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PREFACE

In the not so distant past, the sciences of biology, chemistry, and

physics were seen as more or less separate disciplines. Within the last

half-century, however, the lines between the sciences have become

blurred, to the benefit of each. Somewhat more recently, the methods

of mathematics and computer science have emerged as necessary tools

to model biological phenomena, understand patterns, and crunch

huge amounts of data such as those generated by the human genome

project. Today, virtually any advance in the life sciences requires a

sophisticated mathematical approach. Characterization of biological

systems has reached an unparalleled level of detail, and modeling of

biological systems is evolving into an important partner of

experimental work. As a result, there is a rapidly increasing demand

for people with training in the field of biomathematics.

Training at the interface of mathematics and biology has been initiated

in a number of institutions, including Rutgers University, the

University of California at Los Angeles, North Carolina State

University, the University of Utah, and many others. In 2001, a

National Research Council panel found that ‘‘undergraduate biology

education needs a more rigorous curriculum including thought

provoking lab exercises and independent research projects.’’ To

improve quantitative skills, faculty members should include more

concepts from mathematics and the physical sciences in biology

classes. Ideally, the report says, ‘‘the entire curriculum would be

revamped.’’1 As the demand for academic programs that facilitate

interdisciplinary ways of thinking and problem solving grows, many

of the challenges for creating strong undergraduate programs in

mathematical biology have become apparent. The report Math & Bio

2010: Linking Undergraduate Disciplines summarizes the results of the

project Meeting the Challenges: Education Across the Biological,

Mathematical, and Computer Sciences2 and emphasizes that

interdisciplinary programs should begin as early as the first year of

college education, if not in high school. In one of the articles, an

editorial reprinted from the journal Science and used in the report, the

author Louis Gross specifically underscores the importance of finding

ways to ‘‘teach entry-level quantitative courses that entice life science

students through meaningful applications of diverse mathematics to

biology, not just calculus, with a few simple biological examples.’’3

The book that you are about to read, our An Invitation to

Biomathematics, was conceived and written with this exact goal in

mind. This book is meant to provide a glimpse into the diverse world

of mathematical biology and to invite you to experience, through a

selection of topics and projects, the fascinating advancements made
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possible by the union of biology, mathematics, and computer science.

The laboratory manual component of the text provides venues for

hands-on exploration of the ever-present cycle of model development,

model validation, and model refinement that is inherent in

contemporary biomedical research. The textbook aims to provide

exposure to some classical concepts, as well as new and ongoing

research, and is not meant to be encyclopedic. We have tried to keep this

volume relatively small, as we see this text used as a first reading in

biomathematics, or as a textbook for a one-semester introductory course

in mathematical biology. It is our hope that after reading this Invitation

you will be inspired to embark on a more structured biomathematical

journey. We suggest considering a classical textbook, such as Murray’s

Mathematical Biology, to gain a systematic introduction to the field in

general. We also encourage you to delve deeper into some of the more

specialized topics that we have introduced, or to take additional courses

in mathematical biology.

The textbook is divided into two parts. In Part I, we present some

classical problems, such as population growth, predator–prey

interactions, epidemic models, and population genetics. While these

have been examined in many places, our main purpose is to introduce

some core concepts and ideas in order to apply them to topics of modern

research presented in Part II. Because we also felt that these topics are

likely to be covered in any entry-level course in mathematical biology,

we hope that this organization will appeal to college and university

faculty teaching such courses. A possible scenario for a one-semester

course will be to cover all topics from Part I with a choice of selected

topics from Part II that is, essentially, modular in nature. The diagram in

Figure 1 outlines the chapter connectivity. Table 1 presents brief chapter

descriptions by biological and mathematical affiliation.

A committed reader who has had the equivalent of one semester-long

course in each of the disciplines of calculus, general biology, and

statistics should be able to follow Chapters 1 to 10. With these

prerequisites, we believe that the book can be read, understood, and

appreciated by a wide audience of readers. Although Chapters 11 and 12

also comply with those general prerequisites, a quality understanding of

the fundamental concepts covered there may require a somewhat higher

level of general academic maturity and motivation. Thus, although

Chapters 11 and 12 can be considered optional in essence, we would like

to encourage the readers to explore them to the extent and level of detail

determined by their individual comfort level.

Our rule while writing this book was that the biology problem should

lead the mathematics, and that we only present the mathematics on a

need-to-know basis and in the amount and level of rigor necessary.

As a consequence, very few mathematical theorems are proved or

even discussed in the text. We limited ourselves to the minimal

viii Preface



mathematical terminology necessary for understanding, formulating,

and solving the problem, relying on the reader’s intuition for the rest.

We felt that in the interest of showing how the tools of mathematics and

biology can blend together and work as one when needed, we should

resist the urge for possible generalizations (an urge that is almost second

nature for those of us trained in the field of theoretical mathematics).

The choice not to explore many of the possible exciting mathematical

venues that stem from some of the topics and projects was deliberate,

and we apologize to those readers who wish we had included them.

We would like to thank all of our students at Sweet Briar College and the

University of Virginia, especially Jennifer McDonaugh, Jamie Jensen,

and Suzanne Harvey, for providing valuable comments and opinion

throughout the development and classroom testing of the textbook and

laboratory manual manuscripts. We also thank our colleagues Drs. Marc

Breton, Jeff Graham, Stan Grove, David Housman, Eric Marland, Pamela

Ryan, Philip Ryan, Karen Ricciardi, and Bonnie Schulman for their

feedback on selected chapters and/or laboratory projects, and Anna

Kovatcheva for collecting the data used in Exercise 1 of Chapter 4. We

appreciate the help of Dr. Stefan Robev and of Ryan King, who carefully

proofread the entire first draft of the manuscript, and of Jane Carlson,

who assisted with its early technical editing. We are also indebted to all

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7 Chapter 9 Chapter 11

Chapter 8 Chapter 10 Chapter 12

and

FIGURE 1.
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of our editors at Academic Press/Elsevier: Chuck Crumley, David Cella,

Kelly Sonnack, Nancy Maragioglio, Luna Han, and Sally Cheney, for

their encouragement and assistance throughout. Our deep gratitude

goes to Tom Loftus who put many hours into editing the final draft of

the manuscript for style and language consistency. Finally, we

appreciate the support of the National Science Foundation under the

Department of Undergraduate Education awards 0126740 and 0304930,

and the support of the National Institutes of Health under NIDDK

awards R25 DK064122, R01 DK51562, and R21 DK72095.

Chapter Biological topics Biological subtopics Mathematical topics

1 Ecology,
Conservation
Biology,
Toxicology

Population growth, harvesting
model, drug dosage model

Discrete and continuous dynamical systems,
difference equations, differential equations

2 Ecology,
Microbiology,
Epidemiology

Epidemic model, predator-prey
model, competition model

Continuous dynamical systems

3 Genetics Hardy-Weinberg law, genetic
selection, polygenic
inheritance

Discrete dynamical systems, probability
histograms, Normal distribution, Central
Limit Theorem

4 Genetics,
Biostatistics

Heritability Probability distributions, statistics

5 Physiology,
Endocrinology

Blood glucose levels, glucose
homeostasis

Data transformation, risk function, statistics

6 Physiology,
Microbiology

Development, bacterial
infections, cardiac function,
premature birth

Probability distributions, statistics,
approximate entropy

7 Biochemistry,
Physiology, Cell
Biology

Hemoglobin function,
cooperativity, conformational
change

Continuous dynamical systems, probability
distributions

8 Biochemistry,
Physiology

Ligand binding Numerical solutions of algebraic equations,
iterative computational strategies, time series

9 Endocrinology,
Physiology, Cell
Biology

Hormone pulsatility Periodic components, FFT, pulse-detection
algorithms

10 Endocrinology,
Physiology, Cell
Biology

Hormone networks Continuous dynamical systems with delays

11 Physiology, Cell
Biology,
Molecular Biology

Circadian rhythms Confounded time series, rhythm analysis

12 Physiology, Cell
Biology,
Molecular Biology

Gene chips, molecular biology of
circadian rhythms

Data normalization, clustering strategies, time
series, rhythm analysis

TABLE 1.
Chapter topics by biological and mathematical affiliation
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You are now invited to turn the page and begin your exploration of

biomathematics.

The Authors

July 20, 2007

1. Morgan, A., for the Committee on Undergraduate Biology Education. (2002).
BIO2010: Transforming Undergraduate Education for Future Research Biologists.
Washington, DC: The National Academy Press.

2. Steen, L. (editor). (2005). Math & Bio 2010—Linking Undergraduate Disciplines.
Washington, DC: The Mathematical Association of America.

3. Gross, L. G. (2000). Education for a Biocomplex Future. Science, Vol. 288.
no. 5467, p. 807. The author, Louis Gross is a Professor of Ecology and
Evolutionary Biology and Mathematics, University of Tennessee, Knoxville,
and Past-President of the Society for Mathematical Biology.
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Life belongs to the living, and he who lives must be prepared for

changes.

Johann Wolfgang von Goethe (1749–1832)

According to Encyclopædia Britannica, a mathematical model

is defined as ‘‘either a physical representation of

mathematical concepts or a mathematical representation

of reality.’’ Physical mathematical models, such as graphs

of curves or surfaces defined by analytic equations or

three-dimensional replicas of cylinders, pyramids, and

spheres, are used to visualize mathematical terms and

concepts. Such models present realistic depictions of

abstract mathematical definitions. In contrast, a

mathematical representation of reality uses mathematics

to describe a phenomenon of nature. There are many

mathematical tools that can be used in this process,

including statistics, calculus, probability, and differential

equations. Different methods may provide insights to

different aspects of the problem, and there is often much

debate about what approach is preferable. Mathematical

models that represent reality are the subject of this text.

Building a good mathematical model is a challenging task

that requires a solid understanding of the nature of the

system being modeled, as well as the mathematical tools

being used to describe it. Because mathematical models

are quite diverse, it is difficult to specify a process that

would apply to all problems. However, there are

fundamental principles that facilitate and guide the

creative process. They are:

1. Initially, a model should be simple.

2. It is crucial to test the model under as many condi-

tions as reasonable.

3. If the model seems to be successful in some ways but

fails in others, try to modify the model rather than

starting over.

In this chapter, we discuss how biological models of one

variable change over time. The first model we study is

growth of a population. Our initial attempt is based on

numerical data. Later, we build the model based on

conjectures about ‘‘how populations should grow.’’ Both

models yield essentially the same result, and although

these constructions are successful in the short term, both

are flawed because the long-term behavior they predict is

Chapter1

PROCESSES THAT

CHANGE WITH TIME:

INTRODUCTION TO

DYNAMICAL SYSTEMS

Using Data to Formulate a Model

Discrete Versus Continuous Models

A Continuous Population Growth Model

The Logistic Model

An Alternative Derivation of the Logistic
Model

Long-Term Behavior and Equilibrium
States

Analyzing Equilibrium States

The Verhulst Model for Discrete
Population Growth

A Population Growth Model with Delay

Modeling Physiological Mechanisms
of Drug Elimination

Using Computer Software for Solving
the Models

Some BERKELEY MADONNA Specifics

Suggested Biology Laboratory Exercises
for Chapter 1
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unrealistic. We then look at the long-term growth of a yeast culture to

build a more believable model.

The first models we construct are of exponential growth. Later in the

chapter, we study related models describing exponential decrease in the

concentration of drugs in the bloodstream. These exponential growth/

decay models are derived from the hypothesis that the time rate of

change (i.e., the derivative with respect to time) of a quantity is

proportional to the amount present.

We begin with a problem popularized in the late eighteenth century by

Thomas Robert Malthus—the growth of human populations.

I. USING DATATO FORMULATE A MODEL

Contemporary research is hypothesis-driven and is based on

experimental evidence. A properly designed experiment can corroborate

a hypothesis, prove it false, or produce inconclusive data. An experiment

can also suggest new hypotheses that, in turn, will need to be tested.

This leads to an ever-repeating cycle of collecting data, formulating

hypotheses, designing new experiments to attempt to corroborate them,

and collecting new data. It should be emphasized, however, that

ultimately the validity of a hypothesis can never be proved. Karl Popper

gives the following very instructive example: If somebody sees one, two,

or three white swans, he or she may hypothesize, ‘‘All swans are white.’’

Each white swan seen corroborates the hypothesis but does not prove it,

because the first black swan would invalidate it completely. This

demonstrates the necessarily close interdependence between hypothesis

and experiment.

In this section, we explore the process of creating mathematical models

that describe the growth (or decline) in the size of populations of living

organisms. We would like to express the size as a mathematical function

of time. Although one model will not work for all species, there are

certain fundamental principles that apply almost universally. Our first

goal is to identify some of these principles and determine the best way to

express them mathematically. We begin by considering U.S. census data

for 1800–1860 (U.S. Census Bureau [1993]). Table 1-1 presents the figures

for the population of the United States over these 6 decades.

Examining the data plot is always a good idea, as it may suggest certain

relationships. Letting t ¼ 0 be the year 1800 and one unit of time ¼ 10

years, we present the data plot in Figure 1-1. Unfortunately, the

conventional plot of the data is not very illuminating. It is evident that

the growth is nonlinear, but it is not possible to determine the type of

nonlinear dependence by mere observation. There are many

mathematical functions that exhibit similar growth patterns. For

example, if P(t) represents the U.S. population as a function of the

2 Chapter OneAn Invitation to Biomathematics



time t, the data points in Figure 1-1 may have come from sampling the

function P(t) ¼ at2 or P(t) ¼ at3, where a > 0 is a constant, or some other

power law. It may also be that the data follow an exponential law of

increase with the general form P(t) ¼ aebt where a > 0 and b > 0 are

constants. To determine the specific nonlinear function that provides the

best fit for the data, we examine the change in U.S. population per decade;

that is, the rate of change. In our example, they appear to be growing with

time—the population change is 1.9 million from 1800 to 1810 but 8.2

million from 1850 to 1860 (more than four times as large). Thus, the rate of

population growth increases as the U.S. population increases.

These observations lead to two different ways of plotting the data: (1) The

change in population size per decade versus time, and (2) the change in

population size per decade versus population size at the beginning of

decade. While the graph in Figure 1-2(A) is still not very telling,

the one in Figure 1-2(B) is strikingly linear. Is this amere coincidence, or are

Year U.S. Population (millions)

1800 5.3

1810 7.2

1820 9.6

1830 12.9

1840 17.1

1850 23.2

1860 31.4

TABLE 1-1.
Population of the United States from 1800 to 1860.
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FIGURE 1-1.
Plot of U.S. population versus time. A graph of the data shown in Table 1-1.
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we on to something important? Observing the data prompts us to make

the following conjecture:

There is a linear dependence between the rate of change in population size and

the population size itself.

We now have a hypothesis. How should we proceed in order to

corroborate or reject it? In general, the process involves the following

major components, presented here in their natural order:

1. Solicit expert opinion. In this case, discuss the conjecture with pop-

ulation biologists. If they cannot dismiss the hypothesis right away

by providing examples that clearly contradict it, it merits further

investigation.
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FIGURE 1-2.
Comparison of rate of change versus time to rate of change versus population size. Panel A:
Population rate of change versus time; panel B: Population rate of change versus population size.
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2. Describe the conjecture, as well as possible, in quantitative and analytical

terms. This phase may involve statistics, mathematical formulations,

and follow-up analyses. Statisticians and mathematicians

will usually carry out this phase in close collaboration with

biologists. This process often leads to clarifying and refining the

hypothesis.

3. Test the refined hypothesis on several data sets. Consider the limitations

of previous experiments, and design your own new data collection

in order to address them. Formulate your refined conjectures.

Each of these steps can sometimes be carried out and thoroughly

explored within hours or days. In other cases, it may take much longer.

Charles Darwin, for example, took several decades to systematically

collect data for his famous On the Origin of Species by Means of Natural

Selection.

When applying the steps outlined above to the growth of populations,

our hypothesis passed the ‘‘expert opinion test,’’ but only conditionally.

We learned that the rate of growth of populations might, indeed, be

proportional to the size of the population, but only during the initial phases

of their growth. This phase could be characterized as a period during

which an abundance of resources allows for unfettered growth. During

later phases, the growth of the population might be impeded by

competition or a shortage of resources. So our hypothesis had potential

and, in fact, it seemed reasonable that the period from 1800 to 1860 was an

‘‘initial phase of growth’’ for the U.S. population. However, the model

developed on our general hypothesis had its limitations—not a big

surprise, given that it was our first model. We also began to understand

some of the rationale for these limitations. We decided, nevertheless, to

move on to describing our hypothesis quantitatively and analytically.

Denoting the U.S. population at the end of the n-th decade by Pn (where n

can take the integer values 0, 1, 2, 3, . . .). We can express the change in

population size from the beginning of one decade to the next by Pn�Pn�1,

for n = 1, 2, 3, . . .. The conjectured linear relationship between the rate of

change of population and the population size itself thenmeans that the two

quantities are proportional. Thus, there is a constant k such that the

relationship

Pn � Pn�1 ¼ kPn�1 (1-1)

is satisfied for any value n ¼ 1, 2, 3, . . .. In particular, for n ¼ 1, we have

P1 � P0 ¼ k P0; for n ¼ 2, P2 � P1 ¼ k P1; etc. Notice that the constant of

proportionality k can be interpreted as the net per capita rate of change

(also referred to as the net per capita growth rate) for the population. The

left-hand side of our model represents the change per decade, and the

right-hand side expresses this change as a multiple (k) of the population

size in the beginning of the decade.
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We next estimate the numerical value of k from the data. The

calculations are summarized in Table 1-2. Ideally, if all data points (Pn�1,

Pn – Pn�1), n ¼ 1, 2, 3, . . ., whose coordinates are given in the second and

third columns were perfectly lined up, the values of k calculated as k ¼
(Pn � Pn-1)/ Pn�1 in the third column would be exactly the same. In

reality, because of the noise and small inconsistencies that are always

present in the world of experimental data, the values of k vary slightly.

The numerical value chosen for k should be the value that provides the

best agreement between the actual population sizes and the values

predicted by the model. We could, in principle, test all of them and

visually determine the best fit of the predicted data with the actual data.

We did this for the smallest value of k (k ¼ 0.326), the largest value of

k (k ¼ 0.358), and the average of all calculated values for k (k ¼ 0.345).

The results and corresponding graphs are presented in Figure 1-3.

Not surprisingly, the smallest k-value produces predictions that

systematically underestimate the population, while the largest value

generates overestimates. Using the average of the k-values in Table 1-2,

however, gave a very good overall fit. The question of what is meant

by ‘‘best fit’’ is certainly nontrivial and will be addressed later in

detail. For now, we shall note that the value of k ¼ 0.344 provides the

best fit with the data—just 0.001 below the average value of k we

calculated above.

II. DISCRETE VERSUS CONTINUOUS MODELS

Our model is now Pn – Pn�1 ¼ (0.345)Pn–1. One limitation of this model is

apparent almost immediately: Our model is discrete, that is, it can only be

used to describe changes that occur at specific time intervals. The

smallest unit it works with is a decade, and, thus, the model is

incomplete. For example, it does not allow us to compute the

Time

(decades) n

U.S. Population

(millions) Pn

Change in

Population

Pn � Pn�1 k ¼ (Pn � Pn�1)/ Pn�1

0 5.3 — —

1 7.2 1.9 0.358

2 9.6 2.4 0.333

3 12.9 3.3 0.344

4 17.1 4.2 0.326

5 23.2 6.1 0.357

6 31.4 8.2 0.353

TABLE 1-2.
Estimation of k from U.S. population data.
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U.S. population in the year 1875. We can calculate values for the

U.S. population in 1870 or in 1880, but not for the intermediate years

(although such values could be interpolated). More importantly, our

model has the added limitation that it does not capture change as it

occurs over time and instead assumes that the changes are compounded

at the end of each unit of time. This certainly is not how the size of the

U.S. population changes. New births, as well as deaths, occur in the

United States practically every minute (actually, on average, every

8 seconds, according to current U.S. Census Bureau data), so the

population changes almost continuously. A useful model should be

capable of capturing the instantaneous dynamics of the population and

should assume that every time instant is equally likely to be a time of

change in the population size.

When studying populations of some other living organisms, however,

using discrete models may be more realistic if the organisms reproduce in

a synchronized manner. For example, annual flowers die in the fall and

their offspring appear in the spring, bears have their cubs in midwinter,

and deer have their fawns in the spring. In the laboratory, cell biologists

have learned much about the control of the cell cycle through the artificial

synchronization of cell division. When modeling these kinds of

phenomena, it is more appropriate to consider discrete models.

III. A CONTINUOUS POPULATION GROWTH MODEL

What modifications would be necessary to build a continuous

population growth model? Continuous mathematics has calculus as one

of its essential components, and measuring rates of instantaneous

change is one of the fundamental uses of calculus. Mathematically, an

instantaneous rate of change is represented by the derivative of the

function that describes how a given quantity changes with time. Thus, if

P(t) denotes the U.S. population at time t, then the instantaneous rate of

change of the population can be expressed by the derivative dP(t)/dt or

P0(t).

We are now ready to express our major hypothesis that there is a linear

dependence between the rate of change in population size and the population size

itself. In the language of calculus:

dPðtÞ
dt

¼ rPðtÞ: (1-2)

The left-hand side of this equation gives the (instantaneous) rate of

change for P(t) at time t. The right-hand side expresses this rate as a

fraction (r) of the current population size P(t). Notice that this model

represents exactly the same hypothesis as before. The only reason

Eq. (1-1) looks different from Eq. (1-2) is that they state our hypothesis in

two different languages—Eq. (1-1) uses the language of discrete
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mathematics, whereas Eq. (1-2) uses the language of continuous

mathematics.

Equation (1-2) is in the form of a differential equation; that is, it contains

information about the derivative of the unknown function P ¼ P(t),

which we hope to find. Rewriting Eq. (1-2) as dP/P ¼ rdt and integrating,

we obtain:
Z

dP

P
¼
Z
r dt;

so that

lnðPÞ ¼ rtþ C;

where C is the constant of integration. Thus:

PðtÞ ¼ e lnðPðtÞÞ¼ e rtþC¼ e rteC¼ C1e
rt; (1-3)

where C1 ¼ eC is a constant.

Usually, we know the initial population P(0), and we can thus determine

C1. From Eq. (1-3), using t ¼ 0, we obtain P(0) ¼ C1 e
r0 ¼ C1, so C1 is P(0).

This gives us the solution of Eq. (1-2) for the unknown function P(t):

PðtÞ ¼ Pð0Þe rt: (1-4)

Equation (1-4) is the fundamental equation of unfettered growth. We

want to estimate r from the data in Table 1-1 as we estimated k earlier.

Now

PðtÞ ¼ Pð0Þe rt and Pðtþ 1Þ ¼ Pð0Þe rðtþ1Þ;

so:

Pðtþ 1Þ
PðtÞ ¼ Pð0Þe rðtþ1Þ

Pð0Þe rt ¼ e r: (1-5)

Thus, we can estimate r by:

r ¼ ln
Pðtþ 1Þ
PðtÞ

� �
¼ ln ðPðtþ 1ÞÞ � lnðPðtÞÞ: (1-6)

Using that P(0) ¼ 5.3, P(1) ¼ 7.2, and so forth, we give the estimated

values of r in column 3 of Table 1-3. If we average the values of r

(the method that gave the best estimate in the discrete case), we get

r ¼ 0.297. We can now estimate the population by using:

PðtÞ ¼ 5:3 e 0:297t; (1-7)

where t is the number of decades after 1800. The predicted U.S.

population appears in column 4 of Table 1-3.
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As in the discrete case, our method of estimating the value of r was

rather primitive. The average value r ¼ 0.297 showed a good fit with the

census data, but we defer how to find the best value of r until Chapter 8.

One purpose of a mathematical model may be to predict values that

cannot be measured directly. In our example, these may be values of the

U.S. population for past years for which no U.S. census data are

available, or values of the U.S. population for future years. In particular,

can we use the discrete and continuous models (1-1) and (1-2) (with

our best values of k ¼ 0.345 and r ¼ 0.297) to predict the U.S. population

in the year 3000? Mathematically, this is not a problem. In the discrete

case, we rewrite our model Pn – Pn�1 ¼ (0.345) Pn�1 as Pn ¼ (1.345) Pn–1.

Because time is measured in decades beginning with the year 1800, the

year 3000 will correspond to n ¼ 120, and so we need to find the value of

P120. Knowing the U.S. population for n ¼ 0 to be 5.3 million, we have

P0 ¼ 5.3 and can compute P1 ¼ (1.345) P0 ¼ (1.345) (5.3) ¼ 7.1.

Having calculated P1, we can calculate P2 ¼ 1.5 P1 ¼ (1.345) (7.1) ¼ 9.6,

and so on. We would therefore need to calculate 120 consecutive values

before we get P120. Alternatively, we could use a computer to get the

value of P120. In the continuous case, of course, we just substitute 120

for t into Eq. (1-7). Exercise 1-1 shows that a formula for direct

computation of P120 can also be calculated for the discrete model.

EXERCISE 1-1

For the model Pn – Pn�1 ¼ k Pn�1, show that:

ðaÞ Pn ¼ ð1þ kÞPn�1

ðbÞ Pn ¼ ð1þ kÞnP0:
(1-8)

The expression Pn ¼ (1 þ k)n P0 represents the analytical solution for

Eq. (1-1). Because we know the net per capita growth rate k ¼ 0.345 and

Time t

(decades)

U.S.

Population

P(t)

(millions)

r ¼ ln(P(t þ 1))

– ln(P(t))

Predicted U.S.

Population

[millions] for

r ¼ 0.297

Relative Error [%] ¼
jPredicted� Actualj

Actual
100

0 5.3 0.306 5.300 0.000

1 7.2 0.288 7.133 0.931

2 9.6 0.295 9.599 0.010

3 12.9 0.282 12.919 0.147

4 17.1 0.305 17.387 1.678

5 23.2 0.303 23.399 0.858

6 31.4 0.306 31.491 0.290

TABLE 1-3.
Determination of r and evaluation of predicted population values.
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the initial population size P0 ¼ 5.3, the solution allows us to compute

directly the population Pn for any value of n. For example, when n ¼ 120,

we can use Eq. (1-8) to compute the model prediction for the U.S.

population in the year 3000:

P120 ¼ ð1:345Þ120ð5:3Þ ¼ 1:48234� 1016 ¼ 14:8 quadrillion:

How realistic do you think this prediction is? Why?

EXERCISE 1-2

Use the continuous model from Eq. (1-7) to predict the U.S. population

in the year 3000. Is this prediction realistic? Why?

EXERCISE 1-3

The data in Table 1-4 show the initial phase of yeast culture growth over

7 hours (Carlson [1913]; Pearl [1927]). The size of the yeast population is

measured in terms of biomass. Biomass is simply the weight of living

material. For yeast or bacteria, population growth may also be measured

by taking advantage of the fact that, as they grow, the medium in which

they are growing becomes increasingly turbid. A spectrophotometer is

used to determine the amount of light scattered by samples of the

culture.

(a) Use this data to determine the best values for k and r for the

discrete model (1-1) and the continuous model (1-2).

(b) Use the values determined in part (a) to create a table displaying

the actual and predicted values from the discrete and continuous

models.

(c) For the value of r determined in (a), plot the predictions of the

continuous model, and consider the graph. Based on the graph, do

you expect the continuous model to remain accurate in predicting

the long-term growth behavior of the culture?

Time

(hours) 0 1 2 3 4 5 6 7

Biomass 9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3

TABLE 1-4.
Growth of yeast population over 7 hours.
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IV. THE LOGISTIC MODEL

The exercises from the last section raise some important questions. In

particular, the solutions of both the discrete and the continuous models

are unbounded functions, and therefore describe unlimited growth. In any

given environment, however, the factors that support growth—for

example, the availability of food or nesting sites—are limited. Any

environmental degradation, such as air or water pollution, may also

limit population growth. These limiting factors determine the carrying

capacity of an environment—the maximum number of organisms the

environmental system can support. This is the upper limit on a

sustainable population.

EXERCISE 1-4

What factors do you think would determine the carrying capacity for

human populations?

To illustrate that populations do not grow without limit, Figure 1-4

shows the growth of the same yeast culture from Table 1-4 throughout

the entire 18-hour data collection period (Carlson [1913]). Figure 1-4 also

contains the solution curve of our continuous model with r ¼ 0.49. As

anticipated, our model exhibits unlimited growth, while the actual yeast

culture appears to approach a maximum population size. One might

suppose that the decrease in growth rate is caused by depletion of the

yeast’s food supply—namely, sugar. However, analysis of the medium

showed that sugar was still available (Richards [1928]). Rather, the
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FIGURE 1-4.
Predicted and actual values for yeast population. Comparison between the solution curve of the
model dP/dt ¼ rP(t) with r ¼ 0.49 (dashed line) and the 18-hour yeast growth data (solid line), after
Carlson (1913).
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slowing of growth is caused by the increasing concentration of ethanol in

the medium, alcohol being one of the products of anaerobic respiration

or fermentation, as any brewer or vintner can attest. The concentration of

ethanol rises until it reaches levels toxic to new yeast cells, resulting in

the observed decrease in the growth rate.

It is evident from this graph that the ability of the environment to

support the growth of the yeast diminishes as the population increases—

a reality we must modify our models given by Eqs. (1-1) and (1-2) to

reflect. Modification of the continuous model is discussed in detail; the

discrete case is left as an exercise.

Given that an environment can sustain only so many organisms,

we need to modify the model so the net per capita growth rate r

depends on the size of the population. In terms of an equation, we

could say:

dP

dt
¼ rðPðtÞÞPðtÞ; (1-9)

emphasizing that r now is not constant but depends on P.

Specifically, we now assume:

1. The environment can sustain a maximum population of the species,

reflecting its carrying capacity, K.

2. The smaller the population, the higher the per capita rate of popu-

lation growth. In general, as long as the population remains smaller

than the carrying capacity K, the population will grow, but the

closer to K the population gets, the slower the growth rate

will be.

3. If the population ever exceeds K (e.g., by immigration), then the

population will diminish and approach K; that is, the net per capita

rate of change should be negative for P > K.

We want to modify our model to reflect the simplest case—that the

environment accommodates zero growth when the population is K and the

maximal per capita growth rate when the population is near zero. Suppose

the highest per capita growth rate is a > 0. If we want to graph per capita

growth rate versus population size (see Figure 1-5), we want no growth

when the population is K, so (K, 0) must be a point on our graph. We also

want the maximum growth rate to be at the hypothetical population of 0,

so (0, a) is another point on our graph. Letting (x1, y1)¼ (K, 0) and (x2, y2)¼
(0, a), the slope of the line passing through these two points is

m ¼ y2 � y1
x2 � x1

¼ a� 0

0� K
¼ � a

K
: (1-10)

The graph of this line is depicted in Figure 1-5, and its equation is
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rðPðtÞÞ ¼ � a

K
PðtÞ þ a ¼ a 1� PðtÞ

K

� �
: (1-11)

Substituting this into Eq. (1-9) leads to the modified model:

dP

dt
¼ a 1� PðtÞ

K

� �
PðtÞ; a > 0;K > 0; (1-12)

which is called the logistic model. The value a > 0, corresponding to the

maximal per capita growth rate, is called the population’s inherent per

capita growth rate. The value K > 0 represents the carrying capacity of the

environment.

EXERCISE 1-5

What does the logistic model predict about the population change if:

(a) P(t) < K?

(b) P(t) ¼ K?

(c) P(t) > K?

With enough effort (the details of which are left as an exercise for the

readers who enjoy calculus), we can obtain the analytic solution for

the model from Eq. (1-12) describing the growth of the population over

time:

PðtÞ ¼ KPð0Þ
Pð0Þ þ ðK � Pð0ÞÞe�akt

: (1-13)

We refer to the graph of the solution of a differential equation as its time

trajectory, or simply its trajectory. As the solution is a function of time, the
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FIGURE 1-5.
Net per capita population growth rate as a function of the population size P. As the population size
increases to the carrying capacity K, the net per capita growth rate decreases, in a linear fashion, to 0.
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trajectory describes the evolution of the function quantity in time. The

graph of the solution given by Eq. (1-12), for the special case of P(0)¼ 5,

K ¼ 660, and a ¼ 0.7, is shown in Figure 1-6.

EXERCISE 1-6

Consider the solution of the logistic model (1-13). What happens to

P(t) as time gets very large (t ! 1)? Consider the following cases

separately:

(a) P(0) ¼ 0,

(b) 0 < P(0) < K,

(c) P(0) ¼ K, and

(d) P(0) > K.

It is gratifying that the solution (1-13) of our modified model produces the

distinctive sigmoidal (S-shaped) curve exhibited by the yeast growth data

in Figure 1-4. Comparing themodel predictionswith the actual data is also

encouraging. Using the value of a ¼ 0.543 calculated in Exercise 1-3

as the per capita growth rate during the initial growth phase

(which is the inherent per capita growth rate for the logistic model) and a

value for the carrying capacity K ¼ 660, estimated from the data,

we obtain the graph in Figure 1-7.

We note that function (1-13) is just one of many different functions

exhibiting S-shaped trajectories like the one in Figure 1-7. Such

trajectories are often given the generic name ‘‘logistic curves,’’ a term
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FIGURE 1-6.
A logistic curve. The solution of the logistic equation (1-12) for P(0)¼ 5, K ¼ 660, and a ¼ 0.7 (solid
line). The dashed line corresponds to the carrying capacity K.
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introduced by the Belgian mathematician Pierre-François Verhulst in

1845, and are also referred to as ‘‘logistic shapes.’’ In terms of their

specific meaning and analytic expressions, however, these curves

may be quite different. We have to be careful, therefore, not to

assume these functions have the same analytic form as (1-13) simply

because their graphs appear similar to the solution of the logistic

equation.

V. AN ALTERNATIVE DERIVATION OF THE LOGISTIC

MODEL

In the previous section, we derived the logistic model based on the

assumption there is a maximum population the environment can

sustain, reflecting limited available resources. In this section, we build a

model to determine the carrying capacity based on maximum available

resources and consumption rates. To keep the model as simple as

possible, we assume a single essential resource. We begin by recalling

that the net per capita growth rate is not constant but is population-

dependent, as shown in Eq. (1-9):

dP

dt
¼ rðPðtÞÞPðtÞ:

Now, however, we assume that the net per capita growth rate r depends

on the amount of resource available, which, in turn, depends on the

population size: the higher the population, the lower the resource

available. We denote the value of the available resource by R ¼ R(P), and

rewrite Eq. (1-9) as:

dP

dt
¼ rðRÞPðtÞ:
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FIGURE 1-7.
Comparison of logistic model and actual yeast population growth. Numerical solution of the logistic
model from Eq. (1-12) with a ¼ 0.543 and K ¼ 660 (dashed line) and yeast growth data (solid line).
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We shall model the functions R ¼ R(P) and r ¼ r(R) next, beginning with

the function R(P). Assume the resource exists in two forms: free and

bound (or consumed) by the population. Let F be the maximum amount

of free resource available when the population size P ¼ 0. When P > 0,

the amount of available resource will decrease as P increases. Assuming

a fixed per capita rate of consumption c > 0, we can write:

R ¼ F� cP: (1-14)

To model the dependence r ¼ r(R), notice that the net per capita growth

rate needs to satisfy the following conditions:

1. The population should be declining when no free resource is

available; so when R ¼ 0, the net per capita growth rate should be

negative: r(0) < 0.

2. The population should be growing when the free resource is avail-

able. More of the free resource will cause a higher per capita growth

rate, so the function r ¼ r(R) should be an increasing function of R.

The simplest mathematical dependency r ¼ r(R) that satisfies conditions

1 and 2 is the line

rðRÞ ¼ mR� n; (1-15)

where m > 0 represents the rate the free resource affects the per capita

net growth rate, and n > 0 represents the per capita rate at which the

population size will decline when the resource is lacking.

Substituting R from Eq. (1-14) into Eq. (1-15) yields

rðRÞ ¼ mðF� cPÞ � n

and a subsequent substitution into Eq. (1–9) gives the following resource-

based population growth model:

dP

dt
¼ ðmðF� cPÞ � nÞP: (1-16)

Equation (1-16) can be rewritten as

dP

dt
¼ ðmF� nÞ 1� mc

mF� n
P

h i
P ¼ a 1� P

K

� �
P; (1-17)

where

a ¼ mF� n and K ¼ mF� n

mc
: (1-18)

Therefore, this model is the same as the logistic model from Eq. (1-12),

with inherent per capita growth rate and carrying capacity as given
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by Eq. (1-18). Notice that the inherent per capita growth rate

a corresponds to the special case of Eq. (1-15) when all of the available

resource is unbound. The expression for the carrying capacity K provides

insight to the dependence of this empirical parameter upon available

resources and rate of consumption. As should be expected, K grows with

F and declines as the consumption rate c increases.

VI. LONG-TERM BEHAVIOR AND EQUILIBRIUM STATES

In the continuous models from Eqs. (1-2) and (1-12), we found a solution

that gives P(t). Differential equations, however, are often impossible to

solve explicitly. In spite of this, we can still glean essential information

about the long-term behavior of the model from these equations. We

shall now examine techniques for this type of analysis with the logistic

equation.

We begin by recalling that there is dependence between the increase/

decrease behavior of a function and the sign of its derivative. Namely, if

the derivative is positive over a certain time interval, the function is

increasing, while a negative derivative indicates the function is

decreasing. When the derivative is zero, the function exhibits no change.

In the logistic model [Eq. (1-12)], the governing differential equation can

also be written as:

dP

dt
¼ a0ðK � PÞP; where a0 ¼ a

K
: (1-19)

What does this differential equation tell us? The derivative is zero at two

values of P: when P ¼ 0 and when P ¼ K. When we graph P versus

t (population vs. time), these values divide the graph into two regions—

values of P larger than the carrying capacity K and values of P smaller

than K (see Figure 1-8). Suppose we begin a new culture with a very

small quantity of yeast. Because the population is small, P(t) < K, then
dP

dt
is positive, and P(t) will increase (see the curve labeled P1). This does not

give the complete information that the solution of the logistic curve

gave, but it gives valuable information for very little effort. Similarly,

if a huge amount of yeast was introduced (greater than the carrying

capacity, so P(t) > K), then the derivative is negative and the population

will diminish (see the curve labeled P2).
1 There is an underlying

lesson here that is very important: Namely, that we do not have to

1. Notice that none of the arguments determining the long-term behavior of P(t)
here depends on the actual value of the parameter a > 0. We will need this
observation in Section VIII, where we discuss discrete analogues of the logistic
model (1-12). In contrast with the continuous logistic model, those may exhibit
radically different behavior, depending upon the value of a > 0.
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explicitly solve the many differential equations that we shall encounter

to understand how the solutions evolve.

EXERCISE 1-7

What would happen if there were a time when P(t) ¼ K?

An equilibrium state is one in which the quantity in question remains

constant over time. These will be the values for which the derivative is

zero. In Eq. (1-19), they will be where P ¼ 0 and P ¼ K.

VII. ANALYZING EQUILIBRIUM STATES

Suppose that we have an equation of the type:

dP

dt
¼ f ðPÞ: (1-20)

This shows that the rate of change depends only on the value of the

population and not on when that value is attained. The logistic model

from Eqs. (1-12) and (1-19) has this form. The values of P for which

f(P) ¼ 0 define the equilibrium states, because then
dP

dt
¼ 0: In this

section, we shall show how to classify the equilibrium states as stable or

unstable, based on the sign of the function f(P) near each equilibrium

state.

If f(P) > 0, then the derivative is positive and P will increase. If f(P) < 0,

then the derivative is negative and P will decrease. A very helpful tool is

to graph y ¼ f(P) versus P. From the graph, we can then easily decide

where P will increase or decrease. Suppose
dP

dt
¼ f ðPÞ; and the graph of

f(P) is shown in Figure 1-9.

0 t

P(t)

K

P1

P2

FIGURE 1-8.
Behavior of trajectories beginning at different population sizes. Trajectories that begin at population
size values smaller than the carrying capacity K increase toward K, whereas those that begin at
population size values larger than K decrease toward K.
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The derivative is zero where the graph of f(P) crosses the horizontal axis

at points p1 and p2. These are equilibrium states. The derivative is

positive when the graph of f(P) is above the horizontal axis and negative

when it is below. From the graph, f(P) is positive, and the population is

growing when P is less than p1 or greater than p2. When P is between

p1 and p2, f(P) is negative.

Let’s analyze how P changes if it is near the equilibrium states.

State p1:

The graph of f(P) for P near p1 is shown in Figure 1-10.

Suppose P is slightly smaller than p1. Then f(P) > 0, which means
dP

dt
> 0;

so P is increasing toward p1. On the other hand, if P is slightly larger

than p1, then f(P) < 0, so
dP

dt
< 0 and P decreases, again moving toward

p1. In either case, if P is slightly different than p1, then P moves toward
p1. We refer to a point such as p1 as a stable equilibrium point.

State p2:

The graph of f(P) for P near p2 is shown in Figure 1-11.

0
p1 p2 P

dt
dP

f (P) =

FIGURE 1-9.
Plot of dP/dt versus P. The graph of dP/dt versus P helps to visualize how the rate of change of the
population depends upon the population size.

0
p1

P

dt

dP
f(P) =

FIGURE 1-10.
Interpreting dP/dt versus P. When the graph of dP/dt versus P crosses the horizontal axes at a point p1
while decreasing near the point of crossing, the value p1 is a stable equilibrium.
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Now if P is slightly less than p2, then f(P) < 0 and the derivative is

negative, so P will decrease and move away from p2. Similarly, if P is

slightly greater than p2, then f(P) > 0, and the derivative is positive, so

P will increase and again move away from p2. In either case, if P is

slightly different than p2, then P will move away from p2. A point such as

p2 is called an unstable equilibrium point.

A physical example of stable and unstable equilibrium points is shown

in Figure 1-12. If a roller coaster cart is stopped at the positions

indicated, it will remain there. If the cart is at positions 2 or 3 and is

nudged gently, it will return to its original position. On the other hand, if

the cart is at positions 1 or 4 and is nudged, it will roll down the track

and away from the position at which it was balanced.

0
p2

P

dt

dP
f (P) =

FIGURE 1-11.
Interpreting dP/dt versus P. When the graph of dP/dt versus P crosses the horizontal axes at a point p2
while increasing near the point of crossing, the value p2 is an unstable equilibrium.

FIGURE 1-12.
A roller coaster model of equilibrium points. Positions 2 and 3 represent stable equilibria while
positions 1 and 4 represent unstable equilibria. (Scorpion Roller Coaster Modeling System
photograph from www.coasterdynamix.com. Used by permission.)
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EXERCISE 1-8

(a) For the logistic model (1-12), we had
dP

dt
¼ a 1� P

K

� �
P ¼

a

K
ðK � PÞP ¼ a0ðK � PÞP; where a0 ¼ a/K. So in the example

discussed above, f(P) ¼ a0(K – P)P. The graph of f(P)

is shown in Figure 1-13. Classify the equilibrium states for the

logistic model as stable or unstable.

(b) Suppose
dP

dt
¼ f ðPÞ and the graph of f(P) is shown in Figure 1-14.

(i) Locate the equilibrium points, and classify them as stable or

unstable.

(ii) Sketch the trajectory P(t), as in Figure 1-8, for P(0) in the

following regions (i.e., P(0) < p1; p1 < P(0) < p2; p2 < P(0) < p3;

P(0) > p3).

(c) Suppose
dP

dt
¼ f ðPÞ and the graph of f(P) is shown in Figure 1-15.

Describe what happens if P is close to the equilibrium point p1.

So far, we have only considered questions related to population

growth. The techniques described, however, are quite general and can be

used to answer a variety of questions related to quantities that change

with time, as the following examples illustrate.

0 K P

dt
dP

f(P ) =

FIGURE 1-13.
The graph of f(P) ¼ dP/dt versus P for the logistic Eq. (1-12).

0
p3

P

dt

dP
f(P ) =

p2p1

FIGURE 1-14.
A model with three equilibrium states.

0 p1 P

dt

dP
f (P) =

FIGURE 1-15.
A model with one equilibrium state that never decreases.
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Example 1-1
.......................

Global Temperature Analysis. It has been estimated that the average

surface temperature of the Earth has risen 0.8 to 1.0�F in the last century.

This increase with time (presented in Figure 1-16 as deviations from

long-term averages) is fueling a heated debate over what may be causing

the accelerated global warming of the past 2 decades.

The many factors that impact the Earth’s temperature can be broadly

grouped as external and Earth factors. External factors include solar

output, earth–sun geometry, and stellar dust, to name a few. Earth

factors include volcanic activity,2 ocean heat exchange, and the

2. Volcanic activity can significantly impact temperature when volcanic dust
lifted high in the atmosphere blocks solar radiation. For example, climatologists
blame increased volcanic activity during the period 1812–1817, especially the
volcanic eruption of Mount Tambora in Indonesia in 1815, for the ‘‘year with no
summer’’ in New England in 1816 (Lamb [1995]).

Northern Hemisphere

Southern Hemisphere

Global

1860 1880 1900 1920 1940 1960 1980 2000

1860 1880 1900 1920 1940 1960 1980 2000
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−0.5
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0.0

−0.5

FIGURE 1-16.
Deviations of global temperature from long-term averages. Values for the northern and southern
hemispheres are also shown. (Source: http://www.cru.uea.ac.uk/cru/data/temperature/. Used by
permission of the Climatic Research Unit, University of East Anglia, Norwich, UK.)
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atmospheric greenhouse gases, such as carbon dioxide, methane, and

nitrous oxide. As solar energy heats the Earth’s surface, it in turn emits

energy back into space. The greenhouse gases trap some of this energy,

and without this natural greenhouse effect the Earth’s temperature

would be much lower, and life as we know it would not exist. If the

concentration of greenhouse gasses increases, however, ever higher

average temperatures may produce catastrophic results. According to

the U.S. Environmental Protection Agency, during the last few decades

the atmospheric concentrations of carbon dioxide have increased nearly

30%; methane concentrations have more than doubled; and nitrous oxide

concentrations have risen by about 15% (U.S. Environmental Protection

Agency [2000]). Although many scientists attribute these changes to

increased pollution caused by industrial activities, others do not

consider the evidence compelling and are more willing to assume that

the increases in the greenhouse gasses and average Earth surface

temperatures are part of a natural cycle.

Examining these questions in detail is beyond the scope of this text, but

the following example (from Taubes [2001]) provides a starting point.

First, it is reasonable to conjecture that a change in the Earth’s average

temperature depends on how much radiation enters and exits the

atmosphere. Using this basic assumption, how might the Earth’s average

surface temperature change, and what would the equilibrium

temperature(s) be?

Let T(t) denote the Earth’s average surface temperature at time t. Change

in temperature is caused by a flow of heat. In the model we now

consider, we hypothesize that the flow of heat is caused by two factors:

heat flowing into the Earth via solar radiation and heat leaving via

irradiation. If the amount of heat energy coming into the Earth is equal

to the amount leaving, then there will be no change in the Earth’s

average temperature. If, however, there is more heat entering the Earth

than leaving, we would expect the temperature to rise. As an equation,

we have:

dT

dt
¼ S� E; (1-21)

where S is the solar energy absorbed by the Earth and E is the heat

energy radiated back into space. Both S and E depend on the average

Earth temperature T. To find the equilibrium temperature(s) and classify

their stability, we need to know exactly how S and E depend on the

Earth’s temperature. It stands to reason that as the Earth’s temperature

increases, the Earth emits more heat (i.e., as T increases, E increases).

Perhaps surprisingly, the heat absorbed from the sun, S, also increases as

T increases. This is partly because of the decreased reflection of solar

energy by smaller ice cover at higher Earth temperatures.3 Assume that

the graphs of S(T) and E(T) are as shown in Figure 1-17.

3. See Taubes (2001), p. 50, for more details.
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EXERCISE 9

(a) Using Figure 1-17, sketch the graph of
dT

dt
versus the average Earth

temperature T.

(b) Use the graph from part (a) to show that this model has two stable

equilibrium states.

(c) Tell how the temperature will evolve if at time t0 we have:

(i) T(t0) ¼ 23�C,

(ii) T(t0) ¼ 18�C,

(iii) T(t0) ¼ –16�C, and

(iv) T(t0) ¼ 4�C.

(d) Sketch the time trajectories of the temperature T(t) for the four

cases in part (c).

Example 1-2
.......................

Harvesting a Renewable Resource. As the world’s population grows,

humans must be increasingly conscious that natural resources are

limited. The food supply is one resource that can be exploited in

catastrophic ways. For example, overharvesting has led to the collapse of

important fisheries in several areas of the world. The question of

determining ecologically sustainable approaches to harvesting is

0 5
T

22−15

E(T)

S(T)

FIGURE 1-17.
Hypothetical graphs of the solar energy absorbed by the Earth, S(T ), and the energy radiated by the
Earth, E(T ), as functions of the average Earth temperature T.
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therefore of critical importance (Smith and Link [2005]). We would like

to determine the maximum level of harvesting that is sustainable over a

long period of time without driving a population to extinction. This is

known as the maximum sustainable yield (MSY) for the population. Our

next example illustrates how equilibrium states and long-term dynamic

behavior of a system are affected by harvesting.4

When a population is left undisturbed, it maintains near equilibrium at a

level close to the carrying capacity K of the environment. The net per

capita growth rate is nearly zero, which means that the per capita birth

and death rates are nearly equal. Harvesting increases the mortality rate,

which, in turn, decreases the net per capita growth rate. Thus, excessive

harvesting can cause the mortality rate to exceed the maximum birth rate

and lead to extinction. Moderate harvesting, however, will only lower

the net per capita growth rate, causing the system to settle around a new

equilibrium level lower than K.

To illustrate this concept mathematically, assume that a population

grows according to the logistic model
dP

dt
¼ a 1� P

K

� �
P and that

harvesting yield per time unit is proportional to the size of the

population. The harvesting will then decrease the rate of change for the

population by a factor of bP, where b > 0 represents the harvesting effort.

The rate of change of the population size accounting for the harvesting

will then be
dP

dt
¼ a 1� P

K

� �
P� bP: The new nonzero equilibrium state

for this model is P ¼ K 1� b

a

� �
, which corresponds to harvesting yield

YðbÞ ¼ bP ¼ bK 1� b

a

� �
: This equilibrium state will be non-negative if

b/a < 1; that is, if b < a. Therefore, if the harvesting effort b is less than the

inherent per capita growth rate a, the harvesting effort is sustainable.

Conversely, if b > a, the population will die out. The yield

YðbÞ ¼ bP ¼ bK 1� b

a

� �
achieves its maximum at b ¼ a

2
(the reader

should verify this), which shows that the maximum sustainable yield in

this case is

MSY ¼ Ymax ¼ Y
a

2

� �
¼ a

2
K 1� a

2a

� �
¼ aK

4
:

In this example, we made the assumption that yield is proportional to

population size. This assumption is certainly justified when fishing or

hunting is involved. As our next exercise shows, in more controlled

environments, the harvesting rate may be independent from the

population size. In such cases, a model may have more than one nonzero

4. An expanded analysis of these models can be found in Hoppensteadt and
Peskin (2002).
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equilibrium state. The MSY is then determined as the largest yield that

will guarantee the existence of a nonzero equilibrium.

EXERCISE 1-10

Suppose we have a farm that can sustain a herd of 400 head of cattle and

that the cattle population is modeled by the logistic equation:

dP

dt
¼ 0:002ð400� PÞP; (1-22)

where
dP

dt
is the rate of change in the number of head per year. The graph

of 0.002(400 – P)P versus P is given in Figure 1-18 (solid line).

(a) Give the equilibrium state(s) for the model, and classify each as

stable or unstable.

If we decide to sell one animal per week (or 52 per year), then the

new equation governing the population would be:

dP

dt
¼ 0:002ð400� PÞP� 52: (1-23)

The graph of 0.002(400 – P)P �52 versus P is shown in

Figure 1-18 (dashed line). The equilibrium states are approximately

82 and 318 cattle.

(b) Classify the new equilibrium states as stable or unstable.

0

318
P

dt

dP
f(P) =

52

40082

FIGURE 1-18.
Models showing the logistic curves with and without harvesting. The graphs of 0.002(400 – P)P (solid
line) and 0.002(400 – P)P – 52 (dashed line) versus P. The graph of 0.002(400 – P)P – 52 is obtained by
shifting downward the graph of 0.002(400 – P)P by 52 units.
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(c) What happens to the population described by Eq. (1-23) if:

(i) P(t0) ¼ 50,

(ii) P(t0) ¼ 150, and

(iii) P(t0) ¼ 400?

(d) Describe how the graph in Figure 1-18 will change when the

harvesting rate is greater than 52 cattle/year.

(e) What is the largest number of cattle/year that could be sold while

guaranteeing the existence of a stable equilibrium for the model?

(f) What is the maximal sustainable yield for this model?

VIII. THE VERHULST MODEL FOR DISCRETE

POPULATION GROWTH

For modeling purposes, it is appropriate to hypothesize that many

species reproduce at a uniform rate. Said another way, there is no

preferred time at which reproduction occurs. In these cases, it is often

best to use a continuous model. As discussed in Section II, the use of

discrete models may be appropriate when the population remains

constant throughout intervals of time and then changes with a jump at

the end of an interval. Reproduction in such cases may be synchronized

to environmental stimuli, such as weather, light, or specific chemicals.

The reproduction of bamboo, cicadas, and some species of salmon occurs

in almost perfect synchronization, for example.

The choice between continuous and discrete models is fundamental to

the modeling process and should be based strictly upon the specific

biological problem at hand. It is incorrect to assume that a simple

discretization of a continuous model will lead to an acceptable discrete

model with similar behavior. Instead, such models should be derived

from first principles.

To illustrate this point, we consider a discrete model of population

growth in which the rate of change has the same functional form as that

of the continuous logistic model from the last section:

dP

dt
¼ a 1� P

K

� �
P: (1-24)

In the discrete case, instead of representing the population at time t by

P(t), we denote the population size throughout the n-th generation

by Pn.The change from the n-th to the (nþ1)-st generation is then given

by Pnþ1 � Pn and the model is:
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Pnþ1 � Pn ¼ rðPnÞPn ¼ a 1� Pn

K

� �
Pn: (1-25)

The model from Eq. (1-25) is sometimes called the Verhulst model, after

the Belgian mathematician Pierre Verhulst (1804–1849), who first studied

it in 1846. The model given by Eq. (1-25) may also be obtained by

modifying the unlimited growth model from Eq. (1-1) to allow net per

capita growth rate to vary with population size. In Eq. (1-25), as in

Eq. (1-24), K is the carrying capacity for the population; a > 0 is the

inherent per capita growth rate; and the arguments for choosing

rðPnÞ ¼ a 1� Pn

K

� �
will be the same as for the continuous logistic model

developed in Section IV.

Although the Verhulst model has the same equilibrium states as the

continuous logistic model, it can exhibit radically different long-term

behavior. Recall that an equilibrium state P is one in which the quantity

in question remains constant over time. For discrete models such as

(1-25), these are the values at which the system exhibits no change

(i.e., Pn ¼ P, for all n ¼ 0, 1, 2, . . . ). Equivalently, these are the values for

which Pn ¼ Pn�1 for all values of n ¼ 1, 2, 3, . . . .

EXERCISE 1-11

Show that the equilibrium states for Verhulst model [Eq. (1-25)] are

P ¼ 0 and P ¼ K.

In Section VI, we proved that for any value of a > 0 and any nonzero

initial population size P(0), the logistic model (1-24) exhibits convergence

for t ! 1 to its equilibrium state P ¼ K. For P(0) < K, the population

size P(t) is continuously increasing to K when t ! 1 while if P(0) > K,

the population size P(t) is continuously decreasing to K when t ! 1
(Figure 1-8). The Verhulst model offers cases of considerably more

complex long-term behavior—the system could converge to an

equilibrium state through oscillations, exhibit lack of convergence

because of periodic oscillatory behavior, or be driven to chaos.

To demonstrate this, let xn ¼ Pn

K
so that xn is the fraction of the maximum

population the environment can sustain. With this notation, the Verhulst
model takes the equivalent form:

xnþ1 � xn ¼ að1� xnÞxn; (1-26)

and the carrying capacity of the model in Eq. (1-26) is equal to 1. Equation

(1-26) represents the nondimensional form of the Verhulst model from

Eq. (1-25). This is due to the fact that Pn and K are measured in the same

units, so the quantity xn ¼ Pn

K
is nondimensional. This representation has

Introduction to Dynamical Systems 29An Invitation to Biomathematics



several mathematical advantages. First, it decreases the number of model

parameters, as the carrying capacity parameter K in Eq. (1-25) is now

scaled to 1. Second, the results obtained for Eq. (1-26) will be independent

of the units of measurement.

An interesting aspect of Eq. (1-26) is its sensitivity to the initial value x0
and different values of a. Figure 1-19 illustrates several different

scenarios. The ability of these models to generate oscillating trajectories

is particularly interesting.

The mathematics required for understanding and classifying all the

trajectories of Eq. (1-26) are not trivial. This may seem surprising,

given that our continuous logistic model was simple to understand. It

was not until the latter half of the twentieth century that mathematicians

began to discover the peculiarities of discrete models, such as the

Verhulst model. Decades of interdisciplinary work involving

mathematicians, ecologists, biologists, physicists, and computer

scientists were necessary before some satisfactory answers were found,

and the theory is still far from complete. Equation (1-26) is one of the

seeds from which the mathematical theory of chaos grew. We refer the

reader to Gleick (1987) for the fascinating history behind ‘‘discovering

chaos’’ and to Hirsch et al. (2003) for an introduction to the mathematical

theory.

To get a heuristic impression of why oscillations occur for the discrete

models [Eqs. (1-25) and (1-26)], notice that the net per capita growth

rate r ¼ rðPnÞ in Eq. (1-25) uses current population size to predict

growth during the next generation. As changes in population size

occur only at designated, equally spaced time intervals, there is a lag

that may cause overshooting or undershooting, similar to the inertial

effect in physical systems. Mathematically, the following argument

provides quantitative insight. When axn > 1, Eq. (1-26) implies that

jxnþ1 � xnj > j1� xnj; that is, the distance between the current level

of the population xn and the maximum level is smaller than the

distance between the current level xn and the level xnþ1 of the next

generation (see Figure 1-20). Thus, in this case, xn and xnþ1 will always

be on opposite sides of the maximum level 1, causing oscillatory

behavior.

Table 1-5 presents several values from Eq. (1-26) of xn, for n � 100

with x0 ¼ 0.8, and for different values of a to demonstrate the

dependence of the long-term behavior of the process upon the value

of a. For a ¼ 1.5, the system oscillates above and below 1 before settling

into the equilibrium state of 1. For a ¼ 2.10, the system oscillates between

two values. As a increases further, the system will oscillate among four

values. This is an example of period doubling. If a were to continue

increasing, the system would be driven to chaos.
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FIGURE 1-19.
Solutions of Eq. (1-26) for initial condition x0 ¼ 0.8 and different values of a. Panel A: a ¼ 0.1; panel
B: a ¼ 1.9; panel C: a ¼ 2.1; panel D: a ¼ 2.7.
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We emphasize again that the oscillation behavior here is not possible for

the continuous logistic growth model. For the Verhulst model, the

oscillations are caused by the lag effect described above and not

observed in the logistic model (1-24). As the next section will show,

logistic equations are capable of generating oscillations when explicit

delay is introduced.

Our next exercise presents a discrete population model with long-term

behavior similar to the continuous logistic population model.
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FIGURE 1-19 Cont’d.
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FIGURE 1-20.
Source of oscillatory behavior. When axn > 1, the values xn and xnþ1 calculated from Eq. (1-26) will
be on opposite sides of the level 1, causing oscillatory behavior.
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EXERCISE 1-12

Consider the following population model:

Pnþ1 ¼ 2

1þ Pn

K

Pn: (1-27)

where K is the carrying capacity.

(a) Show that P ¼ 0 and P ¼ K are the equilibrium states.

(b) Show that if 0 < P(0) < K, the population will be increasing.

(c) Assuming that lim Pn exists as n ! 1, show that, under the

conditions of part (b), lim Pn ¼ K.

IX. A POPULATION GROWTH MODELWITH DELAY

Despite substantial improvement over the ‘‘unlimited’’ population

growth model
dP

dt
¼ rPðtÞ; the logistic growth model (1-12) has one major

drawback—replacing r with the factor rðPðtÞÞ ¼ að1� PðtÞ=KÞ only
provides a mechanism for the net per capita growth rate to adjust itself

based on current population size. The logistic model (1-24) is entirely

based on the present and disregards, to a large extent, the past. In reality,

certain delay effects are essential, although this logistic model does not

account for them.

Just as we need to appreciate the logistic model’s merits, we also need to

understand its limitations. In Section IV, we found that the logistic

model described yeast and bacterial growth with great accuracy. It may

be less successful, however, in describing the growth of populations of

more complex organisms. For example, populations of the water flea

Daphnia have been observed to oscillate when cultures are maintained at

25�C (Pratt [1943]), as shown in Figure 1-21.

To recognize the effect caused by delay, notice, for example, that because

the gestational age of newborn human babies is about 9 months, the

number of babies born on January 1, 2005 was generally determined

9 months earlier, on April 1, 2004. In order to refine our model, we need

a x100, x101, x102, . . .

1.50 1, 1, 1, 1,. . .

2.10 0.823735, 1.12864, 0.823735, 1.12864, 0.823735, 1.12864, 0.823735, 1.12864, . . .

2.50 1.225000, 0.535948, 1.157720, 0.701238, 1.225000, 0.535948, 1.157720, 0.701238, . . .

TABLE 1-5.
Long-term behavior depends upon the value of parameter a.
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to offset the dependence r(t) ¼ r(P(t)) to account for this time lag. In

nonmathematical terms, we say that the present value of r(t) is

determined by the population size at a specific time in the past. The

simplest way to model this is to postulate that r(t) ¼ r(P(t � D)), where

D > 0 is the measured delay. In the example above, D will be equal to

nine months—a baby’s average gestational period. The logistic model

(1-12) can now be modified so:

dP

dt
¼ a 1� Pðt�DÞ

K

� �
PðtÞ: (1-28)

Notice that this model preserves our fundamental hypothesis that

the rate of change in population size is proportional to the population

size.

EXERCISE 1-13

List the limitations of the model given by Eq. (1-28).

The model from Eq. (1-28) is quite different mathematically from the

logistic model. To obtain an exact analytical solution for Eq. (1-28), we

need to know the values of the solution P(t) over the whole interval

[0, D]. In contrast, knowing the value of P(t) at just one point, say t ¼ 0, is

      * If the actual number of deaths and births occurring on each day is plotted, the resulting curves are too irregular and too low to read
with ease. Accordingly, each number was doubled, and the curves smoothed by plotting the points as 3-point moving averages.
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FIGURE 1-21.
Oscillations in the size of a water flea (Daphnia) population. (From Pratt, D. M. [1943]. Biological Bulletin 85, 116–140. Used
by permission.)
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enough to solve logistic model (1-24) and find the unique solution

satisfying the initial condition P(0) ¼ P0. A computer-generated solution

of Eq. (1-28) is presented in Figure 1-22.

The pattern of convergence to the equilibrium state P ¼ K through

oscillations with decreasing amplitudes (damped oscillations) is similar

to one of the solution trajectories observed in the discrete Verhulst model

[see Figure 1-19(B)]. The heuristic reason for the oscillations is also

essentially the same. The net per capita growth rate used to determine

the population’s rate of change at time t uses information on the

availability of resources based on population size at D units of time

earlier. This causes over- or underestimating of the slope while the

system adjusts itself, leading to damped oscillations about the carrying

capacity K. Exercise 14 provides greater insight into the mathematical

properties that allow oscillations to develop in the solution time

trajectories.

EXERCISE 1-14

Follow the steps outlined below to show that the sign of the derivative

dP/dt in Eq. (1-28) may change over time, causing oscillations.

(a) Assume that at a moment t1, the population reaches its carrying

capacity [that is, P(t1) ¼ K] and for t in the interval (t1, t1 þ D)

P(t –D) < K, as in Figure 1-22. Then for t < t1þD, 1 – P(t –D)/K> 0.

Now use Eq. (1-28) to show that for t < t1 þ D, dP(t)/dt > 0, and

population size is increasing. In particular, population size is still

increasing at t ¼ t1, thus overshooting the carrying capacity K.
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FIGURE 1-22.
A numerical solution of the model described by Eq (1-28). In this case, the delay was D ¼ 2.0, and
the parameters were a ¼ 0.61; K ¼ 100.
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(b) Show that at t ¼ t1 þ D, dP(t)/dt ¼ 0, and P(t1 þ D) > K.

(c) Assume now that t > t1 þ D. Because P(t – D) > K, 1 – P(t – D)/K

< 0. Use Eq. (1-28) to show that population size will be

decreasing for t1 þ D < t < t2 þ D, where t ¼ t2 is the first time

after t1 at which P(t2) ¼ K.

X. MODELING PHYSIOLOGICAL MECHANISMS

OF DRUG ELIMINATION

A primary purpose of this chapter is to study how single processes

evolve with time. One of our first assumptions was that quantities could

be expected to change at a rate proportional to the amount of quantity

present. We have demonstrated that this may work well for modeling

population growth for relatively short periods of time, but

environmental limitations will eventually cause the growth rate to abate.

In other situations, however, quantities diminish rather than increase, in

proportion to the amount present. While not extremely common for

population changes, there are many biological processes that do change

in this way. For example, in many organisms, foreign materials are

excreted at a rate proportional to their concentration.

To illustrate this phenomenon of exponential decay, we shall study how

the body eliminates drugs by modeling concentrations of physiologically

active substances in the bloodstream. Each drug dose received

increases its concentration in the bloodstream, but, simultaneously, the

kidneys are working to remove the drug. It has been experimentally

determined, in fact, that substances entering the bloodstream are

eliminated by the kidneys at a rate proportional to their concentration.

Clearly, the factors governing this physiological process are different

from the factors that determine population growth but, as we shall see,

the underlying mathematical models are very similar.

Ask yourself: Why do you need to take two acetaminophen tablets every

4 to 6 hours when you have a headache? Why is there a warning label

that cautions you not to take any more than four doses in a given

24-hour period? And why does your head start to ache again after four

hours when the warning suggests you really ought to wait six hours

before you take the next dose?

When a physician administers a drug to a patient, he or she has two

important aims—ensuring that the dosage is high enough to provide the

desired effect while ensuring that it is not so high that the drug becomes

toxic. These aims illustrate two critical drug concentrations—the

minimum effective concentration (MEC) and the minimum toxic

concentration (MTC). Between these limits lies the therapeutic window
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(TW)—the range of concentrations over which the drug is both effective

and safe (see Figure 1-23). Our goal is to construct a model describing

how to achieve and maintain drug concentrations in this range.

Before we can begin to produce a model, we should consider the factors

influencing a drug’s concentration in the bloodstream. These may be

roughly divided into factors controlling entry of the drug into the

bloodstream (absorption) and factors controlling its exit (elimination).

To consider absorption, we must first determine how the drug will be

introduced into the patient—orally, intravenously, intramuscularly,

transdermally (through the skin), or by inhalation. We must consider

whether the drug undergoes any physical or chemical changes during

administration. For example, is it a solid that must be dissolved in the

stomach or small intestine, or will it be introduced as a solution? We

must also consider the characteristics of the drug that will control how it

will be absorbed into the bloodstream. A fat-soluble molecule can

diffuse through intestinal cell membranes, whereas a charged or polar

molecule has to rely on transport proteins.

Once the drug has entered the bloodstream, we must consider how it

disperses through the body (distribution). For example, does the drug

bind to serum proteins, or does it circulate as a free drug? Distribution

also involves the drug’s movement from the bloodstream to the tissue,

organ, or other area of the body where it has its effect—in the case of the

acetaminophen, your poor aching head.

While some acetaminophen will exit the bloodstream to reduce your

headache, the remainder will be removed by processes grouped under

the term elimination. Elimination may involve metabolism, the term for

any chemical reaction the drug undergoes in the body, as well as

excretion, which is usually the action of the kidneys.
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FIGURE 1-23.
Changes in serum drug concentration. The drug concentration changes because of the cumulative
effect of multiple doses and the elimination of the drug from the bloodstream. When maintained
within the therapeutic window, the drug concentration is both effective and safe.
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Metabolism occurs through the action of protein catalysts called

enzymes. Metabolism of drugs most often occurs in the liver, although

there are some enzymes in the bloodstream as well. Liver enzymes, such

as epoxide hydratase and the cytochrome P450 family, catalyze the

chemical modification of the drugs, often oxidizing them and making

them more amenable to excretion.

In excretion, the kidneys filter the blood and remove drugs as well as

metabolic wastes. Drugs may also be excreted by the liver in the bile, a

substance necessary for digesting fats. Bile is made by the liver, stored in

the gall bladder, and delivered into the small intestine. Drugs may

also be removed from the bloodstream by the lungs and then exhaled.

(If this sounds unlikely, just think of the ‘‘breathalyzer’’ commonly used

for testing persons suspected of driving under the influence of

alcohol!) By this point, it should be clear that we need to begin our

model construction by making some simplifying assumptions.

The simplest model would be to assume instantaneous entry of drug

into the bloodstream, followed by its gradual clearance from the

bloodstream. An intravenous injection might well approximate

instantaneous entry. It is known from experimental data that the

clearance rate of drugs from the bloodstream is generally proportional to

the amount present in the bloodstream. Therefore, we are looking at an

example of exponential decay—the reverse of our first population

model.

If C(t) is the drug concentration at time t, then the fact the drug is

eliminated from the bloodstream at a rate proportional to the amount

present can be expressed as:

dCðtÞ
dt

¼ �rCðtÞ; (1-29)

where r > 0.

The negative sign on the right-hand side of (1-29) indicates the

derivative
dC

dt
of the concentration function C(t) is negative, and thus the

drug’s concentration in the blood is decreasing.

EXERCISE 1-15

Show that the solution of Eq. (1-29) is given by:

CðtÞ ¼ Cð0Þe�rt: (1-30)

Equation (1-29) has one parameter, represented by the elimination rate

constant r. Larger values of r correspond to faster elimination. By
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inspection of Eq. (1-29), it can be seen that the units for r are time�1; for

example, hours�1, min�1, or days�1. In Figure 1-24, we plot the drug

concentration C(t) versus time with C(0) ¼ 4 mg/ml and for three

different values of r: r ¼ 0.3, r ¼ 0.2, and r ¼ 0.1 hours�1.

The elimination parameter r is closely related to the drug’s half-life, t,
defined as the time necessary to reduce the concentration of the drug in

the blood by 50%. In mathematical terms, the half-life t is the time

elapsed since the initial moment t ¼ 0 for which C(t) ¼ 0.5C(0). Using

Eq. (1-30) gives us C(0)e�rt¼ 0.5C(0), or e�rt ¼ 0.5. Thus �rt ¼ ln(0.5),

leading to the following connection between the elimination rate

constant r and the drug’s half-life: t ¼ lnð2Þ
r

:

EXERCISE 1-16

From the graph in Figure 1-24, corresponding to r ¼ 0.2 hours�1,

estimate the drug’s half-life; then compute t from the equation above

and compare the two values.

EXERCISE 1-17

The half-life of acetaminophen is 2.5 hours. If a single dose is

administered at 12:00 noon, how long will it take for the
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FIGURE 1-24.
Serum drug concentration for different values of r. From top to bottom, the graph corresponds to
r ¼ 0.1, r ¼ 0.2, and r ¼ 0.3 hours�1, respectively. Larger values of r signify faster elimination of the
drug from the bloodstream.
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concentration in the bloodstream to fall below 1% of the initial

concentration?

The following example shows how to mathematically model multiple

doses.

Example 1-3
.......................

A drug whose elimination constant is r hours�1 is first administered at

1:00 A.M. at a dosage C mg/ml and in the same dosage every three hours

afterwards. What is the drug’s concentration at 12:00 noon?

SOLUTION:

By 12:00 noon, we will have given four doses. The total concentration is

the sum of the concentrations of each dose. Because the doses were given

at different times, the effect at 12:00 noon is different for each dose, as

shown in Table 1-6.

The total concentration at 12:00 noon is then equal to:

Ce�11r þ Ce�8r þ Ce�5r þ Ce�2r¼ Ce�2rðe�9r þ e�6r þ e�3r þ 1Þ: (1-31)

For a more compact form of Eq. (1-31), observe that if b ¼ e�3r, then

b2 ¼ e�6r, and b3 ¼ e�9r. Thus, the concentration becomes:

Ce�2rðb3 þ b2 þ bþ 1Þ: (1-32)

From this example, we can extract a more general result. In the term

e�3r, the number 3 arises from the time between dosages. Notice also that

the parenthetical expression contains four terms:

b3 þ b2 þ bþ 1 ¼ b3 þ b2 þ bþ b0; (1-33)

Time of Dose

Length of Time in Body

(hours) by 12:00 Noon

Residual Concentration from

the Dose at 12:00 Noon (mg/ml)

1:00 A.M. 11 Ce�11r

4:00 A.M. 8 Ce�8r

7:00 A.M. 5 Ce�5r

10:00 A.M. 2 Ce�2r

TABLE 1-6.
Contribution of multiple doses to serum drug concentration.
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and four doses have been given. The value C is the dosage, and the 2 in

Ce�2r comes from the fact that it has been 2 hours from the last

administered dose.

EXERCISE 1-18

We give a dosage of C mg/ml at 2-hour intervals. The elimination

constant is r hours�1. There are six doses given. Give an expression for

the concentration 30 minutes after the last dose.

In general, the drug’s concentration follows the pattern shown in

Figure 1-25.

If the drug is administered in dosages C at intervals of length T, then at

the end of the n-th period the concentration is:

Rn ¼ C½ðe�TrÞn þ ðe�TrÞn�1 þ ðe�TrÞn�2 þ . . .þ e�Tr�: (1-34)

Thus, Rn is the residual concentration from the first n doses immediately

before the next dose is administered. Immediately after the next dose,

the concentration rises to:

Rn þ C ¼ C½ðe�TrÞn þ ðe�TrÞn�1 þ ðe�TrÞn�2 þ . . .þ e�Tr þ 1� (1-35)

To simplify expressions (1-34) and (1-35) and write them in closed form

(i.e., without using the ‘‘and so on’’ symbol ‘‘. . .’’), we need some

preliminary mathematics.

An expression of the form:

aþ abþ ab2 þ ab3 þ . . . (1-36)
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FIGURE 1-25.
Serum drug concentration with regular doses. A dose C ¼ 10 mg/ml is administered every
T ¼ 8 hours. The elimination constant for the drug is r ¼ 0.1 hours�1.
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is called a geometric series. We let Sn denote the sum of the first n terms of

such a series, so:

Sn¼ aþ abþ ab2 þ ab3 þ . . .þ abn�1: (1-37)

Then:

bSn ¼ abþ ab2 þ ab3 þ . . .þ abn�1 þ abn andSn � bSn ¼ ð1� bÞSn ¼ a� ab n:

(1-38)

If b 6¼ 1, we obtain the following compact formula for Sn:

Sn ¼ a� ab n

1� b
: (1-39)

When jbj < 1, the limit below can be calculated to be:

limn!1Sn ¼ a

1� b
(1-40)

because when jbj < 1, limn!1 b n ¼ 0:

Applying Eq. (1-40) with a ¼ Ce–Tr and b ¼ e–Tr, the residual

concentration after n doses from Eq. (1-34) can be written as:

Rn ¼ Cð½e�Tr�n þ ½e�Tr�n�1 þ ½e�Tr�n�2 þ . . .þ e�TrÞ
¼ Ce�Trð½e�Tr�n�1 þ ½e�Tr�n�2 þ . . . 1Þ ¼ Ce�Tr 1� ðe�TrÞn

1� e�Tr
: (1-41)

What happens to the residual amounts as the number of doses increases?

It appears from Figure 1-25 that, after several doses, the residual values

stabilize around a value slightly higher than 8 mg/ml. To see if this is

true in general, we need to find lim Rn as n !1. Indeed, using

Eq. (1-40), the limit is now easily computed to be:

R ¼ limn!1Rn ¼ limn!1Ce�Tr 1� ðe�TrÞn
1� e�Tr

¼ Ce�Tr

1� e�Tr
¼ C

eTr � 1
: (1-42)

Thus, for a sufficiently large number of doses, the residual

concentrations stabilize around the value R, which depends on the dose C,

the fixed time between doses T, and the elimination rate constant r.

EXERCISE 1-19

Is Rn larger or smaller than R? Explain why. What is the physiological

meaning of R?
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EXERCISE 1-20

Compute the exact value of the limit R for the example in Figure 1-25:

C ¼ 10 mg/ml, r ¼ 0.1 hours�1, T ¼ 8 hours.

Knowing the MEC, the MTC, and the drug’s half-life (or its elimination

rate constant r), we now want to design a therapeutic regimen with

maximal benefits. Equal doses C of the drug should be given at equal

time intervals T. Once the concentration reaches the MEC, it should

remain between the MEC and MTC.

The graph in Figure 1-25 shows that after a few dosages the drug’s

concentration is almost between R and R þ C. (In fact, this is not quite

correct, but the difference is so small that it is not enough to have an

effect on the treatment’s safety or effectiveness.) Because one goal is to

maintain the concentration between the MEC and MTC, we can

determine R and C from the conditions:

R ¼ MEC; Rþ C ¼ MTC: (1-43)

Because the MEC and MTC are known for every drug, we can determine

the dose C as:

C ¼ MTC�MEC: (1-44)

Using these values for R and C in Eq. (1-42), we obtain:

MEC ¼ R ¼ C

eTr � 1
¼ MTC�MEC

eTr � 1
: (1-45)

EXERCISE 1-21

Solve the equation MEC ¼ MTC�MEC

eTr � 1
for T to show that T ¼ 1

r
ln

MTC

MEC
:

Requiring all doses to be the same has the obvious disadvantage that a

certain build-up period is required before the concentration reaches the

MEC. For some drugs, such as certain antidepressants, a slow build-up

is necessary to minimize side effects. For many other common drugs,

however, the dosage schedule tolerates a larger first dose to achieve the

maximal effective concentration as quickly as possible.

EXERCISE 1-22

If a drug’s MEC, MTC, and elimination constant r are known, determine

a drug intake schedule that maximizes the drug’s therapeutic effect

under the following constraints:
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1. All doses must be given at equal time intervals.

2. All doses, except possibly for the first dose, must be equal.

3. The MEC must be achieved as quickly as possible.

4. The concentration of the drug should remain between the MEC and

MTC at all times.

EXERCISE 1-23

It is not common practice for pharmaceutical companies to make the

MEC and MTC figures for their drugs available. Instead, users are

provided with recommended doses and time intervals. It may be

interesting to consider the following question: Assuming that

pharmaceutical companies follow objectives 1–4 from Exercise 1-22

when determining the dose regimens for their drugs and that the

half-life is known, could you estimate the drug’s MEC and MTC?

XI. USING COMPUTER SOFTWARE FOR SOLVING

THE MODELS

For most models developed thus far, we have presented analytical

solutions. Knowing the analytical form of a solution allows for direct

calculation of the predicted value. For example, knowing that the

solution of Eq. (1-2) is given by P(t) ¼ P(0)ert, where P(0) ¼ 5.3 and

r ¼ 0.297, we can calculate that for t ¼ 2.5, the model predicts a

population size of P(2.5) ¼ 5.3e(0.297)(2.5) ¼ 11.1 million for the United

States for the year 1825. In the same way, using the solution of the

discrete model pn ¼ (1 þ k)n p0 from Exercise 1-1, we can calculate that if

p0 ¼ 5.3 and k ¼ 0.345, according to the discrete model (1–1), the U.S.

population in 1880 will be p8 ¼ (1 þ k)8 p0 ¼ (1.345)8(5.3) ¼ 56.8 million.

It is not always easy to solve a model analytically, and, as the

sophistication of the models increases, the mathematics for solving the

equations become increasingly more challenging. When it is difficult (or

sometimes impossible!) to obtain the actual analytic solution, numerical

solutions are used instead. A numerical solution does not give us a function

as the analytical solution does, but instead provides us with a table of

values for the unknown function. For example, a numerical solution for

the problem
dPðtÞ
dt

¼ rPðtÞ;Pð0Þ ¼ 5:3, for r¼ 0.297 is presented in Table 1-7.

The left column contains a list of values for t, and the right column

contains the values of the numerical solution P(t) at these points. The

t (DT ¼ 0.5) P (t)

0.0 5.300

0.5 6.148

1.0 7.133

1.5 8.275

2.0 9.599

2.5 11.136

3.0 12.919

3.5 14.987

4.0 17.387

4.5 20.170

5.0 23.399

5.5 27.145

6.0 31.491

TABLE 1-7.
A numerical solution for dP(t)/dt ¼ rP(t).
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increment used on the time variable t is often denoted by DT and is 0.5

in this example. Changing the value of DT allows for creating a specific

mesh of points at which the value of the function P(t) will be calculated.

For DT ¼ 1, the time values for which P(t) will be calculated will be

t ¼ 0,1,2,3, etc. For DT¼0.2, the time values will be t ¼ 0, 0.2, 0.4, 0.6, etc.

There are a number of software products that can be used to model and

analyze dynamical systems and obtain numerical solutions of

differential equations, including MATLABW, BERKELEY MADONNA,

StellaW, VensimW, and others. For the rest of the chapter, we refer to the

specific syntax of BERKELEY MADONNA, although any of the above

software packages can be employed instead. A functional version (with

some limitations on saving and printing) of BERKELEY MADONNA can

be downloaded at no charge from the Web site, listed in Internet

Resources at the end of this chapter. The remaining chapters of the text

do not pertain to particular software, although references to relevant

programs are provided at the end of each chapter, where appropriate.

The initial and final values of the time interval over which we would like

to know the values of the solution should be specified. In BERKELEY

MADONNA, they are called STARTTIME and STOPTIME. In the

example above, we had the values of P(t) calculated over the interval [0,

6], corresponding to STARTTIME ¼ 0 and STOPTIME ¼ 6.

Wenowgive a basic introduction thatwill allow you to entermathematical

models in BERKELEY MADONNA and obtain their numerical solutions.

We shall use the models developed in this chapter as examples.

XII. SOME BERKELEY MADONNA SPECIFICS

When you start BERKELEYMADONNA, the screen that will contain your

model appears. There is even some code that has already been written:

METHOD RK4

STARTTIME ¼ 0

STOPTIME ¼ 10

DT ¼ 0.02

The first line specifies the numerical method that will be used by the

program for computing the numerical solution. You can safely ignore

this for now and accept the default algorithm.5 The remaining lines

5. For those readers familiar with the theory of numerical methods for solving
ordinary differential equations, we would add that BERKELEY MADONNA
allows you to choose from a set of built-in algorithms, including Euler’s method
and two types of Runge–Kutta methods. More details on this and other specifics
related to the software can be found in BERKELEY MADONNA’s brief
documentation accessible under the Help menu.
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specify that the time values for which the function values will be

calculated begin at t ¼ 0, end with t ¼ 10, and contain all points in

between with increments of DT ¼ 0.02.

BERKELEY MADONNA is case-insensitive—m and M are treated as

being exactly the same. It is up to you whether to use all lower-case, all

upper-case, or mixed cases. Blank lines do not matter—include as many

or as few as you need to make your equations more readable.

To enter the model
dPðtÞ
dt

¼ rPðtÞ;Pð0Þ ¼ 5:3; begin typing at the end of

the code that is already there. Enter the following:

d/dt(P) ¼ r*P

init P ¼ 5.3

r ¼ 0.297

The first line is, of course, the model itself. Notice that we have

completely ignored the fact that P ¼ P(t) is a function that depends on

the time variable t—it is understood by default.

We use init P to specify the initial condition P(0) ¼ 5.3. Finally, on the

last line, we give the specific value for r. Run the model by clicking the

Run button in the upper left corner. The graph of the solution will

appear, as in Figure 1-26.

To see the numerical solution as a table of values, click on the

Table button found across from the Run button (the icon depicts two

squares offset from one another). You should be looking at output

similar to Figure 1-27.

To compare the model predictions with the actual U.S. census data, enter

the data from Table 1-1 into a text file (separating the two columns by a

blank space or tabs), and save the file as U.S.Pop.txt. To import this file

into BERKELEY MADONNA, select File > Import Dataset from the main

menu. Navigate to your U.S.Pop.txt file and open it. Click OK in the

Import Dataset dialog box. The data should now appear on the plot.

EXERCISE 1-24

Select appropriate values for DT, STARTTIME, and STOPTIME to obtain

the numerical solution for P(t) that:

(a) Contains the values for P(t) at integer time values from t ¼ 1 to

t ¼ 7; and

(b) Allows you to use the numerical solution to obtain the value

P(2.35).
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EXERCISE 1-25

(a) Obtain a numerical solution at the integer values of t from t ¼ 0 to

t ¼ 20 for
dPðtÞ
dt

¼ a 1� PðtÞ
K

� �
PðtÞ, P(0) ¼ 9.6, K ¼ 660, and

a ¼ 0.608.

(b) Import the data from Table 1-8, and compare them with the model

prediction.

Solving discrete models in BERKELEY MADONNA is very similar. There

are no derivatives involved here, so entering the actual model equation

is done in a slightly different way. For example, to enter our discrete

model pn – pn�1¼ k pn�1, first rewrite it as pn¼ pn�1þ k pn�1¼ (1þ k) pn�1.

FIGURE 1-26.
BERKELEY MADONNA numerical solution: Graphical output and model.
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FIGURE 1-27.
BERKELEY MADONNA numerical solution as a table of values.

Time t Biomass P(t) Time t Biomass P(t) Time t Biomass P(t)

0 9.6 7 257.3 14 640.8

1 18.3 8 350.7 15 651.1

2 29 9 441 16 655.9

3 47.2 10 513.3 17 659.6

4 71.1 11 559.7 18 661.8

5 119.1 12 594.8 — —

6 174.6 13 629.4 — —

TABLE 1-8.
Yeast culture growth data. (Data taken from Carlson [1913] and Pearl [1927].)

48 Chapter OneAn Invitation to Biomathematics



Notice that this model is recursive; knowing the ‘‘present value’’ pn�1, we

can determine the ‘‘next value’’ pn. This is exactly the syntax used in

BERKELEY MADONNA to describe the equations.

Enter the following (the first line is the default and we have specified

appropriate values for STARTTIME, STOPTIME, and DT):

METHOD RK4

STARTTIME ¼ 0

STOPTIME ¼ 10

DT ¼ 1

init p ¼ 5.3

next p ¼ (1 þ k)*p

k ¼ 0.345

Run the model to obtain the graph and a table of values for the

population size p (see Figure 1-28). Pressing the Data Points button

(an icon with a solid black dot located across from the Run button) will

show you the points on the graph that make the numerical solution table

for p.

FIGURE 1-28.
BERKELEY MADONNA graphical output depicting the data points representing the numerical solution.

Introduction to Dynamical Systems 49An Invitation to Biomathematics



XIII. SUGGESTED BIOLOGY LABORATORY EXERCISES

FOR CHAPTER 1

1. Monitor the growth of a bacterial population using visible

light spectrophotometry. This exercise can be accomplished in one

day, with demonstrable exponential growth within a few hours.

Demonstration of logistic growth will require data points taken

over the course of the day or into the evening.

2. Monitor the growth of a population of Drosophila melanogaster.

This is a long-term exercise, requiring periodic counting of flies

over a couple of months. To simplify matters, (chiefly to avoid

having the experimental organisms fly away while they are being

counted), we recommend the use of a flightless mutant strain,

such as apterous. This exercise can be modified by manipulating the

initial population density—start several cultures each with

a different number of flies.
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There is something fascinating about science. One gets such whole-

sale returns of conjecture out of such a trifling investment of fact.

Mark Twain (1835–1910)

In the first chapter, we modeled the behavior of several

single-population biological systems. Few populations

exist in isolation, however, so we now want to expand the

range of biological phenomena we can investigate by

modeling the interactions of systems with multiple

groups. Our basic questions remain the same: What is the

long-term behavior of the system, are there equilibrium

states, and how do we classify them? Although our

models will be necessarily more complex, in every

example a single differential equation determines the

evolution of each element of the system.

When two or more groups of organisms interact, a variety

of relationships and outcomes are possible. Let us begin

by exploring some of the possibilities.

When two or more groups of individuals of different

species live in the same area, we describe the members of

each species as belonging to a population and the group

of populations as belonging to a community. Interactions

among community members may take many forms. One

population may feed upon another, or two may compete

with each other to feed upon a third. Competition

between populations, in fact, may occur over any

valuable aspect of the habitat, including nesting sites or

hiding places. Such competitions may be classified as

exploitative or resource competition, where the two species

use the same resources, or as interference competition,

where the two species cause harm to each other.

Interactions between species need not always be harmful.

Mutualism, which is also sometimes called symbiosis,

occurs when two species benefit from living in close

association with each other. A good example of

mutualism occurs when an alga and a fungus combine to

form a lichen and together wrest a living from extremely

inhospitable environments, such as bare rock faces. Two

related associations are commensalism, where one species

benefits and the other is unharmed, and amensalism,

where one species suffers but the other is unaffected.

Predations are interactions in which one species benefits

while the other is harmed. In addition to the well-known
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example of carnivory, where one meat-eating species hunts and feeds on

another animal, if the food organism is a plant, then the relationship is

described as herbivory. Parasitism and infectious disease also fall within the

definition of predation. In parasitism, one species benefits by living on or

inside the body of another. With infectious diseases, a pathogenic

microbe (a virus, bacterium, fungus, or protozoan) grows in or upon the

body of the host organism, causing varying levels of harm to the host,

ranging from annoyance (as with the common cold or athlete’s foot) to

death (as with AIDS, cholera, or bubonic plague).

Regardless of the difference in specifics, several fundamental principles

are followed in the development of most models in which two or more

groups interact. In this chapter, our goal will be to understand those

principles as they apply to some of the classical epidemic and predator–

prey models and emphasize their biological meaning and mathematical

formulation.

I. INTRODUCTION TO INFECTIOUS DISEASE

A. Background

Throughout the centuries, more human lives have been lost to infectious

diseases than to wars. A well-documented example is the ‘‘Spanish’’

influenza pandemic of 1918–1919, which killed at least 25 million people

worldwide. Chillingly, a recent review of mortality figures by Johnson

and Mueller (2002) increases the conservative estimate to 50 million. In

contrast, deaths from World War I (which was then just ending) are

estimated at 8.5 million. Bubonic plague, cholera, rabies, yellow fever,

malaria, leprosy, and, most recently, AIDS, are humanity’s lethal

enemies. Because the cause of such ailments was unknown for many

centuries, the fear of contagious diseases is rooted deeply in the human

mind. It is hard to fight an ‘‘invisible enemy,’’ and the fight against

infectious diseases has been slow, dangerous, and heroic.

That some diseases are infectious was recognized long ago, and it was also

known that the spread of such diseases could be restricted by isolating the

affected persons and places. For thousands of years, isolation was the only

effective tactic available in the fight with the invisible enemy.

Unfortunately, we are all familiar with the progression of an infectious

illness, from exposure through the miserable symptoms to resolution,

either by recovery or death. A mother wipes her infant’s runny nose and

inadvertently rubs her own nose while on her way to the sink to wash

her hands. The viruses on her hand adhere to mucous membrane cells,

and a new infection is initiated.

In the beginning, the host does not realize that she is infected. Following

infection, the host enters a phase called the incubation period, during
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which the pathogenic microbe begins to multiply. The infected host

shows no symptoms at all during this period, which usually lasts from

several days to several weeks, but may be as short as a few hours or as

long as 10 or 12 years. The length of the incubation period is

characteristic of the particular infectious organism, within limits

determined by the health of the host and the route of infection. The

healthier the host and the longer the path the infecting organism must

travel, the longer the incubation period. If the host is healthy, nonspecific

defense mechanisms may be able to defeat some of the infecting

organisms, thus slowing the progress of the infection. If the path

traveled by the infecting organism is longer, it will take more time for

the infection to occur because each step in the path (for example, from

the mouth, through the gastrointestinal tract, and then into the

bloodstream in the case of some Salmonella species) will require some

amount of time to occur.

The host begins to feel ill during the prodromal period or prodromium. This

is a short period of mild symptoms, which may be difficult to characterize

as anything other than ‘‘not feeling quite right.’’ The prodromium is

rapidly followed by the period of illness or period of invasion, characterized

by the most rapid reproduction of the pathogen. The host develops

unmistakable symptoms, which may be quite severe. If the disease is

serious and the immune response is weak, delayed, or absent, the host

may die during this phase. The peak of this phase is called the fastigium.

If all goes well, however, the immune system will begin to bring the

infection under control, and the infection will enter the period of decline.

The host will begin to get better and enter the convalescent period, in

which the immune system elements (the antibodies and cytotoxic or

killer T cells) will be actively targeting and destroying the remaining

infectious agents. With many diseases, the host will acquire long-lasting

resistance to the disease, such that when she encounters the pathogen

again, her immune system will mount such a rapid and strong

reaction that an infection will not be established, and the host will not

even realize that she has encountered the pathogen again. This resistance

to recurring infection is called immunity.

For countless years, human beings had no choice but to suffer through

the above course of infection and, if they were fortunate, survive.

A major breakthrough was made in 1798, when the British physician

Edward Jenner (1749–1823) developed a vaccine against smallpox by

inoculating people with tissue from individuals infected with cowpox.

Even Lord Byron, in his typical ironic manner, praised this great

achievement:

With it the Doctor paid off an old pox

By borrowing a new one from an ox. . .

Don Juan, Canto the 1st, CXXIX.
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At about the same time, Daniel Bernoulli (1700–1782) published a

mathematical model developed to assess the effect of cowpox

inoculation on the spread of smallpox. This work is one of the earliest

known scientific efforts to create a quantitative model for assessing the

effects of treatment.

B. What is an Epidemic?

Infectious diseases are a fact of life, and ever since humans began to live

in large groups, epidemics of infectious diseases have left their mark

on human history. To define the term, an epidemic occurs when the

number of infected individuals in the population increases as time goes

by. This definition, however, does not at all convey the human tragedy it

entails.

At No. 39 Broadwick Street in the Soho district of London, there is a pub

named in honor of a physician, John Snow. A plaque on the wall of that

establishment reads, ‘‘The Red Granite kerbstone marks the site of the

historic BROAD STREET PUMP associated with Dr. John Snow’s

discovery in 1854 that cholera is conveyed by water.’’ John Snow was a

pioneer in the science we now call epidemiology, the study of health and

disease in human populations.

In August of 1854, an outbreak of cholera occurred in London. In the

period between August 30 and September 9, hundreds of people were

stricken and died. John Snow observed that the cases were concentrated

in the vicinity of the Broad Street water pump, and he convinced the

local government officials to remove the handle from the pump, which

they did on September 8. By this time, the peak of the epidemic had

already passed (see Table 2-1).

Dr. Snow’s action might have seemed irrelevant but for an independent

investigation by Rev. Henry Whitehead, a local clergyman. Rev.

Whitehead discovered that an infant living at No. 40 Broad Street had

been stricken with diarrhea on August 29 and died on September 2. The

wash water from the baby’s dirty diapers had been dumped in the

cesspool at the front of the house, just a few feet from the water pump.

At the clergyman’s urging, the cesspool was inspected and found to be

leaking, contaminating the water from the pump. Further, since the

infant’s father was stricken with cholera on September 8, John Snow’s

actions likely prevented a second epidemic caused by drinking water

from the Broad Street pump. Snow continued his investigations into the

cause of cholera outbreaks and published, in 1855, On the Mode of

Communication of Cholera, linking cholera to the consumption of water

contaminated with fecal matter.

Contaminated drinking water is just one means by which infectious

agents are transmitted. Some, such as the smallpox virus, may be
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transmitted by objects used by an infected person. Others, such as the

malaria protozoan or the West Nile virus, are transmitted by insects. Still

others are communicated by direct contact between infected individuals

and susceptible individuals.

The duration, severity, and recurrence of epidemics may also vary

widely. Some epidemics, such as the Spanish influenza epidemic of 1918,

may develop rapidly, spreading terrible destruction within months and

then tapering off (see Figure 2-1). Others may recur with relative

regularity, as illustrated by the weekly case notification records of

measles in England and Wales before mass vaccination was initiated (see

Figure 2-2).

Despite the early work by Daniel Bernoulli, mathematicians were not

seriously engaged in the fight against infectious diseases during the

eighteenth and nineteenth centuries. In the early twentieth century, the

British bacteriologist Ronald Ross (1857–1932) used mathematical

modeling in his work with malaria and, more generally, in studying the

spread of an infectious disease. Ross received the Nobel Prize in 1902.

The now classical works (Kermack and McKendrick [1927; 1932; 1933])

built upon Ross’s studies and examined the questions of when a disease

will spread and how to find the threshold of an epidemic. In this text, it

would be impossible to cover even a fraction of the literature on

modeling infectious diseases that is available today.

Date Number of Fatal Attacks Deaths

August 29 1 1

August 30 8 2

August 31 56 3

September 1 143 70

September 2 116 127

September 3 54 76

September 4 46 71

September 5 36 45

September 6 20 37

September 7 28 32

September 8 12 30

September 9 11 24

September 10 5 18

September 11 5 15

September 12 1 6

TABLE 2-1.
Cases of fatal cholera and cholera deaths in the vicinity of the Broad Street water pump, 1854.
(Excerpted from Snow [1855].)
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II. THE SPREAD OF AN EPIDEMIC

A. Properties of the Mathematical Models

The models in this chapter will be continuous, and their behavior will be

described by coupled differential equations. Typically, there will be two

or more interacting groups and one differential equation per group

describing how that particular group changes. Coupling means that at
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FIGURE 2-1.
The influenza epidemic of 1918 in the United States. Panel A: Territorial spread of the epidemic from
September to early October 1918; panel B: Death toll in Richmond, VA, attributed to the influenza
and pneumonia. (Panel A is from Crosby, A. W. [1989]. America’s forgotten pandemic: The influenza of
1918. Cambridge, UK: Cambridge University Press. Used by permission. Data for panel B were
obtained from the same source.)
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least some of the differential equations involve more than one variable.

For example, we might have:

dA

dt
¼ 2A� 3B

dB

dt
¼ Aþ B:

This means that the behaviors of the groups A and B are linked.

To provide concrete examples, we shall consider two classical models

from mathematical biology—the spread of an epidemic, and predator–

prey models. In these examples (and many other problems in biology

and chemistry), the dynamics depend on contact between groups. This

dependency is manifested by the product of two groups in a

differential equation. For example, in the spread of an epidemic, the

two groups considered will be the susceptibles (S) and the infectives (I).

We shall hypothesize that the susceptibles’ rate of infection is

proportional to the amount of contact they have with the infectives,

and that the flow from S to I occurs at a rate aSI, where a > 0 is a

constant; that is, at a rate proportional to the product of the group

sizes.

Why SI instead of something else? An intuitive way to understand this

is to begin with the groups uniformly mixed, then double the number

of infectives while keeping the number of susceptibles fixed. We should

expect the number of contacts between the groups to then double.
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FIGURE 2-2.
Measles in England and Wales. Weekly case notifications of measles in England and Wales before
general vaccination was initiated. (Data from http://www.zoo.ufl.edu/bolker/measdata.html.)
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The same reasoning applies if we double the number of susceptibles

while keeping the number of infectives fixed. At the end of this

chapter, we present a more rigorous mathematical derivation of

this idea.

Before we begin to analyze what happens when we have a group of

infective people in a population, we need to know several things about

the disease and the environment. For example, do those recovered from

the disease have immunity, or are they again susceptible? Does the

disease have an incubation period? Will the infectives be isolated, by

quarantine or natural separation, or will they be spread throughout the

population? We consider in detail two models, the SIS model (S stands

for susceptibles, I for infectives) and the SIR model (R stands for

recovered), and some variations of both.

B. The SIS Model

1. Description of the SIS Model

Our first model will be quite simple. It assumes that the population is

divided into two nonintersecting groups—the group of those who have

the disease and can infect others (I) and the group of those who do not

have the disease and can be infected (S). Our goal is to build a model

that describes the change in the sizes of the susceptible and infective

groups with time. We make the following assumptions:

1. The population is fixed and consists of N individuals. There are no

births or deaths, and no one migrates into or out of the population.

2. There is no incubation period for the disease.

3. The two groups—susceptibles and infectives—are uniformly mixed

within the population.

4. Once recovered from the disease, an individual is susceptible again;

that is, there is no immunity.

These assumptions may seem unjustifiably restrictive, but our goal is to

begin with the simplest model that will allow us to examine some

important questions. Also, there are real situations in which these

assumptions would be appropriate. Assumption 1, for example, would

apply to the SARS epidemic that developed in an apartment building in

Hong Kong, when the building was quickly sealed. For us, the SIS model

will provide a start, and we shall then proceed to models that remove or

relax its restrictive assumptions.

Assume that in a fixed population of size N, a small number I(0) of

individuals have somehow contracted an infectious disease. As time

progresses, the infection may spread in the population, and we want to

examine those changes with time. We denote:
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SðtÞ ¼ the number of susceptibles at time t;

IðtÞ ¼ the number of infectives at time t:

With this notation, the assumption that the size of the population N

remains fixed translates into S(t) þ I(t) ¼ N, so that
dS

dt
þ dI

dt
¼ 0: We need

equations that describe how each of the groups changes. Earlier, we

noted that the susceptibles become infected at the rate aIS. The number

a > 0 is called the infection rate. It can be interpreted as the probability

that a particular susceptible is infected by a particular infective within a

unit of time. We justify this interpretation in Section VIII.

Individuals who recover from the disease rejoin the group of the

susceptibles immediately. If we assume that the infectives recover at a

constant per capita rate b, then the recovery rate is bI. That is, the flow

from I to S occurs at a rate bI. Accounting for outflow and inflow, the

rate of change for the size of S is therefore given by:

dS

dt
¼ �aSI þ bI: (2-1)

Now, because
dS

dt
þ dI

dt
¼ 0, the rate of change for I will be:

dI

dt
¼ aSI � bI: (2-2)

The mathematical model composed of Eqs. (2-1) and (2-2) is often called

the SIS model. A pictorial representation of the model is given in

Figure 2-3. The rectangles represent the different groups, and the arrows

represent the flows between the groups. Each arrow is labeled with the

rate of flow between the groups. Such diagrams are often helpful in

formulating mathematical models.

We next focus on the meaning of parameter b and the long-term

behavior described by the SIS model.

2. Interpreting the Parameter b

The per capita recovery rate b in the SIS model is related to the average

length of the infection, �d, in the following way:

�d ¼ 1

b
:

Thus, the smaller the value of b, the longer lasting the disease would be

on average.

As an optional reading, we next present a mathematical justification for

this relation. It requires a certain higher level of calculus proficiency, and

its omission will not affect the subsequent sections.

S I

bI

aSI

FIGURE 2-3.
Schematic representation of the SIS
model. S and I represent the susceptible
and infected populations, a is the
infection rate, and b is the per capita
recovery rate.
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Assume that we examine a number of individuals A0 ¼ A(0) who have

contracted the disease at about the same time. Let A(t) be the number

of individuals who remain sick after time t. Because the per capita rate of

recovery is b, the rate of change of A(t) will be:

dA

dt
¼ �bAðtÞ:

The basic principle that we use is that the mean value of a group of

numbers is computed as
X
t

tpðtÞ, where pðtÞ is the proportion of scores

that have the value t.

To compute the average length of the disease, we begin by dividing

the interval ½0;1Þ into equal (small) subintervals by selecting

0 ¼ t0 < t1 < t2 < . . . , with tnþ1 � tn ¼ Dt, for each n¼ 0, 1, 2, . . . . (To

be rigorous, we should consider the interval ½0; L� and then take the limit

of our answer as L ! 1.)

The number of individuals who recover between tn and tnþ1 is

AðtnÞ � Aðtnþ1Þ and the approximate length of their infection is tn.

Therefore, the proportion of A0 that become cured between tn and tnþ1

is
AðtnÞ � Aðtnþ1Þ

A0
and, thus, the mean value of the infection is

approximately:

�d �
X1
n¼0

tn
AðtnÞ � Aðtnþ1Þ

A0

� �
¼ 1

A0

X1
n¼0

tn
AðtnÞ � Aðtnþ1Þ

Dt

� �
Dt:

Notice now that, as Dt ! 0, the approximation above improves.

Further, because the expression
AðtnÞ � Aðtnþ1Þ

Dt

� �
approaches � dAðtÞ

dt

and the sum
1

A0

X1
n¼0

tn
AðtnÞ � Aðtnþ1Þ

Dt

� �
Dt approaches

1

A0

Z1

0

t � dAðtÞ
dt

� �
dt ¼ � 1

A0

Z1

0

tdAðtÞ, we obtain that the average duration

of the disease is given by:

�d ¼ � 1

A0

Z1

0

tdAðtÞ:

To compute the integral above, we integrate by parts to get:Z1

0

tdAðtÞ ¼ tAðtÞ
����
1

0

�
Z1

0

AðtÞdt ¼ �
Z1

0

AðtÞdt. The last equality holds

because lim t
t!1

AðtÞ ¼ 0 and 0A(0) ¼ 0 imply tAðtÞ
����
1

0

¼ 0 ðlim
t!1

tAðtÞ ¼ 0

holds because A(t) decays exponentially).
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Now, because
dA

dt
¼ �bAðtÞ, we have AðtÞ ¼ � 1

b
dA

dt
and:

Z1

0

AðtÞdt ¼ � 1

b

Z1

0

dAðtÞ ¼ � 1

b
AðtÞ

����
1

0

¼ 1

b
Að0Þ ¼ A0

b
:

Thus, the average duration of the disease is:

�d ¼ � 1

A0

Z1

0

tdAðtÞ ¼ � 1

A0
�
Z1

0

AðtÞdt
0
@

1
A ¼ 1

A0

Z1

0

AðtÞdt
0
@

1
A ¼ 1

A0

A0

b
¼ 1

b
:

3. The Long-Term Evolution of the Disease

As time passes and more susceptibles become infected and more

infectives recover, what is the long-term behavior of the disease?

Notice that because of the condition S(t)þ I(t) ¼ N, Eq. (2-2) of the model

could be written as:

dI

dt
¼ aI S� b

a

� �
¼ aI N � I � b

a

� �
:

Next, if N � b
a
> 0, we could further rewrite the right-hand side as

aI N � I � b
a

� �
¼ aI N � b

a
� I

� �
¼ a N � b

a

� �
1� I

N � b
a

0
B@

1
CAI ¼ r 1� I

K

� �
I;

where K ¼ N � b
a
; and r ¼ a N � b

a

� �
¼ aN � b > 0: Thus,

Eq. (2-2) takes the form:1

dI

dt
¼ r 1� I

K

� �
I: (2-3)

Does this equation look familiar? If K ¼ N � b
a
> 0, the rate of change

for the group of infectives is given by a logistic equation! This also

means that we already know the long-term behavior for I(t), because in

Chapter 1 we studied the logistic equation in detail. Finally, knowing that

S(t) ¼ N � I(t) allows us to derive the long-term behavior of S(t) from

that of I(t). We present the results in the next two exercises.

EXERCISE 2-1

Show that for N � b
a
< 0 ðor N � b

a
¼ 0Þ, the number of infectives I(t) is

declining and, thus, there is no epidemic.

1. For Eq. (2-3), be sure to properly distinguish between the number 1 and the
symbol I that denotes the number of infectives.
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EXERCISE 2-2

Let N � b
a
> 0:

(a) Show that if Ið0Þ < N � b
a
; then the number of infectives is

increasing with time, and the number of susceptibles is decreasing

with time. Show that limt!1IðtÞ ¼ N � b
a
and thus limt!1SðtÞ ¼ b

a
:

(b) Show that if N > Ið0Þ > N � b
a
; then the number of infectives is

decreasing; the number of susceptibles is increasing; and, once

again, limt!1SðtÞ ¼ b
a
:

(c) What happens for Ið0Þ ¼ N � b
a
?

Figure 2-4 shows typical trajectories for the SIS model. For certain

values of the parameters, the trajectories of both S(t) and I(t) stabilize

at nonzero levels, meaning that the disease does not die out but

remains endemic in the population. Thus, for situations where

accounting for the continuing presence of disease is important,

the SIS model may offer a good starting point for describing the

dynamics of the epidemic.

EXERCISE 2-3

Criticize the SIS model. What assumptions were made to create the

model that may not be quite realistic? Suggest improvements and

refinements for the model.
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FIGURE 2-4.
Progression of disease in SIS model. Solution trajectories for S(t) (solid line) and I(t) (dashed line) for
the SIS model with initial conditions S(0) ¼ 1000 and I(0) ¼ 10 and parameter values a ¼ 0.001,
b ¼ 0.22.
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Summary. Before we examine another epidemic model, let us

summarize our results with the SIS model:

1. The average lifetime of an infection is
1

b
:

2. When N � b
a
> 0, the disease remains endemic in the

population.

3. When N � b
a
� 0, there is no epidemic.

C. The SIR Model

1. Description of the SIR Model

One of the assumptions we made for the SIS model was that, once

recovered, an infective immediately becomes susceptible to the disease.

Although there are certain diseases for which this is nearly true (e.g.,

gonorrhea and syphilis), there are others, such as chicken pox and

measles, for which this assumption is not justified. For these diseases,

individuals who have recovered from the infection have gained

immunity, and the SIS model will not describe such infections

accurately.

The SIR model, on the other hand, assumes that, once recovered, the

person is immune to the disease and is no longer susceptible.

This assumption necessitates a new group being added to the

population—the group of recovered, R. The assumptions for the SIR

model are:

1. The population is fixed. There are no births or deaths, and no one

migrates into or out of the population.

2. There is no incubation period for the disease.

3. As in the SIS model, we assume that the susceptibles and infectives

are uniformly mixed.

4. Once a person has recovered, he or she is permanently immune.

Again, these assumptions describe an idealized situation. As with

the SIS model, we assume that a small number of members of a

population have become sick with an infectious disease. We have three

groups:

S(t) ¼ the number of susceptibles at time t;

I(t) ¼ the number of infectives at time t;

R(t) ¼ the number of recovered at time t.
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The assumption that the population remains constant is:

SðtÞ þ IðtÞ þ RðtÞ ¼ N;

and thus
dS

dt
þ dI

dt
þ dR

dt
¼ 0 for all t.

We need equations describing how each group changes. As with

the SIS model, we assume the rate of new infections is given by aSI. In
this case, however, there is no flow into S, because the recovered are

immune. We then have:

dS

dt
¼ �aSI:

Individuals join the recovered group after they have been infected. We

assume, as before, that the infectives recover at a constant per capita rate

b. Then we would have:

dR

dt
¼ bI:

The schematic representation of the SIR model is presented in

Figure 2-5:

EXERCISE 2-4

(a) Will S(t) be increasing or decreasing? Give two reasons: one

based on physical considerations, the other on knowing the

derivative.

(b) Repeat part (a) for R(t).

(c) Show that
dI

dt
¼ aSI � bI:

In summary, the SIR model is described by the following system of

differential equations:

dS

dt
¼ �aSI

dI

dt
¼ aSI � bI

dR

dt
¼ bI:

(2-4)

S I
aSI bI

R

FIGURE 2-5.
Schematic representation of the SIR model. S, I, and R represent susceptible, infected, and
recovered, a is the infection rate, and b is the per capita recovery rate.
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Notice that for the SIR model, the parameters a and b have the same

meaning as in the SIS model.

2. Does an Epidemic Occur?

Recall that an epidemic occurs if the number of infectives in the

population increases. We now examine this question for the SIR model.

For the SIR model described by Eqs. (2-4),

dI

dt
¼ aSI � bI ¼ IðaS� bÞ:

Thus, the number of infectives will increase when aS(t) – b > 0; that is,

when aS(t) > b, and decrease when aS(t) < b. Because S(t) is largest

when t ¼ 0, an epidemic will not take place if

aSð0Þ � b < 0 or; equivalently; Sð0Þ <
b
a
:

We shall see that this is related to the average number of new infectives

that each infective causes (i.e., the number of secondary infections).

We would like to know how many susceptibles are infected by a typical

infective. Upon reflection, we might decide that this depends on

how many susceptibles are available and how long the infective is

available.

EXERCISE 2-5

Are there any other assumptions or factors that should be considered in

determining how many susceptibles an infective can infect?

To estimate the average number of secondary infections, consider the

following example. Assume that the average number of infections

caused by 1 infected individual per unit time is 3 per hour. Then, if the

infective remains sick, on average, for 5 hours, he or she would infect

ð5 hoursÞ�ð3 susceptibles per hourÞ ¼ 15 susceptibles:

In the SIR model, the rate of new infections is given by
dS

dt
¼ �aSI.

Recall that the outflow from S equals to the inflow to I. Thus, the rate of

new infections is given by aSI ¼ (aS)I, meaning that the (average) per

capita infection rate at time t is aS.

If I(0) ¼ 1, we obtain that at t ¼ 0,
dS

dt
¼ �aSð0ÞIð0Þ ¼ �aSð0Þ. Since S(0) is

the largest value of S(t), one infected individual can infect, on average,
no more than aS(0) susceptibles per unit time. Recall now that the
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average length of the infection is
1

b
. Thus, the average number of

secondary infections produced by the single infective among the S(0)

susceptibles is at most
a
b
Sð0Þ. The number

a
b
Sð0Þ estimates the basic

reproduction number of the infection defined as the average number of
secondary infections that a single infective can produce in a fully
susceptible population.

We next determine the long-term behavior of S(t), R(t), and I(t).

3. The Long-Term Evolution of the Disease for the SIR Model

We first show that according to the SIR model not everyone will catch

the disease.

EXERCISE 2-6

Use
dS

dR
¼ dS=dt

dR=dt
¼ � a

b
S to show that if R(0) ¼ 0, then SðtÞ ¼ Sð0Þe�a

bRðtÞ:

Let limt!1 RðtÞ be denoted by R(1). Because R(t) is non-decreasing as a

function of t, we obtain:

� a
b
RðtÞ � � a

b
N:

Combined with the result from Exercise 2-6, this yields:

SðtÞ ¼ Sð0Þe�a
bRðtÞ � Sð0Þe�a

bN > 0:

Notice that because S(t) is decreasing as time increases, and R(t) is

increasing, we know that Sð1Þ ¼ limt!1 SðtÞand Rð1Þ ¼ limt!1 RðtÞ
exist. Passing to a limit for t, when t ! 1, we obtain

Sð1Þ ¼ limt!1 SðtÞ � Sð0Þe�a
bN > 0, showing that in the long run, a

fraction of the population will never get infected.

EXERCISE 2-7

We have argued that not everyone will catch the disease. Is this

intuitively plausible? If so, explain why. If not, explain some

discrepancies between the model and reality.

Next, we show that eventually the number of infectives goes to 0. Notice

that because S(1) and R(1) exist and S(t) þ I(t) þ R(t) ¼ N for all t,

we obtain that:
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Ið1Þ ¼ lim
t!1

IðtÞ ¼ N � Sð1Þ � Rð1Þ

exists as well. There are two possibilities for I(1): either I(1) > 0 or

I(1) ¼ 0. We shall show that I(1) ¼ 0.

Assume I(1) > 0.

Because
dR

dt
¼ bI, if I(1) > 0, then we would have

lim
t!1

dR

dt
¼ bIð1Þ > 0;

and then R(t) would have to go to infinity (see Exercise 2-8, below). This

is impossible, because R(t) � N for all values of t. Thus, it is impossible

for I(1) > 0, and this implies that the alternative I(1) ¼ 0 holds. That is,

the disease dies out.

Combined with our earlier result that S(1) > 0, this means that the

disease dies out because all infectives have been removed from the

population, and not because all susceptibles have been infected.

EXERCISE 2-8

If limt!1
dR

dt
> 0, why does this mean R(t) would have to go to infinity?

It is unusual to find actual populations as isolated as hypothesized in

the SIR model. One famous example occurred at an English boarding

school in 1978, as described in The Communicable Disease Surveillance

Centre Report (1978). We present this example in Figure 2-6.

Summary. To summarize the results of the SIR model:

1. We have an epidemic if, and only if, Sð0Þ > b
a
;

2. The average lifetime of an infection is
1

b
;

3. Under optimal conditions, the average number of secondary infec-

tions one infective can produce in a fully susceptible population is
a
b
Sð0Þ;

4. The disease dies out, and not all susceptibles will catch the disease.

In the SIR model, it is impossible to solve explicitly for S(t), I(t), and R(t).

This is typical for coupled systems of nonlinear differential equations.

Furthermore, what is often most important to know is how one group

responds to a change in the other groups. When only two groups are
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involved, a phase diagram can be very helpful, and we describe this

concept next.

III. PHASE PLANE ANALYSIS

A. The Phase Plane

To demonstrate the phase plane technique, we consider a slightly

modified SIS model with specific values for the constants. In this

version, we allow for births to the susceptibles and consider the

infectives to be removed by dying, meaning the population is no longer

fixed. The schematic representation of the model is presented in

Figure 2-7, and the differential equations are:

dS

dt
¼ �aSI þ bS

dI

dt
¼ aSI � gI;

(2-5)

where b > 0 is the per capita birth rate and g > 0 is the per capita death

rate (corresponding to the recovery rate of the earlier model).

Before proceeding further, we note an important mathematical fact and

establish some vocabulary. The mathematical fact is this:

S I
aSIbS gI

Births Deaths

FIGURE 2-7.
Schematic representation of the model
represented by Eq. (2-5). S, I, and a are as above,
and b and g represent the per capita rates of birth
and death, respectively.
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FIGURE 2-6.
Data from an influenza epidemic in a boarding school in England. The solid line represents the
solution for the infectives (I) in a SIR model with S0 ¼ 762, I0 ¼ 1, N ¼ 763, b ¼ 0.0022, and
a ¼ 0.455. (From a report by the Communicable Disease Surveillance Centre and the
Communicable Disease [Scotland] Unit in the March 4 issue of the British Medical Journal, 1978, p.
587, reproduced with permission from the BMJ Publishing Group.)
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Theorem. Suppose x and y are functions of t and
dx

dt
¼ f ðx; yÞ; dy

dt
¼ gðx; yÞ,

where f (x,y) and g(x,y) have continuous partial derivatives. Then for
any point (x0,y0) there is a unique solution (x(t), y(t)) to the above system of
equations with x(0) ¼ x0 and y(0) ¼ y0.

This theorem is not nearly as complicated as the mathematical

symbolism might make it appear. It simply says the rate of change of

each variable depends only on the variables and not time, while the

conclusion states that if the initial values of each variable are given, then

there is exactly one way the process can evolve. All of the models that

we consider will fulfill the hypotheses of this theorem. Such theorems in

mathematics are referred to as existence and uniqueness theorems.

To gain some perspective on what the theorem means, we go back to the

example and let S and I play the roles of x and y, respectively. The values

of
dS

dt
and

dI

dt
are determined by S and I, rather than having t appear

explicitly in the equations. This means that the model from Eq. (2-5) fits

the hypotheses of the theorem.

We construct a Cartesian coordinate system, where the axes are the

variables of interest—in our case, S and I.

Suppose at some time, usually t ¼ 0, we know the values of S and I in the

equations for
dS

dt
and

dI

dt
given above. Then we have a point (S(0), I(0)) in

the (S,I ) plane (also called the phase plane). We can also compute what

dS

dt
and

dI

dt
are at that time, so we know the direction of travel. For

example, if the coordinates are as shown in Figure 2-8, and if
dS

dt
> 0 and

dI

dt
< 0; then S would be increasing and I would be decreasing. In this

case, at this instant of time, we would associate an arrow that points

down and to the right. Thus, for each time t, we have a point, (S(t), I(t))

in the (S,I ) plane and a direction of travel. As t continues to change, we

have a curve called a trajectory traced out in the (S,I ) plane. A trajectory

constructed as we have just described defines a solution to the system of

equations. The theorem says:

1. Given any initial point in the (S,I) plane, there is a trajectory

(solution) that starts at that point; and

2. Different trajectories never intersect.

B. Constructing the Phase Plane

Consider now the following specific example for the model defined by

Eqs. (2-5):

I

S0

(S(0), I (0))

FIGURE 2-8.
Using the phase plane to determine direction of a
trajectory. The arrow indicates direction of travel
at a point where and at t ¼ 0.
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dS

dt
¼ �0:002SI þ 0:1S ¼ Sð�0:002I þ 0:1Þ

dI

dt
¼ 0:002SI � 0:4I ¼ Ið0:002S� 0:4Þ:

(2-6)

In a phase plane diagram, we have a collection of arrows that describe

how the trajectories travel. To construct a phase plane, we begin by

finding the null clines for S and I; that is, where
dS

dt
¼ 0 and

dI

dt
¼ 0. For the

first equation in our example,

dS

dt
¼ Sð�0:002I þ 0:1Þ ¼ 0;

the null clines are S ¼ 0 or I ¼ �0:1

�0:002
¼ 50: If

dS

dt
¼ 0, there is no

horizontal movement, so the arrows will be vertical. Likewise,

dI

dt
¼ Ið0:002S� 0:4Þ ¼ 0

implies I ¼ 0 or S ¼ 0:4

0:002
¼ 200: Along the null clines for I, the arrows

will be horizontal.

In Figure 2-9, we have sketched the null clines and arrows indicating

horizontal or vertical travel. Along the line S ¼ 200, the first equation

from Eq. (2-6) implies that
dS

dt
< 0 when I > 50. Thus, above the line

I ¼ 50, the arrows will point to the left. For I < 50, the same equation

shows that
dS

dt
> 0, which means that below the line I ¼ 50 the arrows

will point to the right. Similarly, along the line I ¼ 50, we get
dI

dt
< 0 for

S < 200 and
dI

dt
> 0 for S > 200. Therefore, along the line I ¼ 50, the

I

S0

S = 200

I = 50

FIGURE 2-9.
Direction of travel near the null clines for the example described by Eq. (2-6).
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arrows point down for S < 200 and up for S > 200. When S ¼ 0, Eq. (2-6)

implies that
dI

dt
< 0, and the arrows along the vertical axis point down. If

I ¼ 0, we get
dS

dt
> 0, and the arrows along the horizontal axis point right.

Points at which two null clines intersect have the property that both

dS

dt
¼ 0 and

dI

dt
¼ 0 at those points. This indicates that there is no motion

at those points, and the trajectory will not move from there. Such points

are called equilibrium points or equilibrium states. In this model, the

equilibrium points are (0,0) and (200,50).

Because S and I represent members of a population, we are only

interested in the part of the phase plane where S � 0 and I � 0. The null

clines divide this region into four parts. We determine the direction of

travel in each region by checking the sign of
dS

dt
and

dI

dt
at one point in

that region. For example, in the region where 0 < I < 50 and 0 < S < 200,

we could take (10,20) as a test point. Then:

dS

dt

����
ð10;20Þ

¼ 10ð�0:002ð20Þ þ 0:1Þ > 0

dI

dt

����
ð10;20Þ

¼ 20ð0:002ð10Þ � 0:4Þ < 0

indicates a direction to the right and down. We leave it to the reader to

check that the signs of the derivatives for the other regions are as shown

in Figure 2-10(A), meaning the directions are as shown in Figure 2-10(B).

The phase plane contains a wealth of information about how the process

evolves in time, but with what we have done so far, we have an

important unanswered question: If you study Figure 2-10(B), it seems

that the equilibrium point (200,50) has particular importance (and it

does). The question is, how do the trajectories for our example behave

regarding this point? Different behaviors, satisfying the conditions from

Figure 2-10, are possible for the trajectories. For instance, they could

spiral away from the equilibrium point [Figure 2-11(A)], spiral in

[Figure 2-11(B)], or orbit around [Figure 2-11(C)].

In the next section, we describe how to determine the behavior of a

trajectory near an equilibrium point.

IV. STABILITY OF EQUILIBRIUM POINTS

A. Equilibrium Points

Many processes in nature come to equilibrium, and many do not. For

those that have a selection of equilibrium states, some of those states

I

S0

0

0

<

<

dt

dI
dt

dS

0

0

<

>

dt

dI
dt

dS

0

0

>

>

dt

dI
dt

dS

0

0

>

<

dt

dI
dt

dS

I = 50

S = 200

I

S0

I = 50

S = 200

A

B

FIGURE 2-10.
Phase plane for Eq. (2-6). Panel A: Regions in the
phase plane where the derivatives dS/dt and dI/dt for
Eq. (2-6) do not change sign; panel B: The directions
of movement in these regions.
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may never be observed in nature because they are unstable. We repeat

an intuitive example by revisiting Figure 1-12 in Section VII of Chapter 1.

Observe that points 1, 2, 3, and 4 are equilibrium points, of which

1 and 4 are unstable, and 2 and 3 are stable.

In a two-dimensional system, we can give a similar heuristic definition

for stability, and the phase plane can sometimes be used to classify

equilibrium states. For stable equilibrium points, all trajectories that

initiate sufficiently close to those point ‘‘remain close’’ for any t > 0. This

is not the case for unstable equilibrium points.

B. Finding the Equilibrium Points of a Two-Component System

Recall that for a one component system, we had:

dx

dt
¼ f ðxÞ;

and found that the steady-states are values of x0, where f (x0) ¼ 0.

In an analogous two-component system, if the components are x and y,

the equations are

dx

dt
¼ f ðx; yÞ;

dy

dt
¼ gðx; yÞ;

and the equilibrium states are points (x0,y0), where f (x0,y0) ¼ 0 and

g(x0,y0) ¼ 0.

Example 2-1
.......................

If x � 0 and y � 0, find the equilibrium states for the system:

dx

dt
¼ f ðx; yÞ ¼ y2 � yþ x� 1

dy

dt
¼ gðx; yÞ ¼ y� x:

SOLUTION:

We need to find the point (x0,y0) where f (x0,y0) ¼ 0 and

g(x0,y0) ¼ 0 Thus, we need to solve the system of equations:

y2 � yþ x� 1 ¼ 0
y� x ¼ 0:

The second equations yields y ¼ x. After substituting in the first

equation, we obtain x2 – x þ x – 1 ¼ 0, (i.e. x2 – 1 ¼ 0, ). This equation has

x ¼ 1 and x ¼ �1 as solutions. Since we have the restriction that

A

I

S0

50

200

B

I

S0

50

200

C

I

S0

50

200

FIGURE 2-11.
Possible behaviors of the phase trajectories
corresponding to the directional diagrams in
Figure 2-10. Panel A: A trajectory that spirals
away from the equilibrium point (200,50); panel
B: A trajectory that spirals into the equilibrium
point; panel C: A trajectory that orbits around
the equilibrium point.
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x � 0 and y � 0, the system therefore has (x0,y0)¼ (1,1) as its

only equilibrium state.

Next, we examine some analytic methods for determining the stability

of equilibrium points.

C. Some Necessary Mathematical Background

In order to determine the stability of the equilibrium point for a system

with two groups, we need to compute the partial derivatives of f(x,y)

and g(x,y).

In computing the partial derivative of, say:

f ðx; yÞ ¼ x2y3 þ 3xþ 4y; (2-7)

with respect to x, we treat y as if it were a constant and differentiate

the function as if x were the only variable. The symbol for the partial

derivative of f with respect to x is
@f

@x
. So, for Eq. (2-7):

@f

@x
¼ 2xy3 þ 3:

Similarly, the partial derivative of f with respect to y is denoted by
@f

@y
.

For Eq. (2-7), this partial derivative is:

@f

@y
¼ 3x2y2 þ 4:

Example 2-2
.......................

Let f(x,y) ¼ 2x3y � 3xy. Find
@f

@x
and

@f

@y
at the point (1,2).

SOLUTION:

We have:

@f

@x
¼ 6x2y� 3y;

so that at the point (1,2):

@f

@x
ð1; 2Þ ¼ 6ð12Þð2Þ � 3ð2Þ ¼ 6:

Likewise:

@f

@y
¼ 2x3 � 3x and

@f

@y
ð1; 2Þ ¼ 2ð13Þ � 3ð1Þ ¼ �1:
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The other items we need to compute to classify equilibrium points

involve 2 � 2 matrices. For a 2 � 2 matrix:

J ¼ a b
c d

� �

we have the determinant of J defined as det( J) ¼ ad � bc and the trace of

A, defined as trace( J) ¼ a þ d.

Example 2-3
.......................

Find the determinant and trace of:

J ¼ 1 3
4 �6

� �
:

SOLUTION:

We have:

detð JÞ ¼ 1ð�6Þ � ð3Þð4Þ ¼ �18;

traceð JÞ ¼ 1þ ð�6Þ ¼ �5:

D. Stability of a Two-Component System

The setting is the same as before; namely, we have:

dx

dt
¼ f ðx; yÞ;

dy

dt
¼ gðx; yÞ:

(2-8)

To determine the stability of the equilibrium point (x0,y0), we form the

matrix J, called the Jacobian, where:

J ¼ Jðx0; y0Þ ¼

@f

@x
ðx0; y0Þ @f

@y
ðx0; y0Þ

@g

@x
ðx0; y0Þ @g

@y
ðx0; y0Þ

0
BBB@

1
CCCA

Definition. An equilibrium point (x0,y0) of the system of Eqs. (2-8) is

called stable if for any region in the plane U that contains (x0,y0), there

exists a smaller region V contained in U, such that all trajectories that

initiate from V remain in U for all t > 0. An equilibrium point that is not

stable is called unstable.

A subclass of stable points is of special importance.
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Definition. An equilibrium point (x0, y0) of the system of

Eq. (2-8) is called asymptotically stable when all trajectories that start in

some region that contains the point (x0, y0) converge

to the point (x0, y0) as t becomes large. A stable equilibrium point (x0, y0)

that is not asymptotically stable is called neutrally stable.

Asymptotically stable equilibrium points are of particular importance, as

they are most likely to be seen in natural systems. For this type of

equilibria, the long-term behavior of the solution trajectories is

insensitive to small changes in the initial values. Such equilibrium points

are useful for representing the dynamics of many systems in biology,

ecology, or medicine by allowing for ‘‘normal’’ variability of the initial

conditions without affecting the long-term evolution of the system. The

following theorem presents a criterion that allows us to determine

whether a given equilibrium point is asymptotically stable.

Theorem. With the notation above, the equilibrium point (x0, y0) is

asymptotically stable if det( J) > 0, and trace( J) < 0.

Example 2-4
.......................

Consider the spread of an epidemic represented by the diagram in

Figure 2-12. This model differs from that defined by Eq. (2-5) in that the

incoming flow to the group of susceptibles is constant, and is not

dependent upon the size of the population.

We may think of parameter b as the rate of immigration into the

group of susceptibles (e.g., periodically a plane full of immigrants

free of the disease arrives at a village where the infectious disease is

spreading).

The differential equations describing this model are:

dS

dt
¼ �aISþ b

dI

dt
¼ aIS� gI:

(2-9)

S
aSIb gI

I
Immigration Deaths

FIGURE 2-12.
Block-diagram representing a model for spread of an infectious disease in a system that allows for
immigration at a constant rate b. At any time t, deaths occur at a fixed per capita rate g and leave the
system.
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We consider the following special case:

dS

dt
¼ �0:00001ISþ 0:2

dI

dt
¼ 0:00001IS� 0:02I:

We want to determine the equilibrium points and whether they are

asymptotically stable. It is easy to find that this system of equations has

one equilibrium point, S ¼ 2000 and I ¼ 10. Converting to the earlier

notations, we can write:

f ðS; IÞ ¼ �0:00001ISþ 0:2

gðS; IÞ ¼ 0:00001IS� 0:02I;

and thus:

@f

@S
¼ �0:00001I

@g

@S
¼ 0:00001I

@f

dI
¼ �0:00001S

@g

@I
¼ 0:00001S� 0:02:

The Jacobian associated with the equilibrium state (S,I) ¼ (2000,10) is:

J ¼

@f

@S
ð2000; 10Þ @f

@I
ð2000; 10Þ

@g

@S
ð2000; 10Þ @g

@I
ð2000; 10Þ

0
BBB@

1
CCCA ¼ �0:0001 �0:02

0:0001 0

� �
:

Computing the trace and the determinant of J gives trace ( J)

¼ �0.0001 < 0 and det ( J) ¼ 0.000002 > 0. According to the criteria

given in the previous theorem, the equilibrium point is asymptotically

stable.

To summarize, we have now made a certain amount of progress in

analyzing phenomena that are governed by the system of differential

equations given by Eq. (2-8), where f(x,y) and g(x,y) have continuous

partial derivatives. Namely, we know:

1. Given an initial point (x0, y0) there is exactly one solution to the

system with initial point (x0, y0).

2. We can find the equilibrium points of the system.

3. We can distinguish between types of equilibrium points according

to their stability.

When we study predator–prey models, we shall return to the idea of

stability for two-component systems and give additional descriptions of

the equilibrium states.
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V. EPIDEMIC MODELS WITH DELAYAND MODELS

WITH INTERMEDIATE GROUPS

A. Models with Delay

As already noted, one of the advantages of the SIR model is that it allows

for immunity. However, the model is built on the assumption of

permanent immunity upon recovery, and this assumption, although

reasonable for certain diseases, is not accurate for others. For certain

diseases, such as brucellosis or the sexually transmitted diseases

gonorrhea, chlamydia, and syphilis, only limited immunity is conferred

by having had the disease. This immunity is lost after some time interval

has elapsed, and the length of this interval varies, depending on the

disease. We shall model this situation using an SIR model with delay. As

a first approximation, we assume that the length of this temporary

immunity is constant—those who have recovered from the disease

lose immunity after a fixed time D > 0.

Suppose, for example, that when an individual recovers he or she

maintains immunity for 60 days. Consider how S is changing at a time t:

as before, S is decreasing in size because of individuals who are

becoming infected, and the rate at which this happens is proportional to

S(t)I(t). Now, however, S is also increasing because of the individuals

who have recovered and have subsequently lost their immunity. The

rate at which this happens is exactly the rate at which individuals

moved from the infected to the recovered group 60 days before t, and

this is bI(t – 60). The block diagram representing this model is depicted

in Figure 2-13. The delay of length D is represented by a triangle on

the arrow from R to S.

The following equations mathematically describe these modifications to

the SIR model:

dS

dt
¼ �aSðtÞIðtÞ þ bIðt�DÞ

dI

dt
¼ aSðtÞIðtÞ � bIðtÞ

dR

dt
¼ bIðtÞ � bIðt�DÞ:

(2-10)

S I R

D

aSI bI

FIGURE 2-13.
Schematic representation of an SIR model with temporary immunity. The recovered individuals
remain in R for a fixed time D that corresponds to temporary immunity. After time D, the recovered
individuals are again susceptible to the infection.
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An interesting feature of this model is that for certain values of the

parameters (and for certain initial conditions) convergence to a steady

periodic cycle is possible. This is demonstrated in Figure 2-14

by presenting the trajectories of I(t) and S(t) and a phase diagram of

I versus S. This behavior of the solution may be interpreted in the

following way. For many infectious diseases, periods of acute epidemic

outbreaks may be separated by relatively quiet periods, such as in the

measles data depicted in Figure 2-2. A mathematical model capable of

describing such events should have oscillating trajectories. Note that in

simulations involving delay, initial conditions for some of the

functions must be provided for an entire interval of length D > 0.

B. Epidemic Models with an Intermediate State

For the SIR and the SIS models, we assumed that an infected person

becomes instantaneously infectious. For many infectious diseases (such

as measles and AIDS), a latent or incubation period exists, during which

the person is infected but is not yet infectious. One way to modify the

SIR model to incorporate this scenario is to introduce a new group E for

individuals who are infected but not yet infectious. When an individual

is infected, he or she is moved to group E and remains there until he or

she becomes infectious.

If the incubation period does not vary significantly, we may assume that

all individuals from group E move to the group of infectious I after a

time period D, where D represents the approximate value of the

incubation or latent period. This will result in a model with delay. For

some diseases, this assumption will be close to the truth. For example,

the incubation period for measles varies from 8 to 13 days, with the bulk

of cases being close to 9 or 10 days. On the other hand, this assumption

will clearly be unjustified if we consider a disease where the length of

delay varies widely. For example, in AIDS the incubation periods range

from months to decades.

Where the duration of the incubation period varies significantly, we may

assume that a certain proportion of the exposed group becomes

infectious over a unit time interval. This is similar to the assumption in

the SIR model regarding the flow of infectives into group R. We leave

the detailed mathematical description of these models as an exercise.

EXERCISE 2-9

Modify the SIR model by adding a new group E that consists of infected

individuals who are not yet infectious. Give the block diagram and the

mathematical equations. Consider the following two cases separately:

(a) All infectives spend a fixed time D > 0 in group E and are moved

to the group of infectious I after that.
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FIGURE 2-14.
Numerical solution of the SIR model with delay
described by Eq. (2-10) that exhibits a robust
periodicity for large values of t for a ¼ 0.002,
b ¼ 0.55, D ¼ 10, and l(t) ¼ l(0) for t in the
interval [�D, 0]. Panel A shows the time
trajectories for S and I for large t while panel B
depicts the (S, I)-phase trajectory.
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(b) Over a unit interval, a certain portion (say g) of group E moves to

the group of infectious I.

VI. PREDATOR–PREY INTERACTIONS

We now investigate what may happen to the sizes of populations when

one species preys upon another. One might conjecture several different

possible outcomes. The predator may eliminate the prey, and, unless

it finds something else to eat, the predator would then follow its prey

into extinction. The prey may evade the predator, and the predator

would then starve. Finally, predator and prey may exist in a balance,

with each population exerting some control over the other in a manner

that maintains both populations.

As an example, let us consider the laboratory experiments conducted by

the Russian microbiologist Georgii Frantsevich Gause (1910–1986). When

Gause combined populations of Paramecium caudatum, a ciliated

protozoan, and Didinium nasutum, a predatory protozoan, in a sediment-

free medium, the Didinium ate all of the Paramecium and then starved to

death. However, when he combined the two protozoans in a medium

with sediment, the Paramecium were able to hide from the Didinium

and the Didinium starved. Finally, if Gause periodically added

Paramecium to the sediment-free medium, he was able to maintain

populations of both predator and prey that would continue rising and

falling for a few cycles (Gause [1934]). The last experiment was of

particular interest because it indicated that predator and prey

populations could coexist in a laboratory setting under careful control.

A later experiment by Luckinbill (1973) demonstrated that by increasing

the viscosity of the medium (which decreased the encounter rate

between predator and prey), it is possible to obtain prolonged

coexistence without the periodic ‘‘immigrations’’ of Paramecium.

Figure 2-15 shows the population levels of Paramecium aurelia and

D. nasutum in a water medium with methylcellulose added for increased

viscosity. Here again, it is clear that coexistence involves cycles in the

population sizes of both predator and prey.

The sustained oscillations observed in the population levels should not

be surprising at a heuristic level. High prey levels naturally stimulate

the growth of the predator population, which, in turn, causes a decline in

the prey population and a subsequent decrease in the predator

population due to the shortage of food resources. The low level of

predators then allows for the prey population to increase, and the cycle

repeats itself. We next present two more examples illustrating that

coexistence of predator and prey populations involves cycles in the

population numbers.
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Utida (1957) studied bean weevil beetle (Callosobruchus chinensis) and

wasp (Heterospilus prosopidis) populations. The wasps are parasites,

laying their eggs in the weevil larvae. When a wasp egg hatches, the

wasp larva eats the host weevil larva and destroys it. The number of

beetle larvae therefore affects the number of wasp eggs that hatch and

develop into adult wasps in the following generation. During the

experiment, food resources for the beetles were not a constraint. Utida

observed robust oscillations in the levels of the beetle and wasp

populations, presented in Figure 2-16, with predator cycles lagging

behind those of the prey.

In a nonlaboratory setting, similar interactions can be inferred from the

Hudson Bay Company records of Canadian lynx and snowshoe hare

populations. Although lynx also eat mice, voles, squirrels, and carrion,

their preference for hare is so strong that many lynx starve to death

when the hare population is low. The data in Figure 2-17 represent the

fur catches of the company from the 1840s through the 1930s and are

some of the few long-term records available in the literature. As it is

reasonable to assume that the data represent a fixed fraction of the actual

populations, the records can be viewed as a scaled plot of these

populations.2

2. It is often argued that the data set depicted in Figure 2-17 is, in reality,
composed of several different data sets collected between 1821 and 1939 (most
ending in 1934) from different geographical regions and using different
techniques (see, for example, Stenseth et al. 1997). Thus, the assumption that the
fur catches represent a constant fraction of the populations may not be entirely
accurate and should be made with caution.
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FIGURE 2-15.
Sustained oscillations of predator–prey populations. The plot in the far left is the control showing
the increase of Paramecium, grown in the experimental medium, in the absence of Didinium. (From
Luckinbill, L. S. [1973]. Coexistence in laboratory populations of Paramecium aurelia and its predator
Didinium nasutum. Ecology, 54, 1320–1327. Used by permission.)
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The cyclic behavior of the predator–prey population levels requires that

a delicate balance be maintained between the dynamic rates of change of

the interacting populations. Notice, for example, how close the

population levels in Figures 2-15, 2-16, and 2-17 come to the horizontal

axis at times. If the predator population were driven to extinction, the

prey would develop undisturbed. Alternatively, if the prey population

were destroyed, the predators would also die off. Although

numerous ecological and biological factors need to be simultaneously

present to maintain balance, the system should also be robust enough to

maintain its dynamics in the presence of common environmental noise.

In what follows, we shall consider some mathematical models capable of

generating oscillatory behavior and examine conditions under which the

system is able to preserve this behavior in the long run.
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FIGURE 2-17.
Fur catch records for Canadian lynx and snowshoe hare from the Hudson Bay Company. (From
Fundamentals of ecology, 3rd ed., by ODUM. [1971]. Reprinted with permission of Brooks/Cole,
a division of Thomson Learning: www.thomsonrights.com. Fax: (800) 730-2215.)
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Fluctuations in the levels of the azuki been weevil, Callosobruchus chinensis, (solid line) and wasp,
Heterospilus prosopidis, (dashed line) populations. (From Utida, S. [1957]. Cyclic fluctuations of
population density intrinsic to the host–parasite system. Ecology, 38, 442–449. Used by permission.)
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A. Predator–Prey Models

Suppose we have two species, one of which is a prey for the other. In this

model, we call the predator owls, O, and the prey voles, V. The prey

feeds on an environmental resource, and, if there were no predators, we

assume their numbers would grow according to a single population

model (see Chapter 1). We also assume exclusive predation, meaning the

prey provides the exclusive food resource for the predator. If there were

no prey, the predators would die at a constant per capita rate, and their

population would collapse into extinction.

EXERCISE 2-10

Under the conditions described above, what are some ways predator

and prey populations could evolve?

1. The Lotka–Volterra Model

If predator and prey are both present, contact between the groups will

provide a food source for the predator, allowing it to extend its survival

and possibly increase, but will cause the population of the prey to

decrease. The first scientists to describe the mathematics of this model

were Alfred James Lotka and Vito Volterra, who studied the problem

independently in the 1920s. The Lotka–Volterra model describes the

dynamics of the interactions between owls and voles as follows:

dV

dt
¼ aV � gVO ¼ ða� gOÞV

dO

dt
¼ �dOþ eOV ¼ ð�dþ eVÞO;

(2-11)

where a, g, d, and e are positive constants. Notice that (a – gO) has the

meaning of the net per capita growth rate for the vole population and

that (–d þ eV) is the net per capita growth rate for the owl population.

Thus, the parameters a, g, d, and e have the following biological

meanings:

a ¼ net per capita growth rate for the voles in the absence of owls.

d ¼ per capita death rate of the owls if there is no food (i.e., voles).

gO ¼ per capita death rate of the voles because of predation. The

parameter g represents the effectiveness of the owls as hunters.

eV ¼ per capita birth rate for the owls because of the availability of food

resources (the voles). The parameter e represents the per capita rate at

which the increase of the vole population contributes to increasing the

owls’ per capita birth rate.
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According to the Lotka–Volterra model, both predator and prey

population levels oscillate with time, with predators lagging behind

prey. A typical time–trajectory plot and the corresponding phase plot are

presented in Figure 2-18. The closed phase trajectories indicate strictly

periodic cycles that repeat indefinitely. The trajectories do not converge

to an equilibrium, and no trajectory drifts off to infinity. Instead, any

change in the initial conditions gives rise to a new closed phase

trajectory [see Figure 2-18(C) and (D)].

EXERCISE 2-11

(a) Determine the null clines for V and O in the Lotka–Volterra model

from Eq. (2-11).

(b) How many equilibrium states does the Lotka–Volterra model

have? List them.

(c) Draw a V versus O phase diagram indicating the directional fields

in each of the regions between the null clines (see, for example,

Figure 2-10).

(d) Based on your answers to (a)–(c) above and Figure 2-18, would

you characterize the nontrivial equilibrium state of the Lotka–

Volterra model as stable, unstable, or neutrally stable?

2. A Predator–Prey Model with Limited Growth

One weakness of the Lotka–Volterra model is that, in the absence of

predators, it allows voles to multiply exponentially. A modified version

of the model (2-11) that hypothesizes logistic growth for the voles with

carrying capacity K would be:

dV

dt
¼ a 1� V

K

0
@

1
AV � gOV ¼ aV � bV2 � gOV

dO

dt
¼ �dOþ eOV;

(2-12)

where b ¼ a/K and a now represents the inherent per capita net growth

rate for the voles in the absence of owls. We again assume owls eat only

voles, and, if there were no voles, owls would die at a constant per capita

rate.

We describe the analysis of the phase plane, leaving the details as an

exercise. The null clines for V, where
dV

dt
¼ 0; are:

V ¼ 0 and O ¼ a
g
� b

g
V:
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FIGURE 2-18.
Typical time plots and phase plots for the Lotka–
Volterra model. Parameter values: a ¼ 0.06,
d ¼ 0.02, g ¼ 0.001, e ¼ 0.0002. Panel A: Time
trajectories for the vole (solid line) and owl
(dashed line) populations with initial population
sizes: O0 ¼ 40, V0 ¼ 250; panel B: Phase
trajectory with initial population sizes O0 ¼ 40,
V0 ¼ 250; panel C: Phase trajectories for initial
population sizes V0 ¼ 250 and, from outside in,
O0 ¼ 40, O0 ¼ 60, and O0 ¼ 80; panel D: Phase
trajectories for initial population sizes O0 ¼ 40
and, from outside in, V0 ¼ 250, V0 ¼ 200, and
V0 ¼ 150.
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The null clines for O are:

O ¼ 0; and V ¼ d
e
:

The null clines are shown in Figure 2-19.

They intersect inside the region ðV;OÞ : V > 0;O > 0f g only when

d
e
<

a
b
: We prove below that when this condition is satisfied, and thus the

null clines intersect, the intersection point A is a stable equilibrium for

model (2-12).

Before we do this, we want to discuss the biological meaning of the

condition
d
e
<

a
b
because our mathematical arguments suggest that when

it is not satisfied, the model may exhibit radically different long-term

behavior.

First, recall that b ¼ a
K
; and so

a
b
¼ K—the carrying capacity for the vole

population in isolation (i.e., in the absence of owls). The condition
d
e
<

a
b

now takes the form
d
e
< K; or d < eK, equivalently. Recall that d is the

owls’ per capita death rate when no voles are present and that eV(t) is
the owls’ birth rate due to the presence of voles. Because V(t) can never

exceed its carrying capacity K (assuming no immigration), we have V(t)

< K. Thus, the term eK represents the owls’ maximal per capita growth

rate controlled by food resources.

The condition d < eK then requires that the owls’ per capita death rate

caused by a lack of food be lower than the owls’ maximal per capita

birth rate caused by the presence of food. We shall see below that under

this condition, the vole and owl populations both stabilize around

nonzero equilibrium values. When this condition is not satisfied and

d > eK, this means [because V(t) < K] that at any moment t, d > eV(t), i.e.,
the owls’ per capita death rate exceeds their per capita birth rate. The

owl population will then die out. We shall see below that this is exactly

what the model predicts.

Proceeding with the mathematical analyses of the equilibrium states, our

previous notation yields:

dV

dt
¼ f ðV;OÞ ¼ aV � bV2 � gOV

dO

dt
¼ gðV;OÞ ¼ �dOþ eOV:

(2-13)

We calculate the partial derivatives for the functions f(V,O) and g(V,O)

to get:

O

V0

A

a
g

d
e

a
b

FIGURE 2-19.
Null clines for the model described by Eq. (2-12).
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@f

@V
¼ a� 2bV � gO

@g

@V
¼ eO

@f

dO
¼ �gV

@g

@O
¼ �dþ eV:

EXERCISE 2-12

(a) Show that the equilibrium states for the model defined by

Eq. (2-13) are (0,0),
a
b
; 0

� �
; and

d
e
;
a
g
� bd

ge

� �
.

(b) Show that for the equilibrium point A ¼ (x0,y0) ¼ d
e
;
a
g
� bd

ge

� �
;

we have:

@f

@V
ðx0; y0Þ ¼ � bd

e

@g

@V
ðx0; y0Þ ¼ ae� bd

g

@f

dO
ðx0; y0Þ ¼ � gd

e

@g

@O
ðx0; y0Þ ¼ 0:

Using the results obtained in Exercise 2-12, we form the Jacobian J and

use it to analyze the stability of the equilibrium point A =
d
e
;
a
g
� bd

ge

� �

(see Figure 2-19). Calculating the determinant and the trace of this

matrix, we obtain: detð JÞ ¼ da� bd2

e
< db

a
b
� d

e

� �
and trace ð JÞ ¼ � bd

e
:

Now we see that trace( J) < 0 and det( J) > 0 if
a
b
>

d
e
; which is

necessary for the null clines in question to intersect. This shows that

the equilibrium point
d
e
;
a
g
� bd

ge

� �
for the model defined by Eq. (2-12) is

asymptotically stable. The point of using arbitrary constants was to show

that as long as
d
e
<

a
b
; this equilibrium point in the modified Lotka–

Volterra model is always asymptotically stable, regardless of the specific

parameter values.

3. More on Classifying the Equilibrium States

We now revisit the classification of equilibrium states for the model

defined by Eq. (2-8).

Recall that a point (x0, y0) is an equilibrium point if and only if

f (x0, y0) ¼ 0 and g(x0, y0) ¼ 0. An asymptotically stable equilibrium point

is one that attracts solutions any time a trajectory passes sufficiently

close. Unstable equilibrium points may attract some trajectories, but not

all. Among unstable equilibrium points is a special class called repellers.

Any trajectory coming close to a repeller is forced away from it.

Figure 2-20(B) shows a repeller (for simplicity, the trajectories are shown

as straight lines).
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An analytic condition, similar to the criterion for asymptotic stability, is

available to determine whether an equilibrium point is a repeller. As

before, we use the Jacobian matrix:

J ¼

@f

@x
ðx0; y0Þ @f

@y
ðx0; y0Þ

@g

@x
ðx0; y0Þ @g

@y
ðx0; y0Þ

0
BBB@

1
CCCA:

The criterion, the first part of which we presented earlier, is

as follows:

Theorem: If det( J) > 0, and trace( J) < 0, then (x0, y0) is asymptotically stable.

If det( J) > 0 and trace( J) > 0, then (x0, y0) is a repeller.

The next predator–prey model we examine will exhibit cyclic or periodic

behavior. Although there will be equilibrium states, the trajectories do

not converge toward them. There is one more idea we need before we

can proceed.

Definition. A set U in the (x,y) plane is called a basin of attraction for the

system
dx

dt
¼ f ðx; yÞ; dy

dt
¼ gðx; yÞ, if whenever a trajectory is in U at time

t0, it remains in U for all t > t0. In other words, if a trajectory ever enters

U, it stays there forever.

The main mathematical tool for our next example is:

Theorem (Poincaré–Bendixson). Suppose
dx

dt
¼ f ðx; yÞ; dy

dt
¼ gðx; yÞ, has

U as a basin of attraction. Suppose that there is exactly one equilibrium point in
U and that point is repelling. Then the system has a periodic solution that
remains in U.3

3. We call a solution (x(t), y(t)) periodic if is not an equilibrium state and there
exists T > 0 such that ðxðtþ TÞ; yðtþ TÞÞ ¼ ððxðtÞ; yðtÞÞ for all t:

A B C

FIGURE 2-20.
Stable and unstable equilibria. Panel A depicts an unstable equilibrium, since the trajectories along
the vertical axis move away from the equilibrium. Panel B represents a repeller, because all
trajectories close to the equilibrium are forced away from it. Panel C depicts an asymptotically stable
equilibrium, attracting all trajectories.
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The image to have for this dynamic is suggested in Figure 2-21. P(x,y)

denotes the periodic solution. A trajectory that begins inside P will spiral

outward toward P, and one that is outside P, but within the basin of

attraction, will spiral inward toward P. Notice that the theorem says

nothing about how to find the periodic solution.

4. Another Revised Predator–Prey Model

We next present an example showing an application of Poincaré–

Bendixson’s criterion. This example comes from Mathematics for

Dynamic Modeling by Edward Beltrami (1987), and illustrates how the

type of equilibrium may change because of changes in the values of the

model parameters.

Again, owls (O) are the predators and voles (V) the prey. The

assumption for the voles’ growth in the absence of predators is the same

as before (i.e., it follows the logistic equation). We change the

assumption regarding how owls devour voles, so that instead of being

proportional to VO, it is proportional to
VO

1þ V
: The idea is that an owl

can eat only so many voles before becoming sated. The owl then needs

some time to digest before being ready to eat again. So, we have:

dV

dt
¼ aV � bV2 � g

VO

1þ V
:

We also change the assumptions on the owls’ rate of change to the

following:

dO

dt
¼ dO 1� eO

V

� �
:

Note that if V were a constant, the above equation would be a logistic

equation for the owls’ population growth with a stable equilibrium equal

to V/e. This equation reflects the fact that the carrying capacity of the

predator population is proportional to the number of prey. If

d > 0 and
eO
V

> 1; the owls will have a negative per capita growth rate

and will be dying out.

Following Beltrami and Taubes’ Differential Equations Modeling in Biology

(Taubes [2001]) and using their choice of constants to facilitate the

computations, we consider the special case:

dV

dt
¼ 2

3
V � V2

6
� VO

1þ V
¼ f ðV;OÞ

dO

dt
¼ dO 1�O

V

0
@

1
A ¼ gðV;OÞ:

(2-14)

As we see next, the stability of this system will depend on the value of d.

0

(x0,y0)

x

y

P(x,y)

U

FIGURE 2-21.
Graphical representation of the Poincaré–
Bendixson’s criterion. U is a basin of attraction
and (x0,y0) is a unique equilibrium point inside U
that is a repeller. Any solution trajectories close
to (x0,y0) are pushed away from it while forced
to remain in the basin of attraction U. Poincaré–
Bendixson’s result asserts the existence of a
periodic solution, that is, the existence of a
closed cycle P(x,y) in the phase diagram.
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To find the null clines, we have that:

dV

dt
¼ V

2

3
� V

6
� O

1þ V

� �
¼ 0 if V ¼ 0; or

2

3
� V

6
¼ O

1þ V
:

Solving the last equation gives:

2

3
� V

6

� �
ð1þ VÞ ¼ 2

3
1� V

4

� �
ð1þ VÞ ¼ O:

Thus, the first two null clines are V ¼ 0 and O ¼ 2

3
1� V

4

� �
ð1þ VÞ:

From the second equation, we obtain
dO

dt
¼ 0 if O ¼ 0 or 1� V

O
¼ 0 which

implies O ¼ V. Therefore, the other two null clines are O ¼ 0
and O ¼ V.

The null clines and directions of movement are shown in

Figure 2-22.

EXERCISE 2-13

Verify that the directions of movement along the null clines O ¼ V and

O ¼ 2

3
1� V

4

� �
ð1þ VÞ are as shown in Figure 2-22.

We are interested in the equilibrium point A—the intersection point of

the straight line O ¼ V and the parabola O ¼ 2

3
1� V

4

� �
ð1þ VÞ: To

determine the coordinates of the point A, we observe that the value
where:

2

3
1� V

4

� �
ð1þ VÞ ¼ V

is V ¼ 1. So, in this example, the intersection point A is (1,1).

We calculate:

@f

@V
¼ 2

3
� 1

3
V � O

ð1þ VÞ2
@f

@O
¼ � V

1þ V

@g

@V
¼ d

O2

V2

@g

@O
¼ d� 2dO

V

@f

@V
ð1; 1Þ ¼ 1

12
@f

@O
ð1; 1Þ ¼ � 1

2
@g

@V
ð1; 1Þ ¼ d

@g

@O
ð1; 1Þ ¼ �d:

O

V0 4

A

O = V

)(1+V )
4

(1−
3
2O = V

3
2

FIGURE 2-22.
Null clines and directions of movement for the
model described by Eq. (2-14).
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The stability of point A is related to the matrix:

J ¼
1

12
� 1

2

d � d

0
@

1
A:

Now,

detð JÞ ¼ 5

12
d and trace ðJÞ ¼ 1

12
� d:

Because det( J) > 0 for all values of d, we obtain that (1,1) is an unstable

equilibrium point if 0 < d <
1

12
and stable if d >

1

12
. The unstable

point is also repelling.

Next, we show that the square 0 < V < 4, 0 < O < 4 is a basin of

attraction.

Note that at V ¼ 4;
dV

dt
� 0, so a trajectory cannot cross that boundary

going to the right. Similarly, at V ¼ 0;
dV

dt
¼ 0, so no line can cross that

boundary going to the left. In the same way,
dO

dt
� 0 if O ¼ 4 and

0 � V � 4; and
dO

dt
¼ 0 if O ¼ 0, so no solution can cross out of the

square along those boundaries. Thus, if 0 < d <
1

12
, we see that (1,1) is

a repelling point in the basin of attraction 0 < V < 4, 0 < O < 4, and,

since there are no other equilibrium points in this basin, according to the

Poincaré–Bendixson theorem, we have a periodic solution.

VII. A MODEL OF COMPETITIVE INTERACTION

We present a final model describing two species competing for the same

crucial resource. It seems obvious that if one species has a decided

advantage, the other species will become extinct. However, in some

situations, both species can coexist. Figure 2-23 gives the results of two

types of yeast, Sacharromyces cerevisiae and Saccharomyces kefir, competing

for a food supply. The experiment, conducted by G. F. Gause in 1932,

shows mutual long-term coexistence with diminished saturation levels

for both populations.

A well-designed model should be capable of capturing some of these

possible long-term behaviors. As always, we begin with a few general

assumptions:

1. The environment provides a limited food resource.

2. There are only two species competing for this resource.
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3. Both species use this resource as their only food supply.

We denote the two species by N and P and let N(t) and P(t) denote the

sizes of their populations at time t. As N(t) and P(t) change with time, we

begin with:

dN

dt
¼ rðN;PÞN

dP

dt
¼ kðN;PÞP:

Here r(N,P) and k(N,P) are the net per capita growth rates of N and P,

respectively. Those rates will depend on the sizes of the two

populations, as emphasized by the chosen notation. Our task will be to

find exact forms for r(N,P) and k(N,P), incorporating the assumptions of

our model.

EXERCISE 2-14

(a) Assuming food resources are limited, give a mathematical model

describing the growth of population N in the absence of type P

species (P ¼ 0).

(b) Repeat, describing the growth of P in the absence of type N species.
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Saccharomyces in mixed population

Saccharomyces

K1=13.0

y = 
1+e3.32816−0.21827x

13.0

FIGURE 2-23.
Saccharomyces cerevisiae growing alone and in a mixed culture with a population of
Schizosaccharomyces kefir. (From Gause, G. F. [1932]. Experimental studies on the struggle for
existence. I. Mixed population of two species of yeast. Journal of Experimental Biology, 9, 389–402.
Used by permission.)
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(c) Do the equations you obtained look familiar? Compare them with

Eq. (1-12) in Chapter 1.

(d) List the parameters of your models. Explain their biological

meaning.

In Exercise 2-14, you should have found that each population grows to

its carrying capacity in a logistic fashion when undisturbed by

competitors. In the following exercise, we ask you to consider several

preliminary questions and examine a model describing a competitive

interaction.

EXERCISE 2-15

(a) Let P 6¼ 0. With r(N,P) denoting the per capita growth rate of N,

how do you expect r(N,P) to change when P increases? Why?

(b) Let N 6¼ 0. With k(N,P) denoting the per capita growth rate of P,

how do you expect k(N,P) to change when N increases? Why?

(c) The following model may be used to describe competition between

N and P, where K and M are the carrying capacities for the

populations N and P respectively:

dN

dt
¼ rðN;PÞN ¼ a 1�N þ bP

K

0
@

1
AN

dP

dt
¼ kðN;PÞP ¼ c 1� Pþ gN

M

0
@

1
AP

(2-15)

where rðN;PÞ ¼ a 1�N þ bP

K

� �
and kðN;PÞ ¼ c 1� Pþ gN

M

� �
: Notice

that when P ¼ 0, the first equation becomes
dN

dt
¼ a 1�N

K

� �
N (i.e.,

a logistic equation for N with carrying capacity K). The parameter

b measures the competitive effect of P on N, and the parameter g

measures the competitive effect of N on P. Describe the meaning of the

terms N þ bP in r(N,P) and P þ gN in k(N,P).

EXERCISE 2-16

Show that the equilibrium states for the model defined by Eqs. (2-15) are:

(0,0), (0,M), (K,0), and
K � bM

1� bg
;
M� gK

1� bg

� �
:
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The equilibrium state
K � bM

1� bg
;
M� gK

1� bg

� �
determined in Exercise (2-16)

will be of interest only when both of its coordinates are non-negative.

There are various cases that need to be examined, and the computations

become technical and somewhat tedious. Complete classification of the

equilibrium states as stable or unstable will also require the examination

of all such cases. It can be shown that (0,0) is always unstable (see

Exercise 2-17) and that the other three equilibrium states could be stable

or unstable depending on the values of the parameters. Figure 2-24

gives examples that demonstrate convergence to the

states
K � bM

1� bg
;
M� gK

1� bg

� �
; (0,M), and (K,0), respectively. Convergence to

the state
K � bM

1� bg
;
M� gK

1� bg

� �
demonstrates coexistence of the

populations, while convergence to either of the other states corresponds

to one of the populations dying out. Notice that the initial conditions, the

carrying capacities, and the values of the parameters a ¼ 0.03 and c ¼
0.04 are the same for all fours panels in the figure. The difference in the

long-term behavior of the models is due to the difference in the

competition parameters b and g.

EXERCISE 2-17

Show that the equilibrium state (0,0) is always unstable, regardless of the

values of the parameters.

EXERCISE 2-18

In the model defined by Eq. (2-15), for K ¼ 2000, M ¼ 1000, and g ¼ 0.51,

prove that the equilibrium state (K, 0) is asymptotically stable, regardless

of the values of a, b, and c.

Before leaving this topic, we note there are many other models

describing competition among species. Though the model we considered

is quite simple, one could contemplate further refinements. The

methods we used to develop and analyze this model were familiar and

could also be used to develop models of symbiotic interactions

between species.

VIII. APPENDIX: VALIDATION OF A

MATHEMATICAL CLAIM

The epidemic models models considered in this chapter were developed

assuming the groups are uniformly mixed and the amount of contact

between two groups is proportional to the product of the number of

0
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FIGURE 2-24.
Numerical solutions for N (black line) and P (gray
line) of the competition model defined by
Eq. (2-15) with initial conditions N(0) ¼ 500 and
P(0) ¼ 300 and carrying capacities for the two
populations of K¼ 2000 and M ¼ 1000. The
values for a ¼ 0.03 and c¼ 0.04 are the same for
all four panels. Panel A: b ¼ 0.25, g ¼ 0.04; panel
B: b ¼ 1.5; g ¼ 0.04; panel C: b ¼ 2.7; g ¼ 0.04;
panel D: b ¼ 2.7; g ¼ 0.8.
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elements in each group. To complement the heuristic justification for this

assumption presented earlier, we present its mathematical explanation.

We begin by outlining the basic ideas; the first two come from

probability, while the third uses calculus.

A. Idea 1

If we roll a standard 6-sided die, the probability that a particular

number, say 4, comes up is 1/6. The probability that a 4 does not come

up is 1 �1/6. If we roll 10 dice, the probability that none of the

10 dice is a 4 is 1� 1

6

� �10

:

The spread of an epidemic model is a good example of a problem where

we need to measure the contact between groups. In what follows,

when a susceptible and an infective interact we mean that the two

contact one another and the disease is passed to the susceptible. We

hypothesize that the probability that a particular susceptible and a

particular infective interact in a unit of time is known, and we denote it

by p. (Note that p is a number between 0 and 1. In most cases, it will be

close to 0.) So the probability that two random members do not interact is

1 � p.

Now keep the susceptible element fixed—call it s*. Suppose we denote

the number of infectives by I. Then the probability that s* does not

interact with any of the infectives is (1 � p)I. In this description, we are

assuming that both populations are uniformly mixed. Is this assumption

reasonable?

B. Idea 2

Suppose that a basketball player makes 70% of her free throws over the

course of a season. If she attempts 20 free throws in a game, we

would expect her to make about:

20 � 0.70 ¼ 14

of these. This does not mean that she will make exactly 14 free throws in

every game where she has 20 attempts, but it does mean that if she

had many games in which she shoots 20 free throws, we would expect

that the average number of successes would be close to 14.

This is an example of the following principle: If we have an experiment

such that on each trial the probability of success is p, and we do k trials

of the experiment, then the expected number of successes is kp.

Back to our example: Suppose we have two populations S and I, and

we want to know the expected number of susceptibles that do not

interact with an infective.
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We assume:

1. The probability that a particular susceptible is infected by a

particular infective is p (again implying the groups are uniformly

mixed).

2. The number of susceptibles is denoted by S and the number

of infectives by I.

With these assumptions, the expected number of susceptibles that do not

interact with an infective is Sð1� pÞI.

C. Idea 3

There are some facts from calculus we now apply:

1. If x is close to 0, then e x � 1þ x;

2. If p is close to 0, then ln ð1� pÞ � �p;

3. If x > 0, then xY ¼ e lnðx
YÞ ¼ eY lnðxÞ.

We want to find an expression for Sð1� pÞI that is easier to work with.

From 3 above:

ð1� pÞI ¼ e I lnð1�pÞ:

Now, if p is close to 0, then ln ð1� pÞ is close to �p. Thus:

e I lnð1�pÞ � e�Ip

If, in addition to p being close to 0, Ip is also close to 0, then we would

have:

e�Ip � 1� Ip

Therefore, under these assumptions,

Sð1� pÞI � Sð1� pIÞ:

So, where does the differential equation come from? We explain this

through a discrete model. To construct our difference equation, we let:

Sn ¼ the number of susceptibles at the n-th stage:

In ¼ the number of infectives at the n-th stage:

The disease spreads when a susceptible interacts with an infective. So

Snþ1 is the number of susceptibles in the n-th stage who did not interact

with an infective. According to our work above:

Snþ1 ¼ Snð1� pInÞ ¼ Sn � pSnIn;
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leading to the difference equation:

Snþ1 � Sn ¼ �pSnIn:

This converts to
dS

dt
¼ �pSI in the continuous model. The main idea of

this conversion is outlined next.

For a very small number h, choose a value of t and pick the integer n for

which nh is as close to t as possible (see Figure 2-25). Let Sn ¼ SðnhÞ
and In ¼ IðnhÞ. Then Snþ1 � Sn ¼ Sððnþ 1ÞhÞ � SðnhÞ and
SnIn ¼ SðnhÞIðnhÞ.

Note that under the model assumptions, the probability of a susceptible

being infected by an infective in an interval of time h is now

approximated by ph. Thus:

Sðnhþ hÞ � SðnhÞ~� hpSðnhÞIðnhÞ:

Because nh is very close to t, this is approximately:

Sðtþ hÞ � SðtÞ � �hpSðtÞIðtÞ:

So:

Sðtþ hÞ � SðtÞ
h

� �pSðtÞIðtÞ:

Taking the limit as h ! 0 gives

dS

dt
¼ lim

h!0

Sðtþ hÞ � SðtÞ
h

¼ �pSðtÞIðtÞ:

We thus obtained that the rate of change from S to I is given by the

differential equation
dS

dt
¼ �pSðtÞIðtÞ exactly as assumed in the SIS model

from Eqs. (2-1) and (2-2) and the SIR model defined by Eqs. (2-4) (with

p in place of a). As p is the probability that a particular susceptible is

infected by a particular infective in a unit length of time, this also

confirms the interpretation of the parameter a given in Section II.B.1.
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Science never solves a problem without creating ten more.

George Bernard Shaw (1856–1950)

In this chapter, we continue examining how populations

evolve, focusing on genetic changes. Two apparently

contradictory characteristics are observable: a tendency

for populations to preserve variability by maintaining

the genetic status quo, versus the presence of continuing

genetic adaptation and change. These characteristics

represent the fundamental ideas of Mendelian genetics

and Darwinian evolution that coexist in synthesis in

contemporary biology. We shall consider mathematical

models describing the maintenance of genetic variability

in a population and analyze the change in the genetic

constitution of a population subjected to natural selection.

I. INTRODUCTION

A. Early Experiments

The Earth is home to a tremendous variety of living

organisms, but what is the origin of this diversity? By

observing the similarities and differences among finches

in the Galapagos Archipelago, Charles Darwin

(1809–1882) came to question the prevailing idea that

species are immutable, and, after years of work, came to

the conclusion that species evolved over time. In 1859, he

published his revolutionary book On the Origin of Species

by Means of Natural Selection. Darwin, however, had no

understanding of the molecular mechanisms that created

these variations or of the cellular mechanisms of heredity

which passed these variations onto the following

generations. Unknown to Darwin, while he was writing

his book, experiments were underway in a monastery

garden that were to shed light on the rules of heredity.

Gregor Mendel (1822–1884), an Augustinian monk and

schoolteacher, sought to understand the rules governing

the inheritance of different characteristics by designing

experiments using the garden pea, Pisum sativum. His

careful selection of seven traits with alternate forms, his

monitoring of the generations produced, and his counting

of the different types of offspring allowed him to deduce

the fundamental laws of genetics. Mendel took true-

breeding varieties of peas and crossed those with well-

defined alternative forms. He made multiple fertilizations
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of each cross, and his first observations were that the hybrids forming

the F1 or first filial generation all resembled one of their two parents.

When he crossed round peas with wrinkled peas, for example, the F1
hybrids were all round, so he called this round characteristic dominant

and the wrinkled characteristic that disappeared recessive.

Mendel then bred a second generation from the hybrid generation.

Interestingly, the parental characteristic that had disappeared in the F1
generation reappeared in this new F2 or second filial generation in a ratio

of 3 dominant to 1 recessive. This was true for each of the seven traits

Mendel examined. Figure 3-1 gives a schematic representation of the

experiments. Mendel further observed that while all of the recessive

F2 individuals would breed true, only one third of the dominant

individuals would breed true, while the remaining two thirds would

give rise to dominant and recessive offspring in the previously observed

3:1 ratio.

From these observations, Mendel came to the conclusion that the

alternative forms of each characteristic were passed along to the

offspring unchanged. He concluded that the alternative forms, which he

called ‘‘particulate factors’’ and we now call alleles, were separated or

segregated in the formation of gametes, such that each gamete contained

only one particulate factor (allele) for each character. This idea is called

the Principle of Segregation or Mendel’s First Law. The pair of alleles

inherited by the offspring would determine its appearance. A pea

plant with two recessive alleles would have the recessive appearance,

whereas a pea plant with one or two dominant alleles would have the

dominant appearance. Thus, Mendel differentiated between the

appearance of the organism, called phenotype, and its genetic

constitution, called genotype.

Mendel also made crosses between plants that differed in two traits,

such as seed shape and plant height, called dihybrid crosses. He observed

Parental
generation

First filial 
generation

P

Second filial
generation

F1

F2

x

x
only round
peas in F1

3:1 ratio of round vs.
wrinkled in F2

FIGURE 3-1.
Diagram illustrating Mendel’s pea experiments and results.
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that the alleles for the two different traits are distributed

independently of each other in the formation of gametes. This idea is

called the Principle of Independent Assortment or Mendel’s Second Law.

More information about Mendel’s experiments can be found in

traditional genetics texts, such as Russell (2006).

Mendel’s work was an early application of quantitation to biology. His

appreciation of the value of large sample sizes, which anticipated modern

statistics, prompted him to obtain thousands of peas in his experiments

and allowed him to formulate the explanation that alleles occurred in

pairs and that each sperm or egg delivered one allele to the offspring. It is

remarkable that he formed this model without any knowledge of the

underlying physical and chemical processes. He never observed cell

division and never saw a chromosome—the physical carriers of genetic

information, where his particulate factors were to be found.

In 1865, Mendel presented a paper on his experiments and his

interpretation of the results to the Natural Science Society in Brünn,

and the following year published ‘‘Versuche über Pflanzen-hybriden’’

(‘‘Experiments in Plant Hybridization’’) in the Society’s journal.

Unfortunately, the scientific community paid little attention to Mendel’s

work, and when he was named head of the monastery, his experimental

career ended. Mendel died in 1884.

It was not until 1900 that Mendel’s unparalleled achievements were

independently resurrected by Hugo De Vries (1848–1935), Eric von

Tschermak (1871–1962), and Carl Correns (1864–1933), and Mendel was

recognized as the father of genetics. This new appreciation of Mendel’s

work was the result of advances in the science of cytology that made it

possible to stain cell nuclei and observe chromosomes directly.

It also became possible to examine the behavior of chromosomes during

mitosis (cell division) and meiosis (the reduction division that gives rise to

gametes). In 1903, working independently, the German Theodor Boveri

(1862–1915) and the American Walter Sutton (1877–1916) came to the

conclusion that the behavior of chromosomes strongly resembled the

behavior of genes. This realization led them to put forth the Chromosome

Theory of Inheritance, which states that genes are found on chromosomes.

It soon became apparent that Mendel’s work was insufficient to explain

all inheritance patterns and that more complex genetic behavior was

possible. For example, Thomas Hunt Morgan (1866–1945) used the

white-eye color mutant of Drosophila melanogaster to show that some

genes behave in a sex-linked manner. In 1909, Hermann Nilsson-Ehle

(1873–1949) reported experiments in which multiple genes were

involved in producing a single trait. We investigate the behavior of such

polygenic traits later in the chapter.

Unfortunately, the laws of genetics have sometimes been purposefully

misinterpreted and abused. What Mendel and other scientists had
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proved for the color of flower petals, the shape of peas, and the height of

plants, pseudoscientists misapplied for political purposes to so-called

traits such as intelligence and purity of race. In Nazi Germany, the

project to purify the Aryan race assumed horrifying proportions with the

attempted extermination of Jews—about one third of the world’s Jews

lost their lives in the concentration camps. In the 1950s in the United

States, intelligence quotient tests were used by some to ‘‘prove’’ the

intellectual superiority of the white race. In the Soviet Union during the

Stalinist era, Mendel was declared a reactionary of no scientific value,

and the problems of heredity were treated in accordance with the so-

called progressive ideas of Trofim Denissovich Lysenko (1898–1976).

Lysenko claimed that biological species, when raised under appropriate

conditions, could change their hereditary profile and transform from one

species into another—wheat plants could produce seeds of rye or barley,

or corn could turn into wheat. Once again, history turned ugly, and

those who disagreed with Lysenko’s pseudoscientific discoveries were

persecuted. It was only in 1964 (11 years after Stalin’s death!) that

Lysenko was declared a fraud, and Mendel’s theory was reinstated in

the Soviet Union.

II. CHROMOSOMES AND THE PHYSICAL BASIS

OF HEREDITY

Chromosomes are the carriers of genetic information found in the cell

nucleus. For most sexually reproducing organisms, chromosomes

occur in pairs, one coming from the mother and one from the father.

Each chromosome has areas that specify genes, and each member of

a pair of chromosomes will specify the same genes in the same area.

Figure 3-2 depicts this correspondence.

Even though each chromosome of the pair contains the same genes in

the same areas, they may not necessarily contain the same version of

each gene. Thus, in Figure 3-2, the maternal chromosome may have one

form of the gene for eye color while the paternal chromosome may

Paternal
chromosome

Maternal
chromosome Eye color

Size

Coat color

FIGURE 3-2.
Pair of chromosomes from an imaginary organism.
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have another form. Different forms of the same gene, as mentioned

above, are called alleles. For the present discussion, assume each gene

has only two alleles. This is a reasonable assumption for many genes and

is the basis of classical Mendelian genetics. An easy way to think about

this case is to imagine one allele as representing a functional gene (the

so-called normal gene) and the other allele as representing a

nonfunctional mutant of the gene. As is shown in Figure 3-3, both

chromosomes may have the same allele for the eye color gene (A and A),

different alleles for the size gene (B and b), and the same allele for the

coat color gene (c and c).

Some genes have a dominant allele and a recessive allele. A dominant

allele is expressed if it is present in both copies or in one copy with

a recessive allele on the opposite chromosome. A recessive allele is only

expressed if it is present in both copies. Suppose in an imaginary

creature, amber eyes are dominant to green eyes. The creature will be

amber-eyed if it has either one or two dominant alleles (i.e., AA or Aa)

and will only be green-eyed if it has two recessive alleles (aa). We

distinguish between the genotype of the creature (AA, Aa, or aa) and its

phenotype or appearance (amber-eyed or green-eyed). We call the

genotypes homozygous if they have two of the same allele (AA or aa) and

heterozygous if they have one of each (Aa). In Figure 3-4, we illustrate

Mendel’s result with the seed shape gene, found on the Pisum

chromosome number 7. We use A to denote the dominant smooth-seed

allele and a to denote the recessive wrinkled-seed allele.

The parents are both true-breeding and therefore homozygous. They can

only produce a single type of gamete, as shown in Figure 3-4. The F1
generation, resulting from the combination of egg and sperm in

fertilization, is heterozygous (Aa) and dominant (smooth). The F1
individuals can produce two different kinds of gametes, A and a, in

approximately equal numbers (see Figure 3-5).

Keeping track of the gametes and ensuring that each one is paired

appropriately can be done with a Punnett square (see Figure 3-6). In a

A (amber eyes) A (amber eyes)

B (big) b (small)

c (white coat) c (white coat)

FIGURE 3-3.
Hypothetical allele composition for a pair of chromosomes of an imaginary organism.
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Punnett square, the paternal gametes are listed across the top and the

maternal gametes down the left side. The paternal and maternal gametes

are combined in an orderly fashion, with one maternal allele added to

one paternal allele in each cell of the Punnett square. As expected, we

see 1/4 AA, 1/2 Aa, and 1/4 aa or 3/4 dominant and 1/4 recessive, giving

the 3:1 ratio that Mendel observed.

A

A

Paternal
chromosomes

a aA

aGametes

A aF1 generation

Maternal
chromosomes

FIGURE 3-4.
Crossing a pure dominant parent and a pure recessive parent. Pea chromosomes in Mendel’s first
cross, where AA and Aa produce smooth seeds and aa produce wrinkled seeds. The F1 are all Aa
genotypically and are therefore smooth, which is the dominant phenotype.

F2 offspring occur in a 3:1 ratio of dominant (AA, Aa, aA) to recessive (aa)

A A

AA

AA

a

a

a a

A a

F1

or or

Gametes

a

aa A

FIGURE 3-5.
Diagram of the chromosomes in Mendel’s cross of the F1 generation. Observe the F2 generation and
the chromosomal basis of the 3:1 ratio.
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We next examine the case of multiple genes, considering an example

with two genes in detail. The ideas are easily generalized to three and

more genes (see Exercise 2 below). Suppose we have two different genes

on two different chromosomes, such as the seed shape gene on Pisum

chromosome 7 and the plant height gene on Pisum chromosome 4. Let us

further suppose we have two parents, one homozygous for dominant

alleles of both genes, and the other recessive for both genes, as in

Figure 3-7.

When reproduction occurs, one allele from each gene from each parent

is randomly selected to contribute to the offspring. Because of the

parents’ genetic purity, the mother must contribute dominant alleles [A,

B] and the father recessive alleles [a, b]. Therefore, this first filial

generation (or F1) will have the genotype AaBb and the dominant

phenotype for both genes.

Now, suppose we mate two parents from the F1 generation (AaBb �
AaBb). They will each be able to produce four different types of

gametes, because the first parent may deliver either an A or a allele for

the first gene (two possibilities) and either a B or b allele for the second

gene (two possibilities). So there are 2 � 2 ¼ 4 possibilities from Parent 1.

These possible gametes are AB, Ab, aB, and ab. Parent 2 has the same

four possibilities, so there are a total of 4 � 4 ¼ 16 possibilities for the

offspring in the F2 generation. Because in the F1 there is a 1:1 ratio of

recessive and dominant alleles, and because we assume random mating

from the F1, each of these possibilities is equally likely to occur in the F2.

We want to know what the phenotypes of the F2 generation are, and in

what proportions they occur. We calculate this in two ways. First, we list

the 16 possibilities using a Punnett square (see Figure 3-8).

A a

AaAAA

a Aa aa

FIGURE 3-6.
Punnett square of Mendel’s results diagrammed in
Figure 3-5.

AABB aabb

AB ab

AaBb

Parents

Gametes

F1 generation

FIGURE 3-7.
Chromosomes of a cross of double homozygotes. A or a, seed shape; B or b, plant height.
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The phenotype will have both dominant characteristics if there is at least

one capital A and one capital B. The following nine combinations fulfill

this condition: AABB, AABb, AaBB, AAbB, aABB, AaBb, AabB, aAbB,

and aABb. The phenotype will have the dominant A characteristic and

the recessive B characteristic if there is at least one capital A and two

lower case b’s: AAbb, Aabb, and aAbb. The phenotype will have the

recessive A characteristic and the dominant B characteristic if there are

two lower case a’s and at least one capital B: aaBB, aaBb, and aabB. The

phenotype will have both the recessive A characteristic and the recessive

B characteristic if there are two lower case a’s and two lower case b’s:

aabb. So the 16 possibilities give the phenotypes in the ratio 9:3:3:1.

The second way to see this result is less cumbersome but not as explicit.

Consider how the phenotype with both dominant characteristics may be

formed. The ‘‘A’’ site must have at least one dominant allele, which

happens with probability 3/4, because there are four ‘‘A’’ possibilities:

AA, Aa, aA, and aa. Three of these four have at least one A. Similarly,

the ’’B’’ site has a dominant allele with probability 3/4. To find the

probability that both sites have a dominant allele we compute:

3=4 � 3=4 ¼ 9=16:

Note that we can multiply the probabilities of the ‘‘A’’ and ‘‘B’’ sites,

because we assumed that the two sites are on two different

chromosomes and therefore are independent from one another.

EXERCISE 3-1

(a) Show that the probability that the A phenotype is dominant and

the B phenotype is recessive is:

3/4 � 1/4 ¼ 3/16.

(b) Show that the probability that the A phenotype is recessive and

the B phenotype is dominant is:

1/4 � 3/4 ¼ 3/16.

AB Ab aB ab

AB AABB AABb AaBB AaBb

Ab AABb AAbb AaBb Aabb

aB AaBB AaBb aaBB aaBb

ab AaBb Aabb aaBb aabb

FIGURE 3-8.
Punnett square, showing the 16 possibilities for the F2 offspring of two double heterozygotes
(AaBb�AaBb).
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(c) Show that the probability that the phenotypes are recessive is:

1/4 � 1/4 ¼ 1/16.

(d) How does this imply the same proportion of the phenotypes as the

Punnett square?

EXERCISE 3-2

Suppose we now have three sites on three different chromosomes

occupied by A or a, B or b, and C or c, where upper case denotes the

dominant allele. If we mate two triply heterozygous parents, AaBbCc �
AaBbCc:

(a) What is the probability that each site has at least one dominant

allele?

(b) What is the probability that the A and B sites are dominant and

the C site is recessive?

(c) What is the probability that the A site is dominant and the B and C

sites are recessive?

(d) What is the probability that all sites are recessive?

(e) List all of the possible phenotypes and the probability with which

each occurs.

Next, we want to investigate how the genetic make-up evolves. We

consider two mathematical models describing how the distribution of

alleles at a particular site comes to equilibrium.

III. HARDY–WEINBERG LAW OF GENETIC EQUILIBRIUM

It may appear that, over time, the genotypes of each

species should converge to a single, optimal genotype. The simplest

explanation for why this is inaccurate is that our view of ‘‘optimal’’ is

not nature’s view. In fact, nature’s view is that genetic diversity is

valuable. Genetic diversity allows some members of a species to survive

periods of catastrophic environmental change, and therefore promotes

the perpetuation of the species. We begin with some examples that

demonstrate how the lack of genetic variability can be disastrous.

In 1970, 15% of the U.S. corn (maize, Zea mays) crop was lost to infection

by the fungus Cochliobolus heterostrophus, the southern corn leaf blight.

This $1 billion loss occurred because a huge fraction of the U.S. corn crop

was planted in a single type of corn, Texas male-sterile cytoplasm

(or T-cytoplasm). This particular type was chosen because its seed was
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considerably cheaper to produce. A corn plant produces female flowers

(containing ovules that will become the seeds) and male flowers (which

make pollen). The female flowers, which become the ‘‘ears,’’ form along

the stem, and the male flowers, called tassels, form at the top. In order to

produce the high-yielding, uniform plants demanded by modern

mechanized agriculture, corn breeders remove the tassels from the

desired female parent so its pollen does not compete with pollen from

the desired male parent. Because male-sterile corn produces infertile

pollen on its tassels, it is not necessary to detassel the female parent

plants by hand, resulting in immense savings in labor costs.

Unfortunately, the genetic similarity of these plants also made the crop

more vulnerable to disease, meaning that if one plant was susceptible to

it, they might all be—and they were.

The southern corn leaf blight infestation of 1970 was caused by a strain

of Cochliobolus heterostrophus called ‘‘race T,’’ which preferentially

infected T-cytoplasm corn. The fungus found fertile hunting grounds in

the nation’s cornfields that year, and a spate of warm, moist weather

allowed it to spread with shocking rapidity. Blight spores were carried

by the wind and leapt from county to county and then from state to

state. Farmers were left with fields of rotten, useless plants. The situation

would have been even worse had the weather not turned cool and

dry, stemming the spread of the disease. Additional details on

this infestation can be found in Ullstrup (1972) and Hooker et al. (1970).

Another striking example of the danger of lack of diversity is the Irish

potato famine of the mid-1840s. In this case, the pathogen was the

water mold or oomycete Phytophthora infestans, the cause of late blight.

The late blight infects both the leafy portions of the plant, causing

reduced yields, and the potatoes themselves, causing them to rot in the

ground or in the root cellar. By the mid-1840s, Ireland’s mixed

agricultural system marked by a variety of crops and livestock had been

gradually replaced by a potato-based economy.

As with the southern corn leaf blight in 1970, a period of warm, wet

weather in 1845 provided ideal conditions for the spread of this

pathogen. Some potatoes survived the winter and were planted in 1846,

but the blight returned, harbored in some of the seed potatoes or

possibly in piles of discarded infected potatoes. As the germ theory of

disease was unknown at the time, the importance of destroying infected

plant materials was likewise unknown. Most of the crop failed, and the

Irish population, who relied upon the potato for most of their caloric

intake, went hungry. There were no stockpiles to relieve the famine

because potatoes cannot be stored for more than a year. Hundreds of

thousands of people starved, and many more emigrated.1

1. Detailed studies of the Irish Potato Famine can be found in Fraser (2003), Fry
and Goodwin (1997), Goodwin (1997), Ristaino et al. (2001), and Garrett and
Mundt (2000).
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These examples underscore the importance of maintaining crop

diversity to reduce the severity of infections and avoid massive crop

failures. Nature preserves genetic diversity, and we humans eliminate

it at our peril. We next create a mathematical model explaining why,

under certain conditions, genetic diversity is preserved.

Suppose we focus on a particular site of a particular chromosome.

We assume the gene at that locus has two possible alleles, A and a. How

does the proportion of alleles in the gene pool change over time? We

shall show that if certain idealized assumptions are met, then

equilibrium in the proportion of allele combinations (AA, Aa, or aa) is

reached after just one generation. We make the following assumptions:

1. The population is large (theoretically, infinite).

2. Mating is random.

3. All allele combinations have the same fitness (i.e., there is no

natural selection occurring).

4. There is no net mutation.

5. There is no immigration or emigration.

Although this set of assumptions may appear restrictive, they provide a

good approximation in many cases. We should not forget that whether

these assumptions are appropriate depends very much on the particular

genes being examined. For example, if one were looking at the genes for

‘‘tall, dark, and handsome,’’ the random mating assumption might not

apply. However, if one were considering a biochemical difference—one

not readily apparent—mating would almost certainly be random with

respect to that particular gene. In addition, mutation is always occurring,

but it occurs at a small rate that may be safely ignored for many

purposes. With these assumptions, we derive the result presented below,

called the Hardy–Weinberg Law of Genetic Equilibrium because of its almost

simultaneous publication in 1908 by British mathematician Godfrey H.

Hardy (1877–1947) (Hardy [1908]) and German physician Wilhelm

Weinberg (1862–1937) (for the English translation of Weinberg’s paper,

see Boyer [1963], pp. 4-15).

Theorem (Hardy–Weinberg Law of Genetic Equilibrium). Let

assumptions 1–5 above be satisfied. Let P(aa), P(Aa), and P(AA) denote the

proportions of the genotypes aa, Aa, and AA, respectively, in the parental

generation. Assume these proportions have the values P(aa)¼ x, P(Aa)¼ y,

and P(AA) ¼ 1 �x �y, where 0 � x � 1, 0 � y � 1, and x þ y ¼ 1. Then:

1. The proportion of the A and a alleles in the parental generation is

calculated, respectively, as

p ¼ 2ð1� x� yÞ þ y

2
and q ¼ yþ 2x

2
: (3-1)
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2. For generation F1, the proportion of the genotypes will be

P1ðaaÞ ¼ q2;P1ðAaÞ ¼ 2pq; and P1ðAAÞ ¼ p2: (3-2)

The proportion of the A and a alleles in the F1, however, does not

change and remains as it was in the parental generation.

3. The proportion of the genotypes in the F1 from Eq. (3-2) will be

maintained in all subsequent generations—that is, the system will

be in genotypic equilibrium from generation F1 on. The same is

true for the proportions of the A and a alleles, which remain the

same as in the parental generation.

Before giving a formal proof, we present a computation that incorporates

all of the ideas of the abstract argument, but may be easier to follow.

Example 3-1
.......................

Imagine a ‘‘colony’’ of 50 people selected to begin a settlement. Suppose

the distribution of genotypes is AA ¼ 15, Aa ¼ 30, and aa ¼ 5. Thus, in

this parental generation the proportions of the genotypes will be P(AA)¼
15/50 ¼ 0.3, P(Aa) ¼ 30/50 ¼ 0.6, P(aa) ¼ 5/50 ¼ 0.1.

To determine the proportion of A and a alleles in the colony, notice that

the total number of A and a alleles is 100. As each AA individual

contributes two A alleles and each Aa individual contributes one A

allele, there is a total of 15 � 2 þ 30 � 1 ¼ 60 A alleles in the population.

In the same way, there are 40 a alleles (5 � 2 þ 30 � 1 ¼ 40). Thus,

the proportion of A alleles is calculated as p ¼ 60/100 ¼ 0.6, and the

proportion of a alleles is q ¼ 40/100 ¼ 0.4.

We are now ready to proceed with establishing results 1 and 2 in the

general case. Notice that even though we use symbols to denote the

genotypic distribution, the ideas of the computations in the general case

are identical. Again, imagine that we select a colony of N individuals

that have genomes in the following proportions:

PðaaÞ ¼ x; PðAaÞ ¼ y; PðAAÞ ¼ 1� x� y:

Therefore, the number of individuals with genotype Aa is Ny, the

number with genotype aa is Nx, and the number with genotype AA is

N(1 � x � y). We can now compute the proportions of alleles in this

group to obtain the proportions of the A and a alleles in the parental

generation:

p ¼ 2Nð1� x� yÞ þNy

2N
¼ 2ð1� x� yÞ þ y

2

q ¼ Nyþ 2Nx

2N
¼ yþ 2x

2
:

(3-3)

This establishes claim 1 of the theorem.
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To prove part 2, we use a Punnett square approach to generalize from an

individual mating to any random mating occurring in the population.

This can be done by treating a randomly chosen diploid organism as

being the result of a random pairing of two alleles, each drawn from the

parental pool containing A and a alleles at proportions p and q,

respectively. Because diploid organisms inherit one allele from each of

their parents, and because we assumed random mating and equal

fitness of the genotypes, this treatment is well justified. Thus, the

probability of homozygous dominant P(AA) will be the probability

of randomly drawing A twice from the allelic pool, and we obtain

P(AA) ¼ (p) � (p) ¼ p2. Notice that the assumption we made for an

infinitely large population allows us to assume that the frequencies of

the allele do not change from draw to draw, regardless of the fact that

our selection is without replacement. In the same way, the probability

for a heterozygous Aa organism will be the probability for drawing an

A followed by an a, calculated as pq, and so on. The Punnett square,

Table 3-1, helps us visualize this. In addition to the genotypes resulting

from the cross (see Figure 3-6), we have now also included, in

parentheses, the proportions of the A and a alleles and the proportions

of the resulting genotypes.

From here, we see that the proportion of the genotypes in F1 will be:

PðAAÞ ¼ p2

PðaaÞ ¼ q2

PðAaÞ ¼ pqþ qp ¼ 2pq:

(3-4)

We have calculated P(Aa) as the sum of the proportions of Aa and aA,

both of which represent the same genotype. To finish the proof of claim

2, we need to show that the proportions of the A and a alleles in the F1
remain the same as in the parental generation. The argument is the same

as in our example and the proof of claim 1 above, but applied this time

to the genotype distribution given by Eq. (3-4). If there are N1

individuals in the F1, of them N1p
2 will have the AA genotype; N1q

2 will

have aa; and 2N1pq will have the Aa genotype. Thus, the proportion of

the A allele in the F1 will be:

2N1p
2 þ 2N1pq

2N1
¼ 2N1pðpþ qÞ

2N1
¼ pðpþ qÞ ¼ p; since pþ q ¼ 1:

A (p) a (q)

A (p) AA (p�p ¼ p2) Aa (pq)

a (q) aA (qp) aa (q�q ¼ q2)

TABLE 3-1.
Punnett square applied to genotype frequencies.
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Similarly, the proportion of the allele in the F1 will be:

2N1q
2 þ 2N1pq

2N1
¼ 2N1qðqþ pÞ

2N1
¼ qðqþ pÞ ¼ q:

Thus, the allele proportions remain unchanged from the parental

generation, and the proof of claim 2 is complete.

To prove claim 3, notice we obtained the genotypic distribution in the

F1 presented in Eq. (3-4) by using a Punnett square based on the

proportions p and q of the A and a alleles in the previous generation.

We now know, from claim 2, these proportions remain unchanged in the

F1 generation. The argument can now be repeated to show that the

genotypic proportions in the F2 will be P2(aa) ¼ q2, P2(Aa) ¼ 2pq, and

P2(AA) ¼ p2, implying, again, that the allelic proportions in the F2
remain unchanged, and so on. Thus, beginning with the F1, the system

remains in genotypic equilibrium.

The Hardy–Weinberg Law of Genetic Equilibrium gives a mathematical

explanation for a well-known biological fact—equally fit genotypes

are generally preserved in nature and coexist in equilibrium.

Although the equilibrium genotypic frequencies need not be exactly

those of the original population, under the assumptions of the

model, the equilibrium is reached in the first generation and

is preserved for all later generations. In contrast, under the same

assumptions, the allelic frequencies remain constant from the very

beginning.

It is clear that changes in the genetic constitution of a population must

occur under some conditions, or evolution would not occur. This

gradual change is caused by the presence in the population of alleles

with varying degrees of fitness. In this case, the genotype proportions

change from generation to generation, and the dynamic behavior of the

system is more complex. We next investigate the effect of natural

selection in populations containing maladaptive alleles.

IV. THE EFFECT OF A MALADAPTIVE OR LETHAL GENE

The Hardy–Weinberg Law of Genetic Equilibrium assumes that each of

the genotypes in the population is equally successful or equally fit, and

therefore natural selection is not acting on any of the genotypes.

However, there are many genetic diseases, such as Tay–Sachs,

phenylketonuria, severe combined immune deficiency, and hemophilia,

for which this is not the case. Cystic fibrosis (CF), for instance, is a

genetic disease caused by a mutation in the gene for a chloride ion-

transporting protein, the cystic fibrosis transmembrane regulator

(CFTR). People who are homozygous for the recessive mutant CFTR

allele will have CF, while those who carry only one CFTR allele will not.
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The impaired CFTR function results in decreased secretion of fluids from

gastrointestinal and respiratory epithelia. Without normal fluid

secretion, the delivery of digestive enzymes from the pancreas is

diminished, and the protective mucus in the lungs is rendered viscous

and extremely difficult to clear from the airways. As a result, people

with CF have frequent respiratory infections and impaired digestion,

accompanied by chronic lung infection, infertility, and an early death.

Obviously, this represents a significant selective disadvantage.

We now examine a model describing such situations and study the long-

term behavior of allele proportions that, under these circumstances, are

not in equilibrium and change over time. We care about such changes

for several reasons, including their contribution to our understanding of

the public health implications of genetic diseases. Information on gene

frequencies can help guide our genetic testing and prenatal diagnosis

efforts.

Suppose we have a gene with two alleles, A and a, and the aa

combination is disadvantaged in that a certain predictable proportion of

the aa individuals will die before they reproduce. We would like to

know the effect of such a selective disadvantage for the aa genotype and

examine the change in the proportion of the harmful a allele between

generations. We would also like to know if there is an equilibrium state

for the species’ gene pool. The mathematical model we describe makes

the following assumptions:

1. The population size is large.

2. Mating is random.

3. The recessive homozygous genotype is less fit to survive, and only

a fraction, say a, (where 0 � a < 1), of the individuals with this

genotype survives to reproduce.

4. There is no net mutation.

5. There is no immigration or emigration.

Notice the only difference between this set of assumptions and that for

the Hardy–Weinberg Equilibrium is in assumption 3, reflecting

differences in natural selection.

We begin with an example that illustrates the change in gene frequencies

over time caused by selective disadvantage.2

2. To simplify the calculations, in this example we assume that the initial
population size is 100. Because this is not exactly a large number, as we explicitly
require in assumption 1 for the model, the gene proportions and frequencies
calculated in the example should be considered in terms of averages.
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Example 3-2
.......................

Let us assume a population of 100 individuals of genotype Aa. The

initial frequencies of the A allele, p0, and the a allele, q0, are both 0.5. This

initial population reproduces, producing 100 offspring in the following

proportions:

PðAAÞ ¼ p20 ¼ ð0:5Þ2 ¼ 0:25:

PðAaÞ ¼ 2p0q0 ¼ 2� ð0:5Þ � ð0:5Þ ¼ 0:50:

PðaaÞ ¼ q20 ¼ ð0:5Þ2 ¼ 0:25:

Because there are 100 offspring, we can calculate that 100 � 0.25 ¼ 25 of

them will have genotype AA; 100 � 0.5 ¼ 50 will have genotype Aa; and

100 � 0.25 ¼ 25 will have genotype aa. However, let us also assume the

aa allele is associated with a selective disadvantage of 0.2, such that 20%

of the aa offspring will not survive to reproduce. Thus, only 80% of the

25 aa will be able to pass their genes on to the next generation, and,

therefore, the proportions of the A and a alleles will be different from the

initial generation. Let us look at the genes that will be passed on:

The 25 AA individuals will contribute 2 � 25 or 50 A alleles.

The 50 Aa individuals will contribute 50 A alleles and 50 a alleles.

The 0.8 � 25 ¼ 20 aa individuals will contribute 2 � 20 or 40 a alleles.

Therefore, there will be 95 individuals contributing their alleles to the

next generation, and the total gene pool will be twice that number or 190

alleles. Of those, 100 are A alleles and 90 a alleles. If we denote the allele

frequencies for A and a by p1 and q1, respectively, we can calculate that:

p1 ¼ 100=190 ¼ 0:5263 and q1 ¼ 90=190 ¼ 0:4737:

Notice the proportions of the A and a alleles have changed from p0 ¼ 0.5

and q0 ¼ 0.5 in the initial population to p1 ¼ 0.5263 and q1 ¼ 0.4737 in

the population surviving until reproduction. To see how these

proportions will change even further, suppose now that the 95

individuals reproduce, and 100 offspring result. What would be the

allele frequencies in the next generation?

The AA individuals would be represented by N p21, where N is the

population size (in our case N ¼ 100). This would be 100 � (0.5263)2 ¼
27.7 or, rounding up, 28 people. The Aa individuals would be N(2p1q1)

or 100 � 2 � (0.5263) � (0.4737) ¼ 49.8, or 50 people. The aa individuals

would be Nq21 or 100 � (0.4737)2 ¼ 22.4, or 22 people. We can see there

are fewer aa individuals in this generation than in the previous one.

The 28 AA individuals will contribute 2 � 28 or 56 A alleles.

The 50 Aa individuals will contribute 50 A alleles and 50 a alleles.
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Only 80% of the 22 aa individuals will reproduce. Therefore,

0.8 � 22 ¼ 17.6, or 18 people, will pass along their a alleles, contributing

2 � 18 or 36 a alleles.

A total of 28 þ 50 þ 18 ¼ 96 individuals will reproduce, so the total gene

pool will consist of 96 � 2 or 192 alleles.

p2 (new frequency of the A allele) ¼ (56 þ 50)/192 ¼ 106/192 ¼ 0.5521.

q2 (new frequency of the a allele) ¼ (50 þ 36)/192 ¼ 86/192 ¼ 0.4479.

After two generations, we see the a allele frequency has already fallen

substantially because of the selective disadvantage of the aa genotype,

showing the population is not in Hardy–Weinberg equilibrium. It also

raises the following questions: Because the pool of the a allele will be

reduced when the aa individuals die, it is intuitive that the a allele will

diminish, but will it eventually die out? Does the answer depend on

what fraction of those with paired aa alleles die?

To answer these questions, we derive a general formula describing the

dependence of allele frequencies in any given generation upon those of

the previous generation and enabling us to determine the long-term

behavior of the population. To reinforce the informal notation used

above, suppose the initial proportions of the alleles are:

p0 ¼ proportion of A allele;

q0 ¼ 1 � p0 ¼ proportion of a allele.

Then

PðAAÞ ¼ p20;

PðAaÞ ¼ 2p0q0; and

PðaaÞ ¼ q20:

Now suppose the aa combination is harmful so that only a fraction, say a
(where 0 � a < 1), of the homozygous recessive genotype survives to

reproduce. Thus, before reproduction, the genotype distribution in the

population will change to:

PðAAÞ ¼ p20;

PðAaÞ ¼ 2p0q0; and

PðaaÞ ¼ aq20:

The decreased amount of aa genotype at the time of reproduction causes

a decrease in the a allele frequencies in the next generation, calculated as

follows: assume the total number of individuals in the original

population was N (we assumed N to be very large), which implies there

were Nq20 homozygous recessive individuals to start with. Because only a

fraction a of them survives, the number of those individuals has changed
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to Naq20 by the time of reproduction. Thus, the number of A alleles at that

time will be 2p20 N þ 2p0 q0 N, and the number of a alleles will be

2aq20N þ 2p0q0N. Denoting the proportions of the A and a alleles in the

first generation by p1 and q1, we now calculate that:

q1 ¼ 2aq20N þ 2p0q0N

2aq20N þ 2p0q0N þ 2p20N þ 2p0q0N

¼ aq20 þ p0q0
aq20 þ 2p0q0 þ p20

¼ q0
aq0 þ p0

aq20 þ 2p0q0 þ p20

0
@

1
A:

(3-5)

The proportion p1 could be calculated similarly, but we assumed that

A and a are the only alleles present in the population, so it is easier to

state that p1 ¼ 1 � q1. Similarly, if pn and qn denote the proportions of the

A and a alleles in the nth generation, then because of weaker fitness

of the aa genotype, these frequencies will change in the (n þ 1)-st

generation to:

qnþ1 ¼ qn
aqn þ pn

aq2n þ 2pnqn þ p2n
and pnþ1 ¼ 1� qnþ1: (3-6)

Notice how different this situation is compared with the Hardy–

Weinberg case discussed previously. The allelic frequencies of A and

a now change from generation to generation, and, when we know the

frequencies for any given generation, Eq. (3-6) allows us to compute

their values for the following generation. Formulas such as

Eq. (3-6) are called recursive formulas.

Notice that because:

aq2n þ 2pnqn þ p2n ¼ ðaqn þ pnÞqn þ pnðqn þ pnÞ ¼ ðaqn þ pnÞqn þ pn;

Eq. (3-6) could be rewritten as:

qnþ1 ¼ qn
aqn þ pn

ðaqn þ pnÞqn þ pn
: (3-7)

Now, because a < 1; apn < pn and because pn ¼ 1� qn, we have

að1� qnÞ < pn; which is the same as a < aqn þ pn. This implies that
aqn þ pn

ðaqn þ pnÞqn þ pn
< 1 and, together with Eq. (3-7), proves that qnþ1 < qn.

Thus, the allelic frequency of the harmful allele a does indeed decrease

from generation to generation.

Our next goal is to establish what happens to the harmful allele a in the

long run. Will it disappear from the gene pool or stabilize at a nonzero

value? More importantly, are we sure the limit for the sequence q0, q1,

q2,. . ., qn,. . . exists?

The last question has an easy answer. Because the sequence q0, q1, q2,. . .,

qn,. . . is a decreasing sequence of numbers bounded below by 0, the
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limit limn!1 qn must exist. Let q ¼ limn!1 qn. Then p ¼ limn!1 pn ¼
limn!1ð1� qnÞ ¼ 1� limn!1 qn ¼ 1� q. Because we began with q0 < 1

and proved the values of the a allele frequencies decrease from generation to

generation, it is clear the limit value q will be such that

q < 1. We now show that q ¼ 0.

Taking limits as n ! 1 of both sides in Eq. (3-7), we obtain:

lim
n!1 qnþ1 ¼ lim

n!1 qn
aqn þ pn

ðaqn þ pnÞqn þ pn

� �

Because q ¼ limn!1 qn ¼ limn!1 qnþ1 and p ¼ 1� q, this implies that:

q¼ q
aqþ p

aq2þ pqþ p
¼ q

aqþð1� qÞ
aq2þð1� qÞqþð1� qÞ ¼ q

aq� qþ 1

aq2� q2þ 1
¼ q

ða� 1Þqþ 1

ða� 1Þq2þ 1
:

Thus, the limit value q satisfies the following algebraic equation:

q¼ q
ða� 1Þqþ 1

ða� 1Þq2þ 1
: (3-8)

It is easy to see the value q ¼ 0 satisfies Eq. (3-8). We next show that q ¼ 0

is the only solution of Eq. (3-8) with q < 1. Assume Eq. (3-8) has another

solution; that is, assume we can find a value q 6¼ 0 that satisfies Eq. (3-8).

To solve for q, because we assumed q 6¼ 0, we can divide both sides of

Eq. (3-8) by q to obtain:

1¼ ða� 1Þqþ 1

ða� 1Þq2þ 1
:

Then

ða� 1Þq2þ 1¼ ða� 1Þqþ 1;

and so, because a 6¼ 1,

q2 ¼ q:

This equation has two solutions: q ¼ 0 and q ¼ 1, establishing that q ¼ 1

is the only nonzero solution of the algebraic Eq. (3-8). As we know that

q ¼ 1 cannot be the limit of the decreasing sequence of the allelic

frequencies qn < 1, this implies that Eq. (3-8) does not have a nonzero

solution q < 1. Then q ¼ 0 is the only solution of Eq. (3-8), and this

implies limn!1 qn ¼ 0.

We have therefore established the following fact: Under the assumption

that the recessive homozygous genotype aa is less fit than the homozygous

dominant AA and the heterozygous Aa genotypes, the frequency of the harmful

allele a will diminish from generation to generation, and allele a will be

eventually eliminated from the gene pool.

An interesting question here is how many generations it takes for the

maladaptive allele to reach virtually negligible frequency levels in the

gene pool. The exact answer depends on the survival level a—the lower

the survival level, the faster the harmful allele is eliminated from the
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population. We examine this question in more detail in the laboratory

manual project Selection in Genetics: The Effect of a Maladaptive or

Lethal Gene.

Another question is why certain genetic diseases that confer a severe

genetic disadvantage are still prevalent in the population, given that our

results show that they should be decreasing and gradually disappear.

For instance, CF is extremely common among the reproductively isolated

population of the Old Order Amish, with frequencies as high as 1 in 500

live births. Why should an allele with such devastating effects be present

at such a high frequency? The answer may lie in a phenomenon called

heterozygote advantage. Some research suggests that individuals who

have one copy of the CFTR allele are partially resistant to the devastating

effects of cholera, typhoid fever, or other gastrointestinal infections.

So individuals with two copies of the normal allele might be at a

disadvantage whenever contracting bacterial diarrhea was a possibility.

An analogous example is sickle-cell anemia among people of African

heritage. Sickle-cell anemia, a life-threatening disease, occurs at high

frequencies in individuals whose ancestors come from those areas of the

world where malaria is endemic. Sickle-cell anemia is caused by a single

mutation in one of the genes for the oxygen-carrying red blood cell

protein hemoglobin. Individuals inheriting two copies of the mutant

allele will have sickle-cell disease, which causes red blood cells to change

shape and clog capillaries, starving the tissues served by those capillaries

of food and oxygen. On the other hand, individuals having two copies of

the normal allele will have normal, circular, biconcave red blood cells,

which carry lots of oxygen and provide a perfect environment for the

malarial protozoan parasite. Malaria, like sickle-cell anemia, is life

threatening. In areas where malarial infection is likely, heterozygotes

with one normal and one mutant allele have a selective advantage in that

the slightly reduced oxygen-carrying capacity of their red blood cells

provides an inhospitable environment for the malarial parasite and thus

gives them resistance against the disease. Among African Americans,

however, the heterozygous state confers no advantage, because malaria

is not common in the United States. For further details on the balance

between some genetic and infectious human diseases, see Dean,

Carrington, and O‘Brien (2002).

The last two examples show once again that decisions regarding the use

of a mathematical model should always be made with care. The above

examples show there are situations when the use of the models

developed in this section would not be prudent, as they may fail to

capture the more complex genetic dynamics in a population.

V. MORE COMPLEX HEREDITARY PATTERNS

So far, we have been dealing with only the simplest Mendelian genetic

systems, in which there are only two alleles at a particular locus, one of
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which is completely dominant to the other. Genetics, however, is not

always that simple.

Sometimes, two alleles combine to give an entirely new phenotype, as

with flower color in snapdragons. If one crosses a true-breeding red

snapdragon with a true-breeding white snapdragon, the offspring will

all have pink flowers. This phenomenon is called incomplete dominance.

In the human ABO blood type system, we find another example. If a

person who is homozygous for the type A allele (IAIA) marries a person

who is homozygous for the type B allele (IBIB), their children will

all be type AB, with a genotype IAIB. This situation is called

codominance—the phenotypes (in this case, the particular sugars on the

red blood cell membranes) of both parents are found in the child.

Some genetic loci have multiple alleles. We return to the human ABO

blood type system for an example. In addition to the A, B, and AB blood

types mentioned above, humans may also have blood type O, which has

the genotype ii. This means that there are three alleles which may be

found at the blood type locus—IA, IB, or i. The i allele is recessive to

either of the IA or IB alleles. Thus, a person with type A blood may have

genotype IAIA or IAi, and a person with type B blood may be IBIB or IBi.

Some traits are sex linked, in that they occur on one of the sex

chromosomes of a species (such as the human X chromosome). Such

traits are therefore present in a single copy in the sex with the unmatched

‘‘pair’’ of sex chromosomes (such as the human male, in which there are

22 pairs of chromosomes and an unmatched set, XY). When calculating

the frequency of X-linked alleles in the human population, one needs to

take into account the sexes of the individuals comprising the population.

EXERCISE 3-3

If p is the frequency of the IA allele, q is the frequency of the IB allele, and r is

the frequency of the i allele, how would you state the frequencies of the

blood types A, B, AB, and O, assuming Hardy–Weinberg conditions?

EXERCISE 3-4

Assume a gene C is found on the human X chromosome and that it

occurs in only two alleles, C and c. Using p to represent the frequency

of C and q to represent the frequency of c, how would you express the

genotype frequencies in males and females?

The Hardy–Weinberg theorem and the selection observed with

maladaptive genes might prompt us to believe the genetic make-up of
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a population will reach equilibrium, and that equilibrium state will be

the single state most beneficial to the species. Obviously, this does

not happen. Change is a fact of life. So what is wrong with our

model? A good place to start is by reexamining the model’s

assumptions.

First of all, the Hardy–Weinberg assumptions and the model we

developed to study the effect of a maladaptive gene are only

approximations that do not fully reflect reality. Mating is usually not

totally random, and one does not often have a population free from both

immigration and emigration. Catastrophic events, such as disease or a

meteor striking the earth, may wipe out entire species. Mutations occur,

and some may propagate, becoming a non-negligible part of a

population’s gene pool—especially if the mutations confer some

advantage. Of course, what may be an advantageous mutation for some

members of a species may be a disadvantage for others, as amply

illustrated by the sickle-cell anemia allele.

In a way, we are back to where we were modeling population growth,

with initial attempts yielding limited insights, but failing to fully

describe what actually happens. For better descriptions and more

refined outcomes, our models need to be modified by adding new

variables and/or parameters. Although carrying out such modifications

falls beyond the scope of this text, a detailed discussion may be found in

Falconer (1989). We shall now move forward to another application of

mathematics to genetics.

VI. QUANTITATIVE TRAITS

A. Discontinuous Versus Continuous Traits

In each of our previous examples, genetic variations within the

population were due to different genotypes involving one or two loci.

These examples give rise to discontinuous traits, where just a few

distinct phenotypes are observed: The seed coats of pea plants are either

round or wrinkled; the seedpods are green or yellow; etc. Because of the

relatively small number of phenotypes, they are easily separated from

one another. Studying the phenotypes of the parents and offspring and

examining the phenotypic ratios can readily establish the connection

between the traits and the genes.

Many other traits, known as continuous traits, do not follow this pattern.

These traits, such as human weight and height, exhibit a wide range of

possible phenotypes. The color of human eyes, for example, varies

from the lightest shades of green and blue to deep dark brown to nearly

black. The branch of genetics that examines the inheritance of

continuous traits is called quantitative genetics. It employs a variety of

quantitative methods to study the genetic make-up of continuous traits
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and to determine to what extent variation in phenotype is caused by

genotypic differences and to what extent it might be caused by

differences in environmental factors. We take a closer look at these

questions in the next chapter.

In this section, we present a mathematical model that explains

continuous traits by assuming there are multiple genetic loci controlling

the expression of a particular quantitative characteristic, with each

individual gene contributing to the trait’s magnitude. Each of the

controlling genes can add to, or fail to add to, the magnitude of the

specific characteristic. The model explains the so-called bell-shaped

curve distribution of values exhibited by many continuous traits, such as

height, weight, or intensity of flower petal color.

This hypothesis was formulated in 1909 by Hermann Nilsson-Ehle in

relation to his study of wheat kernel colors. Similar to the experiments

Mendel performed, Nilsson-Ehle started by crossing pure lines of white

grain and red grain wheat. In the first generation, he only observed

wheat with a grain color intermediate to that of the parents. An

intercross of the first generation produced offspring with both white and

red grain color, as expected. The puzzling fact in his experiments,

however, was the presence of different shades of red among the red grain

in the F2, in addition to the color observed in the F1—a departure

from the Mendelian result. In one of the crosses, for example, a ratio

of 15/16 red to 1/16 white was observed. There were about as many

plants with grains as intensely red as in the grandparents as there

were plants with white grains. The number of plants with pure red

grains and white grains was not very large, and the largest number of

plants in the F2 had grains of the same color as the F1. There were also

two intermediate shades of red that were not present in either the P or F1
generations. The different phenotypes appeared in a ratio of 1:4:6:4:1

from the dark red through the light red grains to white. In still other

cases, Nilsson-Ehle found that 63/64 of the F2 plants were red-kernelled

and only 1/64 had white kernels. In these experiments, the range of

intensity of the red was even wider and the variety of shades greater.

B. The Polygenic Hypothesis

To explain these experiments, Nilsson-Ehle made the conjecture, known

as the polygenic (or multiple-factor) hypothesis, that the color of the kernel is

controlled, not by one, but by several different genes. The genes are

independent and contribute cumulatively to the red pigmentation of the

wheat kernels. None of the genes is completely dominant over white,

explaining the appearance of the F1 as a blend of the characters of the

two parents. Nilsson-Ehle conjectured that the intensity of the red

pigmentation in the wheat kernel is controlled by the number of

contributing alleles present at the loci controlling the production of red

pigmentation. In general, he conjectured that quantitative traits are
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controlled by a number of genes, each of which could contribute

a unit of height, weight, or other measurable characteristics. In the

discussion that follows, we use grain color and the original work by

Nilsson-Ehle as a reference, but the ideas adapt easily to other

quantitative traits.

To determine whether the polygenic hypothesis holds promise, the

assumptions just made should result in a model that could explain the

following:

1. The increased variability of F2 phenotypes, and

2. The F2 phenotypic ratios arising from the experiments.

The effect of the polygenic hypothesis can be explained by the binomial

theorem and the related binomial distribution, which we now review.

Assuming that the parents are true-breeding lines, the F1 generation has

a genetic make-up formed of exactly 50% contributing and 50%

noncontributing alleles. To determine the make-up of the F2, the

mathematical question we want to answer is: If we are filling N slots

with one of two alleles R or r that are equally likely, what is the

probability that there are k slots filled with R’s and N � k slots filled with

r’s? The answer is

N
k

� �
:

1

2

� �N
; where

N
k

� �
¼ N!

k!ðN � kÞ! and k! ¼ 1
1�2 � � � k

if k ¼ 0
if k > 0:

�

(3-9)

The factor
1

2

� �N
comes from the fact that we have N positions to fill

independently with two alleles that are equally likely to be selected. This

means that any string of length N composed of R’s and r’s has a

probability of
1

2

� �N
. The

N
k

� �
term comes from the fact that there are

N
k

� �
different arrangements of k R’s and N � k r’s.

The Binomial Theorem states that for a positive integer N,

ðaþ bÞn ¼
XN
K¼0

N
k

� �
akbN�k:

If we set a ¼ b ¼ ½ , we see that

XN
k¼0

N
k

� �
1

2

� �k
1

2

� �N�k

¼
XN
k¼0

N
k

� �
1

2

� �N
¼ 1

2
þ 1

2

� �N
¼ 1;

so that we indeed have a probability density.

We now show how the polygenic hypothesis gives rise to a characteristic

having several manifestations and why the ‘‘central manifestations’’ are
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most common. A helpful analogy is mixing red and white paint. If we

are to choose two drops of red (R) or white (W) paint at random, there

are three different colors arising from the following mixtures: WW, pure

white; WR and RW, pink; and RR, pure red. If we were to choose four

drops of paint, the possible colors are presented in Table 3-2. It seems

apparent that as the number of drops increases, so does the number

of possible colors. If there are m genes that contribute equally to the

expression of a characteristic, then there will be N ¼ 2m alleles and

2m þ 1 different manifestations of the characteristic. According to

Eq. (3-9), the probability that the manifestation corresponds to exactly k

of a particular allele is
2m
k

� �
:
1

2

� �N
. Notice the 15:1 ratio between red-

and white-kernelled corn in Table 3-2 and that the phenotypic ratios are

1:4:6:4:1, exactly as observed by Nilsson-Ehle. The model, therefore,

describes the experimental results accurately.

EXERCISE 3-5

Compute
4
k

� �
for k ¼ 0, 1, 2, 3, 4. Compare the results with column 3 of

Table 3-2.

EXERCISE 3-6

Suppose a quantitative genetic trait is determined by six genes (m ¼ 6),

each of which has two alleles, T and t. Assuming each allele has an equal

chance of appearing, calculate the proportions of the phenotypes in F2
corresponding to:

(a) 12T (that is, the genotype comprised only of contributing alleles),

(b) 5T and 7t (the phenotype corresponding to genotypes comprised

of 5 contributing and 7 noncontributing alleles),

Genotypes

Phenotype

(grain color)

Number of

Sequences Proportion

WWWW White 1 1/16

RWWW, WRWW, WWRW,
WWWR

Light Pink 4 1/4

RRWW, RWRW, RWWR,
WRRW,WRWR, WWRR

Pink 6 3/8

RRRW, RRWR, RWRR, WRRR Dark Pink 4 1/4

RRRR Red 1 1/16

TABLE 3-2.
Genotypes and phenotypes predicted by the polygenic hypothesis.
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(c) 6T and 6t (the phenotype corresponding to genotypes comprised

of 6 contributing and 6 noncontributing alleles),

(d) 2T and 10t (the phenotype corresponding to genotypes composed

of 2 contributing and 10 noncontributing alleles).

If we examine the binomial distribution as shown in Figure 3-9, we see

that themost commonmanifestation of the trait occurswhen k¼m (that is,

when the alleles are half of each type). This is the mathematical

explanation for why most people seem to be near the average of a

population trait.
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FIGURE 3-9.
The distribution of colors in F2 for a different number of controlling genes m when the alleles R and r are equally likely. The number of different phenotypes is
5, 9, 21, and 51, respectively. Notice that (1) the distributions are symmetric; (2) the shade corresponding to exactly m contributing alleles (the shade of the
F1) is the most common; (3) the parental colors (corresponding to 0 and 2m contributing alleles) are the least common; (4) the closer the number of
contributing alleles is to m, the more prevalent the color is; and (5) as m increases, the histograms involve a larger number of classes that correspond to
increased variability of the characteristic in the F2. Panel A: m ¼ 2; panel B: m ¼ 4; panel C: m ¼ 10; panel D: m ¼ 25.
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In our discussion so far, we have only considered the case where each

allele was equally likely. This isn’t necessary. If we consider two alleles,

one (say R) occurring with probability p and the other (r) with probability

1 � p, the probability that exactly k of the 2m alleles will be R is

2m
k

� �
pkð1� pÞ2m�k; where k ¼ 0; 1; 2; . . .; 2m: (3-10)

Note that when p ¼ 1

2
; then :

pkð1� pÞ2m�k¼ 1

2

� �k
1� 1

2

� �2m�k

¼ 1

2

� �k 1

2

� �2m�k

¼ 1

22m

and, thus, we obtain exactly the same results as in Eq. (3-9) for N ¼ 2m.

Figure 3-10 presents the probability histograms for the binomial

probabilities with varying values for p and N. In contrast with Figure 3-9,

these histograms are not symmetric about the value k ¼ m. The smooth

bell-shaped curve in Figure 3-10 depicts the graph of a function known

as a normal or Gaussian curve. The normal curve is a theoretical

construction and presents a special case of the Central Limit Theorem.

In this context, the central limit theorem guarantees that for sufficiently

large values of m, the histogram of the binomial probabilities is well

approximated by a certain Gaussian curve. In the symmetric case when

p ¼ 1/2, the approximation is very good, even for small values of n.

When p 6¼ 1/2 the approximation gets better for larger values of m.

A widely used rule of thumb advises that Gaussian approximation for

p 6¼ 1/2 is appropriate when 2mp � 5 and 2m(1 � p) � 5.

The Gaussian approximation described above is useful, as it allows for a

natural transition from a qualitative to a quantitative differentiation

between the phenotypes. For example, if there are only three possible

colors of wheat kernels (e.g., white, pink, and red), there is no problem

referring to them as separate colors. With five different colors, the

qualitative description of the phenotypes becomes more challenging. In

our example above, we used ‘‘white,’’ ‘‘light pink,’’ ‘‘pink,’’ ‘‘dark pink,’’

and ‘‘red’’ to describe them. With seven, nine, or more different

phenotypes, coming up with appropriate names for all possible colors

becomes increasingly difficult. In such cases, it would be more

convenient to describe the trait quantitatively as a deviation from the

most commonly occurring characteristic.

The polygenic hypothesis, in combination with the central limit theorem,

provides what could be called a mechanistic insight to the observation

that certain quantitative traits exhibit approximately Gaussian

distribution, namely, that if m, the number of genes controlling the trait

is relatively large, the binomial histograms representing the actual

distribution of the trait is well-approximated by a Gaussian curve. More

details regarding this result will be presented in the next chapter. We

note that the converse may not be true. If a trait is assumed to be
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FIGURE 3-10.
The distribution of colors in F2 for a different number of controlling genes m with probabilities p and 1 � p for the alleles R and r, respectively. While
for p ¼ 1/2 the histogram is symmetric, for p 6¼ 1/2 this is not the case. However, as the diagrams in Figure 3-10 exemplify, even for values p 6¼ 1/2,
the distribution becomes quite symmetric when m is relatively large. Panel A: m ¼ 4, p ¼ 0.2; panel B: m ¼ 8, p ¼ 0.7; panel C: m ¼ 10, p ¼ 0.2; panel D:
m ¼ 10, p ¼ 0.7; panel E: m ¼ 25, p ¼ 0.2; panel F: m ¼ 25, p ¼ 0.7.
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quantitative, this does not necessarily imply that it is controlled by

multiple loci. Instead, other factors, such as the environment, proper

nutrition, or socioeconomic behaviors, may have a smoothing effect on

the trait, introducing phenotypes that are not entirely determined by

genetic inheritance. These observations raise some interesting and

important questions.

D. GENES, ENVIRONMENTS, AND VARIATION

IN A POPULATION

In the first part of this chapter, we examined the genetics of

discontinuous traits. These are the kinds of traits described by Gregor

Mendel as either dominant or recessive: the alternate forms of tall or

short pea plants with green or yellow seeds which may be smooth or

wrinkled. However, not all inheritance patterns are so straightforward.

As discussed above, it has been experimentally determined that many

traits, such as height, assume their values from a continuum of

possibilities. Additionally, some of the variation in human height is not

caused by genetic factors alone. Environmental factors, such as the

availability and nutritive value of the food consumed by individuals

during childhood, will certainly play a part in determining the height

distribution of a population. Because of the continuous nature of

quantitative traits such as height, it is much more difficult to determine

the relative contributions of heredity and environment to the resulting

variation observed in the population.

It is important to be able to assess the relative contributions of heredity

and environment, because environmental factors have considerable

impact on the development of many phenotypes. For example, genetic

predisposition is known to increase the possibility for developing

type II diabetes, but obesity is another critical factor. Thus, the

development of the disease phenotype depends upon the interaction of

genetic and environmental (including behavioral) factors. Knowing how

much of this predisposition is genetic and how much is caused by

environmental factors would allow individuals to make informed

decisions about diet and exercise, and help public health officials to

make appropriate recommendations to minimize chances of developing

the disease.

Consider all of the women whose mothers had breast cancer. How can

we quantify their risk of developing breast cancer? How would that

quantification change if we were talking about women who pursue low-

fat diets and healthy lifestyles? How would it change if the women in

question were alcoholic chain-smokers? How much of their risk is

caused by genetics, and how much is caused by environmental

(specifically behavioral) factors? In the next chapter, we shall examine

techniques that will help us quantify these kinds of questions.
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1. For an in-depth analysis of this field, the reader is referred to
Falconer (1989).

Science is the great antidote to the poison of enthusiasm and

superstition.

Adam Smith (1723–1790)

A fundamental question, both philosophically and

biologically, is what causes differences within a species?

The issue is complicated, but commonly the causes are

classified as genetic or environmental or as

developmental ‘‘noise.’’ Developmental noise is a random

occurrence unrelated to genetic or environmental causes,

such as the small physical differences between identical

twins when they emerge from the womb. When

considering genetic, environmental, or developmental

factors, one would like to attribute a certain amount of

variation to each factor, but this is usually not possible on

an individual basis. Complicating the problem further,

there will usually be some crossover between factors

(called covariance). For example, a child whose parents are

musicians may be genetically predisposed toward

music (if such musical genes exist), but would also benefit

from being reared in a musically nurturing environment

and engaging in music-related behaviors. Similar

confounds occur in analyzing intelligence levels.

In no sense have these questions been thoroughly

answered in this book, but we shall pursue some

worthwhile inquiries while presenting several statistical

tools useful in many areas of biology.1 These tools will

enable us to make unbiased judgments on data-based

hypotheses. We shall focus on three related topics:

1. How do we decide whether any observed differ-

ences are statistically significant?

2. Is the contribution of an underlying genetic factor

significant relative to environmental factors?

3. What is the common mathematical thread linking all

statistical tests comparing means, evaluating the

contribution of various factors, or testing the linear

dependence of an outcome on a set of predictive

variables?

We begin by reviewing some terminology from

probability.

Chapter4
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I. PROBABILITY BACKGROUND

Consider an experiment whose outcome depends on chance—such as

flipping a coin or rolling a die, the number of chickens hatching on a

farm each day, or how long after sunset a bat leaves a cave. If we repeat

such experiments, the outcomes will vary randomly, and so we say the

outcome is described by a random variable. Each time the experiment is

performed, the random variable takes a specific value corresponding to

that outcome. In most cases, this assignment is very natural. When

rolling a die, the value rolled (1, 2, 3, 4, 5, or 6) will be the number

assigned to the outcome. For some experiments, specific values may be

more likely to occur than others. The chances of an expectant mother

delivering twins are smaller than for delivering a single baby, but are

higher than for septuplets. Each random variable has a probability

distribution specifying how likely an outcome, or a set of outcomes, is to

occur. The probability distribution of the random variable can be

visualized as follows: If we make many (theoretically, infinitely many)

trials and find the numbers the random variable assigns to the trials, the

relative frequency histogram of these numbers will provide a good

approximation of the random variable’s distribution. It is common in

probability to denote random variables by letters from the Greek

alphabet, such as x and �.

In the previous chapter, we described how Nilsson-Ehle used this

approach to obtain the distribution of phenotypes in the F2 generation

originating from a parental cross of white and red grain wheat and

presented the results in a table (reproduced here as Table 4-1). The last

column of Table 4-1 represents the probability distribution obtained

from the approximate proportions 1:4:6:4:1 he observed between the

phenotypes in the F2. In this example, the random variable representing

the grain color in the F2 is discrete, as there is a finite number of values

this random variable can take. The same will be true for the random

variable giving the number of chickens hatching on a farm each day. The

Genotypes

Phenotype

(Grain Color)

Number of

Sequences Probability

WWWW White 1 1/16

RWWW, WRWW, WWRW,
WWWR

Light pink 4 1/4

RRWW, RWRW, RWWR,
WRRW,WRWR, WWRR

Pink 6 3/8

RRRW, RRWR, RWRR,
WRRR

Dark pink 4 1/4

RRRR Red 1 1/16

TABLE 4-1.
Genotypes and phenotypes predicted by the polygenic hypothesis.
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binomial distribution introduced in the previous chapter provides

another example of a discrete distribution.

In contrast, if a random variable represents the weight of a newborn

baby, it can take on a continuous range of values. This is an example

of a continuous random variable, and the tool that replaces the table of

values with their corresponding probabilities is the probability density

function. A function f (x) is a probability distribution density function for

a random variable x provided that:

1: f ðxÞ � 0;

2:

Z1

�1
f ðxÞdx ¼ 1;

3. For any numbers a < b, the probability that x is between a and b is

calculated as Pða < x< bÞ ¼ R b
a f ðxÞdx.

The most common and important probability density function is the

normal or Gaussian distribution. A special case is the standard normal

density function defined by the expression

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p :e
�x2

2
: (4-1)

The graph of this function is depicted in Figure 4-1(A).

The mean and variance of a random variable are two numerical

characteristics associated with its distribution. The mean could be

thought of as the average we would expect after doing many trials. The

variance measures the spread of the data around the mean value. The

mean is typically represented by m and the variance by s2. The standard

deviation, defined as the square root of the variance, is denoted by s.

The following heuristic explanation outlines a fundamental principle:

A normal distribution occurs when multiple independent random

choices are made, each of them attempting to achieve a certain fixed

average value, but each is vulnerable to errors that are symmetrical in

both directions around the mean.

Several examples will clarify this point. Thousands of bats exit their

cave about 2 hours after sunset. Because inside the cave there is

no indication of when exactly sunset occurs, each bat relies on its

biological clock to estimate the exit time. As we shall see in a later

chapter, some biological clocks run fast and some slow, with larger

errors less likely to occur than smaller ones. Experiments have shown

that the number of bats exiting a cave per minute follows quite

precisely a bell-shaped curve with a mean of about 2 hours after sunset.

Similarly, if we place microscopic particles in a glass of water, they get

hit by water molecules and travel various distances, depending on the
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FIGURE 4-1.
Comparison of normal density functions with
differing parameters. Panel A: Standard normal
density; that is, normal density with mean
m ¼ 0 and standard deviation s ¼ 1; panel B:
normal densities with m ¼ 2 and s1¼ 3 (gray
line), s2¼ 2 (black dotted line), and s3¼ 1 (solid
black line).

Quantitative Genetics and Statistics 131An Invitation to Biomathematics



force of the impact. The average travel distance depends on the

temperature (energy) of the water, while the distribution of the

distances around this average is approximately normal. In other

words, each bat’s time estimate of 2 hours after sunset, or each

particle’s travel distance, is one outcome of an experiment described

by a random variable with a normal density function. The general

analytical expression of the normal (Gaussian) density is given by the

function

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p �s e
1�2ðx�m

s Þ2 ; (4-2)

where x can take any value in the interval (�1, 1). When we say

that a random variable x has a normal distribution with parameters m
and s, this means the random quantity represented by x has a density

function such as in Eq. (4-2). The values m and s define uniquely the

shape of the curve and correspond to the mean and the standard

deviation of the normal distribution. The mean value m, �1 < m < 1,

determines the position of the maximum for the bell-shaped graph of

the normal density function from Eq. (4-1). The standard

deviation s, s > 0, determines how sharp the peak is near the maximum.

Figure 4-1(B) illustrates how the density graphs for the function in

Eq. (4-2) change with the change of the parameters m and s.
When m ¼ 0 and s ¼ 1, the density function from Eq. (4-2) takes

the form presented by Eq. (4-1). That is, for m ¼ 0 and s ¼ 1, we obtain

the standard normal distribution.

If the outcomes of two or more experiments do not influence one

another, we refer to them as being independent. Similarly, we say that

the random variables associated with these experiments are also

independent. Consider three random variables describing the

following quantities: (1) The time after sunset when a bat exits its

cave located in Virginia; (2) the height of a corn plant in a cornfield in

Mexico; and (3) the acidity of the soil on which the same plant

grows. Because it appears unlikely that the characteristics of the

cornfield in Mexico can affect the behavior of Virginia bats, the bat exit

time can be considered independent from the corn height and also

independent from the acidity of the cornfield. On the other hand,

the acidity of the soil and the height of the corn plants cannot be

considered independent because the acidity is expected to

affect growth.

If we combine two random variables with the same distribution,

the result will not necessarily have that same distribution. For example,

if we flip a coin twice and let �1 be the number of heads (H) on

the first flip and �2 be the number of heads on the second flip, then the

probabilities that �1 takes values 1 or 0, respectively, are Pð�1 ¼ 1Þ ¼ 1=2

and Pð�1 ¼ 0Þ ¼ 1=2. The random variable �2 will have exactly

132 Chapter FourAn Invitation to Biomathematics



the same distribution. But �1 þ �2 is the number of heads

on both flips. The possibilities are HH, HT, TH, and TT, so the

probabilities that �1 þ �2 takes values 2, 1, and 0, respectively, are

Pð�1 þ �2 ¼ 2Þ ¼ 1=4, Pð�1 þ �2 ¼ 1Þ ¼ 1=2, and Pð�1 þ �2 ¼ 0Þ ¼ 1=4.

An important property of the normal distribution is that when we add

two independent random variables x and � that are normally

distributed, the sum x þ � also has a normal distribution with mean

equal to the sum of the means and variance equal to the sum of the

variances of x and �. Other operations performed on x and �, however,

will no longer result in normal distribution. We next consider several

other probability distributions that are derived from the normal

distribution and used for various statistical tests. We shall introduce

them briefly, without the cumbersome formulas for their densities.

Figure 4-2 shows the graphs of these densities for various choices of

parameters.

Chi-square (w2) distribution. This type of distribution arises when we

consider squares of random variables with standard normal distribution.

More specifically, if x is a random variable with a standard normal

distribution, it may sometimes be necessary to consider � ¼ x2. Because
x is a random variable, so is �, but the density function of � cannot be

normal because the new random variable � takes only positive values.

We say that � ¼ x2 has a w2 distribution with one degree of freedom. If we

consider several independent random variables x1; x2; . . .; xN, all of
which have standard normal distributions, then we say the sum of the

squares of these random variables, namely � ¼ x21 þ x22 þ . . .þ x2N, has a

w2 distribution with N degrees of freedom. Figure 4-2-(A) presents the

density function of a w2 distribution with N ¼ 7 and N ¼ 21 degrees of

freedom, respectively.

t-(Student) distribution. This distribution arises when we need to consider

specific ratios of random variables. In particular, if x is a random

variable with a standard normal distribution and � is another random

variable with a w2 distribution with N degrees of freedom, then their

ratio z ¼ x=
ffiffiffi
�

p
will be a new random variable. This new random variable

is said to have a t-distribution (or Student distribution) with N degrees

of freedom. The graphs of the probability density for t-distribution

with N ¼ 2 and N ¼ 23 degrees of freedom are shown in

Figure 4-2(B).

F-(Fisher) distribution: This distribution also arises when ratios of random

variables are considered, but this time it is the ratio of two random

variables with w2 distributions. More specifically, if x is a random

variable with a w2 distribution with M degrees of freedom and � is

another random variable with a w2 distribution with N degrees of

freedom, then their ratio z ¼ x/� will be a new random variable said to

have an F-distribution (or Fisher distribution) with M, N degrees of freedom.
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w2, t- and F-distributions with varying parameters.
Panel A: w2 distribution with 7 (black) and
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and 23 (gray) degrees of freedom; panel C:
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Graphs of F-distribution densities for different choices of M and N are

shown in Figure 4-2(C).

We now give an intuitive explanation of how these probability

definitions relate to common problems of statistical testing. First,

statisticians typically assume that their observations are collected by

independent measurements of a random variable having a normal

distribution. In this case, it is said the data have been derived from a

population described by a normally distributed random variable. There

are numerous statistical procedures that validate this assumption, and it

is always important to check the normality of your sample before

applying statistical tests, such as the t-test or F-test described below.

If the normality assumption does not hold, the results from some

statistical tests could be misleading.

II. RELATION OF PROBABILITY DISTRIBUTIONS

TO STATISTICALTESTING

Returning to the question of quantitative traits and the polygenic

hypothesis, suppose that an agricultural company is attempting to alter

a type of corn to produce a new variety (B) that will be superior to the

original variety (A). First, we need to specify what we mean by superior.

It could mean higher yield, greater resistance to drought or disease,

less-intensive soil preparation or cultivation, or easier harvest. In this

case, let us suppose we wish to improve the yield of the plants. Like

height and weight in humans, we have reason to suspect corn yield is

well described by a normal distribution; thus, we shall assume that the

normality assumption holds.

The next step would be to design an experiment and collect data. This

may sound simple, but several factors need to be considered. Would you

take one of each type, plant them side-by-side under the specified

conditions, and see which produces a higher yield? That may sound

appealing (it is certainly simple), but one can never be sure that every

plant of the same type will have exactly the same yield. In fact, it is very

likely there will be some variance between plants of the same type,

even under the same conditions.

Suppose, then, that we run trials with different numbers of plants and

record the data in Tables 4-2 and 4-3.

Would you have more confidence making a conclusion based on the first

or second trial? What we have done in both trials is take a sample from

each of the plant varieties. What we are attempting to do with the

sample is estimate the yields from the population. The fact we used more

plants in the second trial would probably engender more confidence in

its representation of the population. In other words, sample size is an

important factor in determining our confidence in the outcome (the

Plant

No.

A

(Yield)

Plant

No.

B

(Yield)

1 2.1 1 2.4

2 2.6 2 2.5

TABLE 4-2.
The trial 1 data from an imaginary experiment
involving two plants each of the varieties A and B.

Plant

No.

A

(Yield)

Plant

No.

B

(Yield)

1 2.2 1 2.4

2 2.8 2 2.8

3 1.9 3 3.1

4 3.2 4 2.6

5 2.6 5 2.5

6 2.1 6 2.8

7 2.7 7 3.2

8 2.4 8 3.4

9 2.5 9 2.9

10 2.0 10 2.7

TABLE 4-3.
The trial 2 data from an imaginary experiment
involving 10 plants each of the varieties A and B.
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word ‘‘confidence’’ is an important part of the statistical vocabulary).

There is a class of statistical methods called power analysis that allows an

optimal sample size for achieving a desired confidence to be estimated

prior to the experiment. While it is intuitively clear that a larger

sample size would result in more powerful tests, power analysis is a

convenient tool whenever data collection incurs expenses. In such a case,

the problem is to find the minimal sample size to achieve the desired

power of the test.

The mathematical formulation of the problem uses some specific

language we outline next. The traditional way to describe a statistical

problem begins like this: Let x1; x2; . . .; xN be N independent observations

of a normally distributed random variable x with unknown parameters

m and s. This means we have collected some data by measuring a

random quantity known to have a normal distribution, and the values

from the measurements have been denoted by x1; x2; . . .; xN . These

values are the data points forming our sample for the random variable x.
In terms of our corn yield example, assume that the random variable x
represents the population yield from variety A that we are attempting to

estimate by sampling repeatedly. In the first trial, the sample size

was N ¼ 2, while in the second trial we considered a larger sample size

of N ¼ 10. The data points x1 ¼ 2:1; x2 ¼ 2:6 define the sample for

x from the first trial, while x1 ¼ 2:2; x2 ¼ 2:8; . . .; x10 ¼ 2:0 define the

sample from the second trial.

As already mentioned, the mean of a random variable could be thought

of as the average after many trials. Thus, it is natural to expect that the

average value of the data points, denoted by x;

x ¼ x1 þ x2 þ . . .þ xN
N

¼
PN
i¼1

xi

N
¼ 1

N

XN
i¼1

xi; (4-3)

would be a good estimate of the mean value parameter m of the normal

distribution.2 This is why the average value calculated in Eq. (4-3) is

sometimes called the empirical mean or sample mean of the random

variable x. It can be proven that this is the best estimate (in terms of

statistical criteria), also called the maximum likelihood estimate. In these

terms, the test average you earn in a class is a maximum likelihood

estimate of your grade. Similarly, it can be shown that a maximum

likelihood estimate of the variance s2 of a normal distribution is given by

the formula

s2 ¼ s2ðNÞ ¼ ðx1 � xÞ2 þ ðx2 � xÞ2 þ . . .þ ðxN � xÞ2
N � 1

¼ 1

N � 1

XN
i¼1

ðxi � xÞ2:

(4-4)

2. As is customary in mathematics, we have used
PN

i¼1xi to denote the sum
x1 þ x2 þ . . .þ xN:
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The value s2 is sometimes called the empirical variance or sample variance.

The square root, s, is called the empirical standard deviation of the random

variable x.

If we need to measure two different random variables x and � having

a normal distribution, we record the data points for x and � as samples

A and B. Sample A contains the data points measured for x and

sample B contains the points measured for �. In our earlier example,

samples A and B contained the yield data for corn varieties A and B,

presented in Tables 4-2 and 4-3. To distinguish between the

mathematical expressions using data from sample A from those using

sample B, we use the name of the sample as part of the notation. For

example, we use xA to denote the average of the data points from A,

and s2B ¼ s2BðNÞ to denote the maximum likelihood estimate of the

variance calculated by the formula in Eq. (4-4) with the data from

sample B. In the latter case, the value of N will correspond to the number

of data points in the sample B.

Recall that the sum of two independent, normally distributed variables

also has a normal distribution, with a mean equal to the sum of the

means and variance equal to the sum of the variances. It follows then,

the empirical mean x and the difference ðxi � xÞ will also have normal

distributions. The same holds for the difference xA � xB; when we

consider two samples. Particularly, x will have a mean equal to m and

a variance equal to s2/N. Further, because ðxi � xÞ has normal

distribution, the estimate of the variance s2, which is a sum of the

squares of N such quantities, will have an approximately w2 distribution
with N degrees of freedom.

When these considerations are paired with the definitions we gave for

w2 distribution, t-distribution, and F-distribution, in general, the

following broad principles hold:

1. Any statistical test (such as the Z-test, as we shall see later) using

the difference xA � xB, between the empirical means of two samples

A and B as their test statistic requires the use of a normal

distribution;

2. Any statistical test (such as the t-test, as we shall see later)

using a variant of the ratio x=s (empirical mean/empirical

standard deviation) as their test statistic, requires the use of a

t-distribution (as it is approximately normal/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Chi�square

p
);

and

3. Any statistical test (such as the F-test, as we shall see later) using

the ratio s2AðMÞ=s2BðNÞ (empirical variance of one sample with M
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readings/empirical variance of another sample with N readings) as

their test statistic, requires the use of a F-distribution (as it is

approximately Chi-square/Chi-square) with M, N degrees of

freedom.

We will usually have a group of data for which we need to choose which

statistical test to perform, based on the question at hand. Once this has

been decided, we shall use standard statistical software, such as

MINITAB or SPSS, to carry out the computations. When this is done, we

should be able to interpret the output. We begin by outlining the

fundamentals of formulating a hypothesis and performing statistical

testing.

III. STATISTICALTESTING

A. Testing a Hypothesis

In hypothesis testing, we make a claim and then gather data to evaluate

this claim. The claim is called the null hypothesis. The negation of the null

hypothesis is called the alternative hypothesis. The exact criteria used for

the evaluation are based on knowledge of probability distributions

coming from statistical theory. In this text, the claims will most often be

about the value of a distribution parameter. The salient point is:

Assuming that the null hypothesis is correct, we want to be able to

calculate the probability that the sample we took could occur. For

example, suppose the null hypothesis for the mean value m of a

probability distribution is that m � 0 and we take a sample of size 20 and

find the sample mean x is 0.7. Suppose also statistical theory says that if

the null hypothesis is correct, the probability distribution of the means of

the samples of size 20 will be as shown in Figure 4-3(A). In Figure 4-3(B),

we locate the particular value of our sample and shade the area under the

probability density curve to the right of this value. The area of the shaded

region represents the probability the sample mean we took would have

been 0.7 or larger, if the null hypothesis is correct. This probability is the

p-value corresponding to the empirical result of 0.7. A very small p-value

would indicate the observed mean is very unlikely to have occurred

among all samples of size 20 if the null hypothesis was, in fact, true, and

therefore provides enough evidence for rejecting the null hypothesis. If

the evidence from the data gathered provides enough confidence to reject

the null hypothesis, this is also evidence in favor of the alternative

hypothesis.

To illustrate these concepts with a specific example, we return to the two

types of corn and ask whether the genetically engineered variety B

produces higher average yields than the original variety A. The yields

0A

0B 0.7

FIGURE 4-3.
Standard normal distribution. Panel A:
Probability distribution for the means of samples
of size 20; panel B: The area of the shaded
region represents the probability that in taking a
sample of size 20 we would get a sample mean
of 0.7 or larger if the null hypothesis is correct.
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from A and B can be considered random quantities and denoted by

x and �, with the mean values of x and � denoted by mA and mB,
respectively. In this case, rejecting a null hypothesis that mA � mB will

provide evidence supporting the alternative mA < mB, which would imply

a higher yield from variety B. The null hypothesis is commonly denoted

by H0 and the alternative hypothesis by H. In general, hypothesis

tests are classified as one-tailed or two-tailed, or, alternatively, as

one-sided and two-sided. A one-tailed test is one in which the hypothesis is

directional (i.e., uses either a ‘‘<’’ or a ‘‘>’’). This corn problem is an

example of a one-tailed test. In a two-tailed test, the hypothesis does not

specify a direction and will use the ‘‘ 6¼’’ symbol.

An example of a two-tailed test with the same data would be ‘‘is there a

difference between the yield of plants A and B?’’ In this case, the null

hypothesis would be H0: mA ¼ mB and H: mA 6¼ mB would represent the

two-tailed alternative.

It is important to note that the decision one makes in hypothesis testing

is to ‘‘reject the null hypothesis’’ or ‘‘not reject the null hypothesis.’’ One

does not use the language ‘‘accept the alternative hypothesis,’’ even

though this might seem appropriate. The analogy often used to explain

this philosophy is a criminal case in the United States court system,

where the null hypothesis is ‘‘innocent’’ and a jury will vote to convict

only if the evidence of guilt is compelling. A vote to acquit, therefore,

does not imply that innocence was proven.

In hypothesis testing, there are two types of error one can make. A type I

error is rejecting a true null hypothesis, and a type II error is failing to

reject a false null hypothesis. A type I error is what we really want to

avoid. In the court analogy, this would correspond to convicting an

innocent person (a type II error would be to acquit a guilty person). It is

intuitively clear that the lower we set the threshold for a type I error, the

more certain we are that we will not reject a true null hypothesis. This,

however, leads to the danger of increasing the type II error. In the

example at the beginning of this section, the probability for type I error is

the area of the shaded region in Figure 4-3(B). It is generally accepted

that this p-value should be less than 0.05 for the null hypothesis to be

rejected.

Back to our corn example, suppose we are testing H0: mA � mB versus the

alternative H: mA < mB or, equivalently, H0: mA � mB � 0 versus the

alternative H: mA � mB < 0. Suppose also that when testing our

hypothesis, we want to limit the magnitude of type I error we may be

making to 0.05. From the data gathered for the experiment, we compute

xB � xA, which we denote by a. We then need to evaluate the

probability of how likely it is the sampling distribution for xB � xA,

determined assuming the correctness of the null hypothesis, would

produce that value. Assume now that the sampling distribution for

xB � xA is represented by the density function depicted in Figure 4-4(A).

0A

0B

xAxB

V0 a

0 V2V1C

FIGURE 4-4.
Graphical representation of one-tailed and two-
tailed p-values.
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Because we are considering a one-sided hypothesis, we find a value

V0 such that the area under the curve to the right of V0 is exactly 0.05

[see Figure 4-4(B)]. Next, we plot the value a ¼ xB � xA on the horizontal

axis. If the value of a falls to the right of V0, this would mean that

if we reject the null hypothesis, the chance we are wrong (that is, the

chance we shall reject the null hypothesis when it is, in fact, true) would

be smaller than 5%.

If we have a two-sided alternative hypothesis H: mB 6¼ mA, we need to

find two numbers V1 and V2 [see Figure 4-4(C)] such that the area

to the left of V1 and to the right of V2 is 0.025, and thus the total area

under the curve outside the interval [V1,V2] is 0.05. If the value

a ¼ xB � xA falls to the right of V2 or to the left of V1, then the chance we

shall wrongly reject the null hypothesis will be less than 5%.

The p-value produced by statistical software such as MINITAB and

SPSS is equal (in the case of one-sided hypotheses) to the area under

the curve to the right of the value of our statistic a ¼ xB � xA: Therefore,

if this p-value is less than 0.05, this means a ¼ xB � xA is to the

right of the value V0, and therefore H0 can be rejected with a chance

of type I error less than 5%. In the case of two-sided hypotheses,

the p-value represents the combined area under the curve outside

of the interval ½�jxB � xAj; jxB � xAj�: The important thing to

remember is that, in all cases, the p-value is exactly the probability for

type I error.

One question we have not addressed so far is how to determine the

actual type of the sampling distributions under the assumption the null

hypothesis is true. This choice is based on underlying assumptions for

the populations, as well as on the type of parameters and claims

referenced by the null hypothesis. As we shall see, the probability

distributions we introduced above play a fundamental role in this

process. The following cases will be quite common:

Case I. The null hypothesis deals with comparing mean values; and

Case II. The null hypothesis deals with comparing variances.

In the next two sections, we outline some basic statistical tests that allow

for hypothesis testing of the above cases. They represent essential

ideas that will be needed in later chapters to understand how to

interpret the results from other statistical analyses. As a very broad rule,

when the assumptions for normality are met and the sample size is large

enough, hypotheses of the type outlined in case I would use a

Z-test or t-test, while those outlined in case II would use an F-test.

In the next section, we complete the corn example, which represents

a special instance of case I. In Section C, we illustrate case II by

examining testing for heritability.
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B. Z-Test and Student’s t-Test

The Z-test and Student’s t-test3 are used to compare the means of two

samples. Assume, as above, that we want to evaluate the claim

H0:mA � mB (or, equivalently, mA � mB � 0) versus the alternative

H:mA < mB (or, equivalently mA � mB < 0). In this case, the sampling

distribution of xB � xA, will be approximately normal, and we would use

either a Z-test or a t-test. We use a t-test when the variance of either

group is unknown [in which case the unknown variance(s) are estimated

by the sample variance(s)], leading to the need to use a t-distribution as

the sampling distribution. In fact, in most situations, the group variances

are unknown, necessitating the use of the t-test. We should note,

however, that for large samples, the resulting t-distribution is closely

approximated by a standard normal distribution. It is clear from Figure 4-2

(B) that the density graphs of the t-distribution and the standard

normal distribution in Figure 4-1(A) are very similar. If the degrees of

freedom in the t-distribution exceed 30, the two distribution densities are

virtually indistinguishable.

To evaluate the probability of making a type I error, we compute a test

statistic as we did above. We first present the simpler procedure of using

a Z-test.

Z-test: Let’s go back to our corn example and use the data from Trial 2 to

test the one-sided alternative hypothesis:

H: Average yield of corn B is superior to the average yield of corn A (that is,

mA<mB),

against the null hypothesis:

H0: Corn B has the same or inferior average yield to corn A (that is, mA � mB).

To apply the Z-test, we need to have information about the population

variance. For purposes of the illustration, let’s assume that we

know that the population variance of corn is equal to 0.16 (i.e., the

standard deviation is 0.4). If we use Eq. (4-3) with the data from

Trial 2, we find the empirical mean yield of corn A is xA ¼ 2:44,

while the empirical mean of corn B is xB ¼ 2:84. The variance of xA
and xB is equal to the sum of variances of their components divided by

10 (the number of plants in each sample). If the null hypothesis is true,

the difference xB � xA will have a normal distribution, with mean

m ¼ mB � mA � 0 and variance 0.032 (equal to (0.16 þ 0.16)/10). Thus,

the difference xB � xA has a normal distribution with parameters m �
0 and standard deviation s ¼ ffiffiffiffiffiffiffiffiffiffiffi

0:032
p ¼ 0:1789: Following Figure 4-4(B),

3. The t-test was developed by W. S. Gossett (1876–1937), who worked in Dublin,
Ireland, at the Guinness Brewery and published under the pen name Student.
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the probability of finding the result xB � xA � 0.4 from the data when

xB � xA is normal with parameters m ¼ 0 and s ¼0.1789 is 0.0127. We

find this probability using statistical tables for normal distribution or

software that computes normal distribution. Thus, the p-value of our

one-sided test is p ¼ 0.0127 < 0.05 (see Figure 4-5), and we can reject

the null hypothesis of equal yield from the two corn types (and, thus,

also that the yield from type B is inferior to that from type A).

When either of group variances are unknown, we use a t-test as

exemplified next.

t-test: As before, we want to test the one-sided alternative

H: Average yield of corn B is superior to the average yield of corn A (mA < mB)

against the null hypothesis:

H0: Corn B has the same or inferior average yield to corn A (mA � mB).

This time, however, we assume the variance in the yield of the corn is

not known. This is, in fact, the more common practical situation. Now

we must rely on empirical estimates of the variances of the two types of

corn, using the formulas in Eq. (4-4) to obtain sA¼ 0.4033 and sB¼ 0.3169.

The sample means and variances can also be computed using statistical

software, such as MINITAB and SPSS. The output from MINITAB is

given here.

Descriptive Statistics: A, B

Variable N Mean StDev Minimum Maximum
A 10 2.440 0.403 1.900 3.200
B 10 2.840 0.317 2.400 3.400

The sample distribution for testing the hypothesis H against the

null hypothesis H0 becomes a t-distribution necessitating use of the

t-test. Because the computation of the t-statistics is quite complex

and is routinely done by computer, we are not going to present the

exact formula here. However, using MINITAB we find the t-statistics

have a value of t ¼ 2.466 with 17 degrees of freedom. We again follow

the general paradigm depicted in Figure 4-4(B), this time using Student

t-distribution.

Using appropriate software, we find that the p-value of this one-sided

test is p ¼ 0.012 < 0.05, meaning the probability of having an empirical

result xB � xA � 0.4 assuming the null hypothesis holds is 0.012.

Therefore, we can reject the null hypothesis. The MINITAB output from

this test is presented here. Figure 4-6 presents a graphical illustration of

the output.
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p = 0.0127

Area to the right of Z:

Z = 0.4

FIGURE 4-5.
Relating the p-value and the Z-score. Using a
table, one associates a Z-score of the standard
normal distribution with an area (i.e., a p-value).
For example, Z ¼ 0.4 gives a one-tailed p-value
of 0.0127.

t = 2.466

p = 0.012
Area to the right
of t:
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FIGURE 4-6.
p-value calculated from the t-value of the Student’s
t-distribution with 17 degrees of freedom.

Quantitative Genetics and Statistics 141An Invitation to Biomathematics



Two-Sample t-Test and Cl: B, A
Two-sample T for B vs A

N Mean StDev SE Mean
B 10 2.840 0.317 0.10
A 10 2.440 0.403 0.13

Difference ¼ mu (B) � mu (A)
Estimate for difference: 0.400000
95% lower bound for difference: 0.117824
T-Test of difference ¼ 0 (vs >):
T-Value ¼ 2.466 P-Value ¼ 0.012; DF ¼ 17

The Z-test and t-test help us answer the first of the three questions we

posed at the beginning of this chapter; namely, how to find out whether

any observed group differences are statistically significant. In our

example, the Z-test and the t-test produce quite similar results because

of the fact that the empirical variances used for the t-test (calculated

above as 0.403 for type A corn and 0.317 for type B) are close to the

population variance assumed in the Z-test.

C. F-Test

The second question we posed was how to decide whether the

contribution of an underlying genetic factor is significant, relative to

environmental factors. To answer this question, we have to compare the

variance explained by the genotype to the entire variance observed in

the phenotype and decide whether the genotype explains a significant

portion of the entire variance. This brings us to one of the most

important markers evaluated in genetic studies—the metric called

heritability. Heritability is defined as the ratio of additive genetic

variance (VA) to the entire variance observed in the phenotype (VP),

and by tradition is denoted by h2 ¼ VA=VP. Numerous studies have

been designed to evaluate the heritability of various traits. For

example, the person’s stature is a trait with relatively high

heritability, h2 ¼ 0.65, while insulin resistance (a major factor in the

development of type 2 diabetes) has heritability h2 ¼ 0.31 (see Bergman

et al. [2003]).

In general, the methods used to estimate heritability include parent–

offspring regressions and analysis of variance (ANOVA) comparing

siblings to half-siblings, or identical to nonidentical twins. For the

purposes of this chapter, the important property of heritability is that it

is defined as the ratio of two variances. Therefore, we would expect that

in statistical problems heritability would have an F-distribution.

We shall illustrate the evaluation of heritability of stature via linear

regression. Consider the data in Table 4-4. To investigate the dependence

of the child’s stature on the average parental stature, we choose

Family

No.

Average

Parental

Stature

(X) [feet]

Child’s

Stature

(Y) [feet]

1 5.60 5.70

2 5.90 6.10

3 6.10 6.20

4 5.30 5.60

5 5.70 5.45

6 6.20 5.90

7 6.40 6.10

8 5.50 5.80

9 5.20 5.40

10 6.10 6.20

TABLE 4-4.
Example of parent-child stature data.
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parental stature to be the independent variable (X) and the grown child’s

stature to be the dependent variable (Y).

Plotting average parental stature versus child’s stature gives the

graph in Figure 4-7, suggesting a possible linear relationship

Y ¼ aX þ b between the variables X and Y. The line in the figure is

the line that ‘‘best fits’’ the data set. This line is called the

(least-squares) regression line. In Chapter 5, we shall examine a

criterion for best fit and how the coefficients a and b for this

line can be determined from the data.

Denote the vertical distances of the data points from the line

Y ¼ aX þ b by r1; r2; . . .; rn. These numbers, calculated as

ri ¼ jYi � ðaXi þ bÞj; i ¼ 1; 2; . . . ; n, give the variation in the Y variable

from the straight line relationship (see Figure 4-7). The sum of squared

residuals (SSR) measure, defined as:

SSR ¼ r 21 þ r 22 þ . . .þ r 2n ¼
Xn
i¼1

r 2i ; (4-4)

is the most frequently used measure to express the combined variance of

the data from the regression line.

The regression line in the figure represents the mathematical model

that explains the variance in the data caused by genetic factors. The

value of SSR, on the other hand, represents the variance caused by other

factors.

A second sum of squares, often called the total sum of squares (TSS),

can be used to assess the total variation among the observed Y values.

It is calculated as the sum of the squared residuals around the mean Y of

the Y values (see Figure 4-8):

TSS ¼ ðY1 � YÞ2 þ ðY2 � YÞ2 þ . . .þ ðYn � YÞ2 ¼
Xn
i¼1

ðYi � YÞ2:

It can be shown (and is somewhat obvious from the graphs)

that for any set of points SSR � TSS, and the equality is only

possible when the regression line is horizontal; that is, when

the regression line is Y ¼ Y. The difference TSS � SSR gives

the variance explained by the model, in this case, the

regression line.

The coefficients of the least squares regression line, together with

the quantities SSR and TSS, can be obtained as part of the regression

output from all standard statistical software. Here is the MINITAB

output:
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Y = aX + b
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r10

r5

FIGURE 4-7.
Scatter plot of the parent–child data with a plot
of the least-squares regression line and residuals.
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Regression Analysis:Y versus X

The regression equation is
Y ¼ 2.33þ0.606 X

Predictor Coef SE Coef T P
Constant 2.3292 0.9092 2.56 0.034
X 0.6062 0.1564 3.88 0.005

S ¼ 0.189009 R- Sq ¼ 65.2% R- Sq (adj ) ¼ 60.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.53646 0.53646 15.02 0.005
Residual Error 8 0.28579 0.03572
Total 9 0.82225

This output shows that for the dataset in Table 4-4, we find

SSR = 0.28579 and TSS = 0.82225. Thus, the sum of squares attributed to

the regression line is the difference TSS� SSR ¼ 0:53646. This number

presents the portion of the variance in the data explained by the

genotype. Therefore, the heritability ratio h2 ¼ VA=VP, representing the

genetic variance divided by the entire variance of the phenotype,

translates, in our notation, to h2 ¼ VA=VP ¼ ðTSS� SSRÞ=TSS. Thus, the
proportion of the variance in the child’s stature data explained by

parental stature data is h2 ¼ 0:53646=ð0:82225Þ ¼ 0:652. In this case, the

heritability ratio h2 is exactly the coefficient of determination, R2, in the

MINITAB linear regression analysis output that gives the percentage of

variation of Y attributable to the approximate linear relationship

between X and Y.

The next question is whether this result is statistically significant.

More specifically, we want to see whether the portion of the variance

explained by the regression (genotype) is statistically significant. We

need to formulate a null hypothesis H0 about the regression line and

define a statistic that allows us to decide whether we can reject it. The

hypothesis that we would like to reject is:

H0: There is no genotypic (inherited) component in the child’s stature caused by

the parental stature.

Mathematically, this would correspond to a horizontal regression line.

Therefore, the hypothesis H0 can be stated in mathematical terms as:

H0: The slope of the regression line is equal to zero.

If H0 were true, the mean square error of the residuals would be equal

to the total mean square error of the residuals and the variance in the

data explained by the regression would be zero (see Figure 4-8).

Furthermore, recall that the mean square error of the residuals would
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FIGURE 4-8.
Deviation of individuals’ heights from the mean.
The data are plotted as in Figure 4-7, with
parental data on the x-axis and child’s data plotted
on the y-axis.
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have a w2 distribution with a parameter equal to the degrees of freedom.

Therefore, the ratio (regression mean square error)/(residual mean

square error), which is a quotient of two w2 distributions, would have an

F-distribution. As the regression line has 1 degree of freedom, the

w2 distribution corresponding to the regression mean square error has

parameter 1. In our example, the value of the regression mean square

error is 0.53646. The w2 distribution that corresponds to the residual

mean square error has 8 degrees of freedom (because we have 10 data

points and two parameters of the regression line), so the residual mean

square error is 0.28579/8 ¼ 0.03572. Finally, this implies the quotient

(regression mean square error)/(residual mean square error) has

F-distribution with (1,8) degrees of freedom.

The value of the quotient (regression mean square error)/(residual mean

square error) for our example is F ¼ 0.53646/0.03572 ¼ 15.02. Following

the procedure illustrated with Figure 4-4(C), what is the probability of

obtaining such a value if H0 were true? The answer is found using

software that computes the F-distribution or from F-distribution tables,

taking into account the degrees of freedom we determined. The p-value,

corresponding to the F value of 15.02 with degrees of freedom (1,8) is

p ¼ 0.005. As this is less than the standard confidence level of 0.05, we

can conclude that the null hypothesis should be rejected. That is, we

cannot assume zero heritability, showing the contribution of the genetic

factor in this example is significant.

The F-test answers our second question—how to decide whether the

contribution of an underlying genetic factor is significant, relative to

environmental factors. In our example, we obtained an affirmative

answer to this question under the assumption of a linear relationship

between the factors.

We have now discussed two common types of hypothesis—whether

there is difference between two means and whether there is a difference

between two variances. In analyzing the question of a difference in the

means, we shall usually analyze the data using a t-test, because the

variances are usually unknown. When comparing variances, the

appropriate statistical test is an F-test, because the underling sampling

distribution is approximately an F-distribution. In any case, all

calculations are carried out by statistical software. What is important is

to know how to choose the appropriate statistical test and how to

interpret the software output.

In closing, we can now answer the third question we asked at the

beginning of the chapter; namely, what is the common mathematical

thread that links all statistical tests comparing means, evaluating the

contribution of various factors, or testing the linear dependence of an

outcome on a set of predictive variables? The common mathematical

background of all of the tests we considered is the underlying

normal distribution of the data, the common paradigm of formulating
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a null hypothesis and an alternative, and the rejection of the null

hypothesis if the test statistic has a low probability of belonging to the

sampling distribution.

EXERCISE 4-1

Germination and growth of seeds are affected by many factors: Type of

seed, type of soil, solar exposure, amount of water, and other

environmental factors. Magnetism is a powerful force affecting many

physical processes and could potentially affect the growth, development,

and germination of seeds. Scientist U. J. Pittman concluded, ‘‘The roots

of some plants (winter and spring wheat, and wild oats) normally align

themselves in a North–South plane approximately parallel to the

horizontal face of Earth’s magnetic field’’ (Pittman [1970]). If the Earth’s

own magnetism affects the way plants grow, perhaps added magnetism

will affect their rate and quality of growth as well. The experiment

described below is designed to explore these questions.

Use the observations/data provided via the Internet resources for this

chapter to formulate one or more hypotheses regarding the effect the

presence of a magnetic field may have on the germination of the seeds

and the growth of the seedlings. Use appropriate statistical techniques to

corroborate or reject these hypotheses. Present a clear summary of your

findings, including appropriate tables, plots, and charts. Based on your

findings, what additional studies would you propose to investigate the

stated hypotheses further?

EXPERIMENT

Materials

100 lentil seeds; one magnet (from an audio speaker, approximately 7 cm

in diameter, 1 cm in height) to provide the magnetic field; two bowls

(approximately 19 cm in diameter, 5 cm in height) to serve as flower

pots, cotton as a medium for initial germination; water (1 cup every

2 days); and potting soil (2.5 cups per bowl).

Procedure

1. Lentil seeds were placed on a layer of damp cotton for 24 hours to

help speed germination.

2. 50 seeds were then planted in each bowl, using the same type and

amount of potting soil.
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3. One of the bowls was placed on top of the magnet.

4. Bowls were placed 10 feet apart under otherwise similar environ-

mental conditions, including light.

5. The seeds were watered for 2 weeks.

6. The number of seedlings was counted at end of the 2-week

experimental period and their heights recorded.

Observations/Data

� After 24 hours in the cotton, most of the seeds had opened and had

begun to sprout.

� After 2 weeks, 47 of 50 seeds sprouted in the bowl exposed to

magnetism.

� After 2 weeks, 43 of 50 seeds sprouted in the bowl not exposed to

magnetism (see Figure 4-9).

� The sprouts under the influence of magnetism appeared to be taller

than the sprouts not under the influence of magnetism (by at

least 2–3 cm, as a rough estimate). The actual data are recorded in

the file seedlab.xls, which can be downloaded from http://www.bio-

math.sbc.edu/data.html.

EXERCISE 4-2

When engaged in manual activities, most people favor one hand over

the other. A smaller proportion of the human population is left-handed

FIGURE 4-9.
A photograph of the sprouts in the bowl exposed to magnetism (left) and the bowl not exposed to
magnetism (right) taken 2 weeks after planting the lentil seeds.
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than right-handed. Does the dominant hand differ in any way (other

than the obvious ease of manipulation) from the nondominant hand?

One can imagine many different measurements that could be made to

address these questions. One could measure for each hand the distance

around the hand (as if measuring to determine glove size) or hand

strength or hand span (the distance from the tip of the thumb to the tip

of the little finger). A data set given below allows us to explore

some of these questions.

MEASUREMENT OF HAND SPAN—PILOT STUDY

Population

Fifteen female college students in a class at Sweet Briar College.

Materials

A meter stick.

Procedure

1. To obtain the hand span, students were directed to open each hand

as widely as possible.

2. Students placed the tip of the thumb on the zero mark of the meter

stick and then measured to the tip of the little finger.

3. The measurement (in cm) was recorded on the data sheet.

4. Steps 1 through 3 were repeated for the other hand.

5. The dominant hand was indicated by checking the appropriate box

on the data sheet.

Data

The data are recorded in the file handspan.xls, available from http://www.

biomath.sbc.edu/data.html. The first sheet contains the data as collected;

the second sheet has the left and right hand measurements in adjacent

columns; and the third sheet has the nondominant and dominant hand

measurements in adjacent columns.

Formulate one or more hypotheses regarding handedness and hand

span, and use the data from the pilot study and the appropriate

statistical techniques to corroborate or reject these hypotheses. Present
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a clear summary of your findings, including the appropriate tables,

plots, and charts.

The above pilot study was conducted chiefly to test the mechanism of

data collection and analysis. Based on your findings, propose additional

studies for further investigating the stated hypotheses. Finally, propose

additional hypotheses that could be tested using this study method.

Consider factors such as age, occupation, or gender in your additional

hypotheses, and suggest in as much detail as possible how you

would conduct the test.
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Diabetes is a wonderful affection, being a melting down of the flesh

and limbs. Life is short, disgusting and painful, death inevitable.

Aretaeus the Cappadocian, 2nd century A.D.

Diabetes is one of the most prevalent serious diseases in

modern society. In America, the high level of obesity

(a predisposing factor for diabetes) makes it likely that an

increasing number of people will contract the disease.

Diabetes mellitus occurs when the body is unable to use

glucose effectively. Insulin is a hormone that helps to get

glucose from the blood into the cells, where it is used to

provide energy for the body. There are three major types

of diabetes: Type 1 diabetes mellitus (T1DM), type

2 diabetes mellitus (T2DM), and gestational diabetes.

T1DM usually occurs in people under age 30. With

T1DM, the beta cells of the pancreas have been destroyed

or fail to function properly, and insulin is not produced.

T2DM usually occurs in people over the age of 40. Those

who are obese or have a family history of diabetes are at

increased risk. With T2DM, insulin is produced by the

pancreas, but the body is unable to use it properly, and

progressively the body loses the ability to produce

insulin. Gestational diabetes affects about 4% of all

pregnant women—about 135,000 cases in the United

States each year.

According to the American Diabetes Association, there

are 21 million people in the United States (6.3% of the

population) who have diabetes. Approximately 8% of

these have T1DM, whereas more than 90% have T2DM.

About one-third of the people with T2DM are unaware

they have the disease. In addition, at least 20.1 million

Americans are estimated to have pre-diabetes, a condition

where a person’s blood glucose (BG) levels are higher

than normal but not high enough for a diagnosis of

T2DM. From 1990 to 1998, there was a one-third increase

in diabetes in U.S. adults.

The economic costs of diabetes are enormous. A recent

study estimated that the direct medical and indirect

expenditures attributable to diabetes in 2002 were $132

billion (American Diabetes Association [2003]). The study

estimated that per capita medical expenditures totaled

$13,243 for people with diabetes and $2560 for people

without diabetes. Diabetes is the fifth-leading cause of

death by disease in the United States. Diabetes also
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contributes to higher rates of morbidity—people with diabetes are at

higher risk for retinal disease, which is the leading cause of adult

blindness; renal disease, which represents half of all kidney failures; and

neuropathy, which leads to more than 65,000 amputations annually.

Cardiovascular disease is also two to four times more common in

diabetics, and is also more morbid, more lethal, and benefits less from

modern interventions, such as bypass surgery or stents.

In this chapter, we present a model, developed by some of the authors of

this text, that represents a significant advance in predicting episodes of

hypoglycemia or low BG—one of the most hazardous conditions

resulting from the use of the hormone insulin to treat diabetes. Although

the levels of mathematics and statistics used are elementary, the model,

nonetheless, provides a solution to a problem previously pronounced

virtually unsolvable.

Again, we begin by gathering data, then building a model based on the

data, and finally testing the model with additional data. We shall use

data collected by self-monitoring BG (SMBG) devices from people with

diabetes. The major steps of model-building process are:

1. Rescale the data to obtain symmetric samples and thus ensure that

certain well-known statistical techniques will be valid.

2. Define a ‘‘risk function’’ that measures the risk of dangerously low

and high deviations of BG from clinically safe levels.

3. Test the risk function to determine whether it is indeed a superior

tool for predicting future episodes of severe hypoglycemia.

I. HISTORICAL OVERVIEW

Aretaeus’s grim description of diabetes given in the beginning of this

chapter summarizes all that was known about this disease for nearly

1700 years, until physicians working in the late nineteenth century began

to recognize the connection between the pancreas and diabetes. This

connection was later narrowed to specific parts of the pancreas: the islets

of Langerhans. The islets of Langerhans contain the beta cells that

produce insulin—a hormone discovered in 1921 by the Canadian

surgeon Frederick Banting (1891–1941) and his assistant, Charles Herbert

Best (1899–1978).

The discovery of the action of insulin was one of the greatest

achievements in medicine: diabetes, once an automatic death sentence,

was no longer a fatal disease. The chronicles of medicine trace this

discovery to Banting’s 1920 visit to the University of Toronto, when he

spoke to John J. R. Macleod (1876 –1935), who was the head of the

department of physiology and an expert in glucose metabolism and

diabetes. Banting presented to Macleod an idea on how to find the cause
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of diabetes and also a treatment. Macleod initially rejected the idea, but

Banting persisted, and Macleod conceded to give him laboratory space,

experimental dogs, and a student assistant—Charles Best. Banting and

Best began their experiments in May, 1921, and within a few months

they had extracted a substance from the islets of Langerhans called

‘‘insulin,’’ (the name comes from the Latin insula, which means island).

When given to diabetic dogs, this substance lowered their high blood

sugar levels. Repeated experiments confirmed the blood sugar lowering

action of insulin, but the insulin preparation was not pure enough for

human testing. Macleod added the biochemist James Bertram Collip

(1892–1965) to the group to help with insulin purification. Within a few

weeks, the substance was sufficiently purified and deemed safe for

human application. The first patient who received insulin injections was

a 14-year-old boy dying of diabetes. The injected insulin reduced his

abnormally high blood sugar and alleviated other signs of the disease.

The scientific community quickly recognized the significance of these

findings, and, in 1923, the discovery of insulin action brought the Nobel

Prize in Medicine to Banting and Macleod, which they shared with the

other researchers on the team.

Although extremely important, the discovery of insulin did not solve all

of the problems associated with diabetes. We now know that diabetes is

a complex of disorders, characterized by the common element of high

blood sugar, or hyperglycemia, that arise from and are determined in

their progress by mechanisms acting at all levels of the biosystem—from

molecular through hormonal to behavioral. The treatment of diabetes

requires not only lowering extremely high blood sugar levels, but also

avoiding low blood sugar (hypoglycemia) and optimizing blood sugar

fluctuations within a certain target range.

II. CLINICAL BLOOD GLUCOSE OPTIMIZATION

PROBLEM OF DIABETES

In a healthy person, the BG level is internally regulated through insulin

released from the pancreas that counterbalances carbohydrate intake.

Because patients with diabetes are unable to produce insulin (T1DM) or

produce insufficient insulin combined with higher insulin resistance

(T2DM), this internal self-regulation is disrupted. The standard daily

control of T1DM involves multiple insulin injections or a continuous

insulin infusion (insulin pump) that lowers BG. The daily control of

T2DM also requires insulin or oral medications.

Large-scale research studies, including the 10-year Diabetes Control and

Complications Trial (DCCT; 1993) and a similar European trial (Reichard

and Phil 1994), have proved that intensive treatment with insulin and

with oral medication is indeed the best strategy for optimal glycemic

control. Such therapy has been proved effective in bringing BG to nearly

normal levels and markedly reducing the chronic complications of both
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types of diabetes (except cardiovascular disease). However, the same

studies have shown that external BG control is still not nearly as good as

normal internal self-regulation. Too little insulin results in chronic high

BG levels, causing complications in multiple body systems, whereas too

much insulin triggers hypoglycemia. Without corrective action,

hypoglycemia can rapidly progress to severe hypoglycemia, which may

lead to brain abnormalities, cognitive dysfunction, accidents, coma, and

even death. Severe hypoglycemia (SH) is defined as severe nutrient

deprivation of the brain resulting in stupor, seizure, or unconsciousness

that precludes self-treatment. A retrospective population survey from

Norway investigating 246 deaths from 1981 to 1990 among diabetic

patients younger than age 40 attributed 10% of these deaths to

hypoglycemia (Bloomgarden [1999]). Hypoglycemia has been identified

as the primary barrier to optimization of glycemic control in diabetics

(Cryer et al. [1994]; Cryer [1999]).

In short, a number of important aspects of the pathogenesis of diabetes

and its complications relate to optimal control of the insulin–carbohydrate

balance. People with diabetes face the life-long optimization problem of

maintaining strict glycemic control without increasing their risk of

hypoglycemia. This optimization has to be based on data collection, data

processing, and meaningful feedback readily available to individuals

with T1DM and T2DM. The mathematical challenge is to create diabetes-

specific mathematical methods and analytical procedures that

continuously assess the biological and behavioral characteristics and

precursors of hypoglycemia and hyperglycemia.

III. QUANTIFYING CHARACTERISTICS OF DIABETES

The range of BG in a living human is approximately 1.1 to 33.3

millimoles per liter (mmol/L), and the safe (target) range is considered

to be 3.9 to 10 mmol/L, using Système International (SI) units. Low BG

levels, with values below 3.9 mmol/L, correspond to a condition called

hypoglycemia. High BG levels, with values above 10 mmol/L,

correspond to a condition defined as hyperglycemia (see Figure 5-1).

The first thing to do with a patient with indications of diabetes is to

determine his or her BG level. This is not as simple as it might seem,

because the BG level fluctuates throughout the day. A healthy person’s

BG [mmol/L]

103.91.1 33.3

Hypo HyperTarget

FIGURE 5-1.
BG ranges based on Système International (SI) millimole per liter units.
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BG level will be generally high after eating and low when he or she

wakes up in the morning (fasting BG). In diabetes, the timing and

amount of insulin or oral medication additionally disturb these

fluctuations. It has also been shown that the average of several readings

made during the day do not give a good measure of the average BG

level, except under very tightly controlled conditions, because of the

significant irregularity of the BG fluctuations. For example,

Figure 5-2 presents the BG fluctuations of a person with T1DM recorded

over 17 days. Notice the extreme excursions from the target range in

both hypoglycemia and hyperglycemia. (The target BG range for a

person with diabetes was established by the DCCT in 1993: the normal

range is 4.5–5.5 mmol/L, except during the two to three hours after a

meal). This observation also confirms the imperfection of external insulin

replacement discussed in the previous section.

There is a substantial difference in the clinical effects caused by

excursions into the hyper- and the hypoglycemic ranges. Deviations of

the BG into the hyperglycemic range are undesirable, but sharp peaks in

the BG profiles are not immediately dangerous. In contrast, sharp nadirs

could be extremely dangerous and potentially life threatening, because

they indicate hazardously low levels of BG that may cause glucose (fuel)

deprivation of the brain and seizures that preclude self-treatment. For

example, such episodes could be particularly dangerous while operating

a vehicle.

The classic marker of average glycemic status is HbA1c, introduced 22

years ago by Aaby Svendsen (Svendsen et al. [1982]). While HbA1c has

been linked to long-term complications in both T1DM and T2DM, in

1993, it was also confirmed that the mean BG level for the previous four

to six weeks can be determined by a test of glycosylated hemoglobin,

BG (mmol/L)

Time (hours)

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408
1

3
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Target
Blood
Glucose
Range

FIGURE 5-2.
BG fluctuations of a patient with T1DM. Note the excursions both above and below the target
BG range.
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and especially its component HbA1c (Santiago [1993]). Since then, HbA1c

has been confirmed as the gold-standard assay for people with T1DM

and T2DM. The guidelines specify that HbA1c of 7% corresponds to a

mean BG of 8.3 mmol/L (150 mg/dl), an HbA1c of 9% corresponds to a

mean BG of 11.7 mmol/L (210 mg/dl), and a 1% increase in HbA1c

corresponds to an increase in mean BG of 1.7 mmol/L (30 mg/dl).

HbA1c, however, only captures average glycemia. The radical

fluctuations in BG levels represented in Figure 5-2—especially those that

take the BG levels into the hypoglycemic range—are very hazardous, but

are not recognized in the HbA1c test. In fact, the DCCT concluded in

1997 that only about 8% of future severe hypoglycemia episodes can be

predicted from known variables, including HbA1c. Predictions improved

to 18% with a more recent model using history of SH, hypoglycemia

awareness, and autonomic score (see DCCT Research Group [1997];

Gold et al. [1997]). Given that intensive therapy increases the risk for

hypoglycemia, strict control of T1DM implies that BG levels should be

closely monitored for large deviations at both the low and the high end

of the BG scale. It also follows that the risk for hypoglycemia needs to be

monitored by means other than HbA1c.

The rapid development of home BG monitoring devices provides a

means for monitoring BG fluctuations, and, in particular, monitoring for

hypoglycemia. Contemporary memory meters can store several hundred

BG readings and can calculate various statistics, including the mean of

these BG readings. Increasingly, research is focused on developing

devices for continuous, or nearly continuous, non-invasive

self-monitoring of BG. Two new journals, Diabetes Technology &

Therapeutics and Diabetes Science & Technology, were launched in 1999 and

2006, respectively, to report technological advances, including

information processing.

Still, surprisingly little attention has been devoted to processing or

mathematically interpreting these almost continuous data streams. This

deficiency is partially because of the only modest success achieved, until

recently, in predicting BG on the basis of previous readings. Although a

significant proportion of the variance of HbA1c can be accounted for by

BG readings, attempts to predict patients’ vulnerability to SH were

particularly unsuccessful.

In contrast, a simple, recently developed mathematical marker, the low

BG index (LBGI), has predicted 40% of SH episodes in the subsequent

six months, using routine self-monitoring BG readings (Kovatchev et al.

1998). This improvement in predictive power originates from the use of

diabetes-oriented mathematical methods that take into account the

specific mathematical properties of the BG measurement scale. The use

of this diabetes-specific mathematical model can substantially improve

the forecasting of hypoglycemia and the overall quality of the

monitoring to control diabetes.
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IV. SELF-MONITORING OF BLOOD GLUCOSE

Diabetes nowadays is a disease controlled at home. Contemporary home

BG meters (see Figure 5-3) provide a convenient means for frequent and

accurate BG determination through SMBG.

SMBG devices store large amounts of data—hundreds of BG readings

with the date and time for each—and can compute some summary

statistics, such as estimates of the mean BG over the previous two

weeks. The meters are usually accompanied by software with expanded

capabilities for data analysis, review, and graphical representation.

Given a set of SMBG readings downloaded from a subject’s meter,

various SMBG characteristics are routinely computed: mean,

standard deviation, minimum, maximum, and range of BG, as well as

percentage of SMBG readings below or above certain BG levels.

However, there is a missing link between the data collected by the BG

meters on one side, and the evaluation of HbA1c and the risk for

hypoglycemia on the other. Currently, there are no reliable methods for

evaluating HbA1c and recognizing imminent hypoglycemia based on

SMBG readings. One can speculate that one reason for the missing link

is that these advanced home monitoring devices, as well as the clinical

methods for assessment and data collection, are infrequently supported

by diabetes-specific, mathematically sophisticated quantitative

procedures.

FIGURE 5-3.
Self-monitoring devices. Panel A: Lifescan OneTouch UtraSmartTM; panel B: Abbott Diabetes Care
FreeStyle FLASHTM.
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A. SMBG and Average BG Levels

As already mentioned, the value of HbA1c accurately reflects the

average BG over the preceding five to six weeks. A natural, but

incorrect, conclusion would be that the mean BG derived from SMBG

readings would also accurately reflect the real BG values. In reality,

the mean SMBG can deviate substantially from the real mean

BG value since a patient could measure at fixed times of day when

his or her BG is at its extreme high or low. In this case, the average of the

SMBG readings will be an overestimate or underestimate of

the real mean BG.

B. SMBG and Prediction of Hypoglycemia

Little attention was paid to the evaluation of the risk for hypoglycemia

from SMBG before the first announcement in 1994 that SH could be

predicted from SMBG (Cox et al. [1994]). The reason is that, theoretically,

routine SMBG three to four times a day would rarely capture rapidly

developing events, such as descent into hypoglycemia. This is one

incentive behind the development of systems for continuous BG

monitoring. However, we found that specific analysis of SMBG data can

capture trends towards increased risk for hypoglycemia and can identify

periods of increased risk for hypoglycemia.

In this chapter, we present the mathematics behind these methods for

analysis of SMBG data. The mathematical foundation of our techniques

is based on the following general biomathematical concept: The struggle

for tight glycemic control often results in great BG fluctuations over

time. This process is influenced by many external factors, including the

timing and amount of insulin injected, food eaten, physical activity, etc.

In other words, fluctuations of the BG level over time are the measurable

result of the action of a complex dynamic system, influenced by many

internal and external factors. Observed over short periods of time, this

system is nearly deterministic, and its fluctuations can be predicted by

knowing the state of its components and their interaction. Over longer

periods of time, the system has nearly random behavior that includes

extreme transitions, such as SH episodes. Consequently, different

analytical strategies would quantify long-term characteristics of diabetes,

such as HbA1c, long-term risk for SH, and patient behavior, and short-

term characteristics such as imminent moderate or severe hypoglycemia.

Following this concept, this chapter offers a system of quantitative

methods simultaneously evaluating three important components of

glycemic control: HbA1c and long-term and short-term risk for

hypoglycemia. In order to be clinically useful, these methods utilize

readily available SMBG data and relatively simple algorithms. In order

to prove clinical relevance, the results are correlated with established

measures of glycemic control, such as HbA1c, and risk for upcoming

hypoglycemia.
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V. SYMMETRIZATION OF THE BLOOD GLUCOSE

MEASUREMENT SCALE

BG fluctuations are often the object of statistical description and

various data analyses in research and clinical practice. Most statistical

techniques, however, require assumptions about the shape of the

underlying distribution of the data being analyzed. For example, the

routine statistical practice of reporting in the format ‘‘mean value �
standard deviation’’ assumes a symmetric distribution of the data

readings. This is not the case with BG readings. For example, Figure 5-4

presents a typical BG data distribution for a subject with T1DM (186

readings downloaded from his memory meter). The distribution is

substantially skewed, and the superimposed bell curve (normal density)

describes the data poorly.

This problem is not new, and it arises often in statistics. There are well-

developed techniques that provide transformations converting

nonsymmetric samples to approximately symmetric ones (Box and Cox

[1964]). The statistical analyses are performed with the symmetric data,

and then an inverse transformation is used to translate the results so that

they correspond to the original sample. It is important to be aware that

such transformations are sample-dependent (i.e., different samples will be

symmetrized by different transformations). Therefore, this approach will

be impractical for implementing in a SMBG device, because the

transformation should be known in advance.

An alternative approach that eliminates sample dependency is to change

the scale of the BG readings so that in the new scale the BG sample is

symmetric. In Figure 5-4, notice the following:
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FIGURE 5-4.
The distribution of BG levels. The bar graph represents the BG readings of a person with T1DM.
A normal distribution (the line graph) does not fit the data well (# 1997 American Diabetes
Association. From Diabetes Care, 20, 1655–1658. Reprinted with permission from The American
Diabetes Association.)
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1. The range of scores in the hypoglycemic range is much smaller than

the range of hyperglycemic scores; and

2. The target range is not in the center of the data range.

We want to convert this scale to a scale as shown in Figure 5-5. The idea

is to expand the hypoglycemic range, squeeze the hyperglycemic range,

and position the target BG range symmetrically about zero. More

specifically, we want the transformed scale to satisfy the following

conditions:

1. The directions of the original and transformed scales are the same;

2. The target range is centered at 0; and

3. The entire BG range is centered at 0.

First, we must find such a transformation, and, second, establish the

transformation’s validity by testing it with BG reading samples from a

sufficiently large number of people.

We seek a transformation in the form:

f ðBG; a; bÞ ¼ ½ð ln ðBGÞÞa � b�; a; b > 0: (5-1)

Why choose this particular analytic expression? Such a question is not

always easy to answer. Developing a good mathematical model may

sometimes border on artistic creativity, and it may not always be

possible to retrace every single step of the process. In the case of model

(5-1), we began with a widely accepted skewness correction formula,

and then modified it to fit our needs. The specific details can be found in

Kovatchev et al. (1997).

Actual BG Scale

−b −a a b

Transformed BG Scale

0

1.1 3.9 10 33.3

Hypo HyperTarget

FIGURE 5-5.
Conversion of the BG scale.
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We determine specific values for a, b from the conditions 1 through 3.

The symmetric conditions require:

f ð33:3; a; bÞ ¼ �f ð1:1; a; bÞ and f ð10; a; bÞ ¼ �f ð3:9; a; bÞ

These give:

ð ln ð33:3ÞÞa � b ¼ �½ð ln ð1:1ÞÞa � b� (5-2)

ð ln ð10ÞÞa � b ¼ �½ð ln ð3:9ÞÞa � b� (5-3)

Subtracting Eq. (5-3) from Eq. (5-2) gives:

ð ln ð33:3ÞÞa � ð ln ð10ÞÞa ¼ �ð ln ð1:1ÞÞa þ ð ln ð3:9ÞÞa:

This equation can be (approximately) solved for a by a computer, giving

a ¼ 1.0329. Substituting this value into Eq. (5-2) and solving

(approximately) for b gives b ¼ 1.8707. With these values of a and b, we

have now centered the whole BG range about 0 and the target BG range

about 0.

One further embellishment will prove useful: to calibrate the new scale

and make the total BG range from � ffiffiffiffiffi
10

p
to

ffiffiffiffiffi
10

p
. We do this for the

following reasons. First, if our data satisfy some hypothesis that we must

verify, then 99.8% of the readings should be between � ffiffiffiffiffi
10

p
to

ffiffiffiffiffi
10

p
.

Second, this will enable us to calibrate the risk function that we shall

define shortly to be a function with values from 0 to 100%. Thus, we seek

a value g for which:

g½ð ln ð33:3ÞÞ1:0329 � 1:8707� ¼
ffiffiffiffiffi
10

p
:

From this condition, we find that g ¼ 1.774. We thus obtain the following

transformation:

f ðBGÞ ¼ 1:774: ½ ln ðBGÞÞ1:0329 � 1:8707�: (5-4)

Figure 5-6 shows how the function (5-4) transforms the BG scale.

EXERCISE 5-1

In our measurement of BG levels we used the SI system. In the United

States, the most popular scale is milligram per deciliter (mg/dl). The

scales are related by 18 mg/dl ¼ 1 mmol/L1.

1. The weight of a molecule is the sum of the weights of the atoms of which it is
made. A mole is the quantity of a substance whose weight in grams is equal to
the molecular weight of the substance. Thus, 1 mole of glucose weighs 180 g.
Accordingly, 1 mmol glucose ¼ 180 mg. Thus, 1 mmol of glucose per liter equals
18 mg glucose per deciliter.
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(a) Find the target range and the whole range of BG values in the U.S.

system.

(b) Find the values of a and b that will transform the target and whole

ranges into intervals centered at 0 for the U.S. system.

(c) Find the value of g that will scale the whole BG range to be

between � ffiffiffiffiffi
10

p
to

ffiffiffiffiffi
10

p
.

It is now time to test the transformation to determine its validity. We

again consider Figure 5-4, which presents the distribution of 186 BG

readings from the SMBG device of a subject with T1DM. As evident

from the graph, the distribution is substantially skewed. In fact, when

we calculate the basic statistics for the data, we find that the mean is

6.7 mmol/L and the standard deviation is 3.6. In applying statistical

tests, it is standard practice to assume that 95% of the data lies within

two standard deviations of the mean. For this data,
�
x ¼ 6:7, SD ¼ 3.6, so

�
x � 2ðSDÞ ¼ 6:7� 7:2 gives the range �0.5 to 13.6 mmol/L. Now

about 2.5% (or four readings from the total 186 readings of this data)

should lie below �0.5 mmol/L, which cannot happen.

We expect this skewed distribution will appear nearly normal in the

transformed BG measurement scale, and Figure 5-7 confirms this. It

presents the histogram of the same data over the transformed

symmetrized scale. Notice how symmetric the data now appear. If we

find the mean
�
x and the SD of the data in this scale, we find

�
x ¼ �0:13 mmol=L and SD ¼ 1.02. So

�
x � 2ðSDÞ ¼ �0:13� 2:4, which

gives the range �2.17 to 1.91 mmol/L. Now four readings fall below

�2.17 and three above 1.91. This is nearly an exact fit with a normal

distribution.

Actual BG Scale

− √10 −0.9 0.9
Transformed BG Scale

0

1.1 3.9 6.25 10 33.3

√10

FIGURE 5-6.
Transformation of the BG scale that uses the function f (BG ) from Eq. (5-4).
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We now know our transformation works for one subject. Are we done?

Of course not! We must test other subjects. We ran SMBG data sets for

205 people with diabetes and looked at their individual BG distributions

with the transformed scale. All of the histograms in the transformed

scale resulted in symmetric distributions, and the normality hypotheses

for only two out of the 205 were rejected at a p-level of 0.005 (note

that with more than 200 tests this p-level practically guarantees this

should happen).

In summary, we solved the following problem: the typical distribution of

SMBG readings of a person with T1DM is substantially skewed; that is,

the numerical center of the data is substantially separated from its

clinical center. Thus, clinical conclusions based on numerical methods

will be less accurate for the constricted hypoglycemic range. The

solution was to introduce a data transformation that symmetrizes the BG

scale around a single numerical/clinical center of 6.25 mmol/L and

converts a typical distribution of BG readings into a normal distribution.

This approach establishes a mathematical foundation for risk analysis of

BG data through introduction of the BG risk function.

VI. THE BLOOD GLUCOSE RISK FUNCTION

Now we want to create a risk function that will assign a risk

value to each BG level from 1.1 to 33.3 mmol/L. Figure 5-8 presents

a quadratic risk function superimposed over the transformed BG
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FIGURE 5-7.
Distribution of BG levels in the transformed scale. Note the symmetry of the bar graph and how
well the normal distribution fits the transformed data. (# 1997 American Diabetes Association.
From Diabetes Care, 20, 1655–1658. Reprinted with permission from The American Diabetes
Association. Used by permission of Taylor & Francis, Ltd. [http://www.informaworld.com]).
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scale. The equation of the BG risk function in Figure 5-8 is:

r(BG) ¼ 10[ f (BG)]2.

Now we can better understand the calibration condition imposed

on the transformation f (BG) earlier. Because f (BG) ranges from

� ffiffiffiffiffi
10

p
to

ffiffiffiffiffi
10

p
, the risk function r (BG) ranges from 0 to 100. Its minimum

value of 0 is achieved at f (BG) ¼ 0 or, in the original scale, BG ¼
6.25 mmol/L. The maximum is reached at the extreme ends of the BG

scale, f ðBGÞ ¼ ffiffiffiffiffi
10

p
, i.e., BG ¼ 1.1 mmol/L in the original scale (extreme

hypoglycemia) and f ðBGÞ ¼ ffiffiffiffiffi
10

p
, i.e., BG ¼ 33.3 mmol/L in the

original scale (extreme hyperglycemia). Thus, r (BG) can be interpreted

as a measure of the risk associated with a certain BG level. The left

branch of this parabola identifies the risk of hypoglycemia, whereas the

right identifies the risk of hyperglycemia. Notice, again, that

because in this scale the hypo- and hyperglycemic ranges of the BG

scale are symmetric about 0, the symmetric risk function in

Figure 5-8 would be equally sensitive to hypoglycemic and to

hyperglycemic readings.

For comparison, Figure 5-9 presents r (BG) in the original BG scale. As

you may have expected, the risk function in this scale increases much

more rapidly in the hypoglycemic range and thus is not equally sensitive

to hypoglycemic and to hyperglycemic readings.

EXERCISE 5-2

Compute the risk function for the following BG readings: 1.8 mmol/L,

3.9 mmol/L, 6.25 mmol/L, and 24.6 mmol/L.
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Transformed BG Scale f(BG)

r(
B

G
)

Target RangeHypoglycemia Hyperglycemia

Low BG Risk High BG Risk

Clinical and
Numerical

Center

0.5 1.5 2.5 3−0.5−1−1.5−2−2.5−3 0 1 2

FIGURE 5-8.
The BG risk function. Note that the clinical and numerical centers are now the same. (From
Kovatchev, B. P., Straume, M., Cox, D. J., & Farhi, L. S. [2001]. Risk analysis of blood glucose data:
A quantitative approach to optimizing the control of insulin dependent diabetes. Journal of Theoretical
Medicine, 3, 1–10. Used by permission of Taylor & Francis, Ltd. [http://www.informaworld.com]).
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Based on the BG risk function, we are now ready to develop two new

SMBG characteristics:

� The LBGI—a measure of the frequency and extent of low BG read-

ings, and

� The high BG index (HBGI)—a measure of the frequency and extent

of high BG readings.

VII. THE LOW AND HIGH BLOOD GLUCOSE

RISK INDICES

We want to assess the risk caused by low readings and high readings

separately. To do this, we separate the low scores [those for which

f (BG) < 0] from the high scores [those for which f(BG) > 0]. We begin

with an example and then show the general formula.

Example 5-1
.......................

Suppose the f(BG) readings for a patient are �1, 2, 0.4, 1, and 2.5. Then

the low readings are �1 and �0.4, and the risk function values are:

10½ f ðBGÞ�2 ¼ 10ð�1Þ2 ¼ 10 and 10½ f ðBGÞ�2 ¼ 10ð�0:4Þ2 ¼ 1:6:

We now sum these values and divide by 5 (the total number of

readings). This gives:

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

20

40

60

80

100

BG Level (mmol/L)

r(
B

G
)

Target Range

Low BG Risk High BG Risk

FIGURE 5-9.
The BG risk function in the original scale. Note the asymmetrical nature of the function. (From
Kovatchev, B. P., Straume, M., Cox, D. J., & Farhi, L. S. [2001]. Risk analysis of blood glucose data:
A quantitative approach to optimizing the control of insulin dependent diabetes. Journal of Theoretical
Medicine, 3, 1–10. Used by permission of Taylor & Francis, Ltd. [http://www.informaworld.com]).
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1

5
ð10þ 1:6Þ ¼ 11:6

5
¼ 2:32:

This will be the low BG index for these five readings.

Similarly, the high BG index is:

1

5
ð10ð2Þ2 þ 10ð1Þ2 þ 10ð2:5Þ2Þ ¼ 1

5
ð40þ 10þ 6:25Þ ¼ 112:5

5
¼ 22:5:

This example was an illustration for the following general situation. Let

x1, x2, . . . xn be n BG readings of a subject and let:

rl ðBGÞ ¼ r ðBGÞ if f ðBGÞ< 0 and 0 otherwise;

rh ðBGÞ ¼ r ðBGÞ if f ðBGÞ< 0 and 0 otherwise:
(5-5)

The LBGI and the HBGI are then defined as:

LBGI ¼ 1

n

Xn
i¼1

rl ðxiÞ

HBGI ¼ 1

n

Xn
i¼1

rh ðxiÞ:

The LBGI is based on the left branch of the BG risk function, whereas

the HBGI is based on the right branch of the BG risk function

(see Figure 5-8).

EXERCISE 5-3

Give factors that will cause the LBGI and HBGI to increase.

VIII. MODELVALIDATION STRATEGIES

In the preceding sections, we developed a mathematical model of a

quantitative risk measure that, we claim, holds promise in assessing the

clinical risk for BG deviations from the safe target range. As with any

new mathematical model, however, the burden of proof for its validity

and usefulness lies with its creators, and in this section we address the

validation question.

To assess the performance of our model, we need to test it on data. The

model uses assumptions on SMBG readings; thus, the data we need

must be of this form. Several questions arise.

First, how are these data obtained? This question is logistic in nature—

when humans are used as test subjects, there are strict government
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regulations that must be followed to ensure their protection and their

well-being.

Second, after we have the data and have computed the HBGI and LBGI,

what will the results tell us? How do we know whether our risk indices

provide a good fit to the clinical reality? This question is quite deep. It

encapsulates the essential difference between the risk index models

developed in this chapter and the models for tracking changes in

quantitative variables (such as population sizes and concentrations)

considered in Chapters 1 and 2. The ultimate test for a good fit was

made by estimating the deviation of the model values from the observed

data. Fundamentally, the difference stems from the fact the model

variables in Chapters 1 and 2 represented physical quantities measurable

(directly or indirectly) by means of standardized procedures. In this

chapter, however, we have stressed that the mean BG level over a four-

to six-week period cannot be estimated accurately from SMBG data, but

could be determined by a HbA1c test that is the standard for measuring

the average BG.

But how do we physically measure the risk for hypo- and

hyperglycemia? We have already emphasized that there are no

established standards. How can a model be validated in the absence of a

norm?

IX. VALIDATION OF THE BLOOD GLUCOSE

RISK INDICES

In the absence of a quantitative standard, new measures could be

initially validated by testing their ability to reflect verifiable medical

distinctions. For example, because of the physiological differences

between T1DM and T2DM, patients with T1DM are known to be at a

much higher risk of experiencing both hyper- and hypoglycemic

episodes, and their BG profiles are generally marked with frequent

excursions into the hyper- and hypoglycemic BG zones. In contrast,

the BG fluctuations of patients with T2DM have smaller amplitudes

and span a narrower range about the target zone, because large BG

fluctuations are caused by the instability of the insulin–glucose

dynamics. A critical factor for such instability is the insulin sensitivity of

the body, measured as the amount of glucose metabolized per unit of

insulin. Heuristically, it is natural to expect that insulin will produce a

stronger effect with higher insulin sensitivity (or lower insulin

resistance), causing larger BG fluctuations. Because T2DM is a disease of

increased insulin resistance, the BG fluctuations in T2DM are less

extreme (refer to Bergman et al. [1979] and Bergman [2003]).

Figure 5-10 graphically illustrates this difference. The data in

Figure 5-10(A) are from a 20-year-old man with T1DM from the age of 5.

The data in Figure 5-10(B) are from a 70-year-old man who had had
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T2DM for 14 years. Each figure presents 30 days of SMBG data,

representing 90 readings collected, an average of three times per day.

As is evident from the graphs, the BG levels for both subjects fluctuate

about comparable average values. This was confirmed by their

practically identical HbA1c values (9.1% for patient A versus 9.2% for

patient B), reflecting the average BG control throughout the study. This

comparison confirms once again that average BG levels cannot be used

to quantify BG fluctuations. Therefore, one possible validation of the BG

risk indices would be to demonstrate their capability of quantitatively

describing the increased risk for hypo- and hyperglycemia associated

with such fluctuations.

Indeed, after computing the LBGI and HBGI for both patients, we

found the LBGI and HBGI of patient A (T1DM) were both substantially
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FIGURE 5-10.
BG fluctuations in T1DM vs. T2DM. Panel A shows the greater variation of BG levels in T1DM and
panel B shows the BG levels in a patient with T2DM. (From Kovatchev, B. P., Cox, D. J., Gonder-
Frederick, L. A., & Clarke, W. L. [2002]. Methods for quantifying self-monitoring blood glucose
profiles exemplified by an examination of blood glucose patterns in patients with type 1 and 2
diabetes. Diabetes Technology and Therapeutics, 4, 295–303. Used by permission.)
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higher, exactly as we anticipated! The specific values are given in

Table 5-1.

EXERCISE 5-4

Do you think the results in Table 5-1 provide sufficient validation for

the BG risk indices? Why or why not? Consider ways for performing

a more credible validation.

The two data sets used in Figure 5-10 and Table 5-1 only serve as

illustrations of the capabilities of the LBGI and HBGI; they do not provide

a sound validation of these measures. Because we considered only two

subjects, it is likely some (or all) of the observed phenomena are

caused by chance. A credible validation should include a large number

of T1DM and T2DM subjects to minimize the element of chance

because of unavoidable differences in the patients’ BG control. We

present the results of these analyses next.

1. Group Comparisons

We use data collected over three months for 600 subjects (277 with

T1DM and 323 with T2DM), all of whom used insulin to manage their

diabetes. HbA1c was tested twice during the course of the study, at 1.5

and 3 months. The participants collected three to five BG measurements

per day for the entire period.

The following variables were recorded for each participant:

� HbA1c at 1.5 months

� HbA1c at 3 months

� Minimal BG value for the 3-month period

� Maximal BG value for the 3-month period

Variable T1DM T2DM

Age (years) 20 70

Duration of diabetes (years) 15 14

Average HbA1c during study 9.1% 9.2%

Low BG Index 4.79 0.07

High BG Index 14.6 8.4

TABLE 5-1.
Quantitative comparison of subjects with T1DM versus T2DM.
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The following statistics were computed for each participant at the end of

the study:

� Mean value and standard deviation of all BG readings

� Maximal BG range (calculated as the difference Maximal � Minimal

value for each subject)

� LBGI

� HBGI

Our goal is to compare the T1DM group with the T2DM group with

respect to these variables and basic statistics. Put in a different way,

instead of comparing a specific person with T1DM with a specific person

with T2DM as we did before, we now want to compare the ‘‘average

person with T1DM’’ with the ‘‘average person with T2DM’’ and assess

the similarities and differences. As before, we would like to verify

that LBGI and HBGI for the T1DM group are substantially (and

statistically significantly) higher than those for the T2DM group.

In Chapter 4, we examined the problem of group comparisons in terms

of their average values and the specifics of performing a t-test. We shall

apply the same statistical procedure here. We use t-test to reject (at a

specified confidence level p) the null hypothesis for equality of the group

averages. The smaller the p-value we choose, the smaller the chance

we will reject the null hypothesis when it is, in fact, true.

Table 5-2 presents the mean values for the T1DM and T2DM groups and

the results of performing a t-test. The last column contains both the

Variable

T1DM –

Mean (SD)

T2DM –

Mean (SD) Significance

A: Glycemic control averages

HbA1c at 1.5 months 9.6 (1.2) 9.7 (1.2) t ¼ 0.7, p ¼ 0.48

HbA1c at 3 months 9.2 (1.2) 9.3 (1.1) t ¼ 1.6, p ¼ 0.11

Average BG 10.2 (1.9) 10.4 (2.2) t ¼1.5, p ¼ 0.13

BG Standard deviation 4.8 (0.9) 3.3 (1.0) t ¼ 18.3, p < 0.0001

B: Blood glucose range

Minimal BG (mmol/L) 2.2 (0.7) 3.4 (1.2) t ¼ 15.0, p < 0.0001

Maximal BG (mmol/L) 24.9 (3.8) 21.2 (4.3) t ¼ 11.0, p < 0.0001

BG Range (mmol/L) 22.7 (3.9) 17.8 (4.5) t ¼ 14.1, p < 0.0001

C: Risk characteristics

Low BG Index 2.7 (2.0) 0.8 (1.1) t ¼ 14.5, p < 0.0001

High BG Index 13.1 (5.8) 12.0 (7.1) t ¼ 2.0, p ¼ 0.05

TABLE 5-2.
Group comparisons of T1DM versus T2DM subjects.
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value of the t-statistics and the p-value corresponding to this value

in the t-distribution. Recall that, in general, a p-value of 0.05 or

smaller is considered to reflect statistically significant differences

between the group averages, although any smaller p-value

diminishes the possibility of incorrectly rejecting the null

hypothesis.

More specifically, Table 5-2(A) presents comparisons of T1DM versus

T2DM on glycemic control averages, such as mean BG derived from

SMBG readings and HbA1c. As expected, no significant difference

between the groups is observed for these variables. However, the

standard deviation is markedly and significantly higher for the T1DM

group. This is not surprising, given that patients with T1DM more

frequently experience substantial deviations from the safe target BG

range and the average BG levels.

Table 5-2(B) presents BG characteristics and demonstrates that T1DM

subjects have both significantly lower and significantly higher BG

readings than T2DM subjects.

Finally, Table 5-2(C) presents risk characteristics of the SMBG data in

terms of the LBGI and the HBGI. Table 5-2(C) demonstrates that T1DM

subjects had significantly increased risk for severe hypoglycemia and

increased risk for hyperglycemia.

Note that the significance level for the HBGI is exactly 0.05.

Given the multiple parallel t-tests made in this study, such a significance

level cannot indicate a rejection of the null hypothesis (i.e., cannot

signify the HBGI in T1DM is greater than the HBGI in T2DM).

The reason is that when multiple parallel comparisons are

performed on the same data, simply by chance one of these

comparisons may turn out to be significant, because (if we

try many times) a low-probability event may actually happen.

This fact was mathematically formulated by the Italian mathematician

Carlo Emilio Bonferroni (1892–1960), who introduced an inequality,

stating that the probability of a sum of events is less than the sum of the

probabilities of these events. Based on this inequality, statisticians

introduce Bonferroni corrections for the significance level of

multiple parallel tests, dividing the significance level by the

number of tests. In our case, we have nine parallel tests, so it will be

prudent to only reject null hypotheses that meet a significance level

of 0.005.

Based on Table 5-2, we now have statistical results that provide

initial validation of the low and high BG index as markers reflecting

a medical reality—the differences between the BG patterns in T1DM and

T2DM. However, these statistical analyses do not provide immediate

evidence that these measures would be useful in assessing the risk

for hypo- and hyperglycemia.
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EXERCISE 5-5

Table 5-2(A) demonstrates that the standard deviation of SMBG data is

significantly higher for T1DM. Give reasons why the standard deviation

cannot be effectively used as a risk measure for hyper- and

hypoglycemia separately?

2. Validation of the Low Blood Glucose Index as a Predictor of

Upcoming Severe Hypoglycemia

Recall that in 1997, the DCCT’s consensus statement concluded that

only about 8% of future SH episodes could be predicted from SMBG

data. In contrast, we now present the results of a validation trial for the

LBGI that predicted about 40% of future SH episodes within the

following 6 months.

This LBGI validation trial was performed with a data set containing

about 13,000 SMBG readings from 96 adults having T1DM for at least

two years and using insulin for BG control. Participants measured

their BG three to five times per day for 1 month. Upon completion of the

data collection, the LBGI of each participant was computed. For the

next 6 months, patients recorded the date and time of all SH episodes

on diary sheets they mailed in monthly. Patients were instructed to

telephone the investigators whenever an SH episode occurred to

schedule a structured interview designed to verify that an episode of

SH had, in fact, taken place.

Regression analysis was applied to determine the significance of the

LBGI as a predictor of SH episodes.2 This analysis showed the LBGI was

the most significant predictive variable for SH, predicting 40% of the

variance of the SH episodes in the subsequent 6 months. In addition,

among patients who reported at least one SH episode during the

12 months before the study, this rose to 43%.

The LBGI also provided a means for classifying the subjects for their risk

for SH in the subsequent 6 months: subjects with a LBGI below 2.5

experienced, on average, 0.6 SH episodes; subjects at moderate risk

(LBGI of 2.5–5) experienced 1.5 SH episodes; and subjects at high risk

(LBGI above 5) experienced 5.8 SH episodes (see Figure 5-11).

Given these results and a review of the available literature, we conclude

the LBGI is the best predictor to date of SH using SMBG

data.

Finally, an exploratory analysis confirmed the LBGI was capable of

differentiating patients at near-term risk for SH from patients at risk for

future, but not imminent, SH. We compared patients who reported SH

2. The details of this standard statistical procedure are too technical to present
here, but can be found in Draper and Smith (1998).
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within three months of the LBGI calculation with those who reported

SH during months 4 through 6, but not within the first 3 months.

The LBGI of the first subgroup was significantly higher—6.4 versus 3.5

(p ¼ 0.005). At the same time, the two subgroups reported similar

numbers of SH episodes within the last year—9.6 and 7.6 (p ¼ 0.5), and

did not differ in HbA1c, age, or duration of diabetes. This suggests that

high-risk status indicates the likelihood of an SH event sooner rather

than later.

As a result of this and other similar studies, it is now known that about

130 SMBG readings, spread over 4 to 5 weeks, are sufficient to permit the

calculation of an accurate LBGI. This index has been shown to be

reliable, internally and across studies, and to be a significant predictor of

future SH. It can be used separately or in combination with other

variables to create more complex models with higher levels of

sophistication. In addition, the computation of a patient’s LBGI is quite

uncomplicated, which encourages its clinical and research use. We

anticipate that the calculation of a person’s LBGI could be incorporated

directly into future SMBG devices. A patient’s LBGI exceeding a critical

value could then be used to provide an immediate alert for an increased

risk for SH.

Our last comment raises a serious ethical question. Let’s assume that in a

clinical trial a researcher records a dangerously high LBGI value. What

should the researcher do? During the studies described above, two fatal

automobile accidents occurred where the driver’s loss of control was

attributed to hypoglycemia. The values of the LBGI for these two people

(shown in Figure 5-12) indicate a continuous increase of the LBGI during

the three months preceding the accidents. Should researchers in this

situation contact the participant to convey a concern or issue a warning?
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FIGURE 5-11.
Correlation of the LBGI with the number of severe hypoglycemic episodes in the subsequent six
months. The individuals with the lowest LBGI suffered the fewest episodes of SH.
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Should the researchers get in touch with the patient’s physician to

suggest a change in medical management? Or should they simply allow

events to take their course without intervening?

There are strict government guidelines addressing these issues. Before

any new study with human subjects begins, a detailed protocol needs to

be worked out to address every aspect of the study, from recruiting

methods, to data collection procedures, confidentiality issues,

information-sharing, and documenting and reporting of adverse events.

Academic institutions where human subjects research is performed are

required to have human investigation committees (or institutional

review boards) that examine the protocols and rule on the suitability

of the proposed procedures, taking into account both the expected
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FIGURE 5-12.
The LBGI of two people with T1DM who died in an automobile crash and an ATV accident later
attributed to hypoglycemia. It is seen that the risk increased in the months prior to their accidents.
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scientific impact of the study and the safety of the participants. Once the

protocols are approved, government guidelines strictly prohibit any

deviation from the outlined procedures. In particular, unless the need

for information-sharing between researchers and participants is

documented as essential for achieving the main objective of the study,

and made explicit in the protocol, no results of any experimental

measurements can be disclosed to the participants.

4. Validation of the High Blood Glucose Index

High BG levels not lasting very long are not nearly as dangerous as

similarly low BG levels that may trigger SH. The risk for hyperglycemia

only becomes significant when chronically high BG levels are

maintained over time. Therefore, because we hypothesized that HBGI

accounts for the trends towards hyperglycemia observed in patients’

SMBG records, one possible validation of this measure is to evaluate its

correlation with HbA1c—the standard for assessing high average BG

levels.

We analyzed SMBG and HbA1c data provided by Amylin

Pharmaceuticals (San Diego, CA), from 600 subjects with type 1

(N ¼ 277) and type 2 (N ¼ 323) diabetes. The subjects collected more

than 300,000 SMBG readings and had 4180 HbA1c assays taken over six

months. The overall correlation between the HBGI and HbA1c was 0.73,

p < 0.0001, demonstrating a strong linear relationship between

these two variables. Further, we identified five categories for the HBGI

(below 7, 7–12, 12–15, 15–20, above 20) and computed 95% confidence

intervals for HbA1c corresponding to these categories, establishing

almost one-to-one correspondence between HBGI and HbA1c. (The

statistical details can be found in Kovatchev et al. [2000].)

In summary, we are now in a position to conclude that LBGI and HBGI

are valuable quantitative characteristics that could be used for

assessment and maintenance of glycemic control. Because these

parameters are directly quantifiable from routine SMBG data, they can

provide accurate information for analysis and assessments of the effects

of changes in therapeutic regimens. In addition, the LBGI and HBGI

could be used as building blocks for more sophisticated mathematical

models.

We present one such model next.

X. MORE COMPLEX MODELS

The 40% success rate for predicting SH from SMBG data using the LBGI

provided a substantial improvement over the 8% rate achieved by the

DCCT. In this section, we build a more complex model that utilizes the

LBGI, some basic probability laws, and curve-fitting to achieve even

greater success in predicting future SH episodes.
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In our study, we determined the LBGI for 600 people with type 1

(N ¼ 277) and type 2 (N ¼ 323) diabetes (the same data used above).

Each person had collected three to five measurements per day for 4 to

6 weeks. As in the study described in the previous section, patients

also recorded the date and time of all SH episodes during the following

6 months.

1. Developing and Testing a More Sophisticated Model

for Predicting Severe Hypoglycemia

In developing the model, we first divided the 600 LBGI values into 15

groups of 40 subjects each, with consecutive risk ranges. The resulting

intervals had the following cutoffs: 0.1, 0.5, 0.8, 1.1, 1.4, 1.7, 2.1, 2.5, 2.9,

3.5, 4.2, 5.0, 6.0, and 7.8. Thus, the lowest-risk range is LBGI < 0.1, and

the highest-risk range is LBGI > 7.8. We numbered the classes 0, 1, 2, . . . ,

14. For example, class 1 corresponds to the range 0.1 � LBGI < 0.5;

class 2 corresponds to the range 0.5 � LBGI < 0.8; and so on.

Next, we determined the probability that a person from each class had

an episode of SH in the following month. Suppose 14 of the 40 subjects in

class 5 reported at least one episode of SH. Then 14/40 ¼ 0.35 of the

people from class 5 had an episode or, said another way, the (empirical)

probability of a person in class 5 having at least one episode of SH is

0.35. With this, we have the point (5,0.35); the first coordinate is the class,

and the second coordinate is the probability for at least one episode of

SH in that class. We do this for each of the 15 classes and obtain the

points shown by black triangles in Figure 5-13.
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FIGURE 5-13.
Probability for at least one SH episode within 1 month.
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We now follow a sequence of steps familiar from previous chapters:

1. Construct a curve (a theoretical model) that describes the change in

the data points.

2. Determine values for the model parameters that provide the best fit

with the data points.

3. Test the model with additional subjects.

The form of the curve we will use is guided by our experience with

engineering problems where one wants to predict future failures of

devices that depend slightly on whatever previous failures have

occurred. The formula for the curve is called a Weibull distribution.

Because it is known there is dependence between SH episodes (see, for

example, Cryer [1993]), we hypothesized that such a curve would

provide a good fit for the probability in question.

The analytic form of the Weibull curve is:

FðxÞ ¼ 1� expð�axbÞ; (5-5)

where x is the class 0, 1,. . ., 14. For us, F(x) is the probability that a

subject in class x will have at least one episode of SH within 1 month. For

those familiar with the theory of probability distributions, note that the

value of the parameter b controls the level of dependence between the

SH events. In the special case b ¼ 1, we obtain the well-known

exponential distribution.

As in Chapters 1 and 2, we next used a computer program to determine

the values of the model parameters a and b that provide the best fit for

F(x) to the data points. For our data, the best fit gave the following

probability that a person in class x will have one or more episodes of SH

within a month from the end of the data collection phase:

FðxÞ ¼ 1� expð�expð�4:1947Þ x1:7472Þ: (5-6)

The solid line in Figure 5-13, which appears to provide a good fit to the

data, gives the graph of this function. This visual estimate was

confirmed by a statistical analysis of the goodness-of-fit of the model

given by the so-called coefficient of determination (D2). This statistic has

a meaning similar to that of R2 in linear regression (R2 is not applicable

to nonlinear models). The coefficient of determination computed for our

model was 87.3, meaning that 87.3% of the variation of the probability

for at least one episode of SH is explained by our mathematical model.

The probability for moderate hypoglycemia (defined by similar

symptoms as for SH but that do not preclude self-treatment) was

approximated even better by a Weibull model, with D2 ¼ 95.9%. The

theoretical and observed probabilities are presented by the gray line and

data triangles, respectively, in Figure 5-13.
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The model was also tested with various time intervals (e.g., 3 months or

6 months of prediction) and various criteria (e.g., probability of more

than two or more than three episodes) and gave similar results. We

concluded that the risks for subsequent SH are described well by a

Weibull distribution with scale parameter a in the range of �5 to �3 and

a shape parameter b in the range of 1.5 to 2.2, depending on the time

period and probability under consideration. Similarly, the risk for

subsequent moderate hypoglycemia was described well by a Weibull

distribution with scale parameter a in the range of �1.4 to �2 and a

shape parameter b in the range of 1.0 to 1.3. These parameters have a

direct physiological meaning and reflect clinical reality: the scale

parameter reflects the frequency of events [e.g., more frequent events

will result in a larger parameter a (and moderate hypoglycemia is more

frequent than SH)], and the shape parameter b reflects the degree of

dependence between sequential events (e.g., a larger parameter means a

more dependent event). For example, it is known that past SH is a major

factor for future SH, but this is not true for moderate hypoglycemia.

2. Risk Categories for Future Significant Hypoglycemia

Consistent with the validation data, when the risk classes identified

by the probability model were aggregated into four clinically justified

risk categories for future significant hypoglycemia—minimal risk

(LBGI � 1.1); low risk (1.1 < LBGI � 2.5); moderate risk (2.5 < LBGI � 5),

and high risk (LBGI > 5)—it became evident the number of all

prospectively observed hypoglycemic episodes increased significantly as

the risk category increased. Table 5-3 presents the number of

symptomatic SH episodes in each of the risk categories.

We believe that this four-risk category version of our model is much

more convenient for patients and health care providers to interpret. This

categorization allows for distinguishing between subjects who have

practically no chance for significant hypoglycemia from subjects at

progressively increasing risk.

We conclude that routine SMBG data with a frequency of three to five

readings per day contain valuable information for the metabolic

control of people with T1DM and T2DM. Our models suggest such

Minimal Risk

(LBGI � 1.1)

Low Risk (1.1 <

LBGI � 2.5)

Moderate Risk (2.5 <

LBGI � 5)

High Risk

(LBGI > 5)

Number of severe
hypoglycemic episodes

T1DM 0 0.35 0.68 4.24

T2DM 0.09 0.18 1.42 1.85

TABLE 5-3.
Number of prospectively observed significant hypoglycemic episodes per person per month, by risk category and by type of diabetes.
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data have very high predictive power for SH. This power, combined

with the minimal computing power the models require (calculating the

LBGI is no more difficult than computing average BG values),

indicates that hand-held SMBG devices should be entirely capable of

carrying out the computations. Therefore, implementation of these

models in future-generation SMBG devices is entirely possible. It is our

hope that the use of some of the models studied in this chapter will,

in the near future, become as widespread and as routine in improving

BG control as the use of the SMBG devices themselves is now.

REFERENCES

American Diabetes Association. (2003). Economic costs of diabetes in the U.S. in
2002. Diabetes Care, 26, 917–932.

Bergman, R. N. (2003). The minimal model of glucose regulation: a biography.
Advances in Experimental Medicine & Biology, 537, 1–19.

Bergman, R. N., Ider, Y. Z., Bowden, C. R., & Cobelli, C. (1979). Quantitative
estimation of insulin sensitivity. American Journal of Physiology, 236,
E667–E677.

Bloomgarden, Z. T. (1998). International Diabetes Federation meeting, 1997
and Metropolitan Diabetes Society of New York meeting. Diabetes Care, 21,
658–665.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations (with
discussion). Journal of the Royal Statistical Society, Series B (Methodological), 26,
211–252.

Cryer, P. E. (1993). Hypoglycemia begets hypoglycemia. Diabetes, 42, 1169–1693.
Cryer, P. E. (1999). Hypoglycemia is the limiting factor in the management of
diabetes. Diabetes/Metabolism Research and Reviews, 15, 42–46.

Cryer, P. E., Fisher, J. N., & Shamoon, H. (1994). Hypoglycemia. Diabetes Care, 17,
734–755.

Gold, A. E., Frier, B. M., MacLeod, K. M., & Deary, I. J. (1997). A structural
equation model for predictors of severe hypoglycaemia in patients with
insulin-dependent diabetes mellitus. Diabetes Medicine, 14, 309–315.

Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A., & Clarke, W. L.
(1997). Symmetrization of the blood glucose measurement scale and its
applications. Diabetes Care, 20, 1655–1658.

Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A., Young-Hyman, D.,
Schlundt, D., & Clarke, W. L. (1998). Assessment of risk for severe
hypoglycemia among adults with IDDM: Validation of the Low Blood Glucose
Index. Diabetes Care, 21, 1870–1875.

Kovatchev, B. P., Cox, D. J., Straume, M., & Farhy, L. S. (2000). Association of
self-monitoring blood glucose profiles with glycosylated hemoglobin.
In Johnson, M., & Brand, L. (Eds.), Methods in Enzymology (vol. 321,
pp. 410–417). New York: Academic Press.

Santiago, J. V. (1993). Lessons from the Diabetes Control and Complications
Trial. Diabetes, 42, 1549–1554.

The Diabetes Control and Complications Trial Research Group (DCCT).
(1997). Hypoglycemia in the Diabetes Control and Complications Trial.
Diabetes, 46, 271–286.

Risk Analysis of Blood Glucose Data 179An Invitation to Biomathematics



FURTHER READING

Aaby Svendsen, P., Lauritzen, T., Soegard, U., & Nerup, J. (1982). Glycosylated
haemoglobin and steady-state mean blood glucose concentration in type 1
(insulin-dependent) diabetes. Diabetologia, 23, 403–405.

Draper, N. R., & Smith, H. (1998). Applied regression analysis. (3rd ed., includes
disk). New York: John Wiley & Sons.

Reichard, P., & Phil, M. (1994). Mortality and treatment side-effects during long-
term intensified conventional insulin treatment in the Stockholm Diabetes
Intervention study. Diabetes, 43, 313–317.

The Diabetes Control and Complications Trial Research Group (DCCT)
(1993). The effect of intensive treatment of diabetes on the development and
progression of long-term complications of insulin-dependent diabetes mellitus.
New England Journal of Medicine, 329, 978–986.

U.K. Prospective Diabetes Study Group (UKPDS). (1998). Intensive blood-
glucose control with sulphonylureas or insulin compared with conventional
treatment and risk of complications in patients with type 2 diabetes. Lancet,
352, 837–853.

180 Chapter FiveAn Invitation to Biomathematics



I had a kind of blind faith. I believed in the collaboration between the

firm will of my one-pound-twelve-ounce daughter and the expertise

of modern medicine.

Wendy Wasserstein. Complications.

The New Yorker, Feb. 21, 2000, pp. 87–109

Between five and six of every 100 births in the United

States are premature, requiring specialized medical

assistance or emergency intervention. Medical advances

over the last 2 decades now allow infants born up to

18 weeks prematurely and with birth weights (BWs) as

low as 500 g to survive. Although the survival rates for

premature babies weighing less than 750 g have increased

tremendously, to about 50%, every low birth weight

(LBW) premature baby faces a high risk of serious

complications, diseases, and long-term developmental

problems.

In this chapter, we employ mathematical techniques and

models to answer the following question: Can heart rate

(HR) be used to predict potentially deadly bacterial

infections in premature babies before other symptoms

manifest themselves? To answer this question, we shall

study symmetric and asymmetric distributions, statistical

measures of data variability and symmetry, and measures

of irregularity in time series.

I. PREMATURE BIRTHS, LOW BIRTH

WEIGHTS, AND HEALTH RISKS

Gestation is the period between the conception and birth

of a baby during which the fetus is growing within the

mother’s uterus. Justifiably considered one of the most

awe-inspiring of natural phenomena, the period of

gestation has been studied for centuries. Gestational age

(GA) is the time the fetus has been in utero (inside the

uterus) and is usually measured in weeks. A normal

pregnancy lasts about 40 weeks, and during this period a

human being arises from a single fertilized egg. At birth,

every infant is classified as premature (<37 weeks

gestation), full-term (37–42 weeks gestation), or post-term

(>42 weeks gestation). In the medical literature, infants

are also referred to as neonates. Physicians specializing in

neonatal care are called neonatologists.

Following birth, assessment of an infant’s weight, head

circumference, and vital signs are used to determine a
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developmental GA. This developmental age may differ from the

calendar GA and is based on the level of the infant’s physical

development and muscle tone. For example, an infant born with a

GA of 35 weeks may at birth be assessed to have a developmental GA

of 37 weeks. BW is perhaps the most important developmental

characteristic. Neonates that are ‘‘small for GA’’ or ‘‘birth restricted’’

may be full-term but underweight.

In the medical literature, babies born weighing less than 2500 g (5 lbs,

8 oz) are referred to as LBW infants. Babies weighing less than 1500 g

(3 lbs, 5 oz) are classed as very LBW (VLBW) infants, and it is this VLBW

group for which the risk of health problems and long-term complications

is highest.

Premature infants may face a number of medical complications because

of their LBW and underdeveloped organ systems. For example,

underdevelopment of the lungs and the digestive and nervous systems

presents major health hazards, such as respiratory complications,

difficulty coordinating sucking and swallowing, food intolerance,

susceptibility of bleeding into the brain, and episodes of breathing

cessation (apnea). Infection is another significant threat to premature

infants, because their immature immune system is less able to fight

germs that can cause serious illness. Some infections can be life

threatening, even with early initiation of the most advanced treatments.

For premature babies, hospitals have special neonatal intensive care

units (NICUs). Virtually all NICUs have neonatologists and neonatology

nurses on duty around the clock, as well as ready access to respiratory

therapists, pharmacists, occupational therapists, dietitians, and

anesthesiologists, among other highly specialized medical staff. These

experts provide a full range of neonatal intensive care, from treatment

of infection to complex neurologic surgery.

Approximately 40,000 VLBW infants are born in the United States

annually. Although advances in newborn medical care have greatly

reduced the deaths and disabilities associated with LBW, a small

percentage of survivors are still left with problems, such as mental

retardation, cerebral palsy, and impairments in lung function, sight,

and hearing. Infections such as sepsis (see below) continue to be a major

cause of morbidity and mortality (Tortora and Grabowski [2003]; Gray

et al. [1995]).

II. SEPSIS: MEDICAL OVERVIEW, CLINICAL DIAGNOSIS,

AND DIAGNOSTIC CHALLENGES

Sepsis is a life-threatening illness caused by an overwhelming infection of

the bloodstream by toxin-producing bacteria. According to the American

Academy of Pediatrics (AAP), the incidence of proven sepsis is

182 Chapter SixAn Invitation to Biomathematics



approximately 2 in 1000 live births. Alarmingly, 7% to 13% of neonates

show symptoms or signs of infection and are evaluated for sepsis.

Infection is a major cause of fatality during the first month of life,

contributing to 13% to 15% of all neonatal deaths. The mortality rate in

neonatal sepsis may be as high as 50% for infants not receiving prompt

treatment.

Neonatal sepsis is categorized as early or late onset. Eighty-five percent

of newborns with early-onset sepsis have symptoms within their first

24 hours of life, with the remaining 15% of cases occurring within 5 to

6 days after birth. Early onset sepsis is connected with an infant’s

acquisition of microorganisms from the mother, perhaps at delivery by

passage through a colonized birth canal. The microorganisms most

commonly associated with early onset infection include group B

Streptococcus (GBS), Escherichia coli, Haemophilus influenzae, and Listeria

monocytogenes.

Late-onset sepsis syndrome occurs between 7 and 90 days after birth and

is acquired from the caregiving environment. Organisms implicated in

causing late-onset sepsis include coagulase-negative staphylococci,

Staphylococcus aureus, E. coli, Klebsiella, Pseudomonas, Enterobacter, Candida,

GBS, Serratia, Acinetobacter, and anaerobes. The onset of sepsis is most

rapid and severe in premature infants because their immune system is

generally underdeveloped.

The clinical syndrome of sepsis is brought about by the infant’s response

to the insults of the bacterial infection and has been named the systemic

inflammatory response syndrome (SIRS) by the ACCP/SCCM Consensus

Conference Committee (1992). Neonatal sepsis occurs in as many as 25%

of VLBW infants. Neonates who develop late-onset sepsis have a

mortality rate of 17% (more than twice the 7% mortality rate of

noninfected infants), as well as increased morbidity, according to

findings of the National Institute of Child Health & Human

Development Neonatal Research Network (see Bone et al. [1997] and

Stoll et al. [1996]).

Figure 6-1 shows the monitoring equipment typically utilized in the care

of premature infants. Despite the extreme efforts made by NICUs to

eliminate every possibility of bacterial contamination, risk factors for

late-onset sepsis are ever present. Each interventional device is a

potential source of infection and increases the risk of infectious illness

for the newborns. For example, the following medical interventions have

been independently associated with sepsis: intubation, umbilical

catheters, prolonged mechanical ventilation, nutrition via

venous catheters, respiratory distress syndrome, intraventricular

hemorrhage, and nasogastric and tracheal cannulae. As a result,

sepsis is common in neonates, and infected infants spend significantly

more days on the ventilator and an average of 25 more days in the

hospital.
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Sepsis may predispose newborns to other hazardous medical conditions

that may be more likely fatal for premature infants. For example, the

risk for death or meningitis from sepsis is much higher in infants with

LBW than in full-term neonates. In addition, necrotizing enterocolitis

(NEC), a serious gastrointestinal disease, affects up to 4,000 infants in the

United States yearly, and an estimated 10% to 50% of infants who

develop NEC die (Kellogg et al. [1997]). Infants who develop NEC may

require intubation and increased respiratory support. Survivors are often

left with strictures and short-bowel syndrome. Thus, premature infants

require careful vigilance so that sepsis or SIRS can be detected early and

therefore treated more effectively.

Unfortunately, the early clinical signs of sepsis and NEC in newborns

are neither uniform nor specific, being associated with characteristics of

the causative bacteria and the body’s response to the infection.

This makes the early diagnosis of neonatal sepsis extremely difficult

and results in many unnecessary procedures, including blood cultures,

short courses of antibiotics administered to infants without bacterial

infection, and interruptions in neonatal nutrition. Many newborns

undergo diagnostic studies and treatment with antibiotics before the

diagnosis has been confirmed, and this is clinically justified because of

the rapid development of the infection and its potentially lethal

consequences.

Drawing blood and evaluating the culture in a laboratory is the gold

standard for establishing the diagnosis of sepsis caused by systemic

bacterial infection. However, there are also concerns regarding its

FIGURE 6-1.
Equipment monitoring the vital signs of a premature baby. (Photo courtesy of Drs. J. Randall
Moorman and M. Pamela Griffin, University of Virginia.)
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reliability, especially if single, small-volume samples are submitted,

as is often the practice with critically ill newborns. For example,

Schelonka et al. (1996) estimated that as many as 60% of culture results

may be falsely negative if only 0.5 ml of blood is obtained from

infants with low–colony-count sepsis. And drawing more blood from an

infant who weighs less than 1500 g may be quite tricky—after all, her

entire blood volume is less than 100 ml.

The situation is further complicated because not all infants with clinical

signs of sepsis have positive blood cultures. In general, the AAP, the

American Academy of Obstetrics and Gynecology (AAOG), and the

Centers for Disease Control and Prevention (CDC) all recommend sepsis

screening and/or treatment for various risk factors related to GBS

diseases. The diagnostic challenge is manifested even more clearly by

the fact the CDC allows for a diagnosis of neonatal ‘‘clinical sepsis’’ with

either a negative blood culture or no blood culture at all (see Cabal et al.

[1980] for more details). Following these recommendations, many

neonates now are subjected to routine treatment, even when blood

culture results are negative. Because the mortality rate for untreated

sepsis can be as high as 50%, the hazard of untreated sepsis is too great

to wait for confirmation by positive cultures. Clinical neonatologists

caring for VLBW infants recognize sepsis and NEC as potentially

catastrophic illnesses and do not hesitate to begin antibiotic treatment

empirically at the first appearance of symptoms. In general, most

clinicians initiate treatment while awaiting culture results from the

laboratory. Gerdes and Polin (1987) estimated that 10 to 20 infants are

treated for sepsis for every infant with a positive blood culture.

In summary, the high risk of sepsis or NEC in VLBW infants, the high

mortality rate, and the lack of reliable clinical means for early diagnosis

of these diseases all underscore the need for new diagnostic tools that

would provide sufficient warning to ensure successful treatment.

Identifying one or more biomedical variables that would provide

comparatively early danger signals for these babies is therefore of

utmost importance.

An optimal surveillance strategy should: (1) Be based on non-invasive

monitoring methods; (2) utilize continuous monitoring of the newborns;

and (3) provide dynamic estimates of the infant’s risk for developing

sepsis or SIRS. Because as a rule all infants in the NICU have certain vital

characteristics that are continuously monitored, such as temperature,

HR, and blood pressure, a method for assessing the risk of sepsis and

SIRS based on these characteristics would be highly desirable and easy

to use.

We now focus on a proposed solution using HR characteristics. This

novel method, proposed by University of Virginia researchers,

can successfully predict sepsis and SIRS 12 to 24 hours before the clinical

diagnosis is made (Griffin et al. [2003]). Our next section serves as an

Predicting Septicemia in Neonates 185An Invitation to Biomathematics



introduction to understanding the terminology used in describing

HR data and patterns.

III. HEART RATE AND HEART RATE VARIABILITY

In searching for a surveillance strategy for early warning of sepsis or

NEC, it is important to keep in mind the clinical understanding of these

conditions. As mentioned previously, the current hypothesis is that the

clinical syndrome of sepsis, SIRS, is brought about by the infant host’s

response to such insults as bacterial infection. The major host response at

the molecular level is the release of cytokines—small circulating

peptides that serve as mediators of the inflammatory response. They

play the role of invisible messengers or ligands that bind to specific

targets (receptors) on the cell surface. Various studies suggest that SIRS

may be caused by an imbalance between cytokines’ proinflammatory

and anti-inflammatory effects. In sepsis, circulating cytokines are

important in triggering and maintaining the inflammatory response, and

their quantities are correlated with the severity of illness. For example,

elevated levels of circulating cytokines have been found up to 2 days

before the diagnosis of clinical sepsis—see Kuster et al. (1998). Of

particular interest to our investigation are the widespread effects of

cytokines on signal transduction processes and, specifically, their

potential to interfere with the normal control of HR by the sympathetic

and parasympathetic nervous systems.

Signal transduction at the cellular level refers to the mechanism by

which signals are transmitted from the outside of the cell to the inside.

One of the mechanisms of signal transduction may involve small ion

movement, either into or out of the cell. These ion movements result in

changes in the electrical potential of the cells that propagate the signal

along the cell. Other mechanisms of signal transduction may involve the

coupling of ligand–receptor interactions to cascades of intracellular

events that alter enzyme activities and protein conformations. Signal

transduction leads to alterations in cellular activity and to changes in the

program of genes expressed within the responding cells. For example, it

has been shown by Oddis and Finkel (1997) that specific cytokines

(acting as ligands and binding receptors on the cell surface) may

increase HR. Interestingly, the same cytokines have also been shown to

reduce HR responses to certain drugs.

Figure 6-2 presents an electrocardiogram (EKG), which is a record of the

electrical activity in the heart muscle during the heartbeat cycle. The

markers at the peaks pinpoint the time of occurrence of sequential

heartbeats. The characteristic that quantifies HR is the interbeat interval

(RRI). The RRI is the elapsed time (usually measured in milliseconds)

from one heartbeat to the next (e.g., the distance between two

sequential markers [so a larger RRI corresponds to a slower HR]).
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Figure 6-2 presents 5 seconds of EKG data. It is important to note that

even in healthy individuals the duration of sequential RRIs is not

constant (and, as we see below, is normally even more variable than in

some diseases). This natural HR variability (HRV) arises from the

interplay between the two arms of the autonomic nervous system—the

system responsible for those necessary bodily functions not under

voluntary control. The autonomic nervous system controls HR through

the sympathetic pathway, which increases HR, and the parasympathetic

pathway, which slows it.

In general, some variability in the HR is a healthy sign, because

internal fluctuations give the organism greater freedom to adapt to

external challenges. In contrast, in newborn infants, as in adults,

HRV is substantially reduced during periods of severe illness (see

Burnard, [1959]; Rudolph et al. [1965]; Cabal et al. [1980]; Griffin et al.

[1994]).

There are various theories concerning the mechanisms of reduced

HRV aimed at explaining and quantifying the differences in the

mathematical characteristics of RRIs for normal and low HRV. We focus

on the theory, developed at the University of Virginia by Drs. J. Randall

Moorman and M. Pamela Griffin, which explains the mechanism of

observed HRV abnormalities using signal transduction cascades (see

Nelson et al. [1998]). We begin with the physiological mechanisms

causing and regulating heartbeat.

The heart is a muscular pump consisting of four chambers (two atria and

two ventricles) that contract in a coordinated fashion to push blood

through the circulatory system. Blood returning from the body enters the

right atrium, passes through to the right ventricle, and is then pumped

to the lungs. Blood returning from the lungs enters the left atrium,

passes through to the left ventricle, and is then pumped to the body. The

heartbeat (the rhythmic contraction of the heart muscle) is controlled by

−5.0

ECG - Full

Time (sec) 0.0

FIGURE 6-2.
An EKG recording. An EKG records the electrical activity of the heart muscle as it contracts.
The triangular markers indicate the peak of each beat. (Courtesy of Dr. J. Randall Moorman,
University of Virginia.)
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the sinoatrial node (or pacemaker), which causes contraction of the atria.

The contraction of the main pumping chambers, the ventricles, is

controlled by the atrioventricular node.

Recall that autonomic nervous system exerts control over HR through

the sympathetic and parasympathetic pathways. The sinoatrial node cell

membrane has beta-adrenergic (epinephrine- and norepinephrine-

binding) receptors which, on binding ligands released from sympathetic

nerve endings or the adrenal medulla, lead to the activation of cyclic

adenosine monophosphate (cAMP)-dependent protein kinase. The active

cAMP-dependent protein kinase phosphorylates cardiac ion channels

and results in cell depolarization, an action potential, and a heartbeat.

Consequently, HR rises after sympathetic stimulation. The sinoatrial

node cell membrane also contains muscarinic acetylcholine receptors.

When bound with acetylcholine from parasympathetic nerve endings,

they inhibit the process described above and HR falls. Thus, for as long

as the complex steps of intracellular signal transduction can be

successfully completed, the sinoatrial node can be viewed as an

amplifier of the input signals of the autonomic nervous system and HR

as the output signal. As the amounts of sympathetic and

parasympathetic activity vary, HR varies as well.

Now consider a severe illness like sepsis. In such an unfavorable

metabolic milieu, the optimal conditions for signal transduction are

unlikely; HRV becomes abnormal because sinus node cells, like all other

cells, are unable to respond normally to sympathetic and

parasympathetic inputs. In general, reduced HRV is a sign of system

isolation and disruption of the control mechanisms.

IV. QUANTIFYING HEART RATE AND HEART RATE

VARIABILITY

It is a cinematic cliché to use the sound of a thumping heart in

suspenseful scenes—the beats becoming very slow and regular

when the character gets into trouble. Following the scientific literature

(and the movies), we could expect that before sepsis and SIRS the

HR would become more regular and would sometimes slow down.

Longer RRIs represent HR decelerations, while shorter RRIs represent

HR accelerations. Formulated scientifically, this means we should

see reduced baseline HRV and transient decelerations. To investigate

whether these expectations are correct, we need two components:

(1) Lots of HR data for healthy hearts and for hearts before

sepsis; and (2) methods quantifying HRV and distinguishing normal

from abnormal HR series, paying particular attention to HR

decelerations.

We begin by visually inspecting the HR time series of a baby who

developed sepsis. The baby was born 5 months prematurely, at

188 Chapter SixAn Invitation to Biomathematics



24 weeks gestation, and weighed 720 g at birth. The baby had evidence

of lung disease but was clinically stable when the HR observations

began. The three plots in Figure 6-3 illustrate normal HRV and the

abnormal changes occurring before sepsis.
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FIGURE 6-3.
Plot of RRI time series. The three panels are from the same infant while clinically stable (panel A)
and from 18 (panel B) and 9 (panel C) hours before an acute clinical deterioration leading to death.
(From Kovatchev, B. P., Farhy, L. S., Hanging, C., Griffin, M. P., Lake, D. E., Moorman, J. R. [2003].
Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and
systemic inflammatory response syndrome. Pediatric Research, 54, 892–898. Used by permission.)
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Each panel in Figure 6-3 shows 4096 consecutive RRIs, approximately 20

to 30 minutes of heart beat data. The data in panel A, representing

normal HRV, were recorded well before any signs of sepsis occurred. As

expected, the length of the RRIs oscillated around 360 to 370 milli-

seconds, with the persistent small changes showing the accelerations

and decelerations characteristic of normal, healthy variability in heart

rhythm.

The data in panels B and C were recorded 18 and 9 hours before an

acute clinical deterioration, and 30 and 21 hours before death,

respectively. The clinical differential diagnosis included septic shock,

and blood cultures were positive for coagulase-negative Staphylococcus,

and a urine culture grew E coli. The abnormal records in panel B

display no small or frequent changes; rather, there is a long-lived

baseline of much reduced variability—the length of the RRIs is generally

constant, changing slowly from 390 milliseconds in the beginning

of observation to 410 milliseconds toward the end. Near the end of

panel B, there is a large unexpected deceleration. In panel C, HRV is

also reduced, the length of the RRIs fluctuates slowly around

350 milliseconds, and the plot is punctuated intermittently by large

decelerations.

To rule out the possibility that the record in Figure 6-3 may be

atypical, we investigated hundreds of HR records of premature infants

when healthy or before sepsis. Given that the heart of a neonate beats

more than 100 times per minute, the size of HR records is

overwhelming—more than 150,000 beats per baby per day. In most of

the records, we found evidence that the abrupt clinical deteriorations

were preceded by up to 24 hours by the abnormal HR characteristics

of reduced baseline variability and subclinical, short-lived decelerations

in HR.

At this point, our hypothesis seemed plausible: the individual records

appeared to confirm a characteristic HR abnormality, manifested as a

reduced baseline variability and the presence of transient decelerations

was detectable early in the course of neonatal sepsis and SIRS. The

question then was: How do we quantify these changes? None of the

decelerations would have triggered an alarm for low HR, which is

conventionally set for 100 beats per minute (RRI 600 msec). Moreover,

neither the mean RRIs of the three data sets (369, 398, and 362 msec) nor

the standard deviations (SDs; 3.7, 5.0, and 7.4 msec) would identify the

abnormal records. Thus, we needed to design new quantitative

measures accurately depicting our observations. We arrived at two

types of measures: (1) Time-independent, based on properties of the

statistical distribution of RRIs; and (2) time-dependent measures

of temporal regularity. We describe these measures in the next

sections.
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V. TIME-INDEPENDENT MEASURES: INTERBEAT

INTERVAL DISTRIBUTION, STANDARD DEVIATION,

AND SKEWNESS

As discussed above, the length of sequential RRIs varies from beat to

beat, and the degree of its variability is related to health or illness.

A time-independent approach to investigating the variability of a sample

of RRIs focuses on their statistical distribution (this approach is time-

independent because changing the order of RRIs within the sample will

not change its statistical distribution). In this setting, the length of a RRI

is assumed to be a random quantity with a certain unknown

distribution. A histogram of a certain sample of RRIs depicts one

realization of this distribution. The shape and the symmetry of this

histogram provide information about the properties of the random RRIs.

Changes in the histogram may, therefore, signify changes in health.

We want to develop a measure of how at-risk a baby is for the imminent

onset of sepsis based on HRV. If we examine the panels in Figure 6-3,

some things stand out. In panel A, where the baby is clinically stable,

there is a pattern of ‘‘regular irregularity.’’ Compared with panels B and

C, there is a substantial amount of variation throughout the period in the

RRIs, but the variation seems to be under control. In panel B, when the

baby’s health has begun to deteriorate, there is very little variation

during most of the period, with a few large decelerations. In panel C, as

health continues to worsen, these changes become more pronounced.

The fact that panels B and C depict RRI data with little variation

suggests that the corresponding histograms will have a relatively low SD.

The isolated decelerations, on the other hand, suggest a certain asymmetry

in the histogram of the RR data. To better understand why, we briefly

review the relation between the following basic descriptors of a

histogram—the mean, the median, and the skewness.

The two most common ways to measure the center of a body of

quantitative data are the mean and the median. The mean is what people

often refer to as the average, and the median is the 50th percentile.

In some ways, the median can be more descriptive of the data’s center

because it is not affected by extreme values (as the mean can be). A body

of data is symmetric if the histogram can be divided into two halves that

are mirror images of one another. If the data are symmetric, the mean

and the median coincide.1 In reality, it would be unusual to find a

completely symmetric body of data, but many phenomena give data that

are approximately symmetric.

Some data that are not symmetric can be described as skewed to the left

or right. To get an intuitive idea of skewness, suppose we begin with

1. It is possible, however, for the mean and the median to coincide when the
data are not symmetric.
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a symmetric histogram as in Figure 6-4(A). Note that the mean and the

median coincide. Now suppose that we take a data point that is to

the right of the center and move it farther to the right [Figure 6-4(B)]. The

mean moves to the right, but the median says the same. The data in

Figure 6-4(B) are skewed to the right.

This example illustrates the following ideas:

1. The mean is sensitive to extreme values, but the median is less so.

2. If a body of data has a long tail to the right but not to the left, the

data is skewed to the right.

3. If the data is skewed to the right, then the mean will lie to the right

of the median.

One way to quantify the balance between the left and right tails of a

histogram is to use its skewness. The skewness g of a distribution is

defined as the quotient of the third moment m3 about the mean E(X)

and the third power of the SD s and is given by the expression

g ¼ m3
s3

¼ EfðX � EðXÞÞ3g
½EfðX � EðXÞÞ2g�3=2

: The skewness for symmetric distributions

is zero; it is positive if the distribution develops a longer tail to the right;

and it is negative if the distribution develops a longer tail to the left.

Accordingly, distributions skewed to the right are called positively skewed

and distributions skewed to the left are called negatively skewed.

In Figure 6-5(A), we have a symmetric distribution. The degree of

variability is quantified by the SD – reduced variability corresponds to

Mean

Median

A

Mean

Median

B

FIGURE 6-4.
A schematic representation of skewness as illustrated by the relative position of the mean versus the
median. In panel A, the mean and median coincide, whereas in panel B the mean is to the right of the
median.
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a smaller SD. If a sample of RRIs has predominantly decelerations, and

few accelerations, their histogram would have a longer right tail and

almost no bars to the left of its mode (thus, its shape will be similar to

that in panel B). Conversely, if the sample of RRIs includes mostly

accelerations, but no decelerations, the histogram would be similar in

shape to that in panel C—with a long left tail and almost no bars to the

right of its mode.

However, the SD and the skewness of the distribution of RRIs have

certain limitations. In particular, SD and skewness are computed with

respect to the mean of the distribution, which is quite vulnerable to large

deviations and does not accurately represent the center of a skewed

distribution. Figure 6-6 exemplifies this point by presenting

a sample of RRIs that includes transient decelerations. These

decelerations result in an asymmetric distribution, with a longer right

tail. As a result, the mean and the median of that sample do not

coincide—the mean is influenced by a few decelerations and is

substantially shifted to the right, poorly describing the center of the

RRI distribution. This and other limitations make SD and skewness

insufficiently accurate for the life-saving task of predicting sepsis in

prematurely born infants.

In order to overcome this limitation, we need to compute measures that

quantify deviations in the length of RRIs from their median. In addition,

such measures (unlike SD or skewness) will need to allow for a separate

quantification of HR accelerations (deviations less than the central RRI,

forming the left-hand portion of the histogram) and decelerations

(deviations greater than the central RRI, forming the right). The next
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FIGURE 6-5.
Typical histogram of a symmetric (panel A),
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left (panel C) statistical distributions.
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Sample of RRIs that includes transient decelerations. Note the skewness of the distribution.
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section introduces the sample asymmetry (SA), a measure possessing

these desired properties.2

EXERCISE 6-1

Describe why the mean value does not represent a good measure for

assessing the variability of the RRI series.

EXERCISE 6-2

Give examples of two data sets having equal SDs, one corresponding to

a RRI series with transient decelerations and the other to one with

transient accelerations.

VI. TIME-INDEPENDENT MEASURES: SAMPLE

ASYMMETRY OF A RANDOM VARIABLE

We design the new SA measure to comply with the following conditions:

1. SA should grow when there are more decelerations in the RRI

sequence;

2. SA should decrease as there are more accelerations in the RRI

sequence;

3. SA should take positive values; and

4. SA ¼ 1 for perfectly symmetric distributions of the RRI sequence.

Conditions 3 and 4 are of a technical nature and are, in essence,

conditions of calibration. In contrast, conditions 1 and 2 are essential for

constructing a measure overcoming the limitations of SD and skewness

as measures for reduced HRV and transient decelerations.

Conditions 1 and 2 suggest that SA may be defined in the form of a ratio

SA ¼ R2

R1
where the numerator R2 is a measure for the magnitude of RRI

decelerations and the denominator R1 measures the magnitude of

RRI accelerations. Condition 4 will then mean R1 ¼ R2, that is, the

magnitudes of accelerations and decelerations in the RRI sequence are

the same, exactly as one would expect from a symmetric distribution.

Thus, we focus on designing R1 and R2.

2. This measure was first introduced by Kovatchev et al. (2003).
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Let m be the median for the lengths of a sequence of observed RRIs and

x be the length of a single RRI. For this interval, the quantity (x � m)2

could be used as a measure describing the deviation of the RRI length

from the median length m. In the language we employed in Chapter 5,

we can view this quantity to be the risk assigned to the RRI of length

x because of its deviation from the median value m.

The problem we faced in Chapter 5 was quite similar. The question

there was to separately assess the risk for hypoglycemia because

of low blood glucose readings and the risk for hyperglycemia because of

high blood glucose readings. Fundamentally, our problem here is

identical—we need to assess the magnitude of the risk for RRI

decelerations as measured by positive deviations from m, and the

risk for RRI accelerations, as measured by negative deviations from m.

In that sense, R1 corresponds to the Low BG Index, and R2 corresponds

to the High BG Index from Chapter 5. Thus, following the same

approach, for any RRI of length x, we define the quantities:

rdðxÞ ¼
( ðx�mÞ2 for x > m

0 for x � m

and

raðxÞ ¼
( ðx�mÞ2 for x < m

0 for x � m:

(6-1)

The function rd(x) describes the degree of deviation to the right from

the median value (risk for deceleration) while the function ra(x)

describes the degree of deviation to the left from the median (risk for

acceleration).

EXERCISE 6-3

Compare the definitions in Eq. (6-1) with the definitions for rl and

rh given by Eq. (5-5) in Chapter 5. What are the similarities and

differences?

Consider now a sequence of RRIs of lengths x1, x2, . . . xn and let m denote

the median of the data. Using the weighing functions in Eq. (6-1), define

two quantities representing the sum of the weighted deviations to the

left and to the right of the median m as follows:

R1 ¼ 1

n

Xn
i¼1

ra ðxiÞ and R2 ¼ 1

n

Xn
i¼1

rd ðxiÞ: (6-2)
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EXERCISE 6-4

Compare the quantities in Eq. (6-2) with the low blood glucose index

and high blood glucose index measures defined in Chapter 5. What are

the differences? What are the similarities?

EXERCISE 6-5

Find R1 and R2 for the following time series: 666.7, 666.7, 659.3, 666.7,

689.7, 652.2, 666.7, 681.8, 666.7, and 645.2.

Definition. The SA of the data set x1, x2, . . ., xn is defined by the ratio:

SA ¼ R2

�
R1 ;

(6-3)

where R1 and R2 are the quantities defined by Eq. (6-2).

In Figure 6-7, we present two examples of data sets—one approximately

symmetric (panel A) and one positively skewed (panel B). The graph of

the weighing function (x � m)2 is given by a solid black line. As

anticipated, the SA for the skewed distribution is higher compared with

the SA for the approximately symmetric distribution (3.5 vs 1.1). Notice

that for the data set with an approximately symmetric histogram, the SA

is close to 1. We leave it as an exercise to verify that the SA measure, as

defined by the Eq. (6-3), satisfies conditions 1 through 4 at the beginning

of this section.

EXERCISE 6-6

Verify that the measure SA defined by Eq. (6-3) satisfies conditions

1 through 4 listed at the beginning of this section.

Figure 6-8 contains the histograms of the distributions of RRIs

depicted in Figure 6-3. The histograms present the distribution of the

RRI lengths with regard to their deviation from the median value

m. Note that we used a logarithmic vertical scale. As expected, the

distribution of RRIs in the period of health is approximately symmetric

[Figure 6-8(A)], while the HR abnormalities observed before sepsis cause

marked asymmetry of the histograms in panels B and C. The positive

(right) skewness of the histograms is caused by a reduction in the

number of shorter-than-median RRIs. The skewness of the distribution

increased from 0.82 in panel A to 1.92 in panel B and to 1.55 in panel C.

This change, however, is not consistent with the worsening medical
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condition of the baby, as described earlier. A better description of the

observed phenomenon is offered by considering the SA of the three

data sets.

In Figure 6-8, the value of the SA for the data in panel A is 1.37, showing

approximately symmetric distribution of the RRIs in a condition of

health. In panel B, the value of SA increases to 2.97, and the value of the

left weighting R1 decreases to 27, pointing to certain abnormalities

(reduced accelerations and increased decelerations) beginning to appear

in this infant’s HR 18 hours before any clinical signs of sepsis. Nine

hours before the onset of sepsis (panel C), the value of the SA has

increased dramatically to 11.8, mainly because of a large number of

substantial heart decelerations. This is confirmed by the 10-fold increase

in the value of R2 over its healthy baseline.
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The data depicted in Figure 6-8 suggest that the SA may hold promise as

a marker quantifying HRV related to upcoming sepsis and SIRS

episodes. In the last example, the SA was markedly higher 18 hours

before the emergence of clear clinical symptoms. It could be

hypothesized that if treatment had been initiated at this time, there

would have been a possibility of saving this infant’s life.

The SA has performed well in one example. Does this mean that it will

perform the same way for another individual data set, for a group of

data sets, or for all data sets? The appropriate way to answer such
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FIGURE 6-8.
Plot of RRI distribution. The three panels are from the same infant while clinically stable (panel A)
and from 18 (panel B) and 9 (panel C) hours before an acute clinical deterioration leading to death.
(From Kovatchev, B. P., Farhy, L. S., Hanging, C., Griffin, M. P., Lake, D. E., Moorman, J. R. [2003].
Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis
and systemic inflammatory response syndrome. Pediatric Research, 54, 892–898. Used by
permission.)
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questions is through statistical analyses, and we discuss these and other

validation questions next.

VII. DATA VALIDATING THE UTILITY OF SAMPLE

ASYMMETRY ANALYSIS OF HEART RATE VARIABILITY

1. Experimental design and methods

In this section, we describe a study involving 158 infants admitted to the

NICU at the University of Virginia that focuses on the following

question: Could SA be considered a measure for the risk of approaching

episodes of sepsis and SIRS? In this section, we follow a fundamental

statistical approach involving an experiment designed to compare

two groups of infants—those with and without episodes of sepsis and

SIRS. For each group, HRV is collected throughout the study. For the

group of infants developing sepsis, the SA is calculated for every day of

the five days preceding the medical diagnosis. We seek to corroborate

our hypothesis that SA levels increase significantly 24 hours before

sepsis.

The participants in the study were infants with high risk factors for

acquiring late-onset sepsis, including LBW, prematurity, the need for

central venous access, and NICU stays longer than 2 weeks. Fifty of

these infants had a total of 75 episodes of sepsis or SIRS during the

study, defined to be present when a physician suspected sepsis or SIRS,

obtained a blood culture, and administered antibiotic therapy for seven

or more days. These 50 infants formed our experimental group.

A control group of 50 healthy infants (i.e., infants who did not develop

sepsis and SIRS during the study) was selected from the remaining 108

consecutive admissions to the NICU to precisely match the experimental

group by birth weight and GA.3 Table 6-1 includes the statistical

comparisons between the experimental and the control groups. A group

comparison t-test (Table 6-1, last column) indicates that there is no

evidence for rejecting the hypotheses for equality of the mean BW and

GA of the two groups.

3. To do this, we had to tackle the following problem: The entire group of
healthy infants had, on average, both a higher BW and GA, which was to be
expected because LBW is a risk factor for sepsis. Thus, our random selection of
control infants used a nonuniform random generator with a higher probability of
selecting LBW infants and lower probability of selecting higher BW infants.
Specifically, the probability of selecting a control infant ranged from 1 for VLBW
(BW � 656 g) to 0.16 for BW > 1451 g. These probability values were determined
by the relative distribution of BW in the experimental versus control group. Once
experimental versus control infants were matched by BW, the matching by GA
occurred naturally (Table 6-1).
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2. Results

Table 6-2(A) shows results for SA values for experimental-group infants

in 24-hour blocks beginning 5 days before sepsis. Column 2 of this table

contains the average SA values for each of the 24-hour blocks

for the experimental group. Columns 3 and 4 of the table present

Experimental

Group:

Episodes of Sepsis

and SIRS

Control

Group:

No Episodes

Group

Comparison

(t-test)

Infants 50 50 —

Mean BW
in grams (SD)

1227 (847) 1228 (760) t ¼ 0.01,
p > 0.99

Mean GA in days
(SD)

198 (34) 196 (26) t ¼ 0.37,
p ¼ 0.72

TABLE 6-1.
Study population.
Abbreviations: BW, birth weight; GA, gestational age; SD, standard deviation.

Mean Sample

Asymmetry

(SD)

ln(R1)

(accelerations)

ln(R2)

(decelerations)

A: Changes Before Sepsis for the Experimental Group

5 Days before sepsis 3.28 (1.59) 4.40 (0.94) 4.41 (0.77)

4 Days before sepsis 3.59 (1.63) 4.36 (0.92) 4.45 (0.76)

3 Days before sepsis 3.50 (1.94) 4.27 (0.92) 4.39 (0.80)

2 Days before sepsis 3.66 (2.12) 4.19 (0.85) 4.37 (0.71)

1 Day prior to sepsis 4.20 (2.32) 4.10 (0.87) 4.28 (0.65)

Contrast 1: 5 days
versus 1 day before
sepsis

F ¼ 5.5,
p ¼ 0.02

F ¼ 5.8,
p ¼ 0.02

F ¼ 1.9,
p ¼ 0.2

B: Values in Health

Infants Posttreatment 3.28 (1.34) 4.60 (0.87) 4.65 (0.74)

Contrast 2: 5 days
before sepsis versus
posttreatment

F ¼ 0.01,
p > 0.99

F ¼ 2.1,
p ¼ 0.2

F ¼ 4.2,
p ¼ 0.05

Control Infants 2.90 (0.93) 4.75 (0.67) 4.67 (0.62)

Sepsis versus control—
ANOVA with
covariates BW and
GA

F ¼ 2.40,
p ¼ 0.13

F ¼ 0.35,
p ¼ 0.6

F ¼ 0.01,
p > 0.99

TABLE 6-2.
Sample asymmetry of heart rate and asymmetries caused by accelerations and decelerations before
neonatal sepsis and SIRS, and in good health.
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separately the mean values of contributions caused by accelerations

(measured by the logarithm of R1) and decelerations (measured by the

logarithm of R2).

It is evident that SA began increasing approximately 3 to 4 days before

sepsis, with the steepest increase in the last 24 hours. To statistically

compare the mean values of the baseline values of SA, ln(R1), and

ln(R2) 5 days before sepsis and those for the last 24 hours, a statistical

test called repeated measures analysis of variance (ANOVA) was

applied. This analysis is used when repeated measurements are made on

the same subject as we do for the SA values. Recall that the t-test is used

for testing the equality of the means for two groups. In effect, repeated

measures ANOVA extends the two-sample t-test for equality of two

independent population means to the more general setting of comparing

the means of groups formed by repeated measurements of the SA.

The data in Table 6-2(A) show that the difference between the

baseline group (5 days before sepsis) and the group containing the

SA values from the last 24 hours before sepsis was significant: F ¼ 5.5,

p ¼ 0.02.

Within the experimental group, analysis of the contribution of

accelerations (measured as the natural logarithm of R1) and of

decelerations (natural logarithm of R2) shows the surprising finding that

there was a significant fall in R1 (F ¼ 5.8, p ¼ 0.02) before sepsis, but no

significant change in R2 [the last two columns in Table 6-2(A)]. This is

readily interpreted to mean that a decrease in the extent and duration of

HR accelerations is more marked than an increase in decelerations,

which are more easily identified by eye.

As presented in Table 6-2(B), posttreatment SA returned to exactly

presepsis levels. A comparison of the two periods of health, 5 days

before sepsis versus posttreatment, showed no difference (F ¼ 0.01,

p > 0.99). A similar return toward baseline was observed for both

R1 (accelerations) and R2 (decelerations), although the second index,

R2, remained somewhat elevated. As expected, a comparison of

experimental-group infants’ data when healthy to control-group infants

revealed no significant difference in SA (F ¼ 2.4, p ¼ 0.13) and no

significance of the covariates BW and GA ( p-levels of 0.2 and 0.7,

respectively). Similarly, no significant differences in R1 and R2 were

observed between healthy and experimental infants in health

[Table 6-2(B)].

In closing, these analyses show that SA becomes elevated in the 24 hours

before sepsis and then, after a successful treatment, returns to its

baseline. Thus, SA may be a valid tool in the detection of sepsis in

prematurely born infants before the occurrence of any clinical

symptoms.
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VIII. VALIDATING THE PROPERTIES OF SAMPLE

ASYMMETRY THROUGH COMPUTER SIMULATION

In addition to testing with real data, a commonly accepted strategy for

validating a new statistical measure is to simulate data with certain

properties and then investigate whether the new measure depicts these

properties accurately. In the case of SA, we need to confirm its ability

to distinguish, in a graded fashion, HR time series with varying degrees

of transient decelerations. So, we constructed simulations consisting

of a baseline signal with the same frequency components as clinically

observed neonatal HR data, and then added to this signal scaled

versions of clinically observed deceleration. In this way, we were able

to simulate a wide range of HRV abnormalities. Figure 6-9 shows an

example of simulated data with baseline SD 7 milliseconds and four

decelerations of magnitude 100 milliseconds, corresponding to

moderately reduced HRV with subclinical decelerations from 150 beats

per minute (RRI 400 msec) to 120 beats per minute (RRI of 500 msec).

This is a realistic simulation—inspection of Figure 6-3(B) suggests

a deceleration might easily be 20 times larger than the SD of a stable,

low-variability neonatal HR.

The results are plotted in Figure 6-10. SA is plotted as a function of the

height of the deceleration measured in SD of the baseline signal.

We simulated an increasing number of decelerations, from 0 to 8.

Figure 6-10 shows that both larger and more frequent decelerations lead

to increasing values of SA, with values exceeding 10 in many

conditions. For the example in Figure 6-9, with four decelerations
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FIGURE 6-9.
Simulated heart rate data with baseline variability with SD ¼ 7 milliseconds and 4 decelerations.
(From Kovatchev, B. P., Farhy, L. S., Hanging, C., Griffin, M. P., Lake, D. E., Moorman, J. R. [2003].
Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and
systemic inflammatory response syndrome. Pediatric Research, 54, 892–898. Used by permission.)
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of approximate height 14 SD, SA is 5.7. Thus, SA is sensitive to

gradually increasing frequency and magnitude of transient

decelerations, which makes it a promising measure for abnormality in

HR data samples.

IX. TIME-DEPENDENT MEASURES: SAMPLE ENTROPY

It should be noted that the timing component in our discussion so far

appeared only in Figure 6-3, where consecutive samples of 4096 RRIs

were sequentially recorded. The measures subsequently introduced—

SD, skewness, and SA—are based solely on the statistical distribution of

RRIs. Thus, none of these measures takes into account the order of RRIs

within each sample and the potential contribution of the exact timing

sequence of the RRIs is ignored. Recall, however, Figure 6-3, which

suggests that a change in the time pattern of the RRIs may be indicative

of an upcoming sepsis episode. The statistical approach may be

insufficient for thoroughly addressing the problem. To emphasize this

point even further, if we take a sample of 4096 RRIs and calculate the

samples’ SD, skewness, and SA, they will be exactly the same as the SD,

skewness, and SA of any reshuffling of the sample. Clearly, however, the

evolution of the RRI sequences with time is a factor that should not be

ignored, but to study this factor we shall need to employ methods
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(referred to as time series analyses) that take into account the order of

the RRIs.

Entropy, as it relates to dynamical systems, is the rate of information

production. There are two measures developed to account for the pattern

of the data and estimation of the entropy in time series that can be applied

to cardiovascular data. One is called approximate entropy (ApEn),

introduced by Pincus (1991), and the other is called sample entropy

(SampEn), introduced by Richman and Moorman (2000). Our analysis

uses SampEn.

The basic idea is that we want to measure the regularity of a sequence

of measurements. Consider, for example, two sequences of 0s

and 1s:

Sequence S1: 1,0,1,0,1,0,1,0,1,0

Sequence S2: 1,1,1,0,0,1,0,0,0,1

Both sequences have five 0s and five 1s, but sequence S1 seems to have

a pattern, and sequence S2 seems random. Sample entropy assigns

a non-negative number to each sequence. The more regular a sequence

is, the lower the sample entropy will be. Thus, SampEn for sequence

S1 will be lower than SampEn for sequence S2.

Intuitively, in a regular sequence, if we know two or three adjoining

terms, then we have a good idea of what the next term will be. In

sequence S1, there are nine adjoining two-term subsequences (only eight

with a following term). Each subsequence is either 1,0 or 0,1, and if it is

1,0, the following term is always 1; if it is 0,1, the following term is

always 0.

EXERCISE 6-7

Determine all different types of two-term subsequences for the sequence

S2.

In sequence S1, the 1,0 subsequence appears five times. Two identical

subsequences are called matches. When considering RRI data, it would be

highly improbable to ever have an exact match, even in subsequences of

length 2, so instead we say there is a match when the subsequences

agree within a certain tolerance. The customary way to assign this

tolerance depends on the SD of the sample. Usually, the tolerance t is

chosen to be the product, t ¼ r � SD, where r is a number between 0.1 and

0.25 and SD is the standard deviation of the sample.
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EXERCISE 6-8

Compute the tolerance t for sequence S1 with r ¼ 0.2. What is the

tolerance for sequence S2 if r ¼ 0.2?

Now suppose we have determined a tolerance value t. We say

the subsequences (a,b) and (a0,b0) are matches if |a � a0| < t

and |b � b0| < t (i.e., if the distance between each component differs by

less than the tolerance). In a regular sequence, if subsequences (a,b) and

(a0,b0) are matches, it is likely the sequences (a,b,c) and (a0,b0,c0) will also

be matches. Conversely, if the time series is irregular, having matches of

length 2 is not necessarily a precursor to matches of length 3. The

following definition of SampEn generalizes this observation.

For a fixed integer m, SampEn is defined as the negative natural

logarithm of the ratio A/B, where A ¼ number of matches of length

m þ 1, and B ¼ number of matches of length m (see Figure 6-11). For

those familiar with calculating conditional probabilities, the quantity

A/B is precisely the conditional probability that two sequences within a

tolerance r for m points remain within r of each other at the next point.

Because the computation of SampEn depends on the order of the data

points in the RRI time series, SampEn is a true time-dependent measure,

capturing temporal complexity in sequences of data. ApEn is defined

similarly, but it counts self-matches as well (see Pincus [1991] for

details).

Notice that parameters m and r are critical in determining the value of

SampEn. It is, in fact, more appropriate to use the notation SampEn ¼
SampEn(m, r) to reflect the dependence. However, no guidelines exist for

optimizing their values, and this is a shortcoming in the current theory.

A = number of matches of length m+1
B = number of matches of length m

ApEn ≈ −ln (1+A)/(1+B)
SampEn = −ln A/B

For regular, repeating data, A/B nears 1 and entropy
nears 0.

Bars are
r(S.D.)

FIGURE 6-11.
Defining sample entropy of RRIs. (Courtesy of Dr. J. Randall Moorman, University of Virginia.)
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The various existing rules of thumb generally lead to the use of values of

m of 1 or 2 for data records of length N ranging from 100 to 5000 data

points and values of r between 0.1 and 0.25 to determine the tolerance. In

general, the accuracy and confidence of the entropy estimate improve as

the numbers of matches of length m and m þ 1 increase. By this token,

the number of matches can be increased by choosing a small m (short

templates) and a larger r (wide tolerance). There are penalties, however,

for criteria that are too relaxed: as r increases, the probability of matches

tends toward 1, and SampEn tends to 0 for all processes, thereby

reducing the ability to distinguish any salient features in the data set;

and as m decreases, underlying physical processes that are not optimally

apparent at smaller values of m may be obscured.

This being said, in most current applications the parameter values of

choice are m ¼ 2 and t ¼ 0.2*SD, which means we are counting templates

with a length of 2 to calculate B and templates with a length of 3 to

calculate A, and the tolerance for matches is set to 0.2 times the SD of the

process. In most cases, all readings in the observed sample are first

divided by the SD of that sample, so the SD of the sample becomes

exactly SD ¼ 1, in which case t ¼ r ¼ 0.2. This preprocessing of the data

eliminates the influence of the variance of the sample on the irregularity

(or complexity) of the process, thus leaving SampEn to pick up only

characteristics strictly related to the sequential timing of the observations

and generally independent from the distribution of the observations.

More details, including the strict definition of SampEn, can be found in

Lake et al. (2002).

Although the computation of SampEn for long time series certainly

requires appropriate software (see Internet Resources at the end of the

chapter), one simple numerical example using the short sequences

considered earlier should clarify the template counting algorithm.

Example 6-1
.......................

For m ¼ 2 and r ¼ 0.2, calculate the SampEn and SD for the sequences S1:

1,0,1,0,1,0,1,0,1,0 and S2: 1,1,1,0,0,1,0,0,0,1, and compare the results.

We begin with the periodic series S1. The SD of this sample is 0.527.

Thus, for r ¼ 0.2, the tolerance for similarity between two templates

would be t ¼ (0.2)(0.527) ¼ 0.1054. With m ¼ 2, all subsequences of

length 2 (beginning at up to N-m) in the series are 10,01,10,01,10,01,10,01.

Given a similarity tolerance of t ¼ 0.1054, two subsequences would

be matches only if they are identical. Thus, the total number of

template matches of length m ¼ 2 is B ¼ 3þ3þ3þ3þ3þ3þ3þ3 ¼ 24

(each template 10 or 01 has exactly three matches, excluding self-

matches). All subsequences of length m þ 1 ¼ 3 in the above series are

101,010,101,010,101,010,101,010. Thus, the total number of template
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matches of length m ¼ 3 is A ¼ 3þ3þ3þ3þ3þ3þ3þ3 ¼ 24 (each template

101 or 010 has three matches). SampEn is then computed as

SampEn ¼ �ln(A/B) ¼ �ln(24/24) ¼ 0, signifying complete order.

Now consider series S2, also having five 1s and five 0s, but in a more

random order: 1,1,1,0,0,1,0,0,0,1. The SD of this series is again 0.527

because SD does not depend on the order of observations. Thus, the

similarity tolerance would be again t ¼ 0.1054. All subsequences of

length 2 in the series are 11,11,10,00,01,10,00. Thus, the total number of

template matches of length m ¼ 2 is B¼1þ1þ1þ2þ0þ1þ2þ2¼10. All

subsequences of length m þ 1¼3 are 111,110,100,001,010,100,000,001, and

the total number of template matches of length m ¼ 3 is A ¼
0þ0þ1þ1þ0þ1þ0þ1 ¼ 4. Then, SampEn ¼ �ln (4/10) ¼ 0.9163,

signifying a certain degree of irregularity.

Thus, two time series that otherwise have identical distributions of 0s

and 1s (and therefore identical distribution-based characteristics) are

distinguished solely on the basis of the order of their observations. In the

first case, the series is periodic (i.e., there is apparent order), leading to

0 SampEn, while in the second there is no apparent order, and the

SampEn is substantially larger.

With regard to HRV, Griffin and Moorman (2001) and Lake et al. (2002)

have shown that SampEn is lower for RRI recordswith reduced variability

and transient decelerations. Thus, SampEn is another potential predictor

of sepsis and SIRS in prematurely born infants. Because a lower value

of SampEn indicates reduced complexity and more self-similarity in

the RRI time series, lower SampEn before sepsis would capture

decreased system complexity, disruption in the signal transduction

pathways controlling the HR, and increased system isolation.

SampEn has been validated in clinical studies recording HR in

premature infants. Figure 6-12 presents a plot of the changes in HR

SampEn of an infant during the 9 days before sepsis. There is an

apparent transient reduction in SampEn 4 to 5 days before sepsis,

indicating temporarily increasing HR regularity, and larger and more

sustained reduction in SampEn during the 24 hours before the

clinical manifestation of sepsis. As presented here, SampEn, combined

with the other measures of HRV discussed in this chapter, is a powerful

tool for predicting potentially deadly clinical situations.

EXERCISE 6-9

For m ¼ 2 and r ¼ 0.2, calculate SampEn for the sequences

0,0,1,0,0,1,0,0,1 and 1,0,0,0,1,0,1,0,0. What can you say about their SDs?
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X. COMBINING VARIOUS MEASURES OF HEART RATE

VARIABILITY ABNORMALITY

Abnormalities in HRV characteristic of illness can be identified by

comparing the HRV parameters we have discussed (SD, skewness, SA,

and SampEn) using more advanced mathematical models, such as

logistic regression models, neural networks, multiple variable analysis,

nearest neighbor analysis, or other predictive mathematical instruments.

It is most important to track the data of each at-risk infant and compare

sequential HR time series. Experiments show that changes observed

in sequential 4096-beat time series tracked over time provide a good

indication and reliable warning of upcoming episodes of sepsis. In order

to conduct such experiments, the HR of each at-risk baby is recorded

continuously, using bedside monitors.

A large clinical trial involving 316 neonates in the University of Virginia

NICU and 317 neonates in the Wake Forest University NICU tested and

validated the utility of the HRV characteristics presented in this chapter.

In this trial, clinical data were prospectively collected, and RRIs were

continuously recorded in all infants in these two NICUs who stayed for

more than 7 days. Episodes of sepsis and sepsis-like illness were defined

as acute clinical deteriorations that prompted physicians to obtain blood

cultures and start antibiotics. During the trial, 273 such episodes were

observed in 194 of the infants, a staggering number, which demonstrates

the high risk for sepsis in these premature babies.

A predictive statistical model was developed using data from the

derivation cohort in the University of Virginia NICU, and then tested on

the validation cohort at Wake Forest University. An HR characteristics

(HRC) index was defined as the output of a regression model combining

the RRI characteristics described in this chapter to predict sepsis and
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Changes in HR sample entropy before sepsis.
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sepsislike illness. The HRC index is a unitless number between 0 and

1 proportional to the risk of an acute clinical deterioration in the next

24 hours. The HRC index: (1) Showed highly significant association with

impending sepsis and sepsislike illness (p < 0.001); and (2) added

significantly to the demographic information of BW, GA, and days of

postnatal age in predicting sepsis and sepsislike illness (p < 0.001). The

conclusion from this clinical trial was that continuous HRC monitoring

is a generally valid and potentially useful noninvasive tool in the early

diagnosis of neonatal sepsis and sepsislike illness. Additional details

regarding the clinical trial and the exact definition of the HRC index can

be found in Griffin et al. (2003).

EXERCISE 6-10

For an RRI series with low SampEn, what additional tests could be used

to determine whether there is an increased proportion of decelerations

(of interest in predicting sepsis) or accelerations? Could you suggest two

such tests?
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We’d like to know the molecular basis of the oxygenation process, not

only as a way to understand how hemoglobin functions, but also as a

model to find out how other important proteins and enzymes

regulate metabolic processes.

Chein Ho, Director, Pittsburgh NMR Center for Biomedical Research

Hemoglobin is a protein constituting more than 95% of

the solid mass of red blood cells. Its function is to carry

oxygen (O2) from the lungs to peripheral tissues and

return carbon dioxide (CO2) to the lungs. Consequently, it

is one of the most important and most studied of all

proteins. Myoglobin (sometimes called muscular

hemoglobin) is a structurally analogous protein whose

function is to bind and store O2 in muscle tissue and

provide O2 to the working muscle.

Hemoglobin is made up of four subunits or monomers

called globins. In adult hemoglobin, two of these are

alpha globin proteins and two are beta globin proteins,

expressed symbolically as a2b2. Both alpha and beta

globins are members of gene families that resulted from

gene duplication, mutation, and selection of an ancestral

globin gene. This duplication, mutation, and selection

have allowed functional differentiation. For example,

consider epsilon (e) and gamma (g), the beta globin family

members found in embryonic and fetal hemoglobins.

Early in embryonic development, hemoglobin consists of

a2e2, and is followed by a2g2 or fetal hemoglobin. These

hemoglobins have higher affinities for O2 than adult

hemoglobin a2b2, permitting more efficient uptake of O2

from the placenta.

Human hemoglobin tetramers have four sites where a

molecule of O2 may bind. A salient characteristic of

hemoglobin is that this binding is cooperative. That is,

after the first molecule of O2 is bound, a second is more

likely to bind. This affinity increases as more O2

molecules bind, such that the affinity for the fourth O2

molecule is approximately 300 times that of the first.

Hemoglobin becomes saturated with O2 in the lungs,

where the partial pressure of the O2 is high. As

hemoglobin circulates through the body, the level of

O2 decreases while the level of CO2 increases.

Hemoglobin’s affinity for O2 decreases in the presence

of CO2. In this environment, a change in hemoglobin

structure occurs, facilitating O2 release. CO2 will then
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bind to the hemoglobin. When the hemoglobin returns to the lungs,

where CO2 levels are lower and CO2 is released, its affinity for

O2 increases. Thus, hemoglobin again binds O2, and the cycle repeats.

This chapter focuses on creating mathematical models describing

hemoglobin–oxygen binding. We begin by describing the structures

and functions of myoglobin and hemoglobin to help conceptualize

the models. Similar models could be used to study drugs binding to

receptors. In the next chapter, we present numerical methods for

appropriately testing the models.

I. INTRODUCTION

To produce the large amounts of adenosine triphosphate (ATP) required

for cells to maintain organization and perform useful work, the cells of

higher organisms must have access to sufficient O2 to support aerobic

respiration. Anaerobic respiration (fermentation) only yields two ATP

per glucose, which is simply not sufficient to support the complicated

organization of a higher eukaryote. Aerobic respiration allows the

cells to convert the energy in each glucose molecule into the equivalent

of 36 molecules of ATP, most of which is generated by the electron

transport chain. Simple unicellular organisms, and those multicellular

organisms one or two cell layers thick, may obtain sufficient O2 via

diffusion from the environment. More complex animals require

a circulatory system, with specific molecules to bind and transport O2.

In vertebrates, this molecule is hemoglobin.

Deciphering the secrets of hemoglobin has challenged generations of

organic chemists, biophysicists, biochemists, and physiologists. Until the

late 1880s, it was unclear whether hemoglobin was a low–molecular

weight compound or a macromolecule. Emil Fischer (1852–1919; Nobel

laureate, 1902) was the first to establish that hemoglobin and all other

proteins are biopolymers, called polypeptides, built of 20 different alpha-

amino acids.1 Another major obstacle in deciphering the structure of

hemoglobin was overcome by Hans Fischer (1881–1945; Nobel laureate

1930), who established the presence of an iron-containing complex

called heme in the macromolecule (Figure 7-1). Both myoglobin and

hemoglobin contain heme.

Heme consists of a planar, ring-like structure with resonating double

bonds, bound to an iron atom. The iron is bound by four nitrogen atoms

at the center of the ring. Because the coordination number of iron is 6,

H2C
H3C

H3C

H2C

H2C

CH2

CH2

CH3

CH3

CH2

COO−
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N

N ++Fe

C
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FIGURE 7-1.
Structure of the heme group, with iron (Feþþ).

1. For those with some chemistry background: The amino acids are linked with
one another by means of peptide bonds: �C(¼O)NH�. The general form of
the amino acids is R�CH(NH2)COOH, where different amino acids are
represented by different radicals R. Peptides consisting of more than 50 amino
acids are classified as proteins.
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two vacant positions remain. In myoglobin, a globin protein molecule

occupies one of the two positions. The remaining position can bind

an O2 molecule, so myoglobin could be thought of as a monomeric

oxygen-binding heme protein. Hemoglobin, on the other hand, is a

tetramer: it contains four protein subunits, a2b2, each similar to

myoglobin, each with its own heme. Because each hemoglobin subunit

can bind an O2 molecule, the tetramer can bind up to four O2 molecules

at a time. Figure 7-2 shows the three-dimensional hemoglobin structure

determined by John Kendrew (1917–1997) and Max Perutz (1914–2002).

In 1962, they shared a Nobel Prize in Chemistry for this work.

The ferrous ion in the deoxygenated hemoglobin is situated slightly to

one side of the plane of the other heme atoms. When an O2 molecule is

attached, a new geometry arises in which the ferrous ion becomes

coplanar with the rest of the heme. This causes a change increasing O2

affinity and making consecutive oxygenation easier. This effect is called

cooperativity. Figuratively speaking, as the process repeats, the whole

macromolecule pulsates like a heart, the ferrous ion wobbling to and fro

across the heme plane. The cooperative binding of O2 results from

molecular interactions at many levels: the movement of the iron in the

heme, structural changes within the individual subunits, and a

reorientation of the subunits within the tetrameric hemoglobin.

Hemoglobin, therefore, is not just a simple mix of four independent

oxygen-binding subunits but, rather, a ‘‘molecular machine’’ with its

structure directly related to its O2 transport function.

As hemoglobin–oxygen binding is just one of many binding reactions

that occur in living organisms, we now examine some concepts

fundamental to this larger class of molecular interactions.

II. BINDING REACTIONS

Binding reactions are the most common types of molecular interactions

taking place within living organisms. A binding reaction occurs when

two or more molecules prefer each other’s company more than the

company of other molecules within a solution. Put simply, if we could

look with a very high-powered microscope, we would find the bound

molecules had a higher probability of being together than would be

predicted by a random distribution of all the molecules within the

solution. Binding reactions are common in almost all fields of chemistry,

biochemistry, medicine, physiology, and physics. For example, in

pharmacology the simple mechanism of drug action is for a drug to bind

reversibly to a specific receptor to form a drug-receptor complex, initiating

an effect that is usually proportional to the concentration of the complex.

Symbolically, this process could be expressed as:

½Drug� þ ½Receptor� $ ½Drug-Receptor� ! Effect; (7-1)

Heme

Heme

Heme

Heme

FIGURE 7-2.
Structure of the complete hemoglobin protein.
The polypeptide chains of the four subunits are
given in the form of coiled ribbons. The small
spheres linked together are the atoms within
the heme. The whole hemoglobin complex is
globular (i.e., the polypeptide chains are coiled
to an almost spherical configuration).
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where square brackets [ ] are used to denote concentration. Thus, [Drug]

implies the concentration, or more rigorously, the activity of the drug

that is free in solution (i.e., unbound, or not bound to the receptor). Here

a reversible reaction is one in which the drug–receptor complex can

easily dissociate into the unbound forms [shown by the double-headed

arrow in Eq. (7-1)]. The drug and receptor can also easily reform

the drug–receptor complex. The pharmacological effect is assumed

to be proportional to the concentration of the drug–receptor complex.

This is the simplest of all possible drug–receptor interaction

mechanisms.

The binding of the drug and receptor follows the law of mass action,

which states that the concentration of the drug–receptor complex is

proportional to the product of the molar concentrations of the unbound

drug and unoccupied receptors. The law of mass action was

experimentally derived and reported by Waage and Guldberg in 1864.

Once a conceptual model is rigorously stated, it can be translated into

a mathematical model. Here, the concentration of the drug–receptor

complex can be formulated in terms of the unbound (free) concentrations

of the drug and receptor as:

½Drug�Receptor� ¼ Ka½Drug� ½Receptor�: (7-2)

The proportionality constant Ka is called association equilibrium constant.

These reactions are also commonly written in terms of a dissociation

constant, Kd, where:

Ka ¼ 1=Kd:

We shall derive Eq. (7-2) from the differential equations governing the

reaction. Assume that the reaction has the following general form:

Aþ B $ C:

Then, the rates of change in the concentrations of A, B, and C will be

given by the following differential equations:

d½C�
dt

¼ k1½A�½B� � k2½C�

d½A�
dt

¼ k2½C� � k1½A�½B�

d½B�
dt

¼ k2½C� � k1½A�½B�:

(7-3)

Here, k1 and k2 are the respective reaction rate constants for the

reactions A þ B ! C and C ! A þ B. These equations are derived

using considerations similar to those discussed in Chapters 1 and 2 for
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population sizes. For instance, in the first of Eq. (7-3), we see that the rate

of increase of [C] is proportional to the product of [A] and [B], while the

rate of decrease of [C] is proportional to [C.] The second and third

equations follow from conservation of quantities arguments:

Because [A] þ [C] and [B] þ [C] are constants, we obtain:

d

dt
ð½A� þ ½C�Þ ¼ 0, and

d

dt
ð½B� þ ½C�Þ ¼ 0, which shows that

d

dt
½A� ¼ � d

dt
½C� and d

dt
½B� ¼ � d

dt
½C�:

In equilibrium, the rates of change of the concentrations are zero;

that is,
d½C�
dt

¼ 0;
d½A�
dt

¼ 0; and
d½B�
dt

¼ 0. From Eq. (7-3), we obtain

k1½A�½B� � k2½C� ¼ 0, which yields the law of mass action

½C� ¼ k1
k2

½A�½B� ¼ Ka½A�½B� with Ka ¼ k1
k2

.

When the law of mass action is applied to a balanced biochemical

equation of the type

mAþ nB $ C;

where m and n are the stoichiometric coefficients, the mathematical for-

mulation of the law of mass action is:

½C� ¼ Ka½A�m½B�n: (7-4)

We shall use this formulation in creating some of the mathematical

models that follow.

EXERCISE 7-1

(a) Write the differential equations representing the rates of change

for the reaction mA þ nB $ C, and use them to obtain the law of

mass action in the form of Eq. (7-4).

(b) Explain why the stoichiometric coefficients m and n appear as

exponents in the formulation (7-4) of the law of mass action.

Binding reactions of the type in Eq. (7-1) are saturable because of the

fixed number of receptors available. As the unbound drug concentration

increases, the mass action equilibrium between the unoccupied

receptors [Receptor] and the receptors with the drug bound

[Drug–Receptor] will shift towards the latter. This follows directly from

Eq. (7-2), which implies that the ratio:

½Drug�Receptor�
½Drug�½Receptor� ¼ Ka
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is constant at constant temperature. The higher the drug concentration,

the higher the concentration of drug-bound receptors should be for the

quotient to remain unchanged. As the drug concentration increases,

a point will be reached where virtually all of the receptors will be

saturated with the drug. When this occurs, further increases in drug

concentration will produce no additional effect.

To understand the action of a drug, it is important to understand how

the fractional saturation of the receptor is related to the concentration of

the unbound drug. The receptors’ fractional saturation, Y, is the

concentration of the drug–receptor complex divided by the total receptor

concentration:

Y ¼ ½Drug�Receptor�
½Receptor� þ ½Drug�Receptor� ¼

Ka ½Drug�½Receptor�
½Receptor� þ Ka ½Drug�½Receptor�

¼ Ka ½Drug�
1þ Ka ½Drug� ¼

½Drug�=Kd

1þ ½Drug�=Kd
: (7-5)

In the special case of hemoglobin–oxygen binding, human hemoglobin

can at most bind four O2 molecules, and the coordinative bond between

the O2 molecule and the central ferrous ion in the heme is very weak.

The number of oxygenated sites depends strongly upon the level of O2

present (i.e., upon the partial O2 pressure). In the lungs, where the

partial pressure of the O2 is relatively high, the prevailing form is the

oxygenated hemoglobin that causes arterial blood’s pure

red color. Traveling through the capillaries of the tissues, where the O2

partial pressure is low,2 the oxygenated hemoglobin is subjected to

considerable deoxygenation. This is the basic mechanism of the

so-called hemoglobin shuttle: hemoglobin loads O2 in the lungs,

transports it to the tissues, where it is released, and the cycle repeats. In

muscles, the O2 is taken up by myoglobin, where it is then

available to rapidly provide the large amounts of O2 required by active

muscles.

The molecular reaction mechanisms involved in O2 binding to

hemoglobin and myoglobin are the most thoroughly studied in

biochemistry, and are the test cases for every mathematical model of

binding reactions and cooperativity. If we replace the drug with O2 and

the receptor with myoglobin in Eq. (7-5), the mathematical model applies

to the binding of O2 by myoglobin. The fractional saturation of

myoglobin is described by:

Y ¼ Ka½O2�
1þ Ka½O2� ¼

½O2�=Kd

1þ ½O2�=Kd
: (7-6)

2. The O2 in the tissues is used to oxidize glucose to carbon dioxide and water.
As a result, the partial pressure of the O2 decreases, and the partial pressure of
the CO2 increases.
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Figure 7-3 depicts typical fractional saturation as a function of O2

concentration for both myoglobin (M) and hemoglobin (H). Curve M

represents the fractional saturation of myoglobin and curve H a typical

sigmoid-shaped hemoglobin–oxygen fractional saturation curve.

The difference in shapes should not be surprising, as hemoglobin’s

complex tetrameric structure allows cooperative interactions that the

simple monomeric myoglobin cannot have.

Our next section presents a brief overview of the history of the

mathematical modeling of hemoglobin–oxygen binding. We should note

that the mathematical modeling of hemoglobin–oxygen binding

developed concurrently with the decoding of the chemical and three-

dimensional structure of the hemoglobin molecule. In many ways, these

parallel efforts have been complementary, with advancements made in

one area accelerating progress in the other.

III. MATHEMATICAL MODELS OF HEMOGLOBIN–OXYGEN

BINDING

As George Santayana noted, ‘‘Progress, far from consisting in change,

depends on retentiveness . . . Those who cannot remember the past are

condemned to repeat it’’ (Santayana [1905]). This is especially true for

scientific research. It is nearly impossible to understand the conceptual

models of hemoglobin–oxygen binding and cooperativity without

understanding the context within which they were developed. The

hemoglobin literature dates back almost 200 years, and almost every

experimental technique used in biophysical chemistry was developed

using hemoglobin. Many of the models of macromolecular

interactions were developed in attempts to describe the functional

properties of the binding of O2 by hemoglobin. The early literature on

hemoglobin was examined in a wonderful review by Edsall (1972).
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FIGURE 7-3.
Examples of the noncooperative myoglobin fractional saturation as a function of oxygen
concentration (M) and the positive cooperative hemoglobin fractional saturation as a function
of oxygen concentration (H).
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A. Hüfner’s Model

In 1884, Hüfner reported that hemoglobin bound 1.34 cc of gas per

gram of hemoglobin, or 32 grams of O2 per 16,700 grams of hemoglobin.

A few years later, it was shown that various hemoglobins contained

approximately 0.335% iron, corresponding to a minimal molecular

weight per iron of approximately 16,670 daltons. Consequently,

oxygenated hemoglobin contained one mole of O2 per mole of iron.

Based upon these observations, in 1889 Hüfner proposed the first model

for hemoglobin–oxygen binding. In his model, one molecule of O2 is

bound to one molecule of hemoglobin (Hb) according to Eqs. (7-6)

and (7-7). This predicts a nonsigmoid binding curve like myoglobin

(i.e., M in Figure 7-3):

HbþO2 $ HbO2: (7-7)

However, Hüfner made a serious mistake. He believed the

simple mathematical model must be correct and reasoned that only

a single data point near half-saturation on the oxygen-binding curve

was needed to evaluate the binding affinity. He collected one

experimental data point and determined the binding affinity based

upon that single point, without testing its validity. Therefore, Hüfner

failed to observe the quintessential sigmoid-shaped binding curves (i.e.,

H in Figure 7-3) characteristic of the cooperative hemoglobin–oxygen

binding system. In Hüfner’s defense, his work was done 40 years before

human hemoglobin was known to be a unique molecule.

B. Bohr’s Approach

Christian Bohr (1855–1911) had a different approach to the study of

hemoglobin–oxygen binding. Bohr was an experimentalist. As Edsall

wrote, ‘‘Bohr’s motto was that every experiment had a value, nothing

which was obtained as the result of a test in the laboratory was set aside

on the grounds of its inherent unlikelihood, of its failure to fit general

principles or theories’’ (Edsall [1972]). Bohr’s curves, obtained point by

point from experimental measurements of oxygen pressure relative to

oxygenated and deoxygenated amounts of hemoglobin, were reported in

Bohr et al. (1904). They differed fundamentally from Hüfner’s curve,

having the characteristic sigmoid shape of a cooperative interaction (see

the H curve in Figure 7-3). Although the sigmoid nature of the oxygen-

binding curves for hemoglobin was an extremely important observation,

it was not what made Bohr famous. In the same paper, Bohr also

documented the effect CO2 binding has on O2 binding. He showed that

the increased amount of CO2 bound to the hemoglobin in the tissues

lowers the affinity of the hemoglobin for the O2 it is carrying and

consequently aids the transfer of O2 to tissues. This is now known as the

Bohr effect.

Bohr and his collaborators tried to measure whether the binding of O2

alters the binding of CO2. They were unable to measure this reciprocal
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effect, however, because of the inadequacy of available experimental

techniques, and thus concluded incorrectly that O2 did not affect CO2

binding. Again, remember these experiments were carried out more than

100 years ago.

Bohr’s steadfast belief in the experimental approach probably prevented

him from seeing what now seems an obvious inference; namely, that

the reciprocal effects of the binding of O2 and CO2 by blood must

exist. Clearly, if CO2 affects the binding of O2, then O2 must affect the

binding of CO2. It appears Bohr trusted his data too much, while

Hüfner trusted his theoretical model too much. Evidently, both

experiments and theory are required, and neither should be favored to

the exclusion of the other.

C. The Hill Equation

The apparent inconsistency between Hüfner’s theory of noncooperative

binding, Eqs. (7-6) and (7-7), and Bohr’s experimentally observed

cooperative O2 binding data was difficult to resolve. Both seemed to be

correct. Then in 1910, A. V. Hill (1886–1977; Nobel laureate, 1929)

developed a conceptual model that appeared to reconcile experiment

and theory. Hill realized Hüfner’s theory would be correct if hemoglobin

contained only a single O2 binding site, but the sigmoid-shaped O2

binding data of Bohr contradicted this theory, and, therefore,

hemoglobin must have more than one binding site. Hill, however, did

not know how many binding sites there were—his research predated the

concept of unique multi-subunit high–molecular weight protein

molecules by two decades. At this time, proteins were thought to be

heterogeneous aggregates. Hill postulated that aggregates with

n monomers would bind n molecules of O2 according to a reaction like:

Hbn þ nO2 $ HbnðO2Þn; (7-8)

where Hbn is used to denote the assumption made by Hill that

hemoglobin is constructed of n monomers. Hill did not know what the

actual value of n was and wanted to determine the value experimentally.

Hill’s scheme assumes that n molecules of O2 are bound simultaneously

in a single step. This is equivalent to assuming no intermediate states

ever exist where the number of O2 molecules bound is greater than

zero and less than n. Given this assumption and the assumption that

only one aggregate (i.e., a single value of n) exists, Hill formulated an

equation for the fractional saturation as:

Y ¼ k½O2�n
1þ k½O2�n : (7-9)

This Hill equation is still in use today. The n is the Hill coefficient that is

sometimes used as a measure of cooperativity. For n > 1, Eqs. (7-8)

and (7-9) predict a sigmoid-shaped binding curve like the H curve in
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Figure 7-3. It was soon observed, however, that the value of n required to

describe the actual experimental observations was approximately 2.5,

when the theoretical assumption implied that n should be an integer.

Hill rationalized the value of 2.5 as the statistical average of a mixture of

different-sized aggregates (i.e., a mixture of monomers, dimers, trimers,

tetramers, and so on).

In 1913, Hill noted that the limiting slope of the Hill equation is zero

when the O2 concentration approaches zero and n > 1. He showed that

the following mathematical fact follows from Eq. (7-9):

lim
½O2�!0

dY

d½O2� ¼ 0; n > 1; k > 0 (7-10)

(see Exercise 7-4 below). In 1913, accurate experimental measurement of

this limiting slope was impossible, and the limited experimental data

that existed indicated the limiting slope might be zero. Hill noted that if

the limiting slope was actually not equal to zero, then models of the

form of Eq. (7-9) were incorrect and should not be used. It is now known

the limiting slope of the hemoglobin–oxygen binding curves is,

in fact, not equal to zero. While this experimental observation

demonstrated the Hill Equation should not be used for the study of

binding phenomena, the Hill Equation is still commonly used because

it gives a reasonable approximation of binding behavior.

EXERCISE 7-2

Use Eq. (7-8) and the law of mass action to derive Hill’s model for the

fractional saturation given by Eq. (7-9).

EXERCISE 7-3

Plot the fractional saturation Y from Eq. (7-9) as a function of the O2

concentration using different values for the number of binding sites

n > 1 and different values of the association constant k. Then answer the

following questions:

(a) If the value of k is kept fixed, what is the effect on the fractional

saturation Y when the number of binding sites n increases? Is this

to be expected in the context of the problem? Explain why or

why not.

(b) If the value of n is kept fixed, what is the effect on the fractional

saturation Y when the association constant k increases? Is this

to be expected in the context of the problem? Explain why or

why not.
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EXERCISE 7-4

Derive the limit in Eq. (7-10) from the Hill equation (7-9) by verifying the

following steps:

(a) Show that for n > 1,

dY

d½O2� ¼
n k ½O2�n�1

ð1þ k½O2�nÞ2
:

(b) Use part (a) to show that for n > 1

lim
½O2�!0

dY

d½O2� ¼ lim
½O2�!0

n k ½O2�n�1 ¼ 0:

D. The Adair Equations

Shortly after World War I, osmotic pressure measurements by G. S.

Adair and sedimentation equilibrium measurements by T. Svedberg

demonstrated that human hemoglobin is a distinct molecule with a

molecular weight of approximately 67,000 daltons, and not simply a

mixture of aggregates. It was subsequently established that hemoglobin

contains four polypeptide chains and four oxygen-binding sites,

and that hemoglobin binds O2 in a cooperative fashion, as

described above. Thus, it became evident that Hill’s equation, with no

intermediates, does not explain the experimental data. Consequently,

Adair formulated an equation for the fractional saturation of O2

assuming that hemoglobin contained four oxygen-binding sites while

allowing for all of the intermediate oxygenation stages. Adair’s reaction

scheme with intermediates is as follows:

Hb4 þO2 $ Hb4O2

Hb4 þ 2O2 $ Hb4ðO2Þ2
Hb4 þ 3O2 $ Hb4ðO2Þ3
Hb4 þ 4O2 $ Hb4ðO2Þ4:

(7-11)

The fractional saturation equation has four equilibrium-binding

constants, one for each reaction defined in Eq. (7-11). Because of the

effect of cooperativity, the values of these binding constants are

different. According to the law of mass action, these equilibrium

constants are defined as:

K4i ¼ ½Hb4ðO2Þi�
½Hb4�½O2�i

i ¼ 1; 2; 3; 4; (7-12)

and are commonly referred to as product Adair-binding constants.

The subscript 4 refers to tetrameric hemoglobin, discussed in the next
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section. The Adair’s four-site fractional saturation function in terms of

the product Adair-binding constants is:

Y4 ¼ 1

4

K41½O2� þ 2K42½O2�2 þ 3K43½O2�3 þ 4K44½O2�4
1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4

: (7-13)

Heuristically, this equation reflects the concept that the fractional

saturation Y of an entity with four binding sites must take into account

the occupation of each of the sites. We present the derivation of

Eq. (7-13) later in the chapter.

Eq. (7-11) is often written in the form:

Hb4 þO2 $ Hb4O2

Hb4O2 þO2 $ Hb4ðO2Þ2
Hb4ðO2Þ2 þO2 $ Hb4ðO2Þ3
Hb4ðO2Þ3 þO2 $ Hb4ðO2Þ4:

(7-14)

The equilibrium constants, called stepwise Adair-binding constants (lower-

case k’s), are:

k4i ¼ ½Hb4ðO2Þi�
½Hb4ðO2Þi�1�½O2� i ¼ 1; 2; 3; 4: (7-15)

The four-site fractional saturation function in terms of the stepwise

Adair-binding constants is:

Y4 ¼ 1

4

k41½O2� þ 2k41k42½O2�2 þ 3k41k42k43½O2�3 þ 4k41k42k43k44½O2�4
1þ k41½O2� þ k41k42½O2�2 þ k41k42k43½O2�3 þ k41k42k43k44½O2�4

:

(7-16)

The stepwise binding constants are thus related to the product

Adair-binding constants as:

K4i ¼ k41k42 . . . k4i; i ¼ 1; 2; 3; 4: (7-17)

For example, if i ¼ 3, then K43 ¼ k41k42k43; if i ¼ 2, then K42 ¼ k41k42, and

so on.

Adair-binding equations continue in common use today. We emphasize

that the only assumption needed for their derivation is that tetrameric

human hemoglobin contains four oxygen-binding sites.

E. Coupling Between Subunit Assembly and Oxygen Binding

In the 1970s, Gary K. Ackers and coworkers first theoretically predicted

and then experimentally observed another interesting property of O2

binding by hemoglobin: That it is dependent upon the concentration of
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hemoglobin (see Figure 7-4). This observation cannot be explained by

either the Hill or the Adair equations, but only by a mechanism whereby

the hemoglobin is involved in a reaction dependent upon the

hemoglobin concentration, because hemoglobin is not always a tetramer,

even at the high concentrations found within red blood cells. The

tetramer structure of hemoglobin, determined by Perutz using

radiograph crystallography, describes only hemoglobin molecules in

crystal form. In solution (e.g., in the blood), its degree of subunit

assembly varies based on the hemoglobin concentration. But if under

such conditions hemoglobin is not a tetramer, then what is it?

It is now known that hemoglobin may also exist as dimers, each

consisting of one alpha chain and one beta chain. The alpha and beta

chains have different amino acid sequences, but similar three-

dimensional structures. Each contains a heme group, and each can bind

to O2. The binding of O2 to dimers is not cooperative, whereas

the binding to tetramers is. As the binding affinity of tetramers is

different from that of dimers, the oxygenation curves depend on the

ratio between dimers and tetramers. This ratio, in turn, depends on the

hemoglobin concentration and the oxygen concentration.

Figure 7-4 presents experimental and calculated fractional-binding

oxygenation curves, determined at a series of human hemoglobin

concentrations, and contains examples of both noncooperative and

positive cooperative binding curves. Curve D is an example of the

nonsigmoid shape of a noncooperative curve, as in myoglobin and
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FIGURE 7-4.
Oxygenation curves determined at a series of hemoglobin concentrations. Each symbol represents
experimental data from an oxygenation curve measured at a given hemoglobin concentration.
The solid lines are calculated curves based on the oxygenation linked dimer–tetramer association
scheme. The hemoglobin monomer concentration ranges from 4 � 10�8 M for the data on the left,
to 4 � 10�4 M for the data on the right.
(Reprinted with permission from Mills, F.C., Johnson, M.L., and Ackers, G.K. [1976]. Oxygenation-
linked subunit interactions in human hemoglobin: Experimental studies on the concentration
dependence of oxygenation curves. Biochemistry, 15, 5350–5362. # 1976 The American Chemical
Society.)
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Eq. (7-6). Curve T follows the classic sigmoid shape of a positive

cooperative system, as in human hemoglobin. In this context, the curve

labeled D corresponds to the noncooperative dimeric species of

hemoglobin, and curve T corresponds to the cooperative tetrameric

species. In Figure 7-4, the solid lines are calculated from a mathematical

model that Ackers and his collaborators developed based upon the

observed oxygenation linked dimer–tetramer association of hemoglobin

(next paragraph). The data points between the T and D curves are the

actual experimental observations of the fractional saturation with O2

determined at different hemoglobin concentrations. The lower the

concentration, the closer the data points approach the dimer-binding

curve (D). The higher the concentration, the closer the data points

approach the tetramer-binding curve (T).

We shall now present a conceptual description of the Ackers model.

Hemoglobin tetramers are formed from two identical ab dimers. These

dimers undergo a reversible association equilibrium, 2ab $ a2b2.
The a þ b $ ab association reaction has such a large association constant

that it is, in effect, complete and virtually irreversible. In addition, the

major structural transformation associated with O2 binding occurs at the

interface between the two ab dimers. The linkage between the dimer to

tetramer subunit assembly and the O2 binding properties of dimeric and

tetrameric hemoglobin are shown in Figure 7-5. Each vertical arrow

depicts an oxygenation step, and each horizontal arrow depicts a

hemoglobin dimer–tetramer association step. For example, the

horizontal arrow at the top represents the reaction that forms an

unoxygenated a2b2 hemoglobin tetramer from two unoxygenated ab
dimers. The vertical arrow in the lower right depicts the reaction that

combines a triply-oxygenated hemoglobin tetramer (a2b2(O2)3) with O2

to form a quad-oxygenated hemoglobin tetramer (a2b2(O2)4).

Ackers and coworkers derived a mathematical model, Eqs. (7-18) and

(7-19) below, for the fractional saturation of hemoglobin undergoing the

oxygenation linked 2ab $ a2b2 subunit assembly scheme shown in

Figure 7-5. These equations represent a weighted average of a four–

binding-site Adair equation [Eq. (7-16)], describing the oxygen-binding

properties of the tetrameric hemoglobin (a2b2), and an analogous

two–binding-site Adair equation describing the oxygen-binding

properties of the dimeric hemoglobin (ab). The relative weights for these

two Adair-binding equations are determined by the hemoglobin dimer

to tetramer association reactions and are themselves a function of

both the O2 and hemoglobin concentrations (see Figure 7-6).

The model yields the following result for the fractional saturation:

Y ¼
X2

0 þ X4
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2Þ2 þ 40K2 X4½Hg�

q
� X2

� �
=ð4X4Þ

X2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2Þ2 þ 40K2 X4½Hg�

q ; (7-18)
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FIGURE 7-5.
The oxygenation linked 2ab $ a2b2 subunit
assembly scheme.
(Reprinted with permission from Mills, F.C.,
Johnson, M.L., and Ackers, G.K. [1976].
Oxygenation-linked subunit interactions in
human hemoglobin: Experimental studies on
the concentration dependence of oxygenation
curves. Biochemistry, 15, 5350–5362. # 1976
The American Chemical Society.)
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where [Hg] is the total molar concentration of hemoglobin (monomers),

[O2] is the molar concentration of unbound O2, the constant 0K2 is the

equilibrium constant for dimer–tetramer assembly 2ab $ a2b2, and:

X2 ¼ 1þ K21½O2� þ K22½O2�2

X2
0 ¼ K21½O2� þ 2 K22½O2�2

X4 ¼ 1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4

X4
0 ¼ K41½O2� þ 2 K42½O2�2 þ 3 K43½O2�3 þ 4 K44½O2�4:

(7-19)

The quantities X2 and X4 in Eqs. (7-18) and (7-19) are sometimes referred

to as binding polynomials. The quantities X2’ and X4’ in Eqs. (7-18) and

(7-19) are related to X2 and X4, as we shall explore later. Although

deriving Eq. (7-18) is beyond the scope of this textbook, we shall use

binding polynomials to derive Adair’s equation [Eq. (7-16)].

As mentioned, Eq. (7-18) could be thought of as the appropriately

weighted average of the Adair-binding equations for the dimeric

hemoglobin species (the 2i subscripts) and the tetrameric hemoglobin

species (the 4i subscripts). The only assumption required for the

derivation of Eqs. (7-18) and (7-19) is the reaction scheme depicted in

Figure 7-5. Thus, Eqs. (7-18) and (7-19) apply to normal human

hemoglobin, which exists in solution as ab dimers that undergo

a reversible association reaction to form (ab)2 tetramers. Human

hemoglobin dimers bind O2 with higher affinities than tetramers. As the

concentration of hemoglobin decreases, the fraction of dimers present

increases (see Figure 7-6), and the hemoglobin concentration-dependent
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FIGURE 7-6.
The fraction of dimeric hemoglobin present in solution as a function of the fractional saturation of
the oxygenation linked 2ab $ a2b2 subunit assembly reaction. The upper curve corresponds to the
lowest hemoglobin concentration of 4 � 10�8 M hemoglobin monomers while the lower curve is for
4 � 10�4 M hemoglobin monomers.
(Reprinted with permission from Mills, F.C., Johnson, M.L., and Ackers, G.K. [1976]. Oxygenation-
linked subunit interactions in human hemoglobin: Experimental studies on the concentration
dependence of oxygenation curves. Biochemistry, 15, 5350–5362. # 1976 The American Chemical
Society.)
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fractional saturation curve shifts towards the higher affinity dimeric

species (see Figure 7-4). As a consequence of the dynamic linked

equilibrium between subunit association and O2 binding, the fraction

of dimeric species approaches zero as the fractional saturation

approaches zero and monotonically increases with increasing fractional

saturation (i.e., oxygen concentration).

The solid lines in Figure 7-4 were calculated using a simultaneous least-

squares fit of Eq. (7-18) to the data. (The data-fitting procedures are

presented in the next chapter.) The D curve represents the dimer binding

curve (i.e., the limiting form at zero hemoglobin concentration), and

the T curve represents the tetramer binding curve (i.e., the limiting form

at an infinite hemoglobin concentration). The intermediate curves

correspond to the binding curve at intermediate hemoglobin

concentrations as predicted by Eqs. (7-18) and (7-19).

The observation that O2 binding by hemoglobin is dependent upon

hemoglobin concentration might appear to be a serious complication

requiring a much more complex model for data analysis. However, it

also provides another means to probe the structure and function of

hemoglobin. The properties of hemoglobin can now be studied as

a function of O2 concentration, or as a function of hemoglobin

concentration, or as a simultaneous function of both. Ackers and

coworkers studied the simultaneous function of both O2 and hemoglobin

concentrations, giving us a better understanding of how hemoglobin

transports O2 in our bodies.

IV. DERIVING FRACTIONAL SATURATION FUNCTIONS

WITH BINDING POLYNOMIALS

There are multiple ways to approach the derivation of the fractional

saturation equations. The easiest and the most generally applicable

approach is based on binding polynomials. A binding polynomial, X,
is simply a mathematical description of the sum of the concentrations

(i.e., probabilities) of each of the hemoglobin species in the solution. Given

the mathematical form of the binding polynomial and a little calculus,

it is easy to derive any desired fractional saturation function.

The binding polynomial approach for modeling cooperativity and

oxygen-binding problems is based on Eqs. 1 through 67 from Hill’s book

(1960). The following equation relates the mean number of O2 molecules

bound by a macromolecule, N , to the natural logarithm of the binding

polynomial, ln X, and the O2 concentration, [O2]:

N ¼ ½O2� @ lnX
@½O2� ¼

@ lnX
@ ln½O2� : (7-20)

Although Eq. (7-20) may not appear intuitive, its derivation is

elementary. To illustrate its importance, we shall use it to justify
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Adair’s four-site fractional saturation model from Eq. (7-13).

The rationalization of Eq. (7-20) is presented in Section V.

Observe that the mean number of bound O2 molecules N is the

fractional saturation, Y, times the number of binding sites (i.e., four for

hemoglobin tetramers and two for hemoglobin dimers). Combining this

observation with Eq. (7-20) and a mathematical statement of the total

concentrations of all the species present in solution (i.e., the binding

polynomial X), an equation for the fractional saturation of O2 is easily

derived. In this example, the fractional saturation function for a2b2
tetramers [e.g., the T curve in Figure 7-5 and Eqs. (7-13) and (7-16)] is:

Y4 ¼ N

4
¼ 1

4
½O2� @ lnX4

@½O2� ¼
1

4

½O2�
X4

@ X4

@½O2� : (7-21)

Using the expression X4 ¼ 1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4
from Eq. (7-19)] and calculating the appropriate derivatives, Eq. (7-21)

now yields Adair’s four-site fractional saturation function:

Y4 ¼ 1

4

K41½O2� þ 2K42½O2�2 þ 3K43½O2�3 þ 4K44½O2�4
1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4

: (7-22)

The analogous fractional saturation for ab dimers (e.g., the D curve in

Figure 7-4) is:

Y2 ¼ N

2
¼ 1

2
½O2� @ lnX2

@½O2� ¼ 1

2

½O2�
X2

@X2

@½O2� (7-23)

Y2 ¼ 1

2

K21½O2�þ2K22½O2�2
1þ K21½O2� þ K22½O2�2

: (7-24)

Equation (7-24) is analogous to the form of Eq. (7-22), except that it

applies to dimeric hemoglobin with two binding sites instead of

tetrameric hemoglobin with four binding sites.

EXERCISE 7-5

Use the expressions for X4 and X2 given by Eq. (7-19):

X4 ¼ 1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4

X2 ¼ 1þ K21½O2� þ K22½O2�2
to:

(a) Supply the calculations deriving Eq. (7-22) from Eq. (7-21); and

(b) Supply the calculations deriving Eq. (7-24) from Eq. (7-23).
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How are the binding polynomials X2 and X4 obtained? They are simply

the sum of the concentrations of all the binding species present in

solution. For example, if dimeric hemoglobin contained two identical,

nondistinguishable oxygen-binding sites, then in solution only three

possible oxygenation states would exist; with zero, one, or two O2

molecules bound. Thus, its binding polynomial could be written as:

X2 ¼ ½ab� þ ½abO2� þ ½abðO2Þ2�: (7-25)

Using the law of mass action to express the concentration of the

oxygenated species in terms of the concentrations of the unoxygenated

dimeric hemoglobin and the unbound O2 concentration, we obtain:

X2 ¼ ½ab� þ K21½ab�½O2� þ K22½ab�½O2�2: (7-26)

In this case, the definition of K21 is the average (i.e., macroscopic)

Adair-binding constant for the first O2 being bound to either of the O2

binding sites. As we shall see below, this is not the binding constant to

either the a subunit or the b subunit, but rather the sum of the two.

An interesting property of this application of binding polynomials is that

the units of hemoglobin and O2 concentration are arbitrary. This is a

consequence of the natural logarithms contained in Eqs. (7-21) and

(7-23). We take the concentration of the reference state to be the

unoxygenated dimeric hemoglobin concentration. Because the units of

hemoglobin concentration are arbitrary, we simply express these units as

a fraction of the unoxygenated hemoglobin concentration. In these units,

Eq. (7-25) is transformed into Eq. (7-27), since in these units [ab] ¼ 1.

X2 ¼ 1þ ½abO2� þ ½abðO2Þ2�
X2 ¼ 1þ K21½O2� þ K22½O2�2:

(7-27)

Notice this is exactly the quantity X2 presented in Eq. (7-19).

EXERCISE 7-6

Use binding polynomials to derive Eq. (7-6).

EXERCISE 7-7

Assuming, as we did for the dimeric hemoglobin in Eq. (7-25), that the

binding polynomial is defined as the sum of the concentrations of all the

binding species present in solution, show that for the tetrameric

hemoglobin, X4 ¼ 1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4:
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In order to understand the mechanistic relationships involved in the

hemoglobin subunit coupling, it is essential to understand the exact

meaning of the average macroscopic Adair-binding constant for the first

O2 being bound to either of the oxygen-binding sites. It is not the binding

constant to either the a subunit or the b subunit. To understand this last

statement, consider a dimeric hemoglobin that contains two nonidentical,

distinguishable oxygen-binding sites, such as the a subunit and the

b subunit. In solution, four possible oxygenation states exist. The states

containing none and two O2 molecules are the same as the previous

example. The other two states include the onewhere the O2 is bound to the

a subunit and the onewhere the O2 is bound to the b subunit. If we assume

the intrinsic binding affinities of the individual subunits are Ka and Kb, we

can write the four-term binding polynomial as:

X2 ¼ 1þ Ka½O2� þ Kb½O2� þ KaKb½O2�2: (7-28)

By applying Eq. (7-20) to Eq. (7-28) we obtain the fractional saturation

function for dimeric hemoglobin in terms of the Adair-binding constants

of the individual a and b subunit binding constants:

Y2 ¼ 1

2
N ¼ 1

2

ðKa þ KbÞ½O2� þ 2KaKb½O2�2
1þ ðKa þ KbÞ½O2� þ KaKb½O2�2

: (7-29)

By comparing the forms of Eqs. (7-24) and (7-29), it is apparent that the

average macroscopic Adair-binding constant for the first O2 being bound

to either of the oxygen-binding sites is equal to the sum of the intrinsic

binding affinities of the individual subunits

K21 ¼ Ka þ Kb: (7-30)

Before leaving the subject of utilizing binding polynomials to derive

fractional saturation functions, we need to consider one additional case:

When a protein has two identical binding sites and there is a cooperative

interaction between them. In this situation, the binding of the first ligand

(e.g., O2) will enhance or inhibit the binding of the second ligand, even

though the binding sites are identical in the unbound species. An example

of this might be where the two binding sites are physically close to each

other and the ligands are highly charged. The binding of the second ligand

would be somewhat inhibited by the charge of the first ligand (i.e., it

would be a negatively cooperative system). There would again be four

possible ways to put the two identical ligands onto the molecule:

Unbound, a ligand on the first site, a ligand on the second site, and a

ligand on both sites. The binding polynomial for this system is given by:

X ¼ 1þ Ki½X� þ Ki½X� þ KcðKi½X�Þ2; (7-31)

where Ki is the intrinsic affinity for either site and Kc is the cooperativity

constant. The ligand concentration is expressed as [X] because the
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mathematical form also applies to ligands other than O2. The second and

third terms on the right of Eq. (7-31) are identical and represent one

ligand, X, on each of the two binding sites. The last term contains the

(Ki [X])
2 term describing the binding of two ligands to two identical

sites and the Kc cooperativity term. If Kc is less than 1, the system

will exhibit negative cooperativity; if Kc is greater than 1, the system will

exhibit positive cooperativity; and if Kc is equal to 1, there is no

cooperativity. Eq. (7-32) presents the fractional saturation function for

this system:

Y ¼ 1

2
N ¼ 1

2

2Ki½X� þ 2KcðKi½X�Þ2
1þ 2Ki½X� þ KcðKi½X�Þ2

: (7-32)

The 2 in the 2Ki[X] terms is included because the first ligand can go

onto either of the two identical sites. This means that the average

macroscopic Adair-binding constant for the first ligand being bound

to either of the identical binding sites is equal to twice the intrinsic

binding affinities of the individual sites.

V. APPENDIX: JUSTIFYING EQUATION (7-20)

We now use some basic probabilistic arguments to justify Eq. (7-20) for

the case of hemoglobin tetramers. Recall that we linked Eq. (7-20)

with the total number of hemoglobin species present in the solution. For

Hb4, it follows from Eq. (7-11) that the following oxygenated states of

hemoglobin will be present: HbO2, Hb(O2)2, Hb(O2)3, and Hb(O2)4.

In addition, there will also be nonoxygenated Hb4. If p(i) denotes the

concentration of Hb(O2)i, i ¼ 0,1,2,3,4, we will have:

pðiÞ ¼ ½Hb4ðO2Þi�
½Hb4� þ ½Hb4ðO2Þ� þ ½Hb4ðO2Þ2� þ ½Hb4ðO2Þ3� þ ½Hb4ðO2Þ4�

:

Using Eq. (7-12), this can be written as

pðiÞ¼ K4i½Hb4�ðO2Þ�i
½Hb4�þK41½Hb4�½ðO2Þ�þK42½Hb4�½ðO2Þ�2þK43½Hb4�½ðO2Þ�3þK44½Hb4�½ðO2Þ�4

:

Simplifying yields

pðiÞ¼ K4i½ðO2Þ�i
1þK41½ðO2Þ�þK42½ðO2Þ�2þK43½ðO2Þ�3þK 44½ðO2Þ�4:

(7-33)

Using Eq. (7-33) gives the probabilities for i, i ¼ 0, 1, 2, 3, or 4, O2

molecules to be bound to a hemoglobin macromolecule; the average

number N of O2 molecules bound by a macromolecule will be given by

N¼
X4
i¼0

ipðiÞ¼ 1

1þK41½ðO2Þ�þK42½ðO2Þ�2þK43½ðO2Þ�3þK44½ðO2Þ�4
X4
i¼0

iK4i½O2�i:

(7-34)
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From Eq. (7-19) recall that:

X4¼ 1þK41½O2�þK42½O2�2þK43½O2�3þK44½O2�4:

We can now rewrite Eq. (7-34) as:

N ¼
X4
i¼0

ipðiÞ ¼ 1

X4

X4
i¼0

iK4i½O2�i ¼ 1

X4
½O2�

X4
i¼1

iK4i½O2�i�1

¼ 1

X4
½O2� @X4

@½O2� ¼ ½O2� @ lnX4

@½O2� :
(7-35)

The chain of calculations in Eq. (7-35) now establishes Eq. (7-20) for

tetramers.
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We cannot solve the problems we have created with the same

thinking that created them.

Albert Einstein (1879–1955)

In the preceding chapters, we have discussed the need for

using mathematical models; outlined some of the

important questions involved in constructing models; and

analyzed a variety of models related to population

ecology, epidemiology, genetics, endocrinology, and

neonatology. Whatever the application, all of these

models contained a set of numerical quantities referred

to as the model parameters. For example, our first

population growth model assumed a constant net per

capita growth rate r, which was a parameter for the

model. The new infections rate a and the recovery rate

b we used to construct the SIS and SIR models are

parameters; the association constant Ka used in the

hemoglobin oxygenation models is likewise a parameter.

We have emphasized that every model is built upon

certain assumptions and involves a certain number of

parameters. The specific values of the model parameters

may be unknown initially or be group-dependent. For

example, it should be expected that Mexico’s net per

capita growth rate is different from Sweden’s, because

population growth is driven by socioeconomic, cultural,

environmental, and other factors that differ substantially.

Also, not all assumptions in a dynamic model may be

valid for all time ranges; with the unlimited population

growth model, we modified some assumptions and

improved the model.

Model validation is a critical part of the modeling process.

In general, validation requires gathering sufficient data

through carefully designed experiments and then

applying statistical techniques to determine how well the

model describes the data. As we have seen, model

predictions generally differ from experimental

measurements, but model parameters can be estimated

from the data to provide the best fit between actual

and predicted values. For the population growth models,

we estimated model parameters using averaging

techniques aimed at obtaining the best visual fit.

This approach had several major limitations. First, it did

not provide any information on whether the calculated

parameter estimates could be improved, because no
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specific mathematical criteria for optimization were formulated. Second,

our approach made the unrealistic assumption that the experimental

measurements were 100% accurate. Even the most carefully designed

and conducted experiments contain inaccuracies caused by equipment

sensitivity, experimental conditions, and similar factors. In this regard, it

may be more appropriate to consider each measurement not as an

actual data point but, rather, as an interval within which the true value

may be found with a certain probability (Figure 8-1). The length of each

interval is determined by estimating the errors in data collection.

Generally, repeated measurements will not produce the same exact

values, because of inherent measurement errors. In such scenarios, we

take the mean of all of our readings and make it our data point. This

mean is generally known with a certain precision that, intuitively, would

increase with additional measurements. To account for this effect, the

standard error of the mean1 (SEM) is computed as the standard

deviation of all readings at a data point divided by the square root of the

number of readings. We shall not go into the details of why such a

formula was chosen. However, it defines one common method for

determining data point intervals. In Figure 8-1, the vertical lines are

centered on the observed values and represent the �1 SEM of

experimental uncertainties for the particular data point. Finally,

uncertainties in data measurements could affect the parameter estimates.

The estimates obtained for the values of the parameters therefore

should not be viewed as absolute and fixed values but, instead, as

statistical estimates themselves.

Y

X0
X1 X2 X3 X4 X5

Y1

Y2

Y3

Y4

Y5

FIGURE 8-1.
Data points considered as intervals of confidence for each measurement.

1. In this context, SEM is also called standard error of the measurement.
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In this chapter, we present one of the most popular mathematical criteria

for estimating model parameters from data: the least-squares criterion.

We begin with a mathematical introduction, describing a measure

used to determine the optimal fit of the model. We consider linear models

first, and then extend the definitions to general nonlinear models,

using models of ligand binding and hemoglobin–oxygen binding as

examples.

I. DATA-FITTING TERMS, DEFINITIONS, AND EXAMPLES

Once a data set has been acquired and a hypothesis-driven mathematical

model developed, the next step is to fit the model to the data and

obtain values for the parameters that provide the best description of the

data.

Consider a hypothetical situation in which a linear model of the form

Y ¼ aX þ b ¼ Gða; b;XÞ has been determined to provide a description of

a biological phenomenon and the experimental data have been

collected. The variable X is said to be the independent variable, while Y is

the response or dependent variable. One of the objectives of the fitting

process is to determine the values of a and b that will fit the data points

best. If all the data points lie on a straight line, the slope a and the

vertical intercept b of this line will provide the best fit. In practice,

however, for any set of more than two data points, it is unrealistic to

expect them all to lie on a straight line. Even if the linear model

Y ¼ aX þ b describes the dependence between the variables X and Y

accurately, there will be some discrepancies (if nothing else, rounding

errors are always present). Figure 8-2 illustrates this situation. The

vertical deviations from the line Y ¼ aX þ b are denoted by r1, r2, . . . rn

Y

0
X1 X2 X3 X4 X5

Y1

Y2

Y3

Y4

Y5

Y = aX + b

r5

r1

r2

r3

r4

X

FIGURE 8-2.
Vertical residuals for the linear model Y ¼ aX þ b and five data points.
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and are calculated as ri ¼ Yi � Gða; b;XiÞ ¼ Yi � ðaXi þ bÞ; i ¼ 1; 2; . . . ; n.

It is desirable to determine values for a and b that minimize the

combined deviation between model and data. The sum-squared

residuals (SSR) measure is the one most frequently used to express this

deviation:

SSRða; bÞ ¼ r 21 þ r 22 þ r 23 þ . . .þ r 2n ¼
Xn
i¼1

r 2i ¼
X
i

½Yi � Gða; b;XiÞ�2: (8-1)

In an attempt to simplify the notation, the initial and final value of

the summation index i are often ignored, as in the last expression of

Eq. (8-1), the understanding being that the sum is taken over the whole

range of available data points.

Notice that the measure is a function of model parameters a and b. The

least-squares data-fitting criterion can now be stated: Using the

experimental data, determine the parameter values minimizing the least-

squares measure SSR(a,b). To do this, we use a basic idea of calculus:

At a minimum value of a function, the derivative (if there is only one

variable) or all the partial derivatives (if there is more than one variable)

will be zero. The function in question is the SSR, and the variables

are the model parameters.

For the linear a model

Y ¼ aX þ b (8-2)

taking the partial derivatives for the function from Eq. (8-1) and setting

them equal to zero leads to the following equations:

@ðSSRÞ
@a

¼
X
i

@

@a
½Yi � ðaXi þ bÞ�2 ¼ �2

X
i

ðYi � aXi � bÞXi ¼ 0

@ðSSRÞ
@b

¼
X
i

@

@b
½Yi � ðaXi þ bÞ�2 ¼ �2

X
i

ðYi � aXi � bÞ ¼ 0:
(8-3)

To solve these equations, we can rewrite them in the form:

a
X
i

X2
i þ b

X
i

Xi �
X
i

XiYi ¼ 0

a
X
i

Xi þ nb�
X
i

Yi ¼ 0;
(8-4)

and then solve the system for a and b. The following formulae give the

result and allow a direct computation of the least-squares values for

the parameters a and b of the linear model (8-1):

a ¼
n
P
i

XiYi �
P
i

Xi

P
i

Yi

n
P
i

X2
i � ðP

i

XiÞ2
; b ¼

P
i

X2
i

P
i

Yi �
P
i

XiYi

P
i

Xi

n
P
i

X2
i � ðP

i

XiÞ2
: (8-5)
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EXERCISE 8-1

Derive Eq. (8-5) for the solution (a,b) of the system of linear Eq. (8-4).

EXERCISE 8-2

Derive a formula for the least-squares value of the parameter a in the

linear model Y ¼ Gða;XÞ ¼ aX:

EXERCISE 8-3

Consider the data in Table 8-1, collected to fit the model Y ¼ aX þ b.

Determine the least-square estimates for parameters a and b.

Thus far, we have considered the specific linear model

Y ¼ aX þ b ¼ Gða; b;XÞ: The principle definitions of the least-squares

measure remain the same, however, for any model given by a function y

of the form Y ¼ G (parameters; X). Consider, for example, Eq. (8-6),

a rewritten form of Eq. (7-24) from Chapter 7:

Y ¼ 1

2

K21X þ 2K22X
2

1þ K21X þ K22X2
¼ GðK21;K22;XÞ: (8-6)

In this case, the measured quantity is the fractional saturation Y, the

dependent variable. The experimentally manipulated quantity, the

oxygen concentration X, is the independent variable. The model G

defined by Eq. (8-6) has two parameters, K21 and K22, to be adjusted by

the data-fitting procedure.

Using the model from Eq. (8-6), we can write

Yi � GðK21;K22;XiÞ ¼ 1

2

K21Xi þ 2K22X
2
i

1þ K21Xi þ K22X2
i

(8-7)

where the best possible fit between the model and the data is determined

by minimizing the sum of squared residuals

SSRðK21;K22Þ ¼
X
i

½Yi � GðK21;K22;XiÞ�2: (8-8)

Equation (8-6) is assumed to hold only approximately because it ignores the

measurement errors always present in the experimental values of Yi. By

finding the values for K21 and K22 that minimize the SSR in Eq. (8-8), we

find the best possible approximation for the entire set of data points.

Notice that in this case the function SSR is not a linear function of

K21 and K22.

X 0.25 0.5 0.75 1.0

Y 1.3 2.7 3.3 5.1

TABLE 8-1.
Data for exercise 8-3.
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As our next example shows, this non-linearity complicates the computa-

tions significantly.

Example 8-1
.......................

Recall the population model PðtÞ ¼ P0e
rt ¼ 5:3 ert, defined by Eq. (1-4) in

Chapter 1. In this model, the independent variable is the time

t (decades), and the dependent variable is the U.S. population

P (millions). The net per capita rate of U.S. population growth r is the

only parameter. In our current notation, the model can be rewritten as

P ¼ Gðr; tÞ ¼ 5:3ert: (8-9)

Table 8-2 reproduces the U.S. population data from Chapter 1. We want

to find the least-squares estimate for the parameter r.

Each column of Table 8-2 represents an experimental point of the form

(ti, Pi). The least-squares measure for this model can be written as:

SSR ¼ SSRðrÞ ¼
X
i

½Pi � Gðr; tiÞ�2 ¼
X
i

½Pi � 5:3erti �2:

To find the least-squares estimate for r, we need to solve the equation

@ðSSRÞ
@r

¼ 0; that is:

@ðSSRÞ
@r

¼ 2
X
i

½Pi � 5:3erti �ð�5:3Þerti ti ¼ �10:6
X
i

ti½Pi � 5:3tie
rti �erti ¼ 0;

(8-10)

or X
i

ti½Pi � 5:3erti �erti ¼ 0:

Using the data points (ti,Pi) from the table above, we obtain the equation:

½7:2� 5:3er�er þ 2½9:6� 5:3e2r�e2r þ 3½12:9� 5:3e3r�e3r
þ 4½17:1� 5:3e4r�e4r þ 5½23:2� 5:3e5r�e5r þ 6½31:4� 5:3e6r�e6r ¼ 0:

(8-11)

Notice that this equation is not linear with respect to r. For general

nonlinear models, there are no closed-form expressions to determine the

solution, as there are for linear models. However, computers can be used

to numerically calculate the solution of the equation.

Various methods for calculating the roots of nonlinear equations have

been developed and are typically studied in courses on numerical

analysis. One of the most popular methods is Newton’s method, which

provides an iterative technique for finding the roots of an algebraic

Time i

(decades)

U.S. Population Pi ¼ P(i)

(millions)

0 5.3

1 7.2

2 9.6

3 12.9

4 17.1

5 23.2

6 31.4

TABLE 8-2.
Population of the United States from 1800 to
1860.
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equation of the form f (r) ¼ 0. The idea is as follows: To begin the

iterative process, we make an initial guess at a root. If our initial guess is

not a root, the function and the initial guess will provide a second guess

that is usually closer to the root than our first guess. The process is

then repeated, producing increasingly accurate approximations to the

root. We describe the details in the following sections.

Applying the least-squares fitting criterion for models with more than

one parameter results in a system of nonlinear equations for the

parameters, and the generalized method used for calculating the

solutions is known as the Gauss–Newton approach. The details of this

method will also be given later.

Example 8-2
.......................

Consider the model P(t) ¼ cert again, but assume that this time we do

not know the initial population value c at time t ¼ 0 (1800) and

would like to estimate this parameter from the data in Table 8-3.

The model now will have two parameters and can be written as:

PðtÞ ¼ Gðc; r; tÞ ¼ cert; (8-12)

and the corresponding SSR is:

SSR ¼ SSRðc; rÞ ¼
X
i

½Pi � Gðc; r; tiÞ�2 ¼
X
i

½Pi � certi �2:

To find the least-squares estimate for the parameters c and r, we need to

solve the system of equations
@ðSSRÞ

@c
¼ 0 and

@ðSSRÞ
@r

¼ 0. We calculate

@ðSSRÞ
@c

¼ �2
X
i

½Pi � certi �erti (8-13)

@ðSSRÞ
@r

¼ 2
X
i

½Pi � 5certi �ð�cÞerti ti ¼ �2c
X
i

ti½Pi � ctie
rti �erti ;

and we need to solve this system for c and r:

X
i

½Pi � certi �erti ¼ 0

X
i

ti½Pi � certi �erti ¼ 0:

Using the data points (ti,Pi) from Table 8-3, we obtain the equations:

½7:2� cer�er þ ½9:6� ce2r�e2r þ ½12:9� ce3r�e3r

þ ½17:1� ce4r�e4r þ ½23:2� ce5r�e5r þ ½31:4� ce6r�e6r ¼ 0
(8-14)

Time i

(decades)

U.S. Population Pi ¼
P(i) (millions)

1 7.2

2 9.6

3 12.9

4 17.1

5 23.2

6 31.4

TABLE 8-3.
Population of the United States from 1810
to 1860.

Model Parameters 239An Invitation to Biomathematics



½7:2� cer�er þ 2½9:6� ce2r�e2r þ 3½12:9� ce3r�e3r

þ 4½17:1� ce4r�e4r þ 5½23:2� ce5r�e5r þ 6½31:4� ce6r�e6r ¼ 0:

Unlike the system of equations for the linear model from Eq. (8-4), this

system of equations is nonlinear, and there is no exact formula for the

solution such as given by Eq. (8-5). However, an approximation of the

solution (c*,r*) can be obtained through computational approaches

such as the Gauss–Newton algorithm.

Historically, the numerical challenges of solving nonlinear equations or

systems of equations, such as Eqs. (8-11) and (8-14), have been overcome

by transforming the experimental data to conform to a linear model.

For example, if we take natural logarithms of both sides of Eq. (8-12), we

obtain

lnðPÞ ¼ lnðaertÞ ¼ lnðcÞ þ lnðertÞ ¼ lnðcÞ þ rt:

This is a linear model of the form Y ¼ aX þ b with a ¼ r, b ¼ ln(c), X ¼ t,

and Y ¼ ln(P), for which the minimum of the least-squares sum of the

residuals is easily found. Thus, in this case, transforming the data to the

form ðXi;YiÞ ¼ ðti; lnðPiÞÞ eliminates the technical difficulties arising

from the need to solve the nonlinear Eq. (8-14) for c and r. This successful

data transformation is caused by the specific exponential form of the

model in Eq. (8-12). For general models Y ¼ G (parameters; X), finding

a linearizing transformation may be difficult or impossible. In addition,

such transformations often lead to circumstances in which the statistical

validity of the least-squares procedure is violated. Thus, linearizing

transformations should generally be avoided because they often lead to

incorrect results, as our next example illustrates.

II. A LIGAND-BINDING EXAMPLE

Consider the data shown in Figure 8-3. It could represent the effect of

a drug as a function of the drug concentration or an enzyme kinetic

response as a function of ligand concentration. These two examples

belong to a general category of biomedical investigations known

as ligand-binding experiments. The mathematics and numerical analysis of

these experiments are essentially identical and are discussed here.

Recall that vertical bars around the data point reflect the possibilities for

errors in measurement. In Figure 8-3, the vertical lines are centered on

the observed values and represent positive and negative deviations

equal in magnitude to the standard error of measurement SEM. The

estimated precision of each data point, SEMi, can be different, allowing

the data points to be known to variable precision. Different data points
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could have different measurement errors. Thus, it is important to

consider a data point as a triplet (Yi, SEMi, Xi) consisting of the

dependent variable, the precision of the dependent variable, and the

independent variable.

Historically, two general approaches have been applied to the analysis of

ligand-binding data. The earliest was to perform a transformation of the

data such that the transformed data were reasonably described by

a straight line. The resulting nearly linear data could then be analyzed by

fitting a straight line to it and deducing the desired properties from the

slope and intercept of that line. Now that high-speed computers are

ubiquitous, the more common and more statistically valid approach is to

fit the nonlinear equations to the original experimental data without

transformation. We illustrate the shortcomings of the first approach next,

and then examine the second approach in detail.

It is important to realize that transformation methods only apply to the

simplest models, such as Eq. (8-12), where there was a unique linearizing

transformation. In most other situations, this will not apply. Recall,

for example, Eq. (7-5) from Chapter 7:

Y ¼ ½Drug�=Kd

1þ ½Drug�=Kd
: (8-15)

If the data can adequately be described by the simple mechanism of

drug action represented by Eq. (8-15), then the data can be linearized

several ways, such as a double reciprocal plot ð1=Yvs:1=½Drug�Þ or a
Scatchard plot ðY=½Drug�vs:YÞ. In addition, if the model contains more

than two parameters, it cannot be transformed into a two-parameter line.
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FIGURE 8-3.
A typical example of a ligand-binding experimental measurement. The y-axis (arbitrary units)
corresponds to the measurements of a drug effect or some other response that can be assumed to
be proportional to the amount of the drug or other ligand that is bound. The x-axis is the
concentration of the unbound drug or other ligand. The vertical lines are centered on the observed
values and represent the �1 standard error of the measurement (SEM) of experimental
uncertainties for the particular data points.
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Thus, when these transformations are applied to more complex models,

the resulting transformed data will not be a straight line. Figure 8-4

presents a Scatchard transformation of a ligand-binding model that has

two different, noninteracting binding sites: A low-affinity site and

a high-affinity site.

Clearly, the curve in Figure 8-4 cannot be analyzed as a straight line.

However, even if the data corresponded to a simple model where the

transformation yields a straight line, a simple linear fit of the

transformed data may be of questionable statistical validity. The

problem lies in the very nature of the least-squares procedure. Because

model parameters are estimated to minimize the sum of the squares of

the residuals, defined as the vertical distances between the data points

and the model, this assumes all of the uncertainties in the data can be

attributed to the y-axis. With the transformed data, however, this

is not always the case. For example, in Figure 8-4, the uncertainties at the

left side of the graph are in the y-axis, while on the right the

uncertainties are mostly in the x-axis.

So why were these linearizing transformations developed? Better

methods have been available for a long time but require a lot of

computer power. At the time the linearizing methods were developed,

computers were not available, and calculations had to be performed by

hand. The data transformations required in the past are no longer

needed or desired. Biology is not linear, and our methods of analysis

should not be linear either.
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Y
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g
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FIGURE 8-4.
A typical Scatchard plot of data containing both low- and high-affinity binding sites. The precision of
the individual data points is represented by lines (error bars) that radiate from the origin. These
error bars were generated by assuming that all of the uncertainties within the data are in the
measured fractional saturation. When expressed as fractional saturation versus free concentration,
all of these error bars are vertical. However, with the Scatchard transformation, both axes contain
errors because the Scatchard transformation includes the fractional saturation on both the
y-axis and the x-axis.
(Adapted from Johnson, M. L. and Frasier, S. G. [1985]. Nonlinear least-squares analysis. Methods in
Enzymology, 117, 301–342, with permission from Elsevier.)
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We now outline the computational methods used to determine the least-

squares values of the parameters from the data.

III. A PRIMER FOR SOLVING NONLINEAR EQUATIONS

One way to use computers to solve nonlinear equations is by an

iterative process that assumes a function can be expanded as a Taylor series.

In one variable, this means that if we know the value of the function f (x) at a

point x¼ x0 andwewant to find the value of the function at another point x

that is close to x0, we can use the expression

f ðxÞ ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ þ f 00ðx0Þ
2!

ðx� x0Þ2 þ f 000ðx0Þ
3!

ðx� x0Þ3 þ � � � :

What makes our technique work in most cases is that if our guess x0 is

close to the value x we seek, then x � x0 is small, and the sum of higher

order terms

f 00ðx0Þ
2!

ðx� x0Þ2 þ f 000ðx0Þ
3!

ðx� x0Þ3 þ � � �

will be negligible compared to f ðxÞ ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ: Thus:

f ðxÞ � f ðx0Þ þ f 0ðx0Þðx� x0Þ: (8-16)

In two or more variables, the idea is similar. If we know the value

of f (x,y) at a point (x,y) ¼ (x0, y0) and we want to find the value of the

function at another point (x,y) that is close to (x0,y0), we can use the

following expression:

f ðx; yÞ ¼ f ðx0; y0Þ þ @f ðx0; y0Þ
@x

ðx� x0Þ þ @f ðx0; y0Þ
@y

ðy� y0Þ

þ 1

2!

@2f ðx0; y0Þ
@x2

ðx� x0Þ2 þ 1

2!

@2f ðx0; y0Þ
@x@y

ðx� x0Þðy� y0Þ

þ 1

2!

@2f ðx0; y0Þ
@y2

ðy� y0Þ2 þ . . . :

Like before, if x � x0 and y � y0 are both small, then the expression

f ðx0; y0Þ þ @f ðx0; y0Þ
@x

ðx� x0Þ þ @f ðx0; y0Þ
@y

ðy� y0Þ provides
a good approximation for f(x,y), and we write

f ðx; yÞ � f ðx0; y0Þ þ @f ðx0; y0Þ
@x

ðx� x0Þ þ @f ðx0; y0Þ
@y

ðy� y0Þ: (8-17)

A. Newton’s Method for One Variable

Suppose we have a function f (x) and want to find a point x* where

f (x*) ¼ 0. We make an initial guess x ¼ x0, and then find the point where
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the line l1 tangent to the graph of f (x) at (x0, f (x0)) crosses the x-axis,

denoting this point x1 (see Figure 8-5). The equation of the tangent

line l1 is

or

y� f ðx0Þ ¼ f 0ðx0Þðx� x0Þ

y ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ:
(8-18)

Note that Eq. (8-18) is the truncated form of the Taylor series (8-16).

Now, because the tangent line l1 crosses the x-axis at x ¼ x1, we have

y ¼ 0 at this point, and Eq. (8-18) becomes

0 ¼ f ðx0Þ þ f 0ðx0Þðx1 � x0Þ:

Solving for x1, we obtain the following equation for the ‘‘better

guess’’:

x1 ¼ x0 � f ðx0Þ
f 0ðx0Þ : (8-19)

If the value x1 is not the root, we consider the line l2 tangent to the

graph of f (x) at (x1, f (x1)). The point x2 at which the line l2 crosses the

x-axis is calculated from

x2 ¼ x1 � f ðx1Þ
f 0ðx1Þ ; (8-20)

y

x0 x * x2 x1 x0

f(x) l1

l2

FIGURE 8-5.
Successive iterations for obtaining improved guesses for the point x* where f(x*) ¼ 0 by using
Newton’s method.
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and so on. In general, for any guess xn we make, the ‘‘improved guess’’

can be calculated from the formula

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞ : (8-21)

The process terminates when two successive iterations of the same value

are produced.2

Example 8-3
.......................

Use Newton’s method to solve x þ ex ¼ 5.

SOLUTION:

We denote f ðxÞ ¼ 5� x� ex and then want to solve the equation

f (x) ¼ 0. Since f (0) ¼ 4 and f ð2Þ ¼ 5� 2� e2 < 0, a root must lie between

x ¼ 0 and x ¼ 2. We make an initial guess x0 ¼ 1. Since f 0ðxÞ ¼ �1� ex;

using Eq. (19), we calculate

x1 ¼ x0 � 5� x0 � ex0

�1� ex0
¼ 1� 5� 1� e

�1� e
¼ 1:344707:

With this value for x1 and Eq. (8-20), we calculate

x2 ¼ x1 � 5� x1 � ex1

�1� ex1
¼ 1:307128;

and so on. Applying Eq. (8-21) in this case gives

xnþ1 ¼ xn � 5� xn � exn

�1� exn1
:

The process terminates when xnþ1 ¼ xn. Table 8-4 presents the values

of the consecutive iterations. Thus, we have found (to five decimal

places) that x þ ex ¼ 5 when x ¼ 1.306558.

Choosing a good initial guess can be critical to the success of Newton’s

method and is usually based on the experimental data and the model.

Recall the model P ¼ G(r; t) ¼ 5.3 ert and that the least-squares estimate

for the parameter r is the solution of Eq. (8-11). In Chapter 1, we

described a way of estimating the value of the parameter r from the data

and found that the best value should be close to r* ¼ 0.3 (see Table 1-3 in

Chapter 1 and the preceding text). We can now use this approximation

as our initial guess r0 for Newton’s method to determine the least-

squares value of r*. The results of the iterative process described by

Iteration i Guess xi

0 1

1 1.344707

2 1.307128

3 1.306558

4 1.306558

TABLE 8-4.
Values of iterations for example 8-3.

2. In practice, the process is terminated when two successive iterations become
closer than a small tolerance value (e.g., 0.00000001) chosen in advance.
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Eq. (8-21) are presented in Table 8-5(A). Thus, the least-squares value for

r is r* ¼ 0.29591448299395. Our initial guess of x0 ¼ 0.3 was rather close

to the root. If we start with a less accurate guess, more iterations may

be required before finding the root, as illustrated in Table 8-5(B) with the

guess x0 ¼ 0.5. In addition, because nonlinear equations may have more

than one solution, if the initial guess is chosen at random, the method

may converge to a false root, finding a minimum for the SSR that results

in a value for r that is meaningless in the context of the problem.

In principle, Newton’s method for one variable can be generalized to

two or more variables and used to solve systems of nonlinear equations,

such as the system defined by Eq. (8-14). However, for several reasons,

such methods are not computationally optimal for determining the

least-squares parameter estimates. First, minimizing the SSR function

requires that its partial derivatives with respect to the model parameters

be calculated and set to zero. This process may lead to complicated

systems of equations, where the lengths of the algebraic expressions

grow with the number of experimental data points. Second, to use

Newton’s method to solve these equations would require yet another

differentiation. That is, the cumbersome expressions defining the

systems of equations for the parameters will need to be differentiated

again, and their derivatives used to calculate the iterations

approximating the solutions. Instead, improved versions of the

procedures, such as the following, are usually applied.

B. The Gauss–Newton Method for One Variable

We consider a one-parameter model of the general form Y ¼ G(r;X),

experimental data ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXn;YnÞ and the SSR, which in

this case is defined by

SSRðrÞ ¼
X
i¼1

½Yi � Gðr;XiÞ�2: (8-22)

As with the Newton’s method, the process is iterative. We begin by

making a guess r ¼ r0 of the parameter’s value. Next, we use the Taylor

series approximation for G(r; X), as in Eq. (8-16). The variable of

interest is r, so we obtain

Gðr;XiÞ � Gðr0;XiÞ þ dGðr0;XiÞ
dr

ðr� r0Þ: (8-23)

Because we assume the model Y ¼ G(r;X) is correct, we seek the value

for the parameter r for which:

Yi ¼ Gðr;XiÞ þ experimental uncertainties:

Ignoring the experimental uncertainties, we write:

Yi � Gðr;XiÞ: (8-24)

A: Iteration i Guess xi

0 0.3

1 0.29604731216119

2 0.29591462767617

3 0.29591448299412

4 0.29591448299395

5 0.29591448299395

6 0.29591448299395

B: Iteration i Guess xi

0 0.5

1 0.42811073165450

2 0.36676718238807

3 0.32253692486329

4 0.30074060321933

5 0.29609881338742

6 0.29591476150979

7 0.29591448299458

8 0.29591448299395

9 0.29591448299395

TABLE 8-5.
Role of the initial guess on outcome of Newton’s
method.
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Combining Eqs. (8-23) and (8-24) yields:

Yi � Gðr0;XiÞ þ dGðr0;XiÞ
dr

ðr� r0Þ: (8-25)

We use this approximation to begin an iterative procedure and produce

a better guess, r ¼ r1, for the parameter. As in Newton’s method, we

expect using this better guess in place of r0 will produce an even better

guess, and so on. The process terminates when two consecutive

iterations return the same value, which is the ‘‘answer.’’ Generalizing,

we can write:

Gðanswer;XiÞ � Gðguess;XiÞ þ dGðguess;XiÞ
dðguessÞ ðanswer� guessÞ:

We now have one equation of the form (8-25) for each data point. For

illustration, assume we have only three data points:

ðX1;Y1Þ; ðX2;Y2Þ; ðX3;Y3Þ. The formula would yield three equations for r:

Y1 ¼ Gðr0;X1Þ þ dGðr0;X1Þ
dr

ðr� r0Þ

Y2 ¼ Gðr0;X2Þ þ dGðr0;X2Þ
dr

ðr� r0Þ

Y3 ¼ Gðr0;X3Þ þ dGðr0;X3Þ
dr

ðr� r0Þ;

which can be rewritten as:

dGðr0;X1Þ
dr

ðr� r0Þ ¼ Y1 � Gðr0;X1Þ

dGðr0;X2Þ
dr

ðr� r0Þ ¼ Y2 � Gðr0;X2Þ

dGðr0;X3Þ
dr

ðr� r0Þ ¼ Y3 � Gðr0;X3Þ:

(8-26)

We can use matrix notation to rewrite Eq. (8-26) more compactly. If we

denote

P ¼

dGðr0;X1Þ
dr

dGðr0;X2Þ
dr

dGðr0;X3Þ
dr

2
666666664

3
777777775
;Y� ¼

Y1 � Gðr0;X1Þ
Y2 � Gðr0;X2Þ
Y3 � Gðr0;X3Þ

2
4

3
5; and e ¼ r� r0; (8-27)

Eq. (8-26) can be reduced to the single matrix equation:

Pe ¼ Y�: (8-28)
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In general, when the data set contains n data points, the matrices P and

Y* will be:

P ¼

dGðr0;X1Þ
dr

dGðr0;X2Þ
dr

..

.

dGðr0;XnÞ
dr

2
6666666666664

3
7777777777775

and Y� ¼

Y1 � Gðr0;X1Þ
Y2 � Gðr0;X2Þ

..

.

Yn � Gðr0;XnÞ

2
66664

3
77775: (8-29)

To solve Eq. (8-28) for e, we multiply both sides by the transposed

matrix PT:

PTPe ¼ PTY�: (8-30)

Now, PT P is a square matrix, and, if it is invertible, we can solve

Eq. (8-30) and obtain

e ¼ ðPTPÞ�1ðPTY�Þ: (8-31)

Because e ¼ r – r0, the next guess is calculated from r ¼ e þ r0. We

call this improved guess r1, use it in place of r0 in Eq. (8-26), and then

iterate. Schematically, the process can be represented as e þ guess )
better guess.

The process terminates when the calculated value for better guess is the

same as guess; that is, when e ¼ 0. We have then found the answer

for the parameter r.

The Gauss–Newton method just described is not based upon minimizing

the SSR defined in Eq. (8-22), so how is it a least-squares procedure?

The answer is found in Eq. (8-31). When e ¼ 0, we have (PT P)-1(PT Y*) ¼
0. Because (PT P)-1 cannot be zero, as the matrix (PT P) was inverted, it

must be that PTY* ¼ 0. For the matrices PT and Y* defined in

Eq. (8-29), we then have for r ¼ answer, the product

PTY� ¼
X
i

½Yi � Gðr;XiÞ� dGðr;XiÞ
dr

¼ 0:

On the other hand, differentiating Eq. (8-22) gives
dSSRðrÞ

dr
¼

�2
P

i½Yi � Gðr;XiÞ� dGðr;XiÞ
dr

: Thus, when r is such that PTY* ¼ 0,

we will also have
dSSRðrÞ

dr
¼ 0. This shows that we have found

the least-squares estimate for the parameter r.
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Example 8-4
.......................

We use the Gauss–Newton algorithm to estimate parameter r in the

model G(r;t) ¼ 5.3 ert from the U.S. population data in Table 8-3.

The matrices are

P¼

t05:3e
rt0

t15:3e
rt1

t25:3e
rt2

t35:3e
rt3

t45:3e
rt4

t55:3e
rt5

t65:3e
rt6

2
666666664

3
777777775
¼

0
1ð5:3Þer
2ð5:3Þe2r
3ð5:3Þe3r
4ð5:3Þe4r
5ð5:3Þe5r
6ð5:3Þe6r

2
666666664

3
777777775
and Y� ¼

P0�5:3ert0

P1�5:3ert1

P2�5:3ert2

P3�5:3ert3

P4�5:3ert4

P5�5:3ert5

P6�5:3ert6

2
666666664

3
777777775
¼

0
7:2�ð5:3Þer
9:6�ð5:3Þe2r
12:9�ð5:3Þe3r
17:1�ð5:3Þe4r
23:2�ð5:3Þe5r
31:4�ð5:3Þe6r

2
666666664

3
777777775
:

(8-32)

We begin with an initial guess of r0 ¼ 0.3 and compute

e¼ ðPTPÞ�1ðPTY�Þ ¼�0:0040379399. The improved guess, r1, is then

calculated to be

r1 ¼ r0þ e¼ 0:3�0:0040379399¼ 0:295962601:

Using this value for r in Eq. (8-31), we compute

e¼ ðPTPÞ�1ðPTY�Þ ¼�0:000048084. The value for the next guess will

now be

r2 ¼ r1þ e¼ 0:295962601�0:000048084¼ 0:295914517:

The process continues until the desired accuracy is achieved. Assume

we only want to calculate an answer accurate to at least three decimal

places. The value e ¼ 0.000048084 calculated above is then e ¼ 0.000, and,

therefore, r2 is the answer.3

C. The Gauss–Newton Method for Two and More Variables

For models involving two or more parameters, the idea behind the

Gauss–Newton method is the same, but the matrices P and Y* need

to be changed appropriately. We outline the process for two parameters

and then discuss how it generalizes for an arbitrary number of

parameters.

Consider the model Y ¼ G(parameters; X) ¼ G(r,c;X), where the goal is to

find the least-squares values of the parameters c and r estimated from

the data ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXn;YnÞ.

3. Compare this value with the least-squares value for r we obtained for the same
model and data set earlier (Table 8-5) using Newton’s method.
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In this case,

SSRðr; cÞ ¼
X
i¼1

½Yi � Gðr; c;XiÞ�2: (8-33)

We begin with initial guesses r ¼ r0 and c ¼ c0 and the Taylor

approximation from Eq. (8-17) for the values r ¼ r0 and c ¼ c0:

Gðr; c;XiÞ � Gðr0; c0;XiÞ þ @Gðr0; c0;XiÞ
@r

ðr� r0Þ þ @Gðr0; c0;XiÞ
@c

ðc� c0Þ:
(8-34)

Because for the least-squares values of r and c, we want

Yi ¼ Gðr; c;XiÞ þ experimental uncertainties;

the equations used to find those values are

Yi ¼ Gðr0; c0;XiÞ þ @Gðr0; c0;XiÞ
@r

ðr� r0Þ þ @Gðr0; c0;XiÞ
@c

ðc� c0Þ:

As in the one-parameter case, we have one equation of this form for

every experimental data point (Xi,Yi) and can express this set of

equations more conveniently in matrix notation as Pe ¼ Y*, where

P ¼

@Gðr0; c0;X1Þ
@r

@Gðr0; c0;X1Þ
@c

@Gðr0; c0;X2Þ
@r

@Gðr0; c0;X2Þ
@c

..

. ..
.

@Gðr0; c0;XnÞ
@r

@Gðr0; c0;XnÞ
@c

2
66666666666664

3
77777777777775

; Y� ¼

Y1 � Gðr0; c0;X1Þ
Y2 � Gðr0; c0;X2Þ

..

.

Yn � Gðr0; c0;XnÞ

2
6664

3
7775; and

e ¼ r� r0
c� c0

� �
:

The solution e can be obtained as in Eq. (8-31), with the iterative process

continuing until e þ guess ) better guess returns e ¼ 0.

EXERCISE 8-4

Demonstrate that the values for parameters r and c obtained from the

Gauss–Newton method are the least-squares estimates for r and c by

showing these values provide a minimum for the SSR from Eq. (8-33).

Hint: Show that the values obtained for r and c are such that

@SSRðr; cÞ
@r

¼ 0 and
@SSRðr; cÞ

@c
¼ 0:
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Example 8-5
.......................

We now use the Gauss–Newton algorithm to estimate parameters r and c

in the model G(r, c; t) ¼ cert from the U.S. population data in Table 8-3.

Now
@G

@r
¼ ctert and

@G

@c
¼ ert, and the matrices P and Y* become

P ¼
ct1e

rt1 ert1

..

. ..
.

ct6e
rt6 ert6

2
64

3
75 ¼

cert er

2ce2r e2r

3ce3r e3r

4ce4r e4r

5ce5r e5r

6ce6r e6r

2
6666664

3
7777775
and Y� ¼

P1 � cert1

..

.

P6 � cert61

2
64

3
75 ¼

7:2� cer

9:6� ce2r

12:6� ce3r

17:1� ce4r

23:2� ce5r

31:4� ce6r

2
6666664

3
7777775
:

Choosing initial guesses of c0 ¼ 5 and r0 ¼ 0.3 in the matrices above gives

e ¼ ðPTPÞ�1ðPTY�Þ ¼ �0:0009
0:2053

� �
;

where now e is the vector e ¼ r� r0
c� c0

� �
:

Thus, the next guesses for the parameters are

r1 ¼ r0 � 0:0009 ¼ 0:2991 and c1 ¼ c0 þ 0:2053 ¼ 5:2053:

Substituting these values for r and c gives

e ¼ ðPTPÞ�1ðPTY�Þ ¼ 0:0000157
0:00016

� �
:

With three digits of accuracy, we can terminate the process at this step

and use the values r1 and c1 as the least-squares estimates for the

parameters based on the data in Table 8-3.

When models involve more than two parameters, the notation becomes

quite cumbersome. Describing the steps of the computational process

becomes a bit easier if we think of a set of guesses, one for each

parameter, being produced at each step in the search for the set of

answers that minimize the SSR. Eq. (8-34), for instance, can be written as

Gðanswers;XiÞ
� Gðguesses;XiÞ þ @Gðguesses;XiÞ

@guess1
ðanswer1 � guess1Þ

þ @Gðguesses;XiÞ
@guess2

ðanswer2 � guess2Þ:

Here, answer1 and guess1 refer to the answer and guess for the first

parameter (r), and answer2 and guess2 refer to the answer and guess for

the second parameter (c). Using S-notation, we write
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Gðanswers;XiÞ � Gðguesses;XiÞ þ
X
j

@Gðguesses;XiÞ
@guessj

ðanswerj � guessjÞ;

(8-35)

and the equations used for the computation now become

X
j

@Gðguesses;XiÞ
@guessj

ðanswerj � guessjÞ ¼ Yi � Gðguesses;XiÞ: (8-36)

As before, there are as many such equations as there are experimental

data points. The index j takes as many values as the number of

model parameters. Equation (8-7), for example, has two parameters, and,

if it were being fit to 100 data points, then Eq. (8-36) would actually

be 100 equations (one for each data point) in two unknowns

(K21 and K22).

EXERCISE 8-5

Identify matrices P, Y*, and e such that Eq. (8-36) can be written in matrix

form as Pe ¼ Y*.

IV. WEIGHTED LEAST-SQUARES CRITERION AND

THE GAUSS–NEWTON METHODS FOR WEIGHTED

LEAST SQUARES

Thus far, we have not tried to account for different measurement errors

in the data points. The most common approach to situations where the

experimental measurements are known with different degrees of

accuracy is to apply a weighted least-squares parameter estimation criterion.

Under this criterion, model parameters are calculated so they minimize

the following weighted sum of squared residuals (WSSR):

WSSR ¼
X
i

Yi � Gðparameters;XiÞ
SEMi

0
@

1
A

2

¼
X
i

½WiðYi � Gðparameters;XiÞÞ�2 ¼
X
i

r2i ;

(8-37)

where the weights, Wi, are reciprocal to the measurement errors.

Thus, the larger the measurement error for a particular data point, the

smaller the weight Wi, and consequently the smaller this point’s

contribution to the WSSR. The residuals, ri, are defined to be weighted

differences between the data points and the fitted curve.
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Various choices are possible for Wi, and what values are used depends

upon the design of the experiment. If each point is measured only once,

and there is no known distribution of the errors, it is reasonable to

assume all weights are equal to one, which makes the measure WSSR

from Eq. (8-37) equivalent to the measure SSR from Eq. (8-1). Thus,

WSSR in Eq. (8-37) is a generalization of SSR introduced in Eq. (8-1).

Similarly, the two formulas are equivalent if the measurement errors of

all data points have the same distribution, with a certain known

standard deviation. When each data point is measured only once and

there are different known errors in different measurements, it is

reasonable to assign each data point a weight that is reciprocal to its

measurement error. Thus, more uncertain data points contribute less to

the least-squares estimates. Finally, if each data point is a result of

several (>15) measurements, then we can calculate the standard error of

measurement SEM as an empirical estimate of the measurement errors,

and the weights Wi can be computed as Wi ¼ 1/SEMi (see, for example,

Johnson and Frasier [1985]).

The weighted least-squares estimates for the model parameters are those

that minimize the function WSSR from Eq. (8-37). Different values of the

model parameters correspond to different values of the WSSR. For

example, Figure 8-6 is a two-dimensional contour map of the WSSR as a

function of the two-parameters of the fitting equation for dimeric

hemoglobin given in Eq. (8-7). Each of the contours represents a constant

value for the WSSR, with contours nearer the center denoting lower

WSSR values. The objective of the fitting procedure is to find the optimal

parameter values corresponding to the dot in the center, which

represents the lowest WSSR value. In the case of normally distributed

errors, these values are also called maximum likelihood solutions.

As before, the minimization procedure for determining those solutions

is based on series expansions and is not much different from the Gauss–

Newton methods described earlier for data points with equal weights.

Specifically, the Gauss–Newton method is based on the Taylor

expansion:

Gðanswers;XiÞ ¼ Gðguesses;XiÞ þ
X
j

@Gðguesses;XiÞ
@guessj

ðanswerj � guessjÞ þ . . . ;

(8-38)

using the same notation as in Eq. (8-37). Again, Eq. (8-38) consists of

one equation for each data point, hence the subscript i. The objective

of the least-squares fitting is to determine the answers for which

Yi ¼ Gðanswers;XiÞ þ experimental uncertainties: (8-39)

By neglecting the experimental uncertainties in Eq. (8-39), ignoring the

higher derivatives terms (i.e., the . . .) in Eq. (8-38), dividing Eq. (8-38) by

SEMi, and combining the results, we obtain

K21

K
22

FIGURE 8-6.
Contour map of WSSR. The contours represent
constant values of WSSR, with the values getting
smaller as we approach the center contour.

Model Parameters 253An Invitation to Biomathematics



X
j

1

SEMi

@Gðguesses;XiÞ
@guessj

ðanswerj � guessjÞ
� �

� Yi � Gðguesses;XiÞ
SEMi

:

(8-40)

Equation (8-40) expresses the desired optimal answers in terms of the

data points (Yi, SEMi, Xi), the fitting equation (G), and the initial

estimates of the answers (guesses). The SEMi is now included to allow

each data point to have a different level of experimental uncertainty and

thus a different statistical weight.

It is important to note that when we neglect the higher order derivative

terms, represented by . . . in Eq. (8-38), Eq. (8-40) is only approximately

correct, and thus the iteration of Eq. (8-40) must be performed many

times so that it can converge to the optimal parameter values. Linear

least-squares is a special case where all of the higher-order derivatives

are exactly zero, so the solution to Eq. (8-40) is exact, and only a single

cycle of the algorithm is required. In this context, the term linear refers to

the form of Eq. (8-38), not the form of the fitting equation Y ¼
G (parameters; X). For example, fitting data to a straight line (i.e.,

Y ¼ a þ bX) is a linear fit, as is fitting to all of the higher degree

polynomials. In these cases, the problem of finding the minimum WSSR

leads to the problem of solving a system of equations that is linear

with respect to all of the unknowns. In the same way, fitting a single

Fourier wave (i.e., Y ¼ a sin(2pX/d) þ b cos(2pX/d) þ c) is also a linear

fit if d is a constant while only a, b, and c are being estimated. If,

however, d is also being estimated, then the second- and higher-

order derivatives are not all zero, and the fitting process becomes

nonlinear.

EXERCISE 8-6

(a) Show that the model Y ¼ Gða; b; c; d; e; f ;XÞ ¼ aX5 þ bX4 þ cX3þ
dX2 þ eX þ f is a linear model as far as least-squares fit for the

parameters a,b,c,d,e,f is concerned.

(b) Generalize for a polynomial model of arbitrary (but fixed) degree

with coefficients that are being estimated from the data.

EXERCISE 8-7

Verify that if d is fixed (and thus not a parameter to be estimated

from the data), the model Y ¼ a sinð2pX=dÞ þ b cosð2pX=dÞ þ c is a linear

model.
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EXERCISE 8-8

(a) Show that the set of equations from Eq. (8-40) can be written in

matrix form as

Pe ¼ Y�; (8-41)

where the matrices P, Y*, and e are :

P ¼

1

SEM1

@Gðguesses;X1Þ
@ guess1

1

SEM1

@Gðguesses;X1Þ
@ guess2

. . .

1

SEM2

@Gðguesses;X2Þ
@ guess1

1

SEM2

@Gðguesses;X2Þ
@ guess2

. . .

. . . . . . . . .

0
BBBB@

1
CCCCA (8-42)

e ¼
answer1 � guess1
answer2 � guess2

. . .

0
@

1
A and Y� ¼

Y1 � Gðguesses;X1Þ
SEM1

Y2 � Gðguesses;X2Þ
SEM2
. . .

0
BBBB@

1
CCCCA:

(8-43)

The number of rows for the matrices P and Y* are determined by

the number of data points. The number of parameters determines

the number of columns for P. The same is true for the number

of rows for the matrix e.

(b) Show that the representation in Eq. (8-41) leads to

ðPTPÞe ¼ ðPTY�Þ; (8-44)

e ¼ ðPTPÞ�1ðPTY�Þ: (8-45)

The iterative scheme

eþ guess ) better guess; (8-46)

terminates when e is found.

EXERCISE 8-9

Show that when it converges, the Gauss–Newton algorithm from

Eq. (8-40) produces parameter estimates that minimize the function

WSSR defined in Eq. (8-37).
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Hint: Notice that

PTY� ¼

X
i

1

SEM2
i

@Gðguesses;XiÞ
@guess1

½Yi � Gðguesses;XiÞ�
X
i

1

SEM2
i

@Gðguesses;XiÞ
@guess2

½Yi � Gðguesses;XiÞ�

..

.

0
BBBBBBB@

1
CCCCCCCA
; (8-47)

and that the individual elements of the PTY* are proportional to the

derivatives of the WSSR with respect to each of the parameters being

estimated.

We need to stress that the Gauss–Newton approach is not guaranteed to

converge. If the higher-order terms (. . . in Eq. [8-38]) do not converge

sufficiently rapidly to zero, then this algorithm might actually diverge,

because if higher-order terms cannot be ignored, then their omission in

Eq. (8-40) might cause irreparable error. The Gauss–Newton approach

will converge rapidly in most cases, and, when it does not, there are

many adaptations, such as the Marquardt–Levenberg and damped

Gauss–Newton algorithms, which specifically correct for the failure to

converge (see Johnson and Frasier [1985]). The damped Gauss–Newton

algorithm simply checks that the new value of the WSSR, Eq. (8-37), is

lower for the guesses þ e than it was for the previous guesses. If it is not

lower, then e was too big—so it is divided by 2, and this new value

of e is used in Eq. (8-46). This process of dividing e by 2 if the WSSR has

increased is repeated until it decreases.

There are many weighted nonlinear least-squares algorithms in addition

to the Gauss–Newton. Some converge faster, and some require more

computer memory; but when correctly implemented, they all provide

equivalent results.

V. OBJECTIVES OF THE DATA-FITTING PROCEDURES

We have explained why the data-fitting procedure provides parameter

values affording the best description of a data set and have described

some computational methods for finding the best least-squares fit. To

obtain a complete analysis of the experimental data, any data-fitting

procedure will have multiple objectives, which include estimating:

1. Optimal model parameters with respect to the desired criteria;

2. Cross-correlation of the estimated model parameters;

3. Precision of the model parameters;
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4. Goodness-of-fit; and

5. Uniqueness of the parameters.

Having discussed the first objective in considerable detail with regard to

the weighted least-squares criterion, we move to another optimization

method—maximum likelihood—and the conditions under which the

two are equivalent. We also outline objectives 2 through 5 with regard to

their goals and features essential to the data-fitting analyses.

A. Conditions for Maximum Likelihood

The parameter values determined through least-squares minimization of

the WSSR are estimates, based on the data, for the true parameter values.

It is not unusual, however, for the parameter estimates to be derived

from a different criterion that maximizes the likelihood of the parameter

values. That is, the values sought by this criterion are those that have the

highest probability of being correct based on the data. If the data are

known to satisfy the following set of relatively broad conditions,

the least-squares values for the parameters are also those that guarantee

maximum likelihood:

1. The Xi values do not contain any measurement errors;

2. The Yi values contain measurement errors that follow a bell-shaped,

or Gaussian, distribution with a mean of zero;

3. The fitting function, G, is correct; and

4. The measurement error for each data point is independent of other

measurement errors.

Determining whether the measurement errors satisfy those conditions is

not a trivial task. Figure 8-3, for example, presents a typical situation

illustrating how the least-squares methods can be applied to

experimental data. Let’s assume we would like to perform a least-

squares fit of the data to the ligand-binding fitting equations derived in

Chapter 7. The following general problem then becomes apparent:

Actual experimental data are rarely formulated in exactly the correct

form for the algorithms and fitting function to be applied. For example,

in Figure 8-3, the dependent variable (i.e., the y-axis) is not a fractional

saturation, but is in arbitrary units determined by the experimental

protocol (in this case, a drug response). Consequently, either the data or

the fitting equation must be transformed to match the other. The decision

of what to transform and how to transform it should be determined by the

nature of the experimental uncertainties in the data. The idea here is either

to not alter the noise distribution within the data or, in the case where the

existing experimental error distribution is not Gaussian, to perform

the transform so as to make the noise distribution more Gaussian.

Model Parameters 257An Invitation to Biomathematics



Here, we shall assume the distribution of experimental uncertainties

meets the basic assumptions of the least-squares fitting procedure.

Assume we attempt to extrapolate the values presented in Figure 8-3 to

zero and to an infinite concentration of the drug. The experimentally

measured value at zero in Figure 8-3 cannot simply be used as the zero

extrapolation because it contains experimental measurement error.

These two limits could then be used in a linear transform of the data,

such that the values range from 0 to 1, as in Eq. (8-48). The data would

then be in a form that could potentially be fit to one (or more) of the

fractional saturation functions above:

Fractional data ¼ Original data-Zero limit

Infinite limit-Zero limit
: (8-48)

This approach is not optimal, because the extrapolated values of the data

at zero and at infinite drug concentrations both contain uncertainties.

They have not been determined to infinite precision and, as a

consequence, will introduce an unknown systematic uncertainty into the

transformed fractional data. A better approach is to perform the

inverse transform of the fitting equation, as in Eq. (8-49), and then fit the

original untransformed data to the transformed fitting equation.

Incorporating these limits in the fitting equations will introduce two

additional fitting parameters into the fitting process:

Transformed function ¼ ðInfinite Limit-Zero LimitÞY þ Zero Limit:

(8-49)

For example, when Eq. (8-15) is modified by Eq. (8-49) and least-squares

fit to the data in Figure 8-3, there are three parameters estimated

simultaneously: the zero limit, the infinite limit, and the Kd. The

resulting values of the zero and infinite drug concentration limits are

1.140 and 1.578, respectively, which are clearly not equal to the first and

last data point values. The reasons for this are that the data values

contain experimental uncertainties and the last data point is not at an

infinite concentration. The estimated value of the dissociation constant,

Kd, is 1.073.

B. Cross-Correlation of the Estimated Parameters

Usually, there will appear to be a correlation between estimated

parameters. For example, when Eq. (8-7) is fit to a data set, the two

estimated parameters, K21 and K22, will appear to be correlated (i.e., the

estimated value of K21 is linearly dependent upon the value of K22

and vice versa). This correlation is not caused by the molecular

mechanism of hemoglobin action but is, rather, a consequence of fitting

a complex equation to a small number of data points spanning

a limited range of oxygen concentrations. It is important to be aware of
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the magnitude of these parameter correlations because they are

associated with the difficulties encountered by any data-fitting

procedure.

The cross-correlation coefficient for the i-th and k-th parameter can be

evaluated from the elements of the inverse of the PTP matrix that was

already evaluated by the Gauss–Newton least-squares parameter

estimation procedure, namely,

Cross Correlationik ¼ ðPTPÞ�1
ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPTPÞ�1
ii ðPTPÞ�1

kk

q i 6¼ k: (8-50)

These cross-correlation coefficients have a range of � 1, with zero being

optimal. As the cross-correlation approaches þ1 or �1, the fitting

procedure becomes increasingly more difficult and the results more

questionable, because the PTP matrix is becoming nearly singular and

cannot easily be inverted for use in Eq. (8-45). For practical purposes, if

the magnitudes of the cross-correlation coefficients are less than � 0.97,

the least-squares procedure can usually function adequately. However,

� 0.97 should not be considered an absolute threshold with everything

acceptable below � 0.97 and everything unacceptable outside this range.

All fitting procedures get progressively worse as the magnitude of the

cross-correlations increase toward 1.

C. Precision of the Model Parameters

Finding estimates of the precision of the estimated parameters is also of

paramount importance because this allows investigators to test the

significance of their results. For example, consider an experiment and

subsequent analysis that determines the molecular weight of

hemoglobin to be 67,000 daltons. In reality, this information tells us

nothing new about hemoglobin, because virtually all proteins have a

molecular weight of 67,000 � 50,000 daltons. If all we know is that the

molecular weight of hemoglobin is approximately 67,000 daltons, then

all we can say about hemoglobin is that it appears to be a typical protein.

However, if we know the molecular weight of hemoglobin is 67,000 �
1,000 daltons, we have a lot more useful information. For example,

because we also know that hemoglobin contains one iron atom per

16,700 � 500 daltons, we can easily conclude that the hemoglobin

molecule contains four irons and thus four oxygen-binding sites.

Conversely, if our estimate of the molecular weight of hemoglobin is

67,000 � 50,000 daltons, then we would have to conclude that the

hemoglobin molecule contains 4 � 3 irons and thus 4 � 3 oxygen-

binding sites.

The most common but least accurate approach is to use the asymptotic

standard errors, which assume the fitting equation is linear and are

calculated as follows:
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Asymptotic Standard Errori ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WSSR

N
ðPTPÞ�1

ii

r
: (8-51)

The asymptotic standard error for the i-th estimated parameter is related

to the weighted sum of squared residual of the fit, WSSR, the number

of data points, N, and the ii-th element of the inverse of the PTP

matrix that was already evaluated by the Gauss–Newton procedure and

used in Eq. (8-45). It is commonly used because it requires almost no

additional computer time to evaluate. There are, however, three

assumptions required to utilize these asymptotic standard errors as

realistic estimates of the precision of the estimated parameters: (1) The

fitting equation must be linear; (2) a large number of data points are

required; and (3) the parameter correlation should be near zero. The

consequence of these required assumptions is that the asymptotic

standard errors usually significantly underestimate the actual precision

of the estimated parameters. This means the significance of the results

will be overestimated, and conclusions not justified by the data will be

made. More sophisticated methods, beyond the scope of this text, such

as the support plane method (see Johnson and Frasier [1985]) and the

bootstrap approach (see Efron and Tibshirani [1993] for the details), can be

used for better precision.

D. Goodness-of-Fit

Parameter estimation procedures, such as weighted least-squares, can

find an optimal fit of almost any equation to almost any data set. This

does not mean, however, that the fitted curve accurately describes the

experimental data. For example, the hemoglobin–oxygen binding data

shown in Figure 7-4 of Chapter 7 could be least-squares fit to a straight

line, but it would not provide a realistic description of the data points.

Likewise, the slope and intercept of this optimal straight line would

provide no information about the molecular mechanism of hemoglobin

function. Goodness-of-fit tests provide rigorous statistical criteria to

decide if the fitted equation actually provides a good description of the

experimental data. Furthermore, if the form of the fitting equation is

based upon mechanistic hypotheses about what is being measured, then

goodness-of-fit tests also provide rigorous statistical criteria to test the

mechanistic hypotheses. Because of this, the choice of the fitting equation

should always be dictated by the mechanistic hypotheses under study.

Most goodness-of-fit criteria are based on the distribution of the

residuals—the weighted differences ri between the data points and the

fitted curve in Eq. (8-37). If the justifying assumptions for the least-

squares approach from Section A above are satisfied, then the residuals

should follow a Gaussian distribution; if they do not, then one or more of

these assumptions is not valid. Assumptions 1, 2, and 4 are within the

control of the experimental protocol and thus can be verified

independently. If, in a carefully controlled and performed experiment,
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this verification passes and the residuals do not follow a Gaussian

distribution, then it is likely that the fitting equation is incorrect.

One of the most useful tests is to simply plot the residuals as a function

of the independent and dependent variables. A visual inspection can

usually provide an indication of a problem with the analysis. For

example, Figure 8-7 presents the residuals for two different fits of the

data shown in Figure 8-3. Panel B is a fit of Eq. (8-15), and it appears the

residuals are random. By comparison, panel A corresponds to the fit

of a straight line, and it is clearly not random. Thus, by inspection we

can conclude this data cannot be described by a straight line.

There are many quantitative goodness-of-fit tests, such as the runs test,

autocorrelation, and the Kolmogorov–Smirnov test. The runs test has

proven to be very useful. A run is one or more residuals in a row with

the same sign. Panel A of Figure 8-7 contains five runs: the first seven

residuals are all negative; the 8th residual is positive; the 9th and 10th

residuals are negative; residuals 11 to 23 are all positive; and the 24th is

negative. Panel B contains 16 runs. This test is statistically based, and, if

the residuals follow a Gaussian distribution, the expected number of

runs and the variance of the expected number of runs can be computed.

A Z score and probability are then calculated, determining the likelihood

of the observed number of runs. More details for this and the other

quantitative methods mentioned above can be found in Straume and

Johnson (1992).

E. Uniqueness of the Least-Squares Values of the Parameters

For some types of fitting equations (i.e., linear models), it can be

algebraically demonstrated that only a single set of unique model
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FIGURE 8-7.
The residuals for a straight line (panel A), or Eq. (8-15) (panel B), fit to the data in Figure 8-3.
The better fit gives more randomly distributed residuals.
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parameters exists corresponding to the maximum likelihood

optimization criteria. However, this cannot be demonstrated for all

nonlinear models, and the possibility exists that multiple sets of

parameters could be optimal for some fitting equations. Consider again

Figure 8-6 depicting the topographical map of the WSSR as a function of

two parameters for a nonlinear fitting equation. For linear fitting

equations, it can be demonstrated this plot contains only a single

minimum.

Figure 8-8 presents one method of detecting whether multiple minima

exist for a nonlinear least-squares procedure. This method is to simply

start the iterative nonlinear fitting procedure at several different

locations. In the example in Figure 8-8, we show initial guesses at

locations A, B, and C. When the iterative least-squares procedure is

started at either location A or B, the algorithm converges to the same

minimum, but if the procedure is started at location C, the algorithm

converges to a different minimum in the topographical map. Also note

that a minimum exists that was not found when starting at these

positions.

The potential for multiple minima always exists when fitting to

nonlinear equations but, unfortunately, no computational method

exists that will guarantee locating all of these minima. It is, however,

common for some of the multiple minima to have parameter values

that are physically unrealistic. For example, a negative molecular

weight has no physical meaning. If multiple, physically meaningful

minima are found, they must all be described in your report of the

results.

VI. APPENDIX: BASIC MATRIX ARITHMETIC

In this chapter, we expressed a system of equations as a matrix equation

and used matrix algebra to solve the system of equations. This is a

convenient and common technique because hand-held calculators and

computers are equipped to do matrix computations. In this appendix,

we outline some basic matrix arithmetic that the reader needs to be

familiar with in order to follow the matrix computations presented in the

chapter.

A matrix is a rectangular array of numbers. An m�n matrix is one that

has m rows and n columns. For example, the matrix
1 �1 0
2 4 5

� �
is a

2 � 3 matrix. Matrices are equal when they have the same dimensions

and each corresponding entry is equal. The following arithmetic

operations are fundamental to matrix arithmetic: addition,

multiplication by a number, and multiplication of a matrix by a matrix

(matrix multiplication). For our purposes, matrix multiplication is the

most important operation.

K21

K
22

A C

B

FIGURE 8-8.
This figure presents a topographical contour
map of the variance-of-fit as a function of two
parameters, K21 and K22. In this example, three
minimal points exist. Note that this is a
nonlinear fitting equation and thus multiple
minima can exist. For linear models, only a
single minimum will exist.
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We multiply a row matrix (a1, a2, . . ., an) by a column matrix

e1
e2
..
.

en

0
BBBBB@

1
CCCCCAaccording to:

ða1; a2; . . . ; anÞ

e1
e2
..
.

en

0
BBBBB@

1
CCCCCA

¼ a1e1 þ a2e2 þ . . . anen:

Note there are the same number of entries in both matrices. Also, the

‘‘row matrix’’ must be on the left, and the ‘‘column matrix’’ must be on

the right. In the context of our discussions, we would like to think

of the ai’s as numbers and the ei’s as unknowns.

Now suppose we have two linear equations where the unknowns

are e1, e2, . . . , en:

a11e1 þ a12e2 þ . . .þ a1nen ¼ b1

a21e1 þ a22e2 þ . . .þ a2nen ¼ b2
: (8-60)

We define:

a11 a12 . . . a1n
a21 a22 . . . a2n

� � e1
e2

..

.

en

0
BBBB@

1
CCCCA ¼ a11e1 þ a12e2 þ . . .þ a1nen

a21e1 þ a22e2 þ . . .þ a2nen

� �
;

so we could write the system of Eq. (8-38) as the matrix equation.

a11 a12 . . . a1n
a21 a22 . . . a2n

� �
e1
e2

..

.

en

0
BBBBBB@

1
CCCCCCA

¼ b1
b2

� �
:

This is often written in the more compact form Ae ¼ b, where A, b, and

e are the following matrices:

A ¼ a11 a12 . . . a1n
a21 a22 . . . a2n

� �
; e ¼

e1
e2
..
.

en

0
BBBBB@

1
CCCCCA
; b ¼ b1

b2

� �
:
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Likewise, we could write the system of m linear equations in n

unknowns e1, e2, . . . , en:

a11e1 þ a12e2 þ . . .þ a1nen ¼ b1

a21e1 þ a22e2 þ . . .þ a2nen ¼ b2

..

.

an1e1 þ an2e2 þ . . .þ annen ¼ bn

(8-61)

as the matrix equation:

a11 a12 . . . a1n
a21 a22 . . . a2n

..

.

am1 am2 . . . amn

0
BBB@

1
CCCA

e1
e2
..
.

en

0
BBB@

1
CCCA ¼

b1
b2
..
.

bm

0
BBB@

1
CCCA:

This is often written in the more compact form:

Ae ¼ b: (8-62)

We say that Eq. (8-62) is the matrix form of the system of Eq. (8-61).

If one examines what we have done, a requirement for the dimensions in

the matrices appears, namely, an m � n matrix multiplying an n � 1

matrix gives an m � 1 matrix.

Everything we have done is a special (but very important) case of the

following rules governing multiplication of matrices:

(i) If A is an m � n matrix and B is an n � k matrix, then AB is an

m � k matrix; and

(ii) The entry in the i-th row and j-th column of the matrix AB is:

ðai1; ai2; . . . ; ainÞ

b1j
b2j

..

.

bnj

0
BBB@

1
CCCA ¼ ai1b1j þ ai2b2j þ ainbnj:

How does this help us solve a system of linear equations? Actually, we

need to do one more thing before we can accomplish this. Assume

that in the matrix Eq. (8-62), we know the entries of A and b and

want to find the entries of e. If there were a matrix A�1 for which

A�1Ae ¼ e, then multiplying both sides of Eq. (8-62) by A�1 would give

the solution

e ¼ A�1Ae ¼ A�1b:
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If A is a square matrix (i.e., has the same number of rows as columns),

then sometimes there is such a matrix A�1, called the inverse of A. Thus,

we somehow need to create a square matrix in Eq. (8-62) in order to

solve for e. We now describe how to do this.

Associated with each matrix A is its transposed matrix AT. The matrix AT

is obtained by forming the matrix whose rows are the columns of A.

Thus if, for example, A ¼
1 4
2 5
3 6

0
@

1
A; then AT ¼ 1 2 3

4 5 6

� �
. Notice, if A

is an m � n matrix, then AT is an n � m matrix, so ATA (n � m multiplied

by an m � n) is an n � n matrix, and AAT (m � n multiplied by an n � m

matrix) is an m � m matrix. Thus, either product is a square matrix.

There is a possibility that (ATA)�1 exists (again, computers will routinely

check this), and, if so, we can solve in the following way. First multiply

both sides of the equation by AT from the left to get

ATAe ¼ ATb: (8-63)

Next, find the inverse (ATA)�1 and multiply both sides of Eq. (8-63) by

this matrix from the left to obtain the vector of the unknowns e:

ðATAÞ�1ðATAÞe ¼ ðATAÞ�1ATb

e ¼ ðATAÞ�1ATb: (8-64)

Therefore, if the inverse matrix (ATA)�1 exists, the solution e of Eq. (8-62)
is given by Eq. (8-64).

REFERENCES

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York:
Chapman and Hall.

Johnson, M. L., & Frasier, S. G. (1985). Nonlinear least-squares analysis. In Hirs,
C. H. W., & Timasheff, S. N. (eds.), Methods in Enzymology (vol. 117, pp.
301–342). New York: Academic Press.

Straume, M., & Johnson, M. L. (1992). Analysis of residuals: Criteria for
determining goodness-of-fit. In Brand, L., & Johnson, M. L. (eds.), Methods in
Enzymology (vol. 210, pp. 87–105). New York: Academic Press.

Model Parameters 265An Invitation to Biomathematics



This page intentionally left blank



I am turned into a sort of machine for observing facts and grinding

out conclusions.

Charles Darwin (1809–1882)

In single-celled organisms, all life functions, such as

metabolism, response to stimuli, and reproduction, are of

necessity performed by the cell itself. In multicellular

organisms, groups of cells become specialized to perform

particular functions. The proper functioning of

multicellular organisms, therefore, requires efficient

mechanisms for cell-to-cell communication for controlling

and coordinating the actions of disparate and often

distant cell types. In mammals, communication

functions are performed by the nervous and endocrine

systems.

The endocrine system controls important physiological

processes, including growth, metabolism, reproduction,

and development, by means of secreted chemical agents

called hormones that are distributed throughout the body

by the bloodstream. An endocrine communication

pathway is diagrammed in Figure 9-1. Endocrine

communication is composed of three parts: (1) Endocrine

glands containing secretory cells; (2) the hormones they

secrete; and (3) the cells that are the targets of the secreted

hormones. Although each hormone comes in contact with

multiple cell types after its secretion, it only influences

those targeted cells with appropriate receptors for that

hormone.

Hormone secretion patterns are determined by the

frequency of secretion events, the amount secreted, and

the length of time the secretion event lasts. They encode

messages for the target cells that control vital

physiological processes, and an alteration of a secretion

pattern may impede one or more of these processes.

Understanding hormone secretion and developing the

capability to recognize both normal and pathological

patterns of hormone production is of utmost importance

for establishing medical diagnoses, initiating treatment,

and assessing the effects of treatment.

We begin with a brief introduction to the mechanisms of

the human endocrine system. The reader is encouraged to

refer to a textbook of human physiology (such as Guyton

and Hall [2005]) or endocrinology (such as Williams et al.

[2002]) for additional information. We then discuss
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designing experiments, collecting data, and analyzing hormone secretion

patterns.

So far, our focus has been primarily on model development and data

analyses, largely ignoring the data-collection process. For two reasons,

however, data collection is not straightforward when determining

hormone secretion patterns. First, it is generally not possible to collect

data directly from the endocrine glands, where the hormones are

secreted, for reasons discussed below. Instead, information about

hormone secretion is inferred from data representing the hormone

concentration in the blood. Second, even these data do not directly give

an accurate picture of the secretion patterns, because once the hormone

is secreted and has entered the bloodstream, its physiological

elimination from the blood (because of binding, excretion, and/or

biotransformation) begins immediately. Figuratively speaking, such data

only provide a glimpse through a ‘‘dirty window,’’ as the hormone

secretion patterns are distorted because of the ongoing elimination

processes. We need to ‘‘clean’’ the window by removing the effect of

hormone elimination in order to be able to ‘‘see’’ the actual secretion

amplitudes and frequencies.

We shall present a number of mathematical methods, both classical and

novel, aimed at quantifying various aspects of this problem. The

methods are divided into two groups. The first covers statistical

approaches for analysis of hormone concentrations as observed in the

blood. The second employs deconvolution methods to deduce hormone

secretion patterns from the hormone concentration in the blood.

Although some of the classical methods, such as the Fourier methods

outlined in this chapter, are now known to be of limited use for

analyzing general hormone data, we have included them because they

are still routinely used in the literature to analyze specific aspects of

hormone pulsatility.

Several of the mathematical methods we describe require data in the

form of a time series (i.e., measurements of hormone concentration

Secretory cell

Target cell

Blood vessel

Hormone

Receptor

FIGURE 9-1.
Simple model of endocrine function. The secretory cell in the endocrine gland produces the
hormone that is carried by the bloodstream. The hormone binds to a receptor on or in the target
cell. Hormone binding causes a change in the behavior of the target cell.
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equally spaced in time). For example, data may be collected every 10

minutes or every hour, because equally spaced data points are perceived

as best for capturing the dynamic nature of the secretion processes. This

procedure, however, may be too restrictive at times, and it is also

common for data points to be taken at times not separated by intervals of

equal length. In describing mathematical methods, we shall be careful to

separate those requiring time series data from those that do not. The

latter class of methods is certainly more general.

Throughout the chapter, we use two sets of actual hormone

concentration data sets, one for luteinizing hormone (LH) and one for

growth hormone (GH, also called somatotropin). These are then

examined using several analytical approaches. Software and

documentation for many of these algorithms can be downloaded from

Dr. Michael Johnson’s site at the University of Virginia (see Internet

Resources at the end of this chapter).

I. INTRODUCTION

The endocrine system consists of endocrine glands and the hormones

they secrete. Hormones reach their target cells by traveling through the

bloodstream. Figure 9-2 shows the location of the major endocrine

glands of the human body.

The pituitary gland, often called the ‘‘master gland,’’ is located at the

base of the brain. It receives signals from the hypothalamus, a

neurosecretory region of the brain. Figure 9-3 shows the positional

relationship of the pituitary and hypothalamus. The hypothalamus

enables communication between the nervous system and the endocrine

system by producing releasing hormones and inhibiting hormones

that act on the anterior pituitary. It also produces two hypothalamic

hormones that are stored in, and released from, the posterior pituitary.

Acting under this hypothalamic control, the anterior pituitary in

turn produces hormones that themselves stimulate other endocrine

glands.

The term hormone was originally applied to chemical substances secreted

by endocrine glands and transported in the bloodstream to regulate the

activity of distant target organs. This is the classical endocrine action.

However, there are many other cell-signaling substances not produced

by endocrine glands that have similar effects. Examples include the

insulin-like growth factor type I (IGF-I) secreted by the liver; the

histamines released by mast cells in response to injury, infection, or

allergy; and the releasing hormones secreted by the hypothalamus.

These other forms of chemical communication are called autocrine,

paracrine, and neuroendocrine regulation, and are now generally

grouped under the heading of endocrine signaling. Autocrine action

occurs when a cell both secretes and has receptors for a regulatory
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chemical. The secreted regulator enters the intercellular fluid and then

binds the receptors, resulting in the regulation of the function of the same

cell. Paracrine regulation involves release of a molecular signal that

diffuses through the intercellular fluid and interacts with specific

receptors on other nearby cells. Neuroendocrine regulation occurs when

a neuroendocrine cell releases neurohormones into the bloodstream and

these bind to target cell receptors.

Hormones are classified on the basis of their structure. Peptide or protein

hormones (such as insulin, LH, or GH) are produced, like other

proteins, on ribosomes. They are stored within the cells in secretory

vesicles and are released by exocytosis in response to an appropriate

stimulatory signal. They act by binding to specific receptors on the

surface of target cells. In contrast, steroid hormones (such as

Ovary 
or 

Testis

Pancreas

Adrenal gland

Thymus gland

Thyroid gland

Pineal 
gland

Hypothalamus

Pituitary gland

Parathyroid 
glands

FIGURE 9-2.
Human endocrine glands. The parathyroid glands are located behind the thyroid gland, and the
adrenal glands are located just above the kidneys.

Brain

Hypothalamus

Anterior
Pituitary

Posterior
Pituitary

FIGURE 9-3.
Relationship between the hypothalamus (a region
of the brain) and the pituitary gland. The anterior
and posterior lobes of the pituitary have different
functions, as noted in the text.
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mineralocorticoids, glucocorticoids, and sex steroids) are released

immediately and not stored intracellularly. They are synthesized in

response to an appropriate signal in different organs from a common

precursor (cholesterol) and exert their action by diffusing through the

plasma membrane of target cells and binding to intracellular receptors.

The fatty acid derivatives include the prostaglandins, derived from the

20-carbon fatty acid arachidonic acid. Prostaglandins function

through paracrine regulation and are the targets of the nonsteroidal,

anti-inflammatory drugs, such as aspirin or ibuprofen. The amines (such

as catecholamines and thyroid hormones) are amino acid derivatives,

mostly synthesized from tyrosine residues, although melatonin

is produced from tryptophan. Catecholamines (such as dopamine or

norepinephrine) are the neurotransmitters of the autonomic nervous

system, whereas the thyroid hormones affect almost every tissue,

exerting growth, cardiovascular, and metabolic effects. Melatonin is an

important regulator of circadian rhythms.

Once released, hormones are transported in the bloodstream, either free

or bound to specialized carrier proteins. Even though only free

hormones exert the effect, carrier proteins are important because they

effectively modify the apparent kinetics of the active hormone. After

reaching their target cells, hormones bind to specific receptors, which are

protein molecules located on the membrane or inside the cell. This

initiates a cascade of events culminating in a biological response specific

to the target tissue.

We now provide some background about the mechanisms controlling

the production of two pituitary hormones, LH and GH, which we shall

be examining. In both cases, their production is controlled by

neurohormones produced by the hypothalamus. We begin with LH.

Neurosecretory cells of the hypothalamus produce gonadotropin-

releasing hormone (GnRH)—a short, 10–amino-acid peptide. The GnRH

is transported through the portal veins to the anterior lobe of the

pituitary, where the GnRH binds to its receptors on the pituitary cells.

These cells respond by producing the gonadotropins LH and the follicle-

stimulating hormone (FSH). LH and FSH enter the bloodstream from the

pituitary, travel to the gonads, and subsequently exert their effects

upon their target cells. Although they were identified and named in

females, both LH and FSH also function in males. As in this chapter we

shall be looking at the effects of these hormones on female fertility,

however, we now focus on their activity in women.

In the ovary, FSH and LH stimulate the development of ovarian follicles,

the production of the steroid hormones estrogen and progesterone, and

ovulation. The ovaries regulate the production of FSH by releasing

inhibin, which inhibits FSH production by the pituitary. The ovaries also

exert control through the production of estrogen, which affects both
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the production of LH and FSH by the pituitary and the production of

GnRH by the hypothalamus. After ovulation, LH supports the

development of the empty ovarian follicle into the corpus luteum (yellow

body), which secretes estrogen and progesterone to support the

endometrium, and inhibin to block the production of FSH by the

pituitary. The rising levels of progesterone and estrogen block the

production of GnRH, LH, and FSH, preventing the induction of

follicular development until the result of the previous ovulatory event is

apparent. If fertilization and implantation occur, the chorion (one of

the extraembryonic membranes of the new embryo) assumes

responsibility for the maintenance of the endometrium. If not, the

degeneration of the corpus luteum ensures that the endometrium is

shed, and the cycle begins again. These events are summarized in

Figure 9-4.
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FIGURE 9-4.
Human menstrual cycle. The upper panels show the levels of the hormones LH, FSH, estrogen, and
progesterone; and the lower panel shows the response of the ovarian follicle and uterine lining.
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We turn now to GH. Like LH and FSH, GH is produced by the

anterior pituitary in response to a hypothalamic releasing factor, the

growth hormone–releasing hormone (GHRH). GHRH reaches the

pituitary via the same circulatory system pathway taken by GnRH,

where it binds its target cells and stimulates the release of GH into the

bloodstream. The hypothalamus also produces an inhibitory substance,

growth hormone–inhibiting hormone (GHIH, also called somatostatin),

that decreases the production of GH by the pituitary. Generally

speaking, if the levels of GH are low, the hypothalamus will produce

GHRH. If the levels of GH are high, the hypothalamus will produce

GHIH.

In summary, the endocrine system can be described as a complex of

signaling mechanisms, directing and coordinating multiple functions in

the organism. A remarkable feature of the system is its critical

dependence upon the pattern of hormone release that encodes

information necessary for the signaling mechanisms. Although the

average hormone levels are essential to the performance of the endocrine

system, achieving these levels through secretion events with exact

frequencies and amplitudes is of crucial importance. For example,

the same average concentration of a hormone can be achieved by

a few secretion events with large amplitudes, by numerous frequent

pulses of small amplitudes, or by an appropriate mix of large and

small hormone releases. Although the average hormone concentration

in all of these cases may be the same, the different profiles of the

secretion events would represent different examples of endocrine

signaling, only one of which would be functional in any given

situation.

Serum levels of the pituitary hormones FSH and LH, as well as the

ovarian hormones estrogen and progesterone, vary considerably over a

normal 28-day menstrual cycle. Pituitary hormones, such as GH,

prolactin, thyrotropin, adrenocorticotropic hormone, FSH, and LH,

are secreted in a pulsatile manner (Veldhuis et al. [1987]), with their

levels rising and falling multiple times per day because of bursts of

secretion by the pituitary followed by periods of secretory inactivity.

The number of secretory bursts per day varies with the hormone in

question, the age, the gender, and the health of the individual. Figure 9-5

shows an example of the variation of blood serum LH levels over

24 hours in a healthy woman of reproductive age. LH levels rise and

fall repeatedly each day, and this variation is vital to the performance

of reproductive functions. Serum levels of GH for a healthy adult

exhibit similar behavior over the course of a 24-hour period (see

Figure 9-6).

The pulsatile nature of hormone release may easily be overlooked if

hormone levels are measured on a timescale with nonoptimal resolution.

Almost any introductory biology text would likely have a figure
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FIGURE 9-6.
A typical example of how serum growth
hormone (GH) concentration changes over a 24-
hour period in a normal healthy adult. The GH
was measured every 10 minutes. The individual
data points are represented with vertical lines of
length corresponding to � one SEM. Note that
the SEM is a function of the hormone
concentration. The SEMs were evaluated with
Eqs. (9-1) and (9-2) introduced below, assuming
an MDC ¼ 0.0265 and CV ¼ 8.23%. The units for
GH are ng/ml. The levels of GH rise and fall
multiple times over the course of a single day.
The large pulses of GH occur during the sleep
periods. The upper sawtooth pattern represents
peaks in the concentration time series as
evaluated by the CLUSTER algorithm we shall
describe later.
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FIGURE 9-5.
A typical example of the variation of serum LH
levels over 24 hours in a healthy woman of
reproductive age sampled every 10 minutes.
Individual data points are represented as vertical
error bars corresponding to � one standard
error of the mean value (SEM), where the SEM is
a function of the hormone concentration.
Hormone levels rise and fall multiple times over
the course of a single day. The SEMs were
evaluated with Eqs. (9-1) and (9-2) introduced
below, assuming an MDC ¼ 1.0 and CV ¼ 5.0%.
The units for LH are mIU/ml. The upper
sawtooth pattern represents peaks in the
concentration time series as evaluated by the
CLUSTER algorithm we shall describe later.
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similar to Figure 9-4. It shows the blood serum levels of FSH, LH,

estrogen, and progesterone, and the events in the ovaries and uterine

lining during a menstrual cycle. Unfortunately, Figure 9-4 gives the

impression that hormone levels rise and fall smoothly on a timescale of

days, which is incorrect. Instead, pituitary hormones are produced in a

pulsatile manner; if they are not, the functions of the respective

endocrine signaling pathways will be inhibited. For instance, it has been

shown that the pulsatile nature of the GnRH signal is critical to its

function of stimulating LH and FSH release. Administering the peptide

as a nonvarying infusion not only fails to stimulate but, in fact,

diminishes the response. If a woman’s LH and FSH levels remained

approximately steady over any given 24-hour period (as suggested by

Figure 9-4), she would be infertile. Therefore, clinicians have used

metering pumps to treat female infertility by administering GnRH in a

normal pulsatile pattern in order to restore the signal and subsequently

restore reproductive function.

A similar approach has been successful in cases of primary

hypothalamic failure, such as Kallmann syndrome or hypothalamic

amenorrhea, both of which are marked by a GnRH deficiency. The

technique has also been used to inhibit gonadotropin secretion by means

of long-acting, nonpulsatile GnRH analogues for the treatment of

prostate cancer, premature puberty, or endometriosis. In either case, the

pulsatile nature of the GnRH release is required for the pituitary to

respond normally. However, in the latter three examples, the

nonpulsatile GnRH will act to suppress the release of the gonadotropins

LH and FSH by the pituitary. This results in growth suppression in

prostate cancer, suppression of inappropriately early maturation in

premature puberty, and suppression of symptoms in endometriosis.

In summary, the GnRH–LH/FSH axis provides an impressive example

of how obtaining specific quantitative knowledge about hormone

secretion dynamics not only addresses important theoretical questions

about the signaling mechanism of the endocrine system, but also results

in successful therapeutic strategies. Children suffering from

premature puberty have been restored to a normal developmental

pattern, and previously infertile women have achieved normal

pregnancies.

The techniques outlined above require objective quantitative methods

for describing and comparing individual or multiple hormone

secretion profiles. In particular, it is necessary to have (1) an objective

definition of physiologically important properties of hormone

concentration dynamics, (2) formal techniques for quantification of these

aspects, and (3) standardized methods for comparison of hormone

secretion data. A major challenge, however, is the high complexity of

endocrine axes and the lack of sufficient direct experimental data.

Direct measurement of some hormones of interest is either

experimentally challenging or impossible, or unethical, especially in
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humans.1 Scientists therefore face the problem of deriving the function

and/or structure of an extremely complex biological system from a

limited set of experimental data that frequently contain large

uncertainties. The quantitative methods developed to support these

efforts can be broadly divided into two types. Statistical methods are

data-driven and provide an objective approach to deriving hormone

secretion patterns from individual hormone time series. Mathematical

modeling methods are based on physiological evidence and hypotheses

regarding hormone secretion mechanisms. These two methods are not

unrelated. Although some statistical methods are model-independent,

other statistical methods frequently utilize mathematical models as part

of the data analyses, and the results of a mathematical model are often

validated through statistical data analyses.

In this chapter, we focus on the statistical approach. Mathematical

modeling of hormone networks is discussed in the next chapter.

II. EXPERIMENTAL DESIGN, DATA COLLECTION,

AND ERRORS OF MEASUREMENT

The primary objective when analyzing hormone data is to characterize

the intrinsic pulsatile and nonpulsatile nature of the secretory process.

These characteristics include the number, times, and masses of the

pulsatile secretory events that increase the hormone concentration in the

blood and the amount of basal (nonpulsatile) secretion. Before data

collection is initiated, a carefully designed experimental protocol should

be in place. Among other things, the protocol should specify the detailed

mechanism of data collection, including whether repeated

measurements will be used and specifying how often the measurements

will be taken.

Because direct data collection at the endocrine glands where the

hormones are secreted is often impossible, measurements of the

hormone concentration in the blood are used to reconstruct the secretion

patterns. This reconstruction is necessitated by the fact that the observed

hormone concentrations in blood as a function of time are the result

of a combination of hormone secretion into the blood and

pharmacokinetic removal of the hormone from the blood. In addition,

because the exact timing of hormone secretion events changes between

closely matched subjects, and even when the same subject is resampled

days or months later, considering repeated measurements is

appropriate. Finally, an extremely important property of the data is the

precision of the measured hormone concentrations, also known as the

1. Recall that hormones such as GnRH are secreted in tiny amounts by the
hypothalamus, which is part of the brain. It is not feasible to directly measure the
GnRH as it is secreted.

Endocrinology and Hormone Pulsatility 275An Invitation to Biomathematics



variance model of the data. The data points cannot all be measured with

the same precision, and thus the analysis method must include

weighting factors, as discussed in Chapter 8, to better describe the

variable precision of the individual data points.

The data shown in Figures 9-5 and 9-6 were obtained by collecting blood

samples from normal, healthy human volunteers every 10 minutes for

a total of 144 data points in 24 hours. Each of the blood samples was

assayed twice by a clinical laboratory. Hence, each of the data points in

Figures 9-5 and 9-6 consists of four values:

1. The mean measured hormone concentration (Yi);

2. The precision of the measured hormone concentration (SEMi);

3. The time the blood sample was collected (Xi); and

4. The number of replicate assays.

Recall that the standard error of the mean (SEM) at each point is

computed as the standard deviation of all readings at the data point (in

this case, all readings at the specified time) divided by the square root

of the number of repeated measurements. Given 15 or 20 repeated

measurements on each data point, the values SEMi are routinely used as

estimates for the precision of measurements and to form the weighted

sum of squared residuals (WSSR) with weights inversely proportional

to SEMi, as described in Chapter 8.

However, with only two or three replicates, as is the case of the data sets

in Figures 9-5 and 9-6, the SEM of the replicates is far too inaccurate to be

used as a realistic estimate of the precision of the hormone

concentrations. Why were more repeated measurements not collected?

For an optimal statistical analysis, it would also be better to collect

many more data points than the 144 data points presented in

Figures 9-5 and 9-6. Why were data points not collected over the course

of multiple 24-hour periods?

The answers to these questions illustrate the competing factors

researchers face when designing an experiment. On one hand, the more

data points collected, the more accurate the statistical analyses will be.

On the other hand, health and cost limitations may become a serious

issue. For example, measuring each of the time points in Figures 9-5

and 9-6 requires a certain minimal volume of blood, and there are limits

to the total amount of blood that can be safely drawn from a person.

Each of these data points is also very expensive to collect and process;

the typical cost of a clinical laboratory assay is approximately $50 per

sample. Figure 9-5 has 144 data points, and each was assayed twice, so

the cost for the assays alone was approximately $15,000. This does not

include the time clinical staff spent collecting the blood samples, the cost
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of the hospital bed for the volunteer during the study, and payments

to the volunteer. In addition, occasional experimental mishaps, such as

failure to draw blood at a specified time, invalid assay readings, or

contaminated samples, may occur. It would be unreasonable to assume

that such mishaps require discarding all previously collected data

points, especially for expensive data-collection protocols. Instead,

statistical analyses that allow for missing values in the time-series data

should be considered.

As noted, with only two or three replicates, the SEM cannot be used as

an estimate of the precision of the hormone concentrations. As a rule of

thumb, with less than 15 replicates a variance model must be created

based upon the performance characteristics of the clinical laboratory

assays. We present one such model next.

The minimal detectable concentration (MDC) is the lowest concentration

that can be measured accurately. It is experimentally calculated as

twice the SD of about 15 or 20 samples containing a hormone

concentration of zero. Clinical laboratories will commonly report

hormone levels that are less than the MDC as being too low to measure

accurately. This creates serious problems for the proper analysis of

hormone concentration time series. The algorithms require a numerical

value for the concentration, not a ‘‘too low to measure.’’ If these

‘‘too low to measure’’ values are replaced with 0.00, the analysis

procedures are forced to find that basal (nonpulsatile) secretion does not

exist. Yet, if these values are replaced with the MDC, the analysis

procedures will incorrectly find a basal secretion yielding a

concentration equal to the MDC. Also, if these values are treated as

missing values, then valuable information (that the value is ‘‘too low to

measure’’) is being neglected. Thus, the best treatment of ‘‘too low to

measure’’ values, is to force the clinical laboratories to report the actual

small value with a large experimental uncertainty.

To estimate the experimental uncertainties in such cases, a variance

model must be created that accounts for certain performance

characteristics of the clinical laboratory assays. One way to build

such a model is to describe the way the experimental uncertainties of

the assays change as the hormone concentration changes. Figure 9-7

depicts a typical variance model for hormone concentration assays

expressed in terms of the coefficient of variation (CV). The CV is defined

as the SD of the measurements divided by their mean value. A large

value for the CV would indicate that the measured value might not

represent the actual value accurately. This is more likely to happen at

very low hormone concentrations below the MDC or at high hormone

concentrations outside of the optimal range of the laboratory assay.

In Figure 9-7, the CV increases to infinity at hormone concentrations

approaching zero, decreases to a plateau in the optimal hormone
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FIGURE 9-7.
A typical variance model, the coefficient of
variation (CV), as a function of the hormone
concentration. The CV is the standard error of
the mean divided by the mean hormone
concentration.
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concentration range for the assay, and then increases when

the concentration rises above the optimal range (dashed line).

When a concentration is significantly above the optimal range, the

sample is usually diluted to fall within the optimal range and assayed

again. Consequently, the dashed region of Figure 9-7 (and the associated

experimental inaccuracies) can be dealt with by sample dilution.

For low hormone concentrations, however, a mathematical model

should be used to estimate the variance of the data.

One commonly used model for an empirical representation of the

variance as a function of the hormone concentration is given in Eq. (9-1):

Varianceð½Hormone�Þ � MDC

2

� �2
þ CV½Hormone�

100

� �2" #
: (9-1)

Here, CV is the percent coefficient of variation, and [Hormone] is the

hormone concentration. Because the MDC and CV are routinely

measured as a part of the quality control measurements performed by

clinical laboratories and their values are well known, Eq. (9-1) can be

used to provide a realistic estimate of the variance of the data. Once the

variance is approximated, the SEM for the measured hormone

concentration can be approximated by:

SEM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varianceð½Hormone�Þ

N

r
; (9-2)

where N is the number of replicates. Notice that Eq. (9-2) can now be

used to provide a realistic estimate of the precision of the measured

hormone concentration, even with a single measurement of the

concentration.

To justify the choice of the variance model defined by Eqs. (9-1) and

(9-2), recall that when more than 15 measurements are available for

a data point, the SEM is calculated as:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

N

r
¼ SDffiffiffiffi

N
p :

In this expression, N is the number of measurements available for the

data point, and SD is the standard deviation for those measurements.

Thus, Eq. (9-2) estimates the SEM by using an approximation for the

variance that cannot otherwise be accurately calculated because of the

insufficient number of replicate measurements for each data point.

To substantiate Eq. (9-1), recall that at zero concentration, MDC is

defined as MDC ¼ 2(SD), where SD is the standard deviation at

hormone concentration zero. Thus, at hormone concentration

zero, the second term of the sum in Eq. (9-1) disappears, and we obtain
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Varianceð½0�Þ ¼ ðMDC=2Þ2 ¼ ðSDÞ2;

as expected. When the hormone concentration is not zero, the second

term of the sum in Eq. (9-1) accounts for the additional variation at

any given concentration that depends on the choice of the CV from

Figure 9-7.

To summarize, in determining hormone pulsatility properties from

experimental data, it is important to use analysis methods that can

accommodate small numbers of data points with variable uncertainties

and allow for missing values. We now discuss some of the

computational procedures specifically developed for the analysis of

hormone concentration time-series data. Although the topic of hormone

pulsatility may seem rather specialized, many of the mathematical and

statistical challenges are representative of a much broader class of

quantitative problems.

We begin with some standard time-series analyses for detecting periodic

behavior.

III. CLASSICAL METHODS FOR ANALYZING HORMONE

CONCENTRATION TIME SERIES

A. Fourier and Power Spectrum Methods

Visual inspection of Figure 9-5 indicates the LH secretory events to be

approximately equally spaced in time and of equal height. That is to say,

the LH secretory profile in Figure 9-5 may appear to be periodic. To

review the terminology, a function G(t) is called periodic with period T,

if for any value of t:

GðtÞ ¼ Gðtþ TÞ;

and T is the smallest positive constant for which the condition is

satisfied.

The most common periodic functions are G(t) ¼ sin(t) and G(t) ¼ cos(t),

and their period is T ¼ 2p; that is, sin(t þ 2p) ¼ sin(t) and

cos(t þ 2p) ¼ cos(t). Also, the variable t usually represents the time

elapsed since a fixed moment in time.

EXERCISE 9-1

Show that each of the functions h(t) ¼ sin(2pt) and r(t) ¼ cos(2pt) has a

period of T ¼ 1.
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EXERCISE 9-2

Show that the functions h(t) ¼ sin(2pt/5) and r(t) ¼ cos(2pt/5) have
period T ¼ 5.

To generalize the two previous exercises, if L is any real number, the

functions h(t) ¼ sin(2pt/L) and r(t) ¼ cos(2pt/L) have period L. If L is the

period of a function, its frequency (often denoted by n) is defined

by n ¼ 1/L. The functions h(t) ¼ sin(2pt/L) and r(t) ¼ cos(2pt/L) have
period L and frequency n.

Often, the phenomenon in question may not be truly periodic but,

instead, result from the compound effect of several factors, where each

factor may itself be nearly periodic with different factors having

different periods. For instance, to study the temperature of the

Chesapeake Bay coastal water, we would have to consider daily and

yearly cycles. We could expect that any measurable function of time G(t)

for the temperature will be a sum of (at least) two periodic functions

with periods equal to 24 hours and 365 days, respectively: G(t) ¼ D(t) þ
Y(t). Furthermore, sun spot activity varies over an 11-year cycle; if its

effects on temperature are to be taken into account, the temperature may

be written as G(t) ¼ D(t) þ Y(t) þ S(t), with the function S(t) having a

period of 11 years.

When an observable function is a sum of periodic functions, or a sum of

multiples of periodic functions, we say that the observable function is a

linear combination of periodic components. In such cases, it is important

that the periods or, equivalently, the frequencies of the different

components, be identified from the observable function. This is

accomplished by Fourier transforming. When applied to the function G(t),

the Fourier transform generates a function f (n), called a power spectrum

function, where n denotes the frequency. For a given function G(t), the

power spectrum function gives a plot of the portion of a signal’s power

(energy per unit time) falling within given frequency bins (see Grafakos

[2004] for the mathematical details).

The major practical problem is that the analytic form of the function

G(t) is rarely available. In most cases, we only have a set of discrete

measurements of G(t). Under such conditions, discrete approximations

of the Fourier transform function are used as an approximation to the

continuous Fourier transform. Various numerical methods are available

for solving the problem. The most common of these methods is an

algorithm developed by Tukey and Colley in 1965 called Fast Fourier

Transform (FFT). Computer software systems, such as MATLAB and

BERKELEY MADONNA, provide implementations of the algorithm.

Our goal here is to describe how information about f (n) can be used
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to identify the prevalent frequencies in the composition of the

function G(t).

Once the power spectrum function f (n) is calculated, it provides

information about the periodic components of the original function G(t).

Suppose, for example, a function G(t) is exactly periodic with period L.

More precisely, suppose we can write G(t) as:

GðtÞ ¼ a cosð2pt=LÞ þ b sinð2pt=LÞ;

where a and b are constants. The power spectrum function f (n) will then

have a peak at a frequency n ¼ 1/L. This, of course, is only true if we

have collected data over a period of time that allows periodic behaviors

to have expressed themselves (i.e., the data should be collected

over a sufficiently long time period T).

A sample graph for f (n) is shown in Figure 9-8. Because the connection

between the frequency n and the period L is immediate and given

by n ¼ 1/L, the graph of the power spectrum could be expressed as a

function of n or as a function of L (panels A and B of Figure 9-8,

respectively). In endocrinology, the period is more commonly used than

the frequency.

Two things are important here:

1. The width of the peak depends on 1/T, where T is the time interval

over which the data are collected. Typically, collecting data over

longer periods of time will make the peak clearer and better

expressed.

2. For a fixed value T, the height of the peak is proportional to a2 þ b2.

Thus, increasing the magnitude of the coefficients a and b will make

the peak higher.

Assume now that G(t) is a sum of N sine and N cosine waves with

periods L1,L2,. . ., LN. That is:

GðtÞ ¼ a1 cos
2pt
L1

0
@

1
Aþ b1 sin

2pt
L1

0
@

1
Aþ ��� þ aN cos

2pt
LN

0
@

1
Aþ bN sin

2pt
LN

0
@

1
A

¼
XN
i¼1

ai cos
2pt
Li

0
@

1
Aþ bi sin

2pt
Li

0
@

1
A:

(9-3)

In this case, the graphs of the power spectrum function are given in

Figure 9-9. As before, the peaks are at the inverse periods ni ¼ 1/Li in

panel A and at the periods Li in panel B. The heights of the peaks

are proportional to a2i þ b2i :
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FIGURE 9-8.
The power spectrum as a function of the
frequency (panel A) and the period (panel B).

0 T

f (L)

LLN LN−1 L1

B

0 1
L2

f (ν)

ν
LN

11
L1T

1

A
...

FIGURE 9-9.
The peaks in the power spectrum identify the
prevalent frequencies (panel A) or periods
(panel B).
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According to the Fourier Theorem, a broad class of time series can be

represented as a sum of sine and/or cosine waves of the form given by

Eq. (9-3) with periods L, L/ 2, L/ 3, and so on, where L is the maximal time

range for the time series. One important prerequisite is that the time

series does not show an overall trend over time. For example, the time

series in Figures 9-5 and 9-6 do not appear to exhibit a pronounced

upward or downward trend. Conversely, a time series containing height

or weight data of a healthy child over several years will exhibit an

upward trend. Time series that preserve their statistical characteristics

such as mean and variance over time are called stationary.2 Thus, a time

series that exhibits a trend cannot be stationary.

The power spectrum function generated by the FFT is the sum of the

squares of the amplitudes of these sine and/or cosine terms for each

frequency (or period). The classical method for analysis of time-series

data is to analyze the power spectrum of the data and identify the peaks,

as illustrated in Figure 9-9. The peaks of the highest amplitude

represent the prevalent frequencies/periods in the composition of the

time series.

Consider, as an example, the function m(t) ¼ sin(2pt) sampled 500 times

over the interval [0,10] at equally spaced time instances. A FFT analysis

should then identify the unique period L ¼ 1, corresponding to a

frequency v ¼ 1, which is apparent in Figure 9-10(A). Sampling at the

same sampling rate over a longer time interval (e.g., [0,100] and [0,1000]

in Figures 9-10(B) and (C), respectively) sharpens the peak, more clearly

identifying the dominant frequency, as expected.

The result of the FFT algorithm using, respectively, 500, 5000, and 50,000

data points, sampled at a rate of 50 data points per unit time, from the

function mðtÞ ¼ ffiffiffi
2

p
sinð2ptÞ þ ffiffiffi

5
p

cosð3ptÞ þ 1ffiffiffi
2

p sinð7ptÞ is given in

Figure 9-11. In general, if Yi represents a discrete stationary time series of

N data points at time values Xi (i ¼ 1,2,. . .,N), then Yi can be exactly

represented as the sum of sine and cosine waves3 with a period L equal

to the maximal time range (i.e., T ¼ 1440 minutes for Figures 9-5

and 9-6) and where N is an odd number as:

Yi ¼ a0
2
þ

XðN�1Þ=2

n¼1

an cos
2pn
L

Xi

� �
þ bn sin

2pn
L

Xi

� �� �
: (9-4)

When N is an even number, the sum is from 1 to (N�1)/2 and either

aðN�1Þ=2 ¼ 0 or bðN�1Þ=2 ¼ 0. Considering the power spectrum of such
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FIGURE 9-10.
Results of the FFT algorithm using, respectively,
500 (panel A), 5000 (panel B), and 50,000 (panel
C) data points, sampled at a rate of 50 data
points per unit time from the function m(t) ¼
sin(2pt).

2. The exact mathematical definition can be found in Box et al. (1994).
3. Equivalent representations involving only sine or only cosine functions with
phase shift parameters are also valid. We will use these alternative forms in
Chapter 11.
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time series may sometimes effectively determine the periodic

components.

Figures 9-12 and 9-13 present the power spectra of the data shown in

Figures 9-5 and 9-6, respectively, presented as a function of the period of

the sine or cosine components. The power spectra shown in Figures 9-12

and 9-13 are simply a plot of a2n þ b2n as a function of L/n, for n ¼ 1,2,. . ., N.

There are several algorithms that can be used to calculate the unknown

coefficients a0, an, and bn (n¼ 1, 2, . . .) and represent the data as sine and/or

cosine series as shown in Eq. (9-4). As noted, the FFT algorithm is the most

widely used. These figures were done with the FFT function ofMATLAB,

but many other software packages, including BERKELEY MADONNA,

provide similar implementations.

The power spectrum of the LH example, Figure 9-12, indicates the data

contain a periodic component of approximately 230 minutes

(corresponding to L ¼ 1440 and n ¼ 7) corresponding to the visual

impression from Figure 9-5. In contrast, the power spectrum of the GH

example, Figure 9-13, gives no clear indication of a dominant frequency

(or period). In addition, even in the more conclusive LH example, the

calculated power spectra have not actually provided much information

about the physiological mechanisms involved in hormone secretion into

the blood or the kinetics of the elimination from the blood.

Summarizing, the FFT and power spectrum methods are limited to data

sets of points equally spaced in time and having equal levels of

experimental uncertainties. Also, it should be noted the power spectrum

approach only evaluates the contributions of sine and cosine waves with

integer harmonics. That is, only periods of L/n are considered, where L is

the base period (1440 minutes for the present examples) and n ¼ 1, 2, 3,

4, . . ., and, thus, only variances carried by these frequencies will be

explained by the FFT method.

B. Fractional Variance Methods

A different way to present these results is in terms of fractional variance,

defined as the fraction of the variance explained by the model over the

total variance of the data. Alternatively, one can consider the fraction of

remaining variance, defined as the fraction of the variance that cannot be

explained by the model over the total variance of the data. Both

quantities are smaller than 1, and are often expressed as percentages.

The two are easily related as:

fractional remaining variance ¼ 1� fractional variance:

Recall that we used a similar approach in Chapter 4 to quantify

heritability, considering the fractional variance of a linear model with

equal weights of the data points. In the current context, we want to
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FIGURE 9-11.
Results of the FFT algorithm using, respectively,
500 (panel A), 5000 (panel B), and 50,000
(panel C) data points, sampled at a rate of 50 data
points per unit time from the function mðtÞ ¼ffiffiffi
2

p
sin ð2ptÞ þ ffiffiffi

5
p

cos ð3ptÞ þ 1ffiffi
2

p sin ð7ptÞ: As
expected from the analytical form of m(t), three
dominant frequencies are identified at
v ¼ 1, v ¼ 3/2, and v ¼ 7/2, corresponding to the
three periodic components with periods L ¼ 1,
L ¼ 2/3, and L ¼ 2/7 of m(t). The amplitudes are
proportional to the squares of the coefficients
before the periodic components.
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FIGURE 9-12.
The power spectrum of the LH data shown in
Figure 9-5.
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consider the fraction of the variance that can be described by a sine or

cosine waveform of any particular period. The specific mathematical

expression is given by Eq. (9-5). The denominator of this fraction is the

weighted variance of the data minus the mean of the data. To compute

this variance, we first perform a weighted least-squares fit of the data

to a constant, as described in Chapter 8. Then, when the weighted least-

squares value of a is found, the variance of the residuals is calculated as

in Eq. (9-7). This gives the total variance of the data around a fixed

level a, where the value of a has been chosen to minimize the weighted

sum of squared residuals. The numerator of the fraction is the

corresponding weighted variance-of-fit when the data are fit to the

model given in Eq. (9-8)—a sum of a sine wave of period L, a cosine

wave with period L, and a constant a0. The estimates for a0, aL, and bL are

determined by a weighted linear least-squares procedure, and the

variance explained by the model is calculated for those values as in

Eq. (9-9).

Fraction of remaining variance ¼ VarianceEquationð9-9Þ
VarianceEquationð9-7Þ

(9-5)

Yi � a (9-6)

Variance ¼
X
i

Yi � a

SEMi

� �2

¼
X
i

R2
i (9-7)

Yi � a0
2
þ aLcos

2p
L
Xi

� �
þ bLsin

2p
L
Xi

� �
(9-8)

Variance ¼
X
i

Yi � a0
2
� aL cos

2p
L
Xi

� �
� bL sin

2p
L
Xi

� �

SEMi

0
BB@

1
CCA

2

¼
X
i

R2
i :

(9-9)

The lower panel of Figure 9-14 presents a plot of the fraction of

remaining variance after the LH data have been fit to a Fourier

component, as in Eq. (9-8), as a function of the period L. In this example,

there is a dominant Fourier component with a period of about 230

minutes that explains 50.2% of the variance of the data. This component

is shown as a dashed line in the upper panel of Figure 9-14, along

with the original LH data from Figure 9-5. Although the model explains

half of the total variance, this Fourier component does not provide a

perfect description of the experimental data because the physiology

generates waveforms that are not a simple sum of a few sine/cosine
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FIGURE 9-13.
The power spectrum of the GH data shown in
Figure 9-6.
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waves. The physiological waveform can, of course, be described by a

series of many sine and/or cosine waves. However, it requires so many

superimposed sine and/or cosine waves that our ability to interpret

the results may be limited.

Figure 9-15 presents the analogous analysis of the GH example from

Figure 9-6. In this example, a period of 1440 minutes only accounted for

22.9% of the variance; a period of 398 minutes accounted for 12.9%; and

a period of 193 minutes accounted for 6.2%. It is clear this GH data

cannot be adequately described by the sum of a few dominant Fourier

components with periodicities of 193, 398, and 1440 minutes. It is

interesting to note that this is an example of the multiple minima

observed when fitting nonlinear equations which we described in

Chapter 8.

C. Periodic Signal Averaging Methods

Figure 9-16 illustrates an alternate approach to the analysis of the

luteinizing hormone example shown in Figure 9-5. This approach

assumes the physiological signal occurs at a regular interval without

assuming the waveform is a sine or cosine wave. The upper right panel

of Figure 9-16 represents the percent of the variance remaining after an

arbitrary waveform is subtracted from the data as a function of the

period of the waveform. The period describing the most variance within
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FIGURE 9-14.
The lower panel presents a plot of the percent variance remaining after the data from the LH
example have been fit to a Fourier component, as in Eq. (9-6). A dominant periodic component with
period of about 230 minutes explains 50.2% of the variance of the data and is shown as a dashed line
in the upper panel along with the original LH data from Figure 9-5.
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the data is 460 minutes. With one data point sampled every 10 minutes,

460 minutes corresponds to 46 data points. The lower right panel

presents a signal-averaged waveform that assumes a period of 46 data

points. The first (from the left) point in the lower right panel is the

average of the 1st, 47th, 93rd, and 139th data points. The second point in
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FIGURE 9-15.
The lower panel in Figure 9-13 plots the percent remaining variance, as a function of the period L,
after the GH example has been fit to a Fourier component as in Eq. (9-6). The upper panel of
Figure 9-13 presents the growth hormone data from Figure 9-6 and the weighted least-squares
estimated Fourier components corresponding to periods of 1440 minutes (dotted line), 398 minutes
(short dashed line), and 193 minutes (long dashed line).
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FIGURE 9-16.
Results from the periodic signal averaging method applied to the LH data in Figure 9-5.
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the lower right panel is the average of the 2nd, 48th, 94th, and 140th data

points. The third is the average of the 3rd, 49th, 95th, and 141st

data points, and so on. This process is repeated for a series of different

assumed periods from three data points to N/3 data points, where N is

the total number of data points. The repeated waveform shown in the

lower right panel is clearly not a single sine or cosine wave. The upper

right panel is the percent of the variance remaining after the waveform

of period L is removed from the data plotted as a function of L. The

dominant periodicities occur at periods of 230 and 460 minutes. The

460-minute waveform is essentially two cycles of the 230-minute

waveform with slightly different amplitudes. The 230-minute waveform

accommodates 63.7% of the variance, and the 460-minute periodic

waveform describes 72% of the variance. Although this approach clearly

provides a much better description of the data than does the Fourier

approach shown in Figure 9-14, it is not perfect. Note that the alignment

of the peaks of the data and the peaks of the periodic waveform is not

exact. This method assumes the secretion events (i.e., the peaks) are

equally spaced, whereas in reality they are not.

The corresponding analysis for the growth hormone example is not

shown; however, as is evident from Figures 9-13 and 9-15, the GH is

substantially less periodic, with dominant periods of 190 minutes and

400 minutes describing only 8.3% and 26.6% of the variance,

respectively.

The analysis of the LH and GH data sets clearly indicates the functions

describing the secretion of these hormones are not entirely, or even

predominantly, periodic. This is a common feature of virtually every

hormone concentration time series ever measured. Thus, Fourier and

other algorithms which assume periodic events are not the best

analytical methods for this type of data. In general, the objectives of

hormone time series data analyses are to characterize the number, times,

masses, and shapes of the pulsatile secretory events that increase the

hormone concentration in the blood. The amount of basal (nonpulsatile)

secretion is also of interest, as is the description of the time course of the

removal of the hormones from the blood. The Fourier and signal-

averaging approaches presented above cannot evaluate these

characteristics well. Consequently, a group of statistically based

algorithms, called deconvolution methods, have been developed to provide

this information. Some of these methods do not require a constant

measurement uncertainty, can accommodate missing values, and do not

assume periodic secretion events.

D. CLUSTER Hormone Pulse Analysis Algorithm

One of the first statistically based algorithms was the CLUSTER

algorithm (Veldhuis and Johnson [1986]; Urban et al. [1988]) depicted

schematically in Figure 9-17. The CLUSTER algorithm functions as a

t−statistic

STEP 1

t−statistic

STEP 2

FIGURE 9-17.
Schematic illustration of the CLUSTER
algorithm. (From Urban, R. J., Evans, W.
S., Rogol, A. D., Kaiser, D. L., Johnson, M.
L. and Veldhuis, J. D. [1988].
Contemporary aspects of discrete peak
detection algorithms: I. The paradigm of
the luteinizing hormone pulse signal in
men. Endocrine Reviews, 9(1), 3–37. #
1988 The Endocrine Society. Used by
permission.)
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two-step process. The first step looks for statistically significant increases

within the data time series, while the second step looks for statistically

significant decreases. Specifically, step 1 in Figure 9-17 is comparing a

nadir (minimum) group size of 2, in this case data points 2 and 3 (each of

which contains three replicates), with a peak (maximum) group size

of 2, in this case data points 4 and 5. If this comparison indicates a

statistically significant increase, as assessed by a grouped t-test, then the

first data point in the peak group (in this case, data point 4) is marked as

being a significant increase. This process is repeated with the group

locations increased by one (i.e., points 3 and 4 are compared with points

5 and 6) until the end of the time series is reached. Every location

corresponding to a statistically significant increase is recorded. Step 2 is

identical to step 1, except that the grouped t-test is used to locate

statistically significant decreases. Nadirs are then identified as

significant decreases followed by significant increases, with peaks

identified as the regions between the nadirs. One of the consequences of

this definition of peaks and nadirs is that partial peaks at the

beginning and the end of the hormone concentration time series are not

identified. Neglecting these partial peaks is a design feature of the

algorithm because the characteristics of a partial peak cannot be

evaluated accurately.

The sawtooth pattern at the top of the LH and GH time series in

Figures 9-5 and 9-6 is a diagrammatic depiction of the locations of the

peaks and nadirs identified by the CLUSTER algorithm. The algorithm

located six peaks in the LH time series and nine peaks in the GH

time series. The CLUSTER algorithm provides a good illustration of the

importance of using a correct variance model to evaluate the precision

of the hormone concentrations. For example, the six peaks within the

LH data in Figure 9-5 were based upon an MDC of 1 and a CV of 5%. If,

however, we use MDC ¼ 0.3 and CV ¼ 3%, the CLUSTER algorithm

will locate 12 statistically significant peaks in the LH time series. Clearly,

the results obtained depend upon the assumed variance model for

the data.

The CLUSTER algorithm provides some, but not all, of the desired

characterizations of the hormone concentration time series. It provides

information about the number, location, and size of the peaks in the data

that meet its statistical criterion of significance. However, no information

about the shape and size of the underlying secretion events and

clearance mechanisms, which combine to create pulses, or any

underlying basal secretion is provided by this method. Methods more

powerful than CLUSTER in this regard are described next.

IV. DECONVOLUTION METHODS

Deconvolution methods are standard mathematical techniques widely

used in science and engineering. A typical application is to remove the
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instrument response time from spectroscopic data (Jansson [1984]). In

spectroscopy applications, the data are usually very accurate, with a

much lower measurement uncertainty than the hormone concentration

time series. In addition, spectroscopic applications will typically have

many more data points and will not contain either outliers or missing

values. Thus, the assumptions that are inherent in these methods may

not be valid for hormone concentration time series data, where the

experimental uncertainties (i.e., measurement errors) are substantially

larger and variable and missing values and outliers are common.

A. Convolution Integral Model

This method is based on the assumption that the observed time

dependence of the hormone concentration, C(t), in the blood results from

the coupling of two opposing physiological mechanisms—the rate of

secretion, S(t), into the blood and elimination, E(t), from the blood, as

shown in Figure 9-18. In Chapter 1, we explored a similar dependence in

the context of designing optimal drug intake regimens. We examined the

concentration of the drug in the bloodstream resulting from multiple

doses administered at equal time intervals and discussed how

physiological elimination affects the concentration.

Hormone concentrations in the blood are controlled by the same

competing mechanisms. When the hormone is secreted by the endocrine

glands, its concentration in the blood increases. Simultaneously, the

pharmacokinetic processes eliminating the hormone from the blood are

working to decrease its concentration. Thus, serum hormone

concentration data cannot be used directly for assessing the hormone

secretion. To obtain detailed information about the secretion events, the

processes of basal secretion and the pharmacokinetic elimination must

be decoupled. In other words, given the concentration function C(t) and

the elimination function E(t), can the rate of secretion S(t) be recreated?

Figure 9-19 provides a depiction of the coupling between secretion and

elimination similar to Figure 1-25 of Chapter 1. The difference here is

that we do not assume an instantaneous increase in concentration. The

top panel of Figure 9-19 shows a typical secretion event (i.e., the rate of
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FIGURE 9-18.
Concentration results from the coupling of the secretion and the elimination. (From Veldhuis, J.D.,
Carlson, M.L. & Johnson, M.L. [1987]. The pituitary gland secretes in bursts: Appraising the nature of
glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone
concentrations. Proceedings of the National Academy of Sciences of the United States of America, 84,
7686-7690.)
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secretion into the serum as a function of time). The second panel

approximates this secretion event with a series of rectangles. The third

panel shows an elimination function for each of the rectangles in the

panel above. For each rectangle of secretion, the concentration increases

and subsequently decays according to the elimination function. The

bottom panel of Figure 9-19 is the resulting total concentration as a

function of time. It is the sum of all of the elimination time courses for

the individual secretion rectangles. This panel shows the rapid increase

in concentration followed by the slow decay typical of hormone

concentration time-series data.

In Chapter 1, we assumed that drug elimination from the blood occurs at

a rate proportional to the amount of the drug. This led to an exponential

law for the decrease in the concentration (i.e., under this assumption

E(t) ¼ e�kt, where k ¼ ln(2)/HL and HL is the elimination half-life).

The pharmacokinetic elimination of substances, including hormones,

from the blood is a well-studied aspect of medical pharmacology.

Because there are different factors contributing to the elimination of

substances (each doing so in an exponential fashion), the most general

form of the elimination function is given by the sum of exponential

decays. The actual number of decays being summed can be large,

because most substances are eliminated via multiple biochemical

pathways. However, in the majority of cases, a single exponential decay

is sufficient to describe the experimental data, and only in very rare

cases are more than two exponential decays required.

The mathematical forms for the one- and two-exponential elimination

functions are given in Eqs. (9-10) and (9-11), respectively. In Eq. (9-11),

f2 (0 < f2 < 1) represents the fractional amplitude of the second

elimination term, whereas HL1 and HL2 are the first and second

elimination half-lives. These two equations are equal to zero when

t < 0 so that the elimination does not occur before the secretion. A typical

plot of these elimination functions is shown in the third panel in

Figure 9-19.

EðtÞ ¼
(

e�kt ¼ e
� ln2

HL

� �
t
; when t � 0

0; when t < 0
(9-10)

EðtÞ ¼
(
ð1� f2Þe�k1t þ f2e

�k2t ¼ ð1� f2Þe
� ln2

HL1

� �
t þ f2e

� ln2
HL2

� �
t
; when t � 0:

0; when t < 0

(9-11)

The stepwise rectangular approximation of the secretion rate may

appear too inaccurate, but it can be improved by increasing the number

of steps using more, narrower rectangles. For example, if one thinks of

the amount of hormone being secreted in a small interval of time Dt after

Secretion

Approximation

Individual Eliminations

Concentration

Time

FIGURE 9-19.
A graphical depiction of the coupling between
secretion and elimination. (Figure 31.2 from
Johnson, M.L., Straume, M. [1999]. Innovative
quantitative neuroendocrine techniques. In Sex–
steroid interactions with growth hormone
[Serona Symposia]. pp. 318–326. New York:
Springer-Verlag. # 1999 Springer-Verlag. With
kind permission of Springer Science and
Business Media. Reproduced with permission
from BioSymposia, Inc. [formerly Serono
Symposia USA].)
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a fixed moment t as being S(t)Dt, then we are in a situation like that in

Chapter 1; namely, it is only a small inaccuracy to consider the amount

of hormone S(t)Dt to be totally and instantaneously delivered at time t.
Now, as in Chapter 1, if t is some time later than t, the concentration of

the hormone caused by this one secretion event is SðtÞDte�kðt�tÞ:

The result will become exact after passing to a limit Dt ! 0, where Dt is
the width of the rectangles. Eqs. (9-12) and (9-13) give the resulting

mathematical form of the combination of secretion and elimination in the

form of a convolution integral for the concentration at time t.

CðtÞ ¼
Z t

0

SðtÞEðt� tÞdtþ Cð0ÞEðtÞ (9-12)

CðtÞ ¼
Z t

�1
SðtÞEðt� tÞdt ¼ SðtÞ � EðtÞ: (9-13)

We now formalize this idea and derive Eq. (9-12). Divide the interval

[0,t] into n equal subintervals of length Dt ¼ 1

n
and assume

n instantaneous secretory events of magnitude C0,C1,. . . Cn�1 have taken

place at time instances t0 < t1 < � � � < tn�1 < t; where t0 is in the

interval 0;
t

n

� �
; t1 is in the interval

t

n
; 2

t

n

� �
, and, in general, tm is in

the interval m
t

n
; ðmþ 1Þ t

n

� �
;m ¼ 0; 1; ���; n� 1 (see the horizontal axis

in Figure 9-21). Assume also that the elimination function E(t) is

exponential, as in Eq. (9-10). At time t, because of hormone elimination,

the residual amount from the secretion event at time t0 will be C0e
�kðt�t0Þ:

The secretion event at time t1 will contribute, by time t, a residual

concentration of C1e
�kðt�t1Þ; and so on. Thus, under the assumptions

made, the hormone concentration in the blood at time t will

be given by:

CðtÞ ¼ C0e
�kðt�t0Þ þ C1e

�kðt�t1Þ þ ��� þ Cn�1e
�kðt�tn�1Þ: (9-14)

Equation (9-14) is not quite exact because it assumed the secretion events

at the specified moments are instantaneous. Graphing the function

C(t) from Eq. (9-14) will result in a function with jumps, similar to

Figure 1-23 in Chapter 1 (the only difference is that the heights of the

jumps, corresponding to the secretion amounts C0, C1, . . . Cn are now

different). In reality, the hormone concentrations change in a continuous

fashion, as the secretion events can never be instantaneous. As an

approximation, however, a sharp increase in the hormone concentration

can be considered the result of a secretion event with a secretion rate S(t)

that is constant over a very short interval of time and zero outside of this

interval, as in Figure 9-20. The upper panel depicts such a secretion rate

function S(t) and the lower panel represents the corresponding
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concentration function C(t) as a result of this hormone secretion and

exponential hormone elimination. The narrower the interval Dt is,
the more pronounced the jump in the concentration function C(t) will be,

and the closer it will resemble an instantaneous secretion event.

Suppose now the secretion rate function S(t) remains constant over each

subinterval m
t

n
; ðmþ 1Þ t

n

� �
; m ¼ 0; 1; ���; n� 1; and the value of the

constant is equal to SðtmÞ (i.e., the secretion rate at time) tm (see

Figure 9-21). Then, the amount secreted over the time interval 0;
1

n

� �
is

approximately

C0 ¼ Sðt0ÞDt:

In the same way, the hormone secreted per unit volume during the time

interval
t

n
;
2t

n

� �
can be approximated by:

C1 ¼ Sðt1ÞDt;

and so on. The hormone secreted per unit volume during the time

interval
ðn� 1Þt

n
; t

� �
can be approximated by:

Cn�1 ¼ Sðtn�1ÞDt:
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FIGURE 9-20.
Approximation of an instantaneous secretion event by infusion at a constant rate over a very short
interval of time.
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Using Eq. (9-14), with the specific values above, we arrive at the

following approximation for the concentration at time t:

CðtÞ � Sðt0ÞDt e�kðt�t0Þ þ Sðt1ÞDt e�kðt�t1Þ þ :::þ Sðtn�1ÞDt e�kðt�tn�1Þ; i:e:

CðtÞ �
Xn�1

m¼0

SðtmÞe�kðt�tmÞDt: (9-15)

Note that Eq. (9-15) is based on two approximation assumptions. First,

we assumed that the secretion events occurred instantaneously, and,

second, we assumed that the rate of secretion S(t) remained constant

over each subinterval of length Dt. As Dt ! 0, both of these

approximations will become more accurate, and thus Eq. (9-15) will give

a better approximation for C(t). Because the sum in Eq. (9-15) represents

a Riemann sum for the function SðtÞe�ðt�rÞ over the interval [0,t], taking

the limit as Dt ! 0 in Eq. (9-15), gives:

CðtÞ ¼ limDt!0

Xn�1

m¼0

SðtmÞe�kðt�tmÞDt ¼
Z t

0

SðtÞe�kðt�tÞdt ¼
Z t

0

SðtÞEðt� tÞdt;

where E(t) ¼ e�kt. This is the integral term of Eq. (9-12) for the most

common case of exponential removal of the hormone from the

bloodstream.

Identical derivations apply for any other form of the function E(t), such

as the sum of two exponential decays given in Eq. (9-11). For this more

general case, Eq. (9-14) changes to:

CðtÞ ¼ C0Eðt� t0Þ þ C1Eðt� t1Þ þ ��� þ CnEðt� tnÞ: (9-16)

The first term of Eq. (9-16) represents the residual concentration at time

t remaining from the secretion event at time t0. The second term is the

residual concentration at time t from the secretion event at time t1, and

0
n
3t time

n
2t

n
t t

n

S(t)

S(t2)
S(t1)

S(t0)
∆t∆t ∆t

(n−1)t
tn−1t2t1t0

FIGURE 9-21.
Approximation of the secretion rate function S(t). This approximation assumes that S(t) remains

constant over each interval
ðk� 1Þ

n
;
kt

n

� �
:
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so on. The concentration at time t is the sum of all partially eliminated

secretion events occurring before time t. The convolution integral in

Eq. (9-12) is the integral analogue of Eq. (9-16), accounting for the fact

that secretion events may occur at any moment. The secretion event

occurring at time t will undergo elimination for a time of t – t before

time t. The concentration at time t in this case is the integral

over [0,t] of all partially eliminated secretion events occurring

before time t.

In calculating the convolution integral, we assumed that the hormone

concentration before this time is zero. This assumption is not realistic,

because at least some basal concentration of the hormone will be

observed. The C(0) in Eq. (9-12) represents the concentration at time

t ¼ 0, and the term C(0)E(t) represents the residual of this concentration

at time t. Alternatively, if the integration is over the interval [�1,t] this

extra term will be absorbed by the integral as in Eq. (9-13). The

symbol * in Eq. (9-13) is the mathematical shorthand for a convolution

integral.

In principle, Eqs. (9-12) and (9-13) can be used with a set of experimental

data C(t1),C(t2),. . . and an assumed approximate value for the

elimination half-life, HL, to determine the characteristics of the secretion

rate as a function of time, S(t). This process is known as deconvolution;

that is, the inverse of a convolution.

B. Gold’s Deconvolution Method

Gold’s method is an example of one of the standard deconvolution

techniques described above. Gold’s method is an iterative approach for

the solution of Eq. (9-13); that is, C(t) ¼ S(t) ∗ E(t). As we saw in Chapter

8, an iterative method for S(t) starts with an initial estimate and

subsequently provides a better estimate based on the data. The process is

repeated until the iterations do not change significantly from one

cycle to the next. In Gold’s method, the value of the secretion as

a function of time after k iterations, kS(t), is expressed in terms of the

previous iteration as:

0SðtÞ ¼ CðtÞ
kSðtÞ¼k�1SðtÞ CðtÞ

k�1SðtÞ � EðtÞ :
(9-17)

In Eq. (9-17), the concentration as a function of time, C(t), is used as the

initial value for the secretion as a function of time, 0S(t), to start the

iteration. The function E(t) is the exponential elimination function

from Eq. (9-10).

Figure 9-22 presents the Gold’s deconvolution of the GH data shown in

Figure 9-6 assuming a 20-minute elimination half-life. It is clear there

are at least three large secretion events and maybe as many as 20 small
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ones. The secretion appears to drop to nearly zero between some of the

small secretion events, so it seems the contribution caused by basal

secretion is either negligible or zero.

Figure 9-23 presents the Gold’s deconvolution of the LH data shown in

Figure 9-5 assuming a 50-minute elimination half-life. In this case, it

appears there are seven or eight large secretion events. There also seem

to be numerous small secretion events or perhaps even an elevated basal

secretion. Because of the measurement errors within the data, an

elevated constant basal secretion might look like a large number of very

small secretion events.
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FIGURE 9-22.
Gold’s deconvolution analysis of the growth hormone data shown in Figure 9-6. This calculation
assumed a single elimination half-life of 20 minutes. The units of GH secretion are ng/ml/min.
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FIGURE 9-23.
Gold’s method of deconvolution of the luteinizing hormone data shown in Figure 9-5. This
calculation assumed a single elimination half-life of 50 minutes. The units of LH secretion are mIU/
ml/min.
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Clearly, what is needed is an objective criterion to evaluate the statistical

significance of a presumptive secretion event. Gold’s method does not

provide for such a criterion per se and does not even provide an obvious

method to propagate the uncertainties of the data into an uncertainty of

the secretion rates obtained with the deconvolution. This is typical of

many of the standard deconvolution methods, some of which require

equally spaced data points and do not allow for variable experimental

uncertainties. Many of these methods simply ignore the existence of

experimental measurement errors within the data. Gold’s deconvolution

method is also typical, in that it requires assumed values for half-lives

and produces the same number of data points of a secretion time series

as existed in the original concentration time series. These limitations

are partially resolved by the newer methods outlined in the next section.

More details about Gold’s method can be found in Jansson (1984).

C. Multiparameter Deconvolution Methods

In order to account for variable measurement errors, missing values, and

to perform accurate secretion event identification, iterative weighted

least-squares fitting of the convolution integral from Eq. (9-12) can be

used for hormone concentration time series. The first step is to define

a mathematical model for the shape of the secretion function S(t).

Once this model is defined, the parameters of the model can be

determined by fitting the model to the hormone concentration time

series, as described in Chapter 8. The weighted nonlinear least-squares

fitting addresses the variable measurement errors and the possibility of

missing values inherent to a hormone concentration time series. The

estimated model parameter values provide the locations and sizes of the

secretion events, the basal secretion, and the elimination properties.

The goodness-of-fit methods that can be used with weighted nonlinear

least-squares fitting provide ways to test the adequacy of the assumed

secretion model. Furthermore, the weighted nonlinear least-squares

techniques also include methods to estimate the precision of the model

parameters, which can be used to test the significance of individual

secretion events. Such methods are usually referred to as multiparameter

deconvolution methods.

The original multiparameter deconvolution method DECONV (Veldhuis

et al. [1987]) operated under the assumption that the secretion events

can be described as the sum of Gaussian curves occurring at different

times, PPk, and having different magnitudes, Hk, but all having the same

width, Secretion SD, as is shown in Eq. (9-18).

SðtÞ ¼ S0 þ
X
k

Hke
�1

2

t�PPk
Secretion SD

� 	2
: (9-18)

The positive constant S0 in Eq. (9-18) is the basal secretion. One way to

approximate the locations of the secretion events is to use statistical
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techniques to detect significant increases followed by significant

decreases in the time series such as done by CLUSTER.

This algorithm suffers from three potential weaknesses. First, although it

can easily be justified under the assumptions of the central limit

theorem, some might find the assumption that the secretion event could

be described by a Gaussian distribution questionable. Second, circa

1987 computer hardware was substantially slower than today’s personal

computers. Thus, the original multiparameter deconvolution algorithm

and software did not include the most rigorous statistical tests for the

existence of a secretion event, simply because the required computer

resources were not available in 1987. Third, the user had to provide

estimates, for the exact number of secretion events and their

approximate locations and sizes. The CLUSTER method can be used to

provide those estimates, but, as this method is just one out of many,

the choice of initial values for the parameters will be somewhat

subjective. Thus, multiparameter deconvolution alternatives that are

more flexible with regard to assumptions and input information would

be preferable.

One such algorithm, called PULSE, is a waveform-independent

deconvolution method that is not based on the assumption that the

secretion function is of the form given in Equation (9-18). In PULSE, the

secretory pulses are assumed to have a general form that increases

from a nadir to a peak and then decreases back to a nadir. It also

eliminates the requirement to specify the number and approximate

positions of the secretory events. Several other deconvolution techniques

have been developed as described in Johnson and Veldhuis (1995) and

Johnson et al. (2004) in an attempt to automate the original

multiparameter deconvolution technique (e.g., PULSE2 and PULSE4).

The history of these automatic algorithms closely parallels the

developments of available computer hardware. Faster computers mean

that more computationally intensive statistical tests can be utilized.

Figures 9-24 and 9-25 present the results of applying of the PULSE,

method to the LH and GH time series from Figures 9-5 and 9-6. The

lower panel of these figures is the calculated secretion rate as a function

of time, S(t) in Eq. (9-17). The upper panel of these figures presents

the calculated concentration as a function of time, C(t), from Eq. (9-13).

The original data points are represented as vertical error bars. The

middle panel describes the corresponding residuals, Ri, for the values of

the parameters minimizing the weighted least-squares norm in

Eq. (9-19):

Variance of Fit ¼
X
i

Yi � CðtiÞ
SEMi

� �2
¼
X
i

R2
i : (9-19)

Based on a visual inspection, it appears that the secretion patterns shown

in Figures 9-24 and 9-25 provide a good description of the actual
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FIGURE 9-24.
Analysis of the luteinizing hormone data in
Figure 9-5 by multiparameter deconvolution
predicted 10 secretion events with HL ¼ 46.5
minutes, C(0) ¼ 8.02, S0 ¼ 0.0478, and Secretion
SD ¼ 3.1 minutes. The concentrations and
secretion rates are expressed on a logarithmic
scale to emphasize the small secretion events.
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experimental data. The residuals appear random, and there are no

outliers.

Currently, an ‘‘automatic’’ multiparameter deconvolution technique is

available (titled AUTODECON) that is maximally assumption-free and

implements a rigorous statistical test for the existence of secretion

events. In addition, it eliminates the subjective nature of the earlier

algorithms by automatically inserting, and subsequently testing, the

significance of presumed secretion events. This automatic algorithm is a

combination of three modules; a parameter fitting module that performs

weighted nonlinear least-squares parameter estimation, an insertion

module that determines the location for and adds presumed secretion

events, and the triage module that removes secretion events that are

not statistically significant. We refer the reader to the references below

for a comprehensive description.

Before we move on, we reiterate that in this chapter we focused on

methods using hormone concentrations measured in the blood serum

to determine whether the secretion events are periodic or pulsatile

and to reconstruct the secretion levels from experimental data.

Sophisticated mathematical methods, such as convolution–

deconvolution techniques, are required in this case because of the

ongoing physiological elimination of the hormone. An alternative

approach would be to consider the factors impacting hormone secretion

and model the network of interactions in order to obtain the secretion

profile of the hormone in question. We consider such models in the

next chapter.
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Life is a constant oscillation between the sharp horns of dilemmas.

Henry Louis Mencken (1880–1956)

In their article ‘‘What is a Biological Oscillator?’’ Friesen

and Block wrote: ‘‘There can be little doubt that

oscillations are an essential property of living systems.

From primitive bacteria to the most sophisticated life

forms, rhythmicity plays a vital role in providing for

intercellular communication, locomotion, and behavioral

regulation. Although the presence of biological rhythms

has been recognized since antiquity, only recently has the

origin of these rhythms been systematically addressed. At

present, there are numerous descriptions of biochemical,

biophysical, and physiological oscillations in the scientific

literature . . . . Most recently, mathematical analysis has

been applied to biological oscillators as well. . . .’’ (from

Friesen and Block [1984], used with permission of the

American Journal of Physiology-Regulatory, Integrative, and

Comparative Physiology).

Since this was written, the importance of applying

mathematical methods to examining the source, nature,

mechanism, and stability of biologic oscillations has

intensified considerably. In particular, the efforts to

describe, explain, and predict oscillatory hormonal

behavior are fundamentally interdisciplinary, with

mathematics contributing its own arsenal of methods to

the more traditional methods of biochemistry and

physiology (see, for example, Farhy and Veldhuis [2005];

Farhy et al. [2002]; Wagner et al. [1998]; Keenan and

Veldhuis [2001]; Farhy [2004]).

In Chapter 9, we described some statistical methods for

examining the pulsatile nature of hormone release and

quantifying the notion of secretion peaks. However,

we did not discuss how the secretion events are regulated

by the endocrine system. In this chapter, we construct

and study mathematical models of hormone networks.

The goal is to explore some of the endocrine mechanisms

that control the secreting glands and cell groups to

ensure precise hormone release with regard to amount,

secretion times, and long-term secretion patterns. By

these mechanisms, called feedback mechanisms, the body

can sense that the concentration of a certain hormone has

decreased and communicate to the secreting gland the

amount of the additional hormone needed. The secretion

rate will then be increased. This is an example of a
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feedback mechanism, wherein the hormone regulates its own secretion.

It is important to realize that such communications could rarely be

considered instantaneous, and mathematical models often use delay

factors to describe them.

One of the most biologically important and intriguing properties of

hormones is the pulsatile pattern of their release, and this chapter will

illustrate different conditions under which oscillations emerge in

hormone concentration profiles. To approach the topic, we outline

a formalism for mathematically modeling hormone systems and discuss

the following questions:

1. What are the biological variables essential to the oscillator?

2. How do these essential variables interact?

3. Can these interactions lead to oscillations?

4. Under what conditions will oscillations be sustained?

I. INTRODUCTION

Oscillation can be described as a pattern in the dynamic plot of a

measurable quantity (such as population size or hormone concentration

in the bloodstream) that recurs with a relatively stable waveform and

period. The important characteristics of an oscillation are the interpulse

interval and the amplitude of the individual pulses (Figure 10-1, left

panel). If the zenith–nadir difference in the amplitude of the oscillation is

continuously decreasing, we have a case of damped oscillation

(Figure 10-1, right panel). Note that the recurring pattern could be quite

different from the well-known sine- or cosine-like waveforms

(Figure 10-6). If a system contains more than one oscillating variable,

another characteristic would be the phase relationship between these

variables.
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FIGURE 10-1.
Two oscillation patterns. Left panel: oscillations with constant amplitude; right panel: damped
oscillations.
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As we shall see, oscillations in endocrine physiology are often caused by

(delayed) feedback loops. We begin with a heuristic explanation of this

behavior.

Recall from Chapter 2 that if a system has a stable equilibrium state, its

values stabilize around this state in the long run (i.e., the limit for t ! 1
of the variable as a function of time is equal to the equilibrium state).

An oscillatory system must include a restorative process that keeps

the system close to its steady state, and oscillations can be sustained

only if other factors, like inertia in physical systems, lead to

overshooting the equilibrium value. For most cellular, endocrine, and

neuronal oscillations, the critical factor that provides an overshoot

is delay, which prevents the feedback restorative process from coming

into full play until the equilibrium value has been passed (see

Example 10-1).

Delays in biological systems can arise from many sources, and the

debate about what causes delay and how best to model complex systems

involving delay is far from over. The simplest situations involving

delay are those with a certain time-offset or lag between an action

triggered by one variable and the response to this action by a second

variable. For example, suppose hormones A and B are involved in the

control of a particular organismal function, and that hormone B turns off

the production of hormone A. Suppose also that the inhibitory effect of

Hormone B does not immediately follow an increase of hormone B

in the bloodstream. The time elapsed between the increase in the

concentration of B and the decrease in the concentration of A will be

interpreted in the simulations below as an explicit delay. An explicit delay

generally represents the amount of time necessary for a certain sequence

of molecular and/or cellular events to occur. Explicit delays can vary

greatly, depending upon the system at hand—the incubation period

for an infectious disease represents one kind of explicit delay, and

incubation periods can range from days to years. In this case, the delay

results from the amount of time it takes for the pathogen to travel

through the host’s body and to multiply in the favored portion of the

host’s anatomy.

In other cases, the delay may not be explicit. In such cases, the delay

would not formally reflect a certain period of time, but would result

from a particular threshold value that must be met before the affected

variable responds. In our hormone example (above), let us say that the

level of hormone A will not be affected until the level of hormone B

in the bloodstream reaches 300 pg/ml (picograms per milliliter). The

delay then reflects the time necessary for the concentration of B to rise

from its baseline levels and approach the threshold of 300 pg/ml. For

another example, consider the Lotka–Volterra predator–prey model

described by a coupled system with threshold values for the predator

and prey populations (see Example 10-2). The population of the predator
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(owl) exerts control over the population of the prey (vole), and vice

versa. In our work with this model, the thresholds were manifested as

critical lines (the null clines) determined by the rate of change of the

variables being equal to zero.

If a system involves more than one variable and the variables interact

with one another, it is possible that one of them inhibits the growth of

the other, which in turn stimulates the first one. This is, for example, the

case in the Lotka–Volterra models. Such interaction is in essence a

(negative) feedback and is often a factor that creates oscillations. When a

single variable is considered, a self-inhibitory feedback is sometimes

possible—in this case, we talk about autofeedback (see

Example 10-1).

Whether a delay and/or a feedback will generate oscillatory behavior

depends on the specific context of the problem and on the particular

values of the system parameters. In this light, the presence of delays

and/or feedbacks should be considered a factor that is likely to cause

oscillations and should not be understood as a sufficient condition for

oscillatory behavior in biological systems.

II. SYMBOLIC SCHEME REPRESENTATIONS OF

THEORETICAL MODELS AND MODELING GOALS

Schematic diagrams are often used to show the most important

components of a biological system and the connections between them.

Standard symbols have been adopted to facilitate the display of

information:

1. Rectangles (A, B, etc.) denote system variables (also referred to as

nodes);

2. Lines (arrows) indicate specific relationships (also referred to as

conduits) and are additionally marked with one of the symbols

(þ) or (�): a (þ) indicates an excitatory action on the variable at

which the line terminates, whereas a (�) denotes an inhibitory

action; and

3. Triangles (D) on one or more of the lines indicate that a delay

occurs from the change in the variable from which the line initiates

until the corresponding effect is actually exerted.

For example, Figure 10-2 presents a schematic diagram of a network

representing the interaction between two variables A and B. The line

from A to B is marked with a (þ), indicating an excitatory input. The

line from B to A is marked with a (�) to indicate that B inhibits the

A B

(+)

(−)

D

FIGURE 10-2.
Schematic diagram of a two-node network with
feedbacks and delay.
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growth of A. In addition, there is the presence of explicit delay for the

stimulatory action of A upon B. This system contains one feedback, in

which any one of the variables feeds back to suppress its own growth,

and this feedback action is mediated by the other variable.

Example 10-1
.........................

Delayed Population Growth. Recall from Chapter 1 the classical logistic

growth equation

dP

dt
¼ r 1� PðtÞ

K

� �
PðtÞ;

where K > 0 is the carrying capacity of the system, r > 0 is the inherent

per capita growth rate for the population, and P(t) is the size of the

population at time t. It presents a model in which population size is

limited by available resources. However, as we discussed, a limitation of

this model is that it fails to take into consideration the time necessary

for complex organisms to reach reproductive age. Thus, the diagram in

Figure 10-3 illustrates a self-inhibitory effect (autofeedback) for the

population size delayed by the delay time D necessary for each

individual to reach reproductive age.

Notice that the origin of the line indicating excitatory input for the

population size P(t) is not shown. The input here is generated by the

flow of natural resources that support the living organisms in the

system. It also depends on the size of the population, and, de facto,

P stimulates its own growth, providing an example of a self-stimulatory

feedback mechanism that would force the system to explode if not

restricted by the (negative) feedback. A differential equation

corresponding to the diagram in Figure 10-3 is the classical delayed

logistic growth equation:

dP

dt
¼ r 1� Pðt�DÞ

K

� �
PðtÞ:

Example 10-2
.........................

A Predator–Prey Model. The diagram in Figure 10-4 schematically

represents the Lotka–Volterra predator–prey model. Because the owls

feed on the voles, the growth of the vole population causes growth in the

owl population (excitatory input). Because the growth of the

owl population causes the vole population to decline in size

(inhibitory input), there is a negative feedback between the owls and the

voles (see Chapter 2 for details).

P

(+)

(−)

D

FIGURE 10-3.
Schematic representation of autofeedback with delay.

OWLS VOLES

(+)

(−)

FIGURE 10-4.
Schematic presentation of the feedbacks in Lotka–
Volerra’s predator–prey model.
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Example 10-3
.........................

The Growth Hormone Network. Growth hormone (GH), or

somatotropin, is a major hormone regulating growth and metabolism.

GH is secreted by the pituitary gland under the control of the following

substances released by the hypothalamus: (1) The

GH-releasing hormone (GHRH) that triggers the production and

secretion of GH, and (2) somatostatin, or somatotropin release-inhibiting

factor (SRIF), which is a GH secretion inhibitor. Numerous other

substances could impact GH behavior. However, they are of secondary

importance to the GH network and, for the sake of simplicity, will be

omitted in the discussion that follows.

In a simplified view, GH secretion increases with increased

hypothalamic GHRH secretion but is inhibited by SRIF (which acts as a

suppressor for both the GHRH and GH). All three hormones are

subject to exponential elimination with certain half-lives. Laboratory

data in the adult male rat show that elevated concentrations of GH act by

way of time-delayed feedback (D ¼ 60–120 minutes) to stimulate

SRIF release from the hypothalamus, which antagonizes GH release

from the anterior pituitary gland and represses GHRH secretion.

Schematically, this minimal GH network can be represented by the

three-node diagram in Figure 10-5. The ellipses marked ‘‘elimination’’

signify that, in addition to the secretion rates of GH, GHRH, and SRIF

controlled by the feedback mechanisms, the dynamic behavior of the

system also depends upon the rates of continuous ongoing elimination

for all three hormones.

Schematic representations (such as Examples 10-1 through 10-3) are

based on significant prior knowledge of the functional connectivity of

the system. Such knowledge is usually acquired through experimental

work, data analysis, and, as we shall see below, mathematical

modeling. Data analyses may also reveal certain specifics, such as

periodicity, fluctuations, or time patterns. Once the schematic diagram is

developed, it could be used as a basis for creating a dynamic model

utilizing difference equations or differential equations. The model

should be capable of reproducing and explaining key experimental

observations.

Consider the schematic representation of the GH network in Figure 10-5,

which is based on the physiological links between GH, GHRH, and SRIF

described in Example 10-3. In this system, frequent measurements of GH

concentrations in the bloodstream have unmasked complex patterns of

gender-specific and developmentally regulated patterns of GH release in

rats, sheep, and humans. In particular, GH secretion evolves as

infrequent clusters of large pulses in adult male rodents, pubertal

children, and young fasting or sleeping men and women, but

unfolds as frequent, low-amplitude bursts in female rats and older,
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awake, or nutrient-replete humans. Figure 10-6 schematizes a typical GH

secretion profile in the adult male rat (for real in vivo data see, for

example, Lanzi and Tannenbaum [1992]). A model that describes the

dynamics of GH concentration should reproduce the specifics of this

pattern and suggest possible explanations for the mechanisms that are

responsible for the observed dynamic behavior.

In this chapter, we discuss a general modeling approach to studying

various mechanisms of hormone release control, similar to the GH

network described above. The following three phases are fundamental to

the modeling effort:

1. Data analysis and exploration of the specifics of hormone concentra-

tion time series, such as pulse detection, analysis of the variability

and orderliness, determining the baseline secretion and half-life,

and detecting the frequency of oscillations. As a result of the data

analyses, selected experimental outcomes and hormone profile

specifics are targeted for explanation in the modeling effort.

Many aspects of this phase were described in Chapter 9.

2. Formal network design presenting an intuitive outline of the

system’s functional connectivity. This phase is based on

analysis of available data from phase 1 and on the interactions

between key system elements. The information is organized as a set

of nodes and conduits in a hypothetical formal endocrine network.

3. Dynamic modeling of the formal network. The formal endocrine

network from phase 2 is interpreted as a dynamic system

and described with a set of coupled ordinary differential

equations (ODEs). They give the time derivative of each network

node and approximate all system positive and negative dose-

responsive control links. The parameters in the ODEs must have

a clear physiological meaning and are determined by comparing

the model output with the phase 1 data.

The outcome of the modeling effort addresses the question of whether

the design of the formal endocrine network is a good approximation of
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FIGURE 10-6.
Typical schematized adult male rat GH secretion
profiles.
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FIGURE 10-5.
Consensus GH network.
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the actual hormone axis. Typically, this is measured by the extent to

which the hypothesized connectivity explains selected experimental

findings. However, it is unlikely the initial intuitive construct will

provide satisfactory results. Therefore, additional assumptions are

formulated that refine and expand the initial physiological hypothesis.

We specifically target the question of pulsatility in hormone release. The

main sources of oscillations in endocrine physiology are (delayed)

negative feedback loops; however, not every network with feedback

generates periodic behavior. In this chapter, we illustrate different

conditions under which oscillations emerge and perform quantitative

analysis on various abstract endocrine networks, interpreted as dynamic

systems. We shall be mainly concerned with phase 3 (above) and its

relations to phases 1 and 2.

We begin by describing, through differential equations, an

approximation of the evolution of the concentration of a single hormone

secreted in the circulation under the control of one or more other

regulators. We further simulate and analyze the interactions between

system components (nodes) organized in different feedback networks.

The main concepts are illustrated on two two-node models. System

parameters are introduced on the basis of their physiologic meaning,

and the effect of their modification is appraised. Oscillations caused by

perturbations of systems with damped periodicity are distinguished

from oscillations of systems with a genuine periodic behavior. In

addition, we discuss the simulation of basic laboratory experimental

techniques, point out some of their limitations, and suggest alternatives

that reveal more network details.

In most of our examples, the underlying mathematical theory is not

trivial. This is especially true for those models that explicitly include

delays in the core system. Abstract mathematical details are generally

avoided, and the focus is placed on numerical solutions and

interpretations. As a rule, the simulated networks are abstract and do

not correspond to a specific endocrine system. However, the constructs

and the modeling techniques are fairly general and can be easily adapted

to fit a particular physiology.

III. EVOLUTION AND CONTROL OF HORMONE

CONCENTRATION

A. Rate of Change of Hormone Concentration

We begin by describing the quantitative approximation of the

concentration dynamics of a single hormone secreted in its releasable

pool. Recall from Chapter 9 that the rate of change of hormone

concentration depends on two processes: Secretion and ongoing
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elimination. In Chapter 1, we discussed the equation dC=dt ¼ �aCðtÞ
describing the rate of change in the hormone concentration caused by

the process of ongoing elimination. If the hormone is being secreted at

the rate S(t), the differential equation

dC

dt
¼ �aCðtÞ þ SðtÞ (10-1)

describes the change in the concentration. Here, as before, CðtÞ is the

hormone concentration in the corresponding pool; t is the time; SðtÞ is
the secretion rate; and the elimination is supposed to be proportional

(with some rate elimination constant a > 0) to the available

concentration. Recall that the clearance constant a > 0 and the half-life t
of the hormone in the blood are related through t ¼ ln 2=a.

This model extends the model we considered in Chapter 1, Section IX.

That model assumed instantaneous entry of drug into the bloodstream

with every dose, and that doses were administered at equally spaced

time intervals. Equation (10-1) extends this construct by allowing

variable amount and continuous delivery with regard to time.

Also in Chapter 9, we discussed the following convolution integral as

an alternative way to describe the processes of simultaneous

secretion S and elimination E:

CðtÞ ¼
Z t

�1
SðtÞEðt� tÞdt ¼ ðS � EÞðtÞ: (10-2)

If E(t) ¼ e�at [hence, E(t � t) = E(t)E(�t)] and we know the concentration

at t ¼ 0, C0 ¼ Cð0Þ, Eq. (10-2) can also be given as:

CðtÞ ¼
Z t

0

SðtÞEðt� tÞdtþ Cð0ÞEðtÞ;

for positive values of t.

EXERCISE 10-1

Show that in the special case when SðtÞ ¼ S ¼ const and EðtÞ ¼ e�at, the

expression of the concentration function CðtÞ becomes

CðtÞ ¼ ðC0 � S=aÞe�at þ S=a: (10-3)

In Chapter 9, we derived the convolution representation (10-2) of CðtÞ as
the limit of a sequence of Riemann sums derived from discrete

approximations. As the next exercise shows, when EðtÞ ¼ e�at, the

convolution representation in Eq. (10-2) implies Eq. (10-1).
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EXERCISE 10-2

Prove that if CðtÞ ¼
Z t

�1
SðzÞe�aðt�zÞdz, then

dCðtÞ
dt

¼ �aCðtÞ þ SðtÞ:

Hint: Follow the outline below:

1. Show that Cðtþ hÞ ¼ e�ah
Ztþh

�1
SðzÞe�aðt�zÞdz:

2. Show that Cðtþ hÞ � CðtÞ ¼ ðe�ah � 1Þ
Z t

�1
SðzÞe�aðt�zÞdzþ

e�ah
Ztþh

t

SðzÞe�aðt�zÞdz:

3. Show that
Cðtþ hÞ � CðtÞ

h
¼ e�ah � 1

h
CðtÞ þ e�ah

h

Ztþh

t

SðzÞe�aðt�zÞdz:

4. Finally, to prove that
dCðtÞ
dt

¼ �aCðtÞ þ SðtÞ, use

lim
h!0

1

h

Ztþh

t

SðzÞe�aðt�zÞdz ¼ SðtÞ, and lim
h!0

e�ah � 1

h
¼ �a:

Equation (10-1) can be implemented as a model describing the rate

of change of hormone concentration in response to a specific pattern

of hormone delivery/secretion. In the following two examples, the

numerical simulations were performed with BERKELEY MADONNA.

Example 10-4
.........................

The plots in Figure 10-7 depict the simulated dynamics of a hormone in

the circulation providing it is released endogenously (secreted

internally) or administered exogenously (external delivery) as a bolus

(left panel) or in a nonvarying fashion (right panel). In both simulations,

the clearance constant is a ¼ 3h�1 and the secretion (or infusion) rate is

20 ng/ml/h. The secretion is continuing for 10 minutes (left panel) or

180 minutes (right panel).

FIGURE 10-7.
Approximation of the raise and decay of a hormone administered as a (short-term) 10-minute (left)
or (long-term) 3-hour constant infusion (right). The bottom line depicts the hormone concentration
evolution, while the top curve illustrates the pattern of hormone delivery.
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This example illustrates the expected concentration profiles of a

hormone entering the bloodstream at one rate but for different periods of

time. Note the difference in amplitude change of the hormone

concentration as a function of the infusion/secretion length.

Example 10-5
.........................

This example illustrates the variation of hormone concentration in its

releasable pool in response to a specific pattern of recurrent secretion

events typical for some endocrine networks (e.g., the growth hormone or

the luteinizing hormone axes). The more frequent delivery (left panel)

causes incompleteness of the observable concentration pulses and a

visible, gradual increase in peak amplitude. The simulations were

carried out under the same conditions as in Example 4.

EXERCISE 10-3

Compare each of the graphs in Figure 10-8 and the simulated secretion

events they represent with the graph in Figure 1-25, Chapter 1. What

are the similarities and differences in the graphs and in the models they

represent?

EXERCISE 10-4

Suppose the half-life of a hormone in the circulation is 12 min and at

t ¼ 0 the concentration of the hormone was equal to 0. At that moment,

an intravenous infusion of the hormone at a constant rate was initiated.

Three minutes later, the concentration of the hormone in the circulation

was 500 ng/ml. Calculate the rate of exogenous infusion.

Hint: Use Eq. (10-3).

FIGURE 10-8.
Approximation of hormone concentration changes if the hormone is secreted in frequent (left) or
infrequent (right) pulses. The bottom line is the hormone concentration, whereas the top curve
marks the secretory pattern.
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B. Secretion of One Hormone Controlled by the Concentration of Another

Up to this point, the events of secretion and elimination of a single

hormone have been considered independent from any other hormone. In

reality, there is considerable interaction between different hormones. We

now consider the case when the secretion rate of hormone A is controlled

by the concentration of hormone B. Figure 10-9 represents this situation.

The secretion of hormone A can be divided into two components, basal

and system-regulated (Figure 10-10). The basal secretion represents the

amount of hormone secreted independently of other system (model)

components (e.g., hormone B, in our case). The system-regulated

component corresponds to that part of the secretion exclusively related

to other system hormones. Within this paradigm, if B is a stimulator, the

basal secretion is what would remain if B were removed from the

system. However, if B were an inhibitor, the basal secretion would be the

release of A remaining after the action of B is applied to its full potency

(e.g., by constant infusion of high, pharmacological doses of B).1

The above concept implies that the rate of change of the concentration

CA of hormone A from Eq. (10-1) can be written as:

dCA

dt
¼ �aCAðtÞ þ SAðtÞ;

where the rate of secretion SA can be presented as the following sum:

SA ¼ SA;basal þ SA;systemðCBÞ: (10-4)

Here, SA;basal and SA;systemðCBÞ represent the basal and system-controlled

secretion of A, respectively. The system component SA;systemðCBÞ will

depend explicitly only on the concentration of B (and not on the time t).

We shall assume the basal secretion SA;basal is constant. SA is called a

control function, and we discuss below the choice of its components

SA;basal and SA;systemðCBÞ. This choice, although arbitrary to some extent,

should conform to a set of general rules. For example, SA;basal and

SA;systemðCBÞ must be non-negative, because the secretion rate is always

non-negative. Also, in most cases the system component of the control

function will be monotone. The presence of hormone B can serve to

either stimulate or inhibit the secretion of hormone A, but in either case

we shall assume the effect is monotone. That is, if the effect of hormone

B is to stimulate the secretion of A, then a higher concentration of

B will cause a stronger stimulus (and higher secretion rate) of A. The

function SA;systemðCBÞ will be monotone increasing as a function of

CB. Likewise, if the effect of B is to inhibit the production of A, the

B

A

(±)

Elimination

FIGURE 10-9.
Schematic presentation of a
hormone network wherein the
secretion of A is regulated by the
concentration of hormone B (and
also by elimination).

B

A
System-controlled

(±)

A
Basal

elimination

FIGURE 10-10.
Formal separation of the secretion of A into basal
and system-controlled.

1. The removal of hormone B could be performed by infusion of antibody to B,
suppression of its secretion, or down-regulation or blockage of the receptors
that mediate its action. For additional detail, see Section IV, part C. Note that this
use of the term basal secretion is model-dependent and differs from the definition
provided in Chapter 9.
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stronger the presence of B, the lower the secretion of A, and the function

SA;systemðCBÞ will be monotone decreasing. Monotone increase represents

positive control, and monotone decrease represents negative control.

Finally, the control function should be chosen to ensure that the

concentration CA will remain within its physiological range—between

the minimal and maximal possible concentrations of hormone A.

From a physiological perspective, in order for a molecule of hormone B

to exert its effect, it should bind to a specific receptor on the cell that

produces and releases hormone A. As we saw in Chapter 7, hormone-

receptor interactions obey laws of mass action, and the dissociation

constant for the corresponding chemical reaction determines the affinity

of the receptor for its ligand (hormone B). The higher the affinity of the

receptor, the lower the hormone concentration required to elicit biological

response. Sometimes, we say that changes in affinity (or in sensitivity)

modulate the potency (power to produce the desired effect) of the

hormone. On the other side, the efficacy (responsiveness; maximal effect

that can be produced) of a hormone depends, among other things, on the

number of receptors. This numbermay vary under different physiological

conditions and affect the level of the response, but, generally, not the

affinity. Therefore, it is desirable that the control function SA;systemðCBÞ
explicitly embodies parameters corresponding to potency and efficacy.

These properties of SA;systemðCBÞ can be represented in a mathematical

form by assuming that SA;systemðCBÞ ¼ aFðCBÞ, where the parameter a

represents the efficacy of hormone B, and F is a properly chosen,

normalized (efficacy ¼ 1) version of the control function. The desired

criteria regarding SA;systemðCBÞ will now be satisfied if the following

requirements are imposed on the normalized function:

1. 0 � FðCBÞ � 1;

2. F is monotone; and

3. F includes parameters that correspond to the potency of the action

of B.

Among the various different functions satisfying the above properties,

many authors choose to use the following nonlinear, sigmoid functions,

known as up- and down-regulatory Hill functions to describe positive and

negative hormone relationships:

FupðdownÞðCÞ ¼

½C=T�n
½C=T�n þ 1

¼ Cn

Cn þ Tn
ðupÞ

or
1

½C=T�n þ 1
¼ Tn

Cn þ Tn
ðdownÞ:

8>>>>><
>>>>>:

(10-5)

As a justification for the name, consider the Hill equation given by

Eq. (4-8) of Chapter 4, which was derived based on the presumed
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binding affinity of hemoglobin for oxygen molecules. Both functions are

monotone and map the interval [0, 1] to [0,1].

The parameter T > 0 in the definition of the functions (10-5) is called a

threshold, and the power n > 0 is called a Hill coefficient. The threshold

T in an up-regulatory Hill function is sometimes denoted by ED50

and is called median effective dose. Analogously, in a down-regulatory

control function is referred to as ID50, or median inhibitory dose (see

Exercise 10-5). The parameters ED50 and ID50 approximate the potency

of the regulatory hormone. The parameter n controls the slope of the Hill

functions. For a fixed value of T, the larger the value of n, the

steeper the slope. The Hill functions Fup and Fdown are displayed in

Figure 10-11 for n ¼ 3 and T ¼ 10. When n ¼ 1 (the so-called

Michaelis–Menten equation), the function has no inflection points, and

its profile is a branch of a hyperbola.

EXERCISE 10-5

Show that Fup ¼ 1� Fdown; FupðTÞ ¼ 1=2; and FdownðTÞ ¼ 1=2:

When Hill functions such as in Eqs. (10-5) are used, the mathematical

form of the system component of the control function SA from

Eq. (10-4) can be defined as:

SA;systemðCBÞ ¼ aFup;ðdownÞðCBÞ: (10-6)

The parameter a represents the efficacy of hormone B, the maximal effect

B can produce on the secretion of A. With this choice of SA;system, the

control function SA from Eq. (10-4) takes the form

SA ¼ SA;basal þ aFup;ðdownÞðCBÞ: (10-7)

Figure 10-12 summarizes several examples, illustrating the changes

in the control function in response to changes in the model

parameters T, n, and a. We use the up-regulatory control function

SðCÞ ¼ a
ðC=TÞn

1þ ðC=TÞn ¼ 20
ðC=10Þ3

1þ ðC=10Þ3 as a reference (the described

changes refer to the following initial values of the parameters: T ¼ 10,

n ¼ 3, and a ¼ 20).

Figure 10-12 (left panel) represents changes in the response curve caused

by varying the potency and/or efficacy (represented by the parameters

T and a, respectively). Increasing T leads to decreasing the potency of the

regulating hormone, because this means that higher concentrations of

the regulatory hormone are necessary for reaching the median effective

dose. In contrast, decreasing T would lead to increasing the potency of

the regulating hormone (not shown). Changes in the value of the efficacy

FIGURE 10-11.
Exemplary profiles of up-regulatory (black line) and
down-regulatory (dotted line) Hill functions. In both
examples and n ¼ 3 and T ¼ 10.
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(the parameter a) change the maximal value of the control function. The

Hill coefficient n controls the slope of the control function. As n increases

(values as large as 100 exist in biology; see Vrzheshch et al. [1994];

Mikawa et al. [1998]), the slope of the control function also increases as

illustrated in Figure 10-12 (right panel). For large n, the control function

acts as an on/off switch at the concentration value C ¼ T. Plots

similar to those in Figure 10-12 (left panel) are often seen in textbooks to

illustrate the anticipated effect on percent of maximal response

caused by decreased responsiveness and/or sensitivity.

The parameter a in Eq. (10-7) depends upon, and is determined from, the

maximal possible attainable concentration of hormone A, CA;max. The

latter is the maximal physiologically possible endogenous concentration

of A under a variety of conditions, including extremes such as responses

to external high pharmacological stimulations. This maximal value may

be known from experiments or hypothesized in case of mathematical

simulations, in which case it could be considered a parameter of the

model.

EXERCISE 10-6

Show that if a is the control coefficient from Eq. (10-7), then the

quantities ðaþ SA;basalÞ=a and SA;basal=a represent CA;max and CA;min,

respectively. Then, show that a ¼ aCA;max � SA;basal ¼ aðCA;max � CA;minÞ:

Hint: Use Eq. (10-1), the fact that the maximal and minimal

concentrations of A are achieved when dC=dt ¼ 0, and the fact that

FupðdownÞ has maximal value 1 and minimal value 0.

FIGURE 10-12.
Effect of manipulating the model. Left panel: Changes in the response curve caused by varying the
potency and/or efficacy of the interaction. Solid line: control; upper dashed: decrease in potency of
the regulating hormone (threefold increase in ED50, that is, of the parameter T ); dotted: twofold
decrease in efficacy (that is, twofold increase in the value of a); lower dashed: combined twofold
decrease in efficacy (that is, of the parameter a) and threefold increase in ED50 (that is, of the
parameter T ). Right panel: Alterations in the control response curve (black) associated with 10-fold
increase (dashed) or twofold decrease (dotted) of the Hill coefficient n. Remark: Note the difference
in the time scales in the left and right panels; the control function is the same in both plots.
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To summarize, we use up- or down-regulatory Hill functions to write

the term controlling the secretion of A in the form:

SAðCBÞ ¼ aFup;ðdownÞðCBÞ þ SA;basal; (10-8)

where SA;basal � 0 is independent of B and controls the basal secretion of

A. The quantities ðaþ SA;basalÞ=a and SA;basal=a represent CA;max and

CA;min, respectively. In case the basal secretion is negligible, it might be

ignored and considered zero. This is the assumption in our next

example, which illustrates how control functions can be used to express

the schematic diagrams describing the system in terms of coupled

ordinary differential equations.

Example 10-6
.........................

Assuming that SA;basal ¼ 0 and SB;basal ¼ 0, write a system of

differential equations describing the schematic hormone network in

Figure 10-13:

SOLUTION:

We begin with the basic differential equations describing the rate of

change of the concentrations CA and CB:

dCA

dt
¼ �a1CA þ SA and

dCB

dt
¼ �a2CB þ SB;

where a1 > 0 and a2 > 0 are the elimination constants of hormones

A and B, and SA and SB are the respective control functions for the

secretion rates. Because Figure 10-13 indicates that the increase of the

concentration of A is inhibited by hormone B, we use a down-regulatory

Hill function with parameters T1 and n1 to express

SAðCBÞ ¼ a1FdownðCBÞ ¼ a1
Tn1
1

ðCBÞn1 þ Tn1
1

:

As the increase of the concentration of B is stimulated by hormone A (as

evident from the positive conduit indicated in Figure 10-13), we use an

up-regulatory Hill function to express

SBðCAÞ ¼ a2FupðCAÞ ¼ ðCAÞn2
ðCAÞn2 þ Tn2

2

:

We need to account for the presence of delay in the way hormone A

affects the secretion of hormone B. Because the delay D reflects the fact

that secretion at time t is affected by the hormone action in a past

moment, t � D, the control function SB can be expressed as SBðtÞ ¼
SBðCAðt�DÞÞ. These considerations give the following system of

differential equations representing the diagram from Figure 10-13:

B

A

(+)

Elimination

(−) D

Elimination

FIGURE 10-13.
Schematic hormone network for Example 10-6.
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dCA

dt
¼ �a1CA þ a1

Tn1
1

ðCBÞn1 þ Tn1
1

dCB

dt
¼ �a2CB þ a2

ðCAðt�DÞÞn2
ðCAðt�DÞÞn2 þ Tn2

2

:

The units in this model are

CA;CB;T1;T2 mass=volumeðe:g:; ½ng=ml�Þ
a1; a2 mass=volume=timeðe:g:; ½ng=ml=h�Þ
a1; a2 time�1ðe:g:;½h�1�Þ
D timeðe:g:;½h�Þ:

In the sequel we avoid specifying the units, but the simulated profiles

can be rescaled with ease to fit a particular physiology.

In this example, the assumptions SA;basal ¼ 0 and SB;basal ¼ 0 were made

to emphasize the system interactions. As the basal secretion is

independent from the hormone interactions, removing the assumption

that the secretion rates SA;basal and SB;basal are negligible, leads to the

following system of equations:

dCA

dt
¼ �a1CA þ SA;basal þ a1

Tn1
1

ðCBÞn1 þ Tn1
1

dCB

dt
¼ �a2CB þ SB;basal þ a2

ðCAðt�DÞÞn2
ðCAðt�DÞÞn2 þ Tn2

2

:

Example 10-6 may be used to represent a possible dependence and

interaction between two hormones. When hormone networks are

considered, frequently more than one hormone controls the regulation of

a specified hormone in the network, as shown, for example, on the

formal diagram in Figure 10-5 depicting the consensus network of GH.

Next, we consider how the ideas and mathematical formalism discussed

in this section could be generalized and used to describe such multiple

interactions.

C. Control of the Secretion of One Hormone by the Concentration

of Multiple Hormones

Assume that two hormones instead of one control the secretion of A.

We denote them by B and C, with corresponding time-varying

concentrations CBðtÞ and CCðtÞ. We shall still use the equation

dCA

dt
¼ �aCAðtÞ þ SAðtÞ to describe the rate of change in the concentration

of A, but the control function SA will now depend on the specific

interaction between A, on the one hand, and B and C, on the other.

Endocrine Network Modeling 317An Invitation to Biomathematics



We use the notation SA ¼ SAðCB;CCÞ to express that the control function

SA depends (at any time t) on the concentrations of hormones B and C.

The exact functional dependence is then determined by the specific

physiological nature of the hormones’ interaction. For example, if both

B and C stimulate the secretion of A, and if they do so independently, we

can use a control function of the form:

SAðCB;CCÞ ¼ aBFupðCBÞ þ aCFupðCCÞ þ SA;basal: (10-9)

If B and C act simultaneously (e.g., the secretion of A requires the

presence of both), the following control function may be appropriate:

SAðCB;CCÞ ¼ aFupðCBÞFupðCCÞ þ SA;basal: (10-10)

On the other side, if the secretion of A is stimulated by B but is

suppressed by C, the control function can be introduced as

SAðCB;CCÞ ¼ aFupðCBÞFdownðCCÞ þ SA;basal; (10-11)

if hormones B and C act simultaneously, or

SAðCB;CCÞ ¼ aBFupðCBÞ þ aCFdownðCCÞ þ SA;basal; (10-12)

if hormones B and C act independently. Note that Eq. (10-11)

approximates a noncompetitive and simultaneous action of B and C.

If B and C compete as they control the secretion of A, the secretion term

can be described with a modified Hill function:

SAðCB;CCÞ ¼ a
ðCB=TBÞnB

ðCB=TBÞnB þ ðCC=TCÞnC þ 1
þ SA;basal: (10-13)

The latter form allows simulating competitiveness, understood as the

capability of one hormone to overcome the effect of the other hormone,

which cannot be achieved with the version utilized in Eq. (10-11). The

latter is caused by the multiplicative form, wherein the value of

FdownðCCÞ is an upper bound of the product FupðCBÞFdownðCCÞ because
both factors are less than 1.

Having outlined the mathematical formalism, we are now ready to

investigate oscillating systems and the source of oscillations. As already

noted, the mathematical theory is highly nontrivial. Thus, even in

relatively simple cases of interactions between two hormones, a

complete list of necessary and sufficient conditions for the system to

oscillate may not be possible. In what follows, we present examples

illustrating the different long-term behavior such systems may

exhibit and compare the conditions under which such behaviors

occur. We again begin with system networks involving only two

hormones.
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IV. OSCILLATIONS DRIVEN BY A SINGLE-SYSTEM

FEEDBACK LOOP

In this section, we revisit models of formal networks similar to the model

in Example 6, focusing on networks describing a feedback interaction

between two hormones, A and B. The concentration of one, hormone A,

regulates the secretion of another, hormone B, which in turn controls the

release of A, as shown in Figure 10-14:

Notice that in both constructs shown in Figure 10-14, any one of the

hormones suppresses, indirectly, its own secretion. Therefore, these

networks contain a negative feedback loop. Such networks are quite

common in endocrinology. For example, in the male rat, GH stimulates

the release of somatostatin with a lag of 60 to 120 minutes, and

somatostatin, in turn, suppresses the release of GH.

As before, we assume the two hormones, A and B, are continuously

secreted (driven by nonrhythmic excitatory inputs) in certain pool(s),

such as the systemic circulation, where they are subject to elimination.

The release of hormone B is regulated by hormone A. Hormone B

itself exerts a delayed effect on the secretion of A. The interactions

between A and B are assumed to be dose-responsive. For simplicity, we

assume no delay in the action of A on B and no basal secretions.

The equations corresponding to the schemes in Figure 10-14 could be

written following the pattern in Example 10-6. More specifically, the

system of ODEs describing the schematic diagram in the left panel is:

dCA

dt
¼ �aCAðtÞ þ a

1

ðCBðt�DBÞ=TBÞnB þ 1

dCB

dt
¼ �bCBðtÞ þ b

ðCAðtÞ=TAÞnA
ðCAðtÞ=TAÞnA þ 1

:

(10-14)

A

B

(−)

Elimination

(+) D

Elimination

A

B

(+)

Elimination

(−) D

Elimination

FIGURE 10-14.
Formal networks of two-node/one-feedback oscillators. The left panel depicts a network in which
the main Hormone B is stimulated, while the other shows a model in which B is inhibited. D denotes
a delay in the corresponding interconnection. In both networks, A and B are subject to elimination.
(Reprinted from Farhy, L. S. [2004]. Modeling of oscillations in endocrine networks with feedback,
Methods in Enzymology, 384, 54-81. Copyright 2004, with permission from Elsevier.)
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Because B inhibits the secretion of A, we used a down-regulatory Hill

function in the first equation. This equation also accounts for the delay

(via the parameter DB) in the B ! A system interaction depicted in

the schematic diagram. In contrast, because A stimulates the secretion

of B, an up-regulatory Hill function is used to represent the control

function in the second Eq. (10-14).

We should note that, because of the presence of delay, solving these

equations for t � t0 requires preset initial conditions for CB on the entire

interval ½t0 �DB; t0�.

EXERCISE 10-7

Give the system of ODEs corresponding to the schematic diagram of the

right panel in Figure 10-14.

A. Limit Cycles and Steady States

We now demonstrate that a nonzero delay and large nonlinearity in the

control functions (sufficiently high Hill coefficients) can guarantee

steady periodic behavior, because of the existence of a nontrivial limit

cycle.

As the next exercise shows, the system defined by Eq. (10-14) has a

unique equilibrium point (steady state). When there is no delay (that is,

when DB ¼ 0), this equilibrium point is asymptotically stable and

attracts all trajectories in the phase space (see Figure 10-15, left panel).

EXERCISE 10-8

For the model of Eq. (10-14) show that:

(a) The system has a unique equilibrium state.

(b) When DB ¼ 0, the equilibrium state of Eq. (10-14) is asymptotically

stable.

Hint: Apply the theory presented in Chapter 2 by completing the

following steps.

1. Represent the system defined by Eq. (8) in the form

x0 ¼ �axþ FðyÞ
y0 ¼ �byþ GðxÞ;

where x = x(t) and y = y(t), a; b; F;G > 0, and F and G are monotonic

decreasing and increasing, respectively.

FIGURE 10-15.
Illustrative trajectories in the phase space
(CA, CB) if the steady state is an attractor
(top) or a repellor (bottom). In the latter
case, a unique asymptotically stable
periodic solution acts as limit cycle and
attracts all system trajectories (except for
the fixed point). (Reprinted from Farhy, L.
S. [2004]. Modeling of oscillations in
endocrine networks with feedback,
Methods in Enzymology, 384, 54-81.
Copyright 2004, with permission from
Elseveri.)

Attractor

Limit cycle
Repellor
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2. Show that the system for the equilibrium state is

ax ¼ FðyÞ
by ¼ GðxÞ

3. Solve the above system for x and show that the resulting equation:

x ¼ 1

a
F

GðxÞ
b

� �

has only one positive solution. To do this, prove first that the

function in the right-hand side of the above equation is monoto-

nously decreasing. Do the same for y.

4. Investigate the stability by calculating the determinant and trace of

the matrix

�a F0ðyÞ
G0ðxÞ �b

� �
:

Finalize your reasoning by demonstrating that in the equilibrium

state the trace – (a þ b) < 0 and the determinant ab� F0ðyÞG0ðxÞ > 0.

The picture changes considerably in the presence of delays, because even

a single nonzero delay (as in Eq. (10-14)) might change the properties of

the steady state,2 that may, for a certain range of delay values, become a

repellor. In the latter case, there will exist a unique asymptotically stable

periodic solution (which encircles the fixed point in the phase space)

acting as a global limit cycle by attracting all trajectories, except the one

originating from the fixed point (see the theorem of Poincaré–Bendixson

in Chapter 2).

Although Poincaré–Bendixson’s theorem gives a sufficient condition for

the existence of a limit cycle, the verification of these conditions is often

nontrivial, and we shall not focus on this question here. Instead, we

examine the periodic solutions of two specific realizations of the

networks shown in Figure 10-14. Each of these examples has a unique

periodic solution and a unique repelling fixed point (Figure 10-15, right

panel). We note that oscillations may be quite sensitive to changes in the

model parameters and examine the system’s response to external

influences, such as changes to sensitivity, antibody infusion, and

exogenous hormone infusion, expressed as appropriate modifications to

the mathematical models.

2. The particular sensitivity analysis is nontrivial and is beyond the scope of
this textbook. It consists of investigating the real part of eigenvalues, which are
roots of equation containing a transcendental term, involving the delay. For more
details, see Farhy and Veldhuis (2004).
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Now consider a model described by the following core equations

representing a possible formalization of the network where A stimulates

the secretion of B (Figure 10-14, left panel):

dCA

dt
¼ �3CAðtÞ þ 20

1

½CBðt� 1Þ=2�3 þ 1

dCB

dt
¼ �3CBðtÞ þ 40

½CAðtÞ=2�3
½CAðtÞ=2�3 þ 1

:

(10-15)

The parameters are chosen to guarantee stable oscillations. The time

plot and phase diagram of the (numerical) solution obtained with

BERKELEY MADONNA are shown in Figure 10-16.

In this example, the parameter choice indicates3 that we have surmised:

(a) The maximal attainable amplitude of CB is 40/3.

(b) The maximal attainable amplitude of CA is 20/3.

(c) ED50 for Hormone A is 2.

(d) ID50 for Hormone B is 2.

Even in this simple example, we have a variety of possibilities to model

the interactions between A and B by considering changes to the

parameters. It is important to understand in what way the parameter

choice might affect the oscillatory properties of the system, and it is

desirable to formulate a physiological explanation. For example, let’s

consider the following question: In what way will the model (10-15)

FIGURE 10-16.
Left panel: Dynamics of the concentration of A (solid) and B (dotted), for the model described by
Eq. (10-15). Right panel: Corresponding phase diagram.

3. See Exercise 10-5 and the preceding discussion on the physiological meaning
of the Hill function parameters.
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respond to a fourfold decrease in feedback latency? That is, how will the

model be affected by decreasing the delay time from D ¼ 1 to D ¼ 0.25?

To gain a better insight into this question, note that according to (a)

above and Figure 10-16 (left panel), the peak response of B to

endogenous A-drive is almost maximal. Therefore, an exogenous bolus

of the stimulator A cannot bring forth dose-dependent release of B-

secretion at levels notably higher than the typical endogenous B-

concentration. This may be because the delay in the feedback is

sufficiently long to provide enough time for the pulses to unfold. This is

confirmed by the result produced by the model after 4-fold decrease in

feedback latency. The output, presented in Figure 10-17, displays

decreased peak amplitudes and elevated nadirs. The typical

(endogenous) peak heights are lower than expected [(a) and (b) above],

but the system is capable of responding to exogenous stimulation with

higher pulses (Figure 10-17). Also, there is an increase in pulse frequency

caused by the shorter feedback delay.

To provide an example that approximates the network where A inhibits

the secretion of B (Figure 10-14, right panel), we use the following

reference system of delayed ODEs:

dCA

dt
¼ �3CAðtÞ þ 20

½CBðt� 1Þ=2�3
½CBðt� 1Þ=2�3 þ 1

dCB

dt
¼ �3CBðtÞ þ 40

1

½CAðtÞ=2�3 þ 1
:

(10-16)

Note the difference from Eq. (10-15): the up- (down)-regulatory

function is replaced by a down- (up)-regulatory function. This system

also has a stable periodic solution, a graph of which is presented in

Figure 10-18:

We need to outline the framework that links the system parameters

with experimental observations. This information is important

FIGURE 10-17.
Left panel: The effect of fourfold decrease in feedback latency [all other model parameters are the
same as in Eq. (10-15)]. The black line illustrates the evolution of the stimulator A; the dotted line
depicts hormone B. The plot also shows the model response to a brief bolus of hormone A
introduced at t ¼ 96:00. Right panel: Corresponding phase diagram.
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when initial estimates for the parameters are made. We saw in

Chapter 8 that providing good initial guesses for the values of the

parameters may be critical to determining the correct values of

the model parameters when nonlinear least-squares algorithms are

applied to determine the best fit between data and model. Deriving

dependencies between system parameters and experimental

observations will also facilitate our discussion of changes in sensitivity.

B. Initial Parameter Estimates

Our purpose now is to derive simple conditions, broadly linking

system parameters to experimental observations. Recall that in

deriving the mathematical form of the control function SA we found

a relationship between the parameters of Eq. (10-8) and the maximal

attainable hormone concentration (Exercise 10-6). Therefore, the

elimination constants a and b and the coefficients a and b from

Eq. (10-14) are linked with the maximal hormone concentrations in

the following way: CA;max ¼ a=a and CB;max ¼ b=b. The following

result shows that, after some time (depending on the initial

conditions), the solutions will also be bounded away from zero.

EXERCISE 10-9

Prove that for any e > 0 (and we may choose e as small as we like)

the following upper and lower bounds on the solution of the system

Eq. (10-14) are valid for sufficiently large t:

0 <
a

a
1

b

bTB

0
@

1
A

nB

þ 1

� e � CAðtÞ � a

a
þ e

0 <
b

b
1

TA

min CA

0
@

1
A

nA

þ 1

� e � CBðtÞ � b=bþ e:
(10-17)

FIGURE 10-18.
Left panel: Evolution of the concentrations of hormone A (dotted) and hormone B (black), for the
model described by Eq. (10-16). Right panel: Corresponding phase diagram.
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Hint: Use the fact that if f and g are solutions to the differential

equations f 0 ¼ �kf þ FðtÞ and g0 ¼ �kgþ GðtÞ (with k > 0 and initial

conditions f ðt0Þ ¼ gðt0Þ > 0) and FðtÞ � GðtÞ � 0, we have f ðtÞ � gðtÞ for
all t > t0.

Exercise 10-9 establishes that the evolving solution of the system ðCA;CBÞ
will approach the square ð0 � CA � a=a; 0 � CB � b=bÞ even for those

initial conditions that are outside of this square. On the other hand, if

there is no external input in the system (no infusion of A or B), then

CA<a=aþ e after some time, and we get from Eq. (10-14) that the actual

endogenous peak concentration of B will never reach b=b. In particular,

with time its upper limit will approach

b

b
1

TA

a=aþ e

� �nA

þ 1

(10-18)

which is less than b=b. To get the above inequality, substitute the

estimate for CA in the term controlling the secretion in the second

Eq. (10-14), and estimate the maximal concentration of B following the

Hint in Exercise 10-9. We may work in a similar way to estimate the

concentration of A using the second inequality in Eq. (10-11). (How?)

Therefore, the solution of the unperturbed system ðCA;CBÞ will be inside

the square ð0 � CA � a=a; 0 � CB � b=bÞ and the concentration of one

hormone stimulated by an infusion of the other hormone will remain

bounded in this square. (Why?) The latter justifies the previously used

term maximal attainable amplitude.

All estimates may be further refined through a recurrent procedure

inherent in the core system (Eq. (10-14)). For example, one can combine

the two inequalities from Eq. (10-17) to get an explicit lower bound for

CB of
b

b
1

aTA
b

bTB

� �nB
þ 1

� �

a

0
BBB@

1
CCCA

nA

þ 1

� CBðtÞ: (10-19)

Accordingly, we can use this to write an explicit upper bound for CA:

CA � a

a
1

CB;min

TB

� �nB þ 1
� a

a
1

M
TB

� �nB þ 1
; where M ¼ b

b
1

aTA
b

bTB

� �nB

þ1

� �
a

0
@

1
A
nA

þ 1

:

The inequalities derived above can assist in determining reasonable

(initial) values for the model parameters. As we see next, they can also

be used in examining changes in sensitivity.
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C. Simulation of Feedback Experiments

The success of any modeling effort is measured by the model’s potential

to reproduce key feedback experiments. We now discuss ways for

modeling the system reaction to certain experimental approaches, aimed

at disclosing specific linkages within endocrine systems. We shall use

reference systems, such as in Figure 10-14, to illustrate the modeling of

three common lab techniques: administration of antibody to one of the

nodes, sensitivity alterations, and infusion of one of the system nodes

(hormones). We examine the corresponding model response and

demonstrate that all of these conditions might disrupt the periodicity of

the system.

1. Changes in sensitivity

Changes in the parameters of the Hill functions approximate alterations

in system sensitivity. In the model from Eq. (10-15), this would

correspond to changes in the threshold or in the Hill coefficient.

Reducing (increasing) a threshold results in sensitivity increase

(decrease). Changes in the Hill coefficient affect the slope of the control

function. In general, increasing the Hill coefficient causes minor

alterations in the frequency and does not disrupt the pulsatility of the

hormones. In contrast, a decrease could effectively obliterate the

oscillations by preventing the system from overshooting its steady state.

EXERCISE 10-10

Use Eq. (10-17) to show that pulses gradually shrink with:

(a) Decrease of TA.

(b) Increase, but not decrease, of TB.

Provide a heuristic explanation for the observed changes in model

behavior.

Hint: Show that if TA ! 0 then CB ! b=b; and if TB ! 1 then CA ! a=a.

With appropriate computer software, one can study the specific effect of

increases or decreases nA, nB, TA, and TB on the output. For the model

given by Eq. (10-15), for example, investigating the numerical solutions

indicates that:

1. Increases in nB and/or nA do not disrupt the pulsatility and yield

minor increases in frequency and peak amplitude.

2. Decreases in nB or nA may alter the output, causing pulse shrinking

and eventually loss of pulsatility.
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3. Both decreases or increases of TA can obliterate oscillations.

4. Increases, but not decreases, of TB remove the pulsatility.

2. Antibody administration

Antibody molecules are made of proteins generated by the immune

system. They are produced and circulated in the bloodstream in

response to agents, usually cells or molecules, that the organism

considers ‘‘not self.’’ If these circulating antibodies come in contact with

the agent, they are able to bind specifically to that foreign object—the

target. This binding will result in several possible outcomes: The target

may be inactivated; it may be now more easily destroyed by the immune

system; or the target may now be unable to associate with the tissue.

Accordingly, administration of a compound that acts like an antibody

(Ab) to a certain substance, referred here as S, typically results in the de

facto removal of S from the system. The rate of removal depends on the

specific chemical reaction between Ab and S, and the process can be

simulated by an increase of the elimination rate of S with a certain

reaction-specific factor. The chemical reaction may change the single

half-life pattern into a multiple half-life model (see Chapter 9). However,

the single half-life approximation might still be sufficient in the

simulations or used as a first step towards a more complex model.

To exemplify the concept, we simulated variable removal of the inhibitor

A in the model described by Eq. (10-16) (see Figure 10-19). Three

simulations were performed in which the coefficient clearance rate of

A was increased gradually (90% increase was achieved in less than

3 hours) 4-fold (left), 8-fold (middle), or 16-fold (right) starting at

t ¼ 88:00.

Figure 10-19 exemplifies that increasing the elimination rate of a

hormone could be used to simulate infusion of an antibody and almost a

complete removal of one of the nodes. This may result in loss of

periodicity (Figure 10-19, middle, right). The plot in Figure 10-19 (left

panel) also captures a very interesting phenomenon predicted by the

FIGURE 10-19.
Simulated variable infusion (starting at t ¼ 88:00) of antibody to the inhibitor A (dotted line) in the
reference model outlined in Eq. (10-16). The plots depict low (left panel), medium (middle panel), or
almost complete (right panel) removal of A.
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model: decrease in the peak amplitudes of B, even though an inhibitor is

removed from the system.

3. Infusion of a system node

A typical approach to experimentally investigating the behavior of a

particular endocrine network is to monitor the response to infusion of

one of the system components. For example, if we want to explore the

feedback exerted by GH on its own release, the experimental design

would involve systemic administration of GH. If the infused hormone is

indistinguishable from the endogenously secreted hormone, we have to

estimate the amounts of hormone secreted internally by subtracting the

model-predicted concentration of the infused hormone from the total

measured hormone.

We start with an approximation of the concentration rate of change

of a hormone that is simultaneously secreted and infused. The correct

way to simulate infusion of a hormone, which is also a system node,

would be to add an infusion term to the right-hand side of the

corresponding ODE. This term should correspond to the infusion rate

profile in the real experiment. Mathematically, it might be interpreted as

change in the basal secretion. In terms of the model described by

Eq. (10-14), if we are simulating infusion of hormone B, the

corresponding equation becomes:

dCB

dt
¼ �bCBðtÞ þ SBðCAðtÞÞ þ inf ðtÞ; (10-20)

where inf(t) is the infusion rate term. The solution of the above equation

is the sum of both endogenous and exogenous concentrations of B. To

follow the distinction explicitly, a new equation should be added to the

system:

dCinf

dt
¼ �bCinf ðtÞ þ infðtÞ

and CBðtÞ is replaced by CBðtÞ þ CinfðtÞ in all model equations, except

the one that describes the rate of change of the concentration of B.

To sum up, the core equations are:

dCA

dt
¼ �aCAðtÞ þ SAf½CB þ Cinf�ðt�DBÞg

dCB

dt
¼ �bCBðtÞ þ SBðCAðtÞÞ

dCinf

dt
¼ �bCinf ðtÞ þ infðtÞ:

(10-21)

The model defined by Eq. (10-21) is, in essence, a three-node/one-

feedback construct, where exogenous B is the new node. The model
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output depicted in Figure 10-20 uses this system of differential equations

to simulate exogenous infusion with the same assumptions used

earlier for the simulations shown in Figure 10-17. Note that in

Figure 10-17 we exploited Eq. (10-20), where the endogenous and the

exogenous component were not separated. As expected, the model

output for hormone A remains unchanged, and the sum of endogeneous

and exogeneous B in Figure 10-20 equates to the profile shown in black

in Figure 10-17, illustrating the equivalence of the two approaches.

Another example is shown below in Section IV, Part E.

Changes in the profiles of the control functions can be used to model

alterations in system sensitivity. The analysis shows that if a model has

stable periodic behavior, the increase in one of the Hill coefficients

would not change the system performance (see, for example, Glass and

Kauffman [1973]). On the other hand, a decrease in the same parameter

may transform the steady state from a repellor into an attractor and

affect the periodic behavior. Changes in the action thresholds may also

affect the periodicity. Exogenous hormone delivery can be simulated

by a simple increase in the basal secretion, or by introducing a third

node, if we would like to distinguish between the exogenous and

endogenous components of one and the same substance, as we did in

Eq. (10-21).

D. Oscillations Generated by a Perturbation

In the reference models in the previous section, the pulsatility was

generated by a system having a unique periodic solution and a unique

fixed repelling point. In this section, we demonstrate how oscillations

appear as a result of disrupting a system that does not have a periodic

solution and its fixed point is an asymptotically stable focus

(Figure 10-15, left panel). We illustrate this concept with the following

model:

dCA

dt
¼ �3CAðtÞ þ 60

1

½CBðt� 0:25Þ=5�2 þ 1

dCB

dt
¼ �3CBðtÞ þ 40

½CAðtÞ=4�2
½CAðtÞ=4�2 þ 1

:

(10-22)

In this example, formalizing again the network in Figure 10-14 (left

panel), the parameters are chosen so that there is no periodic solution [in

contrast, for example, with Eq. (10-15)] and the unique fixed point

attracts all trajectories in the phase space. Therefore, this system by itself

cannot generate stable oscillations. However, if it is externally

stimulated, it can be removed from its steady state, and oscillations will

be generated. We can show this by simulating two brief (10-minute),

unequal suppressions of the secretion of B at t ¼ 94 and t ¼ 104

FIGURE 10-20.
Simulated bolus infusion (at t ¼ 96:00) of the
system hormone B (dashed line) in the model
outlined in Eq. (10-15). The exogenous
hormone is shown with a dotted line, whereas
hormone A is plotted in black.
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(the second perturbation was sevenfold higher). The simulation was

performed by decreasing the secretion rate of B (parameter b, which in

this case is equal to 40) 3- and 21-fold, lasting 1/3 time units. Inhibition

of B removes the trajectory in the phase space away from the fixed point

in a dose-dependent manner, and the system gets enough energy to

initiate a waning sequence of pulses, as shown in Figure 10-21. The

frequency of the pulses is controlled by the coefficients of the core

system Eq. (10-22), while the initial peak amplitude depends on the level

of the perturbation.

In the above example, the perturbations were independent of the core

system. In Section V, we show that delayed system feedback could evoke

a similar effect, providing enough energy and generating oscillations in

submodels with damped periodicity.

E. Identifying Nodes, Controlling the Oscillations

All of the system models considered so far were based on prior

knowledge of the interaction between hormones, which was then

utilized to create schematic diagrams describing the specific links of

interaction (see, for example, Figures 10-5 and 10-14). We now examine

possible approaches that would allow us to decide whether such

interactions exist between hormones. We suggest experimental

paradigms tailored to support or reject the hypothesis that two

hormones, A and B, are interconnected in a specific oscillating

networklike construct (like those in Figure 10-14).

We begin by describing a commonly encountered situation in which

the results of mathematical simulations could provide valuable

information for further experimental investigations. Consider, for

example, a system in which B is the major oscillating hormone, its

concentration in the bloodstream is readily assessable, and experimental

data indicate that its release is controlled by another hormone, A. As

frequently occurs, however, measuring hormone A directly may be

experimentally difficult. For example, some human neuroregulators/

hormones, such as GHRH or gonadotropin-releasing hormone, are

produced in the hypothalamus and control major pituitary peptides

(such as GH and LH). Unfortunately, direct measurement of these

hormones in the bloodstream is difficult, because they are secreted in

small quantities and their concentration in the circulation is practically

undetectable. When the concentration of A cannot be measured directly,

the question of whether a delayed feedback loop between A and B exists to

drive the oscillations of B cannot be answered directly, either. However,

we can use mathematical models to facilitate the design of specific

experiments exploring system connectivity. In this situation, the results

of the real experiments are interpreted based on the outcome of the

simulated experiments.

FIGURE 10-21.
Oscillations generated by perturbation of the
system in Eq. (10-22). The plot depicts a brief (1/3
time units) suppression of the secretion of B (black
line) at t ¼ 94 and t ¼ 104. The second
perturbation was sevenfold higher.
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Assume that we would like to find evidence supporting the hypothesis

that the inhibitor A is connected with B in a network similar to that

shown in Figure 10-14 (right panel). We can try to monitor the system

response to neutralization of the action of A (A-receptor blocker) or

removal of A (antibody infusion) from the system. Because the model

predicts gradual pulse shrinking toward the steady-state level

(Figure 10-19), a similar experimental outcome would indicate system

connectivity like that shown in Figure 10-14. As another example, we

might be seeking support for the hypothesis that stimulator A is

connected with B as shown in Figure 10-14 (left panel). In this case,

administering a large, constant infusion of A should clamp the

oscillations (by exceeding the action threshold, resulting in continuous

response from the target organ). The latter concept is shown in

Figure 10-22, which depicts a computer-generated prediction of the

system response to infusion of hormone A [assuming that A stimulates

B: Eq. (10-15)]. We simulated constant low (left panel) and high

(right panel) infusion of A by increasing the basal A-secretion from

zero to 3 or 6, starting at t ¼ 97 [see Section IV, Part C.3 and

Eq. (10-21)].

The model predicts gradual pulse shrinking toward the current

steady-state level (the latter depends on the infusion rate). If exogenous

A is sufficiently high (right panel), the pulses disappear. Similar

outcomes observed in real experimental setting would suggest that

A and B are connected as shown in Figure 10-14 (left panel).

This approach has limitations, however. These experiments cannot

disclose whether A is actually involved in a feedback with B, or acts

merely as a trigger to remove a certain subsystem from its steady state.

For example, consider the two networks shown in Figure 10-23, and

suppose only the concentrations of hormone B can be measured.

Assume that E stimulates B and its removal diminishes the secretion of

B. Because endogenous E cannot be assessed, we have no direct means to

FIGURE 10-22.
System response to exogenous constant administration of the stimulating hormone A (black line).
The plots show simulation of low (left panel) and high (right panel) infusion of A starting at t ¼ 97.
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establish whether E is involved in a delayed feedback loop with B.

Moreover, in both networks, constant high infusion of E (as proposed

above) removes the pulsatility and elicits constant secretion of B.

Therefore, a more sophisticated experiment is required to reveal whether

E is indeed involved in a feedback loop with B (Figure 10-23, left

panel) or acts by perturbing the A-B subsystem (Figure 10-23, right

panel). A possible approach would be to block the endogenous

secretion of E and then administer a single E bolus. The system response

would be either a single spike of B secretion, if the network were that

depicted on Figure 10-23 (left panel), or a waning train of several B

pulses, if the network is the one shown on Figure 10-23 (right panel).

F. Separating Synthesis from Secretion

Although fluctuations of hormone concentration levels in the

bloodstream reflect analogous secretion patterns, this does not

necessarily mean that hormone synthesis follows the same patterns. For

example, the hormone synthesis may be occurring at a low constant rate,

with the amount of synthesized hormone accumulating in a separate

pool until a physiological signal triggers its release into the bloodstream.

Thus, there is a difference between the secretion of a hormone and its

synthesis that should not be overlooked.

As a physiological example, consider one observation typical for the

growth hormone control axis. Recall that GH is synthesized and secreted

from the pituitary gland into the bloodstream. Two major hypothalamic

hormones are universally recognized as regulating this process: GHRH

is known to stimulate both synthesis and release of GH, while the GH-

inhibiting hormone somatostatin suppresses only the secretion. It has

been observed that constant, short-term (4 hours), systemic SRIF infusion

initially suppresses GH release, but upon its withdrawal stimulates a

E

B

(−)

Elimination

(+)
D

Elimination

A

B

(−)

Elimination

(+)
D

Elimination
E(+)

FIGURE 10-23.
Two hypothetical networks, in which hormone E stimulates the secretion of B. E is either involved in
a delayed feedback (left panel), or perturbs the subsystem A-B (right panel). (Reprinted from Farhy,
L. S. [2004]. Modeling of oscillations in endocrine networks with feedback, Methods in Enzymology,
384, 54–81. Copyright 2004, with permission from Elsevier.)

332 Chapter TenAn Invitation to Biomathematics



large, reboundlike, GH release (Clark et al. [1988]). An intuitive

explanation of this effect might be that because SRIF suppresses the

secretion, but not the synthesis, during the 4 hours of systemic SRIF

infusion, the releasable pool of GH has increased under persisting

GHRH drive.

To model-test this prediction, it is appropriate to separate, on a network

level, the hormone synthesis and storage from its release. This separation

is important, because major network components affect these processes

in different ways. Let us again consider the network from Figure 10-14

(left panel), in an attempt to explain a rebound release of B following a

withdrawal of continuous infusion of a certain substance C. Assume that

during the infusion of C the release of B was suppressed and we have

evidence that C is not affecting the release of A. A possible explanation

of the rebound phenomenon would be that C affects the release of B, but

not its synthesis. However, because all conduits in the network are

affected in this experiment, the intuitive reconstruction of all processes

involved is not trivial.

One way to model this situation mathematically is to introduce

a so-called storage pool, in which B is synthesized and held for

release and another pool (e.g., the bloodstream) in which B is

secreted. This adds a new equation to the model, describing the

dynamics of the concentration of B in the storage pool. Denote this

concentration by PB. The following basic model assumptions would be

appropriate:

1. The total concentration of B in the storage pool, PB, is positively

affected by the synthesis and negatively affected by the release.

2. The concentration PB feedbacks on the synthesis of B and cannot

exceed a certain absolute limit Pmax.

3. The rate of release of B from the storage pool is stimulated by a

high pool concentration, but might be inhibited by the concentra-

tion of B in the bloodstream.

4. B is subjected to elimination only after it is secreted.

Next, we construct the schematic diagram incorporating these

assumptions. In the network from Figure 10-14 (left panel), in addition to

A and B, there is a new substance, C, that inhibits the secretion

(competing with A) but does not affect the synthesis and storage of B.

This is shown in Figure 10-24.

Using Eq. (10-13) to approximate a ‘‘competitive’’ control function, we

can describe the network with the following system of delayed ordinary

differential equations:

A

B
Storage

(–) Elimination

(–)

(+)

B
Secreted

Elimination

D

C(+)

(+)

FIGURE 10-24.
Formal network that distinguishes between synthesis
and release of hormone B. Hormone A stimulates the
synthesis and secretion of B. A third hormone C
suppresses the release of B, but not its synthesis.
(Reprinted from Farhy, L. S. [2004]. Modeling of
oscillations in endocrine networks with feedback,
Methods in Enzymology, 384, 54–81. Copyright 2004,
with permission from Elsevier.)
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dCA

dt
¼ �aCAðtÞ þ a

1

ðCBðt�DBÞ=TBÞnB þ 1

dCB

dt
¼ �bCBðtÞ þ b

ðCAðtÞ=TA;1ÞnA;1
ðCAðtÞ=TA;1ÞnA;1 þ ðCCðtÞ=TCÞnC þ 1

ðPBðtÞ=TPÞnP
ðPBðtÞ=TPÞnP þ 1

dPB

dt
¼ cðPmax � PBÞ ðCAðtÞ=TA;2ÞnA;2

ðCAðtÞ=TA;2ÞnA;2 þ 1

� by
ðCAðtÞ=TA;1ÞnA;1

ðCAðtÞ=TA;1ÞnA;1 þ ðCCðtÞ=TCÞnC þ 1

ðPBðtÞ=TPÞnP
ðPBðtÞ=TPÞnP þ 1

:

(10-23)

Here, for simplicity, we assumed that circulating levels of B do not

feedback on the secretion. This corresponds to a model with a much

higher concentration in the storage pool than in the circulation. The

parameter c controls the rate of A-stimulated synthesis of B. The

parameter y represents the ratio between the volumes of the storage

pool and the pool into which B is secreted. Typically, the second pool is

larger and y > 1. It is assumed that the control functions that correspond

to the A-driven synthesis and release are different with distinct

thresholds TA;1 and TA;2 and corresponding Hill coefficients nA;1 and

nA;2. The control, exerted on the secretion by the current concentrations

of B in the storage pool, is presented by the up-regulatory function

ðPBðtÞ=TPÞnP
ðPBðtÞ=TPÞnP þ 1

. The following values were assigned to the parameters

in Eq. (10-23):

a ¼ 1; b ¼ 2; y ¼ 6; a ¼ 4; b ¼ 4000; c ¼ 2; Pmax ¼ 900;

DB ¼ 2; TA;1 ¼ 4; TA;2 ¼ 3; TB ¼ 40; TC ¼ 10; TP ¼ 500;

nA;1 ¼ 2; nA;2 ¼ 2; nB ¼ 3; nC ¼ 2; nP ¼ 2:

The infusion of C was approximated with a separate model equation

(see Section IV, Part C.3) with an elimination constant equal to 5 and an

infusion rate assumed to be a nonzero constant only during the time of

infusion. The infusion is determined by

infðtÞ ¼
0 if t < 60

3000 if 60 < t < 70
0 if t > 70

:

8<
:

The model output is shown in Figure 10-25.

The plot depicts a reboundlike increase in the secretion of B following

withdrawal of the inhibitor C. From a mechanistic point of view,

FIGURE 10-25.
Simulated rebound response following withdrawal of
continuous C-infusion (timeline 60-70). Legend: A:
black; B: dotted; B in the storage pool: dashed.
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during the infusion of C the secretion of B is suppressed (but not the

synthesis), and the concentration in the storage pool is increased. The

concentration of A also increases, because low B levels cannot effectively

block its release. Thus, the model explains the rebound jointly, by the

augmented concentration in the storage pool and the increased

secretion of A.

We would like to note that a network may incorporate a single feedback

loop in a more complex way (e.g., via a combination of two or more

nodes). Stability analysis of the steady state of such three-node networks

with one feedback loop shows that these systems are capable of

sustaining periodicity even without an explicit delay in the feedback

loop, if the Hill coefficients are relatively high. The specific calculations

can be found in Richelle (1977) and Thomas (1973).

In the case of two nodes and one negative feedback loop, the systems

considered in this section always have only one fixed point (steady

state), which is either a repellor or an attractor (Figure 10-15). In the first

instance, the system has a unique limit cycle—a periodic solution, which

attracts all trajectories in the phase space and thereby generates stable

periodic behavior (Figure 10-16). In the second instance, the steady state

is either a focus or a node and attracts all trajectories in the phase space.

The construct displays damped periodic behavior only in the case of a

focus. An external perturbation can initiate a waning train of pulses

(Figure 10-1 , right panel; Figure 10-21) by removing the system from

its steady state. Therefore, oscillations might be generated even by a

system that does not have a periodic solution, and its fixed point is

asymptotically stable. However, an external energy source should exist.

The frequency of such oscillations is largely independent of the external

perturbation (Figure 10-21).

V. NETWORKS WITH MULTIPLE FEEDBACK LOOPS

The available experimental data might suggest that the release of a

particular hormone B is controlled by multiple mechanisms, with

different periodicity in the timing of their action. This implies that

probably more than one (delayed) feedback loop regulates the secretion

of B and the formal endocrine network may include more than two

nodes. In determining the elements to be included in the core construct,

it is important to keep track of the length of the delays in the feedback

action of all nodes of interest. For example, if the goal were to explain

events recurring every one to three hours, the natural candidates to

include in the formal network would be nodes involved in feedback

relations with B with delays shorter than three hours. Long feedback

delays cannot account for high-frequency events. In particular, if we

hypothesize that a certain feedback is responsible for a train of pulses in
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the hormone concentration profile, the direct delay in this feedback must

be shorter than the interpulse interval.

We now briefly discuss some features of abstract endocrine networks

incorporating more than one delayed feedback loop. We shall consider

networks with two (delayed) feedback loops, and where each loop

accounts for its own oscillatory mechanism. Examples of two-feedback

constructs are shown in Figure 10-26.

Note that each of the two three-node networks, shown in the middle

panels of Figure 10-26, could be reduced to its corresponding two-node

network from the top panels of Figure 10-26. For example, consider

the three-node/two-feedback network shown in Figure 10-26, middle

left panel. Assuming that both B and C can fully suppress the release of

A (that is, when no basal secretion of A is assumed), we can describe

the formal network by the system of delayed ODE:

dCA

dt
¼ �3CAðtÞ þ 10000

1

½CBðt� 0:15Þ=100�3 þ 1

1

½CCðtÞ=70�3 þ 1

dCB

dt
¼ �3CBðtÞ þ 4000

½CAðtÞ=500�2
½CAðtÞ=500�2 þ 1

dCC

dt
¼ �8CCðtÞ þ 13200

½CBðt� 4Þ=200�2
½CBðt� 4Þ=200�2 þ 1

:

(10-24)

B

(+)

(−)
A

(−)

D2
B

(−)

(+)

D1

A
(−)
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B

(+)

(−)
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(−)
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B

(+)

(−)

D1

A
(−)

C

(+)

B

(−)

(+)

D1

A
(−)

C
(+)

(+)

D2

D2

D2

D1

FIGURE 10-26.
Examples of hypothetical endocrine networks with more than one delayed feedback loop. In addition
to the connections shown, all hormones are subject to elimination. (Reprinted from Farhy, L. S.
[2004]. Modeling of oscillations in endocrine networks with feedback, Methods in Enzymology, 384,
54–81. Copyright 2004, with permission from Elsevier.)
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This system is capable of generating recurring multiphase volleys by the

mechanism described in Section IV, Part D, as illustrated in Figure 10-27.

In particular, the A/B two-node subsystem, which does not have a

periodic solution if C is taken out of the system, is perturbed by a

delayed system loop via the third node C. This removes the system from

its steady state and drives consecutive pulses during recurrent volleys.

The schematic diagram in the middle left panel of Figure 10-26,

represented by Eq. (10-24), shows that hormone B reduces the secretion

of A both directly and indirectly. The direct down-regulation occurs

with a delay D1 and corresponds to the left link of the diagram. The

indirect effect of B is caused by up-regulating the secretion of a third

hormone C, with a delay D2. This third hormone then down-regulates

the secretion of A. This observation shows that the sequence of nodes

and conduits (B ! C ! A ! B) is essentially a negative two-node

delayed feedback loop: (B ! A ! B). Analogous model output can be

achieved by reducing the three-node network to a two-node model with

two feedbacks. Therefore, the system can be modeled by removing C

from the system and introducing a correct delay in the conduit (B ! A).

The reduced network is the one shown in Figure 10-26, upper left

panel (with, of course, D2 different from the delay used to describe the

B ! C ! A ! B loop). A corresponding simplified system of delayed

ODEs could be:

dCA

dt
¼ �3CAðtÞ þ 10000

1

½CBðt� 0:15Þ=100�3 þ 1

1

½CBðt� 4Þ=10�3 þ 1

dCB

dt
¼ �3CBðtÞ þ 4000

½CAðtÞ=500�2
½CAðtÞ=500�2 þ 1

(10-25)

and the model output (Figure 10-28) is similar to the hormone profiles

shown in Figure 10-27.

Note that the schematic diagram in Figure 10-26 (upper left panel)

corresponds to a situation where hormone B down-regulates the

secretion of A through two different pathways. Therefore, additionally

reducing the number of conduits in this diagram to obtain a network

representation such as in Figure 10-14 (left panel) may not be possible.

As a broad rule, decisions for reducing the number of nodes or links in

the schematic diagrams should always be considered in the specific

context of the particular physiology that is being investigated.

Reducing the number of nodes and, therefore, the number of equations,

from three to two decreases the number of parameters to be determined

and the time needed for solving the equations numerically. This

would be most important if multiple computer runs are required.

Adding the third node to the formal network can only be justified if the

FIGURE 10-27.
Computer-generated output [concentration of A
(dotted), B (black), and C (dashed)] of the core
system Eq. (10-24).
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FIGURE 10-28.
Computer-generated output [concentration of
A (dashed) and B (black)] of the core system
Eq. (10-25).
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goal is to simulate specific outcomes explicitly involving C; even then,

the initial adjustment of the model would be significantly facilitated

if C is added to the system only after validating the two-node construct.

If the network is more complex, the attempt to reduce the number of

nodes might not be possible. For example, the construct shown in

Figure 10-26 (lower panel) cannot be transformed into a two-node model

because of the high system interconnectivity.

In closing, we note that significant theoretical complications arise

when networks have multiple steady states of different types. Methods

such as Boolean formalization, described in Thomas (1973; 1983),

could be used to analyze such systems. This method serves as an

intermediary analysis between modeling phases 2 and 3 described in the

first section of this chapter. The idea behind it is to describe complex

systems in simpler terms that allow for preliminary finding of all stable

and unstable steady states. Other complex endocrine networks with

intertwined feedback loops are considered in Farhy and Veldhuis

(2004; 2005), where their analysis strongly depends on the specific

physiology.
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The truth is rarely pure and never simple.

Oscar Wilde (1854–1900)

The rotation of the Earth produces the cycles of day and

night that are of immense importance to all living

organisms. Organisms that can anticipate these daily

rhythms and adapt to them have a selective advantage.

For example, the leaves of certain plants alternate

between horizontal daytime and vertical nighttime

positions, efficiently harvesting light during the day and

protecting against radiative cooling at night. Many small,

otherwise defenseless animals are largely nocturnal,

sleeping during the day when sharp-eyed carnivores are

active. Many desert-dwelling animals are also nocturnal,

avoiding the daytime’s intense heat and desiccating air.

Most birds are diurnal, active and feeding during the day

and returning to their roosts at night.

These daily biological cycles lasting approximately 24

hours are called circadian rhythms—from the Latin circa

(about) and dies (day). A fascinating example of the

importance of understanding circadian rhythms comes

from the field of parasitology. Elephantiasis, a disease

marked by the enormous swelling of parts of the body, is

usually caused by the filarial worm Wuchereria bancrofti.

This worm lodges in lymphatic vessels and hampers the

return of lymph to the circulatory system, causing

edema and swelling. The larvae of W. bancrofti, called

microfilariae, exhibit a circadian rhythm with regard to

their appearance in the bloodstream. In Africa, Asia,

and parts of South America and the Caribbean, the

microfilariae are present in large numbers during the

night, but absent from the bloodstream during the day.

The microfilariae of the South Pacific strain of

W. bancrofti, on the other hand, are present in the

bloodstream in the greatest numbers during the afternoon

(Fontes et al. [2000]). Because the disease is diagnosed by

observing microfilaria in a blood smear, these findings

indicate the importance of knowing when to draw blood

samples for testing.

Internal timekeeping mechanisms, often called biological

clocks, are what give organisms the ability to anticipate

such periodicities. By far, the best-studied of these

biological clocks are those responsible for circadian

rhythms. Circadian rhythms provide a survival

advantage, and organisms with no circadian rhythms, or
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with malfunctioning circadian mechanisms, will be at a disadvantage.

What happens to the mouse that ventures out of his home in the

daytime? The hawk eats him for lunch!

In this chapter, we examine the mechanisms controlling the circadian

rhythms in living organisms and some of the mathematical tools used to

characterize and study rhythmic phenomena.

I. BIOLOGICAL CLOCKS

A. Introduction

Circadian rhythms were first described at the level of whole

organisms. In 1729, the French astronomer Jean Jacques d’Ortous de

Mairan (1678–1771) observed that the leaves of certain plants were

perpendicular to the stem during the day, but parallel to the stem at

night. This cycle continued even when the plant was placed in a dark

closet. The French natural scientist Henri-Louis Duhamel du Monceau

(1700–1782) was intrigued by de Mairan’s observations and repeated the

experiment in 1758 in a wine cellar, to confirm that the movements

had not been caused by light leaking into de Mairan’s closet. In 1832, the

Swiss botanist Augustin Pyramus de Candolle (1778–1841) reported that

the rhythms of the leaves of the sensitive plant, Mimosa pudica, persisted

even when the plants were subjected to continuous artificial light.

He also noted that, over time, the biological clocks of these plants ran

faster than normal, with a period of 22 to 22.5 hours. Further

experimentation allowed de Candolle to alter the clocks of the plants

by changing the cycle of lighting, demonstrating that the plants could

obtain cues from the exogenous light/dark cycle.

The existence of such circadian rhythms in animals has also been

well-documented. For example, in 1914, J. S. Szymanski reported that

goldfish swimming occurs with a daily rhythm. During the 1950s,

Janet Harker used cockroaches, with their precisely timed nocturnal

running activity, to physically locate the biological clock within these

organisms. In the late 1950s, Patricia DeCoursey observed that flying

squirrels’ emergence from their dens exhibited closely controlled

timing.

In the 1960s, Jurgen Aschoff of the Max Planck Institute conducted his

so-called bunker studies, demonstrating the existence of human

circadian rhythms. Participants in his studies were isolated from all

external cues in an underground bunker, thus allowing their

endogenous rhythms to be studied in a controlled manner. The

volunteers remained in the underground apartment for one month,

during which time their temperature, urine excretion, activity patterns,

and performance on psychological tests were measured. The volunteers

demonstrated undeniable circadian rhythms, with an average period of

342 Chapter ElevenAn Invitation to Biomathematics



about 25 hours. Additional details about the studies described above can

be found in the book The Living Clocks by R. R. Ward (1971).

Before proceeding, we should outline the defining characteristics of

these circadian rhythms. First, they all have a period of approximately

24 hours. The period varies from species to species, and even among

individuals within a species, and it may be slightly longer or slightly

shorter than 24 hours. Second, the rhythms of an organism persist even

with constant artificial light or a complete absence of light or of other

external cues, and are thus shown to be endogenous to the organism.

Third, circadian rhythms can be entrained by exposure to appropriate

stimuli. Entrainment allows a continual resetting of the biological clock,

ensuring that the organism will properly respond to changes. The

changes may be gradual, such as changing day lengths that occur with

the seasons, or more drastic, such as time zone changes during a long

flight resulting in jet lag. Although the daily dark/light cycle is the

principal entrainment stimulus, others, such as feeding and temperature,

are known to play a role. Finally, in organisms whose cells are subject to

changing operating temperatures, such as cold-blooded animals, insects,

fungi, and plants, the circadian clock is temperature-compensated and

continues to run at the same speed regardless of temperature.

B. Structure and Function of Biological Clocks in Mammals

In addition to their expression in whole organism behaviors, circadian

rhythms have been demonstrated in organs and organ systems. They

have been found to exist in the endocrine system, in the liver, pancreas,

and digestive system, in muscle and adipose tissue, as well as in the

circulatory and respiratory systems. Experimentation in vitro has shown

that circadian rhythms may also be detected at the tissue, cellular,

and molecular levels. Recent investigations have determined the

molecular mechanisms responsible for these rhythms, and ongoing work

continues to refine our understanding of these mechanisms.

It has become apparent that in many complex organisms the circadian

clock is, in reality, multiple clocks. In fact, a hierarchy of timing

mechanisms can be observed to be in operation. In mammals, the highest

level of circadian rhythm control is exerted by the suprachiasmatic

nuclei (SCN). The SCN are areas of the hypothalamus, found in the brain

at the top of the brain stem. The SCN receive a neural signal from the

retinas, and respond by producing signals controlling the action of a

variety of other cells, tissues, and organs. In humans, the SCN controls

the pineal gland, which produces a sleep-inducing hormone called

melatonin. In the morning, when we first open our eyes, light hits the

retinas and a nerve signal is carried to the SCN. The SCN then signals

the pineal gland to turn off its production of melatonin. The daily light/

dark cycle regulating the circadian clock is known as a zeitgeber

(German for ‘‘time-giver’’).
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Research has shown that a number of other mammalian cells, tissues,

and organs have their own biological clocks that can operate in the

absence of the SCN. Such clocks have been demonstrated to function in

organs, such as the lung, liver, heart, skeletal muscle, and other parts

of the brain, as well as in cultured fibroblasts (connective tissue cells).

Yamazaki et al. (2000) used transgenic rats containing a reporter gene

(one that makes a readily detectable protein) under the direction of

circadian gene control regions to look for circadian rhythms in rats (see

Section F later in this chapter). The particular gene arrangement was

engineered so that the reporter protein would be produced in a rhythmic

fashion in all tissues generating circadian rhythms. Rhythmicity was

observed in the SCN, liver, lung, and skeletal muscle. Further research

has demonstrated rhythmicity in other organs and tissues (Abe et al.

[2002]). In mammals, the SCN has been found to act as the controller or

pacemaker, keeping the other clocks coordinated through neural and

hormonal mechanisms. Thus, a relationship between the body’s many

biological clocks exists, forming an internal temporal order (Richter et al.

[2004]). For additional details, we refer the reader to the review articles

by Richter et al. (2004) and Bell-Pedersen et al. (2005).

C. The Molecular Bases of Biological Clocks

The biological clocks responsible for circadian rhythms spring from

multiple feedback mechanisms involving both positive and negative

controls. Control of gene expression, protein–protein interactions,

post-translational protein modification, nuclear transport, and protein

degradation are all involved. In order to understand the control

mechanism, we must first briefly review the flow of genetic information

in the cell.

The cell’s repository of genetic information is the deoxyribonucleic acid

(DNA). Information stored in the DNA is copied into ribonucleic acid

(RNA) and then used to direct the production of a protein. This idea,

which is called the central dogma of molecular biology, is shown in

Figure 11-1. DNA and RNA are polymers made up of subunits called

nucleotides. A nucleotide consists of a sugar (ribose for RNA or

deoxyribose for DNA), a phosphate group, and a nitrogenous base. Only

four different nitrogenous bases are used for each nucleic acid. They

are adenine (A), guanine (G), cytosine (C), and thymine (T) for DNA and

adenine (A), guanine (G), cytosine (C), and uracil (U) for RNA. The

structures of the four nucleotides used to make DNA are shown in

Figure 11-2. The only parts that differ among the four structures are the

nitrogenous bases. The genetic information in the nucleic acids is stored

in the sequence of the nitrogenous bases along the chain.

Proteins are the functional elements in the cell. They are the enzymes

that catalyze the cell’s chemical reactions and are responsible for turning
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genes on or off. They are responsible for cell structure, cell movement,

and cell reproduction. They are also, as we shall see, responsible

for circadian rhythms. In eukaryotic cells, the genes for all proteins

(including the circadian timing proteins) are found in the nucleus.

DNA (contains genes)

Transcription (RNA synthesis)

mRNA (copy of gene)

Protein (cellular machinery)

Translation (protein synthesis)

FIGURE 11-1.
Information flow in a typical cell. Genes are sections of DNA that are transcribed into mRNA, which
then goes to the ribosomes to guide the assembly of proteins.
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A gene is simply a section of the DNA that has all of the information

necessary to assemble the desired protein (see Figure 11-3).

Because the DNA is found in the nucleus, and protein synthesis occurs

on ribosomes found in the cytoplasm (see Figure 11-4), an intermediary

is needed to carry the information from the DNA to the ribosome. The

molecule responsible for this information transfer is the messenger

RNA (mRNA). The mRNA is made by copying the gene through the

action of the enzyme RNA polymerase in a process called transcription.

The proteins that bind to DNA and control the process of transcription

are called transcription factors. In transcription, the RNA is produced,

base by base, according to the sequence of the gene, and it carries the

same information content as the gene. The mRNA then passes out

through pores in the nuclear envelope to bind to the ribosomes

(see Figure 11-5). Then, in the process of translation, the information

encoded in the base sequence of the mRNA is used to assemble

a protein.

A

B

C

D

Coding region

FIGURE 11-3.
A simplified diagram of a gene. The rectangular bar represents a piece of DNA, with A, B, and C
representing sites for the binding of transcription factors, and D representing the beginning of the
DNA to be transcribed into mRNA. The mRNA would continue to the right through the coding
region, which contains the information necessary to make the protein.

DNA

Nucleus

Cytoplasm

Ribosome

FIGURE 11-4.
A simplified diagram of a eukaryotic cell. Genes are made of DNA, found in the nucleus. Proteins are
made on the ribosomes that are found in the cytoplasm.
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Proteins may be altered, post-translationally, through the addition of

chemical groups, such as sugars or lipids, or through the removal of

part of the protein by cleavage with a protein-cutting enzyme. Proteins

may be activated or inactivated by phosphorylation, the process of

attaching phosphate groups. They may also be permanently inactivated

by complete degradation. Many of these processes play a role in the

circadian clock mechanisms.

D. Identification of Circadian Genes

Adult Drosophila (fruit flies) undergo eclosion (the process of emerging

from their pupal cases) in the morning, when the high relative humidity

allows their wings to inflate slowly and properly. In the 1960s, the

timing of the process of eclosion in Drosophila was shown to vary with

the genetic constitution of the flies. Under conditions of constant

darkness (DD), different strains of flies gave different period lengths.

The clear implication of this observation was that specific genes were

responsible for the expression of this whole-organism behavior. In 1971,

Konopka and Benzer reported the identification of long, short, and

arrhythmic mutants of the period gene referred to, respectively, as perL,

perS, and per0 (see Konopka and Benzer [1971]; Panda et al. [2002]).

Subsequently, cloning of the period gene permitted controlled studies

that demonstrated that using genetic engineering to insert a wild-type

per gene into per0 flies restored circadian rhythmicity. Also, increasing

the expression of wild-type per was shown to result in shorter period

length. Both per mRNA and protein were found to oscillate rhythmically

in a manner consistent with the associated behavioral phenotype.

Protein

mRNA

FIGURE 11-5.
Flow of genetic information in a cell. Information encoded in the DNA is copied into mRNA in
the nucleus. The mRNA then leaves the nucleus and goes to the cytoplasm, where it binds to
a ribosome. The information in the mRNA is used in the synthesis of a protein by the ribosome,
and the protein can then perform its intended function.
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Wild-type per mRNA and protein oscillated with a near 24-hour rhythm,

whereas perL and perS mRNAs and proteins oscillated with long

(29-hour) and short (19-hour) periods, respectively. The per0 gene

exhibited arrhythmic per mRNA and protein expression. These results

provided the first demonstration of genetic expression patterning

matching a behavioral expression of a whole-organism phenotype (see

Panda et al. [2002].)

Anatomical studies have identified a set of neurons in the adult fly brain

that is the activity-controlling site for behavioral circadian rhythms.

This area of the fly brain seems to be analogous to the mammalian SCN.

Additional studies of a variety of insect species have found similar

molecular mechanisms, including proteins homologous to PER (the

protein product of the period gene), involved in circadian regulation (see

Panda et al. [2002]).

Continued research into the molecular mechanisms responsible for

circadian rhythms revealed that per was not the only gene involved.

Another circadian gene discovered in Drosophila is called timeless (tim).

The timeless protein TIM forms a complex with the period protein PER

that ultimately inhibits its own transcription (see following text and

Figure 11-6). Additional genes have since been identified, and our

understanding of the molecular mechanism for circadian control has

DBT

TIM

TIM PER

PER

DBT

dCLK

CYC

PER

tim

per
dbt

dClk

cyc

Nucleus

Cytoplasm

dCLK CYC

dCLK CYC

+

+

TIM PER

FIGURE 11-6.
Simplified schematic diagram of the Drosophila circadian clock mechanism. Abbreviations are as
follows: tim and TIM are the timeless gene and protein, respectively; per and PER stand for period
gene and protein, respectively; dbt and DBT for double time; dClk and dCLK for clock; cyc and CYC
for cycle. The doubletime protein DBT phosphorylates free PER protein (i.e., any PER not bound to
TIM) and facilitates its degradation. The dashed arrows represent transcription followed by
translation. In the nucleus, the arrows indicated by a þ indicate the elevation of transcription, and
the arrows with the round heads indicate blocking of this activity.
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been growing progressively clearer over the last decade. Studies of the

molecular basis of circadian rhythms now use gene chip technology

to determine what genes exhibit circadian or otherwise rhythmic

temporal expression patterning at the level of systemwide phenomena.

The use of gene chips will be discussed in the next chapter.

Both TIM and PER are made during the day, with the levels of TIM

and PER proteins rising to a peak in early evening. TIM binds PER and

the TIM/PER complex enters the nucleus and inhibits the action of

another set of proteins, dCLK and CYC. These proteins are the products

of the dClock (dClk) and cycle (cyc) genes, and they are transcription

factors. In the absence of the TIM/PER complex, the dCLK and CYC

proteins bind to each other and then bind to the controlling regions of

the per and tim genes, turning on their expression so that per and tim

mRNAs, and then proteins, are made. But when the TIM/PER complex

enters the nucleus, it interferes with the ability of the dCLK/CYC

complex to promote transcription of tim and per mRNA, so the

transcription of tim and per mRNA stops. Both TIM and PER will be

degraded by morning, the dCLK/CYC complex will bind to the tim and

per genes and turn them on, and the amounts of tim and per mRNA,

and then protein, will rise.

This cyclic behavior of mRNAs and proteins gives rise to the circadian

rhythm of the fly. There are mammalian homologues of all of these

genes, and their mRNAs and proteins undergo similar cyclic behaviors.

Generally speaking, the more important a gene is, the more highly

conserved it is. The extraordinary conservation of these genes across

such diverse species indicates the powerful selective advantage

conveyed by the circadian system.

The following works can be recommended for additional information

on the identification of circadian genes: Panda et al. (2002), Reppert

and Weaver (2002), Richter et al. (2004), and Bell-Pedersen et al. (2005).

E. Studying Circadian Phenomena with Per-Luc Bioluminescence

It is now well established that circadian timing control exists in

effectively every cell of an organism. Current research is directed at

determining how these numerous, widely distributed, rhythmic cells are

orchestrated within the overall circadian mechanism. The challenge is to

understand how the molecular and cellular circadian machinery

produces the complex circadian behaviors manifested at the levels of

tissues, organs, and whole organisms.

Circadian timing systems can be viewed as having a master clock in

the brain and subsidiary clocks in other tissues. Experiments

investigating communication between these levels are essential. In the

SCN, this entails making observations of the electrical activities

of individual neurons, as well as the collective electrical activities of
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functionally coupled groups of neurons. But to probe the functional

coupling between rhythms expressed in other non-SCN brain regions

and peripheral tissues and organs, it is important to be able to study

these non-SCN rhythms in vitro, as well as (eventually) in vivo.

Assessment of the regulatory patterning of the period circadian clock

gene (per) became possible through the use of a reporter gene—in this

case, a luciferase cDNA fused to the promoter region of per (see

Figure 11-7). Luciferase is the enzyme responsible for bioluminescence—

when luciferase acts upon its substrate, luciferin, light is produced.

This recombinant reporter gene DNA, called a per-luc construct, was

introduced into rat zygotes to produce what are called transgenic rats,

carrying the per-luc DNA in every cell of their bodies. These rats are

entrained to a circadian rhythm, and then the tissue to be studied is

excised from the animal and put into tissue culture and supplemented

with luciferin. Light emission from the cultured tissue then reveals when

the per gene is being expressed, demonstrating the existence of

a circadian rhythm in the tissue.

F. Technological Challenges in Analyzing Circadian Data

The bioluminescence time series data generated from per-luc

experiments often show patterning in which average bioluminescence

intensity is decreasing with time (drifting downward) as a result of the

depletion of luciferin, a substrate necessary for light production by the

luciferase enzyme (see Figure 11-8). In addition, as in Figure 11-8, a

situation is often encountered in which the oscillatory magnitude

changes with time. This represents a phenomenon referred to as variance

nonstationarity (i.e., the variance exhibited in the time series changes as a

function of time). In such cases, data normalization will be necessary to

reveal the original rhythmic structure. Finally, further problems in the

analysis of time series data come from the presence of noise that may

often obscure the circadian rhythms.

Recall from Chapter 9 that most standard methods designed to

determine periodic components in a time series, such as the fast Fourier

transform (FFT) algorithm, require time series that do not have

a trend. Variance nonstationarities and noise present additional

Promoter from the period gene Luciferase coding region

FIGURE 11-7.
Schematic diagram of a per-luc construct. The DNA from the controlling region of the period gene
(the period promoter) has been fused to the DNA making up the coding region of the luciferase gene,
producing a luciferase that is then under circadian control.
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problems. Thus, in many cases, some of the classical methods for

analysis cannot be applied directly. To illustrate this last statement, we

point to the work of Plautz et al. (1997), who reported that a secondary

reproducible peak can be observed in the data, suggesting either an

approximately half-circadian period component and/or the presence

of two circadian rhythms out of phase with each other by approximately

half a circadian period. Analysis by any method that assumes

a single period estimate near a circadian range (i.e., in the vicinity

of 24 hours) would be unable to accurately capture the dynamic

behavior exhibited by this type of occurrence. This phenomenon is

particularly pertinent in assessing the phase information of a rhythm

from a noise-confounded time series. In such cases, algorithms that

allow using appropriate filters in order to clean the data may be helpful.

In addition to the experiments using luciferase bioluminescence,

numerous other experiments produce time series confounded with

similar difficulties. Locomotor activity rhythms and neuronal firing

patterns can also present data series possessing confounds that will

challenge conventional attempts at analysis. Details can be found in

Hurd et al. (1998), Sujino et al. (2003), Herzog et al. (1997), and Reppert

and Weaver (2002).

For the rest of this chapter, we shall focus on techniques for analyzing

confounded time series. We begin with an example designed to illustrate

why such methods are important.
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FIGURE 11-8.
A time series exhibiting a trend and variance nonstationarity.
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II. EXAMPLE: SIMULATION OF THE EFFECTS OF SCN

ABLATION AND TRANSPLANTATION ON FREE-RUNNING

LOCOMOTOR ACTIVITY

Like many rodents, golden (or Syrian) hamsters, Mesocricetus auratus, are

nocturnal. Their locomotor activity begins when the lights go out, and

one of the activities they pursue very avidly is wheel-running. It is easy

to obtain data of the hamster’s locomotor activity by electronically

monitoring the wheel rotation. In a wild-type hamster, exposure to a

light/dark (LD) cycle of 14 hours of light and 10 hours of dark (LD 14:10)

will entrain the hamster and result in wheel-running activity at about the

same time every day, even when the hamster is switched to dark/dark

(DD) conditions. The results obtained under these constant conditions

are called free-running because there is no signal (zeitgeber) to reset

the hamster’s biological clock. Measuring the wheel-running activity

of a wild-type golden hamster in DD conditions is known to yield a

free-running period of about 24.1 hours.

In 1988, Martin Ralph and Michael Menaker reported on a period

mutation in the golden hamster (Ralph and Menaker [1988]). The first

mutant hamster, a male, was recognized because it had a free-running

period of 22.0 hours. Ralph and Menaker bred the mutant male with

several normal females, and then subjected the F1 animals to

entrainment (LD 14:10) followed by constant dark to see how they

behaved. Half of the F1 animals had a free-running period averaging 22.3

hours. They were designated with the abbreviation Ts (for short tau or

period). The other half had a period close to 24 hours. They were

designated as Tn. When Ts animals were interbred, three types of

offspring were produced: Tn with a period of 24 hours, Ts with a period of

22 hours, and a new super-short phenotype, Tss, with a period of

approximately 20 hours. These results are consistent with a mutation in a

single gene, called tau, that is acting in a semidominant fashion (see

Chapter 3). The normal hamster has two copies of the wild-type gene;

the Ts hamster (with the 22-hour period) is a heterozygote with one

normal and one mutant copy of tau; and the super-short mutant has

twomutant copies.We shall refer to the homozygous super-short hamster

as tauss.

The identity of the protein expressed by the tau gene is now known to be

casein kinase I epsilon (CKIe). A kinase is an enzyme that places

phosphate groups on proteins, in this case the mammalian proteins

PER1 and PER2. It is similar in this way to the Drosophila gene double

time (see Figure 11-6). Phosphorylation of a protein may alter its activity

(increasing or decreasing it) or its cellular location or may mark it for

destruction. In any event, the addition of such a large charged group is

likely to be significant, and so it is not surprising that a change in the

activity of CKIe because of mutation would have a radical effect on the

period length.
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For an example, we shall use simulated data of locomotor (wheel-

running) activity of hamsters. We want to examine the relation between

the SCN and the other biological clocks present in the organs, tissues,

and cells of the animal.

The premise for our synthetic data sets is that the locomotor activity of a

wild-type hamster and a tauss hamster has been observed over a period

of time and the number of wheel rotations for every 6-minute interval

recorded for both types. Next, the wild-type hamster has had its SCN

destroyed, and SCN tissue from the tauss hamster has been transplanted

into the wild-type hamster. After an appropriate recovery period, data

are collected of the locomotor activity of the recipient wild-type hamster,

providing a third data set. This premise is similar to a series of

experiments reported by Ralph et al. (1990). Using the three data sets

from this simulated experiment, we want to examine the effect

induced on the circadian clock of the recipient animal. The following

list presents a few possible scenarios that could occur as a result of

the transplant:

1. Following the transplant, the recipient of the SCN exhibits rhythmic

patterns that are essentially the same as those of the tauss donor. If

this hypothesis could be corroborated from the data, this would

present evidence that the SCN acts as a ‘‘master clock’’ and domi-

nates the ‘‘local clocks’’ in the organs, tissues, and cells.

2. Following the transplant, the recipient of the SCN exhibits rhythmic

patterns that are essentially the same as those of a wild-type hamster.

If the data support this hypothesis, this would indicate that the

rhythms of the local clocks have overridden the rhythms of the SCN.

3. Following the transplant, the recipient of the SCN exhibits new

rhythmic patterns, different from those of both the wild-type

and tauss hamsters. If the data supports this hypothesis, this may

indicate a more complex relationship between the SCN and the

local clocks, and the question of quantitatively characterizing this

relationship becomes more interesting. For example, would the

data support the hypothesis that after the transplant, the rhythmic

patterns in the locomotor activity of the SCN recipient are a mix

of those exhibited by the wild-type and the tauss hamsters before

the transplant?

To answer these questions, we need to quantitatively characterize, as

thoroughly as possible, the rhythmic behaviors in the three data sets and

use these characterizations to develop and support our conclusions

regarding these simulated experimental observations.

The data for this case study can be downloaded from our Web site

(see Internet Resources at the end of this chapter), and we encourage

the reader to do so and repeat some or all of the analyses presented below.
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The file WT.NO represents 14 days of free-running locomotor activity of

the wild-type hamster. The data were accumulated from an animal, under

experimental conditions of DD, following a long-term regimen (2-week

minimum) of 12 hours of light and 12 hours of dark (an LD 12:12 cycle).

The file TAUSS.NO represents 14 days of free-running locomotor

activity of a tauss hamster. The data have been accumulated from an

animal, under experimental conditions of DD, following a long-term

exposure (two-week minimum) to 10 hours of light and 10 hours of dark

(an LD 10:10 cycle).

The file TRNSPLNT.NO represents 14 days of free-running locomotor

activity of the SCN transplant recipient.

We begin by plotting the data. The plots themselves make apparent some

of the challenges in analyzing this simulated data. Clearly, all the plots

exhibit a rhythmic pattern, with the pattern in the first data set being,

perhaps, best expressed. Notice, however, that the rhythms are

confounded. For the first two plots, the amplitudes change with time, and

a shift that also growswith time is visible in the position of the peaks of the

repeating patterns. In addition, the presence of noise makes it difficult to

visually identify the exact location of the peaks. For the third plot, a

rhythmic pattern is also clearly present, but it is more subtle. In order to

address the questions raised above, we shall need to quantify the rhythms

as accurately as possible and then analyze them appropriately.

This example illustrates some of the general analytical challenges

presented by confounded time series, namely: (1) Mean and/or variance

nonstationarities (i.e., time-dependent drifting and/or changes in

oscillatory amplitude); (2) period and/or phase instability; and (3) noise.

To overcome these challenges, the following question is important:

What do we wish to learn from our data to be able to quantitatively

characterize it? The typical analytical objectives of rhythmic analyses are

to extract information about: (1) The period of expression; (2) the phase

of expression; (3) the oscillatory amplitude of expression; and (4) the

robustness of rhythmic expression (how strongly rhythmic the observed

patterning is).

Even from the simple examples in Figure 11-9, it is clear that to answer

these questions and the specific questions raised in the case study, we

shall need tools that will allow us to work with confounded data. We

would like (1) detrending strategies (to address mean nonstationarities,

or drifting data); (2) strategies for data normalization (to address

variance nonstationarities, or variable-dynamic-range data); and

(3) analytical algorithms that, by design, attempt to accommodate the

nonstationarities that may be present in uncorrected data series. Before

proceeding with the example, we describe some tools for analyzing

confounded time series. We begin by outlining some well-known

fundamentals.
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III. FUNDAMENTALS OF RHYTHMIC DATA

AND TIME SERIES

A. Elementary Background

Recall that a purely periodic waveform might be of the form:

f ðtÞ ¼ a cosðbtþ gÞ:
Each of the parameters a, b, and g serves a particular function. The

parameter a controls the amplitude of the wave. Figure 11-10(A) shows

the graph of acos(t) where a > 0. The parameter b controls the period

(and therefore the frequency, because the frequency is the inverse of the
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FIGURE 11-9.
Plots of the data from WT.NO (top panel), TAUSS.NO (middle panel), and TRNSPLNT.NO (bottom panel).
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period). In Figure 11-10(B) we give the graph of cos(bt) with b > 1.

Note that the larger b is, the higher the frequency and the shorter

the period.

The parameter g affects the phase shift of the graph. The graph is shifted

to the left when g > 0 and shifted to the right when g < 0. It can also be

interpreted as the time value at which the periodic or rhythmic pattern

begins. The graph of cos(t þ p/4) is shown in Figure 11-11(A), and the

graph of cos(2t þ p/4) ¼ cos(2(t þ p/8)) is shown in Figure 11-11(B).

A cosine-like pattern (or possibly a truncated cosine) is often found

in circadian rhythm data, but there are also some variations. The

amplitude might vary from one cycle to the next as in the graph shown

in Figure 11-12(A), or the period may change by compressing

(or expanding) as in the graphs shown in Figure 11-12(B).
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Graphs of acos(t) with a > 0 (panel A) and cos(bt) with b > 1 (panel B).
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One way to identify whether the period changes and how it changes is by

the phase shift. This is particularly useful when an estimate is available for

the length of the cycle, such as 24 hours for circadian rhythms. Consider

the graph shown in Figure 11-13(A), which is periodicwith an exact period

of 24 hours. In Figure 11-13(B), we have plotted the phase shift for each

cycle. In the context of circadian rhythms, this can be interpreted as the

time of day at which the maximum value (also called acrophase) occurs.

If there is no change in the period, the maximum value will always occur

at the same time every day, and the plot will be composed of values

arranged in a horizontal line [see Figure 11-13(B)]. Now consider the graph

in Figure 11-13(C), where the phase is shifting by a constant amount when

considered relative to a 24-hour period. Figure 11-13(D) shows the time

at which the maximal value occurs for each day. As the line has positive

slope, this means that the maximal value occurs later and later each day.
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Graphs of cos(t þ p/4) (panel A) and cos(2t þ p/4) ¼ cos(2(t þ p/8)) (panel B).
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The period is, therefore, larger than 24 hours. In this particular example,

the data also indicate that the phase shifts in a linear fashion, by about

2.6 hours per day—the slope of the line formed by the data points.

Observing a linear pattern with positive slope would correspond to a

constant period greater than 24 hours. In the laboratory project for this

chapter, we observe other functional dependencies.

EXERCISE 11-1

Describe the characteristics of a plot depicting the time of daily

acrophase for time series exhibiting a constant period of magnitude

smaller than 24 hours.

B. Using Simulated Data

As discussed previously, many data analysis algorithms are first verified

on simulated data. The major point here is that for simulated data, the

answers we would normally want to find in a data set are already

known. So, the efficiency of any new data analysis method is generally

first tested on a simulated data set. When more than one algorithm is

available for a particular task, they can be compared on the basis of the

closeness of their generated answers to the actual simulation values. For

example, Figure 11-14 presents a graphical depiction of the fundamental

phenomenologically defining properties exhibited by rhythms of a

cosine wave that is mean and variance stationary, but does contain

additive noise. The data have:

1. A mean expression intensity of 0 y-axis units;

2. An oscillatory amplitude of 100 y-axis units;

3. A period of oscillation of 24 hours;

4. A phase reference point, in this case the time of acrophase, at

0 hours; and

5. Gaussian-distributed random noise added, such that the standard

deviation of the noise is 10 y-axis units.

The situation becomes more challenging when the data contain a trend

and the variance of the data changes with time. Figure 11-15 introduces

mean and variance nonstationarities on top of a rhythm similar to that

presented in Figure 11-14. The data set in Figure 11-15 represents a

cosine wave possessing mean and variance nonstationarities exhibiting:

1. A mean expression intensity that is time-dependent, such that at

time zero, the mean expression intensity is 1000 y-axis units,

but it decays in magnitude in exponential manner to a final
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A cosine-like rhythmic pattern with decreasing
amplitude (panel A) and shrinking period (panel B).
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value of 0 y-axis units with an 80-hour exponential decay lifetime

[i.e., 80 hours is the time for the mean value to decay to 1/e of its

magnitude 80 hours prior (1/e ¼ �1/2.72 ¼ �0.368)];

2. An oscillatory amplitude that is also time-dependent, such that at

time zero, the oscillatory amplitude is 100 y-axis units, but it too

decays in magnitude in an exponential manner to a final value of

0 y-axis units, again, with an 80-hour exponential decay lifetime;

3. A period of oscillation of 24 hours;

4. A phase reference point (again, the maximum) at 0 hours; and

5. Gaussian-distributed random noise added, such that the standard

deviation of the noise is 25 y-axis units.

We use the simulated data from Figures 11-14 and 11-15 as test data for

several of the analyses discussed below. Subsequently, we apply those

analyses to quantitatively address the questions posed in the Example

presented in Section II.

IV. DATA PREPROCESSING STRATEGIES

If mean and/or variance nonstationarities present formidable

confounds, then data preprocessing strategies may be needed before
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FIGURE 11-13.
An example of period shifting. For the graph in
panel A, the period does not change, and the
acrophase (the point of daily maximum) occurs at
the same time each day (panel B). For the graph in
panel C, the period is larger than 24 hours, and
the daily maximum is delayed by about 2.6 hours
from day to day (panel D).
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Mean and variance stationary noisy cosine wave.
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performing data analysis. Various algorithms exist for noise and trend

removal. We do not attempt to present them here in detail but, rather,

introduce them and concentrate on discussing their differences and

similarities.

A. Data Filtering

Data filtering is generally applied to remedy the presence of noise.

However, as with any preprocessing of data, data filtering may either

lead to information loss (‘‘leaky filters’’) or to altering the data by

introducing, for example, a phase change in the data. The filtering

software used for the examples in this chapter is called ARFILTER.

Its implementation uses a forward–backward linear exponential (i.e.,

first-order) autoregressive filtering strategy, as reported in Orr and

Hoffman (1974), and we refer the reader to this article for the

mathematical description and details. It should be stressed, however,

that a particularly attractive feature of ARFILTER is that it results in

zero phase change of the output. Different algorithms implementing

similar noise reduction techniques for time series can be found in

several commercially available software packages. For example, using

the exponential smoothing option available in MATLAB would result
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FIGURE 11-15.
Mean and variance nonstationary noisy cosine wave.
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in similar output, and similar options are available in SPSS Trends

and SAS.

If the input time series for ARFILTER is x(t), the algorithm produces

an output series u(t) that represents the low-frequency component(s)

of the original data series. The filtering procedure uses a single

parameter r, the value of which is optimized so that the residuals,

defined by [x(t) � u(t)], are least-squares minimized, as described in

Chapter 8. The detrended residuals [x(t) � u(t)] then represent the

residual high-frequency component(s) that were filtered out by this

forward–backward autoregressive filtering process. It is important to

note that, depending on the situation, either u(t) or [x(t) � u(t)] may be

used in subsequent analysis: u(t) if the objective was to remove

excessive high-frequency noise from the original data series, and

[x(t) � u(t)] if the objective was to remove confounding, low-frequency

trending from the original data series. Figures 11-16 and 11-17 illustrate

the use of ARFILTER with the noisy simulated data sets from

Figures 11-14 and 11-15. The time series u(t) and [x(t) � u(t)] are

presented to the right of the original time series x(t). An important
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FIGURE 11-16.
Example of ARFILTER applied to a noisy stationary cosine wave.
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question here is whether the rhythmic characteristics of the filtered

data remain the same as, or at least reasonably close to, those present

in the original unfiltered data. We consider such comparisons in

some of the rhythm analyses examples presented in the following

sections.

B. Detrending

The removal of a slow gradual change (or drift) from the time series is

called detrending. The presence of trend reflects the change in some

quantity or property, such as the gradual depletion of luciferin that

causes a decline in the average levels of bioluminescence. As noted in

the previous section, detrending may be viewed as a special type of

filtering for which the goal is to remove the lowest frequencies. The

residual data are then used for analyses, because, for these data, the low

frequencies (that is, the trend) have been removed.

In this chapter, we use a detrending program called DTRNDANL, which

implements a trend-removing algorithm that requires, among other

things, that users specify the following inputs:
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Example of ARFILTER applied to a noisy nonstationary cosine wave.

362 Chapter ElevenAn Invitation to Biomathematics



1. The value of a filter window (FWINDOW) to apply; and

2. Whether the detrended data are to be presented in original

y-value space or in terms of standard normal deviates (SND)

space, with the latter being used to address variance

nonstationarities.

The DTRNDANL software also allows users to specify one of several

ways of reporting the pointwise uncertainties with the detrended data,

such as uniform weighting, the arithmetic standard error of the mean

(SEM) of calculated detrended values, and others.

Here, again, we should point out that many commercially available

software packages provide detrending options. MINITAB and Microsoft

Excel, for example, allow for trend removal of known shapes, such as

linear, exponential, S-shaped, and others. The functional form of the

trend, however, is often not obvious.

The DTRNDANL algorithm does not assume any specific

functional form for the trend. It begins by considering a data

sequence of length FWINDOW beginning with the first data point.

A linear regression detrending is performed on this subseries data

sequence. Subsequently, the values of the detrended subsequence

are stored in their original units, or one additional step is performed

on the detrended subseries values: each value is divided by the

standard deviation of the subseries prior to storing. In the latter case,

we say that the result is stored in standard normal deviate space

(SND-space). The algorithm then repeats this process by starting

its second pass with the second point in the original time series, its

third pass with the third point, and so on, until terminating the

detrending process when the filter window requests a subseries

analysis that extends beyond the last point of the original time series

data. All values stored at x-value locations are then averaged to

produce the final, detrended time series sequence of values. When

the method is applied, the averaging of the sequential linearly

detrended subseries acts to remove the trend from the data.

Further, if the data are divided by the SD, then variance

nonstationarity is also reduced.

The selection of an appropriate value for a filter window is critical

for successful application of this algorithm. For example, to

detrend circadian rhythms data that are recorded in units of hours,

a value for the filter window of 24 hours would be an appropriate

choice (assuming that the dominant rhythm exhibited by the data has

a period near 24 hours). Figures 11-18 and 11-19 visualize the output

of DTRNDANAL with input provided by the data sets from

Figures 11-14 and 11-15, respectively.
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An example of DTRNDANL applied to the noisy stationary cosine wave originally presented in Figure 11-14, again employing a fixed-period sliding
window detrend that assumes an approximately 24-hour intrinsic periodicity. The panel on the left is the result produced by leaving the data series
being detrended in original data space, whereas the panel on the right is the result produced by processing and converting the data series being detrended to
SND-space.
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V. METHODS FOR RHYTHM ANALYSIS

AND ANALYTICAL STRATEGIES

Our objective in this chapter is to present methods for detecting rhythms

in confounded data, whether stationary original data series or

preprocessed nonstationary data that have been made (more closely)

stationary. Presented here are a few analytical strategies that have found

common usage for these purposes.

A. Model-Dependent Algorithms

Model-dependent algorithms assume a specific analytic form for the

rhythmic wave and then employ nonlinear least-squares (NLLS)

techniques, as described in Chapter 8, for estimating the values of the

model parameters from the data. We consider two such algorithms, out

of several in the literature.

1. Cosin2nl

This is an algorithm to assess the period, phase, and amplitude of

a one-component cosine function with a linear trend of the form:

yðtÞ ¼ c0 þ c1tþ a cos
2pðtþ fÞ

t

� �
;

where y(t) is the time series on which analysis is being performed, c0 is

a constant offset term, c1 is a slope of the linear trend, t is time, and

a, f, and t are the amplitude, phase, and period, respectively, of the

cosine function. The parameters of this function are then estimated by

nonlinear least-squares minimization of the Gauss–Newton type, as

described in Chapter 8. The procedure allows for nonlinear asymmetric

joint confidence limits for all parameters to be calculated, if desired,

at any user-specified confidence probability level. The details of the

procedure can be found in Straume et al. (1991).

An amplitude term significantly different from zero indicates

a statistically significant rhythm at the specified level of confidence

probability. If the confidence limits of the amplitude term encompass

zero, however, the rhythm is not statistically significant at the specified

level of confidence probability. As expected from a NLLS algorithm,

COSIN2NL requires user-specified initialization in the form of initial

guesses for the values of the parameters of the cosine model. Thus, it is

not a fully objective analytical strategy because it may be susceptible

to the influence of user-introduced bias.

Figures 11-20 and 11-21 illustrate the results of applying this algorithm

to the data sets presented in Figures 11-14 and 11-15. The estimates

for the model parameters, together with their 95% confidence intervals,

are also presented. The specific details appear in the figure legends.
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Notice that the COSIN2NL algorithm performs very well when the data

set from Figure 11-14 is used as input—the amplitude, period, phase,

and slope of the model-assumed linear trend are determined quite

precisely (compare with the known characteristics of the simulated data

FIGURE 11-20.
COSIN2NL analysis of the noisy stationary cosine wave originally presented in Figure 11-14. In this
instance, COSIN2NL performed a single-component cosine analysis in which five parameters were
nonlinear least squares (NLLS) estimated (Amp, Per, Phi, DC, and Slop; where DC refers to the
estimated value at time zero on the x-axis). NLLS was performed by a modified Gauss–Newton
method. The convergence criterion was set to a fractional change in variance of 10�9. Approximate
nonlinear asymmetric joint confidence limits were calculated at 95% confidence (in which lower and
upper parameter confidence limits are estimated independently; the values reported in parentheses;
the values reported following þ/� are one-half the difference between the estimated upper and
lower confidence limits). The results of this analysis thus indicate that (1) the estimated oscillatory
amplitude is 99.63 � 0.97 y-axis units; (2) the estimated period is 23.997 � 0.011 hours; (3) the
estimated phase is �0.021 � 0.063 hours; (4) the estimated value at time zero (DC) is 0.05 � 0.97
y-axis units; and (5) the estimated slope is 0.0000 � 0.0069 y-axis units per hour.
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set from Figure 11-14). Notice, however, that the model does not

accommodate the data from Figure 11-15 particularly well (see

Figure 11-21). Indeed, assuming a linear trend is not realistic for the data

set in Figure 11-15. Also, as the model assumes a single cosine wave; it is

not capable of capturing the decreasing oscillatory amplitudes that

are apparent in Figure 11-15. As a result, COSIN2NL is incapable

FIGURE 11-21.
COSIN2NL analysis of the noisy nonstationary cosine wave originally presented in Figure 11-15. As in
Figure 11-20, COSIN2NL performed a single-component cosine analysis in which five parameters
were nonlinear least squares (NLLS) estimated (Amp, Per, Phi, DC, and Slop; where DC refers to
the estimated value at time zero on the x-axis). NLLS was performed by a modified Gauss–Newton
method. The convergence criterion was set to a fractional change in variance of 10�9. Approximate
nonlinear asymmetric joint confidence limits were calculated at 95% confidence (in which lower and
upper parameter confidence limits are estimated independently; the values reported in parentheses;
the values reported following þ/� are one-half the difference between the estimated upper and
lower confidence limits). The results of this analysis thus indicate that (1) the estimated oscillatory
amplitude is 38.4 � 9.2 y-axis units; (2) the estimated period is 23.31 � 0.20 hours; (3) the estimated
phase is �2.5 � 1.0 hours; (4) the estimated value at time zero (DC) is 733.5 � 7.4 y-axis units; and
(5) the estimated slope is �3.478 � 0.053 y-axis units per hour.
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of grasping the more complex rhythmic pattern of this simulated data

set. Regardless of its poor performance, we present the output from

COSIN2NL in Figure 11-21 in order to emphasize, as we did in

Chapter 8, that NLLS methods will calculate estimates for the

parameters of the model even when the model provides a very poor fit.

It is the researcher’s role to select the algorithm that will provide the best

performance on any specific data set.

2. FFT-NLLS

FFT-NLLS is a more flexible algorithm allowing for the presence of

multiple periodic components in the form of a sum of multiple cosine

waves. In essence, it combines two fundamental techniques we have

already used multiple times—FFT methods and NLLS methods. The

FFT-NLLS procedure can be outlined as follows: time series are first

linear regression detrended to produce zero-mean, zero-slope data. An

FFT power spectrum is then calculated for the detrended data. A model

of the form:

yLRðtÞ ¼
Xn
i¼1

ai cos
2pðtþ fiÞ

ti

� �

is fit to the data, where yLR(t) is the linear regression detrended time

series on which analysis is being performed, n is the order of fit, t is time,

and ai, fi, and ti are the amplitude, phase, and period, respectively, of

the i-th cosine component.

The period, phase, and amplitude of the most powerful spectral peak are

used to initialize a one-component cosine function (i.e., n ¼ 1). The

parameters of this function are then estimated by nonlinear least-squares

minimization as in COSIN2NL. Upon convergence, approximate

nonlinear asymmetric joint confidence limits are estimated for all

parameters (period, phase, amplitude, and constant offset) at 95%

confidence probability. If the amplitude is significantly different from

zero, then the procedure is repeated at the next higher order. The two

most powerful FFT spectral peaks are then used to initialize a two-

component cosine function (i.e., n ¼ 2) that is subsequently NLLS

minimized to the linear regression detrended data, and confidence limits

are again evaluated. This process is repeated iteratively until at least

one cosine component is identified with an amplitude that is not

statistically significant.1

The statistical significance of each derived rhythmic component is

assessed by way of the relative amplitude error (RAE), defined as the

1. Other possible scenarios for terminating the procedure along with more
detailed description of the FFT-NLLS procedure can be found in Plautz et al.
(1997).
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following ratio: in the numerator, the amplitude error (one-half the

difference between the upper and lower 95% amplitude confidence

limits) to, in the denominator, the most probable derived amplitude

magnitude. Theoretically, this metric will range from 0.0 to 1.0; 0.0

indicates a rhythmic component known to infinite precision (i.e., zero

error); 1.0 indicates a rhythm that is not statistically significant (i.e., error

equal to the most probable amplitude magnitude); and intermediate

FIGURE 11-22.
FFT-NLLS analysis of the noisy stationary cosine wave originally presented in Figure 11-14. In this
instance, the method terminated execution after requiring only a single-component cosine analysis in
which three parameters of periodic rhythms expressed in the data were found: the amplitude, the
period, and the phase (Ampl, Per, and Phase). NLLS was performed by a modified Gauss–Newton
method. The convergence criterion was set to a fractional change in variance of 10�6. Nonlinear
asymmetric joint confidence limits were calculated at 95% confidence (in which lower and upper
parameter confidence limits are estimated independently; the values reported in brackets; the values
reported following þ/� are one-half the difference between the estimated upper and lower
confidence limits). The results of this analysis indicate that (1) the estimated oscillatory amplitude is
99.63 � 0.88 y-axis units (producing a RAE of 0.009, not shown on printout); (2) the estimated
period is 23.997 � 0.011 hours; and (3) the estimated phase is �0.022 � 0.065 hours. The
extremely low RAE value is indicative of an extremely well-determined rhythm.
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values indicative of varying degrees of rhythmic determination. Thus,

the lower the RAE value, the more statistically significant the respective

rhythmic component is. This method is specifically designed to

process data sets that are relatively short and/or noisy and is generally

capable of extracting relatively weak rhythms. In addition, it extracts

meaningful periods despite mean and variance nonstationarities

that may exist in the data.

Results for the data sets from Figures 11-14 and 11-15 are presented in

Figures 11-22 and 11-23, respectively. In the first data set, only one

significant periodic component was determined with an oscillatory

amplitude of 99.63 � 0.88 y-axis units. The RAE for this component

was calculated to be 0.009, an extremely low RAE value—indicative

of an extremely well-determined rhythm. The estimated period is

23.997 � 0.011 hours.

The analysis of the second data set is more interesting, as the data were

confounded with mean and variance nonstationarity in addition to

noise. As seen from the output, shown in the right panel of Figure 11-23,

four periodic components were identified with the respective average

estimates for the periods and nonsymmetric 95% confidence intervals

shown in Table 11-1.

The RAE associated with the periodic component of 23.4 is the smallest,

with a value of 0.183 (not shown on printout). In addition, we point out

the first period listed in the first column appears to be the effect of an

attempt to fit the data trend as a periodic component.

B. A Model-Independent Algorithm: PHASEREF

The last method we introduce for assessing period, oscillatory

amplitude, and phase information from a rhythmic data series is

referred to as PHASEREF. This is a maximally assumption-free strategy

in which no model form for any rhythms is assumed. However, the

interpretation of results does require the assumption that there exists in

the data series being analyzed one dominant, primary rhythmic

component, the period of which is (approximately) known a priori.

PHASEREF is a modification of a method presented by Meerlo et al.

(1997). It requires the user to provide two period values with which to

calculate two sets of smoothed running average values of the data series

to be analyzed.

One smoothing filter should have a period value close to that

expected for the dominant rhythm being expressed in the data

series. For a circadian time series, this value would be approximately

24 hours. The result of smoothing the data with this period filter is

an appropriately smoothed baseline series in which the dominant-period

rhythm is nearly completely removed. Only long-term trends
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FIGURE 11-23.
FFT-NLLS analysis of the noisy nonstationary cosine wave originally presented in Figure 11-15.
In this instance, FFT-NLLS identified four rhythmic components that were considered statistically
significant at 95% confidence. The results of this analysis produce, as a circadian rhythm estimate,
a rhythmic component exhibiting (1) an estimated oscillatory amplitude of 29.4 � 5.4 y-axis units
(RAE of 0.183); (2) the estimated period is 23.41 � 0.31 hours; and (3) the estimated phase is �1.92
� 0.68 hours.
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may remain in the resultant series, such as trends that are

characteristic of spectral components that possess periods longer

than the 24-hour filter period. In Figure 11-24, the application of a

24-hour filter resulted in the nearly flat line that represents the

residual time series.

A second, shorter-period filter length is also specified. The purpose of

this filter is to generate a smoothed data series in which high-frequency

noise is filtered out but in which the presumed longer-period dominant

FIGURE 11-24.
PHASEREF analysis of the noisy stationary cosine wave originally presented in Figure 11-14. Values of
24 hours and 6 hours are used for the running average filters. The phase reference points are derived
as the times of upward and downward crosses, and times of maxima/minima. The mean period values
(þ/� SD, with SEM values in parentheses) are presented next to the graph for (1) consecutive up-
crosses; (2) consecutive down-crosses; and (3) consecutive times of maxima and minima considered
jointly in the average.

Period Estimate Confidence Interval

7278.32 þ/� 797.793 [ 6473.66 to 8069.25]

23.4061 þ/� 0.30991 [ 23.3194 to 23.9392]

101.879 þ/� 7.12849 [ 91.3522 to 105.609]

68.3228 þ/� 5.56601 [ 61.9720 to 73.1040]

TABLE 11-1.
Period estimates from Figure 11-23.
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rhythm is retained, together with any longer-period trends. Next, the

times of occurrence of up-crossings and down-crossings of the short-

period filtered curve with regard to the baseline curve are computed (see

Figure 11-24). The times of maximum and minimum differences

between the two curves are also calculated from the difference of the

short-period smoothed series and the baseline series. Period estimates

for the dominant rhythm can now be obtained from successive

differences between up-crosses, maxima, down-crosses, and minima,

respectively.

A typical implementation of this analytical strategy might entail

calculating a 6-hour and a 24-hour running average of the original data

series. The crossings of these two smoothed lines provide the rising

and falling phase markers for each cycle. The maximum differences

between the smoothed curves for each cycle calculated between the

peak and the trough allow calculating the amplitude of each cycle. The

time of peak provides a third phase marker (assuming that acrophase

is to be used as the phase reference marker of record). More details can

be found in Abe et al. (2002).

Although maximally assumption-free, attempts to apply this method

directly may meet with technical difficulties. For example, the period

estimates presented in Figure 11-25 differ significantly from both those

obtained for the same data sets through the use of FFT-NLLS and the

actual simulated value of 24 hours. The tabulated summary of the

algorithm output presented in Figure 11-26 provides an explanation.

Whereas the expected estimates for TAU(up), TAU(down), and TAU

(max) are in the vicinity of 24 hours, numerous instances appear in which

values for period estimates are considerably shorter than 24 hours. This is

a consequence of noise confounds creeping in, beginning at about 100

hours of x-axis time and manifesting consistently beyond about 200 hours

of x-axis time. In such cases, preprocessing of the data through filtering

may be beneficial. We present such examples in the next section.

VI. PREPROCESSING BEFORE ANALYSIS

We note that, in general, preprocessing of the data may introduce bias

into the analytical results. In some cases, however, preprocessing may be

necessary if the presence of significant confounds hinders the direct

analysis of the time series. Pros and cons should always be carefully

weighed before the use of preprocessing techniques. The next two

exercises illustrate this point.

A. ARFILTER Followed by Rhythms Analysis

Examples are provided here of analyses of the noisy, nonstationary

time series introduced in Figure 11-15, except this time preprocessed
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to remove noise prior to analysis. Although this is not a good idea

in general because removing noise structure prior to analysis will

typically introduce (sometimes considerable) bias into analytical

results, it may prove beneficial to an analysis like that performed

by PHASEREF.

EXERCISE 11-2

Figures 11-27 through 11-30 present the outputs of the procedures

COSIN2NL, FFT-NLLS, and PHASEREF performed on time series from

Figure 11-15 after preprocessing by ARFILTER. Compare the results with

those presented in Figures 11-21, 11-23, 11-25, and 11-26 showing the

outputs of the same procedures performed on the original time series.

Comment on the differences and whether or not, in your opinion, using

filtering was beneficial and/or necessary in each case.

FIGURE 11-25.
PHASEREF analysis of the noisy nonstationary cosine wave originally presented in Figure 11-15, again
calculated with 6-hour and 24-hour filters. However, whereas clean period estimates were obtained
from the analysis shown in Figure 11-24, the present case shows sufficient noise is present so as to
confound a clean assessment of period, arising primarily at the long-time end of the data series (the
details of which are presented in Figure 11-26).
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B. DTRNDANL Followed by Rhythms Analysis

Examples are provided here of analyses of the noisy, nonstationary time

series introduced in Figure 11-15. This time, the series has been

preprocessed to remove trend prior to analysis. This type of

preprocessing may be necessary before the use of spectral analysis

type methods on time series with aggressive trends, because they are

valid only under the assumptions that the time series being analyzed

is trend-free.

EXERCISE 11-3

Figures 11-31 through 11-34 present the outputs of the procedures

COSIN2NL, FFT-NLLS, and PHASEREF performed on the detrended

FIGURE 11-26.
Verbose, tabulated summary of the PHASEREF analytical session presented in Figure 11-25. The columns of interest are:
XOVER(up)—the times at which the short-period smoothed series crosses baseline upward.
XOVER(down)—the times at which the short-period smoothed series crosses the baseline downward.
TIME(max)—the times of extremes, which may be maxima or minima.
TAU(up)—times between up-crossings (estimated as the difference between the lines in the first column). For example, 24.4 ¼
42.415 � 18.015, and so on.
TAU(down)—times between down-crossings (estimated as the difference between the lines in the second column). For example,
23.47 ¼ 53.505 � 30.035, and so on.
TAU(max)—contains the respective times between maxima and times between minima. For example, 22.9 ¼ 47.65 � 24.75 and
23.55 ¼ 60.15 � 36.6.
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(using DTRNDANAL) time series from Figure 11-15. Compare these

results with those presented in Figures 11-21, 11-23, 11-25, and 11-26,

which give the outputs of the same procedures for the original time

series. Comment on whether, in your opinion, using preprocessing was

beneficial and/or necessary in each case.

VII. EXAMPLE ANALYSIS: SIMULATION OF THE

EFFECTS OF SCN ABLATION AND TRANSPLANTATION

ON FREE-RUNNING LOCOMOTOR ACTIVITY

We now come back to the case study described in Section II. We

have two major goals. The first is to characterize, as thoroughly as

FIGURE 11-27.
COSIN2NL analysis of the noisy nonstationary data series originally presented in Figure 11-15, in
which preprocessing by ARFILTER was performed prior to rhythms analysis.
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possible, the rhythmic behavior of the pretransplant locomotor

data from the wild-type hamster (Figure 11-9, top panel) and

the tauss hamster (depicted in the middle panel of Figure 11-9.

The second is to examine and characterize the rhythmic behavior of

FIGURE 11-28.
FFT-NLLS analysis of the noisy nonstationary data series originally presented in Figure 11-15, in which
preprocessing by ARFILTER was performed prior to rhythms analysis.
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FIGURE 11-29.
PHASEREF analysis of the noisy nonstationary data series originally presented in Figure 11-15, in
which preprocessing by ARFILTER was performed prior to rhythms analysis.

FIGURE 11-30.
Verbose, tabulated summary of the PHASEREF analytical session presented in Figure 11-29. Whereas the expected estimates for TAU(up),
TAU(down), and TAU(max) are to be in the vicinity of 24 hours, a few instances in which values for period estimates are considerably shorter
than 24 hours arise as a consequence of noise confounds beginning to creep in, although this time, not until about 217 hours of x-axis time
(compare the unfiltered analysis shown in Figure 11-26).
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the wild-type hamster’s post-transplant locomotor data (bottom

panel, Figure 11-9) and the effect of SCN transplantation on the

functioning of its circadian clock. The approach that we describe here

is just one of many possible ways to analyze the data, and we encourage

the reader to examine alternative strategies.

The data files (WT.NO, TAUSS.NO, and TRNSPLNT.NO) and

the outputs of numerous analyses utilizing some or combinations of

some of the algorithms we describe in this chapter can be downloaded

from our Web site (see Internet Resources at the end of this chapter).

To begin with, we use FFT-NLLS to identify the periodic components.

A summary of the output for each of the files is presented in

Figure 11-35.

FIGURE 11-31.
COSIN2NL analysis of the noisy nonstationary data series originally presented in Figure 11-15, in
which detrending by DTRNDANL was performed prior to rhythms analysis.
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Using the RAE as a criterion for significance, a period of 24.5 hours

is identified for the wild-type hamster with RAE ¼ 0.021. The

12.25-hour ‘‘half-period’’ is caused by an attempt at shape

accommodation of the low-activity ‘‘flat-spots’’ in the data series.

The third component has a RAE of 0.458, much greater than 0.021,

and we can thus safely conclude that the rhythm with 24.5-hour

FIGURE 11-32.
FFT-NLLS analysis of the noisy nonstationary data series originally presented in Figure 11-15, in which
detrending by DTRNDANL was performed prior to rhythms analysis.
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period is the most robust. Similar considerations lead to identifying

the primary period for the tauss hamster to be 20 hours (with a

half-period effect observed there, as well). For the post-transplant

data, four periodic components are identified with average periods of

20 hours, 24.5 hours, 9.98 hours, and 104.9 hours, with the 20-hour

and the 24.5-hour components representing the most dominant

spectral contributions (i.e., largest absolute amplitudes and

smallest RAE values). Thus, further analyses are needed for

TRNSPLNT.NO in order to identify the most robust periodic

components.

Next, because of the variance nonstationarities in the data, it may

be prudent to consider applying DTRNDANL with output in

SND-space. If PHASEREF will be involved, filtering to remove the high

frequency noise may also be useful. The output is presented in

Figure 11-36.

The use of PHASERF with the data from Figure 11-36 may now be

employed to determine additional estimates for the rhythms. The

FIGURE 11-33.
PHASEREF analysis of the noisy nonstationary data series originally presented in Figure 11-15, in
which detrending by DTRNDANL was performed before rhythms analysis.
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estimates from the FFT-NLLS results can be used for initializing the

PHASEREF procedures.

Instead of presenting the verbose output from PHASEREF, we give a

plot in Figure 11-37 of acrophase values with a fitted least-squares

regression line.

For the wild-type hamster, the acrophase is delayed by about 0.5 hours

from day to day, an observation reiterated by the estimated slope of the

regression line (slope ¼ 0.50215 þ/� 0.01139). For the tauss hamster,

the acrophase occurs earlier and earlier each day, by about a 4-hour

difference (slope ¼ �4.001286 þ/�0.014826). These estimates, consistent

with previous results from FFT-NLLS, allow us to conclude that the

wild-type and tauss hamsters exhibit circadian rhythms with periods

of 24.5 hours and 20.0 hours, respectively. The amplitudes and

FIGURE 11-34.
Verbose, tabulated summary of the PHASEREF analytical session presented in Figure 11-33. Whereas the expected estimates for TAU
(up), TAU(down), and TAU(max) are to be in the vicinity of 24 hours, numerous instances in which values for period estimates are
considerably shorter than 24 hours arise as a consequence of noise confounds beginning to creep in at about 160 hours of x-axis time.
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phase shifts for the rhythm are estimated as part of the output in

Figure 11-35.

The decreasing patterns in acrophase times for the transplant data

also indicate a shorter than 24-hour period, but the linear model may

not be the best fit, because there appears to be a pattern to the

residuals. This may be indicative of a more complex rhythmic

component structure, composed of at least two periodic components.

Thus, additional analyses are needed in order to determine the

composition of the rhythm. In Figure 11-38, we present the output

from the FFT-NLLS procedure on the detrended transplant data,

as well as on the ARFILTERed original data TRNSPLNT.NO.

The detrended data are of particular interest, because the large

estimated period of 104.9 hours in Figure 11-35 may be related to

an attempt to fit for the trend. Observe that the large period

estimate is no longer present for the detrended data (top panel of

FIGURE 11-35.
FFT-NLLS analysis of the original data.
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Figure 11-38), but the component with period 24.5 hours is also

gone. In contrast, using the ARFILTERed data shows both the

20-hour component and the 24.5-hour component (and also the

�10-hour period).

Judging by the combined information that we have presented so

far, it is possible to hypothesize that the transplant hamster

exhibits rhythms that are a mix of the 24.5-hour and 20.0-hour

rhythms characteristic of the wild-type and the tauss hamsters. If

this can be further corroborated, it would indicate that both the

rhythms of the tauss SCN and that of the original wild-type are

evident. The extent to which these rhythms participate in the

rhythmic formation of the post-transplant data can be assessed by

the ratio of the spectral peak magnitudes of the periodic

components, measured in this case by the ratio of the respective

FIGURE 11-36.
ARFILTER output of for the detrended data (plotted in SND-space).
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amplitudes. From the data in Figures 11-35 and 11-38, we can

estimate this ratio to be approximately from 3:1 to 5.5:1. Further

analyses will be necessary in order to obtain a more accurate

estimate (the known relative contributions in this simulated example

are 75% 20-hour rhythm and 25% 24.5-hour rhythm). Outputs from

such additional procedures using the data from this example can

be downloaded from our Web site. We encourage the reader to consider

them and continue the exploration.

FIGURE 11-37.
Plots of the daily times of maximum obtained by using PHASEREF. The phase shifts are evident from
the nonzero slopes of the fitted least-squares regression lines.

(Continued)
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Progress has been much more general than retrogression.

Charles Robert Darwin (1809–1882)

The per-luc reporter gene constructs described in the last

chapter are an excellent tool for identifying cells,

tissues, and organs with their own circadian rhythms.

However, many genes other than the period gene are

expressed in a circadian manner. Some of these genes,

such as clock and timeless, have already been identified

and studied, but there are undoubtedly others currently

unidentified. To understand circadian functioning in

greater depth, we would like to be able to identify and

characterize all genes that are under circadian control.

As we have seen, genes and proteins work together in

living organisms in an intricate network to ensure proper

functioning at the system level. Traditional methods

that are designed to study single genes are incapable of

capturing these complex dynamics, and new tools are

needed to investigate these interactions. The best tool

currently available for simultaneously examining the

expression of multiple genes is the microarray, also called

the DNA array, the DNA chip, or the gene chip.

Microarrays are now widely used in biological and

biomedical research, as it becomes increasingly clear that

to understand biological function we must discover and

understand patterns of gene expression. Microarrays

allow us to analyze the expression of all of the thousands

of genes of an organism. This also allows us to identify

genes expressed in a rhythmic fashion.

Microarray technology provides a means to examine the

effect of gene regulation on physiologic functions, to

study the genetic mechanisms of certain diseases, and to

assess the effectiveness of new therapies. Applications

include studying embryonic development in order to

prevent and treat birth defects, investigating pancreatic

function to improve treatment for diabetes, and

examining cancer cell behavior for the purpose of

designing new approaches to treatment.

For example, cancer is not a single disease. There are

many different kinds of cancer, arising in different organs

and tissues through the accumulated mutation of

multiple genes. Traditionally, cancer diagnoses have

relied on microscopic examination of cell appearance,

which may be incapable of distinguishing among cancer
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types. More recently, cancers have been characterized by the level of

expression of particular genes. It has become apparent that the best way

to distinguish many different kinds of cancer is by examining their

patterns of gene expression. Knowing these patterns would allow an

accurate diagnosis and an immediate selection of appropriate therapies,

as well as facilitating the development of better treatments.

The power of microarray technology can be seen in the case of diffuse

large B-cell lymphoma (DLBCL).1 In the United States alone, more than

20,000 people are diagnosed with DLBCL each year. The disease

progresses rapidly, and although many people diagnosed with DLBCL

were treated successfully, more than half of the patients were not.

Microscopic examination of cells from the disease revealed no basis for

predicting which cases would result in a successful outcome and which

would not. In 2000, Alizadeh et al. reported on a microarray-based

experiment that distinguished, on the basis of gene expression patterns,

two different types of DLBCL (Alizadeh et al. [2000]). One type, which

they called ‘‘germinal center B-like DLBCL,’’ was associated with much

better long-term survival rates than the other type, which they called

‘‘activated B-like DLBCL.’’ Further studies identified additional gene

expression profiles and allowed even better discrimination among

DLBCL types. The ability to accurately diagnose DLBCL has led to more

accurate prognoses and the opportunity for improved selection among

the available therapeutic options. More importantly, knowledge of the

gene expression profiles of DLBCL will allow the development of

targeted treatments, some of which are already in clinical trials (see, for

example, Abramson and Shipp [2005]).

The use of microarrays in the last decade has provided the opportunity

to compare expression patterns among thousands of different genes

under different conditions and to determine those with similar

expression patterns. When two or more genes have similar expression

profiles, they may be regulated by the same factors (co-regulated) and

may be functionally related. Identifying such groups of genes provides

clusters that warrant further detailed examination with regard to their

expression control mechanisms.

Another potential use of microarray technology is the study of cancer

chronotherapy, an approach that takes into account the fact that some

cancer therapies work better when administered at certain times of the

day than at others (see Mormont and Levi [2003]). Comparing the

circadian patterns of cancer cell gene expression with such clinical

observations should allow identification of genes that are important to

the success or failure of the treatment. Characterization of these genes

should allow better understanding of these timing phenomena, which

1. DLBCL is a common form of non-Hodgkin’s lymphoma. Lymphomas are
cancers arising from lymphocytes, the cells of the immune system.
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should then lead to the design of improved chemotherapeutic agents

and regimens.

Nowadays, the amount of microarray-based literature is vast, and the

methods for analyzing gene chip data are becoming increasingly more

technical. As microarrays of increasing gene density are made, we need

better methods for processing and organizing huge amounts of data

for easy access and analyses. Microarray research has been supported by

innovative methods from the new field of bioinformatics, the discipline

that studies the application of computer technology to the management

of biological information. Emerging at the interface of biology,

mathematics, and computer science, bioinformatics allows data

organization, manipulation, and analysis at a scale that would otherwise

be impossible.

We begin this chapter with a brief review of the technologies used to

manufacture microarrays and some of the ways in which they are being

utilized. We then describe some methods for data processing and

analyses designed to quantify the results from microarray experiments.

We present some of the mathematical background pertinent to designing

clustering methods and then turn to some analytical tools developed

to study circadian gene expression.

I. FABRICATING AND USING MICROARRAYS

A. Producing Labeled cDNA

Recall from Chapter 11 that the ultimate result of gene expression is the

production of proteins, which are the translation products of messenger

RNAs (mRNAs). Gene expression occurs via RNA synthesis, called

transcription, the process in which one of the two strands of the DNA is

used to direct the production of an RNA molecule, as diagrammed in

Figure 12-1. The nitrogenous bases of RNA (A, C, G, and U) hydrogen-

bond to the nitrogenous bases of the DNA, with A binding to U and C

binding to G.

The product of the transcription of protein coding genes is mRNA, so we

can isolate mRNA from the cells of interest and use the amount of

mRNA as a proxy for the amount of protein produced by the cell.

Because mRNA is an extremely fragile, short-lived molecule, vulnerable

to seemingly ubiquitous ribonuclease enzymes, it would be difficult to

use mRNA in microarray-based experiments. However, the mRNA can

be converted into a more durable form called complementary DNA

(cDNA). The cDNA is made from the mRNA and is complementary to it.

This means that the cDNA can be used in place of the mRNA to

investigate gene expression.

DNA strand

RNA strand

Transcription

FIGURE 12-1.
Graphic representation of transcription (RNA
synthesis). The DNA strand at left is being copied
during the production of RNA. The RNA is here
distinguished from the DNA by the small boxes
attached to the diagram, which represent the
additional hydroxyl groups that differentiate the
ribose sugar of RNA from the deoxyribose sugar
of DNA.
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The DNA double helix is held together through hydrogen bonding of A

to T and C to G, as is shown in Figure 12-2. Because these hydrogen

bonds are weak, it is possible to separate the two strands of a DNA

molecule into two single-stranded DNA molecules by manipulating the

pH, the salt concentration, or the temperature of the DNA solution. The

converse is also true: A cDNA molecule can bind to a complementary

DNA sequence under the appropriate conditions.

Suppose that we wish to examine the differences in gene expression

between normal liver cells and cancerous liver cells. We begin the

process of making cDNA by isolating total RNA from the cells of

interest. We disrupt the cell membrane and inactivate and remove all of

the proteins that may damage or contaminate the RNA. Total RNA

includes ribosomal RNA (rRNA), transfer RNA (tRNA), and small

nuclear RNA (snRNA), as well as mRNA. Because mRNA is a small
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proportion of the total RNA in a cell, it may be necessary to purify the

mRNA away from the rest of the RNA population.

The method for doing this uses a post-transcriptional modification of

eukaryotic mRNA that has, at the 3’ end, a long string of ‘‘A’’

nucleotides forming the poly(A) tail (see Figure 12-3). The addition of the

poly(A) tail occurs after the RNA has been made (thus the term post-

transcriptional), but before it is used for translation. A string of T

nucleotides, also known as an oligo(dT) molecule, would be

complementary to a poly(A) tail, and oligo(dT) molecules attached

to a solid support can therefore be used to capture the mRNA in a total

RNA sample. This is usually done by putting the solid support with

the bound oligo(dT) into a tube or cylinder, called a column, and

allowing the total cellular RNA mixture to pass through the column. The

mRNA will stick to the oligo(dT) and the remaining RNAs will flow

out of the column. The column is washed with buffer and the purified

mRNA is then collected from the column by altering the salt

concentration of the wash buffer. Alternatively, because of the poly(A)

tail, one can go directly to the next step without isolating mRNA.

We convert mRNA to cDNA through a process called reverse

transcription. This process, diagrammed in Figure 12-3, utilizes a

retroviral enzyme properly called an RNA-dependent DNA polymerase,

FIGURE 12-3.
Reverse transcription of a small mRNA. The reverse transcriptase enzyme is responsible for the
extension of the oligo(dT). Note that the new strand is DNA. The mRNA may be removed
enzymatically or through treatment with a strong base.

Gene Expression Patterns 393An Invitation to Biomathematics



and colloquially called ‘‘reverse transcriptase.’’2 This method takes

advantage of the poly(A) tail on the RNA by using oligo(dT) molecules

as primers to begin the reverse transcription process. The reverse

transcriptase enzyme incorporates the correct deoxyribonucleotide

building blocks into the growing chain, making a DNA copy of the

mRNA (note that the DNA uses T nucleotides instead of the U

nucleotides of the mRNA molecule).

Next, the cDNA needs to be labeled to allow us to distinguish between

normal and cancer cell cDNAs. Two different techniques can be used

to accomplish this: direct enzymatic incorporation and chemical coupling.

In direct enzymatic labeling, the most common technique, a

fluorescently labeled nucleotide is introduced into the cDNA as it is

being made. When two different kinds of cell mRNAs are used,

fluorescent dyes are used with one emission wavelength for the normal

cell cDNA and another emission wavelength for the cancer cell cDNA.

Two commonly used dyes are Cy3 and Cy5, which emit green and red

light, respectively. This method allows the simultaneous use of both

cDNAs to probe a single microarray. In chemical coupling, a modified

nucleotide is introduced during cDNA synthesis. This modified

nucleotide is then labeled through a second step, a chemical reaction

with the fluorescent dye.

B. Making the Microarray

Microarrays are collections of thousands of different kinds of DNA

attached to a solid substrate. The substrate may be a glass or plastic slide

or a nylon membrane. Microarrays are made by one of two processes,

known as mechanical spotting and photolithography (described below).

A diagram of a spotted microarray is shown in Figure 12-4. In this figure,

each of the circles on the array represents a tiny drop of DNA solution,

by which the DNA is delivered and then chemically attached to the

slide. Microarrays produced by the mechanical spotting method may

bear either cDNAs or oligonucleotides.3 Microarrays produced by

photolithography bear only oligonucleotides. In either case, each tiny

area bearing a set of DNA molecules is called a spot or feature.

In mechanical spotting, DNA is made first and then placed on the slide.

If the microarray is to contain cDNAs, the cDNA of interest can be

made through cloning or through the polymerase chain reaction (PCR).

FIGURE 12-4.
Graphic representation of a spotted microarray.
Each spot or feature contains cDNA or
oligonucleotides.

2. Reverse transcriptases are isolated from retroviruses, which have an RNA
genome. The life cycle of the retrovirus includes the production of a DNA copy
of their RNA genome using reverse transcriptase and then the integration of the
DNA copy into the host cell’s own DNA.
3. Oligonucleotides are relatively short polymers made of several nucleotides.
Sequences can be selected or built to represent specific genes of interest, as
described in the next section.
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If the cDNAs are to be made by cloning, recombinant plasmids bearing

the cDNAs are introduced into bacteria, which will then make many

copies of the cDNAs. If the cDNAs are to be amplified via PCR, the

replicative power of the Thermus aquaticus DNA polymerase is used to

make the copies. If the microarray is to contain oligonucleotides, a DNA

synthesizer is programmed to produce DNAs with the desired

sequences.

Once the DNAs are produced, they may be spotted onto the solid

support by inkjet-style printer heads or by pins dipped into the DNA

and then touched to the surface of the support. Robots move the inkjets

or pins, so that the placement of features is precise and reproducible.

The use of robots allows high-density placement of tiny features. Each of

the thousands of spots on a single slide may represent a different gene.

In photolithography, on the other hand, the oligonucleotides are

synthesized in place in a process which is akin to that used to produce

integrated circuits. Light is used to activate one step in the process,

and masks are used to block the light for those portions of the chip that

are not to participate in the reaction. The process employed by

Affymetrix, Inc. to produce its widely used GeneChipW is shown in

Figure 12-5. The first step in the manufacturing process requires that

a quartz wafer be covered with a light-sensitive protecting group. This

group binds to all available sites on the wafer and prevents nucleotides
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FIGURE 12-5.
Affymetrix, Inc. uses a unique combination of photolithography and combinatorial chemistry to
manufacture GeneChipW Arrays. (Image courtesy of Affymetrix, Inc.)
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from binding nonspecifically to the wafer. A carefully designed

opaque mask is placed over the wafer, and a light is turned on,

deprotecting the exposed parts of the wafer. The deprotected spots now

have free hydroxyl groups on their surfaces, whereas the areas under

the mask do not. The first nucleotide in the sequence can now be added,

and it will bind to the free hydroxyl groups. Each nucleotide to be

added will also carry a light-sensitive protecting group. Excess

nucleotide will be removed; a new mask will be applied; and the light

will shine again, deprotecting only those areas not covered by the new

mask. Now the second nucleotide to be added will be able to bind to

the free hydroxyl groups, some of which will be on the wafer, and some

of which will be on the first nucleotide. The process will be repeated

again and again, until each spot on the wafer bears an oligonucleotide

that is 25 nucleotide units long. This process allows extremely high

feature density, as is shown in graphic form in Figure 12-6(A).

Figure 12-6(B) shows a finished GeneChip.W

The technologies for microarray production are constantly evolving.

NimbleGen Systems, Inc., for example, uses a technique called maskless

photolithography, utilizing tiny movable mirrors to direct the light to

specific spots, rather than masks to block it. Oligonucleotides may also

be synthesized in situ through the use of inkjet printers, with the printer

head delivering the required nucleotides in the desired sequence. This is

the method used by Agilent Technologies, Inc.

Regardless of the arraying technology used, the manufacturer must

decide which specific oligonucleotides should be synthesized in each

microarray position. The goal is to produce a microarray that represents

all of the genes of an organism. This process has been greatly facilitated

by the success of the Human Genome Project, and of sequencing

efforts involving the genomes of other species. To make it possible

to determine unambiguously which genes are being expressed,

Affymetrix has designed its GeneChipsW to contain multiple

oligonucleotides from each gene, but to avoid those oligonucleotide

sequences that are common to more than one gene. Agilent uses longer

oligonucleotides (60 bases long) to accomplish this goal. Other controls

are also built into microarray methods, so that one may be confident

of the validity of the results. For additional information, see Eisen

and Brown (1999), Causten et al. (2003), and Krawetz and Womble

(2003).

C. Using the Microarray: Hybridization and Scanning

Before being used, the microarray will require some additional

processing, which may include blocking and denaturation. Blocking will

inactivate any free reactive groups that might bind the labeled cDNAs

nonspecifically, reducing background fluorescence. Microarrays with

FIGURE 12-6.
Panel A: Graphic representation of a GeneChipW

microarray, showing the high density of features
possible with photolithography. Each tiny square
represents a different oligonucleotide. Panel B:
Affymetrix GeneChipW probe array. Image
courtesy of Affymetrix, Inc.
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spotted cDNAs should also be heated to denature the cDNAs and thus

render them single-stranded and available to hybridize with the labeled

cDNAs.4

The next step in using a microarray is hybridization. In our example,

the labeled cDNAs from the normal and cancerous liver cells are

mixed together in an appropriate buffer and placed on the microarray.

The cDNAs will then bind to any features that carry complementary

DNA. Some features will bind only normal cell cDNA; some features

will bind only cancer cell DNA; some features will bind both normal and

cancer cell cDNAs; and some features will bind neither cDNA.

Following the hybridization step, the microarray is washed to remove

any unbound cDNAs. Figure 12-7(A) represents a microarray after

hybridization and washing. Note that at this point in an actual

microarray experiment, there will be no visible difference between the

hybridized microarray and a nonhybridized array. The hybridized

microarray must be scanned to determine which features have bound

which cDNAs. Figure 12-7(B) shows an image from a scanned

GeneChip.W This chip has been hybridized and washed, and the light

intensity in each spot is proportional to the amount of labeled cDNA

binding at that spot.

The process of scanning involves the use of a light source, usually a

laser, that will excite the fluorescent label on the cDNAs. Each fluor

molecule has a characteristic excitation wavelength and a

characteristic emission wavelength. The excitation beam will excite

electrons in the fluors to a higher energy state, and then the fluors

release some of their excess energy in the form of visible light as the

electrons decay back to their original energy states. A detector is used to

measure the emitted light. The greater the amount of labeled cDNA

bound to a feature, the greater the amount of light emitted when the

microarray is scanned. The emitted light from both fluors will be

measured and recorded as image files. Laser scanning confocal

microscopy can be used for this process, and a number of different types

of scanners are commercially available.

II. ANALYSIS OF MICROARRAY DATA

A. Filtering and Normalization

Once the image files are acquired, the images are converted into

quantitative data measuring the intensity of fluorescence at each spot.

The first step is to determine where the spots are, how much of the

fluorescence at each spot is caused by the hybridization, and how much

may be caused by nonspecific background fluorescence. Determining

A

FIGURE 12-7.
Panel A: Graphic representation of microarray
following hybridization and washing. Each circle
represents a gene. The circles filled with vertical
lines represent hybridization with the cDNA from
one cell type; those filled with horizontal lines
represent hybridization with the cDNA from the
other cell type; and those filled with grids
represent hybridization with cDNA from both
cell types. Empty circles represent features which
did not hybridize with either cDNA; panel B:
Actual output from an Affymetrix GeneChipW.
Data from an experiment showing the expression
of thousands of genes on a single GeneChipW.
(Image courtesy of Affymetrix, Inc).

4. Oligonucleotides are already single-stranded and do not need to be denatured.
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the location of the spots is facilitated by the fact that the spots are

arranged in a regular array, using either a rectangular grid or a tighter

‘‘orange packing’’ layout. Image-processing software is used to define

the location of the spots and to quantify the amount of fluorescence for

each spot. The quantification involves measuring the intensity of the

individual pixels that make up the image of the spot and a separate

measurement of the pixels that make up the background. The

background fluorescence is subtracted from the spot fluorescence, and

the amount of expression is recorded. When the goal is to estimate

the difference between normal and cancer cells, as in our example, the

ratios of red fluorescence (cancer cells) divided by green fluorescence

(normal cells) may be recorded as well. If we were to assign values to the

spots shown in Figure 12-7(A), we might obtain a result such as that

shown in Table 12-1. Spots with no fluorescence are omitted.

Unfortunately, using a ratio means that a gene that has a twofold

increase in expression in the cancer cells, such as gene D, will give

a ratio of 2, but a gene that has a twofold decrease in expression in the

cancer cells, such as gene G, will give a ratio of 0.5. In fact, all of the

decreased expression will be squeezed between 0 and 1, whereas the

increases in expression, such as the 10-fold increase in genes A and H,

can have extremely high numbers. One solution to this problem is to

transform the ratios to logarithms. This is usually done using base 2, as

is shown in Table 12-2.

Spot Position Fluorescence* Ratio

Row Column Gene ‘‘Name’’ Red Green Red/Green

1 2 A 1,000 100 10

1 5 B 120 1,200 0.1

2 1 C 100 1,000 0.1

2 3 D 1,500 750 2

2 4 E 150 1,500 0.1

2 5 F 1,800 1,200 1.5

3 2 G 600 1,200 0.5

3 3 H 800 80 10

4 1 I 1,500 1,500 1

4 3 J 50 500 0.1

4 5 K 1,800 360 5

5 1 L 900 90 10

5 2 M 180 900 0.2

5 4 N 1,000 1,500 0.67

TABLE 12-1.
Synthetic data for Figure 12-7(A).
*Fluorescence is rarely reported in absolute units. Since the conditions vary widely among experiments because of
equipment differences, the results are given on an intensity scale relative to each experiment.
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EXERCISE 12-1

Compare the ratio and logarithmic data from Table 12-2. Characterize

each as a decrease or an increase in expression. Why is using the log base

2 a better situation than using the ratios?

Note that in Tables 12-1 and 12-2 we did not list the features from

Figure 12-7(A) that had shown no fluorescence at all. This procedure is

called filtering. In a real microarray experiment, we might also want to

remove all of the features that had very low values. This type of filtering

process would reduce the size of the data set (thus increasing processing

speed) and remove the lowest-quality data because any spots with

intensity near the background level are likely to be measured with

questionable accuracy. Genes with missing values in replicate

measurements may also be filtered. Finally, depending on the

experiment, it may be important to only consider genes that changed

expression by a given amount, such as a factor of two. As with any

preprocessing of data, filtering may result in loss of information. When

carefully used, however, it increases processing speed and accuracy

without a significant risk of eliminating any important genes.

Through image processing, background correction, and filtering, the

information from the microarray that was initially stored as an image is

converted to a table of values for each gene present on the microarray.

Spot Position Fluorescence Ratio Log

Row Column Gene ‘‘Name’’ Red Green

Red/

Green (Base 2)

1 2 A 1,000 100 10 3.32

1 5 B 120 1,200 0.1 –3.32

2 1 C 100 1,000 0.1 –3.32

2 3 D 1,500 750 2 1.00

2 4 E 150 1,500 0.1 –3.32

2 5 F 1,800 1,200 1.5 0.58

3 2 G 600 1,200 0.5 –1.00

3 3 H 800 80 10 3.32

4 1 I 1,500 1,500 1 0.00

4 3 J 50 500 0.1 –3.32

4 5 K 1,800 360 5 2.32

5 1 L 900 90 10 3.32

5 2 M 180 900 0.2 –2.32

5 4 N 1,000 1,500 0.67 –0.58

TABLE 12-2.
Synthetic data for Figure 12-7(A), with logarithmic transformation of red/green ratios.
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Tables such as these are called gene expression matrices. For a typical gene

expression experiment, the matrices would include the values from a

number of arrays, representing different patients, treatments, or cell

types, as depicted in Figure 12-8. Mathematically, the information can be

stored as a matrix

x ¼
x11 x12 . . . x1n
x21 x22 . . . x2n
⋮
xm1 xm2 . . . xmn

0
BB@

1
CCA (12-1)

of size m � n where m is the number of genes and n is the number of

different tissues, with xij denoting the value assigned to the i-th gene in

the j-th sample (Figure 12-8).

Thus far, we have only focused on the conceptual side of the

hybridization experiment, leaving the experimental details aside and

making some implicit assumptions. For example, we have assumed that

equal amounts of mRNA were obtained from both cell types. We have

also assumed that the cancer cell cDNA, incorporating Cy5, was

labeled to the same degree as the normal cell cDNA, incorporating Cy3.

Finally, we have assumed that the two fluorescently labeled cDNAs are

detected with equal efficiency. Experimentally, there are numerous

reasons that may cause these assumptions to not be true, resulting in

systematic bias and providing sources for systematic variance in the

gene expression levels across experiments. Thus, compensatory

techniques are necessary to remove bias and make the experimental

results comparable.

One such technique, called normalization, allows the results to

be adjusted to compensate for a systemic problem (bias) in the data

caused by technical variations. For instance, this technique can be used

to compare data from different arrays or different color channels.

Normalization procedures require a set of genes to be used as a basis for

comparison. The procedures may use the set of all genes on the array

and measure an aggregate characteristic, such as total fluorescence

intensity. Alternatively, normalization may look at a subset of the genes

in the experiment. These may be housekeeping genes, which should be

expressed equally in all of the cell types under study. The experiment

may also include artificially introduced controls (such as bacterial

genes introduced into a mammalian expression assay) which may be

used as a normalization set.

Another type of normalization, pertinent to the clustering techniques

examined below, is gene normalization across tissue samples. This is

done to adjust for different scales of expressions. Assume for example,

that the gene expressions of five genes, denoted by A, C, D, E, and F,

have been measured in four different tissue types and the results plotted

in Figure 12-9(A). Notice that genes A and C are co-regulated across
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FIGURE 12-8.
Gene expression matrix for a comparative tumor
gene expression study. Each row represents the
expression values for a different gene, and each
column represents the values for a different tumor
sample.
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samples, although gene C is expressed at a relatively higher level.

Genes E and F are also co-regulated, whereas gene D does not seem to

change expression much across samples. It would be desirable to group

genes based on similar expression patterns, so A and C should be

grouped together, although in the current situation C might be grouped

with D because of their similar average values across samples. In such

cases, normalizing the gene expressions in the expression matrix across

the samples would be appropriate.

This can be done by calculating the mean value and standard deviation

for each row of the matrix X, and then normalizing each entry of the

row by subtracting the mean value and dividing by the standard

deviation. For the entries in row 3, for example, the calculations are as

follows:
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FIGURE 12-9.
Effects of normalization. The data in panel A have been normalized, and the results plotted in
panel B.
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The mean and variance of the values in row 3 are

x3 ¼ x31 þ x32 þ . . .x3n
n

and

s23 ¼
ðx31 � x3Þ2 þ ðx32 � x3Þ2 þ . . .þ ðx3n � x3Þ2

n� 1

Each value in the third row then will be normalized to the value

y3j ¼
x3j � x3

s3
; (12-2)

where j ¼ 1,2,. . .n.

The result of applying this normalization to the data depicted in

Figure 12-9(A) is presented in Figure 12-9(B). Genes A and C have been

brought closer together, genes E and F have remained close, and

gene D differs in expression from both groups.

B. Cluster Analysis Fundamentals

In the hypothetical example depicted in Figure 12-9(A), we were able to

visually identify the similarities in gene expression patterns across the

tissues. In reality, because the expressions of thousands of genes are

examined in a large number of tissues, visual differentiation based on

observed similarities is impossible. We want to be able to discover

patterns in the data—for instance, which genes are turned off in cancer

cells and which genes are turned on. Further, we want to know how

the patterns of gene expression vary from tumor type to tumor type. If

there are patterns of gene expression that are common to certain tumor

types, this may be indicative of common functionality. The fact that

some genes are expressed in similar patterns does not necessarily mean

that their gene products interact with each other, but they might. If we

do not know which genes are co-expressed, we cannot study them to

determine whether they are interacting. Clearly, we need a quantitative

method that will allow us to detect these patterns reliably, so that we can

find the ‘‘needles’’ of specific gene information in this ‘‘haystack’’ of data

regarding thousands of genes.

The methods available to classify co-expressed genes into groups can

be broadly divided into two categories called supervised and

unsupervised learning. In supervised learning, the genes are divided into

a fixed number of predefined groups. These could be defined

qualitatively, for example as ‘‘diseased’’ or ‘‘normal,’’ or be

quantitatively defined by their number. In unsupervised learning, the

genes are grouped into categories based on similarities in their

expression profiles. The computational method used to perform the

partition into groups is generally referred to as cluster analysis.
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Cluster methods can be further divided into several types. Divisive

clustering begins by considering all genes as a single group, which is then

partitioned into subgroups in a way that maximizes the difference

between them. In contrast, agglomerative clustering begins by grouping

the two genes with the most similar expression patterns, and then

treating them as a single entity in the succeeding steps. It then groups

the next most similar pair or adds the grouped pair to another gene if

there is no other more similar pair. In both cases, it is necessary to

provide a strict mathematical measure for dissimilarity, and we turn to

this question next.

Mathematically, the dissimilarity measure5 between gene expression

profiles can be defined as a function of the respective rows of the data

matrix X from Eq. (12-1) that quantitatively determines how different the

gene expressions are. Using xi ¼ ðxi1; xi2; . . . xinÞ and xk ¼ ðxk1; xk2; . . .xknÞ
to denote the ith and kth rows of X, we denote the dissimilarity

measure between them by di;k ¼ dðxi; xkÞ. A variety of choices exists for

the specific functional form of dðxi; xkÞ, but it must satisfy the following

distance axioms:

1. dðxi; xkÞ � 0 for any two vectors xi; xk; that is, the distance should be

always positive;

2. dðxi; xkÞ ¼ dðxk; xiÞ; that is, the distance should be symmetric; and

3. dðxi; xkÞ � dðxi; xsÞ þ dðxs; xkÞ for any vector xs ; that is, the distance

should satisfy the triangle inequality.

By far, the most commonly used dissimilarity measure is based on the

Euclidean distance defined as

dEðxi; xkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðxij � xkjÞ2:
vuut (12-3)

Other commonly used distance measures are the Pearson correlation

distance, given by

dPðxi; xkÞ ¼ 1

n� 1

Xn
j¼1

xij � xi

si

� �
xkj � xk

sk

� �
; (12-4)

the Manhattan or block distance, defined as

dBðxi; xkÞ ¼
Xn
j¼1

jxij � xkjj; (12-5)

and the Chebyshev distance:

dcðxi; xkÞ ¼ maxjjxij � xkjj: (12-6)

5. Dissimilarity measures are also sometimes called distances.
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Numerous other more complex distance measures are being used in

research studies, and no single standard has emerged yet. As different

dissimilarity measures will often change the clustering of the microarray

data, comparison of results across different measures should not be

made.

EXERCISE12-2

Show that dEðxi; xkÞ from Eq. (12-3) satisfies the distance axioms 1

through 3.

Hint: First prove the result for n ¼ 2.

EXERCISE12-3

Show that dBðxi; xkÞ from Eq. (12-5) satisfies the distance axioms 1

through 3.

EXERCISE 12-4

Show that dCðxi; xkÞ from Eq. (12-6) satisfies the distance axioms 1

through 3.

C. Cluster Analysis Methods

1. Hierarchical clustering

Consider the set of gene expression values shown in Table 12-3. For this

illustration, we consider the gene expression values measured for only

two hypothetical tumor samples. In this case, n ¼ 2, and the expression

values can be depicted as points on a two-dimensional coordinate

system. We can also label the rows of the data matrix X by the gene

names A, B, C, . . ., instead of x1,x2,x3,. . . . Now, the Euclidean distance

from Eq. (3) is the usual geometric distance between points in the plane.

For our example,

dðA;CÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:5� 1:1Þ2 þ ð�0:4� ð�0:3ÞÞ2

q
¼

ffiffiffiffiffiffiffiffiffi
0:17

p
¼ 0:412:

See Figure 12-10.

After the distances between any two rows of the data matrix X are

computed, it is convenient to store the data again as a matrix, called

a proximity matrix. The proximity matrix for the data in Table 12-3 is:

Gene ‘‘Name’’ Tissue Types

1 2

A 1.5 �0.4

B 1.4 �0.5

C 1.1 �0.3

D �1.2 0.5

E �1.4 0.8

F �1.6 0.2

TABLE 12-3.
Gene expression values for a set of hypothetical
tumor sampling.
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A B C D E F

D ¼

A
B
C
D
E
F

0:000 0:141 0:412 2:846 3:138 3:158
0:141 0:000 0:361 2:786 3:087 3:081
0:412 0:361 0:000 2:435 2:731 2:746
2:846 2:786 2:435 0:000 0:361 0:500
3:138 3:087 2:731 0:361 0:000 0:632
3:158 3:081 2:746 0:500 0:632 0:000

0
BBBBBB@

1
CCCCCCA
:

(12-7)

The clustering process begins with finding the smallest value in the

proximity matrix and merging the respective genes into a cluster. For

this proximity matrix, the smallest distance is 0.141, and thus the first

cluster will contain A and B. In the next step, the proximity matrix is

updated as follows: Genes A and B are replaced by the midpoint

between them, and the distances from the other genes to this midpoint

are calculated, resulting in a matrix with fewer rows and columns.

The process continues until all genes are merged into a single cluster.

For our example, after the initial cluster A/B is formed, D and E will be

merged together. The A/B group would then be clustered with C. The

D/E group would then be combined with F. Finally, we link the

A/B/C cluster to the D/E/F cluster, as we have no more genes to

link. A map of this clustering, called a dendrogram, is shown in

Figure 12-11. The lengths of the dendrogram branches denote the

distances at which the clusters are merged.

The clustering method described here is known as average linkage, as

each cluster was represented by the midpoint between the newly

merged genes, and this midpoint was then used for updating the

proximity matrix. In complete linkage, on the other hand, the distances

between each gene in the new cluster and the genes in the other clusters

are calculated, and the largest distance is used in the proximity matrix.

In single linkage, the smallest of these distances is used as the distance

between the clusters. Several other linkage methods exist, such as the

centroid method and Word linkage, and we refer the reader to Amaratunga
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(1.5−1.1)2+ (−0.4−(−0.3))2= 0.412

FIGURE 12-10.
In the case of two tissue samples, the distance from Eq. (12-3) is the geometric distance between
points in the plane. The distance between the gene expressions A and C is depicted.
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FIGURE 12-11.
Dendrogram with average linkage and Euclidean
distance for the gene expression matrix in
Table 12-3. Genes A and B have the most similar
expression patterns, followed by genes D and E.
The combined expression pattern of D and E is
similar to that of F, and the combined expression
pattern of A and B is similar to that of C. Finally,
the A/B/C cluster is linked to the D/E/F cluster.
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and Cabrera (2004) for the details. Different linkage methods produce

dendrograms with different branch lengths, as seen in Figure 12-12.

A common problem with using hierarchical clustering is the lack of

standardized rules for determining at what vertical level the

dendrogram should be cut to produce the final number of clusters.

If the dendrogram in Figure 12-11, for instance, is cut at the 2.0 level,

there will be only two clusters: A/B/C and D/E/F. Cutting it at the 0.5

level will produce three clusters: A/B/C, D/E, and F. In microarray

applications, prior knowledge of gene expression patterns and known or

putative genetic metabolic pathways may influence this decision.

Nonetheless, the determination of the number of clusters, as with the

choice of dissimilarity measure or linkage method, remains somewhat

arbitrary. We refer the reader to Everitt et al. (2001), where some

guidance is provided.

2. K-Means clustering

K-Means clustering is a supervised learning method designed to group

the data into a fixed number, k, of clusters. This number may be

determined by the design of the experiment or based on prior

knowledge. In many cases, however, the method is used to partition the

data into different numbers of groups until a satisfactory result is

achieved. As in the other methods, the objective is to determine the most

appropriate grouping of the data.

The process is iterative and begins by selecting k genes at random to

form k groups. At each step, the distances between any of the genes

to the centers of the k groups are calculated, with genes then assigned to

the group with the closest centers. The original k genes serve as

initial centers of the k groups. In the following steps, the new centers

are calculated as the averages of the genes assigned to the group.

The process continues until no gene is reallocated to a new cluster.

At each iteration, cluster statistics can be computed to assess the

strength of the clusters, and some standard statistical packages, such

as MINITAB and SPSS, give their values as part of the output.

The average intercluster distance is defined as

DAV ¼ 1

N

Xk
i¼1

Xni
m¼1

dðyim; yiÞ; (12-8)

where yim is the m-th member of the i-th cluster, yi is the center of the i-th

cluster, and ni is the number of members in the i-th cluster. The total

within cluster sum of squares is computed by first finding the sums of

squared residuals from the cluster centers and then adding them across

all clusters. In mathematical form,

S ¼
Xk
i¼1

Xni
m¼1

Xn
j¼1

ðyimj � yijÞ2; (12-9)
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FIGURE 12-12.
Comparison of dendrograms from hierarchical
complete linkage (A) and single linkage (B)
clustering. Euclidean distance was used in both
cases. Notice the differences in the vertical scale
and compare with the result for average linkage in
Figure 12-11.
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where k is the number of clusters, ni is the number of members in the i-th

cluster, yimj is the j-th coordinate of the m-th member of the i-th cluster,

and yij is the j-th coordinate of the center of the i-th cluster. In general,

smaller values of DAV and S indicate more strongly expressed clustering

within groups.

A variation of the classical K-Means algorithm uses the quantity from

Eq. (12-8) to reassign data points to clusters in ways that decrease the

value of S. The algorithm terminates when two different iterations return

essentially the same value for S within a small tolerance. Another

variation applies the K-Means method multiple times with different

randomly selected initial cluster centers from the data. The final

clustering is chosen to have the smallest within-cluster sum of

squares, S.

Clustering procedures are included in a variety of commercial and

noncommercial computer software packages. We encourage you to use

Michael Eisen’s Cluster and Tree View programs (Eisen et al. [1998]) to

examine the diffuse large B-cell lymphoma (DLBCL) data (available on

his Web site; see Internet Resources at the end of this chapter). This

should allow you to duplicate the result reported in Alizadeh et al.

(2000), identifying two types of B-cell lymphoma: germinal center B-like

DLBCL and activated B-like DLBCL. In Figure 12-13, we reproduce one

of the diagrams reported in the paper that includes both row and

column clustering.

VI. MICROARRAYS AND CIRCADIAN RHYTHMS

A. Introduction

In Chapter 11, we discussed some of the genetic mechanisms of

circadian rhythms that are expressed at the level of the whole organism

and in diverse organs, tissues, and cells. Some of the genes involved

have been identified, but we would like to discover what other genes are

expressed in a circadian manner. With microarray technologies, we no

longer need to confine our molecular investigations to the period gene or

the other known genes, such as tim, clock, or cycle. Now we can look at

the gene expression patterning of many hundreds or thousands of genes

simultaneously and explore in greater detail an organism’s system of

temporal regulation and control of circadian patterns.

Many gene expression studies6 have contributed to our current

understanding of the molecular basis of circadian clocks and how the

oscillators in different tissues and organs may be coordinated. The

eventual goals of such studies are to develop an accurate systems-level

6. Reviewed in Reppert and Weaver (2002), Richter et al. (2004), and
Bell-Pedersen et al. (2005).

Gene Expression Patterns 407An Invitation to Biomathematics



understanding of the interacting regulatory networks that underlie

molecular, behavioral, and physiological circadian control. Microarrays

are proving to be central to this research (see Duffield [2003]), and their

use will undoubtedly continue to be essential.

Although we are beginning to understand some of the intracellular

molecular mechanisms of circadian systems, the manner in which they

give rise to cyclic temporal patterning in behavior and physiology is still

largely unknown. A major challenge will be to experimentally unravel

the details of the mechanistic control of circadian biology, especially

with regard to environmental stimuli. By exploring circadian control and

regulation, we are also gaining a greater understanding of how

information is communicated across and between hierarchical biological

levels: molecular, cellular, tissue, organ, organ system, and whole

organism. Although it is biological questions that drive specific aims of
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Activated blood B 
Resting/activated T 
Transformed cell lines 
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Resting blood B 
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FIGURE 12-13.
A microarray graph showing the results of with row and column hierarchical clustering. The column
clustering is obtained by applying the clustering methods to the transposed data matrix XT.
(Figure 13 from Alizadeh et al. [2000]. # 2000 Macmillan Publishers Ltd. Nature, 403, 503–511.
Reprinted by permission.)
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inquiry, quantitative analytical solution strategies to assist in the process

are emerging as critically important.

We now discuss the computational challenges of assessing the presence

of circadian rhythms in time series microarray data.

B. Computational Challenges

If we wish to study a circadian phenomenon, we need to collect data as

frequently as possible and for as long as possible. To detect genes

expressed in a circadian manner, a series of mRNA samples must be

collected over time. Challenges present at the experimental level,

however, always limit the number of data points that can be obtained for

the analysis of any time series.

Consider, for example, a study designed to examine circadian gene

expression patterns in mouse liver or pancreas, with experiments

performed in triplicate and with data points being collected every 4

hours for 48 hours. We would need to purchase and entrain 39 mice

(3 mice per 13 time points) under dark/light conditions over an

appropriately long period of time, before they are transferred into

constant dark at the beginning of the experiment. Three mice will be

sacrificed at the beginning of the experiment, and every 4 hours

thereafter, and their organs of interest excised. We would then need to

extract mRNA from each of the organs from the 39 mice, and each

mRNA sample then needs to be converted to labeled cDNA and then be

hybridized to a microarray. Scanning and analyzing each array will then

be needed to obtain gene expression data. Thus, there are two major

factors limiting the number of data points that can be feasibly

obtained in each time series. First, in most cases the labor and expense

involved in collecting each data point would preclude using intervals

shorter than four hours apart. Second, because of the general dampening

of the circadian rhythm under conditions of constant darkness (see

Ceriani et al. [2002]), the time window for the entire experiment will be

likely limited to about 48 hours.

The challenges for circadian analysis of gene chip–derived time series

are thus considerable, as data sets presented for analysis are typically

characterized by (1) extremely sparse determination (often only 13

points at a 4-hour sampling frequency for 48 hours); (2) extremely high

dimensionality (on the order of 104 gene IDs per microarray in current

Affymetrix implementations); and (3) low replicate numbers (thus

limiting pointwise reliability, primarily because of the considerable

financial costs of multiple chips per experimental time point). The sparse

number of data points for each gene expression time series renders the

use of many conventional methods for rhythm analysis inappropriate

because such methods typically require much larger samples to generate

statistically significant results. Instead, idiosyncratic algorithms
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specifically designed to statistically address such limitations have been

developed and applied to microarray time-series analysis. Note that

it is imperative that such algorithms possess high levels of automation

and efficiency, given the huge number of genes on the microarray

that are being examined for circadian behavior.

C. Statistical Assessment of Daily Rhythms in Microarray Data

The COSOPT algorithm described in this section has been used

successfully in several studies for the analysis of microarray data in

Arabidopsis, Drosophila, and mammalian systems (see Edwards et al.

[2006]; Ceriani et al. [2002]; and Panda et al. [2002]). More methods for

statistical assessment of circadian rhythms in gene expression patterning

can be found in Straume (2004).

COSOPT accommodates variable weighting of individual time points,

such as standard errors of the mean (SEMs) from replicate

measurements or errors derived from preprocessing. COSOPT utilizes

user-provided estimates of the circadian period entered as the value

and range of the assumed period. Test periods are then calculated,

uniformly spaced in the assumed range. The computational process

begins by importing the time series on which an arithmetic linear

regression detrending is performed. The mean and SD of the detrended

time series are then calculated.

For each test period t, 101 test cosine basis functions

ybðtÞ ¼ cos
2pðtþ jÞ

t

� �
of unit amplitude are considered, varying over a

range of phase values j between � t
2
;
t
2

h i
. The number of cosine

functions is chosen to allow that phase be considered in increments of

1% of each test period. Next, for each test cosine basis function yb(t),

COSOPT calculates the least-squares optimized linear correspondence

between the linear-regression–detrended data, ylr(t), according to the

model

ylrðtÞ ¼ aþ bybðtÞ:

The optimization is across all values of t, in terms of the parameters,

a and b. The quality of optimization possible by each test cosine basis

function is quantitatively characterized by the sum of squared residuals

w2 between ylr(t) and the model given by a þ byb(t).

The values of w2 are used to identify the optimal phase with the smallest

value for w2 providing the optimal correspondence between ylr(t) and

yb(t) (see Figure 12-14). The values for a and b, least-squares fit for the

optimal phase value, now represent the optimized measures of the

average expression and magnitude of the oscillatory amplitude

expressed by ylr(t) (as modeled by a cosine wave of the corresponding

period).
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FIGURE 12-14.
Phase optimization for a presumed 22-hour circadian period. Three of the 101 cosine waves with a
different phase ranging from �11 to 11 hours are depicted in the top panel, together with the 13
data points measured over 48 hours at equal 4-hour intervals. The optimal phase is identified as that
minimizing the sum of squared residuals w2. The middle panel presents a plot of the w2 values for the
101 phase values tested. The optimal phase for this period is then obtained as one of the values
minimizing w2. In this case, we obtain Phase ¼ 1.1 hours. The corresponding b values are shown in
the bottom panel. For this example, the optimal phase is 1.1 hours, and the corresponding amplitude
b is 1.31.
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A similar optimization procedure is performed next over the user-

provided range of periods. The optimal value for the period is again

identified as a value minimizing the sum of squared residuals w2 (see
Figure 12-15). The value of this period, together with the values of

optimal phase, average level of expression, and amplitude determined

on the previous step are then recorded as the best fit to the data.

FIGURE 12-15.
Period optimization over a user-defined range of 20 to 28 hours for the period. The minimum of the
sum of squared residuals w2 is achieved at period t ¼ 22 hours (middle panel). The respective values
of average expression and amplitude are a¼ �0.3055 and b ¼ 1.31 (bottom panel).
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To assess statistically the probability that a significant rhythm is

present in ylr(t) (in relation to, or as modeled by, a cosine functional form

of the corresponding period and optimal phase), COSOPT employs

empirical resampling methods applied directly in terms of the parameter

b at each test period and corresponding optimal phase. One thousand

Monte Carlo cycles are carried out in which surrogate realizations of

ylr(t) are generated by both (1) randomly shuffling the temporal

sequence of the original data; and (2) adding pseudo–Gaussian-

distributed noise to each surrogate point in proportion to the

corresponding value of point uncertainty (e.g., replicate SEM). In this

way, both the influence of temporal patterning and the magnitude of

pointwise experimental uncertainty are specifically accounted for in the

surrogate realizations. Then, as with the original ylr(t) sequence, optimal

values of a and b are determined, along with a corresponding w2, and
retained in memory for each surrogate at each test period/optimal

phase.

For each test period/optimal phase, the mean and standard deviation of

the surrogate b values are then calculated. These values, in relation to

the b value obtained for the original ylr(t) series, are then used to

calculate a one-sided significance probability p based on a normality

assumption (which is, in fact, satisfied by the distribution of b values

obtained from the 1000 randomized surrogates). This probability is then

multiple measures corrected (MMC) for the number of original data

points comprising the time series to obtain the probability p(MMC) ¼
1 � (1 � p)N, N ¼ 13, which provides a more conservative assessment of

significance. A summary of the analytical session is then produced for

each time series, composed of entries for only those test periods that

correspond to w2 minima.

In order to assess the performance of COSOPT, simulated data sets were

prepared to approximate previously encountered gene chip profiles

from experimental examinations of expression time series (Harmer

et al. [2000]; Panda et al. [2002]; Ceriani et al. [2002]). One thousand

surrogate data sets were prepared at each condition considered (see

below), in which time series possessed 13 data points, representing 48

hours of observation obtained at 4-hour sampling intervals. All time

series were surrogate realizations of a 24-hour-period cosine wave

ranging in representational time from �24 hours to þ24 hours, at which

acrophase (the time of maximum) occurred at time zero. All data sets

were composed of N(0,1) noise, to which 24-hour cosine profiles were

added to produce data with signal-to-noise ratios of either 0, 1, or 2. This

was achieved by adding nothing, or a unit-amplitude cosine wave, or an

amplitude-2 cosine wave, respectively.

At each signal-to-noise ratio, replicate sampling also was varied, ranging

from 1, 2, 3, 4, or 5 replicate observations being averaged per data

point. A final variable considered in the analyses was whether or not
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replicate pointwise uncertainties were explicitly considered. This

variable allows for employing either (1) pointwise SEMs in variable

weighting for statistical considerations, or (2) no weighting, assuming, in

effect, each data point to be known with infinite precision (i.e., with

associated pointwise SEMs of zero).

Tables 12-4 through 12-8 summarize the results obtained from

simulations with each of the aforementioned analytical strategies as

a function of simulation condition. As expected, higher signal-to-noise

ratios and/or higher numbers of replicates yield more accurate and

more statistically significant results. In the tables, values reported are

means from analyses of the 1000 surrogate time series for each condition

tested. Associated standard deviations appear in parentheses

immediately below the mean values. The column headings have the

following meanings:

� � SEM refers to whether (Yes) or not (No) individual pointwise

replicate uncertainties were considered during statistical analysis;

� S/N denotes signal-to-noise ratio;

� % refers to percentage of files identified as circadianly rhythmic (i.e.,

with periods such that 20 hrs < t < 28 hrs);

� MeanExpLev denotes mean expression level of the identified time

series (theoretically zero); values in parentheses are SDs;

� Period denotes the period of the identified time series (theoretically

24);

� Phase denotes time of acrophase of the identified time series (theo-

retically zero);

� Ampl denotes oscillatory amplitude of the identified time series

(theoretically either 2, 1, or 0);

� Prob denotes uncorrected significance probability of the identified

time series;

� Prob(MMC) denotes multiple measures corrected significance prob-

ability of the identified time series. It is considered circadianly

rhythmic if Prob(MMC) < 0.05; and

� N/D means the value was not determined.

In conclusion, despite the considerable challenges for circadian analysis

of gene chip-derived time series, the COSOPT algorithm appears to

perform admirably. It extracts reliable estimates of period, phase, and

oscillatory amplitude. It requires no user initialization, is stable, and

appears to produce unbiased parameter value estimates. It is readily
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�SEM S/N % MeanExpLev Period Phase Ampl Prob Prob (MMC)

Yes 2 99.9 0.150
(0.141)

23.986
(0.741)

0.017
(0.377)

2.030
(0.195)

7.82e�4
(2.90e�4)

1.01e�2
(3.74e�3)

No 2 100.0 0.150
(0.141)

23.986
(0.741)

0.017
(0.377)

2.030
(0.196)

4.53e�4
(1.91e�4)

5.88e�3
(2.47e�3)

Yes 1 50.5 0.081
(0.137)

23.905
(1.285)

0.042
(0.690)

1.175
(0.151)

2.49e�3
(8.07e�4)

3.19e�2
(1.02e�2)

No 1 92.6 0.073
(0.141)

23.933
(1.405)

0.043
(0.751)

1.074
(0.180)

1.26e�3
(7.60e�4)

1.62e�2
(9.73e�3)

Yes 0 0.0 — — — — — —

No 0 2.3 –0.003
(0.125)

22.970
(2.363)

–1.789
(7.025)

0.567
(0.135)

2.45e�3
(9.22e�4)

3.14e�2
(1.16e�2)

TABLE 12-5.
COSOPT performance assessment with N ¼ 4 replicates.

�SEM S/N % MeanExpLev Period Phase Ampl Prob Prob (MMC)

Yes 2 100.0 0.150
(0.127)

24.019
(0.708)

–0.001
(0.341)

2.015
(0.166)

6.57e�4
(2.23e�4)

8.51e�3
(2.87e�3)

No 2 100.0 0.150
(0.127)

24.019
(0.708)

–0.001
(0.341)

2.015
(0.166)

4.10e�4
(1.44e�4)

5.32e�3
(1.86e�3)

Yes 1 66.7 0.079
(0.128)

24.027
(1.365)

0.025
(0.667)

1.110
(0.131)

2.29e�3
(8.16e�4)

2.94e�2
(1.03e�2)

No 1 96.6 0.074
(0.127)

24.056
(1.383)

–0.004
(0.677)

1.045
(0.159)

1.09e�3
(6.77e�4)

1.41e�2
(8.69e�3)

Yes 0 0.0 — — — — — —

No 0 2.2 0.040
(0.137)

23.514
(2.585)

–0.289
(7.797)

0.463
(0.109)

2.91e�3
(8.24e�4)

3.72e�3
(1.03e�2)

TABLE 12-4.
COSOPT performance assessment with N ¼ 5 replicates.

�SEM S/N % MeanExpLev Period Phase Ampl Prob

Prob

(MMC)

Yes 2 99.8 0.151
(0.159)

24.037
(0.865)

0.017
(0.467)

2.033
(0.221)

1.08e�3
(4.83e�4)

1.40e�2
(6.20e�3)

No 2 100.0 0.151
(0.159)

24.035
(0.865)

0.016
(0.467)

2.032
(0.222)

5.35e�4
(2.35e�4)

6.93e�3
(3.04e�3)

Yes 1 30.0 0.081
(0.152)

24.099
(1.457)

0.040
(0.844)

1.264
(0.164)

2.73e�3
(7.88e�4)

3.49e�2
(9.91e�3)

No 1 83.1 0.078
(0.157)

24.024
(1.574)

0.047
(0.919)

1.113
(0.195)

1.50e�3
(8.48e�4)

1.93e�2
(1.08e�2)

Yes 0 0.0 — — — — — —

No 0 3.4 0.027
(0.164)

23.018
(2.365)

0.928
(5.959)

0.668
(0.148)

2.79e�3
(8.77e�4)

3.57e�2
(1.10e�2)

TABLE 12-6.
COSOPT performance assessment with N ¼ 3 replicates.
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amenable to completely automated implementation and is sufficiently

rapid to complete analysis of 20,000 or more GeneIDs in only a few

hours. This allows the identification of genes not previously known to be

under circadian control, and that identification is the first step toward

building a better understanding of circadian phenomena.
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Solutions to even-numbered exercises can be downloaded from

http://testbooks.elsevier.com/companions/9780120887712.

Chapter 1

Exercise 1-1.
........................

a) Pn � Pn�1 ¼ kPn�1 can be rewritten as

Pn ¼ Pn�1 þ kPn�1 ¼ ð1þ kÞPn�1:

b) Because a) applies for any value of n ¼ 1, 2, 3,. . ., applying it

repeatedly leads to the chain of equalities:

Pn ¼ ð1þ kÞPn�1 ¼ ð1þ kÞð1þ kÞPn�2 ¼ ð1þ kÞ2Pn�2

¼ ð1þ kÞ3Pn�3 ¼ :::ð1þ kÞnP0:

Exercise 1-3.
........................

Parts a) and b):

The tables below are analogous to Tables 1-2 and 1-3 in the text.

Time

[hours] n Biomass Pn

Change in

Biomass

Pn � Pn-1

k ¼
(Pn � Pn-1)/ Pn-1

Predicted Biomass

for k ¼ 0.606

0 9.6 9.6

1 18.3 8.7 0.906 15.4

2 29 10.7 0.585 24.8

3 47.2 18.2 0.628 39.8

4 71.1 23.9 0.506 63.9

5 119.1 48 0.675 102.6

6 174.6 55.5 0.466 164.7

7 257.3 82.7 0.474 264.5

TABLE 1-1.
Estimation of k from biomass data using the discrete model from Eq. (1-1). The average value for
k is k ¼ 0.606. (Note that without k ¼ 0.906, the average is k ¼ 0.556.)

c) The graph is shown in Figure 1-1. The model does not appear

capable of remaining accurate; because the exponential function

is unbounded, it predicts unlimited growth.
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Exercise 1-5.
........................

a) When P(t) < K, the population will be increasing, because

dP

dt
¼ a 1� PðtÞ

K

� �
PðtÞ > 0:

b) When P(t) ¼ K, the population remains unchanged, because

dP

dt
¼ a 1� PðtÞ

K

� �
PðtÞ ¼ 0:

c) When P(t) > K, the population will be decreasing, because

dP

dt
¼ a 1� PðtÞ

K

� �
PðtÞ < 0:

Time t [hours] Biomass P(t) r ¼ ln(P(tþ1)) – ln(P(t))

Predicted Biomass

for r ¼ 0.470

Relative Error [%] ¼
jPredicted� Actualj

Actual
100

0 9.6 9.6 0.000

1 18.3 0.645 15.4 16.066

2 29 0.460 24.6 15.256

3 47.2 0.487 39.3 16.692

4 71.1 0.410 62.9 11.514

5 119.1 0.516 100.7 15.482

6 174.6 0.383 161.1 7.756

7 257.3 0.388 257.7 0.152

TABLE 1-2.
Estimation of r from biomass data using the continuous model from Eq. (1-7). The average value for r is r ¼ 0.470.
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FIGURE 1-1.
Graph of Eq. (1-4), with r¼ 0.470, depicting the solution of the continuous model defined by Eq. (1-2).
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Exercise 1-7.
........................

If there were a time when P(t) ¼ K, the value of P(t) would remain

equal to K for all times thereafter (since
dP

dt
¼ 0 for all times thereafter).

Exercise 1-9.
........................

a) The graph of T versus
dT

dt
is presented in Figure 1-3.

b) The equilibrium states are where
dT

dt
¼ 0; that is, where the graph in

Figure 1-3 crosses the horizontal axis. The equilibrium states

T ¼ �15 and T ¼ 22 are stable. More specifically, if T < �15, then

dT

dt
> 0, and T will increase toward �15, and if T > �15, but less

than 5, then
dT

dt
< 0, and T will decrease toward –15.

c) (i) If T(t0) ¼ 23, then
dT

dt
< 0, so T will decrease;

(ii) If T(t0) ¼ 18, then
dT

dt
> 0, so T will increase;

(iii) If T(t0) ¼ -16, then
dT

dt
> 0, so T will increase;

(iv) If T(t0) ¼ 4, then
dT

dt
< 0, so T will decrease.

d) The time trajectories are shown in Figure 1-4.

Exercise 1-11.
..........................

From Eq. (1-25) in the text, the equilibrium states are found by setting

the change Pnþ1 � Pn equal to zero for all values of n ¼ 0,1,2, . . . This is

equivalent to having Pn ¼ P, for all n ¼ 0,1,2, . . . . Thus, setting Pnþ1 and

Pn equal to P in Eq. (1-25), we obtain a 1� P

K

� �
P ¼ 0:

Solving for P yields the equilibrium states P ¼ 0 and P ¼ K.

Exercise 1-13.
..........................

One serious limitation is that the model does not provide means for

taking into account that only individuals who have reached a certain

level of maturity can reproduce. The model from Eq. (1-28) bases the net

per capita rate of growth r on the population size of D units of time

earlier. However, to determine the population’s rate of change
dP

dt
, this

per capita rate of growth is applied to the current population size P(t).

0
22

T

dt

dT

5−15
T

FIGURE 1-3.
Graph of T versus

dT

dt
for Exercise 1-9, part a.

t

P(t )

22

5

−15

t = t0

0

FIGURE 1-4.
The time trajectories of the temperature T(t) for
the 4 cases in part c of Exercise 1-9.
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This, among other things, implies that even the babies in the current

population will be contributing to the rate of population change at

time t, which is unrealistic.

Exercise 1-15.
..........................

Rewrite
dC

dt
¼ �rC as

dC

C
¼ �rdt. Integrating both sides givesZ

dC

C
¼ �r

Z
dt and thus ln jCj ¼ lnC ¼ �rtþ k, where k is an arbitrary

constant. Therefore, CðtÞ ¼ e�rtþk ¼ e ke�rk. Substituting t ¼ 0, we obtain

e k ¼ Cð0Þ, which shows that the solution of Eq. (1-29) is given by

CðtÞ ¼ Cð0Þe�rt.

Exercise 1-17.
..........................

Given that the half-life t ¼ 2:5 hours, we can compute the elimination

rate constant r ¼ lnð2Þ
t

¼ lnð2Þ
2:5

¼ 0:2773. Next, we need to find t such that

CðtÞ ¼ Cð0Þe�ð0:2773Þt ¼ ð0:01ÞCð0Þ, or e�ð0:2773Þt ¼ ð0:01Þ. Solving for t,

we obtain �0:2773t ¼ lnð0:01Þ ¼ �4:6053, or t � 16.6 hours.

Exercise 1-19.
..........................

Because Rn ¼ Cð½e�Tr�n þ ½e�Tr�n�1 þ ½e�Tr�n�2 þ :::þ e�TrÞ and
Rnþ1 ¼ Cð½e�Tr�nþ1 þ ½e�Tr�n þ ½e�Tr�n�1 þ ½e�Tr�n�2 þ :::þ e�TrÞ

¼ Rn þ C½e�Tr�nþ1, the sequence {Rn} is increasing. Thus

Rn < R ¼ lim
n!1Rn: Physiologically, R represents the level of saturation

of the drug concentration observed when equal doses are given at

equal time intervals.

Exercise 1-21.
..........................

Rewrite MEC ¼ MTC�MEC

eTr � 1
as eTr � 1 ¼ MTC�MEC

MEC
¼ MTC

MEC
� 1,

where from eTr ¼ MTC

MEC
: Taking logarithms from both sides gives

Tr ¼ ln
MTC

MEC
and T ¼ 1

r
ln

MTC

MEC
.

Exercise 1-23.
..........................

If we assume that a pharmaceutical company follows the objectives 1

through 4 outlined in the exercise, we may hypothesize that the initial

dose C0 is approximately MTC. Further, as we assume that the regular
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doses after the initial dose are determined as C � MTC – MEF ¼
C0 – MEF, we can compute MEF � C0 – C. Furthermore, we can

hypothesize that since the time between the doses is given, the

elimination constant can also be estimated from the available

information. Namely, solving the expression T ¼ 1

r
ln

MTC

MEC
derived in

Exercise 21 for r one obtains r ¼ 1

T
ln

MTC

MEC
¼ 1

T
ln

C0

C� C0
.

Exercise 1-25.
..........................

Enter the model in BERKELEY MADONNA as below and run it. Then

follow the instructions for importing a data set and comparing the

results.

STARTTIME ¼ 0

STOPTIME¼20

DT ¼ 0.02

d/dt(P) ¼ a*(1-P/K)*P

init P ¼ 9.6

K¼660

a ¼ 0.608

Chapter 2

Exercise 2-1.
........................

Taking in mind that I þ S ¼ N, we write

dI

dt
¼ aIS� bI ¼ aIðN � IÞ � bI ¼ aI N � b

a
� I

� �
< 0, if N � b

a
< 0.

This means that I(t) is decreasing and there is no epidemic.

IfN � b
a
¼ 0,

dI

dt
¼ aI N � b

a
� I

� �
¼ �aI2 < 0, and the result is the same.

Exercise 2-3.
........................

Some of the limitations of the model are:

a) Once recovered, individuals are considered susceptibles right

away. This will not be true for diseases that confer even temporary

immunity.
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b) The assumption that the disease is spread via direct contact has

severe limitations. For instance, the model would not be

appropriate for infections that are airborne.

c) The model assumes a constant recovery rate and infection rate,

regardless of age or geographic or socioeconomic factors.

d) The model assumes that infectives and susceptibles remain

uniformly mixed with time, which may not always be true.

Exercise 2-5.
........................

Additional factors may include the mobility of infectives and

susceptibles and how the amount of contact affects the likelihood of

infection.

Exercise 2-7.
........................

The result appears plausible for some diseases. If the infection has a

low infection rate and high removal rate, it will be hard to transmit

and easy to cure. Under such assumptions, it would be reasonable to

expect that the infection will be eliminated long before the entire

population is infected.

Exercise 2-9.
........................

a) Upon infection, an individual moves to the new group E where

they need to remain for exactly D units of time. After having

spent time D in this state, an individual becomes infectious and is,

therefore, moved to the group of infectives I.

The block diagram for this case is given in Figure 2-1 with the ‘‘in-

flow’’ and ‘‘out-flow’’ rates labeling the arrows. The mathematical

form of those rates is justified below.

In comparison with the SIR model, the rate of infecting

susceptibles at time t (that is, the rate of flow from S to E at time t)

is the same: aSðtÞIðtÞ. Because each individual will be spending

exactly time D in E, the rate of flow from E to I at time t will be

exactly the rate of flow from S to E at time t – D; that is

aSðt�DÞIðt�DÞ. The rate of flow from I into R is the same as

that in the SIR model. Because a fraction b of the infectives at

recovering per unit time at any given time t, the rate of flow

from E into R is bIðtÞ. Recall that 1=b gives the average time over

which an infected person will remain infectious.

S E I R

aS(t − D)I (t − D) bIaSI

FIGURE 2-1.
Flowchart illustrating the rates of transition between
the groups for the model in Exercise 2-9, a.
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Thus, based on the block diagram in Figure 2-1 and the explanation

provided above, the equations are:

dS

dt
¼ �aIðtÞSðtÞ

dE

dt
¼ aIðtÞSðtÞ � aIðt�DÞSðt�DÞ

dI

dt
¼ aIðt�DÞSðt�DÞ � bIðtÞ

dR

dt
¼ bIðtÞ

Notice that
dS

dt
þ dE

dt
þ dI

dt
þ dR

dt
¼ 0:

b) Upon infection, an individual moves to the new group E, as

in part a). This time, however, the time any specific individual

will spend in the state E is not fixed. Instead, at any time

instant t, a fraction g of the group E moves to the group of

infectious I per unit time. The block diagram is given in Figure 2-2.

Notice that this means that, on average, an individual will

spend time 1/g in E.

The equations are:

dS

dt
¼ �aIðtÞSðtÞ

dE

dt
¼ aIðtÞSðtÞ � gEðtÞ

dI

dt
¼ gEðtÞ � bIðtÞ

dR

dt
¼ bIðtÞ

Notice that, again,
dS

dt
þ dE

dt
þ dI

dt
þ dR

dt
¼ 0:

Exercise 2-11.
..........................

a) The null clines for V are computed by setting
dV

dt
¼ ða� gOÞV ¼ 0

and the null clines for O by setting
dO

dt
¼ ð�dþ eVÞO ¼ 0. The first

of these equations yields V ¼ 0 or O ¼ a
g
. The second gives the

null clines for O: O ¼ 0 or V ¼ d
e
.

S E I R

gE bIaSI

FIGURE 2-2.
Flowchart illustrating the rates of transition between
the groups for the model in Exercise 2-9, b.
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b) The equilibrium states are determined by solving the system of

equations

dV

dt
¼ ða� gOÞV ¼ 0

dO

dt
¼ ð�dþ eVÞO ¼ 0

The equilibrium states are V ¼ 0, O ¼ 0 and V ¼ d
e
, O ¼ a

g
.

c) The phase diagram is presented in Figure 2-3. If O >
a
g
, then

a� gO < 0, so
dV

dt
< 0, and thus the arrows above the line O ¼ a

g

point to the left. Similarly, if O <
a
g
, then a� gO > 0, so

dV

dt
> 0, and

thus the arrows below the line O ¼ a
g
point to the right. If V >

d
e
,

then �dþ eV > 0 and
dO

dt
> 0, so the arrows to the right of the line

V ¼ d
e
point up. If V <

d
e
, then �dþ eV < 0 and

dO

dt
< 0, so the

arrows to the left of the line V ¼ d
e
point down.

d) Neutrally stable.

Exercise 2-13.
..........................

When O ¼ V,
dO

dt
¼ dO 1�O

V

� �
¼ 0 and

dV

dt
¼ 2

3
V � V2

6
� V2

1þ V
¼ �V2 þ 3V � 4

6ð1þ VÞ . Because

�ðV2þ3V�4Þ¼�ðVþ4ÞðV�1Þ, �ðV2þ3V�4Þ > 0 for V< 1
< 0 for V> 1

�
,

and thus
dV

dt
> 0 for V < 1 and

dV

dt
< 0 for V > 1. Therefore, along the

O ¼ V null cline, the directional fields are horizontal (because
dO

dt
¼ 0 and

there is no change for O), pointing right for V < 1 (where
dV

dt
> 0 and,

therefore, V increases), and pointing left for V < 1 (where
dV

dt
< 0 and,

therefore, V decreases).

O

V0

ε
δ=V

γ
α=O

FIGURE 2-3.
Phase diagram for Exercise 2-11, C.
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When O ¼ 2

3
1� V

4

� �
ð1þ VÞ, dV

dt
¼ 0, and

dO

dt

> 0;when O < V
< 0;when O > V

�
. Note

that the points below the line O ¼ V correspond to O < V while those

above the line O ¼ V correspond to O > V. Thus, for the points on the

parabola
2

3
1� V

4

� �
ð1þ VÞ that are below the line O ¼ V, there is no

change for V and O is increasing. This corresponds to vertical directions

of change, with the arrows pointing upward. For the points above the

line O ¼ V, there is no change for V and O is decreasing. This corresponds

to vertical directions of change, with the arrows pointing downward.

Exercise 2-15.
..........................

a) The term r(N, P) represents the per capita rate of growth for the

population N, as a function of the sizes N and P of the two

competing populations. In the same way as in deriving the logistic

growth equation for a single population, the model assumes that

the per capita net rate of growth r(N, P) varies with the change of

population sizes. Because two populations are competing for the

same resource, r(N, P) should be decreasing as P increases. The

reason for this behavior is as follows. If P ¼ 0, we already know

from Exercise 2-14 that the population size N follows a logistic

equation. When P 6¼ 0, the per capita net rate of growth for N will

also have to account for the presence of the other population of

size P(t) that is competing for the same resource.

b) This part is similar, referring to the net per capita rate of growth

k(N, P) for the population P.

c) In part a) we noted that when P(t) 6¼ 0, the per capita net rate of

growth r(N, P) for N will also have to account for the presence of

the population P competing for the same resource. Also recall that

in the logistic Eq. (1-12), the term N/K can be considered as

representing the size of the population as a fraction of its carrying

capacity. For Eq. (1-12), the rate of growth slows down as the

fraction N/K approaches 1.

In the same way, the fraction (N þ bP)/K can be considered to

measure the combined size of the two populations as a fraction of the

carrying capacity K of the population N. The parameter b is

the ‘‘conversion factor’’ between the species. To make this clearer,

imagine, for example, that we refer to a populationN that is growing

in a flask where each organism needs a unit volume to survive. If the

flask has a volume of 1000, it will not have room for more than 1000

population N organisms. Because the population P, however, is

growing in the same flask, their sizes will also have to be taken into

consideration. This is a population of different species, and an

organism of this typemay needmore or less volume to survive when
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compared with that needed for a species of typeN. Assume that each

P species needs ½ unit of volume. Then, two species of type P will

fill the same volume as one species of typeN. In this case, we will use

b¼½ in the model. If, on the other hand, each P species needs 5 units

of volume, one organism of typePwill comparewith 5 species of type

N in terms of volume. In this case, we will use b ¼ 5 in the model.

Therefore, the factor N þ bP represents the combined sizes of the

N and P populations, appropriately scaled to be measured in the

same units as the carrying capacity K. The fraction (N þ bP)/K

can then be considered as representing the size of the combined

(N and P) populations as a fraction of the carrying capacity K.

For the second of Eqs (2-15) the scaling is done the other way in

order to compare the combined sizes of the N and P populations

measured in the same units as the carrying capacity M of the

population P. The parameter g is the ‘‘conversion factor’’ from

species of type N to species of type P in order to consider the

combined sizes of the two populations as a fraction of the carrying

capacity M for the population P.

Exercise 2-17.
..........................

Denote

dN

dt
¼ rðN;PÞN ¼ a 1�N þ bP

K

0
@

1
AN ¼ f ðN;PÞ

dP

dt
¼ kðN;PÞP ¼ c 1� Pþ gN

M

0
@

1
AP ¼ gðN;PÞ:

@f

@N
¼ a� 2a

K
N � ab

K
P

@f

@N
ð0; 0Þ ¼ a

@f

@P
¼ � ab

K
N

@f

@P
ð0; 0Þ ¼ 0

Then;

@g

@N
¼ � cg

M
P

@g

@N
ð0; 0Þ ¼ 0

@g

@P
¼ c� 2c

M
P� cg

M
N

@g

@P
ð0; 0Þ ¼ c

Thus, the stability of the point (0, 0) is determined by the matrix

J ¼ a 0
0 c

� �
, and because det( J ) ¼ ac > 0 and trace( J ) ¼ a þ c > 0, the

equilibrium point (0, 0) is a repeller, for any values of a > 0 and c > 0.
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Chapter 3

Exercise 3-1.
........................

a) The ‘‘A’’ site must have at least one dominant allele if the dominant

phenotype is observed. The probability for this to occur is 3/4

because there are 4 possibilities (AA, Aa, aA, and aa), of which

three have at least one A allele. In a similar way, the possibilities for

the ‘‘B’’ site are BB, Bb, bB, and bb) of which only one (bb) has the

recessive phenotype. Because the ‘‘A’’ and ‘‘B’’ sites are

independent, the probability that the A phenotype is dominant and

the B phenotype is recessive is (3/4)(¼) ¼ 3/16.

b) In this case, we need tomultiply the probability that theA phenotype

is recessive (¼) and the probability that the B phenotype is

dominant (3/4). Thus, the probability in question is (¼)(3/4) ¼ 3/16.

c) In this case, we need to multiply the probabilities that both the

A and B phenotypes will be recessive, which gives (¼)(¼) ¼ 1/16.

d) From the 16 possibilities given in the Punnett square in Figure 3-8,

the combinations that correspond to the dominant A phenotype

and recessive B phenotype are AAbb, Aabb, and aAbb. Thus, the

probability for this is 3/16, the same as determined in part a). The

combinations that correspond to the recessive A phenotype and

dominant B phenotype are aaBB, aaBb, and aabB, reflecting the

probability we found in part b). There is only one combination

among the 16 that corresponds to recessive A and B phenotypes:

aabb. Thus, the probability for this is 1/16, aswe computed in part c).

Finally, there are 9 combinations that correspond to dominant A

and B phenotypes, reflecting a probability of 9/16. The probabilities

of 9/16, 3/16, 3/16, and 1/16 correspond exactly to the 9:3:3:1 ratio of

the phenotypes determined from the Punnett square.

Exercise 3-3.
........................

The genotypes corresponding to each of the blood types A, B, AB, and O,

and the blood type frequencies are presented in the table below:

Blood Types Genotypes Blood Type Frequencies

A IAIA or IAi p2 þ 2pr

B IBIB or IBi q2 þ 2qr

AB IAIB 2pq

O ii r2
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For example, the blood type frequency for type A is p2 þ 2pr

because type A may have two genotypes: IAIA or IAi. The frequency

of the IAIA genotype is p2, because the frequency of the IA is p and the

two sites are independent. The frequency of the IAi genotype is 2pr

because the frequency of i is r, and this allele can appear either on

the maternal of the paternal chromosome (that is, because IAi and iIA

represent the same genotype).

Exercise 3-5.
........................

4
k

� �
¼ 4!

k!ð4� kÞ!. Substituting subsequently k ¼0, 1, 2, 3, and 4 gives the

desired values. For example,
4
2

� �
¼ 4!

2!ð4� 2Þ! ¼
4!

2!2!
¼ 1�2�3�4

ð1�2Þð1�2Þ ¼ 6.

In the same way,
4
0

� �
¼ 1,

4
1

� �
¼ 4,

4
3

� �
¼ 4,

4
4

� �
¼ 1 as in Table 3-2.

Chapter 4

Exercise 4-1.
........................

HYPOTHESES

The following two hypotheses may be formulated. Hypothesis 1 can be

tested using the Student t test. The testing of hypothesis 2 requires tests

not covered in the text, but we have included it here for readers with

broader statistical backgrounds.

(1) Magnetism influences the height of germinated seedlings;

(2) Magnetism influences seed germination.

Study design and grouping variable: First, in order to proceed with

statistical comparisons, we introduce a grouping variable MAGNET¼1

for the bowl placed on a magnet and MAGNET¼0 for the other bowl.

Because the two bowls are independent, we have an independent group

design with two groups of seeds identified by the grouping variable

MAGNET. All further statistical tests will contrast MAGNET¼0 versus.

MAGNET¼1. Because none of the hypotheses is directional, two-tail

significance levels will be used.

Hypothesis 1 requires us to judge whether the germinated seeds grew

taller under the influence of a magnet. Thus, for this analysis we need to

select only the seeds that have germinated and to compare their average

heights (variable HEIGHT). Because height is a continuous variable that

tends to be normally distributed, we use the independent-group t test to

compare HEIGHT across the groups defined by MAGNET. The results
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of such a comparison are presented in Table 4-1. The t test shows that the

difference in the germination rate is highly significant (p < .001).

Figure 4-1 presents graphically the results from the height comparison of

germinated plants, including average height on/off magnet and the

standard error of the mean for each group. Because the standard errors

do not overlap, we can visually conclude that the two groups of seeds

have grown differently.

Hypothesis 2 requires us to judge whether the count of germinated

seeds is greater under the influence of a magnet. Thus, a nonparametric

test should be used. In order to execute such a test, we first recode all

data into a new binary variable: GERM¼1 if the seed germinated

and GERM¼0 if the seed did not germinate. Then we apply

a Mann–Whitney test comparing the variable GERM across the groups

defined by MAGNET. The results of such a comparison are presented in

Table 4-1 below. The Mann–Whitney test shows that the difference in the

germination rate is not significant (p ¼ .18).

Future Research: Because the nonparametric test did not find a significant

difference in the seed germination rate, but the significance level is

generally low, further investigation with a larger sample size would

determine whether magnetism has any influence on the rate of seed

germination.

Chapter 5

Exercise 5-1.
........................

a) Because 1 mmol/L ¼ 18 mg/dl, the target range of [3.9, 10] mmol/L

corresponds to [70, 180] mg/dl. The entire range of [1.1, 33.3]

mmol/L corresponds to [20, 600] mg/dl.

b) The conditions

f ð33:3; a; bÞ ¼ �f ð1:1; a; bÞ and

f ð10; a; bÞ ¼ �f ð3:9; a; bÞ

correspond to the following system of equations for a, b > 0.

MAGNET = 1

MAGNET = 0
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FIGURE 4-1.
Average height of lentil plants (cm) at 2 weeks after
planting.

Test of Hypothesis 1 Test of Hypothesis 2

Average (St. Error)

Height of Germinated Seeds t test

Number (%) of Seeds

Germinated

Mann-Whitney

Nonparametric Comparison

MAGNET¼0 24.5 (0.34) t ¼ �4.57
p < .001

43 (86%) Z ¼ �1.32
(two-tail) p ¼ 0.18MAGNET¼1 26.9 (0.41) 47 (94%)

TABLE 4-1.
Results for Exercise 4-1.
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½ðlnð33:3ÞÞa � b� ¼ �½ðlnð1:1ÞÞa � b�

½ðlnð10ÞÞa � b� ¼ �½ðlnð3:9ÞÞa � b�

This can be rewritten as

ðlnð33:3ÞÞa þ ðlnð1:1ÞÞa ¼ 2b (5-1)

ðlnð10ÞÞa þ ðlnð3:9ÞÞa ¼ 2b;

where from, the following equation for a > 0 is obtained:

ðlnð33:3ÞÞa þ ðlnð1:1ÞÞa � ðlnð10ÞÞa þ ðlnð3:9ÞÞa ¼ 0:

This is a nonlinear equation that cannot be solved directly,

but using Derive, MATLAB, or any other system or a

scientific calculator that can estimate the solution numerically, we

obtain a ¼ 1.0329. Substituting this value in Eq. (5-1), we obtain

b ¼ 1

2
½ðlnð33:3ÞÞ1:0329 þ ðlnð1:1ÞÞ1:0329� ¼ 1:8707:

c) The value of g is determined from the condition

g � ½ðlnð33:3ÞÞ1:0329 � 1:8707� ¼
ffiffiffiffiffi
10

p
; or

g ¼
ffiffiffiffiffi
10

p

½ðlnð33:3ÞÞ1:0329 � 1:8707� ¼ 1:7740:

Exercise 5-3.
........................

The LBGI and HBGI are most sensitive to the addition of extremely

low and extremely high BG measurements, respectively. In general,

measurements in the hypoglycemic range will cause the LBGI to

increase and measurements in the hyperglycemic range will cause

the HBGI to increase. It should be noted that because both the LBGI and

HBGI are averaging over the whole data set of BG measurements, the

indices are relatively stable with regard to extreme low or high BG

values.

Exercise 5-5.
........................

The standard deviation provides a measure for how spread the data is

around the average value. The results from Table 5-2(A) in the text

confirm that in T1DM, the BG deviates from the desired average (which

would, ideally, be in the target range) significantly more than in T2DM.

However, because the standard deviation does not provide any

indication for the direction of the deviations from the average, it

cannot be effective as a measure for hypoglycemia or hyperglycemia.
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Chapter 6

Exercise 6-1.
........................

The mean value of a data set does not indicate in any way how large or

small the variability is. The following two data sets, for example, both

have mean value equal to 3: A ¼ {3, 3, 3, 3, 3} and B ¼ {1, 2, 3, 4, 5}. The

set B, however, exhibits more variability.

Exercise 6-3.
........................

Similarities: (1) As in the definition for rl and rh given by Eq. (5-5) in

Chapter 5 of the text, the functions rl(x) and rh(x) describe the risk for

deceleration or acceleration, respectively, associated with each

measurement’s deviation from a preferred target value. (2) In both

cases, the risk increases with the square of the distance of the

measurement from a preferred target value. (3) In both cases, the

risks for deviations to the left or the right of the target value are

computed separately.

Differences: (1) The functions rd(x) and ra(x) are computed directly from

the set of RR measurements while the functions rl(x) and rh(x) are

computed for the data set of transformed BG measurements (via the

transformation f (BG) from Eq. (5-4) of the text. (2) For the functions rd(x)

and ra(x) the risk is measured as the square of the distance from the

median m of the data set of RR values. For the functions rl and rh from

Chapter 5 the risk is measured as the square of the distance from the

value 0—the center of the transformed, via the transformation f (BG),

euglycemic BG range.

Exercise 6-5.
........................

The solution of this problem includes three steps: (1) Compute the

median of RR intervals, which in this case is 666.67 milliseconds;

(2) compute ra(x) and rd(x) for each RR interval, and (3) compute R1 and

R2 as the average of ra(x) and rd(x). The results of the computations are

given in Table 6-2.

Exercise 6-7.
........................

There are four different 2-term subsequences of S2: {1,1}, {0,1}, {1,0}, and

{0,0}.

RR Interval

(milli-

seconds) rd(x) ra(x)

666.7 0.00 0.00

666.7 0.00 0.00

659.3 0.00 54.76

666.7 0.00 0.00

689.7 529.00 0.00

652.2 0.00 210.25

666.7 0.00 0.00

681.8 228.01 0.00

666.7 0.00 0.00

645.2 0.00 462.25

R2 ¼ 75.70 R1 ¼ 72.73

TABLE 6-2.
Results for Exercise 6-5.
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Exercise 6-9.
........................

Both sequences have standard deviation SD ¼ 0.5, and, thus,

the tolerance value for both sequences is t ¼ r � SD ¼ ð0:2Þð0:5Þ ¼ 0:1.

Therefore, two sequences are ‘‘matches’’ only if they are identical.

For the sequence S1: 0, 0, 1, 0, 0, 1, 0, 0, 1, all subsequences of length 2

(beginning at up to N-m ¼ 9–2 ¼ 7) in the series are: 00, 01, 10, 00, 01,

10, 00. The total number of template matches of length m ¼ 2 is B ¼ 2 þ 1

þ 1 þ 2 þ 1 þ 1 þ 2 ¼ 10. Further, all subsequences of length m þ 1 ¼ 3

are: 001, 010, 100, 001, 010, 100, 001 and the total number of template

matches of length 3 is A ¼ 2 þ 1 þ 1 þ 2 þ 1 þ 1 þ 2 ¼ 10. Therefore,

SampEn ¼ �ln(A/B) ¼ �ln(10/10) ¼ 0.

For the sequence S2: 1, 0, 0, 0, 1, 0, 1, 0, 0, all subsequences of length 2

(beginning at up to N-m ¼ 7) in the series are: 10, 00, 00, 01, 10, 01, 10,

and all subsequences of length 3 are: 100, 000, 001, 010, 101, 010, 100.

Thus, B ¼ 2 þ 1 þ 1 þ 1 þ 2 þ 1 þ 2 ¼ 10 and A ¼ 1 þ 0 þ 0 þ 1 þ 0 þ 1

þ 1 ¼ 4, and SampEn ¼ �ln(A/B) ¼ �ln(4/10) ¼ 0.9163.

The SDs for the two sequences are the same because the sequences have

exactly the same numbers of 0s and 1s.

Chapter 7

Exercise 7-1.
........................

a) The rates of change in the concentrations of A, B, and C for the

balanced equation mA þ nB $ C, will be given by the differential

equations:

d½C�
dt

¼ k1½A�m½B�n � k2½C�

d½A�
dt

¼ k2½C� � k1½A�m½B�n;

d½B�
dt

¼ k2½C� � k1½A�m½B�n

(7-1)

where k1 and k2 are the respective reaction rate constants

for the reactions mA þ nB ! C and C ! mA þ nB.

In equilibrium, the rates of change of the concentrations are zero;

that is,
d½C�
dt

¼ 0,
d½A�
dt

¼ 0, and
d½B�
dt

¼ 0. From Eqs. (7-1), we obtain

k1½A�m½B�n � k2½C� ¼ 0, which yields the law of mass action
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½C� ¼ k1
k2

½A�m½B�n ¼Ka½A�m½B�n with Ka ¼ k1
k2
.

(b) Because m molecules of type A and n molecules of type B are

necessary to produce one molecule of type C, the association

rate in the rate of change
d½C�
dt

in Eq. (7-1) is now proportional to

the number of ways that m molecules of type A can ‘‘meet’’ n
molecules of type B. Mathematically, this is equivalent to counting
the number of ways in which m molecules of type A and n
molecules of type B can be chosen independently, given the
concentrations [A] and [B]. Because each of the type A molecules
can be chosen in numbers of ways proportional to [A], the number
of ways to independently choose m type-A molecules is
proportional to ½A�m. The justification of this claim is as follows:
If N denotes the total number of type-A molecules, the number of
ways to choose m molecules without replacement is
NðN � 1Þ . . . ðN �mþ 1Þ. Because N is much bigger than m,
the following approximation will be quite accurate: (N�1) � N,
(N�2) � N. . . (N�mþ1) � N. Thus, NðN � 1Þ . . . ðN �mþ 1Þ � Nm.
Because N is proportional to [A], the last approximation shows
that the number of ways to choose m type-A molecules is
proportional to [A]m. In the same way, the number of ways to
independently choose n type-B molecules is proportional to ½B�n.
Since we assume that type A and type B molecules are uniformly
mixed at all times and chosen independently from one another,
the number of ways to choose m molecules of type A and n

molecules of type B will be proportional to ½A�m½B�n. The
coefficient of proportionality is accounted for in the constant k1,
which also reflects the likelihood that a molecule of type C will
be produced when m molecules of type A ‘‘meet’’ n molecules of
type B.

Exercise 7-3.
........................

Graphs for Eq. (7-9) for different values of n and k ¼ 0.5 are shown in

Figure 7-1(A). Graphs for Eq. (7-9) for n ¼ 2 and different values for k are

shown in Figure 7-1(B).

a) As expected, when k is kept fixed, the curve becomes steeper and

reaches saturation levels faster as n increases.

b) When n is kept fixed, the curve becomes steeper and reaches

saturation levels faster as k increases.

Exercise 7-5.
........................

a) For X4 ¼ 1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4,
we calculate

@X4

@½O2� ¼ K41 þ 2K42½O2� þ 3K43½O2�2 þ 4K44½O2�3.
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Thus, ½O2�� @X4

@½O2� ¼ K41½O2� þ 2K42½O2�2 þ 3K43½O2�3 þ 4K44½O2�4

and subsequently Y4 ¼ N

4
¼ 1

4

½O2�
X4

@X4

@½O2�

¼ 1

4

K41½O2� þ 2K42½O2�2 þ 3K43½O2�3 þ 4K44½O2�4
1þ K41½O2� þ K42½O2�2 þ K43½O2�3 þ K44½O2�4

, verifying Eq. (7-22).

b) For X2 ¼ 1þ K21½O2� þ K22½O2�2, the calculations are similar.

@X2

@½O2� ¼ K21 þ 2K22½O2� and therefore ½O2�� @X2

@½O2� ¼ K21 þ 2K22½O2�

¼K21½O2� þ 2K22½O2�2. Thus Y2 ¼ N

2
¼ 1

2

½O2�
X2

@X2

@½O2�

¼ 1

2

K21½O2� þ 2K22½O2�2
1þ K21½O2� þ K22½O2�2

.

Graphs for Equation (9)
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FIGURE 7-1(A).
Graphs for Equations (7-9) for k ¼ 0.5 and values for n ¼ 1 (light gray), n¼ 2 (black) and n ¼ 3 (dark gray).
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FIGURE 7-1(B).
Graphs for Equations (7-9) for n¼ 2 and values for k¼ 0.1 (light gray), k¼ 0.3 (black) and k¼ 0.5 (dark gray).
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Exercise 7-7.
........................

Using that the binding polynomial is the sum of the concentrations

of all binding species present in solution, we obtain (using Eqs. (7-11) in

the text) that

X4 ¼ ½Hb4� þ ½Hb4O2� þ ½Hb4ðO2Þ2� þ ½Hb4ðO2Þ3� þ ½Hb4ðO2Þ4�
¼ ½Hb4� þK41½Hb4�½O2� þK42½Hb4�½ðO2Þ�2 þ K43½Hb4�½ðO2Þ�3

þ K44½Hb4�½ðO2Þ�4;

where K4i, i ¼ 1,2,3,4, are the equilibrium constants from Eqs. (7-12).

If we now take, as in the derivation of Eqs. (7-27) in the text, the

concentration of the reference state to be the unoxygenated

tetrameric hemoglobin concentration and express hemoglobin

concentration as a fraction of the unoxygenated hemoglobin

concentration, we obtain (because in these units [ab] ¼ 1) that

X4 ¼ 1þK41½O2� þK42½ðO2Þ�2 þ K43½ðO2Þ�3 þ K44½ðO2Þ�4:

Chapter 8

Exercise 8-1.
........................

We need to show that the solution (a,b) of the system of equations

a
X
i

X2
i þ b

X
i

Xi �
X
i

XiYi ¼ 0

a
X
i

Xi þ nb�
X
i

Yi ¼ 0;

is of the form given in Eq. (8-5) in the text. Expressing a from the first

equation and substitution in the second gives

a ¼
�b
X
i

Xi þ
X
i

XiYi

X
i

X2
i

�b
X
i

Xi

 !2

þ
X
i

XiYi

 ! X
i

Xi

 !

X
i

X2
i

þ nb�
X
i

Yi ¼ 0;

or
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�b
X
i

Xi

 !2

þ
X
i

XiYi

 ! X
i

Xi

 !
þ nb

X
i

X2
i

 !

�
X
i

X2
i

 ! X
i

Yi

 !
¼ 0;

which can also be written as

½n
X
i

X2
i

 !
�

X
i

Xi

 !2

�bþ
X
i

XiYi

 ! X
i

Xi

 !

�
X
i

X2
i

 ! X
i

Yi

 !
¼ 0;

and b ¼

X
i

X2
i

 ! X
i

Yi

 !
�

X
i

XiYi

 ! X
i

Xi

 !

n
X
i

X2
i

 !
�

X
i

Xi

 !2
; establishing the

expression for b in Eqs. (8-5).

Substituting now this value in the second of Eqs. (8-4) gives

a
X
i

Xi þ n

X
i

X2
i

 ! X
i

Yi

 !
�

X
i

XiYi

 ! X
i

Xi

 !

n
X
i

X2
i

 !
�

X
i

Xi

 !2
�
X
i

Yi ¼ 0;

or

a
X
i

Xi þ
n
X
i

X2
i

 ! X
i

Yi

 !
� n

X
i

XiYi

 ! X
i

Xi

 !
� n

X
i

X2
i

 !X
i

Yi þ
X
i

Xi

 !2X
i

Yi

n
X
i

X2
i

 !
�

X
i

Xi

 !2
¼ 0;

and therefore a ¼
n
X
i

XiYi

 ! X
i

Xi

 !
�

X
i

Xi

 !2X
i

Yi

X
i

Xi

 !
n
X
i

X2
i

 !
�

X
i

Xi

 !2
0
@

1
A

¼

n
X
i

XiYi

 !
�

X
i

Xi

 !X
i

Yi

n
X
i

X2
i

 !
�

X
i

Xi

 !2
; establishing the expression for a in

Eqs. (8-5).
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Exercise 8-3.
........................

We use Eqs. (8-5) from the text. From Table 8-1, compute

X
i

XiYi ¼ ð0:25Þð1:3Þ þ ð0:5Þð2:7Þ þ ð0:75Þð3:3Þ þ ð1:0Þð5:1Þ ¼ 9:25;

X
i

Xi ¼ 0:25þ 0:5þ 0:75þ 1:0 ¼ 2:5

X
i

Yi ¼ 1:3þ 2:7þ 3:3þ 5:1 ¼ 12:4

X
i

Xi
2 ¼ ð0:25Þ2 þ ð0:5Þ2 þ ð0:75Þ2 þ ð1:0Þ2 ¼ 1:875:

Substitution into Eqs. (8-5) yields:

a ¼ 4ð9:25Þ � ð2:5Þð12:4Þ
4ð1:875Þ � 2:5ð Þ2 ¼ 6

1:25
¼ 4:8;

b ¼ ð1:875Þð12:4Þ � ð9:25Þð2:5Þ
4ð1:875Þ � 2:5ð Þ2 ¼ 0:125

1:25
¼ 0:1:

Exercise 8-5.
........................

P ¼

@Gðguesses;X1Þ
@ guesss1

@Gðguesses;X1Þ
@ guesss2

. . .

@Gðguesses;X2Þ
@ guesss1

@Gðguesses;X2Þ
@ guesss2

. . .

. . . . . . . . .

@Gðguesses;XnÞ
@ guesss1

@Gðguesses;XnÞ
@ guesss2

. . .

2
6666666666664

3
7777777777775

;

Y� ¼
Y1 � G guesses;X1ð Þ
Y2 � Gðguesses;X2Þ
. . .
Yn � Gðguesses;XnÞ

2
664

3
775; and e ¼

answer1 � guess1
answer2 � guess2

. . .

2
4

3
5:

The matrix P has as many columns as the number of parameters in the

model. The number of parameters is also equal to the number of rows

for the matrix e.

Exercise 8-7.
........................

When d is fixed (and thus not a parameter to be estimated from the data),

the model has the form Y ¼ G(a, b, c; X) ¼ asin(2pX/d)þbcos(2pX/d)þc.

Then
@Gða; b; c;XiÞ

@a
¼ sinð2pXi=dÞ, @Gða; b; c;XiÞ

@b
¼ cosð2pXi=dÞ, and
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@Gða; b; c;XiÞ
@c

¼ 1. Because none of the first-order derivatives depends

on the parameters a, b, and c, all second-order derivatives will be equal

to zero. Therefore, this is a linear model.

Exercise 8-9.
........................

We need to show that the values of the parameters determined by the

Gauss-Newton method are exactly the values of the parameters for

which all first-order derivatives of the weighted sum of squared

residuals function WSSR with respect to the model parameters are

equal to zero. In other words, we need to show that

@WSSR

@ parameterj
¼ 0, where the function WSSR is defined by

WSSR ¼
X
i

Yi � Gðparameters;XiÞ
SEMi

� �2

:

A direct computation shows that

@WSSR

@ parameterj
¼ �2

X
i

1

SEM2
i

Yi � Gðparameters;XiÞ
� �

@Gðparameters;XiÞ
@ parameterj

;

and therefore the elements of the matrix PTY� in the Gauss–Newton least

squares method are proportional to the partial derivatives of the

function WSSR. Because the Gauss–Newton method terminates when it

finds the solution e ¼ 0 where e ¼ ðPTPÞ�1ðPTY�Þ, this means that for

those values of the parameter either ðPTPÞ�1 ¼ 0 or ðPTY�Þ ¼ 0.

However, ðPTPÞ�1 cannot be zero, because it is invertible. This means

that when e ¼ 0, ðPTY�Þ ¼ 0. We have already shown that the elements of

ðPTY�Þ are proportional to the partial derivatives of the function WSSR

with respect to the model parameter, establishing that
@WSSR

@ parameterj
¼ 0

at the values of the parameters for which e ¼ 0. Therefore, the

Gauss–Newton algorithm determines the weighted least squares

estimates for the model parameters.

Chapter 9

Exercise 9-1.
........................

Notice that h tþ 1ð Þ ¼ sin 2p tþ 1ð Þð Þ ¼ sin 2ptþ 2pð Þ ¼ sin 2ptð Þ, the
last equality following from the fact that the function sin(x) is

periodic with period 2p. This shows that h tþ Tð Þ ¼ h tð Þ for T ¼ 1. Next,

440 Chapter 9An Invitation to Biomathematics



the value for T > 0 is the smallest, because 2p is the smallest positive

value for which sin 2ptþ 2pð Þ ¼ sin 2pð Þ (because 2p is the period of the

sine function.) In the same way, r tþ 1ð Þ ¼ cos 2p tþ 1ð Þð Þ ¼
cos 2ptþ 2pð Þ ¼ cos 2ptð Þ ¼ r tð Þ, which shows that r(t) is periodic with

period T ¼ 1.

Chapter 10

Exercise 10-1.
..........................

With SðtÞ ¼ S ¼ const and EðtÞ ¼ e�at; the integral in Eq. (10-2) in the text

becomes

CðtÞ ¼
Z t

0

Se�aðt�tÞdtþ Cð0Þe�at ¼ C0e
�at þ Se�at

Z t

0

eatdt

¼ C0e
�at þ S

a
e�atðeatÞ

����
t¼t

t¼0

¼ C0e
�at þ S

a
e�atðeat � 1Þ¼ C0e

�at þ S

a
� S

a
e�at

¼ C0 � S

a

0
@

1
Ae�at þ S

a
;

verifying the claim.

Exercise 10-3.
..........................

Similarities: In both figures, the concentration exhibits steep increases at

certain moments because of drug intake (in Figure 1-23) or hormone

secretion (in Figure 10-8). When the hormone secretion or drug intake

events are occurring frequently, the concentration peaks form an

increasing sequence that appears to plateau with time. When the

hormone secretion or drug intake events are occurring infrequently,

the concentration decays to approximately baseline levels after each

peak, and there is no apparent trend of increase in the peak levels of the

concentration.

Differences: The model depicted in Figure 1-23 assumed instantaneous

increase in the concentration following drug intake, which was a

simplifying assumption that facilitated the model development, but

never occurs in reality. In Figure 1-23, this reflects the vertical jumps in

the concentration function that are associated with the administration of

each dose. The model depicted in Figure 10-8, on the other hand, does
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not assume instantaneous hormone secretion and subsequent

instantaneous increases of the hormone concentration. Instead, the

secretion is assumed to occur at a constant rate over short intervals of

time that corresponds to steep (but not instantaneous!) increases of the

hormone concentration over these time intervals.

Exercise 10-5.
..........................

By definition, FdownðCÞ ¼ Tn

Cn þ Tn
; FupðCÞ ¼ Cn

Cn þ Tn
and therefore

1� FdownðCÞ ¼ 1� Tn

Cn þ Tn
¼ Cn þ Tn � Tn

Cn þ Tn
¼ Cn

Cn þ Tn
¼ FupðCÞ: Further,

FupðTÞ ¼ Tn

Tn þ Tn
¼ Tn

2Tn
¼ 1

2
: In the same way,

FdownðTÞ ¼ Tn

Tn þ Tn
¼ Tn

2Tn
¼ 1

2
:

Exercise 10-7.
..........................

The following ODEs describe the network dynamics.

dCA

dt
¼ �aCAðtÞ þ aFupðCBðt�DÞÞ

dCB

dt
¼ �bCBðtÞ þ bFdownðCAðtÞÞ:

Using the definitions for Fup(doun) from Eq. (10-5), the equations become:

dCA

dt
¼ �aCAðtÞ þ a

ðCBðt�DBÞÞnB
ðCBðt�DBÞÞnB þ ðTBÞnB ¼ �aCAðtÞ þ a

ðCBðt�DBÞ=TBÞnB
ðCBðt�DBÞ=TBÞnB þ 1

dCB

dt
¼ �bCBðtÞ þ b

ðTAÞnA
ðCAðtÞÞnA þ ðTAÞnA ¼ �bCBðtÞ þ b

1

ðCAðtÞ=TAÞnA þ 1
:

Exercise 10-9.
..........................

Let e > 0 be arbitrary.

First, we compare the solution CAðtÞ of Eqs. (10-14) to the solution of the

equation:
dG

dt
¼ �aGðtÞ þ a:1

Gð0Þ ¼ CAð0Þ
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Assuming for simplicity that t0 ¼ 0 and applying the hint (because the

control function is
1

ðCBðt�DBÞ=TBÞnB þ 1
� 1) we get that CAðtÞ � GðtÞ

for all t > 0: On the other hand, we can solve the above problem

for GðtÞ : GðtÞ ¼ ½CAð0Þ � a=a�e�at þ a=a: Because lim e�at ¼ 0 for t ! 1;

for any e1 > 0 we can find a positive constant T1 such that for all t � T1

we have CAðtÞ � GðtÞ � a=aþ e1:

In the same way, for the right-hand side of the second inequality

in Eqs. (10-17), one can show that there exists another positive constant

T2 such that for all t � T2 we have CBðtÞ � b=bþ e1: Therefore, if
we choose T3 ¼ maxðT1;T2Þ; both inequalities are satisfied for

t � T3 : CAðtÞ � GðtÞ � a=aþ e1 and CBðtÞ � b=bþ e1:

Next, we compare CAðtÞ and the solution of the problem

dF

dt
¼ �aFðtÞ þ a

1

ð½b=bþ e1�=TBÞnB þ 1
:

FðT3Þ ¼ CAðT3Þ:
Because for t � T3;

1

ð½b=bþ e1�=TBÞnB þ 1
� 1

ðCBðt�DBÞ=TBÞnB þ 1
, the

hint gives us that FðtÞ � CAðtÞ for t � T3: Setting now

a1 ¼ a
1

ð½b=bþ e1�=TBÞnB þ 1
and solving for F; we obtain that:

CAðtÞ � ½CAðT1Þ � a1=a�e�at þ a1=a for t � T3: Because lim e�at ¼ 0 for

t ! 1; for any e > 0 we can find a positive constant T4 > T3 such that

for all t � T4 we have CAðtÞ > a1=a� e=2:

Further, because a1 ¼ a
1

ð½b=bþ e1�=TBÞnB þ 1
approaches a

1

ðb=½bTB�ÞnB þ 1

as e1 approaches zero, we can choose e1 > 0 so small that

a1=a >
a

a
1

ðb=½bTB�ÞnB þ 1
� e=2; which establishes that

CAðtÞ > a1=a� e=2 >
a

a
1

ðb=½bTB�ÞnB þ 1
� e=2� e=2 ¼ a

a
1

ðb=½bTB�ÞnB þ 1
� e;

and completes the proof of the first of the inequalities in Eqs. (10-17).

To complete the left-hand side of the second inequality we apply the

hint in a similar manner as above and we use the fact that

ðCAðtÞ=TAÞnA
ðCAðtÞ=TAÞnA þ 1

¼ 1

ðTA=CAðtÞÞnA þ 1
>

1

ðTA=min CAÞnA þ 1
:
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Chapter 11

Exercise 11-1.
..........................

With a constant period of less than 24 hours, the acrophasewill be occurring

earlier and earlier each day. Thus, the plot depicting the time of daily

acrophase will be comprised of data points forming a line with a negative

slope. As an illustration, the plot in Figure 11-1 depicts the daily times of

acrophase for a data series exhibiting a constant period of 20 hours.

Exercise 11-3.
..........................

COSIN2NL: The results for the detrended time series are close to those

for the original time series. The period is estimated to be 23.3 � 0.199

hours for the original series and 23.7 � 0.137 for the detrended time

series. Thus, detrending does not appear to be either necessary or

beneficial for this analysis.

FFT-NNLS: For this analysis, the results for the detrended time series

are substantially different when compared to those for the original

time series. For the original series, a period of 7278 � 798 was identified

(Figure 11-23) which can be explained as an attempt to fit for the

trend, and is no longer present after the detrending. The circadian

component for the detrended series is estimated at 23.66 � 0.16 hours

(which is close to 23.41 � 0.31 hours for the original one). In addition,

FFT-NLLS for the detrended series identified two periodic

components: 18.33 � 0.29 hours and 14.91 � 0.26 hours (Figure 11-32).

It appears that analyzing the detrended series may be worthwhile,

especially for eliminating the large-period estimates present in the

results for the original time series.

PHASEREF: For this analysis, the results for the detrended time series

are close to those for the original time series. In both cases (Figure 11-25
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FIGURE 11-1.
A plot depicting the daily time of acrophase for a time series with a period of 20 hours.
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and Figure 11-33), the PHASEREF algorithm fails to properly identify

the simulated value of 24 hours for the period because of noise

confounds that are still present after the detrending. This algorithm is

not substantially influenced by the presence of or the lack of a trend and,

thus, the detrending is not beneficial or necessary in this case.

Chapter 12

Exercise 12-1.
..........................

Positive values in the Log column correspond to an increase in

expression, while negative values correspond to a decrease. The

characterization as increase/decrease for each spot position is given in

Table 12-1 below.

Spot position Gene Ratio

Log

Expression

increase/decreaseRow Column ‘‘name’’ Red/Green

1 2 A 10 3.32 Increase

1 5 B 0.1 �3.32 Decrease

2 1 C 0.1 �3.32 Decrease

2 3 D 2 1.00 Increase

2 4 E 0.1 �3.32 Decrease

2 5 F 1.5 0.58 Increase

3 2 G 0.5 �1.00 Decrease

3 3 H 10 3.32 Increase

4 1 I 1 0.00 No Change

4 3 J 0.1 �3.32 Decrease

4 5 K 5 2.32 Increase

5 1 L 10 3.32 Increase

5 2 M 0.2 �2.32 Decrease

5 4 N 0.67 �0.58 Decrease

TABLE 12-1.
Data for gene expression increase/decrease related to Exercise 12-1.

Using the logarithm of the ratio instead of the ratio itself has the advantage

that the increases and decreases of the same magnitude give values of the

same magnitude that differ only by their sign. For example, a ten-fold

increase in expression in the cancer cells, such as gene A, will give a

logarithm of the ratio of 3.32, and a gene that has a ten-fold decrease in

expression in the cancer cells, such as gene B, will give a logarithm of the

ratio of �3.32. In contrast, a ten-fold increase in expression in the cancer

cells for geneA, will give a ratio of 10, but a ten-fold decrease in expression

in the cancer cells for gene B, will give a ratio of 0.1.
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In other words, when the ratio is used, the range of values indicating

an increase in gene expression will be (1, 1) while the range of values

for the ratios that indicate a decrease will only be (0,1). This is not

optimal, because the whole range of decrease in expression is being

squeezed in the interval (0,1). The use of a logarithm of the ratio

alleviates this problem: the range of values indicating increase is now (0,

1) while the range of values indicating a decrease in expression is (�1,

0). This symmetry allows for an easy interpretation of the magnitude of

increase/decrease.More specifically, values of the logarithm that have the

same magnitude but different signs correspond to expression increases

(positive values) and decreases (negative value) of equal magnitudes.

Exercise 12-3.
..........................

Let xi ¼ ðxi1; xi2; . . . ; xinÞ and xk ¼ ðxk1; xk2; . . . ; xknÞ be the i-the and k-th

row of the gene expression matrix. We want to show that the

dissimilarity measure

dðxi; xkÞ ¼
Xn
j¼1

jxij � xkjj

satisfies conditions (1) through (3).

(1) Because the absolute value is always non-negative and the

dissimilarity measure is defined as a sum of absolute values,

dðxi; xkÞ � 0 is satisfied.

(2) dðxi; xkÞ ¼ dðxk; xiÞ is obvious, because for any two numbers a and b

ja� bj ¼ jb� aj, and thus

dðxi; xkÞ ¼
Xn
j¼1

jxij � xkjj ¼
Xn
j¼1

jxkj � xijj ¼ dðxk; xiÞ:

(3) To prove that dðxi; xkÞ � dðxi; xsÞ þ dðxs; xkÞ, we will use the well-

known triangle inequality for real numbers, which states that for

any real numbers a, and b, jaj þ jbj � jaþ bj.

Now,

dðxi; xsÞ þ dðxs; xkÞ ¼
Xn
j¼1

jxij � xsjj þ
Xn
j¼1

jxsj � xkjj

¼
Xn
j¼1

jxij � xsjj þ jxsj � xkjj �
Xn
j¼1

jxij � xkjj ¼ dðxi; xkÞ;

establishing that dðxi; xkÞ � dðxi; xsÞ þ dðxs; xkÞ. The last inequality in the

chain of inequalities above follows from the triangle inequality because

jxij � xsjj þ jxsj � xkjj � jðxij � xsjÞ þ ðxsj � xkjÞj ¼ jxij � xkjj:
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MDC. See Minimal detectable
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Measles in England and Wales, 59f
MEC. See Minimum effective

concentration
Meiosis, 101
Mendel, Gregor, 99–101, 100f
Messenger RNA (mRNA), 346, 346f,

347f
Metabolism, 37
Microarray technology
agglomerative clustering, 403
applications, potential uses, 389–391
bioinformatics, 391
cDNA production, 391–394
circadian rhythms and, 407–416

Microarray technology (Continued)
cluster analysis methods, hierarchical

clustering, 404–406, 404t, 405f,
408f

cluster analysis methods, K-means
clustering, 404–407, 404t

COSOPT algorithm, 410–416, 411f,
412f, 415–416f

data analysis, cluster analysis
fundamentals, 402–404

data analysis, filtering and
normalization, 397–402, 398t,
399t, 400f, 401f

divisive clustering, 403
fabrication, use, 391–397
gene expression study with, 389–391
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397f
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395f, 396f

supervised vs. unsupervised learning,
402
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(MDC), 277–279
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(MEC), 36–37, 43
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36–37, 43

MINITAB, 139, 141
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Modeling physiological mechanisms,
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absorption, concentration,

elimination, 37–44, 39f, 40t, 41t
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drug half-life and, 39
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multiple doses, 40, 40t
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hypothesis and experiment, 2
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mRNA. See Messenger RNA
MTC. See Minimum toxic concentration
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245f, 246f
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feedback loops and, 303–304
in solution time trajectories, 35–36
Verhulst model and, 29–30, 32
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feedback loop
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327f
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feedback experiments simulation, 326
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schematic representation, 70, 70f
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74f
PHASEREF, 370–373, 372f, 374f, 375f,
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428
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Poincaré–Bendixson theorem, 88–89,
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binomial theorem, binomial

distribution, 122
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continuous growth model, dynamical

systems, 8–11
discrete models of, 6–8
genes, environment and, 127
growth, 305
growth measurement, 11
growth model with delay, 33–36, 34f,

35f
growth rate, inherent per capita, 14,

16–17, 426
growth rate, least squares estimate, 238
growth rate, size, 14f, 20f, 34
interaction, competition between,

53–54
predicted, 9–10, 10t
resource-based model, 17
trajectory behavior, 19
Verhulst model, 28–33

Predation, 53
Predator–prey interactions, 81–91, 305
coexistence, population cycles, 81–83,

83f
equilibrium states, 85–87
limited growth model, 85–87
Lotka–Volterra model, 84–85
models, 84–91
revised model, 89–91, 90f
sustained oscillations, 82f
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risks, 181–182

Principle of Independent Assortment
(Mendel’s Second Law), 101

Principle of Segregation (Mendel’s First
Law), 100

Probability background, 130–134, 428
Probability density function, 131, 131f
Probability distribution, 130, 134–137,

134t, 137t
Prodromal period, prodromium, 55
PULSE algorithm, 297–298
Punnett square, 103–107, 105f, 106f,

111t, 429

Q

Quantitative genetics, 120
discontinuous vs. continuous traits,

120–121
experiment, 146–148, 147f
hand span measurement pilot study,

147–149
hypothesis testing, 137–139, 138f
null hypothesis, 138
polygenic hypothesis, 120–122, 123t,

130t
probability background, 130–134
probability density function, 131, 131f
probability distribution, 130, 134–137
random variables, 130–134
type I, II errors, 138

R

Random variables, 130–134
Chi-square distribution, 133, 133f
F-(Fisher) distribution, 133–134, 133f
independent, 132
mean, variance, standard deviation,

131
probability distribution, 130
t-(Student) distribution, 133, 133f

Rate of change, endocrine network
modeling, 308–311, 310f, 311f

Recursive formulas, 116
Resource competition, 53
Rhythmic data
AIRFILTER software, 360–362, 362f,

373, 376f, 377f, 378f, 384f
algorithms, model dependent,

365–370, 366f, 367f, 369f, 371f,
372t

algorithms, model-independent,
370–373, 371f, 372f, 374f

analysis preprocessing, 373–376
Cosin2nl algorithm, 365–368, 366f,

367f, 376f, 379f
data preprocessing strategies, 359–364
detrending, 362–364
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Rhythmic data (Continued)
DTRNDANL software, 362–363, 364f,

375–376, 380f, 381, 381f
FFT-NLLS algorithm, 368–370, 369f,

377f, 383f
PHASEREF, 370–373, 372f, 374f, 375f,

378f, 381f, 382f, 385–386f
and time series, 355–, 356f, 357f, 358f,

359f
and time series, simulated data use,
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Ribonucleic acid (RNA), 344, 346, 347f
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complex models, 175–179
diabetes quantification, 154–156
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risk function, 163–165, 164f, 165f
risk indices, 165–166
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Weibull distribution, 176–177, 176f
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results, 200–201
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measures, 205f, 206–208, 208f
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Scatchard transformation, ligand-

binding, 241–242, 242f
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Second filial generation, 100
Self-monitoring BG (SMBG) devices,

152, 157–159, 157f
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hypoglycemia prediction and, 158

SEM. See Standard deviation of the
mean
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associated microorganisms, 183
early, late-onset, 183
heart rate, variability, 186–188
HRV, combined measures, 208–209
late-onset risk factors, 183
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mortality rate, 183
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(Continued)

premature births, low birth rates,
health risks, 181–182

sample asymmetry analysis,
computer simulation, 202–203,
202f, 203f

sample asymmetry analysis, data
validation, 199–201, 200t
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sepsis overview, diagnosis, 182–186
SIRS, 183
time-dependent measures, sample

entropy, 205f, 206–208, 208f
time-independent measures, 191–199,
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SIR model
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with delay, 79–80, 80f
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differential equations, 66–67
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immunity and, 79, 79f
infection mean value, 62
long-term disease evolution, 63–64,
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schematic representation, 61f,
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SMBG. See Self-monitoring BG devices
Snow, John, 56
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Standard deviation of the mean (SEM),
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Statistical testing
data points, 135
empirical, sample mean, 135
empirical, sample variance, 135–136
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144f
hypothesis testing, 137–139
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Probability distribution and, 134–137,

134t, 137t
sample size, 134–135
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Z-test, t-test, 139–142, 141f

Subunit assembly, oxygen binding
coupling, hemoglobin-oxygen
binding, 222–226, 224f
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Sutton, Walter, 101
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GH network, 306–308, 307f
predator-prey model, 305
theoretical models, modeling goals,

304–308, 304f, 305f
Systemic inflammatory response
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Taubes, C. H., 89
Taylor series, nonlinear equations, 243
T1DM, T2DM. See Type 1, 2 diabetes
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Theorems
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Binomial Theorem, 122
Central Limit Theorem, 125
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71
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Poincaré-Bendixson, 88–89, 89f, 321

Theoretical models, modeling goals,
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Time series data, 268–269
Time-dependent measures, sample
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191–194, 192f, 193f

sample asymmetry, random variable,
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143
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TSS. See Total sum of squares measure
t (Student) distribution, 133, 133f
TW. See Therapeutic window
Type 1, 2 diabetes mellitus (T1DM,
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Unbounded functions, unlimited
growth and, 12
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estimation of multiple (k) from, 5–6, 6f
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time vs., 3f

V
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dependent, 235
independent, response, 235

Verhulst model
for discrete population growth, 28–33
equilibrium states, 29–30, 31f
nondimensional form, 29–30
oscillations, 29–30, 32

W

Weibull distribution, risk analysis,
blood glucose data, 176–177, 176f

Weighted least-squares, Gauss–Newton
methods, 252–256

Weighted sum of squared residuals
(WSSR), 252, 439, 440
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WSSR.SeeWeighted sumof squared residuals
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