adjacent to the record and zero between all other knots. Thus the 
system of equations is sparse as only two coefficients are non-zero for a given record. 
The use of cubic splines for the modelling of the lactation curve has also been pre-
sented by White et al. (1999). However, the linear spline is considered in this section.

Let T be a vector of n knots, then the covariables of the linear spline for DIM 
t (Fi(t)) located between knots Ti and Ti+1 can be calculated as:

Fi(t) = (t − Ti)/(Ti+1 − Ti)
Fi+1(t) = (Ti+1 − t)/(Ti+1 − Ti)

= 1 − Fi(t) and F1. . . i−1, i+2. . .n = 0

If t = Ti, Fi(t) = 1 and F1. . . i−1, i+1. . .n = 0.
Thus the vector F for DIM t has at most two non-zero elements, which sum up to 

one. The above formula assumes that Ti £ t < Tn. If, however, t < Ti or t > Tn, the fol-
lowing can be used and the sum of the elements of the vector will not sum up to one:

if t < T1, F1(t) = t/T1 and F1+ i . . .n = 0
if t > Tn, Fn(t) = T5/t and F1. . .n−1 = 0

Using the data in Example 9.1, assume that the four knots are fitted for the fixed 
lactation curve and knots are placed at days 4, 106, 208 and 310, the covariables for 
the spine function for particular DIM are as follows:
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DIM F0 F1 F2 F3

4 1.000 0.000 0.000 0.000
38 0.333 0.667 0.000 0.000
72 0.667 0.333 0.000 0.000

106 0.000 1.000 0.000 0.000
140 0.000 0.333 0.667 0.000
174 0.000 0.667 0.333 0.000
208 0.000 0.000 1.000 0.000
242 0.000 0.000 0.333 0.667
276 0.000 0.000 0.667 0.333
310 0.000 0.000 0.000 1.000

As an illustration, the covariates for DIM 38 can be computed as:

F1(38) = (38 − 4)/106 − 4) = 0.333 and F2(38) = 1 − 0.333 = 0.667

Thus F(38) = [0.333, 0.667, 0 0]
A random regression model can therefore be fitted as:

y htd etijk i jtk k jtk jk
k

nr

k

nf

jtk jk
k

nr

tij= + + + +
== =
∑∑ ∑f f fb u pe

00 0

where all terms are as defined in Section 9.3 but the fjtk is the vector of the kth spline 
function for the test day record of cow j made on day t. The same procedure described 
in Section 9.3.1 can be used in the application of the model for the analysis of data 
and interpretation of results.

9.3.6 Random regression model for maternal traits

Maternal genetic effects are important in growth traits in beef cattle, and models that 
account for these effects have been discussed in Chapter 7. However, the RR model 
could also be augmented to include random regressions for maternal genetic and 
maternal permanent environmental effects. Albuquerque and Meyer (2001) examined 
different orders of fit for the random regressions for both effects. One of the favoured 
models was the one in which the order of Legendre polynomials for direct genetic, 
maternal genetic, animal pe and maternal pe effects were 5, 5, 5 and 3, respectively.

Such a model, excluding all fixed effects, could be written as:

yijktd jti jti ji
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where yijktd is the body weight of cow j taken at age t that has a dam d; uji, mji and 
peji are the random regressions for direct, maternal genetic and animal pe effects for 
animal j, respectively; ppdi is the random regression for dam pe effects and eijktd is 
random error; fjti and fdti are the vector of the ith Legendre polynomial for body 
weight at age t for cow j and dam d, respectively. They assumed a zero covariance 
between direct and maternal genetic effects to simplify the computation. The vari-
ance for direct effects increased from birth to 365 days while maternal genetic 
variance increased from birth to about 115 days and decreased thereafter.
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9.4 Covariance Functions

Kirkpatrick et al. (1990, 1994) introduced the concept of analysing repeated records 
taken along a trajectory such as time or age by means of covariance functions. In 
view of the fact that such a trait can take on a value at each of an infinite number of 
ages and its value at each age can be regarded as a distinct trait, the trajectory for such 
a trait could be regarded as an infinite-dimensional trait. Thus the growth trajectory 
or milk yield trajectory of an individual could be represented by a continuous function. 
Covariance function describes the covariance structure of an infinite-dimensional 
character as a function of time. Therefore, the covariance function is the infinite-
dimensional equivalent of a covariance matrix for a given number of records taken 
over time at different ages. The value of the phenotypic covariance function, þ(ti, tj), 
gives the phenotypic covariance between the value of the trait at ages ti and tj.
Similarly, the value of the additive genetic covariance function, f(ti, tj), gives the addi-
tive genetic covariance between the value of the trait at ages ti and tj. In mathematical 
terms, given t ages, the covariance between breeding values ul and um on an animal at 
ages al and am could be written as:

cov( , ) ( , ) ( ) ( )u u f a a a a Cl m l m i l j m ij
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= =
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where f with factors tij is the covariance function (CF), C is the coefficient matrix 
associated with the CF with elements Cij, al is the lth age standardized to the intervals 
for which the polynomials are defined and k is the order of fit. Kirkpatrick et al.
(1990, 1994) used Legendre polynomials that span the interval −1 to + 1. The ages 
can be standardized as described in Appendix G.

Given that G is the observed genetic covariance matrix of order t, and 
assuming a full order polynomial fit (k = t), Eqn 9.6 can be written in matrix 
notation as:

Ĝ = F Ĉ F′ (9.8)

and Ĉ  can be estimated as:

Ĉ  = F−1Ĝ (F−1) (9.9)

where F is the matrix of Legendre polynomials of order t by k with element fij = fj(at) = 
the jth polynomial evaluated at standardized age t.

As an illustration, assume body weight measurements in beef cattle have been 
taken at three different ages, 90, 160 and 240 months old, and that the genetic 
covariance matrix (Ĝ) estimated was:

ˆ
. . .

. . .

. . .

G =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

132 3 127 0 136 6

127 0 172 8 200 8

136 6 200 8 288 0

Using the method described in Appendix G, the vector of standardized ages is:

a′ = [−1.0 −0.0667 1.000]
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and M becomes:

M =
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1 0000 1 0000 1 0000
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Thus for t = 3, L is:
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and F is:

F = 
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and from Eqn 9.9, the coefficient matrix Ĉ is:

Ĉ =
-
-

- -

344 7117 45 2787 3 2062
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The covariance between two different ages can be calculated using Eqn 9.8. For 
instance, the variances at days 90 and 200 of body weight and the covariance 
between body weight on both days are F90Ĉ F′90 = 132.30, F200Ĉ F′200 = 218.50, 
F90Ĉ F′200 = 129.71, respectively, with:

F90 = m90L = [0.7071 −1.2247 1.5811]

and:

F200 = m200L = [0.7071 0.5716 −0.2740]

where mi are the appropriate row vectors of the matrix M.
Also, from Eqn 9.8 and Appendix G, Ĝ can be written as:

Ĝ  = MLĈL′M′

Therefore, Ĝ = MTM′ with T = LĈ L or calculated as T = M−1Ĝ(M−1)′, where T is 
the matrix with elements tij in Eqn 9.7. Substituting T in Eqn 9.7 the full estimate of 
the CF, f(al, am), can be obtained. Using the example data:

T =
-
-

- -
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ø

÷
177 99 39 35 11 52

39 35 36 78 0 43

11 52 0 43 18 43

. . .

. . .

. . .
÷÷
÷

Therefore, the full estimate of the covariance function, f(al, am), is:

f(al, am) = 177.99 + 39.35(al + am) + 36.78alam − 11.52(al
2 + am

2)
− 0.43(al

2am + alam
2) + 18.43al

2am
2



Analysis of Longitudinal Data 151

The application of CF in genetic evaluation involves defining an equivalent model 
using Eqn 9.8. For instance, using the example of the body weight of beef cattle, 
assume that the multivariate model for observations measured on one animal is:

y = Xb + a + e

where y, X, b, a and e are vectors defined as in Eqn 5.1 with i = t, with var(a) = Ğ and
var(e) = R. Assuming a CF has also been fitted for the covariance matrix for environ-
mental effects with a term included to account for measurement error, then:

R = FCpF′ + Is2e

where Cp contains the coefficient matrix associated with the CF for pe and variance 
e is Is 2e. Using this equation and Eqn 9.8, an equivalent model to the multivariate 
model can be written as:

y = Xb + Fu + Fpe + e

where u and pe are now vectors of random regression coefficients for random animal 
and pe effects. Then var(u) = FCF′ and var(pe) = FCpF′. The application of the 
above model in genetic evaluation is illustrated in Example 9.2. Thus the breeding 
value an for any time n can be calculated as:

a tn i n i
i

k

=
=

−

∑f ( )u
0

1

where f(tn) is the vector of Legendre polynomial coefficients evaluated at age tn.
Thus with a full order fit, the covariance function model is exactly equivalent to 
the multivariate model. However, in practice, the order of fit is chosen such that 
the estimated covariance matrix can be appropriately fitted with as few parameters 
as possible. In the next section, the fitting of a reduced-order CF is discussed.

9.4.1 Fitting a reduced order covariance function

Equation 9.8 and the illustration given in the above section assumed a full-order poly-
nomial fit of G (k = t). Therefore, it was possible to get an inverse of F and hence 
estimate C. However, for a reduced-order (k < t) fit, F has only k columns and a 
direct inverse may not be possible. With the reduced fit, the number of coefficients to 
be estimated are reduced to k(k + 1)/2. This is particularly important for large L, such 
as test day milk yield within a lactation with t equal to 10 or 305 assuming monthly 
or daily sampling and requiring t(t + 1)/2 coefficients to be estimated. Thus a reduced 
order fit with k substantially lower than t could be very beneficial.

Kirkpartrick et al. (1990) proposed weighted least squares as an efficient method 
of obtaining an estimate of the reduced coefficient matrix (Č) from the linear function 
of the elements of Ğ. They outlined the following steps for the weighted least-square 
procedure. The procedure is illustrated using the example Ğ for the body weight in 
beef cattle given earlier, fitting polynomials of order one, i.e. only the first two 
Legendre polynomials are fitted, thus k = 2. Initially, a vector ğ of order t2 is formed 
by stacking the successive columns of Ğ. Thus:

ğ′ = [Ğ11,. . .,Ğn1, Ğ12,. . .,Ğn2, Ğ1n,. . .,Ğnn]
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Thus for the example Ğ:

ğ′= [132.3 127.0 136.6 172.8 200.8 288.0]

Define Fr of order t by k, obtained by deleting (t − k) columns of F correspond-
ing to those fj not in the reduced-order fit. The relationship between the observed covari-
ance matrix, ğ, and the coefficient matrix of the reduced fit to be estimated is given 
by the following regression equation:

ğ = Xsč + e (9.10)

where e is the vector of the difference between observed covariances and those pre-
dicted by the covariance function, č is a vector of dimension k2, containing the 
elements of the coefficient matrix of the reduced fit (Č). The order of elements of Č
in č is the same as in ğ: that is, č = (Č00,. . ., Čk0,. . ., Čk1,. . ., Čkk). Xs is the Kronecker 
product of Fr with itself (Xs = Fr × Fr) and is of the order t2 by k2. Since only the 
first two polynomials are fitted, the matrix Fr can be derived by deleting from F
the third column, corresponding to the missing second-degree polynomial. Thus for 
the beef cattle example:

Fr =
-
-
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0 7071 1 2247

0 7071 0 0816

0 7071 1 2247

. .

. .

. .

and Xs is:

sX  = 

0.5000 0.8660 0.8660 1.4999

0.5000 0.0577 0.8660 0.0999

0

− −
− −

..5000 0.8660 0.8660 1.4999

0.5000 0.8660 0.0577 0.0999

0.5000
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0.0577 0.0577 0.0067

0.5000 0.8660 0.0577 0.0999
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The application of weighted least squares to obtain solutions for č in Eqn 9.10 
requires the covariance matrix (V) of sampling errors of ğ. Kirkpatrick et al. (1990) pre-
sented several methods for estimating V, examining three different experimental designs. 
However, in animal breeding, most estimates of Ğ are from field data and may not 
fit strictly to the designs they described, but estimates of sampling variances from 
REML analysis could be used. For the example Ğ for the beef cattle data, V has been 
estimated using the formula given by Kirkpatrick et al. (1990) for a half-sib design, assum-
ing that 60 sires were each mated to 20 dams. The mean cross-product for the residual 
effect (Ŵe) was estimated as Ŵe, ij = Pij − 0.25Ğij and that among sires (Ŵa) as Ŵa, ij = 
(n − 1/4)Ğij + Pij, where Pij is the phenotypic variance and n is the number of dams. 
Sampling variance for ğ was then calculated as: V = (16/n2)[cov(Ŵa,ij, Ŵa, kl) + cov(Ŵe, ij ,
Ŵe,kl)], where cov(Ŵij, Ŵkl) = (Ŵik Ŵjl + Ŵil Ŵjk)/ df, with df = number of degrees of freedom 
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plus 2. In estimating cov(Ŵa,ij, Ŵa,kl) and cov (Ŵe,ij , Ŵe,kl), df = (s − 1) + 2 and s(n − 1) 
+ 2, respectively. The estimated V therefore is:

V̂ = 

3450.0 2256.4 2184.6 2256.4 1480.3

2256.4 2959.6 2430.9 2959.66 2903.5

2184.6 2430.9 3889.7 2430.9 2249.1

2256.4 2959.6 2430.9 29559.6 2903.5

1480.3 2903.5 2249.1 2903.5 5711.4

1434.7 2530.2 3181.66 2530.2 4410.0

2184.6 2430.9 3889.7 2430.9 2249.1

1434.7 2530.2 31881.6 2530.2 4410.0

1390.9 2180.1 4051.5 2180.1 3417.5

⎡
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⎢
⎢
⎢
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1434.7 2184.6 1434.7 1390.9

2530.2 2430.9 2530.2 2180.1

3181.6 38889.7 3181.6 4051.5

2530.2 2430.9 2530.2 2180.1

4410.0 2249.1 4410..0 3417.5

5818.8 3181.6 5818.8 6354.3

3181.6 3889.7 3181.6 4051.5

58818.8 3181.6 5818.8 6354.3

6354.3 4051.5 6354.3 11835.0

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥

However, the symmetry of Ğ resulted in redundancies in the vector ğ such that 
V is singular. The vector ğ can be redefined to be of the order s by 1, which contains 
only the elements in the lower half of Ğ, where s = t(t + 1)/2. Therefore, delete from 
ğ the elements Ğij for which i < j. Thus for the example Ğ, the vector ğ becomes:

ğ = [132.3 127.0 136.6 172.8 200.8 288.0]

Then delete from V those columns and rows corresponding to elements Ğij with i < j.
This involves deleting rows and columns 4, 7 and 8 from the matrix V given above. 
The V of reduced order (s by s) is:

V̂ = 

3450.0 2256.4 2184.6 1480.3 1434.7 1390.9

2256.4 2959.6 2430.99 2903.5 2530.2 2180.1

2184.6 2430.9 3889.7 2249.1 3181.6 4051.5

14880.3 2903.5 2249.1 5711.4 4410.0 3417.5

1434.7 2530.2 3181.6 4410.00 5818.8 6354.3

1390.9 2180.1 4051.5 3417.5 6354.3 11835.0

é

ë

ê
ê
ê
ê
ê
êê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

Similarly, the rows corresponding to those elements of ğ for which Ğ ij has i < j
are deleted from Xs. In the example Xs, rows 4, 7 and 8 are deleted. Thus Xs becomes:

sX  = 

0.5000 0.8660 0.8660 1.4999

0.5000 0.0577 0.8660 0.0999

0

- -
- -

..5000 0.8660 0.8660 1.4999

0.5000 0.0577 0.0577 0.0067

0.5000

- -
- -

00.8660 0.0577 0.0999

0.5000 0.8660 0.8660 1.4999

- -

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
úú
ú
ú
ú
ú
ú
ú

Also, for each element of č for which Čij has i < j, add the corresponding column 
of Xs to the column corresponding to Čji, then delete the former column. For the beef 
cattle example, the vector of coefficients, č′ = [Č00 Č10 Č01 Č11]. Therefore, the third 
column of Xs corresponding to Č01 is added to the second column and the third col-
umn is deleted. The matrix Xs then becomes:
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sX  = 

0.5000 1.7320 1.4999

0.5000 0.9237 0.0999

0.5000 0.0000 1.

-
-

- 44999

0.5000 0.1154 0.0067

0.5000 0.8083 0.0999

0.5000 1.7320 1.4

-
-

9999

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

Finally, delete from č the elements for which Č has elements i < j. The matrix č is 
now of the order k(k + 1)/2 by 1. For the example data, č′ = [Č00 Č10 Č11]. The vector č
can now be calculated by a weighted least-square procedure as:

č = (X′s V̂-1 Xs)
-1 X′s V̂-1 ğ

For the example data, č calculated using the above equation is:

č = [341.8512 45.0421 24.5405]

The reduced coefficient matrix Č is then constructed from the calculated č. Then a 
row and column of zeros are inserted in positions corresponding to those polynomials 
not included to obtain Č. For the example data, Č is now:

Č =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

341 8512 45 0421 0 0

45 0421 24 5405 0 0

0 0 0 0 0 0

. . .

. . .

. . .

Kirkpatrick et al. (1990) presented the following chi-square statistic to test the good-
ness of fit of the reduced covariance function to Ğ :

χ2
(m-p) = (ğ - Xs ĉ)′ V̂ -1 (ğ - Xsĉ)

where m = t(t + 1)/2 is the number of degrees of freedom in Ğ and p = (k(k + 1)/2 is the 
number of parameters being fitted. A significant result indicates that the model is 
inconsistent with the data, and a higher order of fit may be needed. For the beef cattle 
example, the value of c2 was 0.2231 with m = 6 and p = 3. This value of c2 was not 
significant with three degrees of freedom and thus the reduced covariance function 
was not significantly different from Ğ.

Another method of fitting a reduced-order CF, proposed by Mantysaari (1999), 
involved eigenvalue decomposition of the coefficient matrix. The largest k eigenvalues of 
Ĉ in Eqn 9.9, for instance, are kept in a diagonal matrix (Da) and the matrix F replaced 
by the k corresponding eigenfunctions. Thus Ĝ in Eqn 9.7 can be approximated as:

Ĝ » F[v1 v2 . . . vk]Da[v1 v2 . . . vk]′F′ = TDaT′

where the vi are the eigenvectors of Ĉ corresponding to eigenvalues in Da.
Similarly, if CF has been fitted to the environmental covariance matrix, a similar 

reduction can be carried as follows:

R = FCpF + Is 2e
= F[v1 v2 . . . vk]Dp[v1 v2 . . . vk]′F′ + Is 2e = QDpQ′ + Is 2e (9.11)
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where Dp contains the k largest eigenvalues of Cp. However, Mantysaari (1999) indi-
cated that with several biological traits, Eqn 9.11 could easily lead to a non-positive definite 
Cp and the decomposition may not be possible. He used an expectation maximization 
(EM) algorithm to fit the CF to the environmental covariance matrix. However, if Cp
has been estimated directly using REML (Meyer and Hill, 1997), the EM algorithm 
would not be necessary and the covariance matrix for pe can be approximated as QDpQ′.
In addition to reducing the number of equations to k per animal in the MME with this 
method, the system of equations is very sparse since Da or Dp are diagonal.

9.5 Equivalence of the Random Regression Model 
to the Covariance Function

Meyer and Hill (1997) indicated that the RR model is equivalent to a covariance 
function model. The equivalence of the RR model fitting either a parametric curve or 
Legendre polynomials to the CF model is presented below. Similar to the model in 
Section 9.3, the RR model with a parametric curve can be represented as:

y F z t z t z t ejt jt m m m jm
m

k

m

f

m jm
m

k

jt= + + + +
=

-

=

-

=

-

åå å( ) ( ) ( )b a l
0

1

0

1

0

1

(9.12)

where yjt is the test day record of cow j made on day t; bm are fixed regressions coef-
ficients; ajm and ljm are the additive genetic and permanent environmental random 
regressions for cow j; Fjt represents the remaining fixed effects in the model; zm(t) is 
the mth parameter of a parametric function of days in milk; and ejt is the random 
error term. For example, in the model of Jamrozik et al. (1997), z was a function of 
days in milk with five parameters: z = (1 c c2 d d2), where c = t/305 and d = ln(1/c),
with ln being the natural logarithm. Then the covariance between breeding values ui
and ul on an animal recorded at DIM ti and tl is:

cov cov( , ) ( , ) ( ) ( ) ( , )u u f t t z t z ti l i l m i r l m r
r

k

m

k

= =
=

−

=

−

∑∑ a a
0

1

0

1

(9.13)

However, instead of a parametric curve, assume that orthogonal polynomials such 
as Legendre polynomials were fitted in an RR model as described in Section 9.3. Let 
ai and al represent TD records on days ti and tl of animal j standardized to the interval 
−1 to 1 as outlined in Appendix G. Furthermore, assume that the mth Legendre poly-
nomial of ai be fm(al), for m = 0, . . .,k − 1. The covariance between breeding values ui
and ul on an animal recorded at DIM ai and al could then be represented as:

cov cov( , ) ( , ) ( ) ( ) ( , )u u f a a a ai l i l m i r l m
r

k

m

k

r= =
=

−

=

−

∑∑ f f a a
0

1

0

1

(9.14)

The right-hand sides of Eqns 9.13 and 9.14 are clearly equivalent to the right-
hand side of Eqn 9.6, with cov(am, ar) equal to Cij, the ijth element of the coefficient 
matrix of the covariance function. This equivalence of the RR model with the covari-
ance function is useful when analysing data observed at many ages or time periods, 
as only k regression coefficients and their k(k + 1)/2 covariances need to be estimated 
for each source of variation in a univariate model.
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10.1 Introduction

A genetic marker is a fragment of DNA that is associated with a certain location 
(chromosome) within the genome. In the 1990s, most genetic markers used in live-
stock studies were microsatellites. DNA microsatellites, also referred to as simple 
sequence repeats (SSR), consist of a specific sequence of DNA bases or nucleotides 
which contain mono, di, tri, or tetra tandem repeats; for example, AAAAAAAAAAA 
or CTGCTGCTGCTG, which may be referred to as (A)11 or (CTG)4, respectively. 
Alleles at a specific location (locus) can differ in the number of repeats (polymorphic) 
and hence they are used as genetic markers. Microsatellites are inherited in a 
Mendelian fashion and are typically co-dominant, that is, the heterozygote genotype 
could be distinguished from either homozygote.

Genetic markers are useful in identifying portions of the chromosomes that are 
associated with particular quantitative traits. The incorporation of information on 
marker loci that are linked to quantitative trait loci (QTL), together with phenotypic 
information in a genetic evaluation procedure, would increase the accuracy of evalu-
ations and therefore of selection. The use of breeding values with marker information 
incorporated in the selection of animals in a breeding programme is termed marker-
assisted selection (MAS). The gains from MAS depend on the amount of genetic vari-
ation explained by the marker information and are larger for traits with low 
heritabilities, and therefore EBV from phenotype are of low accuracy (Goddard and 
Hayes, 2002). Similarly, MAS should result in larger increases in accuracies for traits 
that are sex-limited, such as milk yield, or measured in only in culled animals, for 
instance, carcass traits.

Fernando and Grossman (1989) presented a methodology that incorporated 
marker information into the BLUP procedure for the genetic evaluation of animals. 
This method is discussed and illustrated in this chapter. The extension of the method 
of Fernando and Grossman (1989) by Goddard (1992) to handle information on 
QTL bracketed by two markers is examined. This chapter deals with linkage analysis, 
i.e. the use of microsatellites as markers for the purpose of MAS.

10.2 Defining a Model with Marker Information

Consider a single polymorphic marker locus (ML), which is closely linked to a quanti-
tative trait locus (MQTL). Assume individual i inherited Mp

i and Mm
i at the ML from 

10 Use of Genetic Markers in 
Breeding Value Prediction
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its paternal (p) and its maternal (m) parents. Also, let Qp
i and Qm

i denote alleles at 
the quantitative trait loci linked to Mp

i and Mm
i as illustrated below:

M Q

M Q

p
i

p
i

m
i

m
i

____|_____________|____

____|_____________|____

Let vp
i and vm

i be the genetic additive effects of Qp
i and Qm

i , respectively, and ui the 
genetic additive effects of the remaining quantitative trait loci not linked to the ML. 
Then the additive genetic value (ai) of individual i is:

ai = vp
i + vm

i + ui (10.1)

Given only phenotypic information, the usual BLUP equation for additive genetic 
effects (Section 3.2) is:

yi = xib + ai + ei (10.2)

Replacing ai above by Eqn 10.1 gives:

yi = xib + vp
i + vm

i + ui + ei (10.3)

From Section 2.2, the covariance matrix for ui, A, is the usual relationship matrix 
(Henderson, 1976) but the covariance for vi, Gv, depends on both the relationship 
matrix and marker information. Thus given A and Gv, the BLUP of vi and ui can be 
obtained using the usual MME. The calculation of A and its inverse has been covered 
in Chapter 2. The calculation of Gv and its inverse are covered in the next section.

10.3 Calculating the Covariance Matrix (Gv )
for MQTL Effects

The matrix Gvs
2
v represents the covariance between the additive effects of the MQTL 

alleles. For simplicity, consider only maternal MQTL. Assume two arbitrary individu-
als b and b′ inherit MQTL alleles Qm

b and Qm
b′ with additive effects vm

b and vm
b ′ from 

dams d and d′, respectively. The covariance between the additive effects vm
b and vm

b′ for 
the maternal MQTL in b and b′ is:

cov(vm
b, vm

b′) = cov(vm
b, v m

b′ | Q
m
b ≡ Qm

b′) · P(Qm
b ≡ Qm

b′)
= var(v m

b ) · P(Qm
b ≡ Q m

b′) (10.4)
= s 2

v Gv(b,b′)

where var(vm
b) = s2

v is the variance of the MQTL allele, P(Qm
b ≡ Qm

b′) is the proba-
bility that Qm

b is identical by descent (IBD) to Qm
b′ and the matrix Gv(b,b′) is the 

covariance matrix for the MQTL between b and b′. Given that b is not a direct 
descendant of b′, Qm

b can only be identical by descent to Qm
b′ in two mutually exclusive 

manners: (i) if Qm
b is IBD to Qp

d′, the paternal MQTL allele of the dam of b′, and 
b′ has inherited Qp

d′; or (ii) Qm
b is IBD to Qm

d′, the maternal MQTL allele of the dam 
of b′, and b′ has inherited Qm

d′. This is akin to calculating A where the relation-
ship, say, between b and b′ is evaluated through the relationship of b with the 
parents of b′.
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With marker information available, the conditional probability that b′ inherits 
Qm

d′, given that it has inherited Mm
d′, is (1 − r), with r being the recombination rate 

between the ML and the MQTL. Thus if b′ inherits Mm
d′, the probability in Eqn 10.4 

can be calculated recursively as:

P(Qm
b ≡ Qm

b′) = P(Qm
b ≡ Qp

d′) · r + P(Qm
b ≡ Qm

d′) · (1 − r) (10.5)

Similarly, given that b′ inherits Mp
d′, then:

P(Qm
b ≡ Qm

b′) = P(Qm
b ≡ Qp

d′) · (1 − r) + P(Qm
b ≡ Qm

d′) · r (10.6)

If it is not known whether b′ inherits Mm
d′ or Mp

d′ due to lack of marker information, 
then Qm

d′ and Qp
d′ have equal probability of being transmitted to b′. Therefore, r is 

replaced by 0.5 in Eqns 10.5 and 10.6.
Using the above information, Fernando and Grossman (1989) developed a 

tabular method for constructing Gv, which is similar to that for calculating A.
The rows and columns of Gv should be such that those for parents precede those 
for progeny. It should be noted that there are two rows for an individual in Gv:
one each for the paternal and maternal MQTL alleles. Let gij be the ij element of 
Gv and ip

o, im
o be the rows of Gv corresponding to the additive effects of MQTL 

alleles (vp
o, vm

o) of the oth individual. Similarly, let ip
s, im

s be the rows for the additive 
effects of the MQTL alleles (vp

s, vm
s) of its sire (s) additive effects and ip

d, im
d be the 

rows for the effects of the MQTL alleles (vp
d, vm

d) of its dam (d).Then the elements 
of the row ip

o below the diagonal, using Eqns 10.4 to 10.6, can be calculated as:

g g g j ii j o
p

i j o
p

i j o
p

p
s
p

s
m

o , , ,( ) ; ,...,= - + = -1 1 1r r for (10.7)

with rp
o = r if b inherits Mp

s or rp
o = (1 − r) if o inherits Mm

s. Similarly, elements of row 
imo below the diagonal are:

g g g j ii j o
m

i j o
m

i j o
m

d
p

d
m

o
m , , ,( ) ; ,...,= - + = -1 1 1r r for (10.8)

where rm
o = r if o inherits Mp

d or rm
o = (1 − r) if o inherits Mm

d. Since Gv is symmetric 
then:

g g g gj i i j j i i jo
p

o
p

o
m

o
m, , , ,= =and

It is obvious from Eqn 10.4 that, if o = o′, that is, the same individual, then cov(vm
o,

vm
o′) = var(vm

o) as P(Qm
o ≡ Qm

o′) = 1. Therefore, the diagonal elements of Gv equal unity. 
If it is not possible to determine which of the two marker alleles o inherited from its 
sire or dam, then rp

o in Eqn 10.7 and rm
o in Eqn 10.8 are replaced by 0.5.

10.3.1 Numerical application

Example 10.1
Given in the table below are the post-weaning gain data of five calves with the geno-
type at the marker locus given. The aim at this stage is to construct the covariance 
matrix Gv for the MQTL among the five calves.
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For ease of illustration, let rows ipo and imo for animal o in Gv be coded as ip and 
im, respectively. Thus, for example, for animal 1, ip1 and im

1 will be coded as 1p and 1m,
respectively, for animal 2, ip

2 and im2 will be coded as 2p and 2m and for animal 5, ip
5

and im
5 will be coded as 5p and 5m, respectively. The Gv for the example, therefore, is:

Marker inheritance

Calf Sex of calf Sire Dam Sire Dam PWG (kg)

1 Male – – – – 6.8
2 Female – – – – 4.5
3 Male 1 2 M p

1 Mm
2 8.5

4 Female 1 3 M m
1 M p

3 6.0
5 Female 4 3 Mp

4 M p
3 7.0

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 1.000 0.000 0.000 0.000 0.900 0.000 0.100 0.810 0.171 0.810
1m 0.000 1.000 0.000 0.000 0.100 0.000 0.900 0.090 0.819 0.090
2p 0.000 0.000 1.000 0.000 0.000 0.100 0.000 0.010 0.001 0.010
2m 0.000 0.000 0.000 1.000 0.000 0.900 0.000 0.090 0.009 0.090
3p 0.900 0.100 0.000 0.000 1.000 0.000 0.180 0.900 0.252 0.900
3m 0.000 0.000 0.100 0.900 0.000 1.000 0.000 0.100 0.010 0.100
4p 0.100 0.900 0.000 0.000 0.180 0.000 1.000 0.162 0.916 0.162
4m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 1.000 0.246 0.820
5p 0.171 0.819 0.001 0.009 0.252 0.010 0.916 0.246 1.000 0.228
5m 0.810 0.090 0.010 0.090 0.900 0.100 0.162 0.820 0.228 1.000

The calculation of Gv for the first three animals is illustrated as below. For the 
first two animals, the parents are unknown, therefore:

g1p,1p = g1m,1m = g2p,2p = g2m,2m = 0

At the ML, animal 3 inherited Mp
s from his father; therefore, for row 3p in Gv, cor-

responding to the effects of the paternal alleles of the MTQL for animal 3, r = 0.1. 
Hence, from Eqn 10.7:

g3p,1p = (1 − 0.1)g1p,1p + (0.1)g1m,1p = (0.9)1 + (0.1)0 = 0.9
g3p,1m = (1 − 0.1)g1p,1m + (0.1)g1m,1m = (0.9)0 + (0.1)1 = 0.1
g3p,2p = (1 − 0.1)g1p,2p + (0.1)g1m,2p = (0.9)0 + (0.1)0 = 0
g3p,2m = (1 − 0.1)g1p,2m + (0.1)g1m,2m = (0.9)0 + (0.1)0 = 0
g3p,3p = 1.0

At the ML, animal 3 inherited Mm
d from his mother; therefore, for row 3m in Gv, corres-

ponding to the effects of the maternal alleles of the MTQL for animal 3, r = 0.9. 
Hence, from Eqn 10.8:

g3m,1p = (1 − 0.9)g2p,1p + (0.9)g2m,1p = (0.1)0 + (0.9)0 = 0
g3m,1m = (1 − 0.9)g2p,1m + (0.9)g2m,1m = (0.1)0 + (0.9)0 = 0
g3m,2p = (1 − 0.9)g2p,2p + (0.9)g2m,2p = (0.1)1 + (0.9)0 = 0.1
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g3m,2m = (1 − 0.9)g2p,2m + (0.9)g2m,2m = (0.1)0 + (0.9)1 = 0.9
g3m,3p = (1 − 0.9)g2p,3p + (0.9)g2m,3p = (0.1)0 + (0.9)0 = 0
g3m,3m = 1.0

10.4 An Alternative Approach for Calculating Gv

An alternative recursive method for the calculation of Gv and its inverse was presented 
by Van Arendonk et al. (1994) using matrix notation. Their method accounts for 
inbreeding and can be used to calculate a combined numerator relationship matrix 
(Aa) and its inverse. The matrix Aa = Au + Av, where Au is the numerator relationship 
matrix for animals for QTL not linked to the marker and Av is the relationship matrix 
for animals for MQTL linked to the marker. The inverse of Aa is useful for the direct 
prediction of total additive genetic merit, i.e. additive genetic merit with information 
from markers directly included.

The principles of their methodology are initially illustrated briefly using the calcula-
tion of the relationship matrix (A) among animals in the absence of marker information. 
The representation of the rules for building Ai for animals 1 to i in matrix form is:

A
A A

A
i

i i i

i i iia
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −

−

1 1

1

s

s′
(10.9)

where si is the column vector of i − 1 elements containing two elements, 1
2, corre-

sponding to the sire or dam (if known) and zero elsewhere. Ai−1 is the numerator 
relationship matrix for animals 1 to (i − 1) and aii is the diagonal element of A for 
animal i and is equal to 1 + Fi, where Fi is the inbreeding coefficient of the ith animal. 
Using the data in Example 10.1, the A matrix ignoring marker information is:

A = 

1.000 0.000 0.500 0.750 0.625

0.000 1.000 0.500 0.250 0.375

0.5000 0.500 1.000 0.750 0.875

0.750 0.250 0.750 1.250 1.000

0.625 0.375 0..875 1.000 1.375

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

For animal 5, s′5 = [0 0 0.5 0.5]; therefore, the column vector above the diagonal 
for animal 5 (q5) in A using Eqn 10.9 can be calculated as q5 = A4s5.Thus the row 
vector q′5 = s′5A4= [0.625 0.375 0.875 1.00] and the diagonal element for animal 5, 
a55 = 1 + 0.5(a34) = 1.375. Note also that given qi, si can be computed as:

si = A−1
i−1 qi (10.10)

This relationship will be used in subsequent sections when it is not possible to calcu-
late si directly.

Given A−1
i−1, for animal i − 1, Tier and Solkner (1993) demonstrated that the effect 

of adding an additional row to A on the elements of A−1 as:

A
A

Ai
i

ii i i i
i i i

i
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When both sire (f ) and dam (d) of i are known, s′i Ai−1s = 1
4(aff + afd + adf + add) where 

ajj are the elements of Ai−1 for f and d. Since aii = (1 + aff), then (aii − s′i Ai−1s)
−1 can be writ-

ten as (1 − 1
4
(aff + add))

−1. The application of Eqn 10.11 to calculate A−1 for the pedi-
gree in Example 10.1 is straightforward. For instance, for the first two animals with 
parents unknown, A−1

2  is an identity matrix of order 2. Then A−1
3  can then be calcu-

lated using Eqn 10.11. Given that A−1
4  has been calculated, the inverse of A for all five 

animals can be illustrated as follows:
For animal 5, (a55 − s′5 A4s5)

−1 = (1 − 1
4(a33 + a44))

−1 = (1 − 1
4(1 + 1.25))−1 = 2.286. 

Then Eqn 10.11 is:

A5
− =

− −
−

1

2.000 0.500 0.500 1.000 0.000

0.500 1.500 1.000 0.000 0.0000

0.500 1.000 2.500 1.000 0.000

1.000 0.000 1.000 2.000 0.000

− − −
− −
00.000 0.000 0.000 0.000 0.000

(2.286)
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where s′5 = (0 0 0.5 0.5).
Applying Eqns 10.9, Van Arendonk et al. (1994) showed that when alleles are 

ordered chronologically, Gv,i can be calculated as:

G
G G

Gv i
v i v i i

i v i iig,
, ,

,

=
é

ë
ê
ê

ù

û
ú
ú

- -

-

1 1

1

s

s¢
(10.12)

where si is the column vector of i − 1 elements containing non-zero elements relating 
allele i to paternal and maternal alleles of parent (if known) and zeros elsewhere; 
Gv,i−1 is the covariance matrix for MQTL for alleles 1 to (i − 1); and gii is the diagonal 
element of Gv for the k allele, which is equal to 1. Using the same notation for the rows 
in Gv shown in Section 10.3.1, si for animals 3, 4 and 5 are: s′3p= [1 – r r 0 0], s′3m = 
[0 0 r (1 − r) 0], s′4p = [r 1 – r 0 0 0 0], s′4m = [0 0 0 0 (1 − r) r 0], s′5p = [0 0 0 0 0 0 
(1 − r) r] and s′5m = [0 0 0 0 (1 − r) r 0 0 0]. Thus Gv can easily be constructed using 
Eqn 10.12.

10.5 Calculating the Inverse of Gv

Fernando and Grossman (1989) used an approach similar to that for setting up A−1

in calculating the inverse of Gv. They showed that Gv could be expressed as:

Gv = (Q−1)′ HQ−1

Therefore, G−1
v can be written as:

G−1
v = QH−1Q′ (10.13)
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where Q = (I − P′) and P is a matrix that relates the effect of the MQTL allele of 
an individual to the paternal and maternal MQTL alleles of its parent. Each row 
of P contains only two non-zero elements if the parent is known, otherwise only 
zeros if the parent is unknown. For instance, for individual i with sire (s) known, 
row ipo will have (1 − rp

o) in the column corresponding to ips, and rp
o in the column 

corresponding to column im
s . Similarly, if dam (d) is known, row im

o will contain (1 − rm
o)

in the column corresponding to ip
d and rm

o in the column corresponding to im
d. The 

row of P for allele i is equal to si in Eqn 10.12. The matrix P for the pedigree in 
Example 10.1 is:

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3p 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3m 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0
4p 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0
5p 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0
5m 0.0 0.0 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0

The matrix H is a diagonal matrix for the covariance of residual effects after 
adjusting the effect of the MQTL allele of an individual for the effects of the parent’s 
paternal and maternal MQTL alleles. For example, the residual effect (ep

o) for a pater-
nal MQTL allele of an individual with sire s known is:

ep
o = vp

o − (1 − rp
o)v

p
s + rp

ovm
s

and the variance of ep
o is:

var(ep
o) = var(vp

o ) − (1 − rp
o)

2 · var(vp
s ) − (rp

o)2 · var(vm
s ) − 2(1 − rp

o)r
p
o · cov(vp

s, (v
m
s ))

Since var(vp
o) = var(vp

s) = var(vm
s ) = s2

v and cov(vp
s, vm

s ) = var(vp
s) · P(Qp

s ≡ Qm
s) = var(vp

s) · Fs = s2
vFs,

the above equation can be written as:

var(ep
o) = 2s2

v (rp
o) − 2s2

v (rp
o)

2 − 2s2
v (1 − rp

o)r
p
o Fs

= 2s2
v ((1 − rp

o)rp
o − (1 − rp

o)rp
oFs)

= 2s2
v (1 − rp

o)rp
o (1 − Fs)

var(ep
o)/s

2
v  = hp

o = 2(1 − rp
o)rp

o(1 − Fs) (10.14)

where (1 − rp
o)r

p
o = (1 − r)r for rp

o = r or (1 − r), Fs is the inbreeding coefficient at 
the MQTL of the sire and hp

o is the diagonal element of H for the paternal MQTL 
of individual o. Therefore, if the sire is not inbred, hp

o = 2(1 − r)r with marker infor-
mation or hp

o = 0.5 with no marker information and hp
o = 1 if the sire is unknown. 

Similarly, for the maternal MQTL of o:

var(em
o ) /s2

v = hm
o = 2(1 − rm

o)rm
o (1 − Fd) (10.15)
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where (1 − rm
o )rm

o = (1 − r)r for rm
o = r or (1 − r), Fd is the inbreeding coefficient at 

the MQTL of the dam and hm
o is the diagonal element of D for the paternal MQTL 

of individual o. Therefore, if the dam is not inbred, hm
o = 2(1 − r)r with marker 

information or hm
o = 0.5 with no marker information and hm

o = s 2
v if the dam is 

unknown.
Equation 10.13 may be written as:

Gv j j j
j

n

q q h-

=

= -å1

1

1

where n is the number of individuals in the pedigree, qj is the column of Q and hj is 
the jth diagonal element of H. Since Q = (1 − P′), the jth element of qj (i.e. the dia-
gonal element) is unity and qj has at most only two other non-zero elements. If the 
sire of o is known, j = ip

o, element ip
s = −(1 − rp

o) and element im
s = −rp

o. Similarly, if 
the dam is known, then for j = im

o , element ipd = −(1 − rm
o ) and element im

d = −rm
o.

Therefore, the contribution corresponding to the paternal and maternal MQTL 
alleles of an individual to G−1

v can easily be calculated from parent and marker 
information.

Fernando and Grossman (1989) gave the following rules for obtaining G−1
v . First, 

calculate the diagonals of H using Eqns 10.14 and 10.15 and its inverse. Second, set 
G−1

v to zero and for each offspring o, with sire s and dam d, add the following to the 
indicated elements of G−1

v :
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Applying these rules, the calculation of the inverse of G−1
v for the pedigree in 

Example 10.1 is illustrated. For this pedigree, the matrix H and its inverse are:

H = diag(1 1 1 1 0.18 0.18 0.18 0.18 0.1508 0.18) and
H−1 = diag(1 1 1 1 5.556 5.556 5.556 5.556 6.630 5.556)

Note that in calculating the diagonal element for the paternal MQTL of animal 4 (d4p,4p), 
an inbreeding coefficient of 0.162 (covariance between the maternal and paternal 
MQTL alleles of the sire and dam, respectively) has been accounted for. Set G−1

v with 
elements represented as gii,jj to zero and the contribution from the first three animals 
can be calculated as follows.

For animals 1 and 2, parents are unknown; the diagonal elements are equal to 1 
for the MQTL alleles of these animals. Therefore, add 1 to g1p,1p, g1m,1m, g2p,2p and 
g2m,2m, using the same coding as for the rows of Gv as in Section 10.3. For paternal 
MQTL allele of animal 3, rp

o = 0.1 and d3p,3p equals 5.556. Add (1 − 0.1)2h–1
3p,3p = 4.50 

to g1p1p, (1 − 0.1)0.1(h–1
3p,3p) = 0.5 to g1p,1m, −(1 − 0.1)h–1

3p3p = −5.00 to g1p,3p, (0.1)2h–1
3p3p = 0.056 

to g1m,1m, (−0.1)h–1
3p3p = 0.556 to g1m,3p and h–1

3p3p to g3p,3p. For the maternal allele of 
animal 3, rp

o = 0.9 and h–1
3m,3m = 5.556. Add (1 − 0.9)2h–1

3m,3m = 0.056 to g2p,2p, (1 − 0.9) 
0.9(h–1

3m,3m) = 0.5 to g2p,2m, −(1 − 0.9)h–1
3m3m = −0.556 to g2p,3m, (0.9)2h–1

3m3m = 4.50 to 
g2m,2m, (−0.9)h–1

3m3m = −0.500 to g2m,3m and h–1
3m3m to g3m,3m. Applying the rules to all 

animals in the pedigree gives G−1
v as:

1p 1m 2p 2m 3p 3m 4p 4m 5p 5m

1p 5.556 1.000 0.000 0.000 −5.000 0.000 −0.556 0.000 0.000 0.000
1m 1.000 5.556 0.000 0.000 −0.556 0.000 −5.000 0.000 0.000 0.000
2p 0.000 0.000 1.056 0.500 0.000 −0.556 0.000 0.000 0.000 0.000
2m 0.000 0.000 0.500 5.500 0.000 −5.000 0.000 0.000 0.000 0.000
3p −5.000 −0.556 0.000 0.000 14.556 1.000 0.000 −5.000 0.000 −5.000
3m 0.000 0.000 −0.556 −5.000 1.000 5.667 0.000 −0.556 0.000 −0.556
4p −0.556 −5.000 0.000 0.000 0.000 0.000 10.925 0.597 −5.967 0.000
4m 0.000 0.000 0.000 0.000 −5.000 −0.556 0.597 5.622 −0.663 0.000
5p 0.000 0.000 0.000 0.000 0.000 0.000 −5.967 −0.663 6.630 0.000
5m 0.000 0.000 0.000 0.000 −5.000 −0.556 0.000 0.000 0.000 5.556

Similarly, the inverse of G−1
v,i can be obtained using Eqn 10.11 (Van Arendonk 

et al., 1994) as:

G
G
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−

−
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−
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s s s

s
′

′
′ 11

⎡

⎣
⎢

⎤

⎦
⎥ (10.16)

The application of Eqn 10.16 for the calculation of G−1
v is briefly illustrated. It has 

been shown earlier that G−1
v for the MQTL alleles of the first two animals is an 
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identity matrix of order 4. The matrix G−1
v with the paternal MQTL allele of animal 

3 added can be computed as:

G
G

v p
v m

,
,

3
1 2

1
−

−
−⎡

⎣
⎢
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−

−

 = 
0

0 0
 + (1  0.82)
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0
1
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− −
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10.6 Prediction of Breeding Values with Marker Information

The model in Eqn 10.2 for breeding value prediction with marker information can be 
written in matrix notation as:

y = Xb + Zu + Wv + e (10.17)

where y is the vector of observation, b is the vector of fixed effects, u is the random 
vector for additive genetic effects due to loci not linked to ML, v is the random vector 
with allelic effects at the MQTL and e is random residual effects. The matrices X, Z
and W are incidence matrices. Var(u) = Aus

2
u , var(v) = Gvs

2
v , var(e) = Is 2

e and cov(u, v) = 
cov(u, e) = cov(v, e) = 0.

The MME for the above linear model are:
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(10.18)

where:

a1 = s2
e /s

2
u and a2 = s2

e /s
2
v

10.6.1 An illustration

Example 10.2
Using the data for Example 10.1, the breeding value of animals for QTL not linked 
to ML (simply referred to subsequently as breeding values), additive MQTL effects 
are predicted for the beef calves and sex effects are estimated. It is assumed that 
s 2

u = 0.3, s2
v = 0.05 and s2

e = 0.6. Therefore, a1 = 0.6/0.3 = 2 and a2 = 0.6/0.05 = 12. 
The parameters are expressed as a proportion of the phenotypic variance. Note that 
the total genetic variance s2

a = (s2
u + 2s2

v ) = 0.3 + 2(0.05) = 0.40. Thus 40% of the 
phenotypic variance is due to additive genetic variance, of which 25% can be 
explained by the MQTL.
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The matrix X is formed as discussed in Example 3.1, Z is an identity matrix and 
the matrix W is:

W =

⎡

⎣

⎢
⎢
⎢
⎢

1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The matrices A−1
u and G−1

v have been calculated for the example data. The remaining 
matrices in the MME are calculated through matrix multiplication and addition. The 
MME are too large to be shown, but solving the equations by direct inversion gives 
the following results:

The additive genetic effects of the MQTL accounted for about 45% of the total 
genetic merit of animals 1 and 2 but only about 20% for animals 3 and 5.

In Germany, with Holstein dairy cattle, the method used in Example 10.2 has 
been used to incorporate QTL information into routine estimation of breeding values 
(Szyda et al., 2003). In the study, 13 markers were used for routine genotyping of 
animals, and regions representing QTL for milk, protein, fat yields and somatic cell 
counts were identified on several chromosomes. The QTL information has been 
incorporated into BLUP, analysing DYD as the dependent variable. As a percentage 
of the polygenic variance, the variances of the MQTL in their study varied from 3 to 
5% for milk, fat and protein yields in the first lactation.

Effects Solutions

Sex
Male 7.357
Female 5.529

Animals Breeding values
1 0.092
2 −0.091
3 0.341
4 0.329
5 0.515

MQTL alleles of animals Additive effects
1p 0.064
1m 0.011
2p −0.065
2m −0.011
3p 0.083
3m −0.004
4p 0.028
4m 0.076
5p 0.043
5m 0.086
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10.7 Directly Predicting the Additive Genetic Merit at the MQTL

Another approach to reduce the number of equations in the MME is to directly 
predict the combined additive genetic effects for the paternal and maternal alleles at 
the MQTL of an individual. The number of equations per animal would therefore 
be two: one for the additive genetic effects not linked to the MQTL and the other 
for MQTL. This implies predicting the additive genetic effects at the MQTL at the 
animal level; therefore, a covariance matrix (Av) for the MQTL at the animal level 
is needed. The covariance matrix Av can be obtained from Gv as Av = 1

2BGvB′; where 
B = In Ä [1 1], with n being the number of animals, and Ä denotes the Kronecker 
product. For Example 10.1, the matrix B = W in Section 10.5 and Av is:

vA =

1.000 0.000 0.500 0.950 0.945

0.000 1.000 0.500 0.050 0.055

0.500 00.500 1.000 0.590 0.631

0.950 0.050 0.590 1.162 1.072

0.945 0.055 0.6631 1.072 1.228
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ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

Equation 10.11 can be used to obtain the inverse of Av. However, the vector si
containing the contributions from ancestors is needed and this can be computed using 
Eqn 10.10. The vector si for the ith animal needed to calculate A−1

v  is shown in Table 10.1.
The inverse of Av is:

v
-1A  = 

4.966 0.286 0.148 2.723 1.382

0.286 1.519 1.068 0.013 0.

- - -
- 2249

0.148 1.068 2.245 0.298 0.732

2.723 0.013 0.298 5.978 2.

- - - -
- - - 9971

1.382 0.249 0.732 2.971 4.836- - -
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ê
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The model for the prediction now becomes:

y = Xb + Zu + Wq + e (10.19)

where all terms are as defined in Eqn 10.17 except that W is now identical to Z and 
relates additive genetic effects at the MQTL to animals. Both matrices Z and W are 
identity matrices and are of the order of animals. The vector q is the vector of additive 
genetic effects at the MQTL and is equal to the sum of the additive genetic effects 
of the paternal and maternal alleles for the animal. The variance–covariance matrix 
of q = 2Avs

2
v = Avs

2
q, since s2

q = 2s2
v . The MME for the above model are:

Table 10.1. Vector (si ) with contributions at the MQTL from ancestors 
(animals 1 to 4) to animals 2 to 5 using the pedigree in Example 10.1.

Elements in si relating to animal

Animal 1 2 3 4

2 0.0000
3 0.5000 0.5000
4 0.8600 −0.0400 0.1800
5 0.2857 –0.0514 0.1514 0.6143
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with:

a1 = s2
e /s2

u and a2 = s2
e /s2

q

10.7.1 An illustration

Example 10.3
Using the same data set as in Example 10.1 and the same genetic parameters, the pre-
diction of additive genetic effects breeding values at the QTL not linked to the MQTL, 
and combined additive genetic effect of the MQTL at the animal level, is illustrated.

From the parameters, a1 = 0.6/0.3 = 2 and a2 = 0.6/0.10 = 6. The design matrices 
X and Z are as defined in Example 10.2 and W is now equal to Z. The MME is too 
large to show but the matrix W′R−1W + A−1

v a2 is:

W R W A¢

- - -
-

-1

30.796 1.716 0.888 16.338 8.292

1.716 10.114 6

++ v
-1

2a =

..408 0.078 1.494

0.888 6.408 14.470 1.788 4.392

16.338 0.078

- - - -
- -11.788 36.868 17.826

8.292 1.494 4.392 17.826 30.016

-
- - -
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Solving the MME gave the following solutions:

Effects Solutions

Sex
Male 7.356
Female 5.529

Animal Additive genetic effects not linked to MQTL
1 0.091
2 −0.091
3 0.341
4 0.329
5 0.515

Animal Combined additive genetic effects at the MQTL
1 0.076
2 −0.076
3 0.079
4 0.104
5 0.130

The solutions for the additive effect at the MQTL are the same as the sum of 
estimated effects in Examples 10.1 and 10.2. The application of this model may be 
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limited to populations of small size as the tabular method of calculating Av and its 
inverse may not be computationally feasible in large populations.

10.8 Predicting Total Additive Genetic Merit

Van Arendonk (1994) showed that total additive genetic merit (a) for animals that 
includes marker information could be predicted directly. This implies that only a 
single equation is needed for an animal in the MME to predict breeding values with 
marker information included. Let Eqn 10.17 be written as:

y = Xb + Za + e (10.21)

where a = u + Kv with u and v as defined in Eqn 10.17. The matrix K, which relates 
allelic effects to animals, is identical to W in Eqn 10.17 when all animals have obser-
vations. The variance–covariance matrix of a (Va) is:

Va = var(u + Kv)
= var(u) + Kvar(v)K′
= Aus

2
u + KGvK′s2

v
= Aus

2
u + 2Avs

2
v

= Aus
2
u + Avs

2
q

The combined numerator relationship matrix among animals with marker informa-
tion included (Aa) is:

Aa = Aus
2
u /s2

a + Avs
2
q /s2

a (10.22)

with:

s2
a = s2

u + s2
q

The MME for Eqn 10.21 are:
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ˆ

ˆ
b (10.23)

where:

a = s2
e /s2

a

The use of Eqn 10.23 would require the inverse of Aa to be calculated. Initially, 
Aa is computed using Eqn 10.22, then A−1

a  can be calculated using Eqn 10.11, with 
the vector si containing the contributions from ancestors computed using Eqn 10.10. 
The calculation of both matrices is illustrated in the following example.

10.8.1 Numerical application

Example 10.4
Using the same data set as in Example 10.1 and the same genetic parameters, the total 
additive genetic effects of animals, which included marker information, are directly 
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predicted. From the genetic parameters in Example 10.1, s2
a = s2

u + s2
q = 0.3 + 

0.1 = 0.4 and s2
e = 0.6; therefore, a = s2

e /s2
a = 0.6/0.4 = 1.5. The Z matrix in 

Eqn 10.21 is now an identity matrix considering animals with records.
The matrix Aa below was calculated as the sum of Au(0.3/0.4) and Av(0.1/0.4). The 

matrices Au and Av have been calculated in Examples 10.2 and 10.4.

a = A

1.000 0.000 0.500 0.800 0.705

0.000 1.000 0.500 0.200 0.295

0.5000 0.500 1.000 0.710 0.814

0.800 0.200 0.710 1.228 1.018

0.705 0.295 00.814 1.018 1.338
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The vector si for the ith animal needed to calculate A−1
a  is shown in Table 10.2.

The matrix A−1
a  calculated using Eqn 10.11 is:

Aa
-1

2.2641 0.4854 0.4101 1.2080 0.1314

0.4854 1.5007 1.021

=

- - -
- 88 0.0030 0.0327

0.4101 1.0218 2.7536 0.3673 0.9544

1.2080 0.0

- - - -
- 0030 0.3673 2.9811 1.4088

0.1314 0.0327 0.9544 1.4088 2.4619

- -
- - -
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The MME (Eqn 10.23) for the example data is as follows:

2.000 0.000 1.000 0.000 1.000 0.000 0.000

0.000 3.000 0.000 1.000 0.0000 1.000 1.000

1.000 0.000 4.396 0.728 0.615 1.812 0.197

0.000 1.

− − −
0000 0.728 3.251 1.533 0.005 0.049

1.000 0.000 0.615 1.533 5.130

−
− − −00.551 1.432

0.000 1.000 1.812 0.005 0.551 5.472 2.113

0.000 1.0

−
− − −

000 0.197 0.049 1.432 2.113 4.693− − −
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Table 10.2. Vector (si ) with contributions from ancestors (animals 
1 to 4) to animals 2 to 5, using the pedigree in Example 10.1.

Elements in si relating to animal

Animal 1 2 3 4

2 0.0000
3 0.5000 0.5000
4 0.5900 −0.0100 0.4200
5 0.0534 −0.0133 0.3877 0.5722
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Solving the MME equations gave these results:

Effects Solutions

Sex
Male 7.356
Female 5.529

Animal Total additive genetic merit including marker information
3 0.167
4 −0.167
5 0.419
6 0.432
7 0.645

The application of Eqn 10.21 is valuable as only one equation is fitted per animal, 
but its application to a large data set may be limited because of the tabular method 
of calculating the relationship matrix needed and its inverse.

10.9 Analysis of Data with QTL Bracketed by Two Markers

This section deals with the extension of the model of Fernando and Grossman (1989) 
by Goddard (1992) to handle situations in which MQTL is bracketed between two 
markers. The use of marker information when MQTL is bracketed between two 
markers should enhance the accuracy of EBVs compared with information with a 
single marker.

10.9.1 Basic model

Consider a chromosome with a series of marker loci with at most one QTL located 
between each pair of markers:

M Q Mj j j+1

Each animal inherits two alleles at the Qj locus: one from its sire and the other from 
its dam. A marker haplotype consisting of the marker alleles at Mj and Mj+1 would be 
associated with each of the MQTL alleles. Let the jth chromosome segment that ani-
mal i inherited from its sire be of the marker haplotype (kl) and the value of the 
MQTL allele be vij(kl) or simply vij(p). Similarly, let the value of the MQTL allele from 
its dam be vij(m). Summed over all chromosome segments, the breeding value of ani-
mal i (ai) is:

a u v vi i ij p ij m
jj

= + + åå ( ) ( )

Similar to Eqn 10.3 the model for the phenotypic record of animal i is:

y x u v v ei i i ij p ij m
jj

= + + + +ååb ( ) ( )
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or in matrix notation the model is:

y x Zu W v e= + + +åb j j
j

The terms are as defined in Eqn 10.17. The vector vj contains the effects of the paternal 
and maternal MQTL alleles at each locus. The summation is over chromosome segments 
bounded by markers. The variance of u and vj are as defined in Eqn 10.19, such that:

var(vj) = Gvj J 2
vj

Assuming j = 2, the BLUP equations for the above model are:

X X X Z X W X W

Z X Z Z A Z W Z W

W X W Z W W G W
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(10.24)

where:

a1 = s2
e /s2

u , a2 = s2
e /s2

v1 and a3 = s2
e /s2

v2

10.9.2 Calculating the covariance matrix, G

Consider a single MQTL bounded by two marker loci with marker distances as follows:

M Q M1 2

pr qr p q

r

( + = 1)

With the assumption of no crossover, the recombination rates are (Haldane, 1919) between:

M1 and M2 = a = 0.5(1 − e−2r)
M1 and Q = b = 0.5(1 − e−2pr)
Q and M2 = c = 0.5(1 − e−2qr)

Similar to the situation with a single marker, the variance of v depends on the 
relationship among the v terms. The MQTL alleles in the progeny can be expressed 
in terms of parental MQTL. Thus given, for instance, that the genotype of the sire is:

1 1

2 2

11

22

v

v

s

s
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The sire will produce the following four types of gametes on the basis of marker 
haplotypes:

1 vo11 1 1 vo12 2 2 vo21 1 2 vo22 2

Assuming no double recombination between markers, the frequency, means and 
approximate means for the four gametes (Goddard, 1992) are:

Haplotype Frequency Mean Approximate mean

1 1 1
2(1 − a) [(1 − b)(1 − c)/1 − a]vs11 + [bc/1 − a]vs22 vs11

1 2 1
2
a [(1 − b)c/a]vs11 + [b(1 − c)/a]vs22 qvs11 + pvs22

2 1 1
2
a [b(1 − c)/a]vs11 + [(1 − b)c/a]vs22 pvs11 + qvs 22

2 2 1
2(1 − a) [bc/1 − a]vs11 + [(1 − b)(1 − c)/1 − a]vs 22 vs 22

Given, for instance, that r = 0.2, p = 0.8 and q = 0.2, then a, b and c are 0.1649, 
0.1370 and 0.0385, respectively. The means for the haplotypes are 0.99vs11 and 0.01vs11
for (1 1), 0.2vs11 and 0.8vs11 for (1 2), 0.8vs11 and 0.2vs11 for (2 1) and 0.01(vs11)
and 0.99(vs11) for (2 2). The approximate means are very similar to these estimates. 
The maximum errors associated with the above approximate means are when p = q = 0.5 
for haplotypes (1 1) and (2 2) (Goddard, 1992). Using the approximate means, the value 
of the MQTL in each gamete can be written in terms of the parental MQTL as:

v

v

v

v

q p

p q

v

v

o

o

o

o

s

s

11

12

21

22

11

2

1 0

0 1

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷ 22

11

12

21

22

æ

è
ç

ö

ø
÷ +

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

e
e
e
e

(10.25)

where eij is the deviation of each gamete from the mean of the haplotype. Since vo11
is identical to vs11 and vo22 to vs22 with the approximate means, then e11 = e22 = 0. 
Eqn 10.25 may be expressed as:

v = Pv + e

where P is as defined in Section 10.5 and has at most two non-zero elements, which 
sum to unity. Thus:

v = (I − P)−1e

Therefore:

G = var(v) = (I − P)−1var(e)((I − P)−1)′
and:

G−1 = (I − P)′H−1(I − P) (10.26)

where Hs 2
v = var(e) and H is a diagonal matrix. Since e11 = e22 = 0, var(e11) = var(e22) = 0. 

The main interest therefore is in calculating var(e12) and var(e21). The calculation of 
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either var(e12) or var(e21) is similar to that for var(e) in Section 10.5. For instance, for 
the oth progeny:

 eo12 = vo12 − q(vs11) − p(vs22)
var(eo12) = var(vo12) − q2var(vs11) − p2var(vs22) − 2qpcov(vs11, vs22)

= s2
v − (1 − p)2s2

v + p2s2
v − 2(1 − p)ps2

v Fs
= 2s2

v ((1 − p)p − (1 − p)pFs)
= 2s2

v (1 − p)p(1 − Fs) = 2s2
v pq(1 − Fs)

var(eo12)/s
2
v = H = 2pq(1 − Fs)

Therefore, if the sire is not inbred, the diagonal element of H for progeny o(hoo)
with the allele vo12 equals 2pq. If the sire is unknown, hoo = 1. Similarly, for a 
progeny o with allele vo21, hoo = 2qp if the sire is known, otherwise 0 if the sire is 
unknown.

The matrix G can be calculated using rules similar to those defined in Section 
10.3. The relationship of the MQTL paternal allele of a progeny o with MQTL 
alleles of individuals 1 to (o – 1) can be calculated using Eqn 10.7, with rp

o = p
when o inherits marker haplotype vs12 or rp

o = (1 − p) when o inherits marker 
haplotype vs21. Similarly, for the maternal MQTL allele, Eqn 10.8 can be used with 
rm

o = p when o inherits marker haplotype vm12 or rm
o = (1 − p) when o inherits 

marker haplotype vm21.
Using Eqn 10.26, Goddard (1992) derived the following rules for calculating Gv

−1.

1. Replace vo11 with vs11 in all equations and then delete the row and column for vo11
in G−1. Similarly, replace vo22 with vs22. Set G−1 to zero.
2. For progeny allele vo12, add:

q/2p to the element corresponding to (vs11, vs11)
p/2q to the element corresponding to (vs22, vs22)
1/2pq to the element corresponding to (vo12, vo12)
−1/2p to the element corresponding to (vs11, vo12) and (vo12, vs11)
−1/2q to the element corresponding to (vs22, vo12) and (vo12, vs22)
1/2 to the element corresponding to (vs11, vs22) and (vs22, vs11)

3. For a progeny allele vo21, replace p with q and vo12 with vo21 in the rules above.
4. For an allele vs11 without known parents, add 1 to element corresponding to (vs11, vs11)

Goddard (1992) indicated that the use of the approximate means to calculate P
implies that vs11 and vo11 are forced to be identical even if double crossover occurs. 
Therefore, it might be desirable to use a correlation (r) slightly less than unity between 
vs11 and vo11. This is achieved by using:

vo11 = (1 − r2/4)vs11 + r2/4vs22 + e11

Then the row and column for vo11 are retained in Gv
−1, and, in the above rules, vo12 is 

replaced by vo11 and p by r2/4.

10.9.3 An illustration

Example 10.5
Consider that the four calves in the following data set have the following genotype at 
two linked loci.
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Assuming no double crossing over, the genetic parameters as in Example 10.2 and 
letting p and q be equal to 0.8 and 0.2, respectively, predict the effects of the sex of 
the calf, additive genetic effects (breeding values) not linked to the MQTL for animals 
and additive genetic effects for the MQTL alleles of animals.

The alleles at the MQTL can be defined from the genotypes at the two linked 
marker loci. Thus the paternal and maternal MQTL alleles for animal 1 will be vs11
and vs22, respectively. Correspondingly, those for animal 4 will be vo21 and vo14,
respectively. As in Example 10.3, a1 = 0.6./0.3 = 2 and a2 = 0.6/0.05 = 12. With the 
assumption of no double crossing over, for calf 3, vo44 = vm44 (calf 2); therefore, the 
row and column for vo44 are deleted from Gv and the MME.

The design matrix Z is an identity matrix of order four and W is:

W W W = 

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

and

1 1 0 0 0 0
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The covariance matrix Gv is:

Gv  = 

1.000 0.000 0.000 0.000 0.200 0.800 0.040

0.000 1.000 0.000 0.0000 0.800 0.200 0.160

0.000 0.000 1.000 0.000 0.000 0.000 0.000

0.000 00.000 0.000 1.000 0.000 0.000 0.800

0.200 0.800 0.000 0.000 1.000 0.3320 0.200

0.800 0.200 0.000 0.000 0.320 1.000 0.064

0.040 0.160 0.0000 0.800 0.200 0.064 1.000
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The calculation of Gv with elements g(i,j) for the first few animals is as follows. 
For the first two animals, both parents are unknown; therefore, the diagonal element 
of G for either the paternal or maternal allele is 1 for these animals. Calf 3 inherited 
marker haplotype vs12 from its sire; therefore, rp

o = p in Eqn 10.7. Thus:

g(3p3p,1p1p) = (1 − p)g(1p1p,1p1p) + pg(1m1m,1p1p) = q(1) + p(0) = q = 0.2
g(3p3p,1m1m) = (1 − p)g(1p1p,1m1m) + pg(1m1m,1m1m) = q(0) + p(1) = p = 0.8
g(3p3p,2p2p) = (1 − p)g(1p1p,2p2p) + pg(1m1m,2p2p) = q(0) + p(0) = 0
g(3p3p,2m2m) = (1 − p)g(1p1p,2m2m) + pg(1m1m,2m2m) = q(0) + p(0) = 0

Genotype at the two linked markers

Animal Sire Dam Marker 1 Marker 2

1 – – 11 22
2 – – 33 44
3 1 3 12 44
4 4 3 21 14
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The marker haplotype inherited by calf 4 from its sire is vs21; therefore, rp
o = q in 

Eqn 10.7. Thus:
g(4p4p,1p1p) = (1 − q)g(1p1p,1p1p) + qg(1m1m,1p1p) = p(1) + q(0) = p = 0.8
g(4p4p,1m1m) = (1 − q)g(1p1p,1m1m) + qg(1m1m,1m1m) = p(0) + q(1) = q = 0.2
g(4p4p,2p2p) = (1 − q)g(1p1p,2p2p) + qg(1m1m,2p2p) = p(0) + q(0) = 0
g(4p4p,2m2m) = (1 − q)g(1p1p,2m2m) + qg(1m1m,2m2m) = p(0) + q(0) = 0
g(4p4p,3m3m) = (1 − q)g(1p1p,3m3m) + qg(1m1m,3m3m) = p(q) + q(p) = 2pq = 0.32

The inverse of Gv is:

Gv  = -

- -

1

3.125 1.000 0.000 0.000 0.625 2.500 0.000

1.000 3.125 0.0000 0.000 2.500 0.625 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.00

- -
00

0.000 0.000 0.000 3.000 0.500 0.000 2.500

0.625 2.500 0.000 0.5

-
- - 000 3.250 0.000 0.625

2.500 0.625 0.000 0.000 0.000 3.125 0.000

0.

-
- -

0000 0.000 0.000 2.500 0.625 0.000 3.125- -
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The matrix G−1 was computed using the rules outlined earlier. Thus for the first two 
animals (first four alleles), add 1 to the diagonal elements since parents of both calves 
are unknown. For paternal allele of calf 3, add 1/2pq to the diagonal element 
(3p3p,3p3p) of G−1, q/2p to element (1p1p,1p1p), p/2q to element (1m1m,1m1m),
−1/2p to elements (1p1p,3p3p) and (3p3p,1p1p), −1/2q to elements (1m1m,3p3p)
and (3p3p,1m1m) and 0.5 to the elements (1p1p,1m1m) and (1m1m,1p1p).

The matrix A−1 for the example data can be calculated using the usual rules; therefore, 
the MME can easily be set up from the design matrices and inverse of the covariance 
matrices given. Solving the MME by direct inversion gave the following results:

A similar model to that in Example 10.5 has been used by Boichard et al. (2002) 
for incorporating MQTL information into genetic evaluation for milk production 
traits in young bulls.

Effects Solutions

Sex of calf
Male 7.475
Female 5.091

Breeding values for animals
1 0.034
2 –0.034
3 0.246
4 0.280

Additive effects for animals at the MQTL 
1p –0.008
1m 0.005
2p –0.047
2m 0.049
3p 0.024
4p 0.010
4m 0.059
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11.1 Introduction

In outbreeding populations, the incorporation of molecular information in breeding 
programmes on the basis of the linkage analysis, as discussed in Chapter 10, is limited, 
as the marker maps are rather sparse and linkage between the markers and QTL may 
not be sufficiently close enough to persist across the population. Thus the linkage 
phase between marker and QTL must be established for every family in which the 
marker is intended to be used for selection.

However, a huge amount of variation has been discovered in the genome at the 
DNA level as a result of sequencing the genomes of most livestock species. The 
most abundant form of variation is the single nucleotide polymorphisms (SNPs). 
An SNP is a DNA sequence variation occurring when a single nucleotide (A, T, C 
or G) in the genome differs between paired chromosomes in an individual. For 
example, two sequenced DNA fragments from different individuals, AAGCCTA to 
AAGCT TA, contain a difference in a single nucleotide. In this case we say that 
there are two alleles: C and T. Generally, SNPs are diallelic. In view of the high 
frequency of SNPs in the genome, and developments in genotyping technology that 
mean many thousands of SNPs can be genotyped very cheaply, they have been 
proposed as markers for use in QTL analysis and in association studies in place of 
microsatellites.

The main emphasis of this chapter is the use of SNPs to directly compute EBVs 
of animals, which are often called direct genomic breeding values (DGV). This is usu-
ally combined with some measure of the traditional EBV, say parent index, from an 
animal model to produce what is termed genomic breeding values (GEBV), which are 
officially published and used for the selection of animals.

The use of GEBV in the selection of animals has been referred to as genomic 
selection. Genomic selection requires that markers (SNPs) are in linkage disequilib-
rium (LD) with the QTLs across the whole population. LD can be defined as the 
non-random association between the alleles of two loci (e.g. between alleles of a 
marker and a QTL). Given a marker locus, A (with alleles A1, A2), and a QTL locus, 
B (with alleles B1 and B2), on the same chromosome, LD can be measured as the 
squared correlation (r2) between the marker and the QTL as:

D = freq(A1B1)*freq(A2B2) − freq(A1B2)*freq(A2B1)
r2 = D2/[freq(A1)*freq(A2)*freq(B1)*freq(B2)]

The r2 between the marker and the QTL indicates the proportion of the variance for 
the QTL that can be explained at the marker.

11  Computation of Genomic
Breeding Values and 
Genomic Selection
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The basic assumption is that the use of SNPs as markers enables all QTL in the 
genome to be traced through the tracing of chromosome segments defined by adja-
cent SNPs. It is assumed that the effects of the chromosome segments will be the same 
across the population as a result of the LD between the SNPs and QTL. Thus it is 
important that marker density is high enough to ensure that all QTL are in LD with 
at least a marker.

The main advantages of genomic selection are similar to those outlined in 
Chapter 10 with MAS. Briefly, it results in a reduction of the generation interval, as 
young animals can be genotyped early in life and their GEBV computed for the pur-
poses of selection. In the dairy cattle situation, GEBV computed early in life can be 
used to select young bulls, thereby reducing the cost of progeny testing, provided the 
GEBV are accurate enough. In addition, higher accuracy of GEBV, about 20–30% 
above that from a parent average, has been reported for young bulls. The computa-
tion of GEBV for an individual on the basis of the SNPs it has inherited means that 
the differences in the genomic merit of full-sibs can be captured.

The implementation of genomic selection involves estimating the SNP effects in 
a reference population that consists of individuals with phenotypic records and geno-
types. This is then followed by prediction of GEBV for selection candidates that do 
not yet have phenotypes of their own.

11.2 General Linear Model

The general linear model underlying genomic evaluation is of the form:

y Xb g e= + +∑Mi i
i

m

(11.1)

where m is the number of SNPs or markers across the genome, y is the data vector, b
the vector for mean or fixed effects, gi the genetic effect of the ith SNP genotype and 
e is the error. The matrices X and Mi are design matrices for the mean or fixed effects 
and the ith SNPs, respectively. The matrix M is of dimension n (number of animals) 
and m. The assumption is that all the additive genetic variance is explained by all the 
marker’s effects such that the estimate of an animal’s total genetic merit or breeding 
value (a) is: a g= ∑

i

m

i iM . However, if it is assumed that a certain proportion of the addi-
tive genetic variance is not explained by markers, then the model can be extended to 
include a residual polygenic effect (u), which is the proportion of the additive genetic 
variance not captured by markers. The model can then be written as:

y g Wu= Xb M e+ + +∑ i
i

m

i (11.2)

where W is the design matrix linking records to random animal or sire effects if an 
animal or model has been fitted.

11.3 Coding and Scaling Genotypes

As explained in Eqn 11.1, M is the genotypic matrix that contains which marker 
alleles each individual inherited. The genotypes of animals are commonly coded as 
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2 and 0 for the two homozygotes (AA and BB) and 1 for the heterozygotes (AB or 
BA). If alleles are expressed in terms of nucleotides, and the reference allele at a locus 
is G and the alternative allele is C, then the code is 0 = GG, 1 = GC and 2 = CC. 
The diagonal elements of MM′ then indicate the individual relationship with itself 
(inbreeding) and the off-diagonals indicate the number of alleles shared by relatives 
(VanRaden, 2007).

Commonly, in genomic evaluations (VanRaden, 2008), the elements of M are 
scaled to set the mean values of the allele effects to zero and account for differences 
in allele frequencies of the various SNPs. Let the frequency of the second or alterna-
tive allele at locus j be pj and then elements of M can be scaled by subtracting 2pj. Let 
the element for column j of a matrix P equal 2pj, then the matrix Z, which con-
tained the scaled elements of M, can be computed as Z = M − P. Note that the sum 
of the elements of each column of Z equals zero. Furthermore, the elements of Z can 
be normalized by dividing the column for marker j by its standard deviation, which 
is assumed to be 2p pj j( )1 − . This is assuming that the locus is at Hardy Weinberg 
equilibrium. However, in this chapter Z computed as M – P has been used.

11.4 Fixed Effect Model for SNP Effects

Several methods for genomic selection were presented by Meuwissen et al. (2001), and 
one such method includes the least squares approach with chromosome segments or 
SNPs considered as fixed. There is no assumption made about the distribution of the 
SNP effects and it usually involves two steps.

1. Analysis of each SNP using the simple model in Eqn 11.1, with gi defined as the 
vector of fixed ith SNP effect.
2. Select the k most significant SNPs and estimate their effects simultaneously (in the 
same data) using a multiple regression with the term for SNP effects in Eqn 11.1 equal to: 

M gi i
i

k

∑
This approach suffers from two major limitations. First, the estimation of effects 
based on an SNP selected by single SNP analysis will result in overestimation of 
the SNP effects, as the large amount of multiple testing ensures the selected SNPs are 
those with positive error terms. Second, determining the level of significance for the 
choice of SNPs to include in the final analysis is far from straightforward.

In an animal breeding context, assuming the few SNPs that have significant effects 
on a trait have been identified, then these SNPs can fitted as fixed effects in a model 
that includes the polygenic effect as a random effect. Thus the genomic breeding value 
for animal i (GEBVi) can be computed as a sum of the direct genomic breeding value 
(DGVi) calculated from the marker (SNP) effects as Miĝi and the polygenic effects (ûi).

Such a linear model could be written as:

y = Xb + Zg + Wu + e (11.3)

where g represents the fixed marker or SNP effects, Z is the scaled matrix of geno-
types defined in Section 11.2, which relates SNPs to phenotypes, and other terms are 
defined as in Eqn 11.2.
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The equations for obtaining the solutions for SNP and polygenic effects are:
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where:

a = s2
e/s

2
u

If the vector of observations, y in Eqn 11.3, are de-regressed breeding values of bulls 
(see Section 5.5.2), then each observation may be associated with differing reliabilities. 
Thus a weighted analysis may be required to account for these differences in bull reli-
abilities. The weight (wti) for each observation could be the reciprocal of the effective 
daughter contribution (see Section 5.5.2) or wti = (1/reldtr) – 1, where reldtr is the bull’s 
reliability from daughters with parent information excluded (VanRaden, 2008). Then the 
MME are:
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where R = D and D is a diagonal matrix with diagonal element i = wti.

Example 11.1
Given below is the real genotype for the first ten SNPs of a popular dairy bull and 
those of his sons and some other unrelated bulls genotyped using the 50K Illumin chip. 
The genotypes of animals are coded as described in Section 11.3. The observations are 
the DYDs for fat yield, and the effective daughter contribution (EDC) for each bull is 
also given. The EDC can be used as weights in the analysis. It is assumed the genetic 
variance for fat yield is 35.241 kg2 and residual variance of 245 kg2, and animals 13 
to 20 are assumed as the reference population and 21 to 26 as selection candidates. 
Assuming that the first three SNPs have been identified as having the most significant 
effect, the aim is to fit Eqn 11.3 with and without weights using these three SNPs:

Animal Sire Dam Mean EDC
Fat

DYD SNP Genotype

13 0 0 1 558 9.0 2 0 1 1 0 0 0 2 1 2
14 0 0 1 722 13.4 1 0 0 0 0 2 0 2 1 0
15 13 4 1 300 12.7 1 1 2 1 1 0 0 2 1 2
16 15 2 1 73 15.4 0 0 2 1 0 1 0 2 2 1
17 15 5 1 52 5.9 0 1 1 2 0 0 0 2 1 2
18 14 6 1 87 7.7 1 1 0 1 0 2 0 2 2 1
19 14 9 1 64 10.2 0 0 1 1 0 2 0 2 2 0
20 14 9 1 103 4.8 0 1 1 0 0 1 0 2 2 0
21 1 3 1 13 7.6 2 0 0 0 0 1 2 2 1 2
22 14 8 1 125 8.8 0 0 0 1 1 2 0 2 0 0
23 14 11 1 93 9.8 0 1 1 0 0 1 0 2 2 1

Continued
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(Continued )

Animal Sire Dam Mean EDC
Fat

DYD SNP Genotype

24 14 10 1 66 9.2 1 0 0 0 1 1 0 2 0 0
25 14 7 1 75 11.5 0 0 0 1 1 2 0 2 1 0
26 14 12 1 33 13.3 1 0 1 1 0 2 0 1 0 0

EDC, effective daughter contribution; DYD, daughter yield deviation.

The prediction of marker effects and polygenic effects for the reference population and 
selection candidates can be done simultaneously by including A−1 for all animals but using only 
the fat yield records for the reference animals. Thus y′ = (9.0 13.4 12.7 15.4 5.9 7.7 10.2 4.8). 
The incidence matrix X = Iq, with q = 8 (the number of animals in the reference population).

COMPUTING THE MATRIX Z

The computation of Z requires calculating the allele frequency for each SNP. The 
allele frequency for the ith SNP was computed as:

m

n

ij
j

n

∑
2*

where n = 14, the number of animals with genotypes, and mij are elements of M. The 
allele frequencies for the ten SNPs were 0.312, 0.179, 0.357, 0.357, 0.143, 0.607, 0.071, 
0.964, 0.571 and 0.393, respectively. However, only the first three SNPs are needed for 
this example, therefore Z is of order 8 by 3 with elements zi,j = mi,j – pi,j, with j =1, 3. Thus:

Z =
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The W matrix is a diagonal matrix for the eight reference animals with records. This is aug-
mented with 12 columns of zeros to account for ancestors 1 to 12. For the weighted analysis, 
the R was a diagonal matrix with the diagonal elements equal to the EDC of the first eight 
animals in the data set. The matrix A−1 is computed using the usual rules for all 26 animals 
and a = 245/35.241 = 6.952. Solving the system of equations gives the following results:

Unweighted analysis Weighted analysis

Mean effect
9.895 9.178

SNP effect
1 0.607 2.655
2 −4.080 −4.640
3 1.934 2.951

Continued
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(Continued )

Unweighted analysis Weighted analysis

Reference animals
DGV Polygenic DGV Polygenic

13 2.834 −0.299 7.070 −0.001
14 0.293 0.256 1.464 0.000
15 0.081 0.142 2.726 0.000
16 3.554 0.254 4.711 0.002
17 −2.460 −0.085 −2.880 −0.001
18 −3.787 0.271 −3.176 0.002
19 1.620 −0.092 1.760 −0.002
20 −2.460 −0.181 −2.880 −0.002

Selection animals
DGV Polygenic DGV Polygenic

25 0.900 0.000 4.119 0.000
26 −0.314 0.128 −1.191 0.000
27 −2.460 0.128 −2.880 0.000
28 0.293 0.128 1.464 0.000
29 −0.314 0.128 −1.191 0.000
30 2.227 0.128 4.415 0.000

With this small amount of data, it seems that when records are properly weighted, 
polygenic effects were very close to zero. The GEBV for reference and selection ani-
mals equals Zĝ + û. This would be equal to 2.535 for animal 13 for instance. The Z
has been given for reference animals and for the selection candidates the correspond-
ing matrix Z2 is:

Z2

1 357 0 357 0 714

0 643 0 357 0 714

0 643 0 643 0 286

0 35
=

− −
− − −
−

. . .

. . .

. . .

. 77 0 357 0 714

0 643 0 357 0 714

0 357 0 357 0 286

− −
− − −

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

. .

. . .

. . . ⎠⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

11.5 Mixed Linear Model for Computing SNP Effects

Several methods that fit SNP effects as random have been presented by various 
researchers (Meuwissen et al., 2001; VanRaden et al., 2008; Habier et al., 2011). The 
most common random model used in the national evaluation centres for genomic 
evaluation, especially of dairy animals, assumes the effect of the SNP are normally 
distributed and all SNP are from a common normal distribution (e.g. the same genetic 
variance for all SNPs). There are two equivalent models with these assumptions:

1. A model fitting individual SNP effects simultaneously. In this model (SNP-BLUP), 
DGVs for selection candidates are calculated as DGV = Zĝ, where ĝ are the estimates 
of random SNP effects. This method involves knowing s 2

g, but this may not be the 
case in practice, and s 2

g may have to be approximated from s 2
a, the additive genetic 

variance. In such situations, this method is also referred as ridge regression.
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2. A model estimating breeding values directly, with the (co)variance among breeding 
values Gs2

a fitted, where G is the genomic relationship matrix. The matrix G repre-
sents the realized proportion of the genome that animals share in common and is 
estimated from the SNPs.

These models will now be described in more detail.

11.5.1 SNP-BLUP model

In matrix form, the mixed linear model for estimating SNP effects can be written as 
(Meuwissen et al., 2001; VanRaden, 2008):

y = Xb + Zg + e (11.6)

where g is a vector of additive genetic effects corresponding to allele substitution 
effects for each SNP and all other terms defined as in Eqn 11.3. The matrix Z relates 
SNP effects to the phenotypes. The sum of g over all marker loci is assumed equal to 
the vector of breeding values (a), i.e. DGV = a = Zg. The MME for Eqn 11.6 are:
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where a = s 2
e /s 2

g and R is a diagonal matrix of weights (see Eqn 11.5). The MME in 
Eqn 11.7 can easily be set up and solutions obtained for each SNP and the fixed 
effects. However, in practice, the value of s 2

g may not be known and s 2
g could be 

obtained either as s 2
g = s 2

a/m, with m = the number of markers, or as s 2
g = s 2

a/2Σpj
(1 – pj). The latter is preferred as it takes into account the differences in allele frequencies. 
With the latter, a = 2Σpj(1 – pj)*[s 2

e /s2
a], with s2

a being the additive genetic variance for the 
trait and pj is as defined in Section 11.3. Hayes and Daetwyler (2013) indicated that there 
is a potential problem with this estimate as it assumes the LD between SNP and QTL is 
perfect and all genetic variance is captured by the SNP. This may not be the case in practice 
and they recommended the method described by Moser et al. (2010) for estimating a
through cross-validation. The method involves estimating SNP effects with different values 
of a and predicting DGV in validation data sets that have not contributed to the estimation 
of SNP effects. The value of a that minimizes the mean square error between the DGV and 
y is taken as the appropriate estimate. This process can be repeated, dropping out different 
subsets of the data and obtaining an estimate of a by averaging across data sets.

Example 11.2
Using the data and genetic parameters given in Example 11.1, SNP effects are pre-
dicted using Eqn 11.6 and all ten SNPs. Then DGVs are computed for the reference 
and validation animals. Initially, analyses are carried out without weights, thus R = Is 2

e .
Then the data were re-analysed using EDCs as weights, with R in Eqn 11.7 being a 
diagonal matrix containing EDCs for reference bulls.

COMPUTING THE REQUIRED MATRICES AND a

The allele frequencies for the ten SNPs have been calculated in Example 11.1. Using 
those frequencies, 2Σpj(1 – pj) = 3.5383. Thus a = 3.5383*(245/35.242) = 24.598.
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The matrix X in Eqn 11.7 is the same as X in Example 11.1 and Z computed as 
Z = M – P is:

Z =
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The MME in Eqn 11.7 can then be easily set up. The solutions for the mean and 
SNP effects from solving the MME, either using weights or no weights, are shown in 
Table 11.1. The DGV for the reference animals is then computed as Zĝ. The results 
are shown in Table 11.2.

Similarly, the DGV of the validation animals are computed as Z2ĝ, where Z2
contains the centralized genotypes for the selection candidates. Thus for the 
unweighted analysis:
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11.5.2 Equivalent models: GBLUP

An equivalent model to Eqn 11.6 is the application of the usual BLUP MME but with 
the inverse of the numerator relationship matrix (A−1) replaced by the inverse of the 
genomic relationship matrix (G−1) (Habier et al., 2007; Hayes et al., 2009). This tends 
to be referred to generally as GBLUP. The DGVs are computed directly from the 
MME as the sum of the SNP effects (a = Zg), with the assumption that SNP effects 
are normally distributed. Assume the following mixed linear model:

y = Xb + Wa + e (11.8)

where y is the vector of observations, a is the vector of DGVs and W is the design 
matrix linking records to breeding value (random animal or sire effect if an animal 
or sire model has been fitted) and e is random residual effect. Given that a = Zg, then:

var(a) = ZZ′s 2
g
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Noting that:

s
s

a
g2 =
2

2 1Σp pj j( )−
then the matrix ZZ′ can be scaled such that: 

G = ′
−∑

ZZ
2 1pj jp( )

and var(a)=Gs 2
a. The above division scales G to be analogous to the numerator rela-

tionship matrix (A). The genomic inbreeding coefficient for individual i is Gii – 1, and 
the genomic relationship between individuals i and k, which are analogous to the 
relationship coefficients (Wright, 1922), can be obtained by dividing the elements Gij
by the square roots of the diagonals of Gii and Gjj. The matrix G is generally positive 

Table 11.1. Solutions for mean and SNP effects from various models.

Unweighted Weighted

Mean effect
9.944 11.876

SNP effects solutions
1 0.087 –0.633
2 −0.311 −3.041
3 0.262 3.069
4 −0.080 −1.267
5 0.110 2.600
6 0.139 4.447
7 0.000 0.000
8 0.000 0.000
9 −0.061 –3.240

10 −0.016 1.883

Table 11.2. Direct genomic breeding (DGV) values from various models.

SNP-BLUP GBLUP
Selection

index
SNP-BLUP
(weighted)

Reference animals
13 0.070 0.069 0.070 –2.651
14 0.111 0.116 0.111 1.307
15 0.045 0.049 0.045 0.611
16 0.253 0.260 0.253 1.007
17 0.495 –0.500 –0.495 –5.693
18 –0.357 –0.359 –0.357 –4.358
19 0.145 0.146 0.146 0.502
20 –0.224 –0.231 –0.225 –5.718

Selection candidates
21 0.027 0.028 0.028 –0.006
22 0.114 0.115 0.115 6.513
23 –0.240 –0.240 –0.240 –3.835
24 0.143 0.143 0.143 2.701
25 0.054 0.054 0.054 3.273
26 0.354 0.353 0.353 6.350
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semi-definite but can be singular if two individuals have identical genotypes or the 
number of markers (m) is less than genotyped individuals (n). If number of markers are 
limited (m < n), an improved non-singular matrix Gwt can be obtained as wtG + (1 – wt)A.
VanRaden (2008) indicated that wt = 0.90, 0.95 and 0.98 gave good results.

Another method for computing G involves scaling ZZ′ by the reciprocals of 
the expected variance of marker loci (VanRaden, 2008). Thus G = ZDZ′, where 
D is diagonal with:

d
m p pii

j j

= 1
2 1[ ( )]-

The MME for Eqn 11.8 are:
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where a now equals s 2
e/s

2
a.

This approach for genomic evaluation has the advantage that existing software 
for genetic evaluation can be used by replacing A with G and the systems of equations 
are of the size of animals, which tend to be fewer than the number of SNPs. In pedi-
gree populations, G discriminates among sibs, and other relatives, allowing us to say 
whether these sibs are more or less alike than expected, so we can capture informa-
tion on Mendelian sampling. Also, the method is attractive for populations without 
good pedigree, as G will capture this information among the genotyped individuals 
(Hayes and Daetwyler, 2013).

Note that Eqn 11.9 assumes all the additive genetic variance (s 2
a) is captured by 

the SNP, but this may not be the case if the linkage disequilibrium between SNP and 
QTL is not perfect. Later, in Section 11.6, a model is discussed that might capture any 
residual polygenic variance not captured by the SNPs. Another possible limitation is 
that there are no direct rules for computing G−1 and in large populations the compu-
tation may not be feasible.

Example 11.3
The data in Example 11.1 is analysed using Eqns 11.8 and 11.9 and the same genetic 
parameters to compute DGVs for both the reference and validation animals without 
using weights.

The matrix X in Eqn 11.9 is the same X as in Example 11.1, W is a diagonal 
matrix for the eight reference animals with records and a = 245/35.25 = 6.950.

The G matrix constructed from Z for the ten SNPs as: 
ZZ′

2 1Σp pj j( )−
with 2Σpj(1 − pj) = 3.5383 is:

13 1.472
14 −0.446 0.746
15 0.988 −0.930 1.634
16 0.059 −0.446 0.422 0.907
17 0.685 −0.950 1.048 0.402 1.593
18 −0.163 0.180 −0.365 −0.163 −0.102 0.746
19 −0.708 0.201 −0.627 0.423 −0.365 0.201 0.786
20 −0.547 0.079 −0.183 0.301 −0.203 0.079 0.382 0.826
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For the purposes of comparison, the G matrix computed from 41866 SNPs (Gall) with 
2Σpj(1 – pj) = 15555.80 and the A computed from a five-generation pedigree are 
shown below:

Gall =

21 0.887 0.100 0.120 −0.526 −0.183 0.100 −0.728 −0.567 2.280
22 −0.789 0.402 −0.708 −0.506 −0.446 −0.163 0.140 −0.264 −0.526 1.190
23 −0.203 −0.143 0.160 0.362 0.140 0.140 0.160 0.604 −0.224 −0.486 0.665
24 −0.143 0.483 −0.345 −0.708 −0.648 −0.365 −0.345 −0.183 0.120 0.705 −0.405 1.068
25 −0.829 0.362 −0.748 −0.264 −0.486 0.079 0.382 −0.022 −0.567 0.867 −0.244 0.382 0.826
26 −0.264 0.362 −0.466 −0.264 −0.486 −0.203 0.100 −0.304 −0.284 0.584 −0.526 0.382 0.261 1.109

13 0.957
14 −0.108 0.973
15 0.452 −0.116 1.182
16 0.209 −0.058 0.424 1.025
17 0.234 −0.083 0.425 0.312 1.037
18 −0.040 0.438 0.097 −0.047 −0.043 1.151 symmetric
19 −0.089 0.458 0.039 −0.067 −0.070 0.426 1.175
20 −0.093 0.460 0.053 −0.058 −0.063 0.432 0.707 1.183
21 0.077 −0.082 0.064 0.104 0.082 −0.071 −0.069 −0.069 1.031
22 −0.056 0.418 0.093 −0.046 −0.038 0.408 0.355 0.342 −0.044 1.139
23 −0.005 0.464 −0.038 −0.035 −0.038 0.206 0.223 0.215 0.011 0.280 0.993
24 −0.070 0.468 0.075 −0.027 −0.053 0.403 0.521 0.550 −0.079 0.424 0.260 1.198
25 −0.052 0.416 0.098 −0.009 −0.031 0.386 0.363 0.342 −0.038 0.370 0.219 0.419 1.125
26 −0.070 0.493 −0.084 −0.039 −0.044 0.258 0.241 0.270 −0.072 0.253 0.178 0.259 0.214 1.009

A =
13 1.008
14 0.033 1.037
15 0.545 0.021 1.041
16 0.288 0.021 0.536 1.016
17 0.285 0.031 0.541 0.293 1.020
18 0.047 0.580 0.036 0.028 0.032 1.062
19 0.033 0.613 0.021 0.021 0.031 0.365 1.095 symmetric
20 0.033 0.613 0.021 0.021 0.031 0.365 0.613 1.095
21 0.099 0.031 0.082 0.118 0.074 0.028 0.031 0.031 1.021
22 0.046 0.586 0.032 0.031 0.039 0.351 0.373 0.373 0.044 1.068
23 0.096 0.569 0.067 0.043 0.047 0.329 0.357 0.357 0.042 0.338 1.050
24 0.041 0.574 0.027 0.019 0.026 0.331 0.406 0.406 0.028 0.335 0.335 1.056
25 0.033 0.548 0.035 0.039 0.039 0.315 0.336 0.336 0.037 0.321 0.310 0.310 1.029
26 0.035 0.588 0.023 0.024 0.039 0.337 0.376 0.376 0.036 0.347 0.341 0.348 0.325 1.070

The matrix A is more similar to Gall than to G, thus with more SNPs, the genomic 
relationship matrix captures more relationships.

The matrices required for Eqn 11.9 have been described. Solving Eqn 11.9 gives 
the DGVs directly for both the reference and selection animals and these are shown 
in Table 11.2. The solution for the mean effects was 9.944. Thus the model gave the 
same results as the SNP model.

11.5.3 Equivalent models: selection index approach

VanRaden (2008) presented a selection index approach which is equivalent to Eqn 11.9. 
The method is of limited use in practice as it is assumed that the solutions of the vec-
tor of fixed (b̂) effects are known. It does, however, demonstrate the equivalence of 
the selection index approach to GBLUP.
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Selection index equations to predict DGV (â) are constructed as the covariance 
between y and a multiplied by the inverse of the variance of y and the deviation of y
from fixed effects solutions. Thus:

ˆ ( ˆ )a b= +
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The vector of estimates of SNP effects (ĝ) can be obtained from Eqn 11.10 as:
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The DGV of validation candidates without records can then be computed with the 
selection index approach as:
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where C is the genomic covariance between animals with and without records com-
puted as: 

Z Z2

2 1

′

−∑ p pj j( )

with Z2 being the matrix of centralized genotypes for the validation animals (see 
Example 11.3).

Example 11.4
The data in Example 11.1 is again analysed using Eqn 11.10 and the same genetic 
parameters to compute DGVs for the reference animals without using weights. The 
solution of 9.994 has been assumed for the mean.

The X matrix in Eqn 11.10 equals X in Example 11.1, the G matrix is of order 
8 for the reference animals only and corresponds to the first eight rows and columns 
of G computed in Example 11.3 and R = Is2

e , assuming no weights are used in the 
analysis.

Solutions from solving Eqn 11.10 are shown in Table 11.2. Similarly, the DGV 
of the selection candidates were obtained by Eqn 11.12 and these are also shown in 
Table 11.2. The same solutions were obtained for both reference and validation ani-
mals as obtained from the SNP or GBLUP models.

11.6 Mixed Linear Models with Polygenic Effects

The genomic BLUP model used to estimate SNP effects in most livestock populations 
is based on chips with densities of about 60K, and it is usually assumed that these 
SNPs explain all the genetic variation for the traits analysed. However, fitting a 
residual polygenic effect (RP) may account for the fact that SNPs may not explain all 
the genetic variance and it has also been found to render SNP effects less biased 
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(Solberg et al., 2009). Liu et al. (2011) have demonstrated that the optimum level of 
RP may differ for traits of different heritabilities but tends to vary between 10 and 
20% of the genetic variance.

A mixed linear model with polygenic effects included is of this form:

y = Xb + Wu + Zg + e (11.13)

where u is the vector of random residual polygenic effects, W is the design matrix that 
relates records to animals and other terms are defined as in Eqn 11.6. If a SNP-BLUP 
model is fitted, the MME to be solved are:
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where a1 = s2
e/s

2
u, with s2

u equal to the chosen percentage of the additive genetic vari-
ance fitted as polygenic effect and a2 = s2

e /s2
g, with s2

g calculated to account for the 
percentage of additive genetic variance attributed to the polygenic effect. Thus a2 = 
(s2

a − s2
u)/m with m = number of markers or 2Σpj(1 – pj)*[s2

e /(s2
a − s2

u)].
However, if a GBLUP model is to be fitted, then the mixed linear model is:

y = Xb + Wu + Wa + e (11.15)

where a is the vector of DGVs and all other terms are as defined in Eqn 11.8. The 
MME to be solved are:
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where:

a1 = s2
e /s2

u and a2 = s2
e /(s

2
a − s2

u)

Example 11.5
The data in Example 11.1 is analysed assuming the same genetic parameters to 
compute DGVs for the reference animals without using weights. It is also assumed 
that 10% of the additive genetic variance is due to residual polygenic effect in the 
model. The analysis has been carried out using both Eqns 11.14 and 11.16 without 
any weights.

Given that s 2
a = 35.241, then s2

u = 0.1*35.241 = 3.5241. Therefore, for both 
Eqns 11.14 and 11.16, a1 = s2

e/s
2
u = 245/3.5241 = 69.521. However, for Eqn 11.14, 

a2 = s 2
e/s

2
g and now equals 2Σpj(1 – pj)*[s 2

e/(s
2
a − s2

u)] = 3.5383*(245/(35.241 – 3.5241) = 
27.332, while in Eqn 11.16, a2 = s2

e /(s2
a − s2

u) = 7.725.
The matrix Z in Eqn 11.14 is as defined in Example 11.2, while W in Eqns 11.14 

and 11.16 have been set up in Example 11.3. The matrix A−1 is for the eight reference 
animals. All matrices for Eqns 11.14 and 11.16 have therefore been defined. The mean 
and SNP solutions from solving the MME in Eqn 11.14 are given in Table 11.3. 
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Table 11.4. Direct genomic breeding values from models with polygenic effects.

SNP-BLUP model GBLUP

Polygenic DGV Polygenic DGV

Reference animals
13 0.011 0.066 0.011 0.064
14 −0.007 0.102 −0.007 0.106
15 0.043 0.071 0.043 0.074
16 0.076 0.299 0.076 0.305
17 −0.015 −0.473 −0.015 −0.477
18 −0.025 −0.343 −0.025 −0.345
19 −0.021 0.115 −0.021 0.115

Selection candidates
20 −0.056 −0.254 −0.056 −0.260
21 0.005 0.028 0.005 0.029
22 −0.006 0.102 −0.006 0.102
23 −0.004 −0.220 −0.004 −0.220
24 −0.008 0.125 −0.008 0.125
25 −0.003 0.051 −0.003 0.051
26 −0.006 0.316 −0.006 0.315

The mean solution from solving Eqn 11.16 was 9.940. The DGVs for the reference 
and validation populations from both sets of MME are given in Table 11.4. As 
expected, Eqns 11.14 and 11.16 gave similar results, but for this example, the inclusion 
of 10% polygenic effects decreased the range of SNP solutions slightly but increased 
the range for DGVs.

11.7 Single-step Approach

Since the genomic predictions are usually based on a subset of data used for national 
evaluation, the DGV are usually combined with some measure of conventional breeding 
values to incorporate additional information in the conventional evaluations. 

Table 11.3. Mean and SNP effects from 
SNP-BLUP model with polygenic effects.

Mean effects
9.940

SNP effects
1 0.078
2 −0.280
3 0.234
4 −0.075
5 0.098
6 0.128
7 0.000
8 0.000
9 −0.054

10 −0.018
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The combined evaluations are called genotypic breeding values (GEBV) and these are 
usually the published values for selection. The combination of DGVs and the conven-
tional evaluations is based on some sort of selection index approach. The selection index 
presented by VanRaden et al. (2009) was:

GEBV = wt1DGV + wt2PTA1 + wt3PTA2

for animals in the reference population. Similarly, for selection candidates with no 
daughter information:

GEBV = wt1DGV + wt2PA1 + wt3PA2

where PTA1 and PTA2 are predicted transmitting abilities from the official evalu-
ations based on all records and the evaluations of only the bulls in the reference 
population using the A matrix, respectively. Correspondingly, PA1 and PA2 are 
parent averages from the respective evaluations. The weights (wti) were computed 
as c′V−1. The matrix V is of order 3 × 3 with diagonal elements equal to the reli-
abilities for DGV, PTA1 (PA1) and PTA2 (PA2), respectively. The off-diagonal ele-
ments were calculated as v12 = v22, v23 = v22 and v13 = v22 + (v11 – v22)(v33 − v22)/
(1 – v22). The vector c has elements v11, v22 and v33.

Misztal et al. (2010) presented a method called the single-step approach that 
combines conventional and DGVs in one step, resulting in the direct prediction of 
EBVs for non-genotyped and GEBV for genotyped animals.

Assume the following mixed linear model:

y = Xb + Wa + e (11.17)

where y = vector of phenotypes or de-regressed breeding values, a = vector breeding 
values and W is a design matrix that relates records to all animals including genotyped 
and ungenotyped animals. Suppose a is portioned as a1 for ungenotyped animals and 
a2 for genotyped animals, then:
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where A22 is the relationship matrix for only the genotyped animals.
It has already been shown in Section 11.5.2 that a2 = Zg and var(a2) = Gs2

a.
Based on selection index theory, a1 can be predicted from the genotyped animals 

(Legarra et al., 2009) as:

a1 = A12A
−1

22Zg + ω

where ω is the residual term, such that:

var(a1) = A12A
−1
22G A−1

22 A21 + A11 - A12A
−1
22 A21

and this reduces to:

var(a1) = A11 + A12A
−1
22(G - A22) A−1

22 A21

Finally, cov(a1, a2) = A12A
−1
22G.

Putting all terms together into a matrix H, a covariance matrix of breeding 
values including genomics information (Legarra et al., 2009; Christensen and Lund, 
2010) is:
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The matrix H could be regarded as a matrix that combines pedigree and genomic 
relationships.

The single-step methodology involves the use of matrix H, and Aguilar et al. (2010) 
and Christensen and Lund (2010) found the inverse of H has the following simple form:
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where A-1
22 is inverse of the relationship matrix for genotyped animals.

This implies that by replacing A−1 with H−1 in the usual MME, direct prediction of EBVs 
and genomic evaluations can be obtained for ungenotyped and genotyped animals. 
Therefore, the MME for the single-step procedure (Eqn 11.17) are:
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where:

a = s2
e /s2

a

The main advantage of the single-step approach is that existing software for 
genetic predictions can easily be modified to implement this method. However, the 
computation of H−1 requires efficient computation of G−1. Thus this could be a major 
limitation, with large numbers of animals genotyped, since there are no simple rules 
for computing the inverse of G. Another complication is that G must be on exactly 
the same scale (e.g. scaled to the same base animals) as A, otherwise animals with 
genotypes will have biased GEBV.

Example 11.6
The data in Example 11.1 is analysed using Eqn 11.17 assuming the same genetic 
parameters, but the data is modified as follows. The first five animals (13 to 17) are 
treated as ungenotyped animals with records, the next five animals (18 to 22) are 
regarded as genotyped animals with records, while the remaining four animals (23 to 26) 
are regarded as genotyped animals with no records. A weighted analysis was carried out 
using the EDCs.

Therefore, the A22 matrix for the nine genotyped animals was extracted from the 
last nine rows of A given in Example 11.3.

The G matrix is computed as:

ZZ′
−∑2 1p pj j( )

for the nine genotyped animals. However, due to the small size of the data, the G
used in the analysis was computed as G = 0.95G + 0.05A (Misztal et al., 2010), to 
enable inversion of the matrix (see Section 11.5.2). The matrix G then is:
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Mean effects
6.895

EBVs for animals with records
13 3.114
14 1.697
15 4.200
16 3.842
17 2.861

GEBV for genotyped animals
18 1.477
19 1.410
20 0.572
21 0.691
22 1.526
23 0.036
24 0.564
25 1.765
26 0.527

It is not possible to compare these results with the other models considered so far in 
this chapter as the data structure was modified.

11.8 Bayesian Methods for Computing SNP Effects

The assumption of equal variance explained by all loci in the SNP-BLUP or GBLUP 
model has the advantage that only one variance has to be estimated. However, this 
may be unrealistic across all traits, which may have different genetic architecture. 
Also, one of the problems with GBLUP is that it does not allow for moderate to large 
QTL effects; if these are actually present they will be severly reduced. The other prob-
lem is that with GBLUP, SNP effects cannot be zero, they always have (often very 
small) effects. Meuwissen et al. (2001) presented a Bayesian method that assumes 
t distributions at the level of the SNP effect, modelled using different genetic variances 
for each SNP (the so-called BayesA method) and another method in which some SNPs 
are assumed to have effects following a t-distribution, and others have zero effects 

The H−1 for this example was constructed from the inverses of A in Example 11.1, of 
G and A22 shown above. The matrices in Eqn 11.19 have all been defined and solving 
these equations with a = 245/35.241 = 6.952 gives the following solutions:

0.762 0.209 0.093 0.096 −0.137 0.149 −0.330 0.091 −0.176
0.209 0.801 0.394 −0.690 0.152 0.170 −0.307 0.380 0.114
0.093 0.394 0.839 −0.537 −0.232 0.592 −0.154 −0.004 −0.270

G = 0.096 −0.690 −0.537 2.217 −0.497 −0.211 0.115 −0.537 −0.268
−0.137 0.152 −0.232 −0.497 1.184 −0.445 0.686 0.840 0.572
0.149 0.170 0.592 −0.211 −0.445 0.684 −0.368 −0.216 −0.483

−0.330 −0.307 −0.154 0.115 0.686 −0.368 1.067 0.378 0.380
0.091 0.380 −0.004 −0.537 0.840 −0.216 0.378 0.836 0.264

−0.176 0.114 −0.270 −0.268 0.572 −0.483 0.380 0.264 1.107
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(BayesB). Other variations of the Bayesian methods such as BayesC and BayesCπ
(where some SNPs are assumed to have zero effects, and others are assumed to follow 
a normal distribution) have been published by Habier et al. (2011). This section 
presents some of these methods.

11.8.1 BayesA

Instead of the assumption of a normal distribution for SNP effects as in the SNP-
BLUP model, another possible assumption is that the distribution follows a Student’s 
t-distribution. This allows for a higher probability of moderate to large SNP effects 
than a normal distribution. However, the t-distribution is not easy to incorporate 
into prediction of marker effects, so a mathematically tractable way of achieving this 
is to assume that each SNP effect comes from a normal distribution but s2

g can be 
varied among the SNPs. Thus if s2

g is large then ĝ will be large and if s2
g is small, 

then ĝ will likely be small as it will regress towards zero (Hayes and Daetwyler, 
2013). This leads to modelling the data at two levels: first at the level of the data 
that is similar to SNP-BLUP to estimate the SNP effects and second at the variances 
of the chromosome segments or SNPs, which are assumed to be different at every 
segment or locus. The procedure uses a Gibbs sampling approach, which involves 
sampling from the posterior distributions conditioned on other effects. If the reader 
is not familiar with Gibbs sampling, they may want to read Chapter 16, where appli-
cation of the Gibbs sampling for the estimation of genetic parameters is discussed.

Thus given the linear model in Eqn 11.6, the conditional distribution that gener-
ates the data, y, is:

y | b,g,s2
e ~ N(Xb + Zg + Rs2

e)

Prior distributions

Specification of the Bayesian model involves defining the prior distributions. Usually, 
an improper or ‘flat’ prior distribution is assigned to b. Thus P(b) ~ constant.

The overall mean effect (b) is then sampled from the following conditional distri-
bution as:

X′Xb |g, s2
gi, s2

e,y ~ N(X′(y - Zg), X′Xs2
e)

Therefore:

b g y X X| , , , ~ ( , ( ) )s s sgi e e
2 2 1 2N b̂ ′ −

(11.20)

where b̂ = (X′X)−1X′(y − Zg)
A scaled inverted chi distribution, χ−2(v, S) is usually used as priors for the vari-

ance components, with v being the degrees of freedom and S the scaled parameter 
(Wang et al., 1993). Thus for the residual variance, prior uniform distribution (χ−2(−2, 0)) 
or flat prior can be assumed. Sampling is then from the following conditional pos-
terior distribution:

s e i i ie n e e2 2 2| ~ ( , )χ− − ′ (11.21)



Computation of Genomic Breeding Values and Genomic Selection 195

where ei = (yi – xib − zig); i = 1, n with n equal to the number of records or animals.
Similarly, s2

gi is sampled from the following conditional posterior distribution:

s cgi i i i iv k S2 2⏐g g~ ( , )− + + ′g (11.22)

with v = 4.012 and S derived as: 

�s 2 2( )v
v

−

where �s 2 is the a prior value of s2
gi and ki equals 1 for the ith SNP.

Other researchers (Xu, 2003; Ter Braak et al., 2005) have published similar 
approaches with different priors for estimating s2

gi.
Finally, ĝi for the ith SNP is sampled from the following distribution as:

gi | b,gj, s2
gi, s2

e , y ~ N(ĝi, (z′izi + a)−1s2
e); i ≠ j (11.23)

with:

ĝi = (z′i zi + a)−1z′i(y − Xb − zjgj) and a = s2
e /s

2
gi

The Gibbs sampling procedure then consists of setting initial values for b, g, s2
e and 

s2
g, and iteratively sampling successively from Eqns 11.20 to 11.23, using updated 

values of the parameters from the i round in the i + 1 round. Assuming that p rounds 
of iteration were performed, then p is called the length of the chain. The first j samples 
are usually discarded as the burn-in period. This is to ensure that samples saved are 
not influenced by the priors but are drawn from the posterior distribution. Posterior 
means are then computed from the saved samples.

Example 11.7
Using the data in Example 11.1, the application of BayesA is illustrated using 
residual updating (Legarra and Misztal, 2008). The data for the reference animals 
is analysed by fitting the model in Eqn 11.6. Thus n, the number of records, is 8 
and a flat prior has been assumed for b. It is also assumed that v = 4.012 and S is 
derived as: 

�s 2 2 0 352( ) .v
v

− =

where �s 2 0 702= . . Note that the matrix of genotypes Z used in the computation 
below has not been centralized and there Z equals M in Section 11.2.

The starting value for b̂ was computed as b̂ = (X′X)−1X′y = 79.1/8 = 9.888 and 
those for ĝ and s2

gi were 0.05 and 0.702, respectively, for all SNPs. The starting value 
for s2

a was set as 2.484, thus s2
gi = s2

a /2Σpj(1 – pj) = 0.702. The starting values for 
DGV for animals in the reference population were computed as a = Zĝ. Thus:

a′ = (0.45 0.30 0.55 0.45 0.45 0.50 0.40 0.35)

Initially, a vector of residuals ê was computed as ê = y − Xb̂ − Zĝ. Thus:
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From the above, ê′ê = 99.345, and thus given the value of 8.131 sampled from the 
inverted χ2 distribution with n – 2 degrees of freedom, s2

e
[1] = 99.345/8.131 = 12.218, 

using Eqn 11.21. The superscript in brackets denotes the iteration number.
Then sample b[1] using Eqn 11.20, with b̂ calculated as (xj′x)−11′ê = 9.456 after 

initially updating ê, the vector of residuals to include information on b as:

êi = êi + Xb̂ with i = 1, n

Assuming the random number generated from a normal distribution is 0.873 and 
(xj′x)−1s 2

e = 12.218/8 = 1.527, then b1
[1] = (9.456 + 0.873 ( . )1 527  = 10.535.

After sampling for b, the ê is updated to exclude the information on b as:

êi = êi − Xb̂ with i = 1, n

Using Eqn 11.22, s2
gi for the ith SNP effect is sampled from the inverted χ2 distribu-

tion with degrees of freedom 5.012 and S = 0.352 computed earlier. For the first SNP, 
ĝ1

2 = 0.003, thus given the value of 11.422 sampled from the inverted χ2 distribution 
s2

g1
[1] = (S + ĝ2)/11.422 = 0.031. The variance estimates for other SNPs in the first 

iteration are shown in Table 11.5.
Finally, estimates of gˆ are sampled from the normal distribution using Eqn 11.23. 

First update the vector of residuals to include information on the jth SNP. Thus for 
the jth SNP effect:

Table 11.5. SNP solutions and variances from BayesA and BayesB.

BayesA BayesB

First iteration Posterior means First iteration Posterior means

SNP Effects Var Effects Var Effects Var Effects Var

1 0.289 0.031 0.018 0.170 2.187 1.105 0.038 0.316
2 0.279 0.049 −0.064 0.179 −1.565 0.516 −0.107 0.319
3 −0.010 0.070 0.058 0.179 −0.156 0.124 0.067 0.293
4 0.023 0.097 −0.023 0.176 −0.309 0.118 −0.034 0.300
5 0.045 0.052 0.022 0.167 0.413 0.363 0.047 0.328
6 −0.321 0.050 0.025 0.171 −0.521 0.161 0.031 0.283
7 0.411 0.256 −0.006 0.186 0.000 0.000 0.009 0.335
8 0.408 0.056 −0.008 0.168 −0.010 0.431 0.008 0.261
9 0.115 0.034 −0.003 0.162 0.000 0.000 −0.006 0.294

10 −0.578 0.152 −0.008 0.165 0.000 0.000 −0.017 0.286

Var, SNP variances.
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êi = êi + zij ĝj with i = 1, n

Thus for the first SNP effect, ĝ1 = (z′i1zi1 + a)−1z′i1êi = (7 + 393.201)−1(−2.775) = −0.007. 
Assuming the random number generated from a normal distribution is 1.692 
then gj

[1] can be sampled as g1
[1] = −0.007 + 1.692 (12.218/400.201) = 0.289. After 

computing g1
[1], the residual vector is updated as (êi = êi − zi1g1

[1], i = 1, n) before 
computing the next SNP effect. The estimates of g2

[1] to g8
[1] are given in Table 11.5. 

The next cycle of sampling then begins again with sampling residual variance without 
setting up of the vector of residuals.

For this example, the Gibbs sampling chain was ran 10,000 times, with the first 
3000 considered as burn-in period. The posterior means computed from the remain-
ing 7000 samples for b̂ and s2

e were 9.890 kg and 33.119 kg2, respectively. The esti-
mates for ĝ and s2

gi are given in Table 11.4.
The DGV of animals in the validation set can then be predicted using the solu-

tions for the SNP effects in Table 11.5 as Z2ĝ, where Z2 is a matrix of genotypes for 
the validation of test animals given in Example 11.2.

11.8.2 BayesB

The basic assumption in BayesA is that there is genetic variance at every loci or chromo-
some segment. It is possible that some SNPs will have zero effects as they are in genomic 
regions with no QTL. The prior density of BayesA does not account for such SNPs 
with zero effects as BayesA density peak at s2

gi = 0; in fact its probability of s2
gi = 0 is 

infinitesimal (Meuwissen et al., 2001). It is possible that genetic variance may be 
observed in relatively few marker loci containing QTL. Meuwissen et al. (2001) 
introduced BayesB to address this situation. Thus the prior distribution of BayesB is 
a mixture distribution with some SNPs with zero effects and the rest with a t-distribution 
(Hayes and Daetwyler, 2013). BayesB, therefore, uses a prior that has a high density, 
π, at s2

gi = 0 and has an inverted chi-squared distribution for s2
gi > 0. Thus the prior 

distribution for BayesB is:

s2
gi = 0 with probability π

s2
gi ~ χ−2(v, S) with probability (1 − π) (11.24)

where S is the scaling parameter, v the degrees of freedom and p is assumed known. 
They set S to be to 0.0429 and computed it as in Eqn 11.22 while v was set to 4.234.

While the Gibbs sampling algorithm used for BayesA can also be used for BayesB, 
it will not, however, move through the entire sampling space, as the sampling of 
s2

gi = 0 is not possible if (gi′gi) is greater than zero. Also, if s2
gi = 0, the sampling of gi

has an infinitesimal probability. This problem is overcome by sampling s2
gi and gi

simultaneously from the distribution:

p(s2
gi,gi|y*) = p(s2

gi|y*) × p(gi|s
2
gi, y*) (11.25)

where y* is the data vector y corrected for the mean and all genetic effects apart 
from gi. The first term in Eqn 11.25 implies sampling s2

gi without conditioning on gi
and then sampling from the second term of Eqn 11.25 for gi conditional on s2

gi and y*
as in BayesA. The distribution p(s2

gi|y*) cannot be expressed in the form of a known 
distribution, therefore Meuwissen et al. (2001) used the Metropolis–Hastings (MH) 
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algorithm to sample from p(s2
gi|y*) using the prior distribution, p(s2

gi), as the driver 
distribution to suggest updates for the MH chain as follows:

1. Sample s2
gi(new) from the prior distribution p(s2

gi).
2. Replace the current s2

gi by s2
gi(new) with a probability of k:

k = minimize{p(y*|s2
gi(new))/p(y*|s2

gi); 1}

and then go to step 1:
where p(y*|s2

gi) is the likelihood of the data given s2
gi. The likelihood can be 

calculated as:

L egi n
( * )

| |/
/ ( * )y

V
y V y1

⏐s
p

2
1 2

1 21

2
= − ′ − (11.26)

where V = zi(Is
2
gi)zi′ + Is2

e and |V| is the determinant of V. Note that if s2
gi is zero, as will 

happen in the course of the MH sampling, then V = Is2
e.

The computation of the required likelihood is easier to implement in a log-likelihood 
form. Fernando (2010) presented the following algorithm for the log-likelihood:

logLH = −0.5(log(V)) + (((zi′y*)′ V−1) zi′y*) (11.27)

with:

V = (zi′ziIs
2
gi,zi′zi) + zi′zi*s 2

e or V = zi′zi*s 2
e when s2

gi is zero

In practice, a required number of MH cycles are implemented per cycle of Gibbs 
sampling. The implementation of each MH cycle involves:

1. Using Eqn 11.26 or 11.27 compute an initial likelihood (LH1) using the current s2
gi.

Note that the current s2
gi could be zero and LH1 is also computed but with V appro-

priately defined.
2. Then commence the MH cycle, by drawing r from a uniform distribution. Set 
s2

gi(new) to be zero. If r < (1 − π), sample a s2
gi(new) from the driver distribution using 

Eqn 11.25. Compute likelihood (LH2) using s2
gi(new) and calculate k as k = minimize 

(LH2/LH1; 1). Note that if log-likelihood Eqn 11.27 is used, then k = exp(LH2 – LH1). 
The value of k is compared with a number s drawn from a uniform distribution. If s
is less than k, then accept s2

gi(new) and then set LH1 = LH2. Go to step 1 and begin 
another MH cycle until required MH cycles are complete.

After the required number of MH cycles, if s2
gi(new) is > 0 then gi is sampled as in BayesA, 

otherwise gi = 0. Similarly, the sampling of b and s2
e is implemented as described in 

BayesA.

Example 11.8
The application of BayesB is illustrated using the data in Example 11.1 with residual 
updating. The data for the reference animals is analysed with the model in Eqn 11.6. 
The initial parameters are the same as outlined for BayesA in Example 11.7 and the 
starting value of π was set at 0.30.

The starting values for b̂, ĝ, s2
gi and â were the same as for BayesA. The sampling 

procedure for parameters is the same as for BayesA apart from sampling for s2
gi.

Initially, the vector of residuals, ê, is set up and this has been given in Example 11.7. 
Therefore, in the first iteration s2

e
[1] = 99.345/8.131 = 12.218.
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Similarly, b1
[1] = (9.456 + 0.873 ( . )1 527  = 10.535, as in Example 11.7.

Using the steps outlined for the MH cycle for BayesB, s 2
gi for the ith SNP effect is 

then sampled, which could result in either s 2
gi = 0 or s 2

gi > 0. In this example, 20 MH 
samples were evaluated per each round of Gibbs sampling, and for the first SNP, the 
estimate of s 2

g1 = 1.105. Therefore, ĝ1 was sampled from the normal distribution using 
Eqn 11.23 as described in Example 11.7 but with a1 = 12.218/1.105 = 11.057. In this 
example, s 2

gi and ĝi for SNPi, with i = 7, 9 and 10 were zero in the first round of iteration. 
The solutions for s2

gi and ĝ i for the first round of iteration are presented in Table 11.5.
The Gibbs sampling was run for 10,000 cycles, with the first 3000 regarded as the 

burn-in period. The posterior means computed from the remaining 7000 samples for b̂
and s2

e were 9.792 kg and 34.930 kg2, respectively. The estimates for ĝ and s2
gi are given 

in Table 11.5. The DGV of animals in the validation set can then be predicted using the solu-
tions for the SNP effects in Table 11.2 as Z2ĝ, where Z2 is defined as in Example 11.7.

11.8.3 BayesC

Habier et al. (2011) indicated the estimation of individual SNP variances in BayesA 
and BayesB has only one additional degree of freedom compared with its prior, 
and so the shrinkage of SNP effects is largely dependent on the scale parameter, S.
To overcome this limitation, they proposed BayesC, which involves estimating a sin-
gle variance that is common to all SNPs, thereby reducing the influence of the scale 
parameter. Similar to BayesB, BayesC allows for some SNPs to have zero effects with 
probability π while the remaining SNPs have non-zero effect with probability (1 – π).
Habier et al. (2011) indicated that since the priors of all SNP effects have a common 
variance, the effect of an SNP fitted with probability (1 − π) comes from a mixture of 
multivariate Student’s t-distributions.

In BayesC, it is assumed that π is known and the decision to include SNPi depends 
on the full conditional posterior of an indicator variable δi. This indicator variable 
equals 1 if SNPi is fitted, otherwise it is zero. Thus the decision to include the ith SNP 
involves computing the probability k of δi = 1 as k = 1/{1 + (p(y* | δi = 0, �)/
p(y* | δi = 1, s2

g, �))}, where (p(y* | δi = 1, �)) denotes the likelihood of the data given 
that SNPi is fitted with common variance s2

g, � refers to accepted values for all other 
parameters, (p(y* | δi = 0, �)) denotes the likelihood of the data model without the 
ith SNP and where y* is the data vector y corrected for the mean and all genetic 
effects apart from gi.

The computation of the required likelihood is easier to implement in a log-likelihood 
form. Fernando (2010) presented such an algorithm based on the log-likelihood.

Given current estimates of s2
g, and s2

e, logLH1 with δi = 1 is computed as:

logLH1 = −0.5(log(V)) + (zi′y*)′V−1zi′y* + log(1 − π) with 
V = (zi′ziIs

2
g, zi′zi) + zi′zi*s 2

e

Similarly, the log-likelihood when δi = 0 is computed as logLH0 = −0.5(log(V)) +
(zi′y*)′V−1zi′y* + log(π) but with V = zi′zi*s 2

e.
Then compute probability k of δi = 1 as k = 1/(1 + exp(logLH0 – logLH1)).

If k is greater than r, where r is a random drawn from a uniform distribution, 
then SNPi is fitted and gi

[j] is sampled from the normal distribution using Eqn 11.23, 
otherwise gi

[j] = 0.
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After sampling the vector g, s2
g is sampled from the following conditional poste-

rior distribution as:

s cg i
j

i iv k S2 2| g ~ − + + ′( , )[ ] g g (11.28)

with terms defined as in Eqn 11.22 but with degrees of freedom equal to v + k[ j],
where k[j] is the number of SNPs with non-zero effects fitted in the jth iteration.

Example 11.9
The data in Example 11.1 is used to illustrate BayesC by applying the model in 
Eqn 11.6. The assumptions and the starting values for b̂, ĝ and a were the same as outlined 
for BayesA in Example 11.7. The starting value of π was assumed at 0.30 while the 
starting value of s2

g was set at 0.702.
The sampling procedure for s 2

e and b were as outlined in BayesA and therefore 
with the same solutions in the first iteration. Then for the ith SNP, the probability of 
ĝi having a zero effect or otherwise was computed as described earlier in this section. 
In the first iteration, the first SNP has a non-zero effect; therefore, ĝ1 = (z′i1zi1 + a)−1

z′i1êi = (7 + 17.045)−1 (−2.775) = −0.115, with a = 12.218/0.702. Assuming the ran-
dom number generated from a normal distribution is 0.748, gj

[1] was sampled using 
Eqn 11.23 as g1

[1] = −0.115 + 0.748 (12.218/24.045) = 0.418. In the first round of 
iteration, two SNPs (5 and 10) had zero effects. The solutions for ĝi in the first itera-
tion are presented in Table 11.6.

The sampling of common variance was done using Eqn 11.28. For this example, 
eight SNPs had non-zero effects in the first iteration; therefore, s2

g in the first iteration 
was sampled from the inverted χ2 distribution with degrees of freedom now equal to 
8 + 4.012 = 12.012, S = 0.352 and Σ

i iĝ2 = 1.435. Thus given the value of 16.294 sampled from 
the inverted χ2 distribution, then in the first iteration s 2 1 2 16 294 0 110g

i
iS[ ] ( ) / . .= + =Σĝ .

The Gibbs sampling was run for 10,000 cycles, with the first 3000 regarded as 
the burn-in period. The posterior means computed from the remaining 7000 samples 
for b̂, s2

e and s2
g were 9.828 kg, 32.377 kg2 and 0.184 kg2, respectively. The estimates 

for ĝ are given in Table 11.6.

Table 11.6. Solutions for SNP effects from BayesC and BayesCπ.

BayesC BayesCπ

SNP First iteration Posterior means Posterior means

1 0.416 0.015 0.010
2 −0.360 −0.045 −0.029
3 −0.590 0.044 0.028
4 0.465 −0.014 −0.018
5 0.000 0.014 0.013
6 0.360 0.025 0.010
7 −0.586 −0.002 0.004
8 −0.307 0.009 0.003
9 −0.041 −0.013 −0.011

10 0.000 −0.002 −0.006
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11.8.4 BayesCp

In BayesC there is the implicit assumption that the probability, π > 0, i.e. a SNP has 
zero effect, is regarded as known. Habier et al. (2011) argued that the shrinkage of 
SNP effects is affected by π and should be estimated from the data and proposed 
BayesCπ, which incorporates this estimation step. Thus compared to BayesC, 
the additional feature of BayesCπ is estimating π from the data. The sampling 
procedure for parameters in BayesCπ is therefore the same as BayesC apart from 
the additional step of sampling for π. Thus only the procedure for sampling π is 
described.

The parameter π is sampled from a beta distribution, with shape parameters 
(m − k[j] + 1) and (k[j] + 1), with m equal to the total number of SNPs in the analysis 
and k[j] is the number of SNPs with non-zero effects fitted in the jth iteration.

Example 11.10
The application of BayesCπ is illustrated using the data in Example 11.1. The refer-
ence animals are analysed by applying the model in Eqn 11.6 using residual updat-
ing. The initial parameters are the same as outlined for BayesA in Example 11.7. 
The starting values of π and s2

g were set at 0.30 and 0.702, respectively.
The sampling procedure for s2

e and b were as outlined in BayesA and therefore 
with the same solutions in the first iteration. Then for the ith SNP, the probability of 
ĝi having a zero effect or otherwise was computed as described earlier in this section. 
In the first iteration, the first SNP has a non-zero effect; therefore, ĝ1 = (z′i1zi1 + a)−1

z′i1êi = (7 + 17.045)−1 (−2.775) = −0.115, with a = 12.218/0.702. Assuming the ran-
dom number generated from a normal distribution is 0.748, gj

[1] was sampled using 
Eqn 11.23 as g1

[1] = −0.115 + 0.748 (12.218/24.045) = 0.418. In the first round of 
iteration, two SNPs (5 and 10) had zero effects and the solutions for g were the same 
as obtained for BayesC (Table 11.6).

The sampling of common variance follows the same procedure for BayesC, 
again with the degrees of freedom equal to the number of SNPs with non-zero 
effects. For this example, eight SNPs had non-zero effects in the first iteration; there-
fore, s2

g in the first iteration was sampled from the inverted χ2 distribution with 
degrees of freedom now equal to 8 + 4.012 = 12.012, S = 0.352 and S

i
ĝi

2 =1.435.
Thus given the value of 16.294 sampled from the inverted χ2 distribution, then in 
the first iteration s1

2[1] = (S + S
i

ĝi
2) /16.294 = 0.110.

Then π[1] was sampled from the beta distribution with shape parameters 
((m – k[1] + 1) = 3) and ((k[1] + 1) = 9), given eight SNPs had non-zero effects. 
A value of 0.339 was sampled for π.

A total of 10,000 cycles was implemented for the Gibbs sampling and the first 
3000 were discarded as the burn-in period. The posterior means computed from the 
remaining 7000 samples for b̂, s2

e, s2
g and π were 9.898 kg, 32.343 kg2, 0.162 kg2

and 0.51, respectively. The estimates for ĝ were given in Table 11.6.
The estimates for b̂ and s2

e were very consistent for the Bayesian models consid-
ered. Similarly, BayesC and BayesCπ gave very similar estimates of s2

g, which were 
consistent with estimates for BayesA but SNP solutions were different from the dif-
ferent models. The estimates of s2

gi for BayesB were almost double those from the 
other models.
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11.9 Cross-validation and Genomic Reliabilities

As described in previous sections, the computation of SNP effects is usually in a refer-
ence population using animals with observations. In the case of the dairy industry, the 
estimation of SNP effects has been carried out using mostly bulls with high reliability 
as the reference population with deregressed breeding values (DRB) used as observa-
tions. Recently, some countries have started including cows in the reference popula-
tions, which require weighting the cow records appropriately. Ideally, it is necessary 
that the estimates of SNP effects are validated in another data set, which has not 
contributed any information to the reference population to assess accuracy of predic-
tion. In practice, the cross-validation should be evaluated in differently randomly 
sampled validation data sets to avoid any bias.

The DGV computed for the validation data sets are compared with their DRP. 
An estimate of the correlation between the DGV and the DRP in the validation ani-
mals provides an estimate of the accuracy of genomic predictions, although this does 
not take into account the accuracy of the DRP themselves. For the purposes of illus-
tration, the correlation between the DGVs from the SNP or GBLUP models with the 
DRPs for the validation animals in the data for Example 11.1 is 0.49, which gives a 
reliability of 0.24. The accuracies or reliabilities from the cross-validation studies are 
usually referred to as realized reliabilities.

Theoretical reliabilities, as calculated in traditional BLUP, can also be computed 
from the inverse of equations similar to those used to compute DGVs. For individuals 
with observations, reliabilities for the DGV can be computed (VanRaden, 2008) by 
first computing B as follows:

B G G R G=
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

−

+
s
s

e

a

2

2

1

Then reliability for animal i = reli = 1 − (bii*s2
e /s

2
a), where bii is the diagonal element 

of B for the animal. Similarly, for validation candidates with no records, B is:
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2
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Then reliability is computed from the diagonal elements of B as described for the 
reference animals.

However, these theoretical reliability estimates tend to be too high. These can be 
scaled by the realized reliabilities from the cross-validation study. In addition, with a 
large data set, the inversion required for the computation of the reliabilities could be 
a source of limitation to the use of the methodology.

11.10 Understanding SNP Solutions from the Various Models

The vector g can be computed from the second row of the MME in Eqn 11.7. Thus:

ĝ = (Z′R−1Z + Ia)−1(Z′R−1(y − Xb̂))
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For the ith SNP, this can be expressed (Mrode et al., 2010) as:

ĝi = (zji′r
−1zji + a)−1zji′r

−1zji(ydi), j = 1, n (the number of animals)

ĝi = wti(ydi) (11.29)

where ydi is the SNP deviation for the ith SNP, i.e. data information for that SNP 
corrected for all effects apart from the SNP and the SNP deviation can be defined as 
ydi = (z¢jir

−1zji)
−1z¢jir

−1(yj – zjk ĝk − xjb̂), k ≠ i and wti = (z¢jir
−1zji + a)−1zji′r

−1zji. The DGVj
of animal j therefore is:

DGV z wt (yd )ji i ij
i

= ∑

For illustration purposes, the SNP solution for SNP 1, ĝ1 in Example 11.2, can be 
computed using Eqn 11.29 as follows:

The Z in Example 11.2, (z¢j1zj1) = 3.878, and (z¢j1zj1 + a) = 28.476.
The SNP deviation, yd1 = 0.638; therefore, wt1 = 3.878/28.476 = 0.136 and ĝ1 = 
0.136 (0.638) = 0.087. Similar calculations indicated that for SNP 7, yd7 = −0.001, 
wt7 = 0.007, and ĝ7 = 0.00.

In the case of Bayesian methods, there is an additional component as a result of 
sampling from the conditional posterior distribution of g, such that:

ĝi = wti(ydi) + N(ĝi, (zi′r
−1zi + ai)

−1s2e) (11.30)

The second term on the right-hand side of Eqn 11.30 tends towards zero averaged 
over all samples after the burn-in period.

Equation 11.29 indicates that with the SNP-BLUP model, the SNP solutions are 
a function of the SNP deviations, which could be regarded as the unregressed SNP 
allele substitution effects and the weight. Given that a is constant for the SNP-BLUP 
model, the weight is therefore very dependent on the allele frequencies. Thus alleles 
of lower frequencies will have a lower weight on their SNP deviations. In the calcula-
tions above, the weight for SNP1 with an allele frequency of 0.312 was much higher 
than that for SNP 7. Mrode et al. (2010) obtained a correlation between the weights 
and allele frequencies of 0.99 from the SNP-BLUP model. However, for BayesA and 
BayesB, the estimation of individual variances meant that a, and therefore weights, 
were different for each SNP. Thus SNP deviations were differentially weighted not 
only on the basis of their allele frequencies but also on the basis of their genetic vari-
ance, i.e. by the amount of available information.
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12.1 Introduction

The models considered in the previous chapters have dealt with only additive 
genetic effects. Henderson (1985) provided a statistical framework for modelling 
additive and non-additive genetic effects when there is no inbreeding. This chapter 
covers some of these models. The ability to separate non-additive genetic effects 
implies removal of some of the confounding that would otherwise bias the results 
from the analysis. Moreover, the availability of estimates of non-additive genetic 
effects for individuals could be used in mate selection, which would maximize the 
use of both additive and non-additive genetic variance. In this chapter, the predic-
tion of dominance and epistatic effects using mixed model methodology is dis-
cussed. In practice, the application of non-additive models in genetic evaluation 
has been limited due to lack of genetic parameters and due to the fact that these 
effects tend to be highly confounded with others, such as common maternal 
environment.

12.2 Dominance Relationship Matrix

Dominance genetic effects result from the action of pairs of alleles at a locus 
on a trait. If two animals have the same set of parents or grandparents, it is 
possible that they possess the pair of alleles in common. The dominance rela-
tionship between two such animals represents the probability that they have 
the same pair of alleles in common. Thus for a group of animals, the domi-
nance genetic relationship matrix (D) among them can be set up. The domi-
nance relationship between an individual x with parents s and d and y with 
parents f and m in a non-inbred population can be calculated (Cockerham, 
1954) as:

dxy = 0.25(usf udm + usd ufm) (12.1)

where uij represents the additive genetic relationship between i and j. For instance, for 
two full-sibs with both parents unrelated to each other:

d = 0.25[(1)(1) + (0)(0)] = 0.25

with the assumption that there is no common environmental variance.

12 Non-additive Animal Models
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Thus D can be generated from the additive genetic relationship. However, the 
prediction of dominance effects requires the inverse of D. This could be obtained by 
calculating D by Eqn 12.1 and inverting it: this is not computationally feasible with 
large data sets. Hoeschele and VanRaden (1991) developed a methodology for 
obtaining a rapid inversion of D and this is presented in Section 12.4. Initially, the 
principles involved in using D−1 from Eqn 12.1 for the prediction of dominance 
effects are discussed.

12.3 Animal Model with Dominance Effect

The model with dominance included is:

y = Xb + Za + Wd + e (12.2)

where y = vector of observations, b = vector of fixed effects, a = vector for random 
animal additive genetic effects, d = vector of random dominance effects and e = random 
residual error.

It is assumed that:

var(a) = As2
a, var(d) = Ds 2

d and var(e) = s2
e

var(y) = ZAZ′ + WDW′ + Is2
e

The MME to be solved for the BLUP of a and d and the BLUE of b are:
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with a1 = s2
e /s2

a and a2 = s2
e /s2

d. However, we are interested in the total genetic merit 
(g) of the animal, which is g = a + d. The MME could be modified such that the total 
genetic merit is solved for directly. Since g = a + d, then:

var(g) = G = As2
a + Ds 2

d

The MME become:

X X X Z

Z X Z Z
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The individual components of g can be obtained as:

â = s2
aAG−1ĝ and

d̂ = s 2
dDG−1ĝ
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12.3.1 Solving for animal and dominance genetic effects separately

Example 12.1
Suppose the data below are the weaning weights for some piglets in a herd.

Pig Sire Dam Sex Weaning weight (kg)

5 1 2 Female 17.0
6 3 4 Female 20.0
7 6 5 Female 18.0
8 0 5 Female 13.5
9 3 8 Male 20.0

10 3 8 Male 15.0
11 6 8 Male 25.0
12 6 8 Male 19.5

The aim is to estimate sex effects and predict solutions for animal and dominance 
genetic effects, assuming that s2

e = 120, s 2
a = 90 and s2

d = 80. This has been illustrated 
below, solving for animal and dominance effects separately (Eqn 12.3). From the 
above parameters, a1 = 1.333 and a2 = 1.5.

SETTING UP THE MME

The matrix X relates records to sex effects. Its transpose, considering only animals 
with records, is:

X′ = 
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
é

ë
ê

ù

û
ú

The matrices Z and W are both identity matrices since each animal has 
one record. The transpose of the vector of observations y′ = [17 20 18 13.5 20 
15 25 19.5].

The other matrices in the MME, apart from A−1 and D−1, can be obtained 
through matrix multiplication from the matrices already calculated. The inverse of 
the additive relationship matrix is set up using rules outlined in Section 2.4.1. Using 
Eqn 12.1, the dominance relationship matrix is:

D = 

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0..000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 00.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.0000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000 0..000 0.062 0.062 0.125 0.125

0.000 0.000 0.000 0.000 0.000 0.000 0.0000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 00.062 0.000 1.000 0.250 0.125 0.125

0.000 0.000 0.000 0.000 0.000 0.0000 0.062 0.000 0.250 1.000 0.125 0.125

0.000 0.000 0.000 0.000 0.0000 0.000 0.125 0.000 0.125 0.125 1.000 0.250

0.000 0.000 0.000 0.000 0..000 0.000 0.125 0.000 0.125 0.125 0.250 1.000
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and its inverse is:

-1 = 

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.

D

0000 0.000

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0..000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 00.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.0000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.0288 0.000 0.032 0.032 0.096 0.096

0.000 0.000 0.000 0.000 0.000 0.

- - - -
0000 0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.0000 0.000 0.032 0.000 1.084 0.249 0.080 0.080

0.000 0.000 0.000 0.

- - - -
0000 0.000 0.000 0.032 0.000 0.249 1.084 0.080 0.080

0.000 0.000

- - - -
00.000 0.000 0.000 0.000 0.096 0.000 0.080 0.080 1.092 0.241

0.0

- - - -
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The matrices A−1a1 and D−1a2 are added to Z′Z and W′W in the MME. The MME 
are of the order 26 by 26 and are too large to be presented. However, the solutions 
to the MME by direct inversion of the coefficient matrix are:

Effects Solutions

Sex
Female 16.980
Male 20.030

Animal BVa DVa

1 −0.160 0.000
2 −0.160 0.000
3 0.059 0.000
4 0.819 0.000
5 −0.320 0.136
6 1.259 0.705
7 0.555 0.237
8 −0.998 −0.993
9 −0.350 0.000

10 −1.350 −1.333
11 1.061 1.428
12 −0.039 −0.038

aBV, DV, solutions for random animal and dominance effects, 
respectively.

The results indicate that males were heavier than females by about 3.05 kg 
at weaning. The breeding value for animal i, âi, from the MME can be calcu-
lated using Eqn 3.8, except that yield deviation is corrected not only for fixed effects 
but also for dominance effect. Thus the solution for animal 6 can be calculated as:

â6 = n1((â3 + â4)/2) + n2(y6 − b̂1 − d̂6) + n3(2â12 − â8) + n3(2â11 − â8) + n3(â7 − â5)

= n1(0.059 + 0.819)/2 + n2(20 − 16.980 − 0.705) + n3(2(−0.039) − (−0.998))

+ n3(2(1.061) − (−0.998)) + n3(2(0.555) − (−0.320))

= 1.259
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where n1 = 2a1/wt, n2 = 1/wt, n3 = 0.5a1/wt, with wt equal to the sum of the numerator 
of n1, n2 and 3(n3).

The solution for the dominance effect of animal i from the MME is:

ˆ ˆ ˆ ˆd c y b a n ci ij j
j

i k i ii= −
⎛

⎝
⎜

⎞

⎠
⎟ + − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+( )∑a a2 2d

where cij is the inverse element of D between animal i and j, and n is the number of 
records. For instance, the dominance effect of animal 6 is:

d̂6 = (0 + (20 − 16.980 − 1.259))/(1 + 1.5) = 0.705

The dominance effect for an individual represents interactions of pairs of genes 
from both parents and Mendelian sampling; it therefore gives an indication of how 
well the genes from two parents combine. This could be used in the selection of 
mates.

12.3.2 Solving for total genetic merit directly

Example 12.2
Using the same data and genetic parameters as in Example 12.1, solving directly for 
total genetic merit (â + d) applying Eqn 12.4 is illustrated.

SETTING UP THE MME

The design matrices X and Z are exactly the same as in Eqn 12.3. However, in Eqn 12.4, 
G = As2

a + Ds 2
d. The matrix D has been given earlier and A can be calculated as outlined 

in Section 2.2. Then G−1s 2
e is added to Z′Z to obtain the MME (Eqn 12.4). Solving the 

MME by direct inversion of the coefficient matrix gives the following solutions:

Effects Solutions

Sex
Female 16.980
Male 20.030

Animal + dominance Animal + dominance
1 −0.160 7 0.792
2 −0.160 8 −1.991
3 0.059 9 −0.349
4 0.819 10 −2.683
5 −0.184 11 2.489
6 1.963 12 −0.078

The vector of solutions for additive genetic effects can then be calculated as â = 
s 2

a AG−1g and as d = s 2
d DG−1g for dominance effects, as mentioned earlier. It should 

be noted that the sum of âi and di for animal i in Example 12.1 equals the solution 
for animal i above, indicating that the two sets of results are equivalent. The advan-
tage of using Eqn 12.4 is the reduction in the number of equations to be solved.
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12.4 Method for Rapid Inversion of the Dominance Matrix

Hoeschele and VanRaden (1991) developed a method for computing directly the 
inverse of the dominance relationship matrix for populations that are not inbred, 
by including sire and dam or sire and maternal grandsire subclass effects in the 
model. However, only the inclusion of sire and dam subclasses is considered in 
this text. Dominance effects result from interaction of pairs of genes and are not 
inherited through individuals. Since animals receive half of their genes from the 
sire and half from the dam, the dominance effect of an individual could be 
expressed as:

d = fS,D + e (12.5)

where f represents the average dominance effect of many hypothetical full-sibs pro-
duced by sire (S) and dam (D) and e is the Mendelian sampling deviation of the 
individual from the S by D subclass effect. Variance of S by D subclass effects, s2

f , is equal 
to the covariance among full-sibs due to dominance, i.e. s 2

f = 0.25s 2
d; therefore, 

var(e) = 0.75s 2
d. On the basis of Eqn 12.5, Hoeschele and VanRaden developed sim-

ple recurrence formulae for dominance effects using pairs of animals (sire and dam) 
and interaction between their parents.

For a particular sire and dam subclass (fSD), the combination effect results 
from the interactions between the sire and the parents of D, interactions of the 
dam with the parents of S and interactions of the parents of S with the parents of D.
Thus:

fSD = 0.5(fS,SD + fS,DD + fSS,D + fDS,D)
− 0.25(fSS,SD + fSS,DD + fDS,SD + fDS,DD) + e (12.6)

where SS and DS denote sire and dam of sire, respectively, and SD and DD corre-
sponding parents for the dam. Equation 12.6 can also be obtained by regressing fSD on 
its parent subclasses effects as:

fSD = b′fpar + e

where fpar is a vector of eight parent subclasses in Eqn 12.6 and b is a vector of 
corresponding partial regression coefficients with:

b′ = cov(fSD, fpar)/var(fpar) (12.7)

and:

var(e) = s 2
f − b′var(fpar)b (12.8)

The covariance between subclasses in Eqn 12.7, for instance between fSD and 
fPM, is:

cov(fSD, fPM) = (aSPaDM + aSMaDP)s 2
f (12.9)

with aij being the additive relationship between i and j. Thus:

cov(fSD, fSS,DD) = (aS,SSaD,DD + aS,DDaD,SS)s
2
f  = (0.5(0.5)) + (0(0)) = 0.25s 2

f

and:

cov(fSD, fS,SD) = (aSSaD,SD + aS,SDaD,S)s
2
f = (1(0.5)) + (0(0)) = 0.5s 2

f
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If the nine subclasses in Eqn 12.6 are identified by 1, 2, 3, 4, 5, 6, 7, 8 and 9 (i.e. fSD = 1, 
fS,SD = 2, etc.), the covariances between fSD and its parent subclasses (cov(fSD, fpar)/s

2
f)

using Eqn 12.9 are:

       2       3     4     5     6     7     8      9

1 [0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25] (12.10)

and the relationship matrix among parent subclasses (var(fpar)/s
2
f ) using Eqn 12.9 is:

1.0 0.0 0.25 0.25 0.5 0.0 0.5 0.0

0.0 1.0 0.25 0.25 0.0 0.5 0.0 0.5

0.25 0.225 1.0 0.0 0.5 0.5 0.0 0.0

0.25 0.25 0.0 1.0 0.0 0.0 0.5 0.5

0.5 0.0 0.5 0.00 1.0 0.0 0.0 0.0

0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0

0.5 0.0 0.0 0.5 0.0 0.0 1.00 0.0

0.0 0.5 0.0 0.5 0.0 0.0 0.0 1.0
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(12.11)

From the two matrices above (Eqns 12.10 and 12.11) the regression coefficients 
(Eqn 12.7) are:

b′ = [0.5 0.5 0.5 0.5 −0.25 −0.25 −0.25 −0.25] (12.12)

which are identical to the coefficients in Eqn 12.6. It should be noted that there is 
no need to add more remote ancestors of S and D as the partial regression of these 
are zero.

12.4.1 Inverse of the relationship matrix of subclass effects

The recurrences in Eqn 12.6 could be represented as:

f = Qf + e (12.13)

where f is the vector of sire by dam subclasses and the row i of Q contains the elements 
of b from Eqn 12.7 in columns pertaining to identified parent subclasses of subclass i.
The relationship matrix for subclasses in f is F = var(f)/s2

f . From Eqn (12.13):

f = (I − Q)−1e

The variance–covariance of f is:

var(f) = Fs 2
f = (I − Q′)−1R(I − Q)−1s 2

f

with:

Rs 2
f = var(e)

Therefore:

F−1 = (I − Q′) R−1(I − Q) (12.14)
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The diagonal elements R can be obtained from Eqn 12.8. The off-diagonals are 
zeros if all ancestor subclasses providing relationship ties are included in f. To ensure 
a diagonal R, Hoeschele and VanRaden specified two conditions to be used in decid-
ing which subclasses should be included in f as known. These are:

1. A subclass should remain in f if any of its parent subclasses remain in f.
2. A subclass should remain in f if f contains two or more of its immediate progeny 
subclasses.

Equation 12.14 implies that F−1 can be calculated from a list of subclasses and 
their parent subclass effects by computing for the ith subclass, rii (the diagonal ele-
ment i of R−1) and ci (the ith row of (I − Q)). Then the contribution of the ith subclass 
to F−1 is calculated as cici′r

ii. In summary, the following procedure could therefore be 
used to calculate F−1:

1. List animals and their sires and dams. Parents not in the list of animals with more 
than one progeny should be added to the list while those with one progeny may be 
treated as unknown.
2. Form a list of all filled (S and D known) subclasses and add ancestor subclasses that 
provide ties. Ancestors are identified by listing subclasses for the sire with parents of the 
dam and for the dam with parents of the sire for each filled subclass and then repeating 
this process for the subclasses just added until no further ancestors are known. The same 
sex subclasses of animal i with animal j and of animal j with animal i should be treated 
as identical when listing ancestor subclasses. The list of subclasses is sorted such that 
progeny subclass precedes its parent subclasses. Commencing with the oldest ancestor 
subclass, subclasses could be regarded as unknown if they are not filled, have no known 
parents and provide no ties for at least two filled descendant subclasses.

The number of connections provided by an ancestor subclass may be approxi-
mately determined from counts formed when ancestor subclasses are being identi-
fied originally. Progeny subclass (fSD) would contribute 1 to parent subclasses of 
type fS,SD and fSS,D but −1 to parent subclasses of type fSS,SD. The substraction of 1 
is due to the fact that fS,SD and fSS,D are regarded as progeny subclasses of fSS,SD and 
both may have come from one fSD. It should be noted, however, that some sub-
classes which should be deleted for having a count of less than 2 may be needed in 
order to achieve a diagonal R. Thus if both fS,SD and fSS,D are known, for instance, 
it may be necessary to add back subclasses of type fSS,SD if they have been deleted 
for a count of less than 2.
3. Go through the list of all subclasses and calculate contributions (coefficients) of 
each subclass i to F−1 as r11cici′. The vector ci contains non-zero coefficients, which is 
equal to 1 in subclass i and equal to −b for parent subclasses, with b computed as in 
Eqn 12.7.
4. Sort the coefficients by columns within rows and sum those with identical columns 
and rows to obtain F−1.

12.4.2 Prediction of dominance effects

So far, the discussion has been on the inverse of the relationship matrix for subclass 
effects but the major interest is the prediction of dominance effects.
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Since the inheritance of dominance effects is from subclass effects, dominance 
effects can be predicted by the inclusion of the inverse of the relationship matrix (D*)
among dominance effects and subclass effects in the MME. From Eqns 12.5 and 12.13, 
the dominance (d) and subclass effect (f) may be predicted as:

d
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where S is the incidence matrix relating d to f, and b equals d minus Sf. Therefore:
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and the inverse of D* can be computed as:
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From the above, the inverse of D* is similar to F−1 with coefficients of 4
3
 on the 

diagonals of dominance effects, −4
3 of off-diagonals linking dominance to subclass 

effects, and the coefficients contributed by the subclass effects are multiplied by 4. The 
matrix D*

−1 can then be included in the MME, resulting in the prediction of both 
dominance and subclass effects. The only disadvantage is that the inclusion of sub-
class effects in the MME will increase the order of equations, but the method can 
easily be applied to large data sets.

12.4.3 Calculating the inverse of the relationship matrix among
dominance and subclass effects for example data

Example 12.3
Using the pedigree information in Example 12.1, the calculations of F−1 and D*

−1 are 
illustrated.

SETTING UP F−1

Application of rules 1 to 2 in Section 12.4.1 for calculating F−1 generated Table 12.1. 
Creating a list of filled subclasses in the first pass (pass 1) through the pedigree in 
reverse order generated subclasses A to E (sorted by sire) in Table 12.1. Passes 2 and 
3 through this list identified all ancestor subclasses (subclasses F to N). Counts to 
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determine whether ancestor subclasses are treated as known or unknown were 
calculated as specified earlier. Subclasses of the types fS,SD and fSS,SD received a count 
of 1 and −1, respectively, from progeny subclass fSD. Thus subclass f3,5 received a 
count of 1 from each of its progeny subclasses, f3,8 and f6,5, and a count of −1 from 
f6,8. Again, f4,1 received 1 each from f6,1 and f4,5 and −1 from f6,5. Proceeding through 
the ancestor subclasses (F to N), those with a count of 1 and with at least two prog-
eny subclasses known are regarded as unknown. Only the ancestor subclass f3,5 was 
regarded as known because two of its progeny subclasses (f3,8 and f6,5) were known 
although it had a count of 1.

Using rule 3, the contribution of subclass i regarded as known (subclasses 1 to 6 
(see Table 12.1)) to F−1 is then calculated as cici′r

ii. For example, for the subclass f6,8
(subclass 1), three parent subclasses are known: 2, 3 and 6, which are of the subclass 
type fS,DD, fSS,D and fSS,DD, respectively. Therefore, b1′ = [0.5 0.5 −0.25], c2′ = [1 − b1′] = 
[1 −0.5 −0.5 0.25]. The matrix, F1, the relationship among parent subclasses 2, 3 and 
6 (see 12.14) is:

2 3 6

1 00
1 = 

1.00 0.25 0.50

0.25 1.00 0.50

0.50 0.50
F

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Table 12.1. List of filled sire × dam subclasses and ancestor subclasses.

Φ

Sire × 
dam

subclass Pass 
subclass
added

Counts from 
progeny 

subclasses Status ϕ
Known parent 

subclassesS D

A 6 8 1 KN 1 2 3 6
B 6 5 1 1 KN 2 3 6
C 3 8 1 1 KN 3 6
D 3 4 1 KN 4
E 1 2 1 KN 5
F 4 8 2 1 UK
G 3 5 2 1 + 1 − 1 = 1 KN 6
H 6 1 2 1 UK
I 6 2 2 1 UK
J 4 5 2 1 + 1 − 1 = 1 UK
K 3 1 3 1 + 1 − 1 = 1 UK
L 3 2 3 1 + 1 − 1 = 1 UK
M 4 1 3 1 + 1 − 1 = 1 UK
N 4 2 3 1 + 1 − 1 = 1 UK

Φ, consecutive label for subclasses.
S, sire; D, dam; KN, known; UK, regarded as unknown.
ϕ, consecutive number for known subclasses.
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The contribution of f6,8 to F−1 therefore is:

1 1c c ′ 11
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− −
− −
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where r11 = 1/(1 − (b′1F1b1)) = 1/(1 − 0.4375) = 1.778 (see Eqn 12.8).
Processing of all subclasses gives F−1 as:

−

− −
−
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F
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The methodology can be verified by calculating the dominance relationship 
matrix among animals as D = (0.25)SFS′ + I(0.75), which should give the same D as 
that calculated using Eqn 12.1. S, as defined earlier, relates dominance effects to sub-
class effects. For the example pedigree:
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5 6 7 9 10 11 12
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and:

D = (0.25)SFS′ + I(0.75)

=

5 6 7 9 10 11 12
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which is the same as the D (Section 12.3.1) calculated from the pedigree using Eqn 12.1.
Let D*

−1 be partitioned as:

*
1 *11

1
*12

1

*21
1

*22
1

 = −
− −

− −D
D D

D D
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⎣
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⎤

⎦
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where D*11
−1   is the top 12 by 12 block for dominance effects for animals, D−1

*22 is 
the bottom 6 by 6 block for subclass effects and D−1

*12 is the block for dominance 
by subclass effects. For the example data using Eqn 12.15, the submatrices of D*

−1

are:

*
= diag11
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D−1
*12 is the transpose of D−1

*21, and:

*22
1 =−D
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The matrix D*
−1 can be included in the usual MME for the prediction of domi-

nance and subclass effects.

12.5 Epistasis

Epistasis refers to the interaction among additive and dominance genetic effects; for 
instance, additive by additive, additive by dominance, additive by additive by domi-
nance, etc. The epistasis relationship matrix can be derived from A and D as:

A#A for additive by additive
D#D for dominance by dominance
AA#D for additive by additive by dominance

where # represents the Hadamard product of the two matrices. The ij element of the 
Hadamard product of the two matrices is the product of the ij elements of the two 
matrices. Thus if M = A#B, then mij = (aij)(bij) where the matrices A and B should be 
of the same order.
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The model in Eqn 12.2 can be expanded to include epistatic effects as:

y = Xb + Za + Wd + Sep + e

where ep is the vector of interaction (epistatic) effects. The evaluation can be carried 
out as described in Section 12.3 but the major limitation is obtaining the inverse of the 
epistatic relationship matrix for large data sets. However, VanRaden and Hoeschele 
(1991) presented a rapid method for obtaining the inverse of the epistatic relationship 
matrix when epistasis results from interactions between additive by additive (A × A)
genetic effects when the population is inbred or not. The approach is similar to the 
method described for obtaining the inverse of the dominance relationship matrix and 
it involves including sire × dam subclasses; consequently, the details of the method have 
not been covered in this section. The method involves calculating the inverse of U, the 
relationship matrix among epistatic and subclass effects, and U−1 is then included in 
the usual MME for the prediction of epistatic and sire × dam subclass effects.

The rules for obtaining U−1 for a population that is not inbred are given in the 
next section, with an illustration.

12.5.1 Rules for the inverse of the relationship matrix for epistatic 
and subclass effects

The inverse of U can be computed by going through a list of individuals and their 
parents and sire × dam subclasses. See rules 1 and 2 in Section 12.4.1 on how such a 
list should be set up. The contribution of individual i in the list to U−1 is computed 
by the following rules:

1. For an individual i with both parents and subclass effects known, the contribution 
to U−1 is:

c s d s d,
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1 12 (12.16)

2. For an individual with both parents known but subclass effects treated as 
unknown, the contribution to U−1 is:

c s d
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3. If only one parent, say s, is known, then the contribution is:
c s

16 4

4 1
1 15

−
−

⎡

⎣
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⎤

⎦
⎥ ( )/ (12.18)
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4. If both parents and subclass are unknown, add 1 to the individual diagonal.
5. For sire × dam subclasses, the contribution of the ith subclass to U−1 is the same 
as for the inverse of the dominance matrix (see rule 3 in Section 12.4.1) except that 
the coefficients are multiplied by 8.
6. Sort coefficients by row and by columns within a row, and sum coefficients with 
identical row and columns to obtain U−1.

The method can be verified by inverting U−1 to form U. The animal by animal sub-
matrix of U should be equal to the epistatic relationship matrix calculated as A#A.

12.5.2 Calculating the inverse relationship matrix for epistasis 
and the subclass matrix for an example pedigree

Example 12.4
The calculation of U−1 is illustrated below using the pedigree information in 
Example 12.1.

The identification of sire and dam subclasses and their ancestors subclasses 
treated as known has been discussed in Section 12.4.3. Thus the list of animals and 
known subclasses is:

Animal Sire Dam

1 0 0
2 0 0
3 0 0
4 0 0
5 1 2
6 3 4
7 6 5
8 0 5
9 3 8

10 3 8
11 6 8
12 6 8

Subclasses Parent subclasses

6,8 6,5, 3,8, 3,5
6,5 3,8, 3,5
3,8 3,5
3,4
1,2
3,5

In setting up U−1, animals 1 to 12 have been regarded as rows 1 to 12 while sub-
classes have been assigned rows 13 (subclass (6,8)) to 18 (subclass (3,5)). The first 
four animals have both parents and sire–dam subclasses unknown and therefore each 
contributes 1 to their respective diagonals. The parents of animals 5, 6, 7, 10, 11 and 
12 and their sire × dam subclass effects are known; therefore, the contributions of 
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each of these animals to U−1 are computed using rule 1 in Section 12.5.1. For animals 
8 and 9, only one of their parents is known and rule 3 is applicable when processing 
these animals. The calculation of the contributions of subclass effects has been given 
in Section 12.4.3 (Example 12.3); these are multiplied by 8, as mentioned earlier. 
After processing all animals and subclass effects, the top 12 by 12 submatrix of U−1

(block for animals only) is:
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The top 12 by 12 submatrix of the inverse U−1 is the epistatic relationship matrix 
for the animals and is:

1.000 0.000 0.000 0.000 0.250 0.000 0.063 0.063 0.016 0.016 0.016 0.0116
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It is equal to the epistatic relationship matrix calculated as A#A. The matrix U−1 can 
then be incorporated into the usual MMEs for the prediction of epistatic and subclass 
effects.
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13.1 Introduction

Some traits of economic importance in animal breeding, such as calving ease or litter 
size, are expressed and recorded in a categorical fashion. For instance, in the case of 
calving ease, births may be assigned to one of several distinct classes, such as diffi-
cult, assisted and easy calving, or litter size in pigs might be scored 1, 2, 3 or more 
piglets born per sow. Usually, these categories are ordered along a gradient. In the 
case of calving ease, for example, the responses are ordered along a continuum meas-
uring the ease with which birth occurred. These traits are therefore termed ordered 
categorical traits. Such traits are not normally distributed, and animal breeders have 
usually attributed the phenotypic expression of categorical traits to an underlying 
continuous unobservable trait that is normally distributed, referred to as the liability 
(Falconer and Mckay, 1996). The observed categorical responses are therefore due 
to animals exceeding particular threshold levels (ti) of the underlying trait. Thus with 
m categories of responses, there are m − 1 thresholds such that t1 < t2 < t3,. . ., tm−1. For 
traits such as survival to a particular age or stage, the variate to be analysed is coded 
1 (survived) or 0 (not survived) and there is basically only one threshold.

Linear and non-linear models have been applied for the genetic analysis of cat-
egorical traits with the assumption of an underlying normally distributed liability. 
Usually, the non-linear (threshold) models are more complex and have higher com-
puting requirements. The advantage of the linear model is the ease of implementation, 
as programs used for analysis of quantitative traits could be utilized without any 
modifications. However, Fernando et al. (1983) indicated that some of the properties 
of BLUP do not hold with categorical traits. Such properties include the invariance of 
BLUP to certain types of culling (selection) and the ability of BLUP to maximize the 
probability of correct pairwise ranking. Also, Gianola (1982) indicated that the vari-
ance of a categorical trait is a function of its expectation and the application of a 
linear model that has fixed effects in addition to an effect common to all observations 
results in heterogeneity of variance.

In a simulation study, Meijering and Gianola (1985) demonstrated that with no 
fixed effects and constant or variable number of offspring per sire, an analysis of a 
binary trait with either a linear or non-linear model gave similar sire rankings. This was 
independent of the heritability of the liability or incidence of the binary trait. However, 
with the inclusion of fixed effects and a variable number of progeny per sire, the non-
linear model gave breeding values that were more similar to the true breeding values 
compared with the linear model. The advantage of the threshold model increased as the 
incidence of the binary trait and its heritability decreased. Thus for traits with low 
heritability and low incidence, a threshold model might be the method of choice.

13 Analysis of Ordered 
Categorical Traits
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The principles required to apply a linear model for the analysis of categorical traits 
are the same as discussed in the previous chapters; therefore, the main focus of this 
chapter is on threshold models, assuming a normal distribution for the liability. 
Cameron (1997) illustrated the analysis of a binary trait with a threshold model using 
a logit function. In this chapter, sample data used for the illustration with the threshold 
model have also been analysed with a linear model for the purposes of comparison.

13.2 The Threshold Model

13.2.1 Defining some functions of the normal distribution

The use of the threshold model involves the use of some functions of the normal 
distribution and these are briefly defined. Assume the number of lambs born alive to 
ewes in the breeding season is scored using four categories. The distribution of liabil-
ity for the number of lambs born alive with three thresholds (tj) can be illustrated as 
in Fig. 13.1, where Nj is the number of ewes with the jth number of lambs and are 
those exceeding the threshold point tj−1, when j > 1 and j ≤ m −1.

With the assumption that the liability (l) is normally distributed (l ~ N(0,1)), the 
height of the normal curve at tj (f (tj)) is:

f p( ) = exp( 0.5 ) / 22t tj j− (13.1)

For instance, given that tj = 0.779, then f (0.779) = 0.2945.
The function F() is the standard cumulative distribution function of the normal 

distribution. Thus F(k) or Fk gives the areas under the normal curve up to and 
including the kth category. Given that there are m categories, then Fk = 1 when the 
kth category equals m. For a variable x, for instance, drawn from a normal distribu-
tion, the value Fx can be computed, using a subroutine from the IMSL (1980) library. 
Thus if x = 0.560, then F(0.560) = 0.7123.

P(k) defines the probability of a response being observed in category k assum-
ing a normal distribution. This is also the same probability that a response is 
between the thresholds defined by category k. Thus P(k) or Pk may be calculated as 

N1 N2 N3 N4

t1 t2 t3

Fig. 13.1. The distribution of liability for number of lambs born alive with four categories 
and three thresholds.
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P(k) = F(k) − F(k − 1) with F(k − 1) = 0, when k = 1; or expressed in terms of thresh-
olds defining the category k, Pk = Ftk − Ft(k−1). For instance in Fig. 13.1, the 
probability of response in the k category (Pk) can be computed as:

P1 = F(t1) (13.2)
P2 = F(t2) − F(t1) (13.3)
P3 = F(t3) − F(t2) and
P4 = 1 − F(t3)

13.2.2 Data organization and the threshold model

Usually, the data are organized into an s by m contingency table (Table 13.1), where 
the s rows represent individuals or herd–year subclasses of effects, such as herd, and 
the m columns indicate ordered categories of response. If the rows represent individu-
als, then all njk will be zero except one and the nj. = 1, for j = 1, . . ., s.

The linear model for the analysis of the liability is:

y = Xb + Zu + e

where y is the vector of liability on a normal scale, b and u are vectors of fixed and 
random (sire or animal) effects, respectively, and X and Z are incidence matrices 
relating data to fixed effects and responses effects, respectively. Since y is not 
observed, it is not possible to solve for u using the usual MME.

Given that H′ = [t′, b′, u′], where t is the vector for the threshold effects, Gianola 
and Foulley (1983) proceeded to find the estimator Ĥ that maximizes the log of the 
posterior density L(H). The resulting set of equations involved in the differentiation 
were not linear with respect to H. They therefore provided the following non-linear 
iterative system of equations based on the first and second derivatives, assuming a 
normal distribution to obtain solutions for Dt, Db and Du:
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Table 13.1. Ordered categorical data arranged as an s by m contingency table.

Categoriesa

Subclasses 1 2 … k … m Totalsb

1 n11 n12 … n1k … n1m n1.
2 n21 n22 … n2k … n2m n2.
� � � � � � � �
j nj1 nj2 … njk … njm nj.
� � � � � � � �
s ns1 ns2 … nsk … nsm ns.

anjk = number of counts in category k of response in row j.
b
n m

k nj. jk= =∑ 1
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with G = Is2
s or Is2

u if a sire or an animal model is being fitted in a univariate situation. 
They presented equations for the calculation of the matrices in Eqn 13.4, which are outlined 
below. The calculation of most of these matrices involves Pjk (see Eqn 13.2) and it is initially 
described. Pjk, the response in the kth category under the conditions of the jth row, is:

Pjk = F(tk − aj) − F(tk−1 − aj); k = 1, m − 1; j = 1, . . ., s (13.5)

where aj = (xjb + zju), with xj and zj being the jth row of X and Z, respectively. 
This equation is no different from that in Section 13.2.1, but it shows that the dis-
tribution of response probabilities by category is a function of the distance between 
aj and the threshold. Similarly, the height of the normal curve at tk (Eqn 13.1) under 
the conditions of the jth row becomes:

f jk = f (tk − aj) (13.6)

The formulae for computing the various matrices and vectors in Eqn 13.4 are 
outlined below.

The jth element of vector v can be calculated as:

v
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j jk
k

m j jk
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The elements of the matrix W, which is a weighting factor, is computed as:
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(13.8)

The matrix Q is an (m − 1) by (m − 1) banded matrix and the diagonal elements 
are calculated as:
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and the off-diagonal elements are:
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with the element qk(k+1) = q(k+1)k.
The matrix L is of order s by (m − 1) and its jkth element is calculated as:

l n
P Pjk j jk

jk j k

jk

j k jk

j k
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−
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f f f f1 1
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(13.11)

The vector p is accumulated over all subclasses and its elements are:

p
n

p

n

p
k mk

jk

jkj

s
j k

j k
jk=

⎡

⎣
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⎢

⎧
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−

⎤

⎦
⎥
⎥

⎫
⎬
⎪
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= −

=

+( )

+( )
∑

1

1

1

1 1f ; , (13.12)

The remaining matrices in Eqn 13.4 can be computed by matrix multiplication.
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13.2.3 Numerical example

Example 13.1
The analysis of categorical traits is illustrated below, using the calving ease data 
described by Gianola and Foulley (1983) but with a relationship matrix included for 
the sires and the age of dam effect omitted from the model. The data consisted of 
calving ease scores from 28 male and female calves born in two herd–years from cows 
mated to four sires. Cows were scored for calving ease using three ordered categories: 
1 = normal birth, 2 = slight difficulty and 3 = extreme difficulty. The data set is pre-
sented in Table 13.2.

The following pedigree was assumed for the four sires:

Animal Sire Dam

1 0 0
2 0 0
3 1 0
4 3 0

The sire variance used in the analysis was assumed to be 1
19 . In the underlying 

scale, residual variance equals one; therefore, s2
e /s2

s = 4 − h2/h2 = 19. Thus the s2
s assumed 

corresponded to a heritability of 0.20 on the underlying scale.

Table 13.2. Distribution of calving ease score by herd–year and sex of calf subclasses.

Herd
Sex of 
calf

Sire of 
calf

Category of responsea

Total1 2 3

1 Male 1 1 0 0 1
1 Female 1 1 0 0 1
1 Male 1 1 0 0 1
1 Female 2 0 1 0 1
1 Male 2 1 0 1 2
1 Female 2 3 0 0 3
1 Male 3 1 1 0 2
1 Female 3 0 1 0 1
1 Male 3 1 0 0 1
2 Female 1 2 0 0 2
2 Male 1 1 0 0 1
2 Male 1 0 0 1 1
2 Female 2 1 0 1 2
2 Male 2 1 0 0 1
2 Female 3 0 1 0 1
2 Male 3 0 0 1 1
2 Male 4 0 1 0 1
2 Female 4 1 0 0 1
2 Female 4 2 0 0 2
2 Male 4 2 0 0 2

a1, normal birth; 2, slight difficulty; 3, extreme difficulty.
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The vectors of solutions in Eqn 13.4 for the example data are:

t′ = (t1 t2), since there are two thresholds
b′ =(h1 h2 h1 h2)
u′ = (u1 u2 u3 u4)

where hi and hi represent solutions for level i of herd–year and the sex of calf effects, 
respectively; and u is the vector of solutions for sires.

The inverse of the relationship for the assumed pedigree is:

− =

−

−
1

1.3333 0.0000 0.6667 0.0000

0.0000 1.0000 0.0000 0.0000

0.
A

66667 0.0000 1.6667 0.6667

0.0000 0.0000 0.6667 1.3333

−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥

For the example data, the transpose of matrix X, which relates subclasses to herd–
year and sex of calf effects, and that of matrix Z, which relates subclasses to sires, are:

X′ =

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 1 0 11 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and:

Z′ =

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 00 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Starting values for t, b and u are needed to commence the iterative process. Let b = 
u = 0, but starting values for ti can be computed from the proportion of records in all 
categories of response preceding ti. In this example, there is only one category before t1
and 0.679 of the records are in this category. The first two categories precede t2 and 0.857 
of the records are observed in both categories. Using these proportions, the values of t can 
be obtained from the usual table of standardized normal deviates of the normal distribu-
tion. From these proportions, t1 = 0.468 and t2 = 1.080 and these were used as starting 
values. However, using various starting values of t, Gianola and Foulley (1983) demon-
strated that the system of equations converged rapidly. It seems, therefore, that the system 
of equations is not very sensitive to starting values for t. The calculations of the various 
matrices in the equations have been illustrated below using solutions obtained after the 
first iteration. The solutions obtained at the end of the first iteration and the updated 
estimates for the effects (which are now the starting values for the second iteration) are:

Solutions at the end of iteration one Updateda estimates after iteration one

Δt1 = −0.026992 t1 = 0.441008
Δt2 = −0.035208 t2 = 1.044792
Δĥ1 = 0.000000 ĥ1 = 0.000000

Continued
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(Continued )

Solutions at the end of iteration one Updateda estimates after iteration one

Δĥ2 = 0.286869 ĥ2 = 0.286869
Δh1 = 0.000000 h1 = 0.000000
Δh2 = −0.358323 h2 = −0.358323
Δu1 = −0.041528 u1 = −0.041528
Δu2 = 0.057853 u2 = 0.057853
Δu3 = 0.039850 u3 = 0.039850
Δu4 = −0.065178 u4 = −0.065178

aThe updated estimates were obtained as the sum of the starting values and the solutions at the end 
of the first iteration.

The following steps are involved in calculating Pjk, which is required to calculate 
subsequent matrices in Eqn 13.4 for the example data. In each round of iteration and 
for each subclass, i.e. for j = 1, . . . s:

1. Initially calculate (tk − aj) in Eqn 13.5 for k = 1, . . . m − 1. Therefore:

djk = (tk − aj) = tk − xj − zj for k = 1, . . . m − 1

where xj and zj are the jth rows of X and Z.

For the example data in the second iteration:

d11 = t1 − ĥ1 − ĥ1 − û1

d11 = 0.441008 − 0 − 0 − (−0.041528) = 0.482536

d12 = t2 − ĥ1 − ĥ1 − û1

d12 = 1.044792 − 0 − 0 − (−0.041528) = 1.086320

d21 = t1 − ĥ1 − ĥ2 − û1

d21 = 0.441008 − 0 − (−0.358323) − (−0.041528) = 0.840859

d22 = t2 − ĥ1 − ĥ2 − û1

d22 = 1.044792 − 0 − (−0.358323) − (−0.041528) = 1.444643

�
d201 = t1 − ĥ2 − ĥ1 − û4

d201 = 0.441008 − 0.286869 − 0 − (−0.065178) = 0.219317

d202 = t2 − ĥ2 − ĥ1 − û4

d202 = 1.044792 − 0.286869 − 0 − (−0.065178) = 0.823101

2. Using the values of djk computed above, calculate fjk (see Eqn 13.6) and Fjk, for 
k = 0, . . ., m. Note that in all cases, when k = 0, fjk = Fjk = 0 and when k = m, fjk = 0 
and Fjk = 1.

In the second round of iteration for the example data:

f11 = f(0.482536) = 0.355099 and F11= F(0.482536) = 0.685288

f12 = f(1.086320) = 0.221135 and F12= F(1.086320) = 0.861331
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f21 = f(0.840859) = 0.280142 and F21= F(0.840859) = 0.799787

f22 = f(1.444643) = 0.140516 and F22= F(1.444643) = 0.925721

�
f201 = f(0.219317) = 0.389462 and F201= F(0.219317) = 0.586799

f202 = f(0.823101) = 0.284311 and F202= F(0.823101) = 0.794775

3. Then calculate Pjk as Fjk − Fj(k−1) for k = 1, . . ., m
In the second round of iteration, for Example 13.1:

P11 = F11 − F10 = 0.685288 − 0 = 0.685288

P12 = F12 − F11 = 0.861331 − 0.685288 = 0.176044

P13 = F13 − F12 = 1.0 − 0.861331 = 0.138669

P21 = F21 − F20 = 0.799787 − 0 = 0.799787

P22 = F22 − F21 = 0.925721 − 0.799787 = 0.125934

P23 = F23 − F22 = 1.0 − 0.925721 = 0.074279
�

P201 = F201 − F200 = 0.586799 − 0 = 0.586799

P202 = F202 − F201 = 0.794775 − 0.586799 = 0.207976

P203 = F203 − F202 = 1.0 − 0.794775 = 0.205225

The calculation of the remaining matrices in the MME can now be illustrated 
for the example data. The first elements of W using Eqn 13.8 for the example data 
are:

11

2 2

w =1
(0 0.355099)

0.685288
(0.355099 0.221135)

0.1
+

- -
776044

(0.221135 0)
0.138669

=0.638589
2

 + 
-é

ë
ê

ù

û
ú

and:

W = diag[0.638589 0.518748 0.638589 0.554385 1.332860 1.663156 
1.323206 0.548036 0.661603 1.233768 0.710404 0.710404 1.293402 
0.728641 0.641496 0.725614 0.705526 0.609417 1.218834 1.411052]

For the vector v, the first element can be calculated from Eqn 13.7 as:

1
1(0 0.355099)

0.685288
0(0.355099 0.221135)

0.176
v  =  + 

− −
0044

0(0.221135 0)
0.138669

= 0.518175 + 
−

−

and the transpose of v is:

v′ = [−0.518175 −0.350270 −0.518175 1.012257 0.943660 −1.179520 0.120754 
1.029729 −0.561257 −0.963633 −0.677635 1.366976 1.039337 −0.737615 
0.751341 1.304294 0.505592 −0.470090 −0.940181 −1.327414]
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The matrix L is order 20 by 2 for the example data. The elements in the first row 
of L from Eqn 13.11 can be calculated as:

11 = ( 1)(0.355099)
(0.355099 0)

0.685288
(0.221135 0

l −
−

−
− ..355099)

0.176044
 = 0.454223

= ( 1)(0.221135)
(0.

12

⎡
⎣⎢

⎤
⎦⎥

−

−l
2221135 0.355099)

0.176044
(0 0.221135)

0.138669
= 0

− −⎡
⎣⎢

⎤
⎦⎥

− ..184365

The matrix L has not been shown because it is too large but the elements of the last 
row, l201 and l202, are −0.910795 and −0.500257, respectively.

The elements of Q calculated using Eqns 13.9 and 13.10 are:

11

21(0.355099) (0.685287 + 0.176044)
(0.685286 0.17604

q =
* 44)

+
1(0.280142) (0.799787 + 0.125934)

(0.799787 0.12593

2

* 44)
+ . . .

+
2(0.389462) (0.586799 + 0.207976)

(0.5867

2

999 0.207976)
25.072830

[1(0.355099)(0.221135)
0.12

*

q

=

=
−

1176044
+

1(0.280142)(0.140516)
0.125934

+. . .

+
2(0.3894622)(0.284311)

0.207976]
12.566598

1(0.221135) (
22

2

q

=

=

−

00.176044 0.138669)
(0.176044 0.138669)

+
1(0.140516) (2+

*
00.125934 + 0.074279)

(0.125934 0.074279)
+ . . .

+
2(0.28

*

44311) (0.207976 + 0.205225)
(0.207976 0.205225)

17.928
2

*
= 0093

Since Q is symmetric, q21 = q12.
Lastly, the elements of p can be calculated using Eqn 13.12 as:

1 = 0.355099
1

0.685287
0

0.176044
+ 0.280142

1
0.7997

p -æ
è
ç

ö
ø
÷ 887

0
0.125934

+

+ 0.389462
2

0.586799
0

. . .-æ
è
ç

ö
ø
÷

-
00.207976

= 0.288960æ
è
ç

ö
ø
÷ -

and:

2 = 0.221135
0

0.176044
0

0.138669
0.140516

0
0.1259

p  + -æ
è
ç

ö
ø
÷ 334

0
0.074279

. . .

+ 0.284311
0

0.207976
0

0.

+-æ
è
ç

ö
ø
÷

-
2205225

0.458984æ
è
ç

ö
ø
÷ = 
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The matrices in Eqn 13.4 can now be obtained by matrix multiplication and A−1

is added to Z′WZ. The matrix Z′WZ + A−1G−1 is illustrated below:

Z WZ A G′ −+

−

−1 1 =

29.783773 0.000000 12.666731 0.000000

0.000000 244.572445 0.000000 0.000000

12.666731 0.000000 35.566685 12.66− − 66731

0.000000 0.000000 12.666731 29.278162−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Then Eqn 13.4 is:

25.073 12.567 5.733 6.773 6.366 6.140 3.123 3.977 2.699 2.- - - - - - - - - 7707

12.567 17.928 2.146 3.215 3.220 2.141 1.327 1.595 1.20- - - - - - - - 11 1.238

5.733 2.146 7.879 0.000 4.595 3.284 1.796 3.550 2.533 0.0

-
- - 000

6.773 3.215 0.000 9.989 4.992 4.997 2.655 2.022 1.367 3.945

6.

- -
- 3366 3.220 4.595 4.992 9.586 0.000 2.698 2.062 2.710 2.117

6.140 2

-
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-
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The equations were solved with the solutions for Dĥ1 and Dh1 set to zero. The 
equations converged rapidly, and solutions at various different iteration numbers 
and the final solutions are given below. Solution from an analysis using a linear model 
with an a value of 19 are also shown:

Iteration number

Effects 1 2 3 7
Solutions from 
linear models

Threshold
1 0.4410 0.4375 0.4378 0.4378 ± 0.44a –
2 1.0448 1.0661 1.0675 1.0675 ± 0.47 –

Herd–year
1 0.0000 0.0000 0.0000 0.0000 ± 0.00 0.0
2 0.2869 0.2763 0.2774 0.2774 ± 0.49 1.0604

Continued
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Iteration number

Effects 1 2 3 7
Solutions from 
linear models

Sex of calf
Male 0.0000 0.0000 0.0000 0.0000 ± 0.00 0.0
Female −0.3583 −0.3577 −0.3589 −0.3590 ± 0.48 0.5193

Sires
1 −0.0415 −0.0431 −0.0434 −0.0434 ± 0.22 0.2229
2 0.0579 0.0586 0.0592 0.0592 ± 0.21 0.2751
3 0.0399 0.0410 0.0412 0.0412 ± 0.22 0.3162
4 −0.0652 −0.0653 −0.0660 −0.0660 ± 0.22 0.0985

aStandard errors.

The standard errors associated with the results from the last iteration were computed 
from the square root of the diagonals of the generalized inverse. Sire rankings from 
the linear model were similar to those from the threshold model except for sires 2 and 3, 
which ranked differently.

Usually of interest is calculating the probability of response in a given category 
under specific conditions. For instance, the proportion of calving in the jth category of 
response, considering only female calves in HYS subclass 1 for sire 1 can be estimated as:

P11 = F(t1 − ĥ1 − ĥ2 − û1) = F(0.4378 − 0 − (−0.3590) − (−0.0434)) 
= F(0.8402) = 0.800

P12 = F(t2 − ĥ1 − ĥ2 − û1) − F(t1 − ĥ1 − ĥ2 − û1) = F(1.0675 − 0 − (0.3590) 
− (−0.0434)) − F(0.800) = F(1.4699) − F(0.800) = 0.129

P13 = 1 − F(t2 − ĥ1 − ĥ2 − û1) = 1 − F(1.4699) = 0.071

Calculating this probability distribution by category of response for all sires gives 
the following:

Probability in category of response

1 2 3

Sire 1 0.800 0.129 0.071
Sire 2 0.770 0.145 0.086
Sire 3 0.775 0.142 0.083
Sire 4 0.803 0.129 0.068

The results indicate that the majority of heifers calving in HYS subclass 1 for all four 
sires were normal, with a very low proportion of extreme difficulties.

Since sires are used across herds, the interest might be the probability distribution 
of heifer calvings for each sire across all herds and sexes. Such a probability for each 
sire in category 1 of response per herd–year–sex subclass (Z1kji) can be calculated as 
follows:

Z1kji = F(t1 − (ĥk+ ĥj + ûi)); k = 1, 2; j =1, 2, i = 1,…,4
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Since there are four herd–year–sex subclasses, the probability for sire i in category 1 
(S1i) can be obtained by weighting Z1kji by factors that sum up to one. Thus:

S i km
i

1
1

= a Z ikm
mk

1
1

2

1

24

===
ååå

where akm = a11 + a12 + a21 + a22 = 1. In the example data, a11 = a12 = a21 = a22= 0.25.
Similarly, the probability for each sire in category 2 of response per herd–year–sex 

subclass (Z2kji*) can be calculated as:

Z2kji = Z2kji* − Z1kji

where:

Z1kji* = F(t2 − (ĥk+ ĥj + û i)); k = 1, 2; j =1, 2; i = 1, . . .,4

Finally, the probability for each sire in category 3 of response per herd–year–sex 
subclass (Z3kji) can be calculated as:

Z3kji = 1 − Z2kji*

For Example 13.1, the probability distribution of heifer calvings for each sire 
across all herds and sexes in all categories are as follows:

Probability in category of response

1 2 3

Sire 1 0.695 0.175 0.131
Sire 2 0.659 0.188 0.153
Sire 3 0.665 0.186 0.149
Sire 4 0.702 0.172 0.126

13.3 Joint Analysis of Quantitative and Binary Traits

Genetic improvement may be based on selecting animals on an index that combines 
both quantitative and categorical traits. Optimally, a joint analysis of the quantitative 
and categorical traits is required in the prediction of breeding values in such a selec-
tion scheme to adequately account for selection. A linear multivariate model might 
be used for such analysis. However, such an analysis suffers from the limitations 
associated with the use of a linear model for the analysis of discrete traits mentioned 
in Section 13.2. In addition, such a multivariate linear model will not properly 
account for the correlated effects of the quantitative traits on the discrete trait.

Foulley et al. (1983) presented a method of analysis to handle the joint analysis of 
quantitative and binary traits using a Bayesian approach. It involves fitting a linear 
model for the quantitative traits and a non-linear model for the binary trait. This sec-
tion presents this methodology and illustrates its application to an example data set.

13.3.1 Data and model definition

Assume that a quantitative trait, such as birth weight, and a binary trait, such 
as calving difficulty (easy versus difficult calving), is being analysed. As in 
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Section 13.2.2, the data for calving difficulty could be represented in an s by 
2 contingency table:

Response category

Row Easy calving Difficult calving

1 n11 n1. − n11
2 n21 n2. − n21

� � �
j nj1 nj. − nj1

� � �
s ns1 ns. − ns1

where the s rows refer to conditions affecting an individual or grouped records. Note 
that ni1 or ni. − ni1 in the above table can be null, as responses in the two categories 
are mutually exclusive, but ni ¹ 0.

Assume that a normal function has been used to describe the probability of 
response for calving ease. Let y1 be the vector for observations for the quantitative 
trait, such as birth weight, and y2 be the vector of the underlying variable for calving 
difficulty. The model for trait 1 would be:

y1 = X1b1 + Z1u1 + e1 (13.13)

and for the underlying variable for trait 2:

y2 = X2b2 + Z2u2 + e2 (13.14)

where b1 and u1 are vectors of fixed effect and sire solutions for trait 1, and X1 and 
Z1 are the usual incidence matrices. The matrices X2 and Z2 are incidence matrices 
for the liability. The matrix Z2 = Z1 and X2 = X1H, where H is an identity matrix if 
all factors affecting the quantitative traits also affect the liability. However, if certain 
fixed effects affecting the quantitative trait have no effect on the liability, H is 
obtained by deleting the columns of an identity matrix of appropriate order corre-
sponding to such effects. It is assumed that:

var

var

1

2

11 12

21 22

1

2

e

e

R

R R

u

u
A G

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ⊗

R

(13.15)

where G is the genetic covariance matrix for both traits and A is the numerator rela-
tionship matrix.

Let q′ = [b1, t, u1, n], the vector of location parameters in Eqns 13.13 and 13.14 to be 
estimated, where t = b2 − bHb1 and n = u2 − bu1, where b is the residual regression coeffi-
cient of the underlying variate on the quantitative trait. The calculation of b is illustrated in 
the next section. Since the residual variance of liability is unity, the use of b is necessary to 
properly adjust the underlying variate for the effect of the residual covariance between both 
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traits. The use of b can be thought of as correcting calving difficulty for other ‘risk’ factors 
affecting calving and, in this example, the birth weight of the calf. Thus Eqn 13.15 may 
be written as:
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with gij being the elements of G.
Using a Bayesian approach, Foulley et al. (1983) calculated the mode of the pos-

terior density of q by equating the derivatives of the log-posterior density of q to zero. 
The resulting system of equations were not linear in q. They set up the following 
iterative system of equations for q to be estimated:
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The matrices and vectors in Eqn 13.17 have been defined earlier, apart from q and W.
Initially, Pjk, the probability of response in category k, given the conditions in the jth row, 
is defined for the category trait. With only two categories of response for calving 
difficulty, then from Eqn 13.5:

Pj1 = F(t − aj) and Pj2 = 1 − Pj1

with aj regarded as the mean of the liability in the jth row or as defined in Eqn 13.5.
However, with only one threshold, the value of t by itself is of no interest; the 

probability of response in the first category for the jth row can then be written 
as:

Pj1 = F(t − aj) = F(mj)

where mj can be defined as the expectation of y2j given b, u and y1j, and this is worked 
out in the next section.

The vector q is of order s by 1 with elements:

qj = −{nj1dj1 + (nj. − nj1)dj2}, j = 1,. . ., s (13.18)

where dj1 = −f(mj)/Pj1 and dj2 = fmj /(1 − Pj1), with Pj1 calculated as F(mj).
W is an s by s diagonal matrix with the following elements:

wjj = mjqj + nj1d
2

j1 + (nj. − nj1)d
2

j2, j = 1,. . ., s (13.19)
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Calculating m and the residual regression coefficient

From Eqn 13.14, the model for the jth row of the contingency table may be written as:

y2j = x′2jb2 + z′2ju2 + e2j

where x′2j and z′2j are vectors j of the X2 and Z2, respectively.. Similarly, observations 
for trait 1, corresponding to the jth row of the contingency table, may be modelled as:

y1j = x′1jb1 + z′1ju1 + e1j

Let mj be the expectation of y2j given b, u and y1j. Thus:

mj = E(y2j|b1, b2, u1, u2, y1j) = x′2jb2 + z′2ju2 + E(e2j|e1j) (13.20)

given that e2j is only correlated with e1j. Assuming e2j and e1j are bivariately normally 
distributed:
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where s 2
ei is the residual variance of trait i, sei,k and rik are the residual covariance and 

correlation between traits i and k, and sei is the residual standard deviation of the ith
trait. Similarly:

var(y2j|b1, b2, u1, u2, y1j) = var(e2j|e1j) = s 2
e2(1 − r 2

12)

Since the unit of the conditional distribution of the underlying trait, given b1, b2, u1, u2
and y1j, is the standard deviation, then from the above equation:
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In general, Eqn 13.20 can be expressed as:

m = X2b2 + Z2u2 + be1
= X2b2 + Z2u2 + b(y1 − X1b1 − Z1u1) (13.23)

The above equation may be written as:

m = X2(b2 − bHb1) + Z2(u2 − bu1) + by1
*

m = X2t + Z2n + by1
* (13.24)

with the solutions of factors affecting calving difficulty corrected for the residual 
relationship between the two traits and y1

* = (y1 − X1b1 − Z1u1) or y1
* may be calcu-

lated as:

y y y1 1 1 1
* ( ) .= − y y, where is the mean of1
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13.3.2 Numerical application

Example 13.2
The bivariate analysis of a quantitative trait and a binary trait is illustrated using the 
data presented by Foulley et al. (1983) but with a sire–maternal grandsire relationship 
matrix included for the sires and pelvic opening omitted from the analysis. The data 
consisted of birth weight (BW) and calving difficulty (CD) on 47 Blonde d’Aquitaine 
heifers, with information on region of origin, sire of the heifer, calving season and sex 
of the calf included. Calving difficulty was summarized into two categories: easy or 
difficult calving. The data set is presented below:

Heifer 
origin Sire Season

Sex of 
calf BW CDa

Heifer 
origin Sire Season

Sex of 
calf BWT CDa

1 1 1 M 41.0 E 1 4 2 M 47.0 D
1 1 1 M 37.5 E 1 4 2 F 51.0 D
1 1 1 F 41.5 E 1 4 2 F 39.0 E
1 1 2 F 40.0 E 2 4 1 M 44.5 E
1 1 2 F 43.0 E 1 5 1 M 40.5 E
1 1 2 F 42.0 E 1 5 1 F 43.5 E
1 1 2 F 35.0 E 1 5 2 M 42.5 E
2 1 1 F 46.0 E 1 5 2 M 48.8 D
2 1 1 F 40.5 E 1 5 2 M 38.5 E
2 1 2 F 39.0 E 1 5 2 M 52.0 E
1 2 1 M 41.4 E 1 5 2 F 48.0 E
1 2 1 M 43.0 D 2 5 1 F 41.0 E
1 2 2 F 34.0 E 2 5 1 M 50.5 D
1 2 2 M 47.0 D 2 5 2 M 43.7 D
1 2 2 M 42.0 E 2 5 2 M 51.0 D
2 2 2 M 44.5 E 1 6 1 F 51.6 D
2 2 2 M 49.0 E 1 6 1 M 45.3 D
1 3 1 M 41.6 E 1 6 1 F 36.5 E
2 3 1 M 36.0 E 1 6 2 M 50.5 E
2 3 1 F 42.7 E 1 6 2 M 46.0 D
2 3 2 F 32.5 E 1 6 2 M 45.0 E
2 3 2 F 44.4 E 1 6 2 F 36.0 E
2 3 2 M 46.0 E 2 6 1 F 43.5 E

2 6 1 F 36.5 E

aCD, calving difficulty; D, difficulty, E, easy.

A summary of the data, in terms of marginal means of calving variables by level 
of factors considered, is shown in the following table:

Factor Number Birth weight (kg) Frequency CDa

Heifer origin 1 30 43.02 0.267
2 17 43.02 0.176

Calving season 1 20 42.23 0.200
2 27 43.61 0.259

Continued
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(Continued )

Factor Number Birth weight (kg) Frequency CDa

Sex of calf M 25 – 0.360
F 22 – 0.091

Sire of heifer 1 10 40.55 0.000
2 7 42.99 0.286
3 6 40.53 0.000
4 4 45.38 0.500
5 11 45.46 0.364
6 9 43.43 0.333

aFrequency of calving difficulty.

The following sire–maternal grandsire relationship matrix was assumed among 
the sires:

Bull Sire Maternal grandsire

1 0 0
2 0 0
3 1 0
4 2 1
5 3 2
6 2 3

The inverse of the sire–maternal grandsire relationship matrix obtained for the 
above pedigree using the rules in Section 2.5 is:
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The residual variance (s2
e1) for BW was assumed to be 20 kg2 and the residual correla-

tion (r12) between BW and CD was assumed to be 0.459. Therefore, from Eqn 13.20, 
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Thus the heritabilities for BW and CD are 0.14 and 0.18, respectively, with a 
genetic correlation of 0.62 between the two traits.

The model in Eqn 13.13 was used for the analysis of BW, thus b1 is the vector of 
solutions for origin of heifer, calving season and sex of calf and u1 is the vector of 
solutions for sire effects. The same effects were fitted for CD, with t being the vector 
of solutions for the fixed effects and n for the sire effects. Let q be as follows:

b′1 = (d1, d2, s1, s2, f1, f2)

u′1 = (û11, û12, û13, û14, û15, û16)

t′ = (d′1, d′2, s′1, s′2, f′1, f ′2)

n′ = (n1, n2, n3, n4, n5, n6)

where di(d′i), si(s′i) and fi(f ′i) are level i of the effects of heifer origin, calving season and 
sex of calf, respectively; for BW (CD), û1j and nj are the solutions for the sire j for BW 
and CD, respectively.

The matrix X1, which relates records for BW to the effects of heifer origin, calving 
season and sex of calf, can be set by principles already outlined in previous chapters. 
For the example data, all fixed effects affecting BW also affect CD; therefore, H is an 
identity matrix and X2 = X1. Similarly, the matrix Z1 = Z2. The remaining matrix in 
Eqn 13.17 can be obtained through matrix multiplication and addition.

Equation 13.17 needs starting values for t and n to commence the iterative process. 
The starting values used were solutions (t(0) and n(0)) from Eqn 13.17 with W[i−1] = I,
q[i−1] = a vector of (0,1) variables (1, difficulty; 0, otherwise) and n[i−1] = 0. The solu-
tions to Eqn 13.17 using these starting values are shown in Table 13.3, with equa-
tions for the second levels of calving season and sex of calf effects set to zero because 
of dependency in the systems of equations. Using these solutions, the calculation of 
q(0) and W(0) in the next round of iteration are illustrated for the first and last two 
animals in the example data.

First, m in Eqn 13.18 is calculated for these animals using Eqn 13.24.
For animals 1 and 2:

X2t + Z2n = (d′1 + ŝ ′1 + f ′1 + n̂1) = 0.1873 + −0.0874 + 0.2756 
   + (−0.1180) = 0.2575

Therefore, from Eqn 13.24, using the mean of birth weight, m1 is:

m1 = 0.2575 + 0.1155(41 − 43.02) = 0.0242

and:

m2 = 0.2575 + 0.1155(37.5 − 43.02) = −0.3800

For animals 46 and 47:

X2t + Z2n = (d′2 + ŝ ′1 + f ′2 + n̂6) = 0.1484 + −0.0874 + 0.0 + 0.0079 = 0.0690

Therefore, from Eqn 13.22:

m46= 0.0690 + 0.1155(43.5 − 43.02) = 0.1244

and:

m47 = 0.0690 + 0.1155(36.5 − 43.02) = −0.6841
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Using Eqn 13.18, the elements of q for animals 1, 2, 46 and 47 are:

q(1) = −{0(−1)f (0.0242)/F(0.0242) + (1 − 0)f (0.0242)/(1 − F(0.0242))}

= −{0(−1)0.3988/0.5097 + 1(0.3988/0.4903)} = −0.8134

q(2) = −{0(−1)f (−0.3800)/F(−0.3800) + (1 − 0)f (−0.3800)/(1 − F(−0.3800))}

= −{0(−1)0.3712/0.3520 + 1(0.3712/0.6480)} = −0.5727

q(46) = −{0(−1)f (0.1244)/F(0.1244) + (1 − 0)f (0.1244)/(1 − F(0.1244))}

= −{0(−1)0.3959/0.5495 + 1(0.3959/0.4505)} = −0.8787

Table 13.3. Solutions to Example 13.2 using Eqn 13.17.

Iteration number
Linear
modelTraita Factor 0 1 4 8 13

BW Heifer origin
1 41.6633 41.5471 41.6262 41.6182 41.6195 41.6175
2 42.2530 42.1409 42.2178 42.2099 42.2112 42.2022

Calving season
1 −1.2350 −1.2345 −1.2346 −1.2343 −1.2344 −1.2387
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sex of calf
Male 3.1589 3.1890 3.1687 3.1690 3.1690 3.1845
Female 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sire
1 −0.4155 −0.2633 −0.3671 −0.3580 −0.3595 −0.3268
2 0.1048 0.1687 0.1246 0.1311 0.1300 0.1171
3 −0.3315 −0.2280 −0.3007 −0.2939 −0.2950 −0.2641
4 0.1364 0.3365 0.2035 0.2139 0.2122 0.1886
5 0.2730 0.3261 0.2893 0.2979 0.2965 0.2688
6 0.1545 0.2270 0.1770 0.1821 0.1813 0.1690

CD Heifer origin
1 0.1873 −1.0189 −1.4072 −1.3915 −1.3943 0.1349
2 0.1484 −1.2813 −1.7342 −1.7472 −1.7452 0.0876

Calving season
1 −0.0874 0.1871 0.1327 0.1415 0.1401 −0.0311
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sex of calf
Male 0.2756 0.3218 0.8621 0.8369 0.8411 0.2410
Female 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sire
1 −0.1180 0.0471 −0.0656 −0.0561 −0.0577 −0.0527
2 0.0144 0.0705 0.0319 0.0379 0.0369 0.0285
3 −0.0850 0.0185 −0.0546 −0.0477 −0.0488 −0.0427
4 −0.0380 0.1698 0.0319 0.0424 0.0407 0.0350
5 −0.0048 0.0362 0.0075 0.0163 0.0148 0.0195
6 0.0079 0.0702 0.0270 0.0315 0.0308 0.0323

aBW, birth weight; CD, calving difficulty
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q(47) = −{0(−1)f (−0.6841)/F(−0.6841) + (1 − 0)f (−0.6841)/(1 − F(−0.6841))}

= −{0(−1)0.3157/0.2470 + 1(0.3157/0.7530)} = −0.4193

The diagonal elements of W for each of the four animals above can be calculated 
using Eqn 13.19 as:

w(1,1) = 0.0242(−0.8134){0(−1)[f (0.0242)/F(0.0242)]2 + (1 − 0)[f (0.0242)/
(1 − F(0.0242))]2} = 0.6419

w(2,2) = −0.3800(−0.5727){0(−1)[f (−0.3800)/F(−0.3800)]2 + (1 − 0)
[f (−0.3800)/(1 − F(−0.3800))]2} = 0.5458

w(46,46) = 0.1244(−0.8787){0(−1)[f (0.1244)/F(0.1244)]2 + (1 − 0)[f (0.1244)/
(1 − F(0.1244))]2} = 0.6629

w(47,47 )= −0.6841(−0.4193){0(−1)[f (−0.6841)/F(−0.6841)]2 + (1 − 0)
[f (−0.6841)/(1 − F(−0.6841))]2} = 0.4626

The equations were solved iteratively and were said to have converged at the 15th 
round of iteration when Δ′Δ/20 £ 10−7, where Δ = q(i) − q(i−1). Solutions at convergence 
at the 13th round of iteration and at some intermediate rounds are shown in Table 13.3. 
Results from an analysis using a linear model fitting the same effects with the G
matrix and residual variances of 20 kg2 for BW, 1.036 for CD and residual covariance 
of 2.089 between the two traits are also presented.

The results indicate that the probability of a difficult calving is higher for a male 
calf than for a female calf. Similarly, there is a slightly higher probability for calving 
difficulty for calving in the first season.

In general, sire rankings from the threshold and linear models were similar, 
except for sires 2 and 6 slightly changing rankings in the two models. The ranking of 
sires for calving difficulty based on the results from the threshold model could be 
based on û2 = n + b1û1 using the information provided by BW. However, the interest 
might be on ranking sires in terms of probability of calving difficulty, under a given 
set of conditions. For instance, what is the probability that a heifer sired by the jth
bull born in region 2, calving a male calf in season 1, will experience a calving diffi-
culty? This probability (V211j) can be calculated as:

V211j = F[d̂ ′2 + ŝ′1 + f̂ ′1 + n̂j + b1(d̂2 + ŝ1 + f̂1 − 43.02)] (13.25)

Using the above equation, this probability for sire 1 is:

V211j = F[−1.7452 + 0.1401 + 0.8411 + (−0.0577) + 0.1155(42.2112 
+ (−1.2344) + 3.1690 − 43.02)] = 0.245

Similar calculations gave probabilities of 0.275, 0.247, 0.276, 0.268 and 0.273 
for sires 2, 3, 4, 5 and 6, respectively. In general, there might be interest in the 
probability of difficult calving associated with using the jth sire across all regions 
of origin by season of calving and sex of calf subclasses. Such a probability can 
be calculated as:

V. . .j = SiklliklViklj (13.26)
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with Viklj estimated as Eqn 13.25 and likl is an arbitrary weight such that Sikllikl = 1. 
For the example data, l can be set to be equal to 1

8
, as there are eight region–season–

sex of calf subclasses. The probabilities obtained using Eqn 13.26 with l = 1
8 were 

0.167, 0.188, 0.169, 0.189, 0.183 and 0.187 for sires 1, 2, 3, 4, 5 and 6, 
respectively.

The analysis of a binary trait with a quantitative trait has been discussed and 
illustrated in this section. However, if the category trait has several thresholds, then 
the method discussed in Section 13.2 would be used for the analysis of the categorical 
trait.
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14.1 Introduction

Survival is one of the most important functional economic traits in livestock production, 
affecting profitability through the rate of replacement and farm production levels. 
In dairy cattle, the average herd life or survival of dairy cows has an economic value 
approximately half that of protein yield on a genetic standard deviation basis (Visscher 
et al., 1999). Consequently, most of the earlier research work on survival in terms of 
genetic evaluation and inclusion in breeding programmes has been in dairy cattle.

Various traits have been defined as the basis of evaluating survival in the dairy 
cow. These usually include some measure of survival for a period or length of life such 
as stayability until certain months of life defined as a binary trait (Everett et al., 1976), 
or in terms of the length of life or length of productive life (VanRaden and Klaaskate, 
1993), or number of lactations (Brotherstone et al., 1997) or survival per lactation 
as a binary trait. Linear models are generally used – either a repeatability model 
(Madgwick and Goddard, 1989) or a multivariate model (Jairath et al., 1998). 
Similar definitions of survival have been applied to other livestock species. The length 
of productive life between first farrowing and culling has been analysed in pigs 
(Tarrés et al., 2006; Mészáros et al., 2010). In rabbits, survival has been defined as 
the length of productive life, referring to the days between date of the first positive 
pregnancy diagnosis and date of culling or death (Piles et al., 2006).

14.2 Functional Survival

Another important element of evaluating survival is the concept of functional survival 
or longevity. Functional longevity refers to survival that is independent of production 
such as milk yield for dairy cattle or litter size in pigs. The reasoning is that voluntary 
culling is based mostly on production, thus adjusting for production (usually at the 
phenotypic level) in the analysis of survival produces EBVs for animals that defines 
their ability to avoid involuntary culling.

14.3 Censoring

The traits used in survival analysis involve measuring the length of time between two 
events, usually a start and end point (also called ‘failure’). However, at the time of 
analysis, some animals might still be alive, not having had the opportunity to reach 
the end point. Their measure of survival is based on their current status and does not 

14 Survival Analysis
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therefore reflect their true measure of survival. This phenomenon is referred to as 
censoring and such records are regarded as censored. There are several types of cen-
soring. When records are based on current values that are less than the unknown end 
point, this is called right censoring. Left censoring can occur when, for instance, an 
animal has been alive for a certain time before entering the study or the start of data 
collection. Interval censoring can occur when there is a break in data collection and 
the cow fails somewhere in that interval. However, the most common is right censor-
ing and this is the only type of censoring considered in this chapter.

14.4 Models for Analysis of Survival

14.4.1 Linear models

The linear models described in Chapters 3 or 5 have been used by various researchers 
for the analysis of survival traits, including those defined as a binary trait (Everett 
et al., 1976; Madgwick and Goddard, 1989; Jairath et al., 1998).

One of the major limitations with analysis of survival traits using a linear model 
is the inability or the difficulty of accounting for censoring. Various authors have 
attempted to address this problem. Brotherstone et al. (1997) introduced the concept 
of lifespan, which is the number of lactations a cow has survived or is expected to 
survive. Thus if pn is the probability of survival to lactation n + 1 of an animal that has 
survived to complete lactation n, the expected lifespan (LS) of a cow that has com-
pleted n lactations but has not had time to complete n + 1 is:

LS = n + pn + pn
*  pn+1 + pn

*  p*
n+1

 pn+2 +

Thus if all p values above are constant and cows have completed their first lactation 
and have had no time restriction in the opportunity to express LS, then:

Prob(Ls = x) = (1 − p)Px−1 with x = (1, 2, 3 . . . )

indicating that LS has a geometric distribution with mean = 1 + p/(1 – p) and 
variance = p/(1 − p)2.

Similarly, VanRaden and Klaaskate (1993) evaluated survival using length of pro-
ductive life, and censored records were predicted using phenotypic multiple regression. 
Madgwick and Goddard (1989) proposed a multi-trait model for the analysis of survival 
in each lactation, with observations in individual lactations treated as a different trait. 
Information on the current lactation of living cows can then be included as observed 
while their later (future) lactations are treated as missing records, hence accounting for 
all information.

While some of these linear models have included methods to predict expected 
survival for censored animals, these models are generally inadequate to handle time-
dependent effects. Thus HYS effects, for instance, might be based on information 
from first calving, even for cows that have survived several lactations.

14.4.2 Random regression models for survival

Veerkamp et al. (1999) introduced the concept of fitting a random regression model 
(RRM) for the analysis of survival defined in terms of survival to the fourth lactation 
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as another approach to handle censored records in a linear model. In addition, time-
dependent variables could be fitted with an RRM. The records in lactations 1 to 4 
were coded as 1 if next lactation was present or 0 otherwise. For censored animals, 
current lactations were coded as described but later (future) lactations were regarded 
as missing. Thus for uncensored animals, there would be four observations and cen-
sored animals would have a number of observations equal to the current lactation at 
which they were censored. In addition to the fixed effects of HYS of calving, quad-
ratic regressions for milk yield and age within herd, and a linear regression for 
Holstein percentage, they modelled the survival records of cows fitting a fixed cubic 
polynomial for lactation number and orthogonal polynomial of order 3 for additive 
animal genetic effects. It is not clear why a permanent environmental effect was not 
included in their model. They concluded that RRM could be considered as an alterna-
tive to a proportional hazard model in terms of handling time-dependent variables, 
but that the RRM was not very efficient at handling culling towards the end of lacta-
tion 4. This was attributed to lack of adequate data in the last lactation in the study. 
The same approach could be used to model survival defined in terms of days or 
months of productive life. The details of the methodology of fitting an RRM have 
been covered in Chapter 9, therefore only an outline is presented here.

Considering the data in Table 14.1 and assuming 60 months as the maximum 
length of productive life, the data can be analysed using an RRM considering herd 
and year–season–parity (YSP) as the only fixed (FIX) effects with the following 
model:

y FIX etijk i jtk k jtk jk
k

nr

k

nf

jtk jk
k

nr

tijk= + + + +
== =
∑∑ ∑f f fb u p

00 0
(14.1)

where ytijk is the record for cow j, which is either 1 (alive) or 0 (dead) at time t
(tth month of productive life) associated with the ith level of fixed effects (FIXi); bk are 
fixed regression coefficients; ujk and pjk are vectors of the kth random regression for 
animal and permanent environmental (pe) effects, respectively, for animal j; fjtk is the 
vector of the kth Legendre polynomial for the cow j at time t; nf is the order of polynomials 

Table 14.1. Length of productive life (LPL) in months for some cows reared in two herds.

Cow Sire Dam Herd Parity YSP Code LPL

8 1 2 1 2 3 0 40
9 1 3 1 2 4 1 47

10 4 2 1 1 1 0 22
11 4 9 1 1 2 1 28
12 5 3 1 2 3 1 50
13 5 8 1 1 1 1 33
14 1 6 2 2 4 1 49
15 1 7 2 1 1 1 29
16 5 14 2 1 2 0 23
17 5 6 2 2 3 1 37
18 4 7 2 2 4 0 35
19 4 3 2 1 2 1 30

YSP, year–season–parity. Code: 1, uncensored; 0, censored.
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fitted as fixed regressions; nr is the order of polynomials for animal and pe effects; and 
etijk is the random residual. Note that for cows 8, 10, 16 and 18, which are censored, 
their records consist of the number of observations equal to their last month alive when 
they were censored. Thus cows 8 and 10 have 40 and 22 observations consisting of 
ones, respectively. However, for uncensored cows, each has 60 observations consisting 
of ones and zeros. Thus cow 9 has a record consisting of 47 ones and 13 zeros. The 
model in Eqn 14.1 can be fitted as described in Section 9.3.

14.4.3 Proportional hazard models

In view of the peculiarities associated with survival traits in terms of censoring of 
records and the presence of time-dependent covariates (i.e. whose values change with 
time), the proportional hazard model has been considered a more appropriate 
method of handling survival data. Its wide usage in the analysis of animal breeding 
data has been facilitated by the ‘Survival kit’ software by Ducrocq and Solkner 
(1998). A new version of the ‘Survival kit’, written in Fortran 90 with an R interface 
to make it user friendly, has recently been released (Mészáros et al., 2013). The new 
version offers the opportunity to account for the correlated nature of two random 
effects, either by specifying a known correlation coefficient or estimating it from the 
data. In addition to the computational complexities of the proportional hazard 
model, the other disadvantage of the method is the difficulty of applying it in a multi-
trait situation with more than two traits. This is important as most direct measures 
of survival traits are obtained late in life; therefore, various traits, mostly linear or 
composite type traits such as fore-udder attachment, udder depth, mammary composite 
and legs and feet composite, have been used as indirect predictors of survival.

Subsequently in this section, it is assumed that censoring is random, such that the 
end time or censoring is independent for all individuals.

Defining some distributions

The basic idea is that survival time follows a distribution (for example, Fig. 14.1) and 
the goal is to use data to estimate the parameters of this distribution. Let T be the ran-
dom continuous variable denoting the failure time (death) of an animal, then the survival 
function S(t), which is the probability that the animal survives at least until time t, is:

S(t) = Pr(T ³ t) = 1 − Pr(T < t) = 1 − F(t)

where F(t) is the cumulative distribution of T and S(t) can be regarded as the propor-
tion of animals still alive at time t.

One of the approaches for modelling the survival function is through the hazard 
function h(t), which measures the risk of failure of an individual at time t. It specifies the 
instantaneous rate of failure at time t, given that the individual has survived up to time t.
The usefulness of the h(t) stems from the fact it can provide the failure rate over time even 
when the exact nature of the survival curve is not known. It can be denoted as:

h t( ) =
£ < + ³

=®lim
Pr( | ) ( )

( )D
D

Dt
t T t t T t

t
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where f(t) is the density function that equals h(t)S(t). Another way of looking at the 
h(t) is that for short periods of time (Dt), the probability that an animal fails is 
approximately equal to (h(t)Dt) (Kachman, 1999).

Exponential distribution

Several distributions can be used to define h(t). If h(t) is assumed to be constant over 
time then this is an exponential distribution. This implies that the chance of an animal 
surviving, for instance, an additional 2 years, is the same independent of how old the 
animal is. Assuming the exponential distribution, then h(t) = l and S(t) = exp(−lt),
where l is the parameter of the exponential distribution.

Weibull distribution

The Weibull distribution, which is a two-parameter generalization of the exponen-
tial distribution, has also been used to model the hazard function to account for 
increasing or decreasing hazard function. With the Weibull distribution, h(t) and 
S(t) are:

h(t) = rl(lt)r−1 and S(t) = exp(−(lt)r)

with r > 0 and l > 0. When r = 1, the Weibull distribution reduces to the exponential 
distribution. The Weibull distribution has a decreasing hazard function when r < 1 
and an increasing hazard function when r > 1 (Fig. 14.2). Kachman (1999) showed 
that at a given l, survival functions based on a Weibull model will all intersect at t = 
1/l, and that at t = 1/l, the percentage survival is equal to exp(−1) » 37%. The role of 
the l is to adjust the intercept.

Other possible distributions to model the hazard function include the gamma 
distribution, log-logistics and the log-normal distribution (Ducrocq, 1997). A sum-
mary of the commonly used distributions and parameters are given in Table 14.2.
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Fig. 14.1. Distribution of length of productive life for a group of Holstein dairy cows in the 
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14.4.4 Non-parametric estimation of the survival function

The survival function, S(t), can be estimated from the parametric functions mentioned above. 
A non-parametric estimation of the survival function can be obtained using the Kaplan–
Meier estimator (Kaplan and Meier, 1958). Let Ti represent failure times ordered from the 
first occurrence to the last. At Ti, let the number of animals that could have died (at risk) be 
denoted by ni and the number that actually died as di. The Kaplan–Meier estimator then is:

ˆ( )
|

S t
n d

n
i i

ii Ti t

=
−⎛

⎝⎜
⎞
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<

∏

The usefulness of the Kaplan–Meier estimate of the survival function is that it could 
be used to check if the survival trait follows a particular parametric distribution. 
For instance, the appropriateness of a Weibull model can be evaluated by plotting 
log(−log(Ŝ(t))) versus log(t), where Ŝ(t) is the Kaplan–Meier estimate. This should result 
in a straight line with intercept rlog(t) and slope r, given that:

S(t) = exp(−(lt)r) ® −log(S(t)) = l tr ® log(−log(S(t))) = log(l) + rlog(t)

Similarly for the exponential distribution:

S(t) = exp(−l t) ® −log(S(t)) = lt

Therefore, the test for an exponential model will involve the plot of −log(Ŝ(t)) versus t,
which should give straight line passing through the origin with slope l.

Table 14.2. Some commonly used survival distributions 
and their parameters.

Distributions h(t ) S(t ) f (t )

Exponential l exp−(lt ) lexp−(lt )r
Weibull rl(lt )ρ−1 exp−(lt )r rl(lt )ρ−1exp−(lt )r
Log-logistic lr
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Fig. 14.2. The Weibull hazard function with a λ = 0.20 and with various ρ values.
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14.4.5 Regression survival models

Initially, a fixed effects survival model is considered to introduce the concept. Assume 
that x is a vector of risk fixed effect factors or variables that influence failure time and 
b is the vector of corresponding solutions. One of the most popular procedures used to 
associate the hazard function h(t) and x is the proportional hazard model (Cox, 1972; 
Ducrocq, 1997). The hazard function with vector of risk factors can be written as:

h(t; x) = ho(t)exp(x′b) (14.2)

where ho(t) is the baseline hazard function, representing the ageing process of the 
whole population. Thus the hazard function has been factored into two parts. 
First, the baseline hazard function (ho(t)), which is independent of the risk factors, 
and hence the ratio of the hazard functions of two animals, is equal to a constant 
at any time, i.e. their hazard functions are proportional (Ducrocq, 1997). Second, 
the remaining part of the equation, exp(x′b), can be regarded as the scalar that 
does not depend on time and denotes the specific risk associated with animals with 
the factors x and acts multiplicatively on the baseline hazard function.

When ho(t) = l = a constant, then the baseline hazard is exponential. When the 
baseline hazard function is left completely arbitrary, then the proportion model is 
termed a Cox model (Cox, 1972).

With the Weibull model, the baseline hazard function can be derived as:

h(t; x) = rl(lt)r−1exp(x′b)

= rt r−1exp(rlog(l) + x′b)

= ho(t)exp(x′b) (14.3)

where ho(t) = rtr−1 models the baseline hazard function and exp(x′b), the scalar, mod-
els the relative risk above or below the baseline risk. Note that the x′b in Eqn 14.3 
includes the intercept term such that x = (1, x′) and b = (rlog(l), b).

The corresponding survival function (Kachman, 1999) is:

S(t; x) = exp{−t rexp(x′b)}

Stratified proportional hazard model

At times, the assumption of a single baseline hazard function for the whole population 
in proportional hazard models may be inappropriate. Therefore, data may be divided 
into subclasses on the basis of factors such as year or season of birth, treatment or 
region. Then for individuals in a subclass c, a baseline hazard function can be fitted as:

h(t; x, c) = ho,c(t)exp(x′b)

Therefore, the hazards of two animals A1 and A2 in the same subclass with covariates 
xA1 and xA2, respectively, are proportional:

h t c

h t c

( ; )

( ; )
exp[( ) ],

,

x

x
bA

A
A A

1

2
1 2= − =x x′ ′ constant

and the baseline can have a known parametric form or be left arbitrary.
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Accelerated failure time model

The accelerated failure time is another procedure to associate the hazard functions 
and the risk factors. Here it is assumed that the risk factors not only act multipli-
catively but also accelerate or decelerate the failure time. Let Sc(t) and Sb(t) denote 
the survival functions of cows housed on concrete floors and floors with straw bed-
ding, respectively. If it is assumed that the survival of cows housed on concrete 
floors is lower by a factor g than those housed on floors with bedding, then the 
accelerated failure time model assumes that Sb(t) = Sc(g t) and g > 0 is the so-called 
accelerating factor.

Thus Eqn 14.2 can be written as:

h(t; x) = ho(exp[x′ b]t)exp(x′ b)

= ho(t*)exp(x′ b)

where this change in timescale from t to t* denotes an acceleration or a deceleration 
depending on whether exp(x′ b) is smaller or greater than unity (Ducrocq, 1997).

Time-dependent risk factors

In the analysis of survival data that span a good length of time, it is possible that 
some of the risk factors may change with time. In livestock situations, the effect of 
such factors such as year–season of calving or herd management effects are likely to 
change over time. Such factors are termed time-dependent variables or risk factors. 
The proportional hazard model can be extended to incorporate time-dependent 
variables and Eqn 14.2 can then be written as:

h(t; x(t)) = ho(t)exp(x(t)′b)

where as usual x(t) represents a vector of risk factors, but some of them will be time-
dependent variables. Ducrocq (2000) showed that it is possible to define time-dependent 
variables such as HYS as a sequence of indicator variables x(t) = (0 ... 1 ... 0) with xi(t)= 1 
if the observation is affected by the ith HYS at time t, or xi(t) = 0 otherwise.

14.4.6 Mixed survival models

Mixed survival models, usually called frailty models, refer to the extension of the 
proportional hazard function to include random effects such as genetic effects. The 
random or frailty term um is defined as an unobserved random quantity that acts 
multiplicatively on the hazard of individuals or a group of animals (Ducrocq, 1997). 
The random vector um can be defined for individual animals or daughters of a sire m
as in a sire model. With the simple transformation am = log(um), the frailty term can 
be included in the exponential part of the proportional hazards. Thus the mixed survival 
model can be written as:

h(t; x,z) = ho(t)exp(x′b + z′a) and

S(t; x,z) = exp{−trexp(x′b + z′a)} (14.4)



248 Chapter 14

where z is an incidence matrix for random effects and the baseline hazard function can 
assume a parametric or arbitrary form. Ducrocq et al. (1988a, 1988b) and Ducrocq 
(1997) discussed the various distributions (gamma or log-gammas or inverse Gaussian) 
that have been assumed for the frailty term and various estimation procedures for the 
parameters of the frailty model. In the following section, the parametric model pre-
sented by Kachman (1999) is used to illustrate the prediction of a in the frailty model.

The parameters of interest in a survival model with or without the frailty term can 
be estimated using non-parametric, semi-parametric or parametric approaches. In this 
section, a brief outline of the parametric approach is presented. The basic parametric 
approach involves obtaining the joint likelihood of the survival time and the random 
effects, getting the marginal likelihood of survival time by integrating over the random 
effects or taking a second-order Taylor’s series expansion of the joint log-likelihood. 
The joint log-likelihood for the Weibull function can be written (Kachman, 1999) as:

L h t z H t zo i i
i

o i ib u b a b a, , {log ( ) ( ) ( )exp( )}

/ log

r( ) = + + − +

−

∑ x xi i

1 2 || | /G a Ga− ′1 2
(14.5)

The posterior mode estimates of the fixed and random effects can then be obtained 
by taking the first and second partial derivatives of Eqn 14.5. The resulting equations 
for the estimation are:
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where R is a diagonal matrix with elements rii = wi × exp(xib + zia), with wi = 
exp(r*log(ti)) and ti is the survival record for animal i, and yi

* = qi − rii{1 − (xib + zia)},
with qi = 1 for uncensored records or 0 if records are censored.

The use of Eqn 14.6 involves an iterative procedure with di = (xib + zia) being initially 
computed for record or individual i, then rii and yi

* are calculated assuming that the esti-
mate r is known for the data. Then Eqn 14.6 can be set up. Once all records have been 
processed, estimates of b̂ and â are obtained by solving Eqn 14.6. The new estimates of b̂
and â are then fed into the iterative procedure again until convergence is achieved.

Example 14.1
Presented in Table 14.1 is the length of productive life in months for a group of cows in 
two herds. The aim is to undertake a survival analysis using Eqn 14.6, fitting herd and 
year–season–parity as fixed risk factors and random animal effects. It is assumed that r
is 1 and the genetic variance is 20. The full pedigree is incorporated into the analysis.

Considering the fixed effects, the design matrix X is:

X′ =

1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 00 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0
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Thus given M = [X, Z], where Z is a diagonal matrix considering the cows with records and:

u b=
ˆ

â
⎛
⎝⎜

⎞
⎠⎟

then vector d = Mu. For instance, if starting values for u in the first iteration were set 
to 0.1, then for the first animal, d1 = m1u = 0.30 with m1 = (1 0 0 0 1 0 1 0 0 0 0 0 
0 0 0 0 0 0).

Then for animal i, compute rii and yi
* and set up the row of equations for ith

animal. For animal 1, r11 = exp(1*log(40))*exp(0.3) = 53.994 and y1
* = 0 – 53.994

(1 – 0.3) = −37.760.
Equation 14.6 is built up and solved after all animals are processed and the itera-

tion continued until convergence. Due to dependencies in the system of equations, the 
first levels of herd and year–season–parity effects have been constrained to zero. The 
solutions obtained at convergence and the risk ratios (RRS) are:

Herd
Solution RRS

1 0.000 1.000
2 −1.631 0.196

Year–season–parity
Solution RRS

1 0.000 1.000
2 −2.346 0.094
3 −3.149 0.043
4 −2.982 0.051

Animal Solution RRS Animal Solution RRS
1 −0.779 0.459 11 −0.706 0.494
2 −1.233 0.291 12 −0.476 0.621
3 −0.062 0.940 13 −1.902 0.149
4 −0.750 0.472 14 −0.178 0.837
5 −0.758 0.469 15 −0.842 0.431
6 0.238 1.269 16 −0.519 0.595
7 −0.328 0.720 17 −0.115 0.891
8 −1.477 0.228 18 −0.578 0.561
9 −0.533 0.587 19 −0.290 0.748

10 −1.753 0.173

The estimates bi can be expressed in relative risk (hazard) ratio by the transforma-
tion RRS(bi) = exp(bi). This expression gives the RRS of culling due to that effect and 
it follows from the assumption of the proportional hazard model:

ho(t; xa)/ho(t; xc) = exp((xa′ − xc′ )b)

implying that the relative hazard for two animals with covariates described by xa and 
xc, respectively, is independent of time and of other covariates. Thus the RRS denotes 
the relative risk of a cow being culled in a certain fixed effect class compared to a cow 
in a reference class with risk set to unity. The estimates of RRS in Table 14.1 indicate, 
for instance, that cows in herd 2 are 20% more likely to be culled compared to herd 1. 
Also, cows in YSP subclasses 2 and 3 are 10% and 4% more likely to be culled com-
pared to cows in YSP subclass 1. For the random animal effect, the RRS estimates 
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indicate the relative risk of daughters of these animals being culled. Usually these 
estimates are transformed to relative breeding values, say, with mean 100 and stand-
ard deviation of 12, so they are comparable with breeding values of other traits.

The results can also be presented in several other forms. The interest may be to 
predict the percentage of live daughters for sires at 40 months of productive life; for 
instance, (i) in herd 1 and in the 4th YSP or (ii) across all herds and YSPs. If (i), then 
for sire 1:

d1 = b̂1 + b̂6 + â1 = 0.00 + −2.982 + −0.779 = −3.761

Then using Eqn 14.4, S(40, x,z) = exp{−40rexp(d1)} = 0.394.
For (ii), a weighted mean for fixed effect solutions might be computed based on the 
number of daughters the sire has in each fixed effect subclass. Thus for sire 1:

d1 = (2b̂1 + 2b̂2)/4 + (1b̂3 + 0b̂4 + 1b̂5 + 2b̂6)/4 + â1

= (2*0.0 + 2*0.196)/4 + (0.0 + 0 + −3.149 + 2*−2.982)/4 + −0.779 = −2.959

and S(40, x,z) = exp{−40rexp(d1)} = 0.126

Equation 14.6 and its application in Example 14.1 was mainly to illustrate the 
basic principles of survival analysis using proportional hazard models with a frailty 
term. The parameter r has been assumed known and in practice this has to be esti-
mated simultaneously, and usually more terms including time-dependent variables are 
included in the models. The ‘Survival kit’ (Ducrocq and Solkner, 1998; Mészáros 
et al., 2013) is currently used for the genetic evaluation of survival traits at the 
national level by a number of countries. A summary of methods utilized for the evalu-
ation of survival at the national level for the Holstein breed on the Interbull website 
(http://www-interbull.slu.se/national_ges_info2/framesida-ges.htm) indicates that eight 
countries (France, Germany, Italy, the Netherlands, Hungary, Slovenia, Spain and 
Switzerland) use proportional hazard models in their genetic evaluation systems. 
Similarly, nine countries (Canada, Denmark, Finland, Japan, New Zealand, Sweden and 
the UK) currently use a multi-trait animal model, while the USA, Israel and Australia 
employ a single-trait animal model. The only country that uses a random regression ani-
mal model is Belgium (Walloon region).

14.4.7 Group data survival model

When survival is defined as a discrete trait such as number of lactations completed 
or number of years completed, the Cox and Weibull models may not be suitable for 
the analysis of such traits. This is because these models assume continuity of the 
baseline hazard distribution and/or absence of ties between ordered failure times. 
Thus, with discrete survival traits, the grouped data version of the proportional haz-
ards model introduced by Prentice and Gloeckler (1978) can be used. The group data 
proportional hazard model involves grouping failure time into intervals Qi = (qi−1, qi), 
i = 1, . . . ,r with q0 = 0, qr = +infinite and failure times in Qi are recorded as ti. Thus the 
regression vector is assumed to be time-dependent but fixed within each time interval. 
Grouped data models have been used in beef cattle (Phocas and Ducrocq, 2006) and 
rabbits (Piles et al., 2006). Mészáros et al. (2010) demonstrated this grouped data 
model was more appropriate in length of productive life in pigs.
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15.1 Introduction

In order to carry out prediction of breeding values, estimates of variance components 
are usually needed. In this chapter the estimation of variance parameters is considered 
using univariate sire and animal models.

15.2 Univariate Sire Model

To motivate this work, the mixed effect sire model introduced in Chapter 3 is used.
This model (Eqn 3.15) has:

y = Xb + Zs + e

and:

var(s) = As 2
s

var(y) = ZAZ′s 2
s + R

where A is the numerator relationship matrix for sires, s 2
s = 0.25s 2

a and R = Is 2
e. The 

aim is to estimate s 2
s and s 2

e. The simplest case with this sire model is when X is a n × 1 
matrix with elements 1, b having one element representing an overall effect and the q
sires being unrelated, so that A = I.

An analysis of variance can be constructed by fitting: (i) a model with the overall 
effect b; and (ii) a model with sire effects, these models giving residual sums of 
squares that can be put into an analysis of variance of the form:

15Estimation of Genetic 
Parameters

Source Degrees of freedom Sums of squares

Overall Rank (X) = 1 y′X(X′X)−1X′y = F
Sires Rank (Z) – rank (X) = q − 1 y′Z(Z′Z)−1Z′y − y′X(X′X)−1X′y = S
Residual n – rank (Z) = n − q y′y − y′Z(Z′Z)−1Z′y = R

Essentially, the effects b and s are thought of as fixed effects to construct an 
unweighted analysis. If estimates of s 2

s and s 2
e are required, then the sums of squares 

S and R can be equated to their expectation E(R) = (n − q)s 2
e and E(S) = (q − 1)s 2

e +
trace(Z′SZ)s 2

s where S = I − X(X′X)−1X′.

ROBIN THOMPSON

Rothamsted Research, Harpenden, UK
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15.3 Numerical Example of Sire Model

Consider the data in Table 15.1 for the pre-weaning gain (WWG) of beef calves. The 
objective is to illustrate the estimation of variance components on a very small exam-
ple so that the calculations can be expressed concisely.

The model to describe the observations is:

yij = o + sj + ei

where yij = the WWG of the ith calf, o = the overall effect, sj = random effect of the 
jth sire (j = 1, 2, 3) and ei = random error effect (i = 1, 2, 3, 4).

In matrix notation, the model is the same as described in Eqn 3.1, with n = 4, 
p = 1 and q = 3.

The matrix X in the MME relates records to the overall effects. For the example 
data set, its transpose is:

X′ = [1 1 1 1 1]

The matrix Z then relates records to sires. In this case it is:

Z =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

0 1 0

1 0 0

0 0 1

0 1 0

An analysis of variance can be constructed as:

Table 15.1. Pre-weaning gain (kg) for four beef calves.

Calf Sire WWG (kg)

4 2 2.9
5 1 4.0
6 3 3.5
7 2 3.5

Source Degrees of freedom Sums of squares (kg2)

Overall 1 F = 48.3085
Sire 2 S = 0.6075
Residual 1 R = 0.1800

with:

y′X(X′X)−1X′y = F = (2.9 + 4 + 3.5 + 3.5)2/4 = 48.3025

y′Z(Z′Z)−1Z′y − y′X(X′X)−1X′y = S = (4)2/1 + (2.9 + 3.5)2/2 + (3.5)2/1 − 48.3085 = 0.6075

y′y − y′Z(Z′Z)−1Z′y = R = (2.9)2 + (4)2 + (3.5)2 + (3.5)2 − F − S = 0.18
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In this case:

Z

S

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

- - -
- -

0 1 0

1 0 0

0 0 1

0 1 0

0 75 0 25 0 25 0 25

0 25 0 75 0

. . . .

. . .. .

. . . .

. . . .

25 0 25

0 25 0 25 0 75 0 25

0 25 0 25 0 25 0 75

-
- - -
- - -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
úú

- -
- -
- -

é

ë

ê
ê
ê

ù
and Z SZ′ = 0

0 75 0 50 0 25

50 1 00 0 25

0 25 0 50 0 75

. . .

. . .

. . . ûû

ú
ú
ú

so that:

E(R) = s 2
e = 0.18 and E(S) = 2s 2

e + 2.5s 2
s = 0.6075

Then estimates of s 2
e and s 2

s are:

s 2
e = 0.18 (kg2) and s 2

s = 0.027 (kg2)

15.4 Extended Model

The model and analysis hold if the model is extended to allow X to represent an 
environmental effect with p levels. If sires are nested within levels of the environmen-
tal factor so that daughters of each sire are only associated with one level of the 
environmental factor, then the above analysis could be used. If, however, as usually 
happens, daughters of a sire are associated with more than one level, a slightly more 
complicated analysis is appropriate.

Source Degrees of freedom Sums of squares

Fixed effects Rank (X) = p y′X(X′X)−1X′y = F
Sires corrected for fixed effects Rank (Z′SZ) = dfS y′SZ(Z′SZ)−1Z′Sy = S
Residual n – rank (X) – rank 

(Z′SZ) = n – p − dfS = dfR

y′y – F − S = R

Now R and S have expectation:

E(R) = dfRs2
e and E(S) = dfSs

2
e + trace(Z′SZ)s 2

s

The term involved in the trace (Z′SZ) can sometimes have a simple interpretation. If 
X represents a fixed effect matrix with p levels, then the ith diagonal element of Z′SZ
is ni. − Snij

2/n.j (summation is from j = 1 to p) where nij is the number of daughters of 
sire i in fixed effect level j and n.j = Snij (summation is from j = 1 to p) and ni. = Snij
(summation is from i = 1 to s). This number was called the effective number of daugh-
ters of sire i by Robertson and Rendel (1954) and measures the loss of information 
on a sire because his daughters are measured in different environmental classes. This method 



254 Chapter 15

of analysis is called Henderson’s method 3 (Henderson, 1953). These methods of 
analysis were very popular in that they related to sequential fitting of models and 
were relatively easy to compute. One problem is that the terms are generated under 
a fixed effect model with V = Is 2

e and then sums of squares are equated to their 
expectation under a different variance model. Only in special balanced cases will 
estimation based on R and S lead to efficient estimates of s2

s and s2
e. In general, B is based 

on Z′Sy with variance matrix Z′SZs2
e + Z′SZAZ′SZs2

s and these can be transformed 
to dfS independent values Q′Z′Sy by using arguments similar to those used in Section 6.2 
on the canonical transformation, where Q is a dfS n matrix and Q′Z′SZQ = I and 
Q′Z′SZAZ′SZQ = W, where W is a diagonal matrix of size dfS with ith diagonal ele-
ment wi. The variance matrix of Q′Z′Sy is then Is2

e + Ws2
s. Then an analysis of vari-

ance can be constructed from squaring each of the dfS elements of Q′Z′Sy with ith
sum of squares ui with expectation s2

e + wis
2
s and R is the residual sum of squares 

with expectation E(R) = dfRs2
e. The individual ui are distributed as chi-squared vari-

ables with variance E(ui)
2. A natural scheme is to fit a linear model in s2

s and s2
e to ui

and R. One can also use an iterative scheme with the weight dependent on the esti-
mated parameters.

15.5 Numerical Example

For the example with data in Table 15.1, it was shown that:

Z SZ′ =

0 75 0 50 0 25

0 50 1 00 0 25

0 25 0 50 0 75

. . .

. . .

. . .

- -
- -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

so that the sires have 0.75, 1.0 and 0.75 effective daughters, respectively.
It can be found that with A = I:

Z SZAZ SZ′ ′ =
0 875 0 750 0 125

0 75 1 500 0 750

0 125 0 750 0

. . .

. . .

. . .

- -
- -
- -

0

8875

é

ë

ê
ê
ê

ù

û

ú
ú
ú

The algorithm in Appendix E, Section E.1, can be used to calculate the eigenvalues 
Q so that:

Q′Z′SZQ = I and Q′Z′SZAZ′SZQ = W

In this case:

Q =
- -

-
é

ë
ê

ù

û
ú

0 3333 0 66 0 3333

0 071 0 0 707

. . .

.

67

.7 .0000 1

So Q′Z′SZQ = I and Q′Z′SZAZ′SZQ = W with:

W =
1.5 0.0

0.0 1.0
é

ë
ê

ù

û
ú
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The contrasts Q′Z′Sy are now:

Q Z S′ ′ =
0 000 0 5000 0 5000 0 5000

0 0000 0 7071 0 0 0000

. . . .

. . . .

5

7071

- -
-

é

ëë
ê

ù

û
ú y

So the first contrast, (y1 - y2 - y3 + y4)/2 = (2.9 - 4.0 - 3.5 + 3.5)/2 = −1.1/2 = -0.55 
is a scaled contrast comparing sire 2 with sire 1 and sire 3 and the second con-
trast (y2 - y3)/ 2 = (-4.0 = 3.5)/ 2 = (-0.5)/ 2  is a scaled contrast between sire 
1 and sire 3.

An analysis of variance can be constructed:

Source Degrees of freedom Sums of squares (kg2)
Expected mean 
squares (kg2)

Overall 1 F = 48.3085
Sire 2 compared 

with sires 1 and 3
1 (−0.55)2 = 0.3025 s 2

e + 1.5s 2
s

Sire 1 compared 
with sire 3

1 (−0.5)2/2 = 0.1250 s 2
e + s 2

s

Residual 1 R = 0.1800 s 2
e

Fitting a linear model in s2
e and s2

s to the three sums of squares 0.3025, 0.1250 
and 0.1800, gives estimates of s2

e = 0.143 (kg2) and s2
s = 0.079 (kg2). If a generalized 

linear model is fitted iteratively to the sum of squares with weights proportional to 
the variance of the sum of squares when the procedure converges, the estimate of s2

e
is 0.163 (kg2) and of s2

s is 0.047 (kg2). The estimated variances of these estimates 
(from the inverse of the generalized least squares coefficient matrix) are 0.216 (kg2)
and 0.234 (kg2).

15.6 Animal Model

It has been shown that estimates can be obtained from analysis of variance for some 
models. Now consider a more general model – the animal model introduced in 
Chapter 3. This linear model (Eqn 3.1) is:

y = Xb + Za + e

and the variance structure is defined, with:

var(e) = Is2
e = R; var(a) = As2

a = G and cov(a, e) = cov(e, a) = 0

where A is the numerator relationship matrix, and there is interest in estimating s2
a

and s2
e. A popular method of estimation is by restricted (or residual) maximum like-

lihood (REML) (Patterson and Thompson, 1971). This is based on a log-likelihood 
of the form:

L a( 1
2){−(y − Xb)′V−1(y − Xb) − logdet(V) − logdet(X′V−1X)}

where b is the generalized least squares (GLS) solution and satisfies:

X′V−1Xb = X′V−1y
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There are three terms in L: the first is a weighted sum of squares of residuals; the sec-
ond, a term that depends on the variance matrix; and a third that depends on the vari-
ance matrix of the fixed effects and can be thought of as a penalty because fixed effects 
are estimated. MME (Chapter 3) play an important part in the analysis process.

For the particular model these can be written as (Eqn 3.4):

X X X Z

Z X Z Z A
b
a

X y

Z y

¢ ¢

¢ ¢ +
=

¢

¢-

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú1a

ˆ

ˆ

with a = s 2
e /s 2

a or (1 - h2)/h2.
Extensive use is made of the prediction error matrix of a. In this case the predic-

tion error matrix is PEV = var(a - â) = C22s 2
e (Eqn 3.14), where C22 is associated with 

the coefficient matrix of the MME.
Estimates of s 2

a and s 2
e are chosen to maximize L. It is useful to express relevant 

terms in this estimation process in terms of the projection matrix P:

P = V−1 - X(X′V−1X)−1X′V−1

Then:

L a( 1
2 ){-y′Py - logdet(V) - logdet(X′V−1X)} (15.1)

Estimation of a variance parameter qi (q1 = s 2
e, q2 = s 2

a) involves setting to zero 
the first derivatives:

¶L/¶qi = ( 1
2 ){y′P(¶V/¶qi)Py - trace[P(¶V/¶qi)]}

These equations could be thought of as equating a function of data (the first term in 
the expression) to its expectation.

Normally, finding a maximum requires an iterative scheme. One suggested by 
Patterson and Thompson (1971) was based on using the expected value of the second 
differential matrix. In this case these are:

E(¶L2/¶qi¶qj) = -( 1
2 )trace[P(¶V/¶qi)P(¶V/¶qj)]

Using the first and expected second differentials one can update q using terms 
that depend on the solution of the MME and PEVs. For the particular animal model 
that is being considered, then:

¶L/¶s 2
e = ( 1

2 ){(y - Xb - Za)′(y - Xb - Za)/s 4
e - (n - p - q)/s 2

e
- trace[C22A-1]/s 2

a} (15.2)

¶L/¶s 2
a = ( 1

2 ){a′A−1a/s 4
a + q/s 2

a - trace[C22A-1]s 2
e /s 4

a} (15.3)

and:

E(¶L2/¶s 4
e) = −( 1

2 ){(n − p − q)/s 4
e + trace[(C22A−1)2]/s 4

a}

E(¶L2/¶s 4
a) = −( 1

2
){trace[{I − C22A−1(s 2

e /s 2
a)}

2]/s 4
a}

E(¶L2/¶s 2
a¶s 2

e) = −( 1
2 ){trace[{I − C22A−1(s 2

e /s 2
a)}{C

22A−1}]s 4
a}

Thinking of the variance parameters and the first differentials as vectors q and ¶L/¶q
with ith (i = 1, 2) element qi and ¶L/¶qi, respectively, and Einf, the expected informa-
tion matrix, a matrix with i,jth element −E(¶L2/¶qi¶qj), suggests an iterative scheme 
with the new estimate qn satisfying:
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qn = q + Einf−1(¶L/¶q) (15.4)

There are two problems with this approach. First, the parameters might go nega-
tive and one would want estimates of variances to stay essentially positive. One popu-
lar way of avoiding this property is to note that at a maximum of the likelihood the 
first differentials are zero and to manipulate Eqns 15.1 and 15.2 in the form:

(n − p)s 2
e = (y − Xb − Za)′(y) (15.5)

qs 2
a = a′A−1a + trace[C22A−1]s 2

e (15.6)

so that it can be seen that s 2
e is estimated from a sum of squares of residuals and s2

a
is estimated from a weighted sum of squares of predicted values and their PEV. This 
algorithm is an expectation maximization (EM) algorithm (Dempster et al., 1977) and 
successive iterates are positive. The algorithm can be written in the form of the updat-
ing formula if Einf is replaced by a matrix that depends on the information derived, 
as if one could directly observe the residuals and breeding values rather than predict-
ing them. This algorithm can be slow to converge in animal breeding applications.

A second problem is that the expected second differentials are difficult to calcu-
late. Sometimes it is recommended to use observed second differentials. These are of 
the form:

(¶L2/¶qi¶qj) = −y′P(¶V/¶qi)P(¶V/¶qj)Py + (1
2)trace[P(¶V/¶qi)P(¶V/¶qj)]

but again, these terms involve the complicated trace terms. One suggestion (Gilmour 
et al., 1995) is to use the average of the expected and observed information terms. 
These are of the form:

A(¶L2/¶qi¶qj) = −( 1
2){y′P(¶V/¶qi)P(¶V/¶qj)Py}

These terms are similar to y¢Py in that they could be thought of as a weighted sum 
of squares matrix with y replaced by two columns (¶V/¶qi)Py (i = 1, 2). In this 
particular case:

(¶V/¶s 2
e)Py = (y − Xb − Za)/s 2

e

and:

(¶V/¶s 2
a)Py = Za/s 2

a

As in the formation of Einf, we can construct and base an iterative scheme on Eqn 15.3 
and on Ainf, a matrix with elements −A(¶L2/¶qi¶qj). Once the iterative scheme has 
converged, then the asymptotic variance matrix of q can be estimated from Ainf−1 or 
Einf−1. The animal model and estimation procedure introduced can easily be extended 
to deal with other models, just as prediction procedures can be developed for a variety 
of models. Software for estimating variance parameters using this average information 
algorithm is described by Jensen and Madsen (1997) and Gilmour et al. (2003).

15.7 Numerical Example

Consider the data in Table 15.2 for the pre-weaning gain (WWG) of beef calves. This is very 
similar to the data of Table 3.1, with the data changed to give positive variance estimates.

The model to describe the observations is:

yijk = pi + aj + eijk
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where yij = the WWG of the jth calf of the ith sex, pi = the effect of the ith sex, aj =
random effect of the jth calf and eijk = random error effect.

In matrix notation, the model is the same as described in Eqn 3.1.
Again, the objective is to illustrate the estimation of variance components s 2

e and 
s 2

a on a very small example so that the calculations can be expressed concisely.
In matrix notation, the model is the same as described in Eqn 3.1 with n = 5, p = 2 and 

q = 8, with the design matrices as given in Section 3.3. Now y′ = [2.6, 0.1, 1.0, 3.0, 1.0] 
and, using initial estimates of s2

e = 0.4 and s2
a = 0.2, solutions to MME (Eqn 3.15) are:

Then:

(y − Xb − Za)′ = [0.2022 −0.3661 0.3661 0.6374 −0.8395]

C22s 2
e =

0.1884 0.0028 0.0131 0.0878 0.0180 0.0883 0.0554 0.0537

0.0028 0.19668 0.0041 0.0082 0.0949 0.0981 0.0479 0.0443

0.0131 0.0041 0.182

−
− 66 0.0193 0.0805 0.0090 0.0504 0.0871

0.0878 0.0082 0.0193 0.1711 0.00188 0.0510 0.0971 0.0493

0.0180 0.0949 0.0805 0.0188 0.1712 0.06799 0.0879 0.0712

0.0883 0.0981 0.0090 0.0510 0.0679 0.1769 0.0609 0.00877

0.0554 0.0479 0.0504 0.0971 0.0879 0.0609 0.1767 0.0672

0.05377 0.0443 0.0871 0.0493 0.0712 0.0877 0.0672 0.1689

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

y′Py = 4.8193, logdet(V) = −2.6729 and logdet(X′V−1X) = 2.6241 so L = −2.3852 
from Eqn 15.1.

Then Eqns 15.2 and 15.3 give:

¶L/¶s2
e = (0.5){(y − Xb − Za)′(y − Xb − Za)/s 4

e − (n − p − q)/s 2
e − trace[C22A−1]/s 2

a}

Table 15.2. Pre-weaning gain (kg) for five beef calves.

Calf Sex Sire Dam WWG (kg)

4 Male 1 – 2.6
5 Female 3 2 0.1
6 Female 1 2 1.0
7 Male 4 5 3.0
8 Male 3 6 1.0

Sex effects
Male 2.144
Female 0.602

Animals
1 0.117
2 −0.025
3 −0.222
4 −0.254
5 −0.135
6 0.032
7 0.219
8 −0.305
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¶L/¶s 2
e = (0.5){8.8753 − (−12.5000) − 18.0733} = 1.6510

¶L/¶s 2
a = (0.5){a′A−1a/s 4

a − q/s 2
a + trace[C22A−1]s 2

e /s 4
a}

¶L/¶s 2
a = (0.5){6.3461 − 40.0000 + 36.1466} = 1.2464

and:

A(¶L2/¶s 4
e) = −(0.5){(y − Xb − Za)′P(y − Xb − Za)/s 4e}

A(¶L2/¶s 4
e) = −(0.5)16.5346 = −8.2673

A(¶L2/¶s 4
a) = −(0.5){a′Z′PZa}/s 4a

A(¶L2/¶s 4
a) = −(0.5)9.1163 = −4.5582

A(¶L2/¶s 2
a¶s 2

e) = −(0.5){a′Z′P(y − Xb − Za)}/(s 2es  4a)

A(¶L2/¶s2
a¶s 2

e) = −(0.5)11.3070 = −5.6535

and:

Ainf Ainf=
⎡

⎣
⎢

⎤

⎦
⎥ =−8.2673 5.6535

5.6535 4.5582
so

0.7967 0.98821 −
−00.9882 1.4450

⎡

⎣
⎢

⎤

⎦
⎥

Using Eqn 15.4 and replacing Einf by Ainf:

q q qn =  
−

−
+ = +− ( ) ⎡

⎣
⎢

⎤

⎦
⎥Ainf L1 ∂ ∂/

0.4

0.2

0.7967 0.9882

0.9882 1.44500

1.6510

1.2464

0.4

0.2

0.0838

0.1695

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥= +

so that new estimates of s 2
e and s 2

a are 0.4838 (kg2) and 0.3695 (kg2), respectively.
Table 15.3 gives six successive iterates and log-likelihood for this data.
In the last iteration:

Ainf− = −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 4436 3 2532

3 2532 5 3481

. .

. .

so that the estimate of s 2
e is 0.4835 with standard error 2 .4436 = 1.563 and the esti-

mate of s 2
a is 0.5514 with standard error 5.3481 = 2.313.

By contrast, if estimates of s 2
e = 0.4 and s 2

a = 0.2 are used in conjunction with Eqns 15.5 
and 15.6 then: (n − p)s2

e = (y – Xb − Za)′(y) so 3s2
e = 1.9277 so s 2

e = 0.6426 (kg2)
and qs 2

a = a′A−1a + trace[C22A−1]s 2
e so 8s 2

a = 0.2538 + 1.4458 so s 2
a = 0.2125 (kg2) with 

L = −2.3852. After 1000 iterations, the algorithm gives s2
e = 0.4842 (kg2) and s2

a = 
0.5504 (kg2) with L = −2.1817, showing that this algorithm is slower to converge.

Table 15.3. Estimates of s 2
e and s 2

a and L.

Iterate s 2
e (kg2) s 2

a (kg2) L

1 0.4000 0.2000 −2.3852
2 0.4838 0.3695 −2.2021
3 0.4910 0.5126 −2.1821
4 0.4839 0.5500 −2.1817
5 0.4835 0.5514 −2.1817
6 0.4835 0.5514 −2.1817
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16Use of Gibbs Sampling 
in Variance Component 
Estimation and Breeding 
Value Prediction

16.1 Introduction

Gibbs sampling is a numerical integration method and is one of several Markov chain 
Monte Carlo (MCMC) methods. They involve drawing samples from specified dis-
tributions; hence they are called Monte Carlo and are referred to as Markov chain 
because each sample depends on the previous sample. Specifically, Gibbs sampling 
involves generating random drawings from marginal posterior distributions through 
iteratively sampling from the conditional posterior distributions. For instance, given 
that Q′ = (Q1, Q2) and P(Q1, Q2) is the joint distribution of Q1 and Q2, Gibbs sampling 
involves sampling from the full conditional posterior distributions of Q1, P(Q1|Q2) and 
Q2, P(Q2|Q1).

Thus given that the joint posterior distribution is known to proportionality, the 
conditional distributions can be generated. However, defining the joint density 
involves the use of Bayes’ thereom. In general, given that the probability of two events 
occurring together, P(B, Y), is:

P(B,Y) = P(B)P(Y|B) = P(Y)P(B|Y)

then:

P(B|Y) = P(B)P(Y|B)/P(Y) (16.1)

Equation 16.1 implies that inference about the variable B depends on the prior prob-
ability of its occurrence, P(B). Given that observations on Y are available, this prior 
probability is then updated to obtain the posterior probability or density of B, (P(B|Y). 
Equation 16.1 is commonly expressed as:

P(B|Y) ∝ P(B)P(Y|B) (16.2)

as the denominator is not a function of B. Therefore, the posterior density of B is 
proportional to the prior probability of B times the conditional distribution of Y
given B. Assuming that B in Eqn 16.2 is replaced by W, a vector of parameters, such 
that W′ = (W1,W2,W3), and that the joint posterior distribution is known to propor-
tionality (Eqn 16.2), the full conditional probabilities needed for the Gibbs sampler 
can be generated for each parameter as P(W1|W2,W3,Y ), P(W2|W1,W3,Y) and 
P(W3|W1,W2,Y ). Assuming starting values W1

[0], W2
[0] and W3

[0], the implementation 
of the Gibbs sampler involves iterating the following loop:
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1. Sample W1
[i+1] from P(W1|W2

[i], W3
[i], Y)

2. Sample W2
[i+1] from P(W2|W1

[i+1], W3
[i], Y)

3. Sample W3
[i+1] from P(W3|W2

[i+1], W3
[i+1], Y)

Usually, the initial samples are discarded (the so-called burn-in period). In summary, 
the application of the Gibbs sampler involves defining the prior distributions and the 
joint posterior density and generating the full conditional posterior distributions and 
sampling from the latter.

The Gibbs sampler was first implemented by Geman and Geman (1984). In ani-
mal breeding, Wang et al. (1993, 1994) used Gibbs sampling for variance component 
estimation in sire and animal models. It has been implemented for the study of covari-
ance components in models with maternal effects (Jensen et al., 1994), in threshold 
models (Sorensen et al., 1995) and in random regression models (Jamrozik and 
Schaeffer, 1997). It has recently been employed for the purposes of variance compo-
nent estimation and breeding value prediction in linear threshold models (Heringstad 
et al., 2002; Wang et al., 2002). Detailed presentations of the Gibbs sampling within 
the general framework of Bayesian inference and its application for variance compo-
nents estimation under several models have been published by Sorensen and Gianola 
(2002). In this chapter, the application of the Gibbs sampler for variance component 
estimation and prediction of breeding values with univariate and multivariate animal 
models are presented and illustrated.

16.2 Univariate Animal Model

Consider the following univariate linear model:

y = Xb + Zu + e

where terms are as defined in Eqn 3.1 but with u = a in Eqn 3.1. The conditional 
distribution that generates the data, y, is:

y|b, u, s 2
e ~ N(Xb + Zu + Rs 2

e) (16.3)

16.2.1 Prior distributions

Prior distributions of b, u, s2
u and s 2

e are needed to complete the Bayesian specification 
of the model (Wang et al., 1993). Usually, a flat prior distribution is assigned to b. Thus:

P(b) ~ constant (16.4)

This represents an improper or ‘flat’ prior distribution, denoting lack of prior know-
ledge about this vector. However, if there is information a priori about value of b in 
terms of upper or lower limits, this can be incorporated in defining the posterior 
distribution of b. Such a prior distribution will be called a proper prior distribution.

Assuming an infinitesimal model, the distribution of u is multivariate normal 
and is:

u|A, s2
u ~ N(O, As 2

u) (16.5)
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A scaled inverted chi-squared distribution (χ2) is usually used as priors for the 
variance components (Wang et al., 1993). Thus for the residual variance:
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and the additive genetic variance:
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where ve (vu) is a ‘degree of belief’ parameter and s2
e (s

2
u) can be interpreted as a prior 

value of the appropriate variance component. Alternatively, prior uniform distribu-
tion could be assigned to the variance components such that:

P j( )s 2 μ constant (16.8)

where s2
j = s2

e or s2
u and an upper limit might be assigned for s2

j  based on prior knowledge. 
Setting ve or vu to −2 and s2

e or s2
a to 0 in Eqns 16.6 or 16.7 gives Eqn 16.8.

16.2.2 Joint and full conditional distributions

The joint posterior distribution of the parameters (b, u, s2
e or s2

u) is proportional 
to the product of the likelihood function and the joint prior distribution. Using 
Eqns 16.3 to 16.7, the joint posterior distribution can be written as:
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assuming n observations and m animals. Setting ve or va and s2
e or s2

a to zero gives the 
joint posterior distributions for the uniform distribution in Eqn 16.8.

The full conditional posterior distribution of each parameter is obtained by 
regarding all other parameters in Eqn 16.9 as known. Thus for b:

P u e
e
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A corresponding distribution to the above is:

Xb|u, s2
u, s2

e, y ~ N(y − Zu, Is2
e)

or:

X′Xb|u, s2
u, s2

e, y ~ N(X′(y − Zu), X′Xs2
e)

Therefore:

b |u, s2
u, s2

e, y ~ N(b̂, (X′X)–1s2
e)
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where:

b̂ = (X′X)−1X′(y − Zu)

Thus for the jth level of b:

b̂j |b–j, u, s2
u, s2

e, y ~ N(b̂j, (xj′xj)
–1s2

e)
(16.11)

with b̂j = (x′j xj)
−1x′j (yj − X−jb − Zu), which is equivalent to Eqn 3.5, xj is the jth row 

of X and b−j is the vector b with level j deleted.
Similarly, the distribution for the jth random effect is:

uj|b, u−j, s2
u, s2

e, y ~ N(ûj, (z′j zj + A−1
j,j, a)−1s2

e) (16.12)

with:

ûj = (z′j zj + A−1
j,ja)−1z′j (y − Xb − A−1

j,−j, au−j)

which is equivalent to Eqn 3.8.
The full conditional of distribution of the residual variance is derived from Eqn 16.9 

by considering only terms that involve s 2
e and is in the scaled inverted χ2 form (Wang 

et al., 1993). Thus for the residual variance:
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which involve sampling from an inverted c2 distribution with scale parameter, 
( )y Xb Zu− − ′ ( )y Xb Zu- - + v se e

2 and 
�
ve degrees of freedom.

Similarly, the full conditional distribution of s2
u is also in the form of an inverted 

chi-square. Thus:

P
v s

u e u

m v

u u

u

u

( | , , , ) ( ) exps s s
s

2 2 2 2
1 2

22
b u y μ -

æ

è
çç

ö

ø
÷

-
+

+æ
è
ç

ö
ø
÷

� �

÷÷

where
�
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Thus:

s su u u vvus
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which involves sampling from an inverted c2 distribution with scale parameter 
( )u A u′ − +1 v su u

2  and 
�
vu degrees of freedom.

The Gibbs sampling then consists of setting initial values for b, u, s2
u and s2

e and 
iteratively sampling successively from Eqns 16.11 to 16.14, using updated values of 
the parameters from the i round in the i + 1 round. Assuming that k rounds of itera-
tion were performed, then k is called the length of the chain. As mentioned earlier, 
the first j samples are usually discarded as the burn-in period. This is to ensure that 
samples saved are not influenced by the priors but are drawn from the posterior 



264 Chapter 16

distribution. The size of j is determined rather arbitrarily, but a graphical illustration 
could help.

Several strategies can be implemented in using the Gibbs sampler and these have 
an effect on the degree of correlation between the values sampled. Details of various 
strategies are discussed in detail by Sorensen and Gianola (2002) and therefore not 
presented here. One approach is to run a single long chain. A sample (b, u, s2

u, s2
e) is 

saved at every dth iterate until a total t samples are saved and analysed. The larger d is, 
the lower the degree of autocorrelation between the samples. Another strategy, known 
as the multiple chain or short chain approach, involves carrying out several parallel 
t runs and saving the last nth sample from each run. Thus this approach produces 
m = nt samples. The different chains will produce different realizations, even if the 
same starting values are used. However, if the parameters in the model are highly 
correlated, it might be useful to utilize different starting values in the different chains.

Determining convergence with the Gibbs sampler is not very straightforward, but 
it is advisable, depending on the size of the problem, to run several chains and check 
convergence graphically.

16.2.3 Inferences from the Gibbs sampling output

The samples saved are usually analysed to estimate posterior means or variances of 
the posterior distribution. Detailed discussion of various estimation methods is given 
in Sorensen and Gianola (2002) and not presented here. Given that w is a vector of 
size k, containing the saved samples, then the posterior mean and variance can be 
computed, respectively, as:

mf

i
i

k

f w

k
= =

å ( )
1 (16.15)

and:

var( )
( ( ) )

m
m

f

i f
i

k

f w

k
=

-
=
å 2

1

where f(w) is a function of interest of the variables in w. For instance, in the linear 
animal model in Section 6.2, the function of interest would be the variance components 
(s2

u and s2
e) and the vectors b and u.

The above estimates from the posterior distribution are associated with sampling 
variance (Monte Carlo variance). The larger the number of samples analysed, the 
smaller the sampling variance. It is usually useful to get an estimate of the sampling 
variance associated with the estimates from the posterior distributions. An empirical 
estimate could be obtained by running several independent runs and then computing 
the between-chain variance of the estimates obtained for each run. This is not com-
putationally feasible in most practical situations and various methods are used to 
estimate this variance. A number of such estimators are fully discussed by Sorensen 
and Gianola (2002). A simple method that could be used involves calculating the 
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batch effective chain size. Given a chain of size k, successive samples are grouped into b
batches, each of size t. The average of the jth batch can be computed as:

u
f w
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i
i

t

= =
å ( )

1

The batch estimator of the variance of m in Eqn 16.14 is:
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The batch effective chain size can be obtained as:
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If samples are uncorrelated, then y = k. The difference between y and k gives an idea 
of the degree of the autocorrelation among the samples in the chain.

16.2.4 Numerical application

Example 16.1
Using the data in Example 3.1 and the variance components, the application of Gibbs 
sampling for estimation of variance components and the prediction of breeding val-
ues is illustrated. Uniform priors are assumed for the variance components such that 
ve = va = −2 and s2

e = s2
u = 0. A flat prior is assumed for b, and u is assumed to be 

normally distributed.
First, sample b1

[1], where the superscript in brackets denotes iteration number, using 
Eqn 16.11, with b̂1 calculated using Eqn 3.5 and (xj′x)−1s2

e = (3)−140 = 13.333. From 
Eqn 3.5:

b̂1 = [(4.5 + 3.5 + 5.0) − ( 0 + 0 + 0)]/3 = 4.333

Assuming the random number (RN) generated from a normal distribution, N(0,1), is 
0.1704, then b1 from Eqn 16.11 is:

b1
1 4 333 0 1704 13 333 4 955[ ] = + =. . . .

Then sample b2 using Eqn 16.11 with (xj′x)−1s2
e = (2)−140 = 20 and b̂2 is:

b̂2 = [(2.9 + 3.9) − (0 + 0 )]/2 = 3.40

Assuming the RN from N(0,1) is −0.1294, then:

b2
1 3 40 0 1294 20 2 821[ ] = =. . .-

The vector of solution uj for animal j is sampled using Eqn 16.12, with ûj calculated 
using Eqn 3.8. Thus for animal 1:
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û1 = 0 and (z′1 z1 + A−1
1,1a)−1s2

e = (3.667)−140 = 10.908

The value of (z′1 z1 + A−1
1,1a)−1 is taken from the diagonal element of the coefficient 

matrix of the MME for Example 3.1. Assuming the RN from N(0,1) is 0.2067:

u1
1 0 0 2067 10 98 0 683[ ] = + =. . .

For animal 2, û2 from Eqn 3.8 = −0.171, and (z′1z1 + A−1
1,1a)−1s2

e = (4)−140 = 10. 
Then from Eqn 16.12, assuming RN from N(0,1) is −1.8025:

u2
1 0 171 1 8025 10 5 871[ ] = - + - = -. . .

Similarly, given that û3 from Eqn 3.8 = 1.468, (z′1z1 + A−1
1,1a)−1s2

e = (4)−140 = 10 and 
RN = −0.5558, then:

u3
1 1 468 0 5558 10 0 290[ ] = - = -. . .

For animal 4, û4 = 0.0976 from Eqn 3.8, (z′1z1 + A−1
1,1a)−1s2

e = (4.667)−140 = 8.571 and 
RN = −1.8654, then:

u4
1 0 0976 1 8654 8 571 5 364[ ] = - = -. . . .

Similar calculations using Eqn 16.12 gave estimates of u
5
[1], u

6
[1], u

7
[1] and u

8
[1] to be 

−3.097, −2.577, −1.621 and 0.697, respectively.
The vector of residuals, ê = y −Xb − Zu, is:
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and ê′ê = 48.118. Sampling from the inverted χ2 distribution with three degrees of 
freedom (Eqn 16.13) gave an estimate of 39.870 for the residual variance.

Using Eqn 16.14, sampling for s 2
u is again from the inverted χ2 distribution, with 

u′A−1u = 93.11 and degrees of freedom being 6. An estimate of 23.913 was obtained 
for s2

u. Note that it is easier to compute u′A−1u using Eqn 2.3. Thus u′A−1u = 
u′(T−1)′D−1T−1u = m′Dm where m = T−1u, with m being a vector of Mendelian sampling 
for animals calculated using Eqn 2.2.

The next round of iteration is then commenced using the updated values com-
puted for the parameters.

16.3 Multivariate Animal Model

In this section, the Gibbs sampling algorithm developed by Jensen et al. (1994) for models 
with maternal genetic effects is generalized for a multivariate situation. Given that ani-
mals are ordered within traits, the multivariate model for two traits could be written as:
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where terms are as defined in Eqn 5.1, with u = a. The conditional distribution of the 
complete data, given that animals are ordered within traits, is:

y

y
b b u u R N

X b Z u

X b Z u
R I1

2
1 2 1 2

1 1 1 1
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It is assumed that:
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where G is the genetic covariance matrix and A is the numerator relationship matrix.

16.3.1 Prior distributions

Assume that proper uniform distributions are defined for the fixed effects:

P(b1) ∝ constant; P(b2) ∝ constant

with:

bi(min) ≤ bi ≤ bi(max)

An inverted Wishart distribution (Jensen et al., 1994) is used as prior distribution for 
the genetic and residual covariances. Thus the prior distribution for the residual 
covariance is:

P ve
v p

e
e( | , ) | | exp[ ( )]( )R V R R Ve μ -- + + - -1

2
1 1

2

1 1tr (16.18)

The above is a p-dimensional inverse Wishart distribution (IW2), where p is the order 
of R, Ve is a parameter of the prior distribution and ve is the degrees of freedom. 
If Ve = 0 and ve = −(p + 1), the above reduces to a uniform distribution. Similarly, for 
the genetic covariance, the following prior distribution is assumed:

P vu u
v p

u
u( | , ) | | exp[ ( )]( )G V G G Vμ -- + + - -1

2
1 1

2

1 1tr (16.19)

with terms Vu and vu equivalent to Ve and ve, respectively, in Eqn 16.18.
The joint posterior distribution assuming n traits and using Eqns 16.16 to 

16.19, is:

P(b1,…,bn, u1,…,un, R, G)
∝ p(y1,…,yn|b1,…,bn, u1,…un, R)p(u1,…un,|G)p(G)p(R) (16.20)

16.3.2 Conditional probabilities

Using the same principles as those for obtaining Eqns 16.11 and 16.12, the condi-
tional distribution for the level k of the ith trait is:
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Similarly, for the random animal effect, the conditional distribution for animal k
of the ith trait is:
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where s represents the known parents of the kth animal.
However, instead of sampling for each level of fixed or random effects for one 

trait at a time, it is more efficient to implement block sampling for each level of fixed 
or random effect across all traits at once. The conditional distribution for level k of 
a fixed effect required for block sampling, assuming n = 2, is:
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where:
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which is equivalent to Eqn 5.4.
For the random animal effect, block sampling for animal k, assuming n = 2, the 

conditional distribution is:
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where:
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where s and d are the sire and dam of the kth animal.
From Eqn 16.20, the full conditional distribution of the residual variance is:

P(R|b, u, y) ∝ P(R)P(y|b, u, R)
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Including the prior distribution, the above can be expressed (Jensen et al., 1994) as:
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where m is the number of records and S2
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assuming that n = 2 and êi = yi − Xibi − Ziui, i = 1, n.
Thus:

R| b, u, y ~ IW2((S
2
e + V−1

e )−1, ve + m) (16.25)

which is in the form of a p-dimensional inverted Wishart distribution with ve + m
degrees of freedom and scale parameter (S2

e + V−1
e ).

Similarly, the conditional distribution for the additive genetic variance is:

P(G |b,u,y) ∝ P(G)P(u |G)

Including the prior distribution, the above can be expressed (Jensen et al., 
1994) as:
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where q is the number of animals and, assuming n = 2, S2
u is:
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Thus:

G | b, u, y ~ IW2((S
2
u + V−1

u )−1, vu + q) (16.26)

which again is in the form of a p-dimensional inverted Wishart distribution with vu + q
degrees of freedom and scale parameter (S2

u + V−1
u ).

16.3.3 Numerical illustration

Example 16.2
Using the data in Example 5.1 and the variance components, the application of 
Gibbs sampling to estimating variance components and predicting breeding values 
is illustrated. Uniform priors are assumed for the variance components such that 
ve = vu = −3 and Ve = Vu = 0. A flat prior is assumed for b, and u is assumed to be 
normally distributed.

Processing data and accumulating right-hand side (rhs) and diagonals (Diag) for 
level j of sex of calf effects as:
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rhs1j = rhs1j + R11(y1 − u1i) + R12(y2 − u2i)
rhs2j = rhs2j + R21(y2 − u1i) + R22(y2 − u2i)
Diagj = Diagj + R

When all data have been read, calculate solutions for level j of sex effect as:
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Sample bj in Eqn 16.23 as:
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where h is the vector of normal deviates from a population of mean zero and variance 1 
and CHOL is the Cholesky decomposition of the inverse of the matrix Diag.

Next, process data and accumulate right-hand side (rhs) and diagonals (Diag) for 
animal i as:

rhs1i = rhs1i + R11(y1 − b1j) + R12(y2 − b2j)
rhs2i = rhs2i + R21(y2 − b1j) + R22(y2 − b2j)
Diagi = Diagi + R

When all data have been read, calculate solutions for animal i as:
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Sample ui in Eqn 16.24 as:
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All data is then processed to obtain residual effects as:
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and calculate residual sums of squares, S2
e = êê ′. Then compute T = (S2

e + V−1
e )−1.

Cholesky decomposition of T is carried out to obtain LL′, where L is a lower tri-
angular matrix. Sampling from a Wishart distribution with L as the input matrix and 
ve + m degrees of freedom (Eqn 16.25) generates a new sample value of R.

Similarly, to compute a new sample value of G using Eqn 16.26, first compute 
T−1 = (S2

u + Vu
−1)−1. Decompose T to obtain LL′ and sample from a Wishart distribu-

tion with L as the input matrix and vu + q degrees of freedom. Another cycle of 
sampling is then initiated until the desired length of chain is achieved. Post-processing
of results can be carried out, as discussed in Section 16.2.3.
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17.1 Introduction

Different methods can be used to solve the MME covered in the previous chapters. 
These various methods could broadly be divided into three main categories:

1. Direct inversion (Section 17.2).
2. Iteration on the MME (Section 17.3).
3. Iteration on the data (Section 17.4).

The manner in which the MME are set up depends on the method to be used in solving 
these equations. As shown in Section 17.4, the third method, for instance, does not 
involve setting up the MME directly.

17.2 Direct Inversion

The solutions to the MME in the various examples given so far in this book have 
been based on this method. It involves setting up the MME and inverting the 
coefficient matrix. Solutions are obtained by multiplying the right-hand side 
(RHS) by the inverse of the coefficient matrix. Thus b, the vector of solution, is 
calculated as:

b̂ = C−1y

where C is the coefficient matrix and y is the RHS. Since the coefficient matrix is 
symmetric, only the upper triangular portion is usually set up and inverted. The 
major limitation of this approach is that it can only be applied to small data sets in 
view of the memory requirements and computational difficulties of inverting large 
matrices.

17.3 Iteration on the Mixed Model Equations

This involves setting up the MME and iterating on these equations until conver-
gence is achieved at a predetermined criterion. The iterative procedures are based 
on the general theory for solving simultaneous equations. For instance, given two 
simultaneous equations with unknown parameters, b1 and b2, the first equation 
can be solved for b1 in terms of b2. This value of b1 can then be substituted in the 

17 Solving Linear Equations
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second equation to solve for b2. The value of b2 is then substituted in the first 
equation to calculate b1. This is the principle upon which the iterative procedures 
are based. In the iterative procedure, the above process is continued until the solu-
tions for the b’s are more or less the same in each round of iteration and the equa-
tions are said to have converged. There are various iterative procedures that can 
be used, and some are described below.

17.3.1 Jacobi iteration

One of the simplest methods is Jacobi iteration or total step iteration.
Consider the following set of simultaneous equations:
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These equations can also be written as:

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1

c b  + c b  + c b  = y

c b  + c b  + c b  = y

c b ++ c b  + c b  = y32 2 33 3 3

or as:

Cb = y (17.1)

The system of equations is rearranged so that the first is solved for b1, the second for 
b2 and the third for b3. Thus:
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(17.2)

The superscript r refers to the number of the round of iteration. In the first round of 
iteration, r equals 1 and b1 to b3 could be set to zero or an assumed set of values that 
are used to solve the equations to obtain a new set of solutions (b terms). The process 
is continued until two successive sets of solutions are within previously defined allow-
able deviations and the equations are said to converge. One commonly used conver-
gence criterion is the sum of squares of differences between the current and previous 
solutions divided by the sum of squares of the current solution. Once this is lower 
than a predetermined value, for instance 10−9, the equations are considered to have 
converged.

From the set of equations above, the solution for bi was obtained by divid-
ing the adjusted RHS by the diagonal (aii). It is therefore mandatory that the 
diagonal element, often called the pivot element, is not zero. If a zero pivot ele-
ment is encountered during the iterative process, the row containing the zero 
should be exchanged with a row below it in which the element in that column 
is not zero. To avoid the problem of encountering a zero pivot element and 
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generally improving the efficiency of the iterative process, it is sometimes rec-
ommended that the system of equations should be ordered such that the coef-
ficient of b1 of the greatest magnitude occurs in the first equation, the coefficient 
of b2 of the greatest magnitude in the remaining equations occurs in the second 
equation, etc.

The iterative procedure described above is usually called Jacobi iteration as 
all new solutions in the current (r) round of iteration are obtained using solu-
tions only from the previous (r − 1) round of iteration. The Jacobi iterative 
procedure is inefficient in handling systems of equations that are not con-
strained (i.e. with no restrictions placed on the solutions for the levels of an 
effect) and convergence is not guaranteed (Maron, 1987; Misztal and Gianola, 
1988). When a random animal effect is involved in the system of equations with 
relationships included, it is usually necessary to use a relaxation factor of below 
1.0, otherwise equations may not converge (Groeneveld, 1990). The relaxation 
factor refers to a constant estimated on the basis of the linear changes in the 
solutions during the iteration process and applied to speed up the solutions 
towards convergence. When iterating on the data (Section 17.4), the Jacobi 
iterative procedure involves reading only one data file, even with several effects 
in the model. With large data sets this has the advantage of reducing memory 
requirement and processing time compared with the Gauss–Seidel iterative pro-
cedure (see Section 17.3.2).

The Jacobi iterative procedure can be briefly summarized as follows.
Following Ducrocq (1992), Eqn 17.1 can be written as:

[M + (C − M)]b = y

if M is the diagonal matrix containing the diagonal elements of C; then the algorithm 
for Jacobi iteration is:

b(r+1) = M−1(y − Cb(r)) + b(r) (17.3)

When a relaxation factor (w) is applied, the above equation becomes:

b(r+1) = w[M−1(y − Cb(r))] + b(r)

Another variation of the Jacobi iteration, called second-order Jacobi, is usually 
employed in the analysis of large data sets and it can increase the rate of convergence. 
The iterative procedure for second-order Jacobi is:

b(r+1) = M−1(y − Cb(r) + b(r) + w(b(r) − b(r−1)))

Example 17.1
Using the coefficient matrix and the RHS for Example 3.1, Jacobi iteration (Eqn 17.2) 
is carried out using only the non-zero element of the coefficient matrix. Solutions for 
sex effect (b vector) and random animal effect (u vector) are shown below with the 
round of iteration. The convergence criterion (CONV) was the sum of squares of 
differences between the current and previous solutions divided by the sum of squares 
of the current solution.
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Effects

Rounds of iteration

0a 1 2 3 4 16 17 18 19 20

b1 4.333 4.333 4.381 4.370 4.368 4.358 4.358 4.358 4.358 4.358
b2 3.400 3.400 3.433 3.365 3.414 3.404 3.404 3.404 3.404 3.404
û1 0.000 0.267 0.164 0.185 0.131 0.099 0.099 0.099 0.099 0.099
û2 0.000 0.000 −0.073 −0.003 −0.039 −0.018 −0.018 −0.018 −0.018 −0.018
û3 0.000 −0.033 −0.080 −0.049 −0.070 −0.041 −0.041 −0.041 −0.041 −0.041
û4 0.167 −0.138 −0.007 −0.035 0.000 −0.008 −0.008 −0.008 −0.008 −0.008
û5 −0.500 −0.411 −0.248 −0.265 −0.204 −0.185 −0.185 −0.185 −0.185 −0.185
û6 0.500 0.345 0.318 0.237 0.236 0.178 0.178 0.178 0.177 0.177
û7 −0.833 −0.406 −0.390 −0.301 −0.295 −0.249 −0.249 −0.249 −0.249 −0.249
û8 0.667 0.400 0.286 0.232 0.207 0.183 0.183 0.183 0.183 0.183
CONV 1.000 2.3−2 3.9−3 1.4−3 5.9−4 4.2−8 1.6−8 1.0−8 4.1−9 3.0−9

aStarting values.

The starting solutions for sex effect were the mean yield for each sex subclass 
and, for animals with records, starting solutions were the deviation of their yields 
from the mean yield of their respective sex subclass and zero for ancestors. The final 
solutions obtained after the 20th round of iteration were exactly the same as obtained 
in Section 3.2 by direct inversion of the coefficient matrix. The solutions for sex effect 
were obtained using Eqn 17.2. Thus in the first round of iteration the solution for 
males was:
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where cii is the diagonal element of the coefficient matrix for level i of sex effect and 
m is the number of records for males.

b1 = 1/3(13.0 − 0.167 − (−0.833) − 0.667) = 4.333

However, using Eqn 17.2 to obtain animal solutions caused the system of equations 
to diverge. A relaxation factor (w) of 0.8 was therefore employed and solutions for 
animal j were computed as:
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where l = j + n, t = k + n, with n = 2; the total number of levels of fixed effect, clt and cli,
for instance, are the elements of the coefficient matrix between animals j and k, and 
animal j and level i of sex effect, respectively. Thus in the first round of iteration, 
solutions for animals 1 and 8 are calculated as:

û1
1 = w[{1/c33(y1 − (1)û2 − (−1.333)û4 − (−2)û6)} − û0

1] + û0
1

= w[{1/3.667(0 − 0 − (−0.223) − (−1))} − 0] + 0
= 0.8(0.334 − 0) + 0 = 0.267

and:

û1
8 = w[{1/c1010(y8 − (1)b1 − (−2)û3 − (−2)û6)} − û0

8] + û0
8

= w[{1/5(5 − 4.333 − 0 − (−1))} − 0.667] + 0.667
= 0.8(0.333 − 0.667) + 0.667 = 0.400
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17.3.2 Gauss–Seidel iteration

Another iterative procedure commonly used is Gauss–Seidel iteration. This is similar 
to Jacobi iteration except that most current solutions are calculated from the most 
recent available solution rather than the solution from the previous round of itera-
tion. Using the same set of simultaneous equations as in Eqn 17.1, solutions for b1,
b2 and b3 in the first round of iteration become:
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Thus the solution for b2 in the r + 1 round of iteration is calculated using the 
most recent solution for b1 (b1

r+1) instead of the previous solution (b1
r), and the 

current solution for b3 is calculated from the current solutions for b1 (b1
r+1) and 

b2 (b2
r+1). If, in Eqn 17.3, L is strictly the lower triangular of C and D the diago-

nal of C, then Eqn 17.3 becomes the Gauss–Seidel iteration when M = L + D.
The convergence criteria could equally be defined as discussed in Section 17.3.1. 
Generally, equations are guaranteed to converge with the Gauss–Seidel iterative 
procedure. However, when iterating on the data, this iterative procedure 
involves reading one data file for each effect in the model. With large data sets, 
the setting up of data files for each effect could result in large memory require-
ment and the reading of several files in each round of iteration could increase 
processing time.

Example 17.2
Using the same coefficient matrix, RHS and starting values as in Example 17.1 above, 
the Gauss–Seidel iteration (Eqn 17.4) is carried out for the same number of iterations 
as in Jacobi’s method and the results are shown below. The convergence criterion is 
as defined in Example 17.1.

Rounds of iteration

Effects 0 1 2 3 4 16 17 18 19 20

b1 4.333 4.333 4.400 4.372 4.364 4.359 4.359 4.359 4.359 4.359
b2 3.400 3.400 3.392 3.403 3.407 3.405 3.405 3.405 3.405 3.405
û1 0.000 0.333 0.194 0.149 0.115 0.098 0.098 0.098 0.098 0.098
û2 0.000 −0.083 −0.035 −0.006 −0.008 −0.019 −0.019 −0.019 −0.019 −0.019
û3 0.000 −0.021 −0.136 −0.109 −0.076 −0.041 −0.041 −0.041 −0.041 −0.041
û4 0.167 −0.119 0.001 0.004 −0.003 −0.009 −0.009 −0.009 −0.009 −0.009
û5 −0.500 −0.376 −0.261 −0.218 −0.199 −0.186 −0.186 −0.186 −0.186 −0.186
û6 0.500 0.392 0.254 0.204 0.185 0.177 0.177 0.177 0.177 0.177
û7 −0.833 −0.364 −0.284 −0.260 −0.253 −0.250 −0.250 −0.250 −0.250 −0.250
û8 0.667 0.282 0.167 0.164 0.171 0.182 0.183 0.183 0.183 0.183
CONV 1.000 1.9−2 3.4−3 3.1−4 1.0−4 7−10 4−10 2−10 1−10 8−11

CONV, convergence criterion.
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The solutions obtained are the same as those obtained from Jacobi iteration and by 
direct inversion of the coefficient matrix in Example 3.1. In addition, the equations 
converged faster than when using Jacobi iteration and no relaxation factor was 
applied.

Iterating on the MME could be carried out as described above, once the equa-
tions have been set up, using only the stored non-zero elements of the coefficient 
matrix. In practice, it may be necessary to store the non-zero elements and their rows 
and columns on disk for large data sets because of the memory requirement, and 
these are read in each round of iteration.

17.4 Iterating on the Data

This is the most commonly used methodology in national genetic evaluations, which 
usually involve millions of records. Schaeffer and Kennedy first presented this method in 
1986. It does not involve setting up the coefficient matrix directly, but it involves setting 
up equations for each level of effects in the model as the data and pedigree files are read 
and solved using either Gauss–Seidel or Jacobi iteration or a combination of both or a 
variation of any of the iterative procedures such as second-order Jacobi. Presented below 
are the basic equations for the solutions of various effects under several models and these 
form the basis of the iterative process for each of the models.

The equation for the solution of level i for a fixed effect in the model in a 
univariate animal situation is Eqn 3.5, which is derived from the MME and can be 
generalized as:
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where yki is the kth record in level i, m is the total number of levels of other effects 
within subclass i of the fixed effect and ŵij is the solution for the jth level, and ni is 
the number of records in fixed effect subclass i. However, when there are many fixed 
effects in the model, the above formula may be used to obtain solutions for the major 
fixed effect with many levels such as HYS, while the vector of solutions (f) for other 
minor fixed effects with few levels may be calculated as:

f = (X′X)−1X′(y − ŵ − b̂) (17.6)

where y is the vector of observations, (X′X)−1 is the inverse of the coefficient matrix 
for the minor fixed effects, and ŵ and b̂ are vectors of solutions for effects as defined 
in Eqn 17.4. The matrix X′X could be set up in the first round of iteration and stored 
in the memory for use in subsequent rounds of iterations.

The solution (û) for the level j (animal j) of the random animal effect in the uni-
variate animal model is calculated using Eqn 3.8, which can be rewritten (replacing 
n3 by k) as:

ûj = [n1a(ûs + ûd) + n2yd + S
o

{koa(ûo − 0.5(ûmo))}]/diagj (17.7)

with:

diagj = 2(n1)a + n2 + S
o

{(ko/2)a}
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where ûs, ûd and ûo are solutions or EBVs for the sire, dam and oth progeny of animal j,
respectively; ûmo is the solution of the mate of animal j with respect to progeny o; yd is 
yield deviation, i.e. yield of animal j corrected for all other effects in the model; n1 = 1 or ²⁄³ if 
both or one parent of animal j is known; n2 is the number of records; ko is 1 or ²⁄³ if the 
other parent of progeny o (mate of animal j) is known or not known; and a = s2

e /s
2
a.

In the multivariate animal model situation with equal design and random animal 
effect as the only random effect in addition to residual effects, the solutions for the 
levels of fixed effect and animal effects are obtained using Eqns 5.4 and 5.8, respec-
tively, which are derived from the MME (Eqn 5.3).

For maternal animal model equations, the solutions for fixed effects could be calcu-
lated using Eqn 7.3. The equations for animal and genetic maternal effects are based on 
Eqn 7.4, given earlier. From Eqn 7.4, the solution (û) for direct effect for animal i is:

ûi = [n1a1(ûs + ûd) + n1a2(m̂s + m̂d) − n4a2(m̂i) − (ko/2)a2(m̂i)
+ n2(yi − bj − m̂d − p̂ed) + S

o
{koa1(ûo − 0.5(ûmo))}

+ S
o
{koa2(m̂o − 0.5(m̂mo))}]/diagi (17.8)

with:

diagi = 2(n1)a1 + n2 + So{(ko/2)a1}

where m̂i, m̂s, m̂d, m̂o and m̂mo are solutions for genetic maternal effects for animal i, sire, 
dam, oth progeny of animal i and mate of animal i, respectively; yi is the yield for animal i;
bj is the solution for fixed effect j; p̂ed is the permanent environmental effect for the dam 
of animal i; n1, n2 and ko are as defined above and n4 = 2(n1); and a terms are as defined 
in Eqn 7.4.

The solution (m) for genetic maternal effect for animal i from Eqn 7.4 is:

mi = [n1a2(ûs + ûd) + n1a3(m̂s + m̂d) − n4a 2(ûi) − (ko/2)a2(ûi)
+ n2(yi − bj − ûi − m̂d − p̂ed) + S

o
{koa2(ûo − 0.5(ûmo))}

+ S
o
{koa3(m̂o − 0.5(m̂mate))}]/diagi (17.9)

with:

diagi = 2(n1)a3 + n2 + So{(ko/2)a3}

Solutions for permanent environmental effect are obtained using Eqn 7.5.
The computational procedure for a reduced animal model was presented by 

Schaeffer and Wilton (1987) using a bivariate analysis. The procedure is similar to 
the animal model described above except that records for non-parents are written 
twice, one record for each parent. Consequently, the residual variance of non-parental 
records (r2) is multiplied by 2, that is:

r2 = 2(s 2
e + d(s 2

a)) = 2(1 + da −1)s 2
e

where d = 1
2
 or 3

4
 if both or one parent is known and the contribution of non-parents’ 

records to the diagonal of their parents is 0.5 instead of 0.25 (see Example 7.2).
The equations for solutions for levels of fixed and random effects are similar to 

those defined earlier. From Eqn 7.3, if the residual variance for parental records is 
defined as r1, the contribution of parental records to the RHS for level i of a major 
fixed effect is:
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where ni is the number of parental records in level i of fixed effect and ŵkj is the solu-
tion for the jth level of other effects in the model affecting record k. The contribution 
of non-parental records to the RHS is included as:
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where mi is the number of non-parental records in level i of fixed effect, ûs and ûd
are solutions for the sire and dam of the non-parent with record k, r2k

−1 is the inverse 
of the residual variance for the non-parental record k and ŵkj is the solution for 
level j of other effects in the model apart from random animal effects affecting record k.
Then:
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The equation for the breeding value of the jth animal, which is a parent with its own 
yield record, a non-parental record from progeny i and information from another 
progeny (o), who is itself a parent, is:

ûj = [n1a(ûs + ûd) + n2r1
−1(ydj) + n3r2

−1(ydi − (0.5)ûmi)
+ S

o
{koa(ûo − 0.5(ûmo))}]/diagj (17.12)

with:

diagj = 2(n1)a + n2r1
−1 + (0.5)n3r2

−1 + S
o
{(ko/2)a}

where ydj and ydi are yield deviations for animal j and progeny i, which is a non-
parent, ûmi is the breeding value for the mate of animal j with respect to the ith 
progeny (non-parent), n2 is the number of observations (records) on animal j, n3 is 
the number of non-parental records, r1

−1 and r2
−1 are as defined earlier and all other 

terms are as defined in Eqn 17.7. Note that contributions from the oth progeny in 
the above equation refer to those progeny of animal j who are themselves parents 
and that non-parental records are adjusted for half the breeding value of the mate of 
animal j. If animal j has no non-parental records from its progeny, Eqn 17.12 is the 
same as Eqn 17.7.

The principles of evaluation based on iterating on the data are illustrated below 
using a univariate animal model and a reduced animal model with maternal effects.

17.4.1 Animal model without groups

Example 17.3
Using the same data as in Example 3.1 (Table 3.1) on the weaning weight of beef 
calves, parameters and model, the principles of predicting breeding values and esti-
mating solutions for fixed effects iterating on the data are illustrated using Gauss–
Seidel iteration.

DATA ARRANGEMENT

Gauss–Seidel iteration requires the data files to be sorted by the effect to be 
solved for. The pedigree file is needed when solving for animal solutions. 
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The pedigree file is created and ordered in such a manner that contributions to the 
diagonal and RHS of an animal from the pedigree due to the number of parents 
known (see type 1 record below) and from progeny accounting for whether mate is 
known (type 2 record), can be accumulated while processing the animal. Thus, ini-
tially, a pedigree file is created consisting of two types of records:

1. Type 1 record for all animals in the data comprising the animal identity, record 
type, and sire and dam identities.
2. Type 2 record for each parent in the data comprising the parent identity, record 
type, identities for progeny and other parent (mate) if known. The type 2 records are 
used to adjust the contribution of the progeny to each parent for the mate’s breeding 
value when solving for animal solutions.

The pedigree file is sorted by animal and record type. The sorted pedigree file for 
the example data is given below.

Animal Code Sire or progeny Dam or mate

1 1 0 0
1 2 4 0
1 2 6 2
2 1 0 0
2 2 5 3
2 2 6 1
3 1 0 0
3 2 5 2
3 2 8 6
4 1 1 0
4 2 7 5
5 1 3 2
5 2 7 4
6 1 1 2
6 2 8 3
7 1 4 5
8 1 3 6

Second, a data file is set up consisting of animal identity, fixed effects, covariates 
and traits. If there is a major fixed effect with many levels, two data files need to be 
set up: one sorted by the major fixed effects such as herd or HYS (file A), to be used 
when solving for the major fixed effect; and the other sorted by animal identity (file B), 
to be used to solve for animal solutions. Assuming sex effect to be the major fixed 
effect in the example data, the data sorted by sex are as follows:

Calf Sex
Weaning weight 

gain (kg)

4 Male 4.5
7 Male 3.5
8 Male 5.0
5 Female 2.9
6 Female 3.9
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ITERATION STAGE

Let b̂ and â be vectors of solutions for sex and animal effects. Starting values for sex 
and animal effect are assumed to be the same as in Example 17.1.

SOLVING FOR FIXED EFFECTS. In each round of iteration, file A is read one level of sex 
effect at a time with adjusted right-hand sides (ARHS) and diagonals (DIAG) accu-
mulated for the ith level as:

ARHSi = ARHSi + yik − ûk

DIAGi = DIAGi + 1

At the end of the ith level, the solution for the level is computed as:

b̂i = ARHSi/DIAGi

The above step essentially involves adjusting the yields for animal effects using previous 
solutions and calculating solutions for each level of sex effect. For example, the solution 
for level one of sex effect in the first round of iteration is:

b̂1 = [(4.5 − 0.167) + (3.5 − (−0.833)) + (5.0 − 0.667)]/3 = 4.333

After calculating solutions for fixed effect in the current round of iteration, file B and 
the pedigree file are processed to compute animal solutions.

SOLVING FOR ANIMAL SOLUTIONS. DIAG and ARHS are accumulated as data for each ani-
mal and read from the pedigree file or from both the pedigree file and file B for animals with 
records. When processing type 1 records in the pedigree file for the kth animal, the contri-
bution to the DIAG and ARHS according to the number of parents known is as follows:

Number of parents known

None One (sire (s)) Both

ARHSk = 0 ARHSk = (2
3)a(ûs) ARHSk = a(ûs + ûd)

DIAGk = a DIAGk = ( 4
3 )a DIAGk = 2a

where ûs and ûd are current solutions for the sire and dam, respectively.
When processing type 2 records in the pedigree file for the kth animal, the contri-

bution to the DIAG and ARHS according to whether the mate of animal k is known 
or not is as follows:

Mate unknown Mate known

ARHSk = ARHSk + (2
3)a(ûo) ARHSk = ARHSk + a(ûo − 0.5ûm )

DIAGk = DIAGk + ( 1
3)a DIAGk = DIAGk + ( 1

2 )a

where ûo and ûm are current solutions for the progeny and mate, respectively, of 
the kth animal. If the kth animal has a yield record:

ARHSk = ARHSk + yik − b̂i

DIAGk = DIAGk + 1
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where b̂i are current solutions for level i of sex effect.
When all pedigree and yield records for the kth animal have been processed, the 

solution for the animal is computed as:

ûk = ARHSk/DIAGk

For the example data, the solutions for animal 5 in the first round of iteration is 
computed as follows.

Contribution to diagonal from pedigree is:

DIAG5 = (2 + 0.5)a = 5.00

Accounting for yield record, diagonal becomes:

DIAG5 = 5.00 + 1 = 6.00

Contribution to RHS from yield is:

ARHS5 = 2.9 − 3.40 = −0.5

Contribution to RHS from parents and progeny (pedigree) is:

ARHS5 = ARHS5 + a(û2 + û3) + a(û7 − 0.5(û4))
= −0.5 + 2(−0.083 + (−0.021)) + 2(−0.833 − 0.5(−0.119)) 
= −2.255

and:

û5 = −2.255/6.00 = −0.376

When all animals have been processed, the current round of iteration is com-
pleted. However, the iteration process is continued for sex and animal effects until 
convergence is achieved. The convergence criterion can be defined as in Section 17.3.1. 
In this example, solutions were said to have converged when the sum of squares of 
differences between the current and previous solutions divided by the sum of squares 
of the current solution was less than 10−7. The solutions for all effects in the first 
round of iteration and at convergence at the 20th iteration are as follows:

Effects

Solutions

At round 1 At convergence

Sex
Male 4.333 4.359
Female 3.400 3.404

Animal
1 0.333 0.098
2 −0.083 −0.019
3 −0.021 −0.041
4 −0.119 −0.009
5 −0.376 −0.186
6 0.392 0.177
7 −0.364 −0.249
8 0.282 0.183



282 Chapter 17

These solutions are the same as those obtained by direct inversion of the coefficient 
matrix in Section 3.2 or iterating on the coefficient matrix in Section 17.2. However, 
as stated earlier, the advantage of this method is that the MME are not set up and 
therefore memory requirement is minimal and can be applied to large data sets.

17.4.2 Animal model with groups

Example 17.4
With unknown parents assigned to phantom groups, the procedure is very similar to 
that described in Section 17.4.1, with no groups in the model except in the way the 
pedigree file is set up and animal solutions are computed. Using the same data, 
parameters and model as in Example 3.4, the methodology is illustrated below.

DATA PREPARATION

The pedigree file is set up as described in Section 17.4.1 with ancestors with unknown 
parentage assigned to groups. The assignment of unknown parents for the example 
pedigree has been described in Section 3.6. However, there is also an additional 
column for each animal indicating the number of unknown parents for each animal.

The pedigree with unknown parents assigned to groups and the additional column 
indicating the number of unknown parents is as follows:

Calf Sire Dam Number of unknown parents

1 9 10 2
2 9 10 2
3 9 10 2
4 1 10 1
5 3 2 0
6 1 2 0
7 4 5 0
8 3 6 0

and the ordered pedigree for the analysis is:

Animal Code Sire or progeny Dam or mate Number of unknown parents

1 1 9 10 2
1 2 4 10 1
1 2 6 2 0
2 1 9 10 2
2 2 5 3 0
2 2 6 1 0
3 1 9 10 2
3 2 5 2 0
3 2 8 6 0

Continued
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(Continued )

Animal Code Sire or progeny Dam or mate Number of unknown parents

4 1 1 10 1
4 2 7 5 0
5 1 3 2 0
5 2 7 4 0
6 1 1 2 0
6 2 8 3 0
7 1 4 5 0
8 1 3 6 0
9 2 1 10 2
9 2 2 10 2
9 2 3 10 2

10 2 1 9 2
10 2 2 9 2
10 2 3 9 2
10 2 4 1 1

The arrangement of yield data is the same as in Section 17.4.1 in the animal model 
analysis without groups.

ITERATIVE STAGE

SOLVING FOR FIXED EFFECTS. This is exactly as described for the animal model with-
out groups in Section 17.4.1, with yield records adjusted for other effects in the model 
and solutions for fixed effects computed.

SOLVING FOR ANIMAL SOLUTIONS. Solutions for animals are computed one at a time as 
both pedigree and data file sorted by animals are read, as described for the animal 
model without groups. Therefore, only the differences in terms of the way diagonals 
and ARHSs are accumulated are outlined.

For the kth animal in the pedigree file, calculate:

wk = a(4/(2 + no. of unknown parents))

For the type 1 record in the pedigree file for the kth animal:

ARHSk = ARHSk + (ûs + ûd)0.5wk

DIAGk = DIAGk + wk

For the type 2 record in the pedigree file for the kth animal:

ARHSk = ARHSk + (ûo − 0.5ûm)0.5wk

Accumulation of ARHSs from the data file is as specified in Section 17.4.1 in the 
model without groups.

The solution for the kth animal is computed as ARHSk/DIAGk when all records 
for the animal in the pedigree and data file have been read. The solutions in the first 
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round of iteration and at convergence without and with constraint on group 
solutions, as in Example 3.4, are as follows:

Solutions

Effects At round 1 At convergence At convergencea

Sex
Male 4.333 4.509 5.474
Female 3.400 3.364 4.327

Animal
1 0.333 0.182 −0.780
2 −0.083 0.026 −0.937
3 −0.021 −0.014 −0.977
4 −0.119 −0.319 −1.287
5 −0.376 −0.150 −1.113
6 0.392 0.221 −0.741
7 −0.364 −0.389 −1.355
8 0.282 0.181 −0.782
9 0.153 0.949 0.000

10 −0.176 −0.820 −1.795

aWith solutions for groups constrained to those in Example 3.4.

When the solutions for groups are constrained as those in Example 3.4, this method 
gives the same solutions. However, when there is no constraint on group solutions, 
the ranking of animals is the same and linear differences between levels of effects 
are more or less the same as when there is a contraint on group solutions.

17.4.3 Reduced animal model with maternal effects

Example 17.5
The principles of genetic evaluation iterating on the data with a reduced animal 
model with maternal effects are illustrated using the same data set, parameters and 
model as in Example 6.2. The genetic parameters were:
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The inverse of the residual variance for parental records is 1/s 2
e = r−1

pa = 0.002857 
and for non-parental records is 1/(s 2

e + dg11) = r−1
np, where d = 3/4 or 1/2 when one or both 

parents are known and the inverse of the variance due to permanent environmental 
effect = 1/s2

pe = 0.025.
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DATA ARRANGEMENT

The pedigree file is set up as described in Section 17.4.1 but only for animals that are 
parents. The pedigree file for the example data is:

Animal Code Sire or progeny Dam or mate

1 1 0 0
1 2 5 2
1 2 9 6
2 1 0 0
2 2 5 1
2 2 6 3
3 1 0 0
3 2 6 2
3 2 8 5
4 1 0 0
4 2 7 6
5 1 1 2
5 2 8 3
6 1 3 2
6 2 7 4
6 2 9 1
7 1 4 6
8 1 3 5
9 1 1 6

A data file is set up consisting of a code to identify parents and non-parents. For 
non-parents, one record is set up for each parent, comprising the parent, a code indicat-
ing it is a non-parent, the animal that has the yield record, the other parent (mate), the 
sire and dam of the animal with the yield record, fixed effects, covariates (if any) and 
traits. A single record is set up for parents, comprising the animal, a code indicating it is 
a parent, the animal again, a field set to zero corresponding to the column for the other 
parent in non-parents’ records, the sire and dam of the animal, fixed effects, covariates 
(if any) and traits. The data file may be sorted in three sequences if there is a major fixed 
effect in the model: sorted by major fixed effect, such as HYS (file A); sorted by animal 
(file B); and third sorted by dam code (file C). For the example, file A is:

Parent/
animal Codea Animal Mate Sire Dam Herd Sex

Birth 
weight (kg)

5 0 5 0 1 2 1 Male 35.0
6 0 6 0 3 2 1 Female 20.0
7 0 7 0 4 6 1 Female 25.0
8 0 8 0 3 5 1 Male 40.0
9 0 9 0 1 6 2 Male 42.0
3 1 10 2 3 2 2 Female 22.0
2 1 10 3 3 2 2 Female 22.0
3 1 11 7 3 7 2 Female 35.0
7 1 11 3 3 7 2 Female 35.0
8 1 12 7 8 7 3 Female 34.0

Continued
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(Continued )

Parent/
animal Codea Animal Mate Sire Dam Herd Sex

Birth 
weight (kg)

7 1 12 8 8 7 3 Female 34.0
9 1 13 2 9 2 3 Male 20.0
2 1 13 9 9 2 3 Male 20.0
3 1 14 6 3 6 3 Female 40.0
6 1 14 3 3 6 3 Female 40.0

a0, parental record; 1, non-parental record.

ITERATION STAGE

The solution vectors for herd (ĥd), sex (b̂), direct animal effect (û), genetic maternal 
effect (m̂) and permanent environmental effect (p̂e) are initially set to zero.

SOLVING FOR FIXED EFFECTS. Data file A is read at each round of iteration one herd at 
a time with ARHS and DIAG accumulated for the ith herd as:

ARHSi = ARHSi + r−1
pa (yijklt − b̂j − ûk − m̂l − p̂et)

for parental records (Eqn 17.10):

ARHSi = ARHSi + r−1
np (yijklt − b̂j − 0.5(ûs + ûd) − m̂l − p̂et)

for non-parent records (Eqn 17.11):

DIAGi = DIAGi + r−1
n

where r−1
n is the inverse of the residual variance of the nth record being read.

At the end of records for the ith herd, the solution is computed as:

ĥdi = ARHSi /DIAGi

In the first round of iteration, the solution for the first herd is:

ĥd1 = [r−1
pa (y1 − b̂1 − û5 − m̂2 − p̂e2) + (y2 − b̂2 − û6 − m̂2 − p̂e2)

+ (y3 − b̂2 − û7 − m̂6 − p̂e6) + (y4 − b̂1 − û8 − m̂5 − p̂e5)]/4(r−1
pa)

= [r −1
pa ((35 − 0 − 0 − 0 − 0) + (20 − 0 − 0 − 0 − 0) + (25 − 0 − 0 − 0 − 0) 

+ (40 − 0 − 0 − 0 − 0)]/4(r−1
pa )

= 0.3432/0.01144 = 30.00

While reading data file A, ARHSs consisting of yield adjusted for previous animal, 
maternal and permanent environmental solutions are accumulated for each level of 
sex effect. Thus for the jth level of sex effect:

ARHSj = ARHSj + r−1
pa (yijklt − ûk − m̂l − p̂et)

for parent records:

ARHSj = ARHSj + r−1
np (yijklt − 0.5(ûs + ûd) − m̂l − p̂et)
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and for non-parent records:

DIAGj = DIAGj + r−1
n

Afer reading file A, the solution for the j sex class is computed as:

ARHSj = ARHSj − nr−1
ij ĥdi

b̂j = ARHSj /DIAGj

where ĥdi is the current solution of herd i and nr−1
ij  is the sum of the inverse of the 

residual variance for records of the jth level of sex effect in herd i. The latter is accu-
mulated while reading file A. For the example data, solutions for sex effect in the first 
round of iteration are:

b̂1 = ARHS1 − 2r−1
pa (ĥd1) − r−1

pa (ĥd2) − 2r−1
np (ĥd3)/[3r−1

pa + 2r−1
np]

= (0.38134 − 2r−1
pa (30.0) − r−1

pa (33.638) − 2r−1
np (31.333)/0.01092

= 3.679

After obtaining solutions for fixed effects in the current round of iteration, the 
solutions for animals are solved for.

SOLVING FOR ANIMAL SOLUTIONS. As described in Section 17.4.1, animal solutions are 
computed one at a time as the pedigree file and file B are read. Briefly, for a type 1 
record in the pedigree file for the kth animal, contributions to DIAG and ARHS 
according to the number of parents known (Eqn 17.8) are:

Number of parents known

None One (sire (s)) Both

ARHSk = 0 ARHSk = 2
3g11(ûs) ARHSk = g11(ûs + ûd)

DIAGk = g11 DIAGk = 4
3

g11 DIAGk = 2g11

where ûs and ûd are current solutions for direct effects for the sire and dam of the 
animal k.

The ARHS is augmented by contributions from the maternal effect as a result of 
the genetic correlation between animal and maternal effects. These contributions are 
from the sire, dam and the kth animal (see Eqn 17.9) and these are:

Number of parents known

None One (sire (s)) Both

– ARHSk = ARHSk + (m̂s) 2
3 g12 ARHSk = ARHSk + (m̂s + m̂d)g12

ARHSk = ARHSk − (m̂k)g12 ARHSk = ARHSk − (m̂k) 4
3

g12 ARHSk = ARHSk − (m̂k)2g12

where m̂s, m̂d and m̂k are current maternal solutions for the sire and dam of animal 
k respectively.
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In processing a type 2 record in the pedigree file for the kth animal, contributions 
to DIAG and ARHS according to whether the mate of k is known are:

Mate is unknown Mate is known

ARHSk = ARHSk + 2
3 g11(ûo) ARHSk = ARHSk + (ûo − 0.5ûma )g11

DIAGk = DIAGk + 1
3

g11 DIAGk = DIAGk + 1
2 g11

where ûo and ûma are current solutions for direct effects for the progeny and mate of 
the animal k.

Accounting for contributions from the maternal effect to ARHS:

Mate is unknown Mate is known

ARHSk = ARHSk + 2
3 g12(m̂o) ARHSk = ARHSk + (m̂o − 0.5m̂ma)g12

ARHSk = ARHSk − (m̂k)1/3g12 ARHSk = ARHSk − (m̂k)½g12

where m̂o and m̂ma are current maternal solutions for the progeny and mate of the 
animal k.

If the animal has a yield record:

DIAGk = DIAGk + r−1
n if it is a parent

or:

DIAGk = DIAGk + (r−1
n )0.5 if it is a non-parent

The diagonals of non-parents are multiplied by 0.5 instead of 0.25 because records 
of non-parents have been written twice (see Section 17.4).

Contributions to the RHS are accumulated as:

ARHSk = ARHSk + r−1
pa(yijklt − ĥdi − b̂j − m̂l − p̂et)

for parent records and:

ARHSk = ARHSk + r−1
np (yijklt − ĥdi − b̂j − 0.5(ûma) − m̂l − p̂et

for non-parent records. In the equations above, ĥdi, b̂j, m̂l, p̂et and ûma are current 
solutions for herd i, jth level for sex effect, lth maternal effect level, tth level of per-
manent environment effect and animal solution for the other parent (mate), respec-
tively. The solution for animal k is computed as usual when all records for the animal 
in the pedigree and data file have been read as:

ûk = ARHSk/DIAGk

The solution for animal 2 in the example data in the first round of iteration is as 
follows.

The contribution to the diagonal from pedigree is:

DIAG2 = (1 + 1
2 + 1

2)0.00756 = 0.01512
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The contribution to the diagonal from yield is:

DIAG2 = DIAG2 + 2(0.00059) = 0.01512 + 0.00118 = 0.0163

The contribution to the ARHS from the pedigree is zero since both parents are 
unknown and solutions for progeny are zero in the first round of iteration. The con-
tribution to ARHS from yield record is:

ARHS2 = r−1
np (y10 − ĥd2 − b̂2 − û3 − m̂3 − p̂e3)

+ r−1
np (y13 − ĥd3 − b̂1 − û9 − m̂2 − p̂e2)

ARHS2 = r−1
np(22 − (−2.567) − 33.600 − 0 − 0 − 0 ) 

+ r−1
np (20 − 3.679 − 31.333) = −0.02818

Therefore:

û2 = −0.02818/0.0163 = −1.729

After processing all animals in the pedigree and data file in the current round of itera-
tion, equations for maternal effects are set and solved as described below.

SOLUTIONS FOR MATERNAL EFFECT. Solutions for maternal effects are computed using 
both the pedigree file and the data file sorted by dam. Records for the lth animal are 
read in from the pedigree file and from file C if it is a dam that has progeny with a 
yield record, while accumulating DIAG and ARHS. For the type 1 record in the pedi-
gree file for animal l, contributions to ARHS and DIAG according to the number of 
parents known are as follows:

Number of parents known

None One (dam(d )) Both

ARHSl = 0 ARHSl = 2
3 g 22(m̂d) ARHSl = g 22(m̂s + m̂d)

DIAGl = g 22 DIAGl = 4
3

g 22 DIAGl = 2g 22

Taking into account contributions from animal effects to the ARHS due to 
genetic correlation gives:

Number of parents known

None One (dam(d )) Both

– ARHSl = ARHSl + (ûd) 2
3 g12 ARHSl = ARHSl + (ûs + ûd)g12

ARHSl = ARHSl − (ûl )g
12 ARHSl = ARHSl − (ûl)

4
3

g12 ARHSl = ARHSl − (ûl)2g12

For the type 2 record in the pedigree file for animal l, contributions to the ARHS 
and DIAG according to whether the mate of animal l is known or not are:

Mate is unknown Mate is known

ARHSl = ARHSl + ( 2
3 )g 22(m̂o) ARHSl = ARHSl + g 22(m̂o − 0.5m̂ma )

DIAGl = DIAGl + ( 1
3
)g 22 DIAGl = DIAGl + (1/2)g 22
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Taking into account contributions from animal effect (see Eqn 17.6) gives:

Mate is unknown Mate is known

ARHSl = ARHSl + ( 2
3 )g12(ûo) ARHSl = ARHSl + (ûo − 0.5ûma)g12

ARHSl = ARHSl − (ûl)(
1
3
)g12 ARHSl = ARHSl − (ûl)(

1
2 )g12

For the animal l, which is a dam with progeny having yield records, DIAG and 
ARHS from the pedigree is augmented with information from yield as:

DIAG = DIAG + r −1
n

and:

ARHSl = ARHSl + rpa
−1(yijklt − ĥdi − b̂j − ûk − p̂et)

for parent records and:

ARHSl = ARHSl + rnp
−1(yijklt − ĥdi − b̂j − 0.5(ûs + ûd) − p̂et)

for non-parent records.
After processing all records from pedigree and yield records for the lth animal, 

the solution for the maternal effect is computed as:

m̂l = ARHSl/DIAGl

The calculation of the solution for animal 5 in the first round of iteration is as follows.

The contribution from a type 1 record in the pedigree is:

ARHS5 = (m̂1 + m̂2)g
22 + (û1 + û2)g

12 − (û52g12)

= (0.0217 + −1.7027)0.01261 + (0 + (−1.7294))0.00336 − ((−0.5831)(2)0.0336) 
= −0.02309

DIAG5 = (2)0.01261 = 0.02522

The contribution from a type 2 record in the pedigree is:

ARHS5 = ARHS5 + (m̂8 − 1
2 m̂3)g

22 + (û8 − 1
2 û3)g

12 − (û5
1
2 g12)

= −0.02309 + (0 − 1
2 (0.4587))0.01261 

+ (1.4382 − 1
2 (0.8960))0.00336 − ((−0.5831)( 1

2)0.00336)
= −0.021675

DIAG5 = DIAG5 + 1
2 g22 = 0.02522 + 0.0063 = 0.03153

The contribution from yield of progeny (animal 8) for dam 5 is:

ARHS5 = ARHS5 + r−1
pa(y8 − ĥd1 − b̂1 − û8 − p̂e5)

= −0.021675 + r−1
pa (40 − 30.00 − 3.679 − (1.4382) − 0) 

= − 0.007724

DIAG5 = DIAG5 + r−1
pa = 0.03153 + 0.002857 = 0.034387

and the solution is:

m̂5 = −0.007724/0.034387 = −0.225

Solutions for permanent environmental effects are solved for after processing all 
animals for maternal effects in the current round of iteration.
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SOLVING FOR PERMANENT ENVIRONMENTAL (pe) EFFECTS. Only the data file sorted by dams 
is required to obtain solutions for pe effects.

The records for the t th dam are read from file C while ARHS and DIAG are 
accumulated as:

ARHSt = ARHSt + r−1
pa (yijklt − ĥdi − b̂j − ûk − m̂l)

for parent records and:

ARHSt = ARHSt + r −1
np (yijklt − ĥdi − b̂j − 0.5(ûs + ûd) − m̂l)

for non-parent records.

DIAGt = DIAGt + r−1
n

At the end of records for the tth dam, solutions are computed as:

p̂et = ARHSt /(DIAGt + 1/s 2
p )

The solution for permanent environmental effect for animal 5 in the first round of 
iteration is:

ARHS5 = r−1
pa (y8 − ĥd1 − b̂1 − û8 − m̂5)

= r−1
pa (40 − 3.679 − 30.0 − 1.4822 − (−0.2246))

= 0.01459

DIAG5 = r−1
pa + 0.025 = 0.02786

and:

p̂e5 = 0.01459/0.02786 = 0.524

Further iterations are carried out until convergence is achieved. The convergence 
criteria defined in Section 17.3.1 could also be used. The solutions for the first round 
of iteration and at convergence are shown below.

Solutions

Effects At round 1 At convergence

Herd
1 30.000 30.563
2 33.600 33.950
3 31.333 31.997

Sex of calf
Male 3.679 3.977
Female −2.657 −2.872

Animal
1 0.000 0.564
2 −1.729 −1.246
3 0.896 1.166
4 0.000 −0.484
5 −0.583 0.630
6 −0.554 −0.859

Continued
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(Continued )

Effects

Solutions

At round 1 At convergence

7 −0.020 −1.156
8 1.438 1.918
9 −0.396 −0.553

Maternal
1 0.022 0.261
2 −1.703 −1.582
3 0.459 0.735
4 0.046 0.586
5 −0.225 −0.507
6 0.425 0.841
7 0.788 1.299
8 −0.224 −0.158
9 0.255 0.659

Permanent environment
2 −1.386 −1.701
5 0.524 0.415
6 0.931 0.825
7 0.527 0.461

These solutions are exactly the same obtained as those obtained in Section 7.3 
by directly inverting the coefficient matrix.

BACK-SOLVING FOR NON-PARENTS

The solutions for direct animal and maternal effects for non-parents are calculated 
after convergence has been achieved, as described in Section 7.3. The solutions for 
non-parents for this example have been calculated in Section 7.3.

17.5 Preconditioned Conjugate Gradient Algorithm

Berger et al. (1989) investigated the use of the plain or Jacobi conjugate gradient 
iterative scheme for solving MME for the prediction of sire breeding values. They 
indicated that plain conjugate gradient was superior to a number of other iterative 
schemes, including Gauss–Seidel. Strandén and Lidauer (1999) implemented the use 
of the preconditioned conjugate gradient (PCG) in genetic evaluation models for the 
routine evaluation of dairy cattle with very large data. In the PCG method, the linear 
systems of equations (Eqn 17.1, for instance) is made simpler by solving an equivalent 
system of equations:

M−1Cb = M−1r

where M is a symmetric, positive definite, preconditioner matrix that approximates 
C and r is the right-hand side. In the plain conjugate gradient method, the precondi-
tioner M is an identity matrix.
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The implementation of the PCG method requires storing four vectors of size 
equal to the number of unknowns in the MME: a vector of residuals (e), a search-
direction vector (d), a solution vector (b) and a work vector (v). The PCG method can 
be implemented with less memory by storing the solution vector on disk and reading 
it in during the iteration. The pseudo-code for the PCG method (Lidauer et al., 1999) 
is outlined below, assuming that starting values are:

b(0) = 0, e(0) = r − Cb = r, d(0) = M−1e(0)= M−1r(0)

For k = 1,2, . . . , n

v = Cd(k−1)

ω = e′(k−1)M−1e(k−1)/(d′(k−1)v)

b(k) = b(k−1) + wd(k−1)

e(k) = e(k−1) − wv

v = M−1e(k)

b = e′(k)v/(e′(k−1)M−1e(k−1))

d(k) = v + βd(k−1)

If not converged, continue iteration until converged, and w and b are step sizes in the 
PCG method.

17.5.1 Computation strategy

The major task in the PCG algorithm above is calculating Cd, where C is the co -
efficient matrix of the MME. The vector d is the search direction vector and every 
iteration of the PCG minimizes the distance between the current and the true solu-
tions in the search direction. Strandén and Lidauer (1999) presented an efficient 
computation strategy for computing Cd for a multivariate model. Assuming, for 
instance, that data are ordered by animals, the MME for the multivariate model 
(Eqn 5.2) can be written as:
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where N is the number of animals with records, x′i and z′i are matrices having rows with li
equal to the number of traits observed on animal i. Denote w′ =[x′i z′i] and V as:

V
G

=
⊗

0 0

0 A
⎛
⎝⎜

⎞
⎠⎟
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Computing Cd then implies calculating:

w R w d V d v vi i i
i

N

i d
i

N
- -+ = +å å1 1

1 1

′
= =

(17.13)

If solving the MME with iteration on the data for a univariate model without any 
regression effects, this calculation can be achieved by accumulating for each individ-
ual i, the product vi = Tid, where the coefficients in Ti = wiRi

−1wi′ can be deduced 
without performing any of the products, as wi contains zeros and ones only and Ri

−1

is a scalar or Ri
−1 is factored out (Eqn 3.4). For a multivariate model, the principles 

for computing Ti are essentially the same but with scalar contributions replaced by 
matrix Ri. Strandén and Lidauer (1999) suggested the following three-step method 
for calculating the product wiR

−1
id:

si ¬ wi′d; s*
i ¬ R−1

i si; vi ¬ wis
*
i

where vectors si and s*
i are of size equal to the number of traits observed on individual 

i (li). They demonstrated that this three-step approach reduced substantially the num-
ber of floating point operations (multiplications) compared with a multivariate accu-
mulation technique as used by Groeneveld and Kovac (1990). For instance, given that 
qi is the number of effects over traits observed for individual i, the number of floating 
point operations were 720 with li = 3 and qi = 15 using the multivariate accumulation 
technique compared with 78 with the three-point approach. They also suggested that 
vd = V−1d in Eqn 17.13 can be evaluated in a two-step approach:

x ¬ (I Ä A−1)d; vd ¬ (G−1 Ä I)x

17.5.2 Numerical application

Example 17.6
The application of PCG to solve MME is illustrated using data for Example 3.1 for 
a univariate model and iterating on the data.

COMPUTING STARTING VALUES

Initially, the pedigree is read and diagonal elements of A−1 multiplied by a are 
accumulated for animals, where the variance ratio a is 2, as in Example 3.1. This is 
straightforward and has not been illustrated, but elements for animals 1 to 8 stored 
in a vector h are:

h′ = [3.667 4.0 4.0 3.667 5.0 5.0 4.0 4.0]

Second, read through the data as shown in Table 3.1 and accumulate right-hand 
side (r) for all effects, diagonals for the levels of sex of calf effect and add contribution 
of information from data to diagonals from A−1a for animals. Assuming that diago-
nals for all effects are stored as diagonal elements of M, such that the first two 
elements are for the two levels of sex of calf effect and the remaining elements for 
animals 1 to 8, then r and M are:

r′ = [13.0 6.8 0.0 0.0 0.0 4.5 2.9 3.9 3.5 5.0]
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and:

M = diag[3.0 2.0 3.667 4.0 4.0 4.667 6.0 6.0 5.0 5.0]

The starting values for PCG can now be calculated. Thus:

b(0) = 0, e(0) = r − Cb(0) = y and d(0) = M−1r

Thus:

d(0)′= [4.333 3.4 0.0 0.0 0.0 0.964 0.483 0.650 0.70 1.0]

ITERATIVE STAGE

Reading through the data and performing the following calculations in each round of 
iteration, start the PCG iterative process. Calculations are shown for the first round 
of iteration.

The vector v = Cd is accumulated as data are read. For the ith level of fixed effect:

v(i) = v(i) + 1(d(i)) + 1(d(animk))

where animk refers to the animal k associated with the record. Thus for the level 1 of 
sex of calf effect:

v(1) = 3(4.333) + d(anim4) + d(anim7) + d(anim8) = 15.663

As each record is read, calculate:

z = 4/(2 + number of unknown parents for animal with record)

xx = −0.5(z)a if either parent is known, otherwise xx = 0

xm = 0.25(z)a if both parents are known, otherwise xm = 0

If only one parent, p, of animal k is known, then accumulate:

v(animk) = v(animk) + 1(d(i)) + Mk,k(d(animk)) + xx(d(animp)) (17.14)

where d(i) refers to the ith level of the fixed effect and Mk,k the diagonal element of 
M for animal k.

Accumulate the contribution to the known parent, p, of k at the same time:

v(animp) = v(animp) + xx(d(animk))

If both parents p and j of animal k are known, then accumulate for animal k as:

v(animk) = v(animk) + 1(d(i)) + Mk,k(d(animk)) + xx(d(animp) + d(animj)) (17.15)

Accumulate for both parents as:

v(animp) = v(animp) + xx(d(animk))

v(animp) = v(animp) + xm(d(animj))

v(animj) = v(animj) + xx(d(animk))

v(animj) = v(animj) + xm(d(animp))
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After processing all animals with records, the contribution for animals in the 
pedigree without records is accumulated. The equations for accumulating contribu-
tions for these animals is the same as shown above except that the coefficient for d(i) in 
Eqns 17.13 and 17.14 is zero instead of one, indicating no contribution from records.

For example, for animal 4 with only the sire known:

v(4) = v(4) + d(1) + M4,4(d(anim4)) + (−2/3)a(d(anim1)) = 8.833

Add contribution from progeny when processing the record for animal 7:

v(4) = 8.833 + −1.0a(d(anim7)) + 0.25a(d(anim5)) = 7.917

The vector v for all effects is:

v′ = [15.664 7.933 −2.586 −2.267 −2.317 7.917 5.864 5.300 4.938 8.033]

Next w is computed using matrix multiplication and scalar division as:

w = 95.1793/120.255 = 0.7915

The solution vector is then computed as b(1) = b(0) + wd(0). The vector b(1) is:

b′(1) = [3.430 2.691 0.0 0.0 0.0 0.763 0.383 0.514 0.554 0.791]

The updated vector of residuals e(1) is computed as e(0) − wv. For the example data e(1)

is:

e′(1)=[0.602 0.521 2.047 1.794 1.834 −1.766 −1.741 −0.295 −0.408 −1.358]

The vector v is then computed as M−1e(1). For the example data, v is:

v′= [0.201 0.260 0.558 0.449 0.458 −0.378 −0.290 −0.049 −0.082 −0.272]

Next, compute the scalar b. The denominator of b is equal to the numerator of 
w and this has already been computed. Using the example data:

b = 4.634/95.179 = 0.0487

Finally, d(1), the search-direction vector for the next iteration is computed as 
v + bd(0). This vector for the example data is:

d′(1) = [0.412 0.426 0.558 0.449 0.458 −0.331 −0.267 −0.017 −0.048 −0.223]

The next cycle of iteration is continued until the system of equations converges. 
Convergence can either be monitored using the criteria defined in Example 17.1 or 
the relative difference between the right-hand and left-hand sides:

c( )
d
r

r

=
y Cb

y

− +( )1

where:

x = Σ
i

ix2
1

2( )
Using the convergence criteria used in Example 17.1, the iteration was stopped at 
the 10th iteration when equations converged to 8.3−07. Some intermediary and final 
solutions are shown in the following table.
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Iteration number

Effects 1 3 5 7 10

Sex of calf
Male 3.430 3.835 4.280 4.367 4.359
Female 2.691 3.122 3.154 3.377 3.404

Animals
1 0.000 0.475 0.170 0.092 0.098
2 0.000 0.224 0.116 0.012 −0.019
3 0.000 0.272 0.058 −0.056 −0.041
4 0.763 0.390 0.032 −0.029 −0.009
5 0.383 0.249 −0.072 −0.155 −0.186
6 0.514 0.547 0.435 0.194 0.177
7 0.554 0.193 −0.178 −0.231 −0.249
8 0.791 0.537 0.334 0.171 0.183

The equations converged at the 10th round of iteration compared with 20 iterations 
on the data in Example 17.3.
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The basic elements of matrix algebra necessary to understand the principles involved 
in the prediction of breeding values are briefly covered in this appendix. Little or no 
previous knowledge of matrix algebra is assumed. For a detailed study of matrix 
algebra, see Searle (1982).

A.1 Matrix: A Definition

A matrix is a rectangular array of numbers set in rows and columns. These elements 
are called the elements of a matrix. The matrix B, for instance, consisting of two rows 
and three columns, may represented as:

B
b b

b b b
=

b11 12 13

21 22 23

é

ë
ê

ù

û
ú

or:

B = 
4 5

6 8 9

2⎡

⎣
⎢

⎤

⎦
⎥

The element bij is called the ij element of the matrix, the first subscript referring to 
the row the element is in and the second to the column. The order of a matrix is the 
number of rows and columns. Thus a matrix of r rows and c columns has order r × c
(read as r by c). The matrix B above is of the order 2 × 3 and can be written as B2×3.

A matrix consisting of a single row of elements is called a row vector. A row vec-
tor consisting of three elements may be represented as:

c = 2 6 4-[ ]
Only one subscript is needed to specify the position of an element in a row vector. 
Thus the ith element in the row vector c above refers to the element in the ith column. 
For instance, c3 = −4.

Similarly, a matrix consisting of a single column is called a column vector. Again, 
only one supscript is needed to specify the position of an element, which refers to the 
row the element is in, since there is only one column. A column vector d with four 
elements can be shown as below:

d = 

20

6

8

2

-
0
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Appendix A: Introduction to Matrix 
Algebra
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A scalar is a matrix with one row and one column.

A.2 Special Matrices

A.2.1 Square matrix

A matrix with an equal number of rows and columns is referred to as a square 
matrix. Shown below is a square matrix G of order 3 × 3.

G = 

2 1 6

4 2 7

0 4 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The ij elements in a square matrix with i equal to j are called the diagonal elements. 
Other elements of the square matrix are called off-diagonal or non-diagonal elements. 
Thus the diagonal elements in the G matrix above are 2, 2 and 8.

A.2.2 Diagonal matrix

A square matrix having zero for all of its off-diagonal elements is referred to as a 
diagonal matrix. For example, a diagonal matrix B can be shown as below:

B = 

3 0

0 4 0

0 0 18

0⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

When all the diagonal elements of a diagonal matrix are one, it is referred to as an 
identity matrix. Given below is an identity matrix, I:

I = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A.2.3 Triangular matrix

A square matrix with all elements above the diagonal being zero is called a lower 
triangular matrix. When all the elements below the diagonal are zeros, it is referred 
to as an upper triangular matrix. For instance, the matrices D, a lower triangular 
matrix and E, an upper triangular matrix, can be illustrated as:

D E = 

4 0 0

1 3 0

2 7 9

;  = 

3 9 1

0 4 8

0 0 6-
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The transpose (see A.3.1) of an upper triangular matrix is a lower triangular matrix 
and vice versa.

A.2.4 Symmetric matrix

A symmetric matrix is a square matrix with the elements above the diagonal equal to 
the corresponding elements below the diagonal, i.e. element ij is equal to element ji.
The matrix A below is an example of a symmetric matrix:

A = 

2 4 0

4 6 3

0 3 7

-
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A.3 Basic Matrix Operations

A.3.1 Transpose of a matrix

The transpose of a matrix A is usually written as A′ or AT and is the matrix whose ji
elements are the ij elements of the original matrix, i.e. a′

ji = aij. In other words, the 
columns of A′ are the rows of A and the rows of A′ the columns of A. For instance, 
the matrix A and its transpose A′ are illustrated below:

A A = 

3 2

1 1

4 0

;  = 
3 1 4

2 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′ ⎡

⎣
⎢

⎤

⎦
⎥

Note that A is not equal to A′ but the transpose of a symmetric matrix is equal to 
the symmetric matrix. Also (AB)′ = B′A′, where AB refers to the product (see A.3.3) 
of A and B.

A.3.2 Matrix addition and subtraction

Two matrices can be added together only if they have the same number of rows and 
columns, i.e. they are of the same order and they are said to be conformable for addi-
tion. Given that W is the sum of the matrices X and Y, then wij = xij + yij. For example, 
if X and Y, both of order 2 × 2, are as illustrated below:

X Y
4

=
40 10

39 25
;  = 

2 20

40-
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Then the matrix W, the sum of X and Y, is:

W =
40 + ( 2) 10 + 20

39 + 25 + 40
=

38 30

43 15
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Matrix subtraction follows the same principles used for matrix addition. If B = X − Y,
then bij = xij − yij. Thus the matrix B obtained by subtracting Y from X above is:

B =
40

X Y-
- - -

- - -
-
-

 = 
( 2) 10 20

39 4 25 40
 = 

42 10

35 65
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A.3.3 Matrix multiplication

Two matrices can be multiplied only if the number of columns in the first matrix 
equals the number of rows in the second. The order of the product matrix is equal to 
the number of rows of the first matrix by the number of columns in the second. Given 
that C = AB, then:

C = =
===

åååc a bij ik kj
k

z

i

n

j

m

111

where m = number of columns in B, n = number of rows in A and z = number of rows 
in B. Let:

A B = 

1 4 1

2 5 0

3 6 1

 = 

2 5

4 3

6 1
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;

Then C can be obtained as:

c11 = 1(2) + 4(4) + −1(6) = 12 (row 1 of A multiplied by column 1 of B)
c21 = 2(2) + 5(4) + 0(6) = 24 (row 2 of A multiplied by column 1 of B)
c31 = 3(2) + 6(4) + 1(6) = 36 (row 3 of A multiplied by column 1 of B)
c12 = 1(5) + 4(3) + −1(1) = 16 (row 1 of A multiplied by column 2 of B)
c22 = 2(5) + 5(3) + 1(1) = 26 (row 2 of A multiplied by column 2 of B)
c23 = 3(5) + 6(3) + 1(1) = 34 (row 3 of A multiplied by column 2 of B)

C =

12 16

24 26

36 34

⎡

⎣

⎢
⎢
⎢

⎤
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Note that C has order 3 × 2, where 3 equals the number of rows of A and 2 the 
number of columns in B. Also, note that AB is not equal to BA, but IA = AI = A, where 
I is an identity matrix. If M is the product of a scalar g and a matrix B, then M = bijg,
i.e. each element of M equals the corresponding element in B multiplied by g.

A.3.4 Direct product of matrices

Given a matrix G of order n by m and A of order t by s, the direct product is:

G
A A

A A
Ä
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g g

g g
11 12

21 22
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The direct product is also known as the Kronecker product and is of the order nt by 
ms. For instance, assuming that:

G A 4=
10 5

5 20
and =

1 0 2

0 1

2 4 1
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the Kronecker product is:

G A =

10 0 20 5 0 10

0 10 40 0 5 20

20 40 10 10 20 5

5 0 10 20 0 40

0 5 20 0 20 80
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⊗

00 5 20 80 20
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The Kronecker product is useful in multiple trait evaluations.

A.3.5 Matrix inversion

An inverse matrix is one which when multiplied by the original matrix gives an identity 
matrix as the product. The inverse of a matrix A is usually denoted as A−1 and, from 
the above definition, A−1A = I, where I is an identity matrix. Only square matrices can 
be inverted and for a diagonal matrix the inverse is calculated simply as the reciprocal 
of the diagonal elements. For instance, the diagonal matrix B and its inverse are:

B Band=

3 0 0

0 4 0

0 0 18

 = 

0 0

0 0
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For a 2 × 2 matrix, the inverse is easy to calculate and is illustrated below. Let:

A =
a a

a a
11 12

21 22
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First, calculate the determinant, which is the difference between the product of the 
two diagonal elements and the two off-diagonal elements (a11a22 − a12a21). Second, 
the inverse is obtained by reversing the diagonal elements, multiplying the off-diagonal 
elements by −1 and dividing all elements by the determinant. Thus:
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For instance, given that:

A Athen  = 
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Note that A−1A = I = AA−1, as stated earlier. Calculating the inverse of a matrix 
becomes more cumbersome as the order increases, and inverses are usually obtained 
using computer programs. The methodology has not been covered in this text. It is 
obvious from the above that an inverse of a non-diagonal matrix cannot be calculated 
if the determinant is equal to zero. A square matrix with a determinant equal to zero 
is said to be singular and does not have an inverse. A matrix with a non-zero deter-
minant is said to be non-singular.

Note that (AB)−1 = B−1A−1. The inverses of matrices may be required when solving 
linear equations. Thus given the following linear equation:

Ab = y

pre-multiplying both sides by A−1 gives the vector of solutions b as:

b = A−1y

A.3.6 Rank of a matrix

The rank of a matrix is the number of linearly independent rows or columns. 
A square matrix with the rank equal to the number of rows or columns is said 
to be of full rank. In some matrices, some of the rows or columns are linear 
combinations of other rows or columns; therefore, the rank is less than the num-
ber of rows or columns. Such a matrix is not of full rank. Consider the following 
set of equations:

3x1 + 2x2 + 1x3 = y1
4x1 + 3x2 + 0x3 = y2
7x1 + 5x2 + 1x3 = y3

The third equation is the sum of the first and second equations; therefore, the vector 
of solutions, x(x′ = [x1 x2 x3]), cannot be estimated due to the lack of information. In 
other words, if the system of equations were expressed in matrix notation as:

3 2 1

4 3 0

7 5 1
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that is, as:

Dx = y

a unique inverse does not exist for D because of the dependency in the rows. Only 
two rows are linearly independent in D and it is said of to be of rank 2, usually writ-
ten as r(D) = 2. When a square matrix is not of full rank, the determinant is zero and 
hence a unique inverse does not exist.
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A.3.7 Generalized inverses

While an inverse does not exist for a singular matrix, a generalized inverse can, how-
ever, be calculated. A generalized inverse for a matrix D is usually denoted as D− and 
satisfies the expression:

DD−D = D

Generalized inverses are not unique and may be obtained in several ways. One of the 
simplest ways to calculate a generalized inverse of a matrix, say D in Section A.3.6, 
is to initially obtain a matrix B of full rank as a subset of D. Set all elements of D to 
zero. Calculate the inverse of B and replace the elements of D with corresponding 
elements of B and the result is D−. For instance, for the matrix D above, the matrix B,
a full rank subset of D, is:

B B = 
3 2

4 3
and =

3 2

4 3
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

- -
-

1

Replacing elements of D with the corresponding elements of B after all elements of D
have been set to zero gives D− as:

−

−
−D  = 

3 2 0

4 3 0

0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A.3.8 Eigenvalues and eigenvectors

Eigenvalues are also referred to as characteristic or latent roots and are useful in 
simplifying multivariate evaluations when transforming data. The sum of the eigen-
values of a square matrix equals its trace (sum of the diagonal elements of a square 
matrix) and their product equals its determinant (Searle, 1982). For symmetric matri-
ces, the rank equals the number of non-zero eigenvalues.

For a square matrix B, the eigenvalues are obtained by solving:

|B − dI| = 0

where the vertical lines denote finding the determinant.
With the condition specified in the above equation, B can be represented as:

BL = LD
B = LDL−1 (a.1)

where D is a diagonal matrix containing the eigenvalues of B, and L is a matrix of 
corresponding eigenvectors. The eigenvector (k) is found by solving:

(B − dkI)lk = 0

where dk is the corresponding eigenvalue.
For symmetric matrices L is orthogonal (that is, L−1 = L′; LL′ = I = L′L); therefore, 

given that B is symmetric, (Eqn a.1) can be expressed as:

B = LDL′

Usually, eigenvalues and eigenvectors are calculated by means of computer programs.
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In this appendix, two algorithms based on the L matrix for calculating inbreeding are 
discussed.

B.1 Meuwissen and Luo Algorithm

The algorithm given by Quaas (1976) invoves the calculation of one column of L at 
a time. The algorithm requires n(n + 1)/2 operations and computational time is pro-
portional to n2, where n is the size of the data set. It suffers from the disadvantage of 
not being readily adapted for updating when a new batch of animals is available 
without restoring a previously stored L. Meuwissen and Luo (1992) presented a 
faster algorithm, which involves computing the elements of L row by row.

The fact that each row of L is calculated independently of other rows makes it 
suitable for updating. The row i of L for animal i gives the fraction of genes the ani-
mal derives from its ancestors. If si and di are the sire and dam of animal i, then 
lisi

= lidi
 = 0.5. The ith row of L can be calculated by proceeding through a list of i’s 

ancestors from the youngest to the oldest and updating continually as lisj
 = lisj

 + 0.5lij
and lidj

 = lidj
 + 0.5lij, where j is an ancestor of i. The fraction of genes derived from 

an ancestor is:

ij
k

ikl  = l
jeP

å0.5

where Pj is a set of identities of the progeny of j. However, lij = 0 only when k is not 
an ancestor of i or k is not equal to i. Thus if AN is the set of identities of the number 
of ancestors of i, then:

ij
k

ikl  = l
j

eAN pÇ
å 0.5

that is, the summation of 0.5lik is over those k animals that are both ancestors of i
and progeny of j. This forms the basis of the algorithm given below for the calcula-
tion of the row i of L, one row at a time. As each row of L is calculated, its contribu-
tion to the diagonal elements of the relationship matrix (aii) is accumulated. Initially, 
set row i of L and aii to zero. The list of ancestors whose contributions to aii are yet 
to be included are added to the vector AN (if not already there) as each row of L is 
being processed.

The algorithm is:

F0 = −1

For i = 1, N (all rows of L):

Appendix B: Fast Algorithms 
for Calculating Inbreeding 
Based on the L Matrix
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ANi = i

lii = 1

Dii = [0.5 − 0.25(Fsi
 + Fdi

)], if both parents are known; otherwise use appropriate 
the formula (see Chapter 2)

Do while ANi is not empty.

j = max(ANi), (j = youngest animal in ANi)

If sj is known, add sj to ANi:

lisj
 = lisj

 + 0.5lij
If dj is known, add dj to ANi:

lidj
 = lidj

 + 0.5lij
aii = aii + l2

ij Djj

Delete j from ANi
End while:

Fi = aii − 1

B.1.1 Illustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animals 1 and 5.
For animal 1:

a11 = 0

AN1 = 1, l11 = 1

Since both parents are unknown:

D11 = 1

Processing animals in AN1:

j = max(AN1) = 1

Both parents of j are unknown:

a11 = a11 + l2
11D11 = (12)1 = 1

Delete animal 1 from AN1; AN1 is now empty.

F1 = 1 − 1 = 0

For animal 5:

a55 = 0

AN5 = 5, l55 = 1

D55 = 0.5, since neither parent is inbred.

Processing animals in AN5:

j = max(AN5) = 5

Add sire and dam of 5 (animals 4 and 3) to AN5:

l54 = l54 + 0.5l55 = 0.5

l53 = l53 + 0.5l55 = 0.5

a55 = a55 + l255D55 = 12(0.5) = 0.5
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Delete animal 5 from AN5; animals 4 and 3 left in AN5.
Next animal in AN5:

j = max(AN5) = 4

Add sire of 4 (animal 1) to AN5:

l51 = l51 + 0.5l54 = 0.25

a55 = a55 + l254D44 = 0.5 + (0.5)2(0.75) = 0.6875

Delete animal 4 from AN5; animals 3 and 1 left in AN5.
Next animal in AN5:

j = max(AN5) = 3

Since animal 1, the sire of j, is already in AN5, add only the dam of 3 (animal 2) to AN5:

l51 = l51 + 0.5l53 = 0.25 + (0.5)0.5 = 0.5

l52 = l52 + 0.5l53 = 0 + (0.5)0.5 = 0.25

a55 = a55 + l253D33 = 0.6875 + (0.5)20.5 = 0.8125

Delete animal 3 from AN5; animals 1 and 2 left in AN5.
Next animal in AN5:

j = max(AN5) = 2

Both parents are unknown:

a55 = a55 + l252D22 = 0.8125 + (0.25)21 = 0.875

Delete animal 2 from AN5; animal 1 left in AN5.
Next animal in AN5:

j = max(AN5) = 1

Both parents are unknown:

a55 = a55 + l251D11= 0.875 + (0.5)21 = 1.125

Delete 1 from AN5; AN5 is empty.

F5 = 1.125 − 1 = 0.125

which is the same inbreeding coefficient as that obtained for animal 5 in Section 2.2.

B.2 Modified Meuwissen and Luo Algorithm

The approach of Meuwissen and Luo given above was modified by Quaas (1995) to 
improve its efficiency. The disadvantage of the above method is that, while calculating 
a row of L at a time (Henderson, 1976), it is accumulating diagonal elements of A, as 
in Quaas (1976), and this necessitates tracing the entire pedigree for i, but what is really 
needed is only the common ancestors. Thus a more efficient approach is to accumulate 
asidi

 as Sklsik
ldik

Dkk (Henderson (1976) and calculate Fi as 0.5asidi
= Sklsik

ldik
(0.5Dkk). 

Instead of computing the ith row of L, only the non-zero elements in the rows for the 
sire and dam of i are calculated. Quaas (1995) suggested setting up a separate ancestor 
list (ASsi

) for si and another (ADdi
) for di; then Fi = 0.5asidi

= Skesi
Udi

lsik
ldik

(0.5Dkk).
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Similar to the approach of Meuwissen and Luo (1992), the two lists can be set 
up simultaneously while processing the ith animal by continually adding the parents 
of the next youngest animal in either list to the appropriate list. If the next youngest 
in each list is the same animal, say k, then it is a common ancestor and Fi is updated 
as Fi = Fi + lsik

ldik
(0.5Dkk). When ancestors of one of the parents have been processed, 

the procedure can be stopped, and it is not necessary to search both lists completely. 
The algorithm for this methodology is:

F0 = −1

For i =1, N:

Fi = 0

If si is known, add si to ASsi
, lsisi

 = 1.
If di is known, add di to ADdi

, ldidi
 = 1.

Do while ASŝi
 not empty and ADdi

 not empty.

j = max(ASsi
), k = max(ADdi

)

If j > k then (next youngest j is in ASsi
):

If sj is known, add sj to ASsi
; lsisj

 = lsisj
 + 0.5lsij

If dj is known, add dj to ASsi
; lsidj

 = lsidj
 + 0.5lsij

Delete j from ASsi

Else if k > j then (next youngest k is in ADdi
):

If sk is known, add sk to ADdi
; ldisk

 = ldisk
 + 0.5ldik

If dk is known, add dk to ADdi
; ldidk

 = ldidk
 + 0.5ldik

Delete k from ADdi
Else (next youngest ancestor j = k is a common ancestor):
If sj is known, add sj to ASsi

; lsisj
 = lsisj

 + 0.5lsij
add sj to ADdi

; ldisj
 = ldisj

 + 0.5ldij
If dj is known, add dj to ASsi

; lsidj
 = lsidj

 + 0.5lsij
add dj to ADdi

; ldidj
 = ldidj

 + 0.5ldij

Fi = Fi + lsij
ldij

0.5(Djj)

Delete j from ANŝi
 and ADdi

End if
End while
End do

B.2.1 Illustration of the algorithm

Using the pedigree in Table 2.1, the algorithm is illustrated for animal 5, which is inbred.
For animal 5:

F5 = 0

Both parents known, s = 4 and d = 3.

Add 4 to AD4; l44 = 0.5
Add 3 to AD3; l33 = 0.5
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Processing animals in AS4 and AD3:
j = 4; k = 3

j > k therefore.

Add sire of 4, animal 1 to AS4; l41 = l41 + 0.5l44 = 0.5
Delete animal 4 from AS4.

Next animals in AS4 and AD3:

j = 1, k = 3

k > j therefore.

Add sire of 3, animal 1 to AD3; l31 = l31 + 0.5l33 = 0.5
Add dam of 3, animal 2 to AD3; l32 = l32 + 0.5l33 = 0.5
Delete 3 from AD3.

Next animals in AS4 and AD3:

j = 1, k = 2

k > j

Both parents of 2 are unknown.
Delete 2 from AD3.

Next animals in AS4 and AD3:

j = 1, k = 1

j = k

Both parents are unknown.

F5 = F5 + l41l310.5(D11) = 0.5(0.5)(0.5)(1) = 0.125

which is the same inbreeding coefficient as that obtained from the algorithm in 
Section B.1.
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C.1 Outline of the Derivation of the Best Linear Unbiased 
Prediction (BLUP)

Consider the following linear model:

y = Xb + Za + e (c.1)

where the expectations are:

E(y) = Xb; E(a) = E(e) = 0

and:

var(a) = As2
a = G, var(e) = R and cov(a, e) = cov(e, a) = 0

Then, as shown in Section 3.2:

var(y) = V = ZGZ′ + R, cov(y, a) = ZG and cov(y, e) = R

The prediction problem involves both b and a. Suppose we want to predict a 
linear function of b and a, say k′b + a, using a linear function of y, say L′y, and k′b
is estimable. The predictor L′y is chosen such that:

E(L′y) = E(k′b + a)

that is, it is unbiased and the prediction error variance (PEV) is minimized (Henderson, 
1973). Now PEV (Henderson, 1984) is:

PEV = var(L′y − k′b + a)
= var(L′y − a)
= L′var(y)L + var(a) − L′cov(y, a) − cov(a, y)L
= L′VL + G − L′ZG − ZG′L (c.2)

Minimizing PEV subject to E(L′y) = E(k′b + a) and solving (see Henderson, 1973, 
1984 for details of derivation) gives:

L′y = k′(X′V−1X)−1X′V−1y − GZ′V−1(y − X(X′V−1X)−1X′V−1y)

Let b̂ = (X′V−1X)XV−1y, the generalized least square solution for b, then the predictor 
can be written as:

L′y = k′b̂ + GZ′V−1(y − Xb̂) (c.3)

which is the BLUP of k′b + a.
Note that if k′b = 0, then:

L′y = BLUP(a) = GZ′V−1(y − Xb̂) (c.4)

Appendix C
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which is equivalent to the selection index. Thus BLUP is the selection index with the 
GLS solution of b substituted for b.

C.2 Proof that b̂ and â from MME are the GLS 
of b and BLUP of a, Respectively

In computation terms, the use of Eqn c.3 to obtain the BLUP of k′b + a is not feasible 
because the inverse of V is required. Henderson (1950) formulated the MME that are 
suitable for calculating solutions for b and a, and showed later that k′b̂ and â, where 
b̂ and â are solutions from the MME, are the best linear unbiased estimator (BLUE) 
of k′b and BLUP of a, respectively.

The usual MME for Eqn c.1 are:

X R X X R Z

Z R X Z R Z G

b
a

X R y

Z

′ ′ ′
′ ′

′
′

− −

− − −

−

−

1 1

1 1 1

1

1+
 = 

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

ˆ

ˆ RR y
⎡

⎣
⎢

⎤

⎦
⎥ (c.5)

The proof that b̂ from the MME is the GLS of b and therefore k′b̂ is the BLUE 
of k′b was given by Henderson et al. (1959). From the second row of Eqn c.5:

(Z′R−1Z + G−1)â = Z′R−1(y − Xb̂)

â = (Z′R−1Z + G−1)−1Z′R−1(y − Xb̂) (c.6)

From the first row of Eqn c.5:

X′R−1Xb + Z′R−1Zâ = X′R−1y

Substituting the solution for â into the above equation gives:

X′R−1Xb + X′R−1Z(WZ′R−1)(y − Xb) = X′R−1y

where W = (Z′R−1Z + G−1)−1:

X′R−1Xb − (X′R−1Z)(WZ′R−1)Xb = X′R−1y − X′R−1ZWZ′R−1y

X′(R−1 − R−1ZWZ′R−1)Xb = X′(R−1 − R−1ZWZ′R−1)y

X′V−1Xb = X′V−1y

with V−1 = R−1 – R−1ZWZ′R−1:

b̂ = (X′V−1X)−1X′V−1y (c.7)

It can be shown that:

V−1 = R−1 − R−1ZWZ′R−1

by pre-multiplying the right-hand side by V and obtaining an identity matrix 
(Henderson et al., 1959):

V[R−1 − R−1ZWZ′R−1] = (R + ZGZ′)(R−1 − R−1ZWZ′R−1)
= I + ZGZ′R−1 − ZWZ′R−1 − ZGZ′R−1ZWZ′R−1

= I + ZGZ′R−1 − Z(I + GZ′RZ)WZ′R−1

= I + ZGZ′R−1 − ZG(G−1 + Z′RZ)WZ′R−1

= I + ZGZ′R−1 − ZG(W−1)WZ′R−1

= I + ZGZ′R−1 − ZGZ′R−1

= I
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Thus the solution for b from the MME is equal to the GLS solution for b in Eqn c.3.
The proof that â from the MME is equal to GZ′V−1(y − Xb̂) in Eqn c.3 was given 

by Henderson (1963). Replace V−1 in GZ′V−1(y − Xb̂) by R−1 – R−1ZWZ′R−1, thus:

GZ′V−1(y − Xb̂) = GZ′(R−1 − R−1ZWZ′R−1)(y − Xb̂)
= G(Z′R−1 − Z′R−1ZWZ′R−1)(y − Xb̂)
= G(I − Z′R−1ZW)Z′R−1(y − Xb̂)
= G(W−1 − Z′R−1Z)WZ′R−1(y − Xb̂)
= G((Z′RZ + G−1) − Z′R−1Z)WZ′R−1(y − Xb̂)
= GZ′R−1Z + I − GZ′R−1Z)WZ′R−1(y − Xb̂)
= (I)WZ′R−1(y − Xb̂)
= WZ′R−1(y − Xb̂) = â (See Eqn c.6)

Thus the BLUP of k′b + a = k′ b̂ + â, where b̂ and â are solutions to the MME.

C.3 Deriving the Equation for Progeny Contribution (PC)

Considering an individual i that has one record with both sire (s) and dam (d) known, 
the MME for the three animals can be written (assuming the sire and dam are ances-
tors with unknown parents) as:

ss sd si

ds dd di

is id

su u u

u u u

u u + uii

a a a
a a a
a a a1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ˆ̂

ˆ

ˆ

a

a

a

 = d

i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

1′y

(c.8)

where the u terms are elements of A−1.
From Eqn c.8, the equation for solution of the sire is:

ussa â s = 0 − usda â d − usia âi

ussa â s = PC

with:

PC = 0 − usd a â d − usia â i

When the mate is known:

PC = 0 − 1
2
a â d + (1)a â i

PC = a(â i − 1
2 â d) = 0.5a(2â i − âd)

In general, assuming sire s has k progeny:

PCs = 0.5aΣ
k
uprog(2â i − âm)/Σ

k
uprog

where uprog is 1 when the mate of s is known or 2
3
 when the mate is not known.
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D.1 Computing Approximate Reliabilities for an Animal Model

Presented below is a method published by Meyer (1989) for obtaining approximate 
values of repeatability or reliability for genetic evaluations from an animal model and 
has been used to estimate reliabilities in the national dairy evaluation system in 
Canada. The reliability for each animal is derived from the corresponding diagonal 
element in the MME, adjusting for selected off-diagonal coefficients. For instance, the 
section of the coefficient matrix (C) pertaining to an animal i with parents f and m and 
with a record in a subclass h of a major fixed effect as HYS could be represented as:

ii

ff

mm

h

c

c 0.5

0.5 c

n

-a -a
-a a
-a a

1

0

0

1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where nh is the number of records in subclass h of the major fixed effect and a = 
s 2

e/s
2
a. If this were the complete coefficient matrix for this animal, C−1 and hence true 

reliability could be obtained using partition matrix results. Thus the coefficient cii can 
be calculated as the reciprocal of the ith diagonal element of C after absorbing all 
other rows and columns. For animal i:

cii = (cii − 1/nh − a2(cff + cmm − a)/(cff cmm − 1
4

a2))−1

and for parent f:

cff = (cff − Q − ( 1
2

a − Q)2/(cmm − Q))−1

with:

Q = a2(cii − 1/nh)
−1

Exchange m for f for parent m.
However, if there are other off-diagonals for animal i, the above equations will 

yield approximations of the diagonal elements of C and hence reliability. Based on 
the above principle of forming and inverting the submatrix of the MME for each 
animal, Meyer outlined three steps for calculating approximate r2, which were similar 
to the true r2 from her simulation study. These steps are:

1. Diagonal elements (D) of animals with records are adjusted for the effect of the 
major fixed effects such as HYS. Thus:

D1i = D0i − 1/nh

Appendix D: Methods for 
Obtaining Approximate Reliability 
for Genetic Evaluations
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and for animals without records:

D1i = D0i

where D0i is the diagonal element for animal i in the MME and, in general, its compo-
sition, depending on the amount of information available on the animal, is:

D0i = xi + nia + n1ia /3 + n2ia /2

where xi = 1 if the animal has a record and otherwise it is zero, ni equals 1 or 4
3
 or 2 if 

none or one or both parents are known, n1i and n2i are number of progeny with one 
or both parents known, respectively.
2. Diagonal elements for parents (f and m) are adjusted for the fact the information 
on their progeny is limited.

For each progeny i with only one parent known, adjust the diagonal element of 
the parent as:

D2f = D1f − a 2(4
9

D−1
1i )

and if both parents are known, adjust the diagonal of parent f as:

D2f = D1f − a 2D−1
1i

Replace subscript f with m for the other parent. For animals that are not parents:

D2i = D1i

3. Adjustment of progeny diagonals for information on parents.
This involves initially unadjusting the diagonals of the parents for the contribu-

tion of the ith progeny in question by reversing step 2 before adjusting progeny diago-
nals for parental information. If only one parent f is known, the diagonal is unadjusted 
initially as:

D*
2f = D2f + a 2(4

9
D−1

2i )

and if both parents are known as:

D*
2f = D2f − a 2 D−1

2i

for parent f. Exchange m for f in the above equation to calculate for parent m.
Adjustment of progeny i diagonal then is:

D3i = D2i − a2 4
9
D*−1

2f

if only parent f is known and:

D3i = D2i − a 2((D*
2f + D*

2m − a)/(D*
2f D

*
2m − 1

4a 2))

when both parents f and m are known.
For animals with unknown parents:

D3i = D2i

Reliability for progeny i is calculated as:

r 2 = const.(1 − aD−1
3i)

where const. is a constant of between 0.90 and 0.95 from Meyer simulation studies 
which gave the best estimate of r2.



316 Appendix D

D.2 Computing Approximate Reliabilities for Random 
Regression Models

Meyer and Tier (2003) extended the method in Appendix D.1 to estimate reliabilities 
for multivariate and random regression models. They outlined several steps.

D.2.1 Determine value of observation for an animal

Compute the diagonal block (Di) for animal i in the MME, based on the information 
from the data, as:

Di = Z′i Ri
−1Zi

However, to account for the limited subclass sizes of contemporary group effect, such 
as HTD in dairy cattle, Di can better be calculated as:

Di = Z′i (R
−1
i − Ri

−1(Si
−1)Ri

−1)Zi

where Zi and R−1
i are submatrices of Z and R−1 for animal i, and Si is the block of 

coefficient matrix pertaining to the contemporary groups of which animal i is a member. 
Then the permanent environmental (pe) effects are also absorbed into the block 
corresponding to animal genetic effects:

D*
i = Di − Z′i Ri

−1Qi(Q′i Ri
−1Qi + P−1)Q′i Ri

−1 Zi

where Qi is a submatrix of the matrix Q defined in Section 9.3. Limited subclass 
effects of pe can be accounted for by using weights wm = (nm − k)/nm ≤ 1, for the mth
record, with nm the size of the subclass to which the record belongs and k the number 
of ‘repeated’ records it has in that subclass. Then Ri in the above equation is replaced 
with R*

i = Diag(wms 2
e).

D.2.2 Value of records on descendants

In this second step, the contributions from progeny and other descendants are accu-
mulated for each animal, processing the pedigree from youngest to the oldest. Let Ei
be the block of contributions for animal i that has ni progeny. Then:

E G G D E G Gi i
k

ni

= - + +
æ

è
çç

ö

ø
÷÷

- -

=

-
-

-å1
3

4
9

1

4
3

1

1 1 1 1*
k

This block is accumulated for both sire and dam of the ith animal. This equation can 
be derived by assuming each progeny has only one parent known and that the parent 
has no other information; then the MME are set up for the animal and the parent and 
the equations for the animal are absorbed into those of the parent. The above equation 
will give an overestimate of the individual’s contribution to its parents if it were in a 
contemporary group with many of its half-sibs. This can be discounted by weighting 
contributions with a factor dependent on the proportion of sibs in a subclass. Let Hi
be a diagonal matrix of weights wm < 1, with wm = ( ) ,n sm m m− /n  where nm is the 
total number of records in the subclass for trait m and sm the total number of sibs of 
animal i in the subclass. Calculate Di

** = HiD
*
i Hi and then replace Di

* with Di
**.



Appendix D 317

D.2.3 Value of records on ancestors

In the third step, contributions from parents, ancestors and collateral relatives are 
accumulated for each animal, processing the pedigree from oldest to youngest. 
However, in step two, contributions from descendants were accumulated for all 
animals, hence Ej for parent j of animal i includes the contribution from animal i.
The contributions of animal i have to be removed from Ej to avoid double counting. 
The corrected block is:

E G G E F G Gj i
* ( )= - - + +- - - - -1

3
4
9

4
3

1 1 1 1 1
j

where Fj is the sum of contributions from all sources of information for parent j. As 
parents are processed in the pedigree before progeny, Fj is always computed before 
the contribution of parent j to animal i is required. For animal i, Fj is:

F E D Ei
j

t

i
k

ni i

= + +
= =
å åj k

* *

1 1

with ti = 0, 1 or 2 denoting the number of parents of animal i that are known.
The matrix Ti of the approximate PEV and PEC for the genetic effects for animal 

i is:

Ti = (Fi + G )−1

The approximate reliability for a linear function of EBVs for animal i then is:

r2
i = 1 − k′Tik/k′Gk

with k calculated as described in Section 9.3.4.
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E.1 Canonical Transformation: Procedure to Calculate 
the Transformation Matrix and its Inverse

The simplification of a multivariate analysis into n single trait analyses using canoni-
cal transformation involves transforming the observations of several correlated traits 
into new uncorrected traits (Section 6.2). The transformation matrix Q can be calcu-
lated by the following procedure, which has been illustrated by the G and R matrices 
for Example 6.1 in Section 6.2.2.

The G and R matrices are, respectively:

WWG

PWG

20 18

18 40
and

WWG

PWG

40 11

11 30
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

where WWG is the pre-weanng gain and PWG is the post-weaning gain.
1. Calculate the eigenvalues (B) and eigenvectors (U) of R:

R = UBU′

For the above R:

B = diag(47.083, 22.917)

and:

U = 
0.841 0.541

0.541 0.841

-é

ë
ê

ù

û
ú

2. Calculate P and PGP′:

P = U B−1 U′

P P = 
0.1642 0.0288

0.0288 0.1904
and

0.403 0.264

0.

-
-

é

ë
ê

ù

û
ú PG ′ = 

2264 1.269
é

ë
ê

ù

û
ú

3. Calculate the eigenvalues (W) and eigenvectors (L) of PGP′:

PGP′ = LWL′

W = diag(0.3283, 1.3436)

and:

L = 
0.963 0.271

0.271 0.963-
é

ë
ê

ù

û
ú
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4. The transformation matrix Q can be obtained as:

Q = L′P

Q = 
0.1659 0.0792

0.0168 0.1755
=

5.7651 2.6006-é

ë
ê

ù

û
ú and Q 1-

--0.5503 5.4495
é

ë
ê

ù

û
ú

E.2 Canonical Transformation with Missing Records 
and Same Incidence Matrices

Ducrocq and Besbes (1993) presented a methodology for applying canonical trans-
formation when all effects in the model affect all traits but there are missing traits for 
some animals. The principles of the methodology are briefly discussed and illustrated 
by an example.

Let y, the vector of observations, be partitioned as y′ = [yv, ym] and u = [b′, a′],
where yv and ym are vectors of observed and missing records, respectively, b is the 
vector of fixed effects and a is the vector of random effects. Assuming that the distri-
bution of y given u is multivariate normal, Ducrocq and Besbes (1993) showed that 
the following expectation maximization (EM) algorithm gives the same solutions for 
a and b as when the usual multivariate MME are solved:

E step: at iteration k, calculate ŷ[k] = E[y|yv, û[k]]
M step: calculate û[k+1] = BLUE and BLUP solutions of b and a, respectively, 
given ŷ[k]

The E step implies doing nothing to observed records but replacing the missing obser-
vations by their expectation given the current solutions for b and a, and the observed 
records. The equation for the missing records for animal i is:

ŷim
[k] = x im′ b[k] + âim

[k] + êim
[k] (e.1)

If X is the matrix that relates fixed effects to animals, x′im denotes the row of X
corresponding to missing records for animal i and êim

[k] is the regression of the 
residuals of missing records on the current estimates of the residuals for observed 
traits. Thus:

êim
[k] = E[eim|yiv, u = û[k]] = Rmv R−1

vv [yiv − x′iv b[k] − âiv
[k]]

where Rmv and Rvv are submatrices obtained through partitioning of R, the 
residual covariance matrix. Rvv represents the residual variance of observed 
traits and Rmv is the covariance between missing traits and observed traits. If 
three traits are considered, for example, and trait 2 is missing for animal i, then 
Rvv is the submatrix obtained by selecting in R the elements at intersection of 
rows 1 and 3 and columns 1 and 3. The submatrix Rmv is the element at the 
intersection of row 2 and columns 1 and 3. Once the missing observations have 
been estimated, records are now available on all animals and the analysis can be 
carried out as usual, applying canonical transformation as when all records are 
observed.

The application of the method in genetic evaluation involves the following steps 
at each iteration k, assuming Q is the transformation matrix to canonical scale and 
Q−1 the back-transforming matrix:
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1. For each animal i with missing observations:
(1a) calculate ŷim

[k], given b̂[k] and â[k] using Eqn e.1;
(1b) transform ŷi to the canonical scale: ŷ*

i = Qŷi.
2. Solve the MME to obtain solutions in the canonical scale: b̂*[k+1] and â*[k+1].
3. Back-transform using Q−1 to obtain b̂[k+1] and â[k+1].
4. If convergence is not achieved, go to 1.

Ducrocq and Besbes (1993) showed that it is possible to update y (step 1) without 
back-transforming to the original scale (step 3) in each round of iteration. Suppose 
that the vector of observations for animal i with missing records, yi, is ordered such 
that observed records precede missing values: y′i = [y′iv, y′im], and rows and columns 
of R, Q and Q−1 are ordered accordingly. Partition Q as (Qv | Qm) and Q−1 as:

−1
v

m
 = Q

Q

Q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

then from Eqn e.1, the equation for Qŷi or ŷ*
i (see 1b) is:

ŷ*
i = Qvyiv + Qm[x′im b̂[k] + âim

[k] + Rmv R−1
vv (yiv − x′iv b̂[k] − âiv

[k])] (e.2)

However:

iv

im

1 *
v *

m *
 = =

ˆ

ˆ
ˆ

ˆ

ˆ
b

b
Q b

Q b

Q b

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

and a similar expression exists for â. Substituting these values for b̂ and â in 
Eqn e.2:

ŷ*i = (Qv + QmRmvR
−1
vv)yiv + (QmQm − QmRmvR

−1
vvQv)(x′i b̂

*[k] + â*[k])

= Q1yiv + Q2(xi′b̂
*[k] + â*[k]) (e.3)

with Q1 = Qv + QmRmvR
−1
vv and Q2 = (QmQm − QmRmvR

−1
vvQ

v)
Thus for an animal with missing records, ŷ*

i in Eqn e.3 is the updated vector of 
observation transformed to canonical scale (steps 1a and 1b above) and this is calcu-
lated directly without back-transformation to the original scale (step 3). The matrices 
Q1 and Q2 in Eqn e.3 depend on the missing pattern and if there are n missing pat-
terns, n such matrices of each type must be set up initially and stored for use at each 
iteration.

E.2.1 Illustration

Using the same genetic parameters and data as for Example 5.3, the above methodol-
ogy is employed to estimate sex effects and predict breeding values for pre-weaning 
weight and post-weaning gain iterating on the data (see Section 17.4).
From Section E.1, Q is:

Q Q = 
0.1659 0.0792

0.0168 0.1755
=

5.7651 2.60061- -é

ë
ê

ù

û
ú and

--0.5503 5.4495
é

ë
ê

ù

û
ú
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Partitioning Q and Q−1 as specified above gives the following matrices:

v m

v

Q Q

Q

 = 
0.1659

0.0168
,  = 

0.0792

0.1755
,

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−

= 5.76651 2.6006 0.5503 5.4495[ ] [ ] = and mQ −

From the residual covariance matrix in Section E.1:

RmvR
−1
vv = 11/40 = 0.275

The matrices Q1 and Q2, respectively, are:

Q1 =
é

ë
ê

ù

û
ú +

-é

ë
ê

ù

û
ú =

0 1659

0 0168

0 0792

0 1755
0 275

0 1441

0 065

.

.

.

.
.

.

. 44
é

ë
ê

ù

û
ú

and:

2Q  = 
0.0792

0.1755
0.5503 5.4495

0.0792

0.1755

−
− −

−⎡

⎣
⎢

⎤

⎦
⎥[ ] ⎡

⎣⎣
⎢

⎤

⎦
⎥ [ ]⎡

⎣
⎢

⎤

⎦
⎥0.275 5.7651 2.6006

     = 
0.1691 0.3750

0.3748

−
− 00.8309

⎡

⎣
⎢

⎤

⎦
⎥

Employing steps 1 to 4 given earlier to the data in Example 5.2, using the various 
transformation matrices given above and solving for sex and animal solutions by 
iterating on the data (see Section 17.4), gave the following solutions on the canonical 
scale at convergence. The solutions on the original scale are also presented.

Effects

Canonical scale Original scale

VAR1 VAR2 WWG PWG

Sex
Male 0.180 1.265 4.326 6.794
Female 0.124 1.108 3.598 5.968

Animal
1 0.003 0.053 0.154 0.288
2 −0.006 −0.010 −0.059 −0.054
3 0.003 −0.030 −0.062 −0.163
4 0.002 0.007 0.027 0.037
5 −0.010 −0.097 −0.307 −0.521
6 0.001 0.088 0.235 0.477
7 −0.011 −0.084 −0.280 −0.452
8 0.013 0.076 0.272 0.407
9 0.009 0.010 0.077 0.051

VAR1, Qy1, VAR2, Qy2 with WWG = y1 and PWG = y2.

These are similar to the solutions obtained from the multivariate analysis in Section 5.3 
or the application of the Cholesky transformation in Section 6.3. The advantage of 
this methodology is that the usual univariate programs can easily be modified to 
incorporate missing records.



322 Appendix E

The prediction of the missing record (PWG) for animal 4 using solutions on 
canonical and original scales at convergence is illustrated below.

Using Eqn e.1:

y42 = b̂12 + â42 + RmvR−1
vv (y41 − b̂11 − â41)

= 6.836 + 0.016 + 0.275(4.5 − 4.366 − 0.007)
= 6.9

where yij and âij are the record and EBV, respectively, for animal i and trait j, and b̂kj
is the fixed effect solution for level k for trait j.

Using Eqn e.2:

ˆ

ˆ
ˆ ˆ

ˆ

ˆ

y

y
= y +

y

y

*

*

*

*

41

42
1 41 2

*
4
*

41

42

(x  + )
⎡

⎣
⎢

⎤

⎦
⎥

⎡
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⎤

⎦
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⎡
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0.648

0.294
 + 
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1.273
 + 

0.000

0.0032 2Q Q
⎣⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
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⎤

⎦
⎥=

0.648

0.294
 + 

0.446

0.989
 = 

0.202

1.2

−
883

⎡

⎣
⎢

⎤

⎦
⎥

These predicted records for animal 4 are on the canonical scale and they are used for 
the next round of iteration if convergence has not been achieved. These predicted 
records can be transformed to the original scale as:

41

42

ˆ

ˆ

y

y
 =  = 

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−1 0.202

1.283

4.5

6.9
Q

The record for WWG is as observed and predicted missing record for PWG is the 
same as when using Eqn e.1.

E.3 Cholesky Decomposition

Any positive semi-definite symmetric matrix R can be expressed in the form TT′,
where T is a lower triangular matrix. The matrix T can be calculated using the 
following formulae. The ith diagonal element of T is calculated as:

ii ii
j=

i

ijt  = r t−
−

1

1
2∑

and the lower off-diagonal element of the ith row and the kth column of T as:

ik
kk

ik
j=

k

ij kjt  = 
t r t t
1

1

1

−
−

∑
⎛

⎝
⎜

⎞

⎠
⎟



© R.A. Mrode 2014. Linear Models for the Prediction of Animal Breeding Values, 323
3rd Edition (R.A. Mrode)

The deregressed breeding values (DRB) of bulls used in multi-trait across-country 
evaluations (MACE) are obtained by solving Eqn 5.15 for y considering data from 
only one country at a time. Jairath et al. (1998) presented an algorithm for calculating 
DRP. For instance, Eqn 5.15 for country i can be written as:

1 R 1 1 R

R 1 R A A A

A A

′ ′i i

i i nn i np i ng i

pn i pp

- -

- - - - -

- -

+

1 1
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′ 1
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(f.1)

where pi is the vector of identified parents without EBV and A−1
jj are blocks of the 

inverse of the relationship (see Chapter 3, Section 3.6) with j = n, p and g for animals 
with records, ancestors and genetic groups, respectively, and ai = (4 − h2

i )/h
2
i , the ratio 

of residual variance to sire variance for the ith country. The deregression of EBV 
involves solving Eqn f.1 for yi. The constant mi and vectors si, pi, gi and yi are 
unknown but ai, the vector of genetic evaluations for sires, is known, as well as matri-
ces Q, R−1

i and A−1
jj. Let ai = 1mi + Qgi + si. The following iterative procedure can be 

used to compute the vector of DRB, yi:

1. Set 1mi, pi, si and gi to 0.
2. Calculate Qgi + si = ai − 1mi.
3. Compute:
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4. Generate:

R y R R A Q A p Ai i i i i nn i i pn i i gn i is- - - - - -= + + + + +1 1 1 1 1 11m a a( )( )g gˆ ˆ

and 1′R−1
i yi.

5. Now calculate:

mi = (1′R−1
i 1)−11′Ri

−1yi

6. Continue at step 2 until convergence is achieved.
7. Then compute DRB as yi = Ri (R

−1
i yi).

Using the data for country 1 in Example 5.5, the deregression steps above are 
illustrated in the first iteration. For country 1, a1 = 206.50/20.5 = 10.0732 and, con-
sidering only the bulls with evaluations, R1 = diag(0.0172, 0.0067, 0.0500, 0.0400). 

Appendix F: Procedure for 
Computing Deregressed 
Breeding Values
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The pedigree structure (see Example 5.5) used for the deregression of breeding values 
in country 1 is:

Bull Sire MGS MGD

1 5 G2 G3
2 6 7 G4
3 5 2 G4
4 1 G2 G4
5 G1 G2 G3
6 G1 G2 G3
7 G1 G2 G3

The matrix A1
−1 was calculated according to the rules in Section 5.5.2.

In the first round of iteration, the transpose of the vector Qg1 + s1 in step 2 above is:

(Qg1 + s1)′ = (9.0 10.1 15.8 −4.7)

The vector of solutions for p1 and g1 in step 3 is computed as:

ˆ

ˆ
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g
1

1

é
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The transpose of the vector (R1
−1y1) in step 4 is: (30.2 9.0 10.1 15.8) and:

1′R1
−1y1 = 2235.50

Therefore, in the first round of iteration (step 4):

m1 = 2235.50/253 = 8.835

Convergence was achieved after about six iterations. The transpose of the vector 
(R−1

1 y1) after convergence is:

(R1
−1y1)′ = (563.928 1495.751 385.302 −214.278)

with R1
−1 = diag(0.0172, 0.0067, 0.050, 0.04), the transpose of the vector of DRB 

calculated in step 7 is:

y′1 = (9.7229 9.9717 9.2651 −8.5711)
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The matrix F is of order t (the number of days in milk or ages) by k (where k is the 
order of fit) with element fij = fj(at) equals the jth Legendre polynomial evaluated at 
the tth standardized age or days in milk (DIM). Thus at is the tth DIM or age stand-
ardized to the interval for which the polynomials are defined. Kirkpatrick et al. (1990, 
1994) used Legendre polynomials that span the interval −1 to +1. Defining dmin and 
dmax as the first and latest DIM on the trajectory, DIM dt can be standardized to at as:

at = −1 + 2(dt − dmin)/(dmax − dmin)

In matrix notation, F = ML, where M is the matrix containing the polynomials of the 
standardized DIM values and L is a matrix of order k containing the coefficients of 
Legendre polynomials. The elements of M can be calculated as mij = (ai

(j−1), i = 1, . . . t;
j = 1,. . .k). For instance, given that k = 5 and that t = 3 (three standardized DIM), M is:

M =

1

1

1

1 1
2

1
3

1
4

2 2
2

2
3

2
4

3 3
2

3
3

3
4

a a a a

a a a a

a a a a

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Using the fat yield data in Table 9.1 as an illustration, with ten DIM, the vector of 
standardized DIM is:

a′ = [−1.0 −0.7778 −0.5556 −0.3333 −0.1111 0.1111 0.3333 0.5556 0.7778 1.0]

and M is:

M =

− −
− −

1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 0.7778 0.6049 0.44705 0.3660

1.0000 0.5556 0.3086 0.1715 0.0953

1.0000 0.3333 0.

− −
− 11111 0.0370 0.0123

1.0000 0.1111 0.0123 0.0014 0.0002

1.0000 0.

−
− −

11111 0.0123 0.0014 0.0002

1.0000 0.3333 0.1111 0.0370 0.0123

1.00000 0.5556 0.3086 0.1715 0.0953

1.0000 0.7778 0.6049 0.4705 0.3660

1.00000 1.0000 1.0000 1.0000 1.0000

⎡
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⎥
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⎥
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⎥⎥
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Next, the matrix L of Legendre polynomials needs to be computed. The jth
Legendre polynomial evaluated at age t(Pj(t)) can in general be evaluated by the 
formula given by Abramowitz and Stegun (1965). In general, for the j integral:

Appendix G: Calculating F, a Matrix of 
Legendre Polynomials Evaluated at 
Different Ages or Time Periods
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P t
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where j/2 = (j − 1)/2 if j is odd. The first five Legendre polynomials therefore are:

P0(t) = 1; P1(t) = t; P2(t) = 1
2
(3t2 − 1)

P3(t) = 1
2
(5t3 − 3t); and P4(t) =

1
8
(35t4 − 30t2 + 3)

The normalized value of the jth Legendre polynomial evaluated at age t (fj(t)) can be 
obtained as:

fj jt
n

P t( ) ( )=
+2 1

2

Thus:

f f

f
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Therefore, for t = 5 in Example 9.1, L is:

L =

−
−

0.7071 0.0000 0.7906 0.0000 0.7955

0.0000 1.2247 0.0000 2.80667 0.0000
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and F = ML is:
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PCG see preconditioned conjugate 
gradient (PCG)

longitudinal data
beef cattle 130
CFs see covariance functions (CFs)
covariance function and RRM 

equivalence 155
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methods 260
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transformation
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genetic parameters 78
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trait evaluation 70
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design matrices 176
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random regression model (RRM)
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breeding values 146–147
and covariance function 
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selection index
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