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formulation. Following an introductory chapter, 

Chapters 2 and 3 address spatial data and the dif-

ferent ways in which they can be observed and 

presented. Chapters 4, 5, and 6 elaborate on the 

methods used to describe and quantify spatial 

patterns, while Chapter 7 looks at some of the 

methods that can be used to help explain spatial 

patterns, mostly in terms of environmental vari-

ables. Finally, Chapter 8 looks into ways of assess-

ing disease risk and informing decision-making.

We have tried to be consistent with notation, 

but where this would lead to clumsiness have not 

forced ourselves to be so. Where notations deviate 

from the norm, the context should make this clear. 

At the risk of becoming fairly quickly outdated, we 

have included references to specific software pro-

grammes and provided links to websites. Whilst 

these all worked at the time of publishing we can-

not guarantee their future validity.

The majority of worked examples presented in 

the book are based on data collected as part of 

Great Britain’s national bovine tuberculosis (TB) 

control programme. A subset of the national data-

base, comprising cattle TB data from the period 

1986 to 1999 was used with permission from the 

United Kingdom Department for Environment, 

Food and Rural Affairs (DEFRA) and was kindly 

provided by Mr. Andy Mitchell and Dr. Richard 

Clifton-Hadley of the Veterinary Laboratories 

Agency (VLA).

The Animal Production and Health Division 

of the Food and Agriculture Organization of the 

United Nations (FAO) has supported this work as 

part of its mandate to build national and interna-

tional capacity for the formulation of evidence-

based disease control policies and strategies. In 

co-publishing the book, FAO hopes to promote its 

use among member countries.

Over the last 20 years, the application of spatial 

analysis in the context of epidemiological surveil-

lance and research has increased in an exponential 

fashion. Having been involved in this field since 

1988, first as researchers and then also as post-

graduate teachers, we felt there was a need for a 

textbook that helps to guide epidemiologists and 

other biologists logically through the complexities 

of spatial analysis.

This book aims to provide a practical introduc-

tion to spatial analysis, by focusing on applica-

tion rather than theory, and by drawing on a wide 

range of examples from both human and animal 

health, including vector-borne and infectious dis-

eases and non-infectious conditions. We provide 

worked examples of the principal methodologies, 

using mainly the same disease dataset throughout, 

which allows for direct comparison of the various 

techniques and helps to demonstrate their com-

parative strengths and weaknesses.

The book is written primarily for postgraduate 

students and postdoctoral researchers embarking 

upon epidemiological studies that may require the 

use of spatial analytical methods. However, the 

methods described are also relevant to students 

and researchers dealing with spatial data in the 

fields of ecology, zoology, parasitology, environ-

mental science, geography, and statistics. Whilst 

the book is written in plain language, avoiding jar-

gon as much as possible, a basic understanding of 

epidemiology and statistics is assumed.

The sequence around which we have structured 

the book involves firstly visualizing spatial pat-

terns in data, then describing these spatial patterns, 

and finally attempting to explain the observed pat-

terns. This further enables us to predict changes 

in patterns and to use our explanations and pre-

dictions to inform decisions and to guide policy 

Preface
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Robinson 2000; Pfeiffer and Hugh-Jones 2002; 

Pfeiffer 2004), have run short courses and dis-
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have taught spatial analysis as part of the masters’ 
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London School of Hygiene and Tropical Medicine.

Through discussions with colleagues and post-

graduate students in spatial analysis, it became 
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investigation, but less so when it comes to testing 

hypotheses through experimentation. The most 

basic approach is to examine maps of disease 

occurrence visually, together with data from other 

map layers, for the purpose of formulating theo-

retical hypotheses. This mode of investigation, 

which has also been called the ‘gee whiz’ effect, 

suffers from some inherent weaknesses in that it 

does not involve statistical testing or falsification 

(Jacquez 1998). Consistent with Popper’s philoso-

phy, it needs to be followed by statistical assess-

ment and experimental challenge of the hypotheses 

before inferences in relation to cause and effect 

can be drawn. Spatial epidemiology provides the 

 necessary tools for such statistical assessment, 

although many of these tools are still relatively 

unfamiliar to most epidemiologists. In response to 

an increased awareness of environmental health 

hazards, various protocols have been developed 

to enhance the scientific rigour of investigations 

aimed at identifying spatial clusters of disease1. It 

does however need to be emphasized that, consist-

ent with all epidemiological investigations, defini-

tive causal inference is difficult, if not impossible, 

to obtain through analysis of epidemiological data 

(Jacquez 2004).

Since John Snow’s cholera-outbreak investigation 

in 1854, epidemiology has played an increasingly 

important role in providing scientific evidence to 

support animal and human health-policy develop-

ment (Stolley and Lasky 1995). The assessment of 

the spatial pattern of the cholera cases in relation 

to potential risk factors, in this instance the loca-

tions of water pumps, was important in identifying 

the source of the infection (see Fig. 1.1), although 

1 http://www.eurocat.ulster.ac.uk/clusterinvprot.html

The transmission of infectious diseases is closely 

linked to the concepts of spatial and spatio- temporal 

proximity, as transmission is more likely to occur 

if the at-risk individuals are close in a spatial and 

a temporal sense. In the case of non-communicable 

disease occurrence, proximity to environmental 

risk factors may be important. Epidemiological 

analyses therefore have to take both space and 

time into account, with the basic principle being 

to examine the dependence amongst observations 

in relation to these two dimensions. While this 

appears to be a simple and logical step it introduces 

a complication, as the inferences resulting from 

classical statistical analysis methods assume that 

observations are independent from each other. The 

consequence of ignoring dependence, if present, is 

that estimated confidence intervals are narrower 

than they should be (assuming we are dealing with 

positive autocorrelation). Consequently, the dis-

tinguishing feature of spatial or spatio-temporal 

statistical methods is that they take account of the 

spatial or spatio-temporal arrangement (i.e. that 

observations in space or time are not independent 

of each other).

Epidemiology is about the quest for knowl-

edge in relation to disease causation, and this can 

be about understanding risk factors or about the 

effects of interventions. To demonstrate cause and 

effect relationships, the philosopher Karl Popper 

emphasized the need to develop a theoretical 

hypothesis based on the observed data, which is 

then converted into a testable hypothesis that can 

be challenged experimentally. The aim is then to 

refute or corroborate the testable hypothesis by 

repeated experimental challenge (Chalmers 1999). 

Spatial epidemiology is particularly strong in the 

first part of the Popperian approach to scientific 

CHAPTER 1

Introduction
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is to use visual methods of presentation in order to 

make fairly abstract quantitative results easier to 

comprehend, which is where maps can be particu-

larly useful (Bell et al. 2006).

1.1 Framework for spatial analysis

The field of spatial epidemiology includes a wide 

range of techniques and deciding which ones to 

use can be challenging. Fig. 1.2 is a diagrammatic 

representation of a spatial analysis framework 

adapted from Bailey and Gatrell (1995). The objec-

tives of spatial epidemiological analysis are the 

description of spatial patterns, identification of 

it is now recognized that the map was probably 

not the key factor for this cause-effect inference 

(McLeod 2000).

One of the challenges of the current century is 

to improve the public’s understanding and percep-

tion of the value of science, thereby facilitating the 

more widespread use of health policies that take 

effective account of up-to-date scientific evidence. 

Risk communication is an essential element in this 

process, with the objective being to present scien-

tific outputs in ways that are understandable to 

non-scientists (Leiss and Powell 2004). One of the 

mechanisms for improving the transparency and 

widespread understanding of scientific evidence 
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Figure 1.1 John Snow's 1854 cholera-outbreak map of London (deaths shown as dots, water pumps as crosses). Reproduced from Gilbert 
(1958) with permission from Blackwell Publishing.
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Modelling introduces the concept of cause-effect 

relationships using both spatial and non-spatial 

data sources to explain or predict spatial pat-

terns. It needs to be emphasized that none of these 

approaches allows definitive causal inference. 

There is some overlap among the groups, particu-

larly between visualization and exploration, since 

meaningful visual presentation may require the 

use of quantitative analytical methods. The four 

groups illustrated in Fig. 1.2 can be used to define 

a logical, sequential process for conducting spatial 

analyses. It should however be noted that this is 

not a linear process, as presenting the results from 

exploration and modelling requires a return to 

visualization.

1.2 Scientific literature and conferences

The demand for expertise in spatial epidemiologi-

cal analysis is reflected in the increasing number 

of textbooks relating to the topic, many of which 

are aimed at epidemiologists. Bailey and Gatrell 

(1995) produced one of the first books on spatial 

data analysis; a comprehensive and practical text 

that attempted to minimize the use of mathemati-

cal theory so that the methods might become more 

widely accessible. Cressie (1993) is a standard spatial 

analysis text but with a more mathematical empha-

sis. More recently, several authors have produced 

disease clusters, and explanation or prediction of 

disease risk. Fundamental to these objectives is 

the need for data which, in addition to the classical 

data attribute information describing the charac-

teristics of the entity studied, require the availabil-

ity of georeferenced feature data, be they points or 

areas.

Management of the data is performed using geo-

graphic information systems (GIS) and database 

management systems (DBMS), and is of relevance 

throughout the various phases of spatial data anal-

ysis. The importance of data management to any of 

the subsequent steps in the analysis should not be 

underestimated. It is an area where the epidemi-

ologist is confronted with a range of essential con-

cepts, although they may not appear immediately 

relevant to the intended analytical question.

The specific analytical objectives then lead to 

three groups of analytical methods: visualization, 

exploration, and modelling. The first two groups 

cover techniques that focus solely on examining 

the spatial dimension of the data. Visualization is 

probably the most commonly used spatial analy-

sis method, resulting in maps that describe spatial 

patterns and which are useful for both stimulating 

more complex analyses and for communicating the 

results of such analyses. Exploration of spatial data 

involves the use of statistical methods to determine 

whether observed patterns are random in space. 

Attribute
data

Describe
patterns

Analyse
patterns

Explain or
predict patterns

Modelling

Exploration

Visualization

Databases

Feature
data

GIS
DBMS

Statistical
analysis

Figure 1.2 Conceptual framework of spatial epidemiological data analysis (GIS = geographic information systems, DBMS = database 
management system).
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which was held for the first time in 2006 in Silvi 

Marina, Italy. In the medical field, probably due to 

the larger volume of research activity, there are no 

specific spatial analysis conferences, but in most 

years several one-off scientific meetings are held, 

such as the Spatial Epidemiology Conference5 

in London in 2006 or The Urban and Regional 

Information Systems Association’s (URISA) GIS in 

Public Health Conference6 in 2007.

1.3 Software

The availability of increasingly user-friendly GIS 

and spatial analysis software has made spatial 

analysis more accessible to epidemiologists and 

other researchers. Most advances have occurred in 

relation to the functionality and variety of GIS soft-

ware, whereas spatial statistical analysis still neces-

sitates the use of a range of software tools, many of 

which require some level of programming exper-

tise. Freely available online mapping tools such as 

Google Earth7 and Microsoft Virtual Earth8 have 

made descriptive interactive mapping accessible to 

everyone with access to the Internet. The Food and 

Agriculture Organization of the United Nations 

(FAO) provides an interactive online mapping 

 system, the Global Livestock Production and Health 

Atlas (GLiPHA)9, which focuses on a wide range of 

livestock-related production and health data for all 

countries of the world (Clements et al. 2002).

It is useful to distinguish between mapping and 

GIS software. The former only produces maps 

and usually has limited data input functionality, 

whereas the latter provides a whole range of func-

tions that can be broadly categorized into data input, 

management, analysis, and presentation (Pfeiffer 

and Hugh-Jones 2002). Examples of mapping soft-

ware packages include Microsoft MapPoint10, the 

free software ArcExplorer11, and EpiMap12, which 

is part of the public domain  software package 

  5 http://www.spatepiconf.org
  6 http://www.urisa.org/conferences/health
  7 http://earth.google.com
  8 http://www.microsoft.com/virtualearth/default.aspx 
  9 http://www.fao.org/ag/aga/glipha/index.jsp
10 http://www.microsoft.com/mappoint
11 http://www.esri.com/software/arcexplorer
12 http://www.cdc.gov/epiinfo

books on specific aspects of spatial data analysis, 

such as Diggle (2003) on the analysis of point pat-

terns, Lawson and Williams (2001) on basic aspects 

of disease mapping, and both Lawson et al. (2003) 

and Banerjee et al. (2004) on modelling of spatial 

data. Others, such as Haining (2003), Waller and 

Gotway (2004), Schabenberger and Gotway (2005), 

and Lawson (2006a) have covered the whole subject 

area. There have also been several textbooks that 

are collections of chapters authored by different 

experts in the field (Elliott et al. 1992a; Gatrell and 

Löytönen 1998; Lawson et al. 1999a; Elliott et al. 

2000; Lawson and Denison 2002; Durr and Gatrell 

2004; Lawson and Kleinman 2005a; Hay et al. 2006). 

Despite these developments, general epidemiology 

texts typically do not include even a basic introduc-

tion to spatial analysis, apart from using maps to 

show disease distribution.

There are an increasing number of peer- reviewed 

scientific publications that specifically use spatial 

analysis methods. While these have tended to be pri-

marily visualizations of disease distributions, the use 

of spatial cluster detection methods has now become 

a common analytical tool, with the application of 

spatial modelling techniques lagging somewhat 

behind. Clearly, this gradient in frequency of appli-

cation of spatial analysis techniques is also related 

to the robustness and complexity of the methods, as 

well as to differences in access to user-friendly tools 

for performing the analyses. The International Journal 
of Health Geographics2 is the first peer-reviewed jour-

nal that specializes in spatial epidemiology.

The exchange of knowledge resulting from the 

application of spatial analysis techniques to epi-

demiological research is also being facilitated by 

specialist scientific conferences. In the veterin-

ary field, the GisVet3 conference series provides a 

forum for the presentation and discussion of scien-

tific developments related to spatial epidemiology. 

The first conference was held in 2001 in Lancaster, 

UK, the second in 2004 in Guelph, Canada, and 

the most recent in 2007 in Copenhagen, Denmark. 

A new initiative has been the OIE International 

Conference: Use of GIS in Veterinary Activities4 

2 http://www.ij-healthgeographics.com
3 http://www.gisvet.org
4 http://www.gisconference.it
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1.4 Spatial data

The increased availability of georeferenced data 

has facilitated the ascent of spatial epidemiological 

analysis. An essential requirement of such analy-

ses is georeferenced numerator and denominator 

data at a spatial resolution  sufficiently high to allow 

meaningful inferences to be made. While it has 

always been possible to collect such data as part of 

specific studies (including those based on routine 

disease surveillance), often such data have either 

not existed or not been made widely available. 

Advances in hardware and software development 

now allow for routine processing of high-resolution 

data for the purposes of management and simple 

descriptive analyses by local administrative author-

ities. Access to such data for research purposes var-

ies among countries due to different data protection 

and confidentiality legislation, with the latter tend-

ing to be more restrictive for human than for ani-

mal health  problems (Elliott and Wartenberg 2004).

While the available data have increased, so too 

has the number of data sources, with data quality 

varying between both datasets and data sources. 

Efforts are being made to standardize formats 

and quality26 and to facilitate access through 

online  geographical data portals, such as FAO’s 

GeoNetwork27 or the United States government’s 

geodata.gov website28. While it is usually possible 

to obtain various statistics at a national level for 

most countries, higher-resolution, sub-national 

data are harder to come by. Unfortunately, it is usu-

ally high-resolution data that are needed in order to 

perform meaningful spatial analyses. In such situa-

tions it may be necessary to use predicted densities 

such as FAO’s series of livestock density maps with 

global coverage, the Gridded Livestock of the World29 

(Robinson et al. 2007; Wint and Robinson 2007) or 

its human equivalent, the Gridded Population of the 
World with urban reallocation30.

Many data sources are generated either by gov-

ernment organizations or those closely linked to 

26 http://www.opengeospatial.org
27 http://www.fao.org/geonetwork
28 http://www.geodata.gov
29  http://www.fao.org/ag/AGAinfo/resources/en/glw/

default.html
30 http://sedac.ciesin.columbia.edu/gpw

EpiInfo. GIS software includes ArcGIS by ESRI13 

(probably the most commonly used commercial 

software package), the IDRISI software from Clark 

Labs14 and the open source application GRASS15, 

as well as numerous others (see for example, those 

listed on Wikipedia16).

Most of the modern GIS software can handle 

both vector and raster data sources (defined in 

Chapter 2), and are also capable of accessing non-

spatial relational databases. The ability of GIS to 

perform spatial analyses varies substantially, and 

the IDRISI software is probably most compre-

hensive in this respect. Software such as ERDAS 

Imagine and ER Mapper, both now owned by Leica 

Geosystems17, focus on processing remotely sensed 

imagery.

Specialized spatial analysis software includes the 

commercial product ClusterSeer18 and the public 

domain software SaTScan19, which allow for spa-

tial and space–time cluster analyses. GeoDa20 is 

also in the public domain and offers a wide range 

of exploratory data analysis methods for area data, 

as well as basic mapping capabilities. A wide range 

of resources for analysing spatial data based on the 

R programming language and environment for sta-

tistical computing and graphics21 are described on 

the R Spatial Projects website22. Many new devel-

opments in statistical spatial analysis first become 

available as R code. S+SpatialStats is a module of the 

commercial S-Plus software23 that allows for explo-

ration and modelling of spatial data. It is based on 

the public domain code for spatial point-pattern 

analysis in S-Plus (SPLANCS) which has also 

been adapted for use in R24. The free OpenBUGS25 

 software provides specialist tools for performing 

complex Bayesian modelling of spatial data.

13 http://www.esri.com
14 http://www.clarklabs.org
15 http://en.wikipedia.org/wiki/GRASS_GIS
16 http://en.wikipedia.org/wiki/List_of_GIS_software
17 http://gi.leica-geosystems.com
18 http://www.terraseer.com
19 http://www.satscan.org
20 https://www.geoda.uiuc.edu
21 http://www.r-project.org
22 http://www.sal.uiuc.edu/csiss/Rgeo
23 http://www.insightful.com
24 http://www.maths.lancs.ac.uk/Software/Splancs
25 http://mathstat.helsinki.fi/openbugs
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may be inappropriately used and thereby lead to 

incorrect inferences. Although Spatial Analysis in 
Epidemiology focuses on application rather than 

theory, it is hoped that by providing a practical, 

comprehensive, and up-to-date overview of the use 

of spatial statistics in epidemiology, an appropriate 

balance has been achieved.

1.5.1 Datasets used

1.5.1.1 Bovine tuberculosis data
As part of its intention to focus on application rather 

than theory, the book includes many worked exam-

ples in order to demonstrate the use of the various 

techniques described. The majority of these exam-

ples are based on data collected from Great Britain’s 

cattle population as part of the national bovine 

tuberculosis (TB) control programme, comprising 

cattle TB data from 1986 to 1999. This dataset was 

chosen because it is georeferenced, includes all cat-

tle herds within the country, contains substantial 

spatial variation in herd density and disease risk, 

includes a temporal dimension, and disease risk is 

known to be associated with environmental vari-

ables and factors such as presence of local wildlife 

reservoir species and cattle movement. The data 

records specify whether a herd was found to have 

animals reacting positively to the TB test during 

a particular year. The interval between herd tests 

varies across the country, ranging from several 

tests per year to once every four years, depending 

on disease risk within the region and the disease 

history of individual herds.

1.5.1.2 Environmental data
Chapter 7 reviews analytical methods for exploring 

factors associated with disease. Table 1.1, adapted 

from Robinson et al. (2007), provides an overview 

of some of the types of spatial environmental vari-

ables that may be important in such analyses.

Wint et al. (2002) use a comprehensive list of vari-

ables in an analysis of environmental correlates for 

bovine TB. The examples presented in this book use 

a reduced set of those variables in order to simplify 

the modelling and to aid comparison of results. In 

addition to positional information and elevation 

(obtained from the global GTOPO30 1 km resolu-

tion elevation surface, produced by the Global Land 

government, such as cadastral, postal, meteorologi-

cal, or national census statistics organizations. Most 

of these organizations charge for data provision, 

but also aim to improve and maintain a high stand-

ard of data quality. An important component of 

data cost is associated with updating, particularly 

if it relates, for example, to cadastral information. 

Remotely sensed data sources used for describing 

environmental variables can be updated almost 

in real time at a relatively modest cost. The wide 

availability of low-cost global positioning systems 

(GPS) now allows field-collected data to be readily 

georeferenced.

1.5 Book content and structure

Consistent with the conceptual framework for 

spatial epidemiological analysis presented in 

Fig. 1.2 the book chapters can be grouped into 

four  sections: the first addressing spatial data 

(Chapter 2), the second introducing visualiza-

tion (Chapter 3), the third covering exploratory 

analysis (Chapters 4, 5, and 6), and the fourth pre-

senting analytical techniques used for modelling 

relationships among diseases and risk factors in 

the context of risk assessment and decision sup-

port (Chapters 7 and 8). The book provides an 

overview of the range of methods available in 

spatial epidemiology, with a relatively detailed 

introduction to the most important methods. The 

link between spatial epidemiological investiga-

tions and policy development is given particular 

emphasis.

Although readers are expected to have an under-

standing of quantitative epidemiological concepts, 

most of the techniques introduced in this book can 

be applied without having to write complex pro-

gramming code in specialized software. While it is 

recognized that the application of statistical tech-

niques requires knowledge of their assumptions, 

limitations, and interpretation of the outputs, it is 

hoped that the material presented in the book will 

encourage interested epidemiologists to explore 

the different methods further. Waller and Gotway 

(2004) recognize the need to achieve an appropriate 

balance between theory and practical application 

with such a textbook, and warn of the risks associ-

ated with such an approach in that the methods 
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mathematician, Joseph Fourier), and re-sampled 

and re-projected to match the bovine TB dataset. 

The Fourier processing of satellite data, described 

in detail in Rogers et al. (1996) is of great value to 

epidemiological investigations since it reveals the 

seasonal characteristics of the environment. Each 

multi-temporal series is reduced to seven separate 

data layers: the mean, the phases and amplitudes 

of the annual, bi-annual, and tri-annual cycles of 

change. These are supplemented by three addi-

tional variables: the minimum, maximum, and 

variance of the satellite-derived geophysical vari-

ables. Collectively, these numerical indictors of the 

level (mean, minimum, maximum), timing (phase), 

seasonality (amplitude), and variability (variance) 

of each satellite-derived environmental variable 

give a unique ‘fingerprint’ of habitat type; they 

provide a link between the satellite signal and bio-

logical processes that determine the epidemiology 

of the disease. A further advantage of the Fourier 

processing is that it reduces the vast number of 

individual decadal images to a manageable and 

relatively independent set of variables, more ame-

nable to statistical analysis and interpretation.

The power of these Fourier-processed data to 

distinguish habitat types is illustrated in Fig. 1.3, 

Information System of the United States Geological 

Survey, Earth Resources Observation Systems 

Data Centre), a series of 1 km satellite-derived 

variables was obtained from the Advanced Very 

High Resolution Radiometer (AVHRR) on board 

the National Oceanographic and Atmospheric 

Administration (NOAA) series of satellites. 

Decadal (ten-day) composite images were obtained 

from 1992/1993 and 1995/1996, and combined into 

monthly averages to provide complete temporal 

coverage of a nominal calendar year. The channel 

data were converted into five estimates of geophysi-

cal variables (Table 1.1): (1) Normalized Difference 

Vegetation Index (NDVI)—an estimate of vegeta-

tion activity, whose integrated value relates to pri-

mary production over a specified period (Tucker 

and Sellers 1986); (2) land surface temperature, (3) 

air temperature, (4) middle infrared reflectance 

taken from Channel 3 of the NOAA-AVHRR—a 

 temperature-related variable that is useful in dis-

criminating between different land-covers, and 

(5) vapour pressure deficit (VPD)—an estimate 

of atmospheric humidity near the earth’s surface 

indicative of the ‘drying power’ of air.

Each time series was subjected to tempo-

ral Fourier processing (named after the French 

Table 1.1 Generic list of environmental variables relevant to 
epidemiological analysis

Generic type Variables

Location Longitude, latitude
Anthropogenic Distance to roads
 Distance to city lights
Demographic Human population
Topographic Elevation
Land cover Normalized Difference Vegetation Index (NDVI)a-c

Temperature Land surface temperaturea-e

 Air temperaturef

 Middle infrared reflectancea

Water and moisture Vapour pressure deficit (VPD)a-c

 Distance to rivers
 Cold cloud durationa

 Potential evapotranspirationg

General climatic Modelled length of growing periodg

a Hay (2000); b Green and Hay (2002); c Hay et al. (2006); d Hay and Lennon 
(1999); e Price (1984); f Goetz et al. (2000); g Fischer at al. (2002)
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indicating greater variability in average tempera-

tures and later seasons, respectively.

In addition to the generic variable types listed in 

Table 1.1., analysis of different diseases may require 

other more specifically relevant variables. In the 

case of the bovine TB examples used throughout 

the book variables such as herd size, cattle density, 

proportion of dairy cattle, and abundance of poten-

tial wild hosts of disease, such as badgers, may also 

be important correlates of disease presence.

a false colour composite of Fourier-processed air 

temperature variables for Great Britain. The aver-

age value (the ‘zero-order’ component) is displayed 

in red, the phase of the first-order component is 

displayed in green, and the amplitude of the 

first-order component is displayed in blue. Broad 

regional differences can be seen, such as the pre-

dominance of red in the south, indicating relatively 

high and less variable average temperatures, and 

the predominance of blue and green to the north 

Figure 1.3 False colour composite of Fourier-processed 
air temperature variables for Great Britain. The average 
value (the 'zero-order' component) is displayed in red, 
the phase of the first-order component is displayed in 
green, and the amplitude of the first-order component is 
displayed in blue (this caption refers to the colour version 
of the figure which can be found in the plate section).
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the relative geographical position of different types 

of (otherwise often unrelated) information. It is 

then possible to produce a map showing the point 

locations together with, for example, contour lines 

expressing elevation above sea-level, as well as 

other data such as rivers, roads, and railway lines.

GIS are now used in many different areas includ-

ing town planning, ecology, and utility manage-

ment, reflecting the importance of the spatial 

dimension to most processes occurring in the world 

around us. GIS technology has a hardware, soft-

ware, and organizational component (Burrough and 

McDonnell 1998), which must be balanced appro-

priately. This means that the computer hardware, 

including any input and output devices, needs to 

be able to cope with the data volumes and com-

putational requirements. The software application 

should have functions for the collection, storage, 

manipulation, analysis, and presentation of spa-

tial data. However, neither of the two components 

(hardware and software) is sufficient if the system is 

not placed in a suitable organizational context with 

appropriately skilled operators. Many GIS are now 

available and, through increased demand and wide-

spread use, have become increasingly user-friendly, 

with greater functionality and a greater capacity to 

store and manipulate different spatial data types. At 

its core, GIS software has a database capable of han-

dling georeferenced information, complemented by 

a series of software tools responsible for the input, 

management, and analysis of data, and the produc-

tion of maps and related output.

2.2.1 Data types

Several conceptual models can be used to repre-

sent a geographical space. The two extremes are 

entities and fields. The first approach views space as 

2.1 Introduction

Data collected for the purpose of epidemiological 

investigations typically focus on the attributes of 

observations such as the disease status of individual 

animals. If coordinate locations are also recorded, 

the spatial pattern of the epidemiological problem 

can be investigated, in addition to classical risk fac-

tor analyses. The presence of a geographical refer-

ence for each observation firstly allows for analyses 

incorporating geographical relationships between 

the observations and their attributes, and secondly, 

additional attribute data can be obtained by linking 

spatially to other georeferenced data. Investigations 

aimed at describing and understanding the processes 

that influence the occurrence of disease can benefit 

greatly from access to digital information systems 

that can represent the environment within which 

these processes operate. A key component of such 

systems is representation of the space dimension. 

They often also reflect time but this is usually done 

as an attribute of spatial entities. Due to the complex-

ity of the real world any such digital representation 

is an abstraction, often involving substantial gener-

alization and simplification (Haining 2003).

2.2 Spatial data and GIS

Data georeferenced with point locations, for exam-

ple, households or cattle farms, can be managed 

by any database management system by adding 

two data columns; one for the x- and one for the 

y- coordinate. A simple ‘map’ can be produced 

using scatterplot graph functions in electronic 

spreadsheets. If the boundaries of administrative 

areas are also to be shown, more specialized appli-

cations are required, such as mapping software or 

GIS, which are capable of accurately representing 

CHAPTER 2

Spatial data
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type of disease. Continuous fields, which include 

the spatial patterns of rainfall, temperature, or ele-

vation, normally have only a single attribute.

The representation of these conceptual data mod-

els within a GIS can be in vector, raster, or triangu-

lated irregular network (TIN) format (Zeiler 1999) 

(Fig. 2.1). Vectors represent shapes of spatial fea-

tures based on an ordered set of coordinates linked 

to potentially multiple attribute values. They are 

particularly suitable for describing entities such as 

points, lines, or polygons. With spatial data stored 

in vector format it is possible to perform geometric 

calculations, such as length and area, as well as to 

describe proximity. Vectors are used to define, for 

example, the locations of infected herds, as well as 

of administrative boundaries. Raster format uses 

a two-dimensional grid to represent spatial data, 

and is well suited to describing continuous fields. 

Each cell has a single attribute which is the value 

of the spatial phenomenon being described, such 

as elevation above sea level, total monthly rain-

fall, or average monthly temperature. The value 

represents a summary function of the variation 

being occupied by entities with specific attributes, 

and their position can be mapped using geographi-

cal coordinates. The second describes the variation 

in a particular attribute value in space as a con-

tinuous mathematical function or field. The choice 

of the appropriate approach depends on the data 

and their intended use. The continuous field would 

be more suitable for investigating spatial processes 

whereas entities should be used for administrative 

purposes (Burrough and McDonnell 1998). Typical 

representations of entities in GIS are points, lines, 

and polygons. Points may define, for example, the 

geographic locations of infected animals. Lines can 

represent linear features such as roads and rivers. 

Polygons are used to define contiguous areas that 

have a common characteristic, for example, they 

may represent administrative areas, land parcels 

owned by the same person, or areas of a certain 

vegetation or soil type. All entity data types have 

associated attributes. For example, the attribute 

data for the point location mentioned above is that 

it relates to an infected animal, and may include 

other attributes such as the animal species and 

(a)

(c)

(b)

(d)

Figure 2.1 Examples of data representation in GIS (all based on data from a field study of TB in wild possums in New Zealand). (a) A vector 
map defining paddock boundaries and locations of traps, (b) a raster map showing density of possum captures, (c) a triangulated irregular 
network (TIN) structure based on the digital elevation model for the study site, and (d) an aerial photograph of the study site.
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data has a unique key variable (Fig. 2.2a) that 

allows linkage to other data tables containing fur-

ther attribute information for each entity. These can 

be part of the GIS or may be external to it, and are 

accessed using data query languages such as the 

Structured Query Language (SQL). Examples of 

attribute data linked to a farm and georeferenced 

through the point location of the main farmhouse 

include information such as the national herd iden-

tification number, name of the owner, address, and 

postcode (Fig. 2.2b). While these data may already 

be stored in the GIS together with the spatial data, 

further attribute data can be added through a rela-

tional link from external databases via the herd 

identification number (Fig. 2.2c). This would give 

access to, for example, TB-test results from the 

national TB-testing database, the number of cows 

purchased and sold during the previous twelve 

months from national animal movement databases, 

and the mortality of calves during the same time 

period from animal identification databases.

Spatial data are most commonly organized as 

layers or coverages, each describing a particular 

theme such as rainfall or farm boundaries. Recently, 

object-oriented geographic data models have been 

developed, of which ESRI’s geodatabase is an exam-

ple. One of the advantages of this new approach is 

that, in contrast to coverages, it does not require 

separation of the real world into distinct themes, 

each stored, manipulated, and updated separately, 

and requiring relatively complex tools to link them 

back together for purposes of analysis.

The interchange of spatial data between soft-

ware-specific formats is often complex. The avail-

ability of formats, such as ESRI’s shape file format, 

in the attribute within the area described by the 

cell. Although smaller cell sizes allow for a bet-

ter description of the spatial variation in attribute 

values, they increase the digital storage space and 

processing power required. The TIN structure is 

used to represent three-dimensional surfaces. It is 

based on a set of integrated nodes with elevation 

values and triangles. This format allows analyses 

to be performed that require, for example, identi-

fication of watersheds. It is also used to interpolate 

elevation values for any location within the extent 

defined by the TIN. While raster format can also be 

used for this purpose, the advantage of a TIN is that 

it allows for varying data density depending on the 

detail required to accurately represent a surface.

Attribute information for spatial entities can be 

generated based on relationships defined in the 

GIS data model. These include topological, spatial, 

and general relationships. Topological relation-

ships allow quick identification of neighbouring 

land parcels. Spatial relationships involve opera-

tions among different layers of spatial data and 

allow for the calculation of, for example, the area 

occupied by different vegetation or soil types on 

a farm, or the distance to the nearest road or river. 

General relationships need to be explicitly defined 

as they cannot be inferred from the geographical 

position of the relevant entities. This includes link-

ages to internal and external database tables.

2.2.2 Data storage and interchange

Storage of attribute data can be in a simple tabu-

lar or a more complex format, based on relational 

or object-oriented data models. In most GIS, entity 

Figure 2.2 Linking entities on a farm map with multiple data tables via herd ID. (a) Farm boundary map, (b) farm data table, and (c) animal 
data table.

Herd

ID

Owner

Name

(a) (b) (c)

1
1

3

4

5

6

2

Baker

2 Smith

3 Quinn

4 Blair

Herd

ID

Test 

Positive

1 no

1 yes

1 no

1 yes

Cattle 

ID

21

11

5

25

1 no31
. . . . . . . . . . . .
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can provide data ranging from photographic repre-

sentations of particular geographical areas, ground 

reflectivity or emissivity for defined ranges of 

wavelengths of the electromagnetic spectrum, to 

information on surface elevation and surface mate-

rial density and texture. The spatial resolution of 

commercial satellite imagery is now as high as 15 m 

(for LandSat 7) on the ground. Data capture should 

be followed by verification which can be achieved, 

for example, through comparison with paper maps 

or by ‘ground truthing’. Data structuring is the 

final activity during data collection and refers to 

the procedures involved in appropriately format-

ting the captured data. Examples include geomet-

ric or radiometric correction of remotely sensed 

data, conversion of reflectance or emittance values 

to geophysical values such as temperature or veg-

etation indices, or conversion from one data format 

to another, such as from raster to vector, in order to 

produce a database suitable for its intended use.

In order to integrate data effectively, a common 

spatial reference frame must be defined for all spa-

tial data to be used in a particular project. This is pro-

vided by a coordinate system, but it is also possible 

to convert between different systems. Most systems 

are based on plane, orthogonal Cartesian coordi-

nates. Almost every country has its own regional 

system with its own origin so that local distortions 

are minimized and the use of coordinates with 

unnecessarily large numbers is avoided. The spatial 

units are usually metric units of distance or decimal 

degrees. The latitude- longitude system allows geo-

graphic position to be expressed anywhere around 

the world. The longitude (east–west) and latitude 

(north–south)  pos itions express location relative 

has made this easier as any software product can 

include procedures that read and write to that for-

mat. Data conversion among vector, raster, and 

TIN formats is sometimes associated with a loss 

in data quality due to the compromises that have 

to be made when, for example, converting a river 

network into a raster map, as a straight vector line 

can fairly accurately represent a river but if it is 

converted into a set of raster cells, resolution will 

be lost unless very small raster cells are used. In 

addition, attribute data, such as direction and rate 

of flow of the river, would be less readily repre-

sented in raster format (see Fig. 2.3). A TIN can be 

generated from vector data representing point ele-

vation values. Its disadvantage is that specialized 

procedures are required to generate the TIN, and 

to make full use of its particular strengths. Some 

formats are better suited to particular types of data 

and it is best to maintain the appropriate format as 

far as possible. Often though, analyses require data 

to be in the same format, meaning that data quality 

must be compromised.

2.2.3 Data collection and management

The collection of spatial data involves capture, veri-

fication, and a structuring process (Burrough and 

McDonnell 1998). Digital data can be obtained from 

a supplier, digitized from paper maps or scanned 

images, derived from manually collected field data, 

or interpolated from digital point values. During 

field surveys, the use of electronic means of data 

recording, such as GPS technology, allows very pre-

cise locational information to be obtained. Optical 

and digital remote sensing by aircraft or satellites 

(a) (b)

Figure 2.3 Conversion from vector to raster map. (a) The initial vector map, and (b) the raster map derived from the vector map.
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Data are often obtained from a multitude of 

sources and, in order for them to be used appro-

priately by investigators other than the original 

data collectors, they should be accompanied by 

descriptive metadata that summarize their lineage 

and content. Metadata include information on the 

data source, date collected, any data manipulations 

performed as well as, for example, the coordinate 

system, resolution, and data model (Longley et 

al. 2001). The creation of metadata can be a time-

consuming and expensive process and is often 

neglected, but it is becoming increasingly impor-

tant due to the widespread dissemination of data-

sets over the internet and the explosive increase in 

the quantity of georeferenced data sources.

2.2.4 Data quality

Both the choice of representation and the accuracy 

of the measurements affect how well spatial data 

reflect the real world (Haining 2003). The choice 

of representation includes the type of data format 

selected, for example vector versus raster, or point 

versus area, as well as the methods of attribute 

measurement such as through remote sensing or 

continuous recording at meteorological stations. 

Assessment of data quality needs to consider the 

accuracy of both the location information and of 

the attribute values.

Ideally location of farms should be represented 

as polygons reflecting the property boundaries of 

individual farms. Usually, this is considered to be 

too costly and would require more complex analyt-

ical procedures, particularly if a farm includes sev-

eral non-contiguous land parcels. In such instances 

farms are more easily represented as single point 

locations. The decision then has to be made 

whether to use the geographical coordinates of the 

farmhouse, or those of the centroid calculated from 

the main farm area. Disadvantages of condensing 

a farm’s area into a single point-location include 

the fact that any neighbourhood calculations have 

to be based on distance rather than true property 

boundary adjacency and, in terms of analysis, the 

assumption is then made that all farm properties 

are circular. It is also likely to bias the results of any 

statistical analyses since these methods typically 

assume that centroids represent precise locations 

to the Greenwich Meridian and Equator, respec-

tively. The process of representing locations on the 

globe on a plane surface requires the use of math-

ematical expressions of the Earth’s curvature called 

ellipsoids. Ellipsoids may also take account of the 

flattening that occurs at the poles. Cylindrical, 

conical, or azimuthal projections are then used to 

project geographic locations from a specific ellip-

soid on to a plane surface. This process always 

results in some distortion which becomes particu-

larly apparent when large areas or countries, such 

as China or the Russian Federation, are presented. 

Different projections have been designed for differ-

ent purposes. Some preserve area, some preserve 

distance, and others preserve shape (angle). Choice 

of an appropriate projection therefore depends on 

the application. For example, equal-area projections 

are often considered important in remotely sensed 

data so that each pixel represents the same area 

on the ground. The simplest projection is the geo-

graphic or Plate Carrée projection, in which points 

of longitude and latitude are plotted directly on a 

regular grid. The lines of longitude (meridians) on 

the graph are spaced the same distance apart as the 

lines of latitude (parallels), thus forming squares. 

This simple representation does not preserve area, 

distance, or shape but is the most widely used pro-

jection in the collection, storage, and interchange of 

data. Another commonly used projection, on which 

most national topographic maps are based, is the 

Universal Transverse Mercator (UTM) coordinate 

system, developed by the United States military. It 

divides the world into 60 grid zones, each divided 

into a northern and southern part, and the coor-

dinates of any point can be expressed in terms of 

metres from the origin (bottom left hand corner) of 

the grid zone in which it falls (Banerjee et al. 2004). 

Useful references to the theory and application of 

map projections include Snyder (1987) and Canters 

and DeClair (1989).

Geographic scale typically refers to the resolu-

tion at which spatial data are captured and pre-

sented, and inferences drawn from any analyses 

need to consider the original scale of the data. It 

is one of the dangers of GIS that the original spa-

tial data can be manipulated so that they appear 

to have a higher resolution than that at which the 

original measurements were made.
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Carlo simulation (see Chapter 4) or analytical 

approaches (Burrough and McDonnell 1998).

2.3 Spatial effects

2.3.1 Spatial heterogeneity and dependence

The basic principle of spatial dependence is that 

attribute values measured at locations close 

together are more similar than those from more 

distant locations. If this dependence does not vary 

(i.e. is the same for any location in a geographic 

area), the spatial process is termed stationary. If on 

the other hand, the dependence structure varies 

throughout the area, the process is termed non-

 stationary or heterogeneous. If the dependence in a 

stationary process is only affected by distance, but 

not direction, then it is considered to be isotropic, 

whereas if the dependence is different in different 

directions, it is considered to be anisotropic.

The total variation amongst attribute values 

of a spatial process is the result of large (macro-) 

and medium/small (meso-/micro-) scale varia-

tion (Cressie 1993; Haining 2003). They are usually 

measured on a continuous scale, and have also been 

called first- and second-order spatial effects (Bailey 

and Gatrell 1995). Macro-scale variation expresses 

itself as a trend across a geographical region. For 

example, risk of disease may increase from south 

to north in a region as a result of differences in 

temperature affecting survival of an infectious 

organism. Meso-scale variation on the other hand 

describes the local dependence of a spatial proc-

ess, also called spatial heterogeneity. This could 

express itself, for example, as clusters of an infec-

tious disease around livestock markets, or local 

habitat preferences for a disease vector. One of the 

two types typically dominates the observed spatial 

variation; which it is depends heavily on the scale 

and extent at which observations are made. Most of 

the currently available statistical analysis methods 

only allow one of these effects to be modelled, and 

may produce biased results if both are present and 

standard fixed-effect modelling methods are used.

2.3.2 Edge effects

The boundaries or edges of an area may be the 

result of physical barriers such as the sea, or may 

of the events of interest (Jacquez and Jacquez 1999). 

Durr and Froggatt (2002) analyse the impact of 

using different methods for representing farm 

properties and conclude that single point-locations 

are the most cost-effective method.

Epidemiological interpretation of disease surveil-

lance data requires access to, and information on, 

the spatial distribution of an appropriate denomi-

nator. Ideally the locations of all livestock holdings 

around the country would be available, or at least 

summary estimates at some administrative level of 

aggregation, for example, county or parish in Great 

Britain. Most surveillance data are currently pre-

sented as tabulated, summary statistics generated 

at a defined administrative level of aggregation 

such as district or province. These data can easily be 

presented using a GIS, since the boundaries of these 

administrative units are available in digital formats 

for most countries in the world. However, it is impor-

tant to match the level of administrative aggregation 

with the spatial resolution at which epidemiological 

inferences are to be drawn. For example, in order 

to make a broad assessment of the occurrence of 

bovine TB in Great Britain, aggregation at the 

county level could be acceptable. Alternatively, if 

clusters resulting from point sources of infection 

were to be identified, it would be necessary to work 

with data aggregated at a much higher resolution 

or ideally with individual farm locations. It is also 

important to recognize that changing levels of data 

aggregation may result in very different observed 

spatial patterns. This process has been called the 

modifiable areal unit problem (MAUP), and it is 

similar to the ‘ecological fallacy’ in epidemiology; 

a widely recognized error in the interpretation of 

statistical data whereby inferences about the nature 

of individuals are based upon aggregate statistics 

collected for the group to which those individuals 

belong (Cressie 1993).

When using GIS data, it is important to recog-

nize that they always contain errors, resulting from 

factual mistakes or from measurement variability. 

If these errors are not considered during spatial 

analyses, regardless of whether the latter involve 

Boolean or numerical operations, the consequences 

are unpredictable due to the propagation of errors. 

The impact of uncertainty in the context of quanti-

tative spatial analysis can be assessed using Monte 
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elevation models. Buffer areas around spatial enti-

ties can be defined, for example, to identify herds 

within a specified distance of an infected herd 

that ought to be tested for the presence of dis-

ease. Overlay operations use spatial relationships 

among different layers of geographic data. These 

can involve either simple Boolean or more complex 

mathematical operations. One example is the GIS 

point-in-polygon operation that can be used, for 

example, to count the number of diseased herds 

(defined by point locations) within an administra-

tive area (defined as a polygon). Another example 

is the polygon overlay function, which could be 

used to calculate the proportion of total forest area 

on each farm in a region derived from farm bound-

ary and vegetation type polygon layers. It is also 

possible to create new polygon layers including, 

for example, all contiguous land parcels belonging 

to the same farm, by merging individual polygons 

from a land parcel map based on landowner iden-

tification (Longley et al. 2001).

Statistical methods that take into account spatial 

dependence require a spatial weights matrix to be 

generated that describes how the observations in 

a dataset are related to each other. Different types 

of matrices can be calculated. A binary contiguity 

matrix describes whether or not spatial objects, such 

as farms, are neighbours. These can be extended 

from first-order to multiple-order adjacencies. The 

information stored in matrices can also be more 

complex, for example, parameters such as distance, 

or length of a  common border (Haining 2003).

2.3.4 Statistical significance testing with 
spatial data

Independence of observations is a fundamental 

assumption of most classical statistical procedures 

using hypothesis testing based on theoretical, 

large sample (asymptotic) sampling distributions. 

If spatial dependence is present in a dataset, this 

assumption is violated. In this case, data from geo-

graphically close observations contribute less addi-

tional information than they would if they were 

further apart. A potential consequence of ignoring 

this effect in a statistical analysis is to underesti-

mate errors and to overestimate statistical signifi-

cance levels, thereby increasing the risk of making 

be defined boundaries such as the borders of 

administrative regions (e.g. country or county) or 

study areas. Data for the area beyond the edges 

are frequently either incomplete, unavailable (e.g. 

a different country), or non- existent (e.g. when the 

sea is the boundary). Points (or area units) near 

these edges, are therefore likely to have fewer 

neighbours than those in the centre of the study 

area. This presents a problem when performing 

calculations that borrow strength from neighbour-

ing areas (such as kernel smoothing, see Chapter 6) 

or when investigating data for the presence of clus-

tering (Chapters 4 and 5), as the fewer neighbours 

may distort any estimates for points (or area units) 

near the edges. These distortions are referred to as 

edge effects. Although edge effects may be negli-

gible when dealing with large-scale effects, they 

can be considerable when estimating small-scale 

effects close to the boundary. Edge effects are usu-

ally dealt with either by using a weighting system 

that gives less weight to those observations near 

the boundary, or through the use of guard areas 

(Lawson et al. 1999b)

2.3.3 Representing neighbourhood 
relationships

Continuity and connectivity are typical character-

istics of spatial processes known as topology. With 

raster data, topology is implicitly defined in the 

data through the relative positioning of individual 

cells within the regular grid. The situation is more 

complex for vector data and different methods can 

be used to describe topology. In the simplest case 

only the spatial coordinates are stored, and the 

neighbourhood relationships are derived during a 

database query or as part of a statistical analysis 

procedure. In the case of polygon data it is possible 

to store topological information (i.e. which bound-

aries are shared by which polygons) directly with 

the data.

One of the defining characteristics of GIS soft-

ware is that it can generate new data based on 

transformations and queries of existing data, taking 

into account topological and spatial relationships. 

Distance and area calculations can be performed 

on raster or vector data. Slope and aspect can be 

derived from raster or TIN presentations of digital 
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considerably. Some analytical procedures involve 

multiple tests using the same procedure on the 

same data, for example when looking for cluster-

ing of events, and thus have a high risk of com-

mitting a Type I error (Thomas 1985; Haybittle et 

al. 1995). Bonferroni or Simes p-value adjustments 

can be used to correct for this effect, resulting in 

a reduced threshold for significance. It should 

however be noted that the use of these methods 

results in a conservative assessment of statistical 

 significance (Perneger 1998).

2.4 Conclusion

The integration of the spatial dimension into epi-

demiological investigations provides an opportu-

nity for conducting more informative descriptive 

analyses and gaining additional insights into the 

causal processes under investigation. However, 

there is a cost associated with this benefit in the 

form of additional computer hardware, software, 

and training. Statistical analysis of spatial data 

requires the use of specific methods that can take 

account of the potential presence of dependence as 

a result of geographical proximity. Although the 

number of available georeferenced databases has 

substantially increased and their cost decreased, 

the often substantial variation in quality between 

and within spatial databases remains a problem, 

and therefore access to complete and up-to-date 

metadata is of particular importance when  working 

with spatial data.

a Type I error. Different approaches can be used 

to deal with this problem in hypothesis testing. 

The simplest is to reduce the effective sample size 

(Haining 2003). Some statistical software pack-

ages such as SAS31 for Windows Version 9 (SAS 

Institute, Cary, North Carolina) and OpenBUGS32 

(Spiegelhalter et al. 2003) allow modelling of the 

dependence structure as part of the error variance 

in a statistical model (Haining 2003; Lawson et al. 

2003; Banerjee et al. 2004). This method is imple-

mented in generalized linear modelling approaches 

based on maximum-likelihood or Bayesian estima-

tion. A conceptually simple method for hypothesis 

testing that is not adversely affected by spatial 

dependence is Monte Carlo randomization (Dwass 

1957). This approach produces null hypothesis 

distributions based on repeated randomizations 

of the data used in the analysis. The individual 

values of the test statistic calculated for each ran-

domization are then used together to represent 

the null hypothesis distribution, against which the 

observed value of the test statistic is compared, 

and a p-value calculated (Fortin and Jacquez 2000). 

This method requires large numbers of randomi-

zations, and can be computationally demanding if 

used with large spatial datasets or complex spatial 

processes (Lawson 2001a).

Song and Kulldorff (2003) show how the statis-

tical power of spatial analysis methods can vary 

31 http://www.sas.com
32 http://www.mrc-bsu.cam.ac.uk/bugs
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events at the same location. In such situations the 

resulting maps tend to be cluttered, making it dif-

ficult to appreciate the density of events. Further 

difficulties with point maps arise when attribute 

information needs to be displayed at each location. 

The use of different symbols to represent attribute 

values is one solution, but large numbers of points 

and a wide range of attribute values results in a 

display that is difficult to interpret.

Where there are few locations to be plotted and 

interest lies simply in showing the location of events 

rather than the spatial distribution of attribute val-

ues, point maps provide a means of presenting 

the data in its ‘raw’ format, unmodified by any 

statistical analysis that might be applied to aid or 

enhance interpretation. This can be useful for com-

munication. A display of the raw data allows users 

of the information to appreciate the spatial pattern 

without being burdened by the technical details of 

analyses done to facilitate data display. Fig. 3.1 is a 

map of Great Britain showing the point location of 

holdings for which TB-positive cattle were identi-

fied at slaughter from 1985 to 1997, illustrating that 

the disease occurred mainly in the southwest of 

the country.

Kernel smoothing methods are an effective 

means of visualizing spatial pattern when there 

are large numbers of events (Chapter 6), as they 

allow for visualization of both the spatial distribu-

tion and the density of events.

3.3 Aggregated data

The process of aggregation involves summarizing a 

group of individual data points into a single value 

to produce, for example, a total, mean, median, or 

standard deviation. This summary statistic may 

then be assigned a spatial location; often a discrete 

3.1 Introduction

One of the first steps in any epidemiological  analysis 

is to visualize the spatial characteristics of a dataset. 

This allows for an appreciation of any patterns that 

might be present, identification of obvious errors, 

and the generation of hypotheses about factors that 

might influence the observed pattern. Visualization 

is also important for communicating the findings 

to the target audience using, for example, maps 

of a disease distribution, with or without correc-

tion for the influence of known confounders. This 

chapter outlines techniques for visualizing spatial 

data, and describes methods that might be applied 

in the early phase of an analysis where the objective 

is to detect obvious spatial patterns and to screen a 

dataset for errors. It also considers elements of good 

cartography and other factors that need to be taken 

into account when communicating spatial informa-

tion to a wider audience.

3.2 Point data

Perhaps the oldest and most frequently used 

method for visualizing point data is to plot the 

locations of study subjects using their Cartesian 

coordinates. John Snow’s account of the Golden 

Square cholera epidemic in 1854 bears testimony 

to the usefulness of this technique, when high 

numbers of cases of cholera around a public water 

pump provided powerful support to the hypoth-

esis that the disease was transmitted via contami-

nated drinking water (Snow 1855; McLeod 2000; 

Vinten-Johansen et al. 2003; Fig. 1.1). Although 

point maps are the simplest way to visualize 

 disease event  information when the locations of 

events are known, they present problems where 

there are either large numbers of events or multiple 

CHAPTER 3

Spatial visualization
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derivative, a choropleth map shows information by 

‘filling’ (colouring) each component area with col-

our, providing an indication of the magnitude of the 

variable of interest. Fig. 3.2 is an example of a chorop-

leth map showing the prevalence of TB-test positive 

cattle herds in Great Britain aggregated by county 

for 1999. This map shows a spatial trend with coun-

ties in southwest England and south Wales having 

a higher prevalence of TB-positive herds than the 

eastern and northern counties.

Although choropleth maps tend to be the most 

widely-used method for illustrating the spa-

tial distribution of disease data, they have three 

area such as a state, county, or some other admin-

istrative region. In spatial epidemiology, the most 

common form of data aggregation occurs when 

counts of disease events within a defined area are 

summed to yield the total number of disease cases 

in each area. Disease counts can then be expressed 

as a function of the population size to provide esti-

mates of prevalence, incidence risk, or incidence rate 

per unit area. Choropleth maps are the most com-

monly used means for visualizing data in this for-

mat. The term ‘choropleth’ is derived from the Greek 

khoros, meaning ‘place’ and plethein, meaning ‘to be 

full, or to become full’. Thus, as implied by its Greek 

0 100 200 400
Kilometres

N

Figure 3.1 Point map showing the distribution of holdings 
in Great Britain for which TB-positive cattle were identified at 
slaughter in 1985–1997.
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Figure 3.2 Choropleth map showing the prevalence of TB-test 
positive cattle herds in Great Britain (expressed as the number of 
TB-positive holdings per 100,000 holdings) for 1985–1997.
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proportional to the corresponding attribute value 

but maintaining the spatial contiguity of each area. 

The result is known as a cartogram (Dorling 1995). 

Cartograms distort area and distance, forsaking spa-

tial detail, in an effort to display the spatial charac-

teristics of attribute data more effectively. The usual 

objective is to reveal patterns that might not be read-

ily apparent from a conventional map, or more gen-

erally, to improve legibility. Fig. 3.3a shows a map of 

Great Britain divided into 178 areas, each containing 

approximately 20,000 head of adult cattle (calculated 

from agricultural census data collected between 1986 

and 1996 (Stevenson et al. 2005). Fig. 3.3b is a carto-

gram of the same data where area boundaries were 

distorted so that the size of each area was in propor-

tion to the number of cattle present. From Fig. 3.3b it 

inherent problems. Firstly, component polygons of 

the study region that are large tend to dominate 

the display and may induce bias in interpretation 

(Monmonier and De Blij 1996). Secondly, patterns 

that are observed across zones may be as much a 

function of the chosen zone boundaries as of the 

underlying spatial distribution of the attribute of 

interest, an effect known as the modifiable areal 

unit problem (MAUP) (Openshaw 1984). The third 

problem relates to the distribution of the data val-

ues being plotted, as highly skewed distributions 

are difficult to display using a finite number of 

 colour shading scales.

One approach to the problem of physical domi-

nance of large areas is to geometrically transform 

each of the areas of interest, thereby making its area 

Figure 3.3 Choropleth maps showing the prevalence of TB-test positive cattle holdings in Great Britain (expressed as the number of 
TB-positive holdings per 100,000 holdings) for 1985–1997. (a) Untransformed area boundaries and (b) a cartogram, where the boundaries
of each area have been distorted according to size of cattle population.
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population at risk. Fig. 3.4 provides an example of 

this approach. Fig. 3.4a shows the distribution of 

the 1980 census population of non-Hispanic white 

females aged between 45 and 64 in Alameda and 

Contra Costa counties, California. Each dot, plot-

ted at random within its census tract, represents 

20 women in this so-called ‘dot-density’ map. The 

population is mostly concentrated in a few urban 

areas. Fig. 3.4b shows the distribution of 68 cases 

of breast cancer diagnosed between 1968 and 1972, 

each plotted at random in its census tract of resi-

dence. As expected, the distribution of cases in Fig. 

3.4b is similar to the distribution of the underlying 

population at risk (Fig. 3.4a).

In Fig. 3.4c the tract boundaries have been 

adjusted by a density equalized map projection 

is readily apparent that the highest densities of cattle 

are in the southwest of England and Wales while the 

east of England and Scotland are areas of relatively 

low cattle density. The inference we can make from 

Fig. 3.3b is that the holding-level prevalence of TB is 

highest in those areas of the country with the great-

est numbers of cattle.

Extending the idea of the cartogram further, 

Selvin et al. (1998) and Schulman et al. (1988) pro-

posed that the size of spatial units within an area 

of study could be transformed using population 

counts to yield population density-equalized areas. 

Plotting the location of disease events over these 

density-equalized areas allows the spatial distribu-

tion of disease events to be visualized, accounting 

for the (often) irregular spatial distribution of the 

(a) (b)

(c) (d)

Figure 3.4 Illustration of a density equalized map projection (DEMP) analysis. (a) A dot density map showing the distribution of the 1980 
census population of non-Hispanic white females aged between 45 and 64 in Alameda and Contra Costa counties, California. Each dot, 
plotted at random within its census tract, represents 20 women. (b) The distribution of 68 cases of breast cancer diagnosed between 1968 
and 1972, each plotted at random in its census tract of residence. (c) Tract boundaries have been adjusted by a DEMP transformation. (d) The 
68 cases of breast cancer plotted at random within the transformed boundaries. Reproduced from Selvin et al. (1998) http://www.merrill.olm.
net/mdocs/demp/ with permission from the American Public Health Association.
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For highly skewed distributions, transforma-

tions can be applied to the data. However, in doing 

so some degree of interpretability is lost since 

extreme values become truncated (typically) into a 

single category. Dynamic exploratory spatial data 

analysis (ESDA) techniques are particularly use-

ful in this situation where conventional graphical 

data displays, for example histograms or box-and-

whisker plots, are presented in conjunction with 

mapped data on a computer terminal. Using a 

technique termed ‘brushing’, data values on the 

graph are selected interactively and their location 

displayed simultaneously on the map (Haslett 

et al. 1991). A variety of software packages with 

this functionality have been developed includ-

ing SAGE33 (Haining et al. 1998) and the GeoDa 

package34 (Anselin et al. 2006; Fig. 3.5). The GGobi 

package35 (Swayne et al. 1998) allows brushing to 

33  ftp://ftp.shef.ac.uk/pub/uni/academic/D-H/g/sage/
sagehtm/sage.htm

34 https://www.geoda.uiuc.edu
35 http://www.ggobi.org

(DEMP) transformation. Again, each dot plotted at 

random within the transformed boundaries of its 

census tract represents 20 women. Fig. 3.4c shows 

that population density has been almost perfectly 

equalized by the DEMP transformation. In Fig. 3.4d 

each of the 68 cases is plotted at random within the 

transformed boundaries of its census tract. Selvin 

et al. (1998) conclude that there is a hint of non-

uniformity in this distribution suggesting that fur-

ther investigative effort be applied to determine its 

significance.

With respect to the MAUP, a general rule of prac-

tice should be to analyse area data using the smallest 

area units for which data are available. Aggregation 

to larger areas should be avoided unless there are 

good reasons for doing so. Re-analysis of the same 

dataset using different polygonal boundary defini-

tions is advised, if this is practical (Arlinghaus 1995; 

Lawson and Williams 2001). Alternatively, irregular 

area (or point location) data may be re-aggregated to 

fine, regular lattices, an approach adopted by Abrial 

et al. (2005) in their analysis of the bovine spongi-

form encephalopathy (BSE) epidemic in France.

Figure 3.5 Dynamic exploratory spatial data analysis (ESDA) using the GeoDa software. The screen shot shows two windows: (main) a 
choropleth map of area-level herd size, and (inset) a box-and-whisker plot showing the distributional features of the same data (see colour plate).
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Figure 3.6 Conditioned choropleth map of median infant mortality rate per 1000 births in the state of Tennessee, USA between 1992 and 
1997. Reproduced from Carr et al. (2000) with permission from Statistics in Medicine (see colour plate).
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meteorology, hydrology, and hydrogeology of the 

environment into which an agent is released, the 

distribution of the agent throughout the environ-

ment can be predicted. A widely publicized appli-

cation of fate and transport modelling applied in 

an epidemiological context was the Escherichia coli 
O157:H7 and Campylobacter outbreaks that occurred 

in the town of Walkerton, Ontario, Canada in May 

2000 (Meyers et al. 2002). In this case, heavy rain-

fall resulted in bacteriological contamination of 

the town’s water supply resulting in 2,300 clinical 

cases of gastrointestinal disease and seven deaths. 

Hydraulic modelling tools were used to trace con-

tamination from the source to households within 

the affected area.

In the simplest situation, continuous data may 

be summarized by area unit and plotted as a 

choropleth map. This, however, ignores within-

area variation of the variable of interest and, as 

with aggregated spatial data, large areas tend to 

dominate the map. Proportional symbol maps pro-

vide one solution to this problem where geometric 

symbols are plotted at each sampled location with 

the area of the symbol proportional to the value 

of the recorded value. Fig. 3.7 provides an exam-

ple of this approach applied to the British cattle 

TB data. Circles of varying size have been used to 

indicate median herd size for each of the 178 areas 

shown in Fig. 3.3a. In Fig. 3.7 it is evident that 

herd sizes are largest in the east of the southwest 

region of England (label ‘A’), Cheshire (label ‘B’), 

and the Strathclyde region of Scotland (label ‘C’). 

Linearly scaled symbols, such as bar charts, are an 

alternative to using geometric symbols and tend 

to be more accurately interpreted by map readers. 

A disadvantage of bar charts is that they become 

impractical when the range of data values plotted 

is large.

3.5 Effective data display

3.5.1 Media, scale, and area

When using fixed media such as paper, it is not 

possible to increase or decrease the scale of spatial 

resolution once a map has been prepared. GIS are 

much more flexible in this regard as ‘zoom’ facili-

ties allow a map’s resolution to be readily altered, 

be carried out on  non-spatial data and has been 

adapted for spatial applications (Symanzik et al. 

1998). The technique of ‘brushing’ is demonstrated 

using GeoDa in Fig. 3.5 where data points on the 

box-and-whisker plot, selected interactively by 

the user, are highlighted simultaneously on the 

displayed choropleth map. Developing the ESDA 

technique further, Carr et al. (2000) describe the 

use of conditioned choropleth maps for demon-

strating relationships between a dependent vari-

able, represented in a classed choropleth map, and 

explanatory variables represented as a scatterplot 

or error-bar plot. The conditioned choropleth map 

in Fig. 3.6 shows an aggregation of counties with 

relatively high median infant mortality rates in 

the far west of the state of Tennessee, USA. A key 

feature of conditioned choropleth maps is that 

they allow the distributional form of the mapped 

variable to be shown in a static display (unlike the 

dynamic exploratory approach shown in Fig. 3.5, 

which is really only effective for communication 

when it is used interactively with a computer).

3.4 Continuous data

Spatially continuous data such as rainfall, humid-

ity, air pollution, or soil mineral concentrations 

may be estimated at all possible locations within a 

region of interest. The aim when dealing with con-

tinuous spatial variables is to collect data at a series 

of sampling locations and then to use that sample 

to estimate the value of the variable at other loca-

tions. Remotely sensed data are an exception to this 

statement as they provide complete coverage at the 

spatial resolution of the sensor. In epidemiology 

continuous variables of the type cited above may 

be used as covariates for predicting disease risk 

(see for example, Perry et al. (1991) and Hammond 

et al. (2001)).

Continuous spatial data are also used in trans-

port models that investigate the distribution of 

agents released into the environment (Cromley 

and McLafferty 2002). These models require geo-

graphic and physical descriptions of the source, and 

information on the rate of release of the agent into 

the atmosphere, surface water, and/or land. Given 

the location of the source, and information on the 
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the area of interest requires more care. For example, 

if the spatial distribution of disease around a pos-

sible pollution source is to be investigated, the dis-

tance over which the pollution source is expected 

to exert its influence needs to be considered. If the 

study area is too small it will be difficult to detect 

changes in disease density associated with dis-

tance from the source. Conversely, if the study area 

is too large then measures of disease prevalence 

summarized across the entire study area may fail 

to identify the presence of disease excess.

3.5.2 Dynamic display

An additional advantage of GIS over fixed media is 

that it is well suited for visualizing dynamic spatial 

patterns (i.e. where the spatial distribution of event 

information changes over time). Software proto-

cols for data interchange such as Open Database 

Connectivity (ODBC) offer a means whereby a GIS 

can connect to a database ‘on the fly’ and extract 

information for display. This facility is of particu-

lar use in disease emergencies, where event infor-

mation recorded into a central database can be 

displayed to users in real time.

Dynamic visualization can also be performed 

retro spectively. With retrospective analyses a series 

of maps can be created showing the spatial distribu-

tion of disease events identified within consecutive 

time frames. This map series can then be viewed in 

sequence allowing both the temporal and spatial 

distribution of the disease to be appreciated. This 

technique is particularly useful for communicating 

the results of analyses to a non-technical audience. 

Electronic formats are again useful in this regard 

as animated map projections can provide a ‘movie’ 

of how the spatial distribution of disease changes 

over time (see for example, Stevenson et al. (2000) 

and Thulke et al. (2000)). Fig. 3.8 provides a static 

example of this approach applied to the outbreak 

of foot-and-mouth disease (FMD) in the county 

of Cumbria, UK in 2001 (Wilesmith et al. 2003). 

Between February and March 2001 there was a 

relatively high density of disease incident cases 

in the northwest of the study area (Fig. 3.8a). For 

the period February to September the map series 

illustrates how the virus ‘diffused’ into the centre 

of the study area (Fig. 3.8b and Fig. 3.8c), and then 

with greater spatial detail apparent at high levels 

of magnification and detail filtered from view at 

lower levels. Although this provides the cartogra-

pher with a great deal of flexibility it is important 

to be aware that the level of detail in the data at 

high resolutions is often not sufficient to support 

meaningful analysis. In some mapping applica-

tions (e.g. Google Earth36) additional data are auto-

matically retrieved by the application when the 

user chooses to view the data at higher levels of 

spatial resolution.

In addition to issues related to resolution, care 

needs to be exercised when defining an area of 

study. In certain situations the area of interest may 

be clearly defined, for example, an entire country, 

island, or state. In other situations the definition of 

36 http://earth.google.com
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Figure 3.7 Proportional symbol map showing the spatial 
distribution of median cattle herd size throughout Great Britain. 
Key: A: the southwest of England, B: Cheshire, C: Strathclyde.
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(Fig. 3.9) which were collected using migration 

and health data registered on the personal level 

in Finland. It is expected that these types of anal-

yses, linking space, time, and the movement of 

individuals through space and time will become 

more commonplace as systems are implemented 

routinely to record such detailed information and 

computer software and hardware become more 

powerful. In this sense a population is no longer 

moved in an east–west direction between July and 

September (Fig. 3.8d).

In a study of motor neurone disease in Finland, 

Sabel et al. (2000) acknowledge that the place of 

exposure to risk factors might not necessarily cor-

respond to the place of physical emergence of dis-

ease as people move from one location to another 

throughout their lifetime. These authors use a 

three-dimensional approach to describe their data 
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Figure 3.8 Contour plots illustrating the north-to-south 'movement' of foot-and-mouth disease (FMD) in Cumbria, UK between February 
and September 2001, where >10% (dashed lines) and >20% (solid lines) of holdings were diagnosed with FMD. (a) 20th February to 28th 
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each period have been superimposed for reference. Reproduced from Wilesmith et al. (2003) with permission from Preventive Veterinary 
Medicine.
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maps are elements that tend to be selectively used 

to further assist effective communication.

3.5.3.1 Distance or scale
As a rule of thumb, distance or scale should always 

be indicated on mapped data unless the intended 

audience is so familiar with the map’s contents 

that the concept of distance can be assumed. There 

are two options for indicating distance or scale. 

Either a scale bar can be used, as in Fig. 3.10, or 

distance can be indicated as part of the labelling 

on the horizontal and vertical axes of the map, as 

in Fig. 3.8.

3.5.3.2 Projection
A projection transforms the area being mapped 

from the Earth’s sphere to a flat page or screen. 

Projections necessarily distort the Earth so it is 

impossible in principle for the scale (i.e. distance 

on the map compared with distance on the Earth) 

of any flat map to be perfectly uniform, or the pixel 

size of any raster map to be perfectly constant. 

Projections can however preserve certain proper-

ties, the two most important being: (1)  conformal 

property, which ensures that the shapes of small 

features are preserved on the projection (i.e. the 

scales of the projection in the x and y directions are 

always equal), and (2) equal area property, which 

ensures that areas measured on the map are always 

in the same proportion to areas on the Earth’s 

surface. Conformal properties are important for 

geographically defined since it encompasses peo-

ple and animals at different locations, at different 

points in time.

3.5.3 Cartography

When developing a map, perhaps the first aspect 

that needs to be considered is the format that it will 

take. For example, a map developed for display on 

an internet web page will be quite different from 

a map used in a printed book or journal article. 

Maps intended for display on a computer screen 

can make use of colour and detailed symbols to 

identify features (if it is possible to pan and zoom), 

whereas printed maps within a book, journal, or 

thesis are often restricted to black and white and 

need to use simple symbology in order to identify 

features clearly.

Almost all maps should include basic details to 

provide the reader with key information about the 

data being mapped. These details include a map 

title, a scale, a legend, the body of the map (obvi-

ously), an indicator of north, and in some circum-

stances, the name of the cartographer, a neatline, 

the date of production, details of the map projec-

tion, and information about the source of data. 

Some of these elements are found on all maps while 

the presence of others depends on the context in 

which the map is placed. Scale bars, north arrows, 

legends, and source of information are required for 

all maps while neatlines, locator maps, and inset 
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Figure 3.9 Three dimensional space–time prism. This figure 
demonstrates the changing life-paths for four individuals exposed 
to two risk factors in the geographic space of Finland. Reproduced 
from Sabel et al. (2000) with permission from Social Science and 
Medicine.
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or inset maps. Some maps may portray areas that 

are unfamiliar to readers and therefore, in order 

to provide readers with a better sense of the map 

context, a locator map is useful for showing where 

the mapped data is in relation to an area that is 

familiar to them. Sometimes mapped data are so 

densely clustered in small sections of a larger map 

that the cartographer must provide the reader with 

a close-up view of an area that is of specific inter-

est. These detailed maps are called insets.

3.5.3.6 Symbology
Spatial attribute data can be classified as:

Nominal: attributes are nominal if they are 1. 
given names or titles in order to distinguish one 

entity from another (e.g. place names).

Ordinal: attributes are ordinal if their values 2. 
take on a natural order (e.g. agricultural land may 

be classed in terms of soil quality with Class 1 rep-

resenting the best, Class 2 second-best, and so on).

Numeric: examples of numeric data include tem-3.
perature, elevation, and rainfall. Numeric  values may 

vary on a discrete (e.g. integer) or continuous scale.

Cartographers use symbols (points, lines, or areas) 

and combinations of shape, hue, orientation, size, 

and texture to communicate features of attribute 

data. The choice of graphic to depict spatial attribute 

data, and how best to position them on maps, are 

important considerations in optimizing map inter-

pretability. The representation of nominal data by 

graphic symbols and icons is apparently trivial, 

although in practice automating placement to maxi-

mize clarity presents a range of analytical problems. 

Most GIS include generic algorithms for positioning 

labels and symbols around geographic objects. Point 

labels are positioned to avoid overlap by creating a 

window around text or symbols, linear features are 

labelled using splines, and area labels are assigned 

to central points, usually the centroid.

Ordinal attribute data are assigned to points, 

lines, and area objects in the same manner with 

the property of the data accommodated through 

the use of a hierarchy of graphic variables (symbol 

and lettering sizes, types, colours, intensities). Most 

users are unable to differentiate between more 

than seven ordinal categories and this provides an 

upper limit on the extent of the hierarchy.

navigation while equal area properties are impor-

tant for analyses involving areas.

Map projections can be divided into two groups, 

global and regional systems. Global projections 

(such as the Transverse Mercator projection and 

the Universal Transverse Mercator projection) are 

used to define position at all locations across the 

Earth’s surface. Regional systems on the other 

hand are defined for specific areas, often covering 

countries, states or provinces. Typical examples are 

the British National Grid for Great Britain which 

is based on the Transverse Mercator projection, 

and the State Plane Coordinate System used in 

the United States. Projections that preserve area, 

such as regional systems, are most suitable for 

 epidemiological mapping.

3.5.3.3 Direction
All maps should provide some indication of the 

direction of north. Similar to the depiction of dis-

tance, north can be depicted symbolically (as in 

Fig. 3.10) or can be inferred through the labelling of 

the horizontal and vertical axes. In Fig. 3.8 the title 

‘Northing’ for the vertical axis indicates the direc-

tion of north. True north (the direction to the North 

Pole) differs from magnetic north, which changes 

due to changes in the characteristics of the condi-

tion of the Earth’s crust and core. A map might 

indicate both true and magnetic north. If not, the 

convention is to indicate true north.

3.5.3.4 Legends
The map legend lists the symbols used on the map 

and what they depict. Symbols should appear in 

the legend exactly as they appear in the body of the 

map. Not all maps require a legend. Sometimes, 

particularly with simple maps, the required infor-

mation can be included in the caption. In Fig. 3.8 

the meaning of the dashed and solid contour lines 

is explained in the caption, primarily out of a need 

to provide an uncluttered display in each of the 

four maps that make up the series.

3.5.3.5 Neatlines, and locator and inset maps
Neatlines (also known as clipping lines) are used 

to frame a map and to indicate exactly where the 

area of the map begins and ends. Neatlines are 

also used to clip the body of the map and of locator 
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incidence, summarized by some level of adminis-

trative area. Maps prepared for this task need to 

depict, as accurately and as unambiguously as pos-

sible, the underlying distribution of the data. When 

mapping epidemiological data a balance needs to 

be struck between remaining true to the under-

lying data distribution and generalizing the data 

 sufficiently to reveal the spatial pattern.

To illustrate this issue the British cattle TB data 

were used to produce a set of maps of holding-level 

prevalence of TB using different numbers of cut-

points (Fig. 3.10). With small numbers of categories 

subtle features of the spatial distribution of disease 

are obscured (Fig. 3.10a). Similarly, too many cate-

gories are just as unproductive as large numbers of 

colours, and similarity of colour between adjacent 

areas, makes it difficult for the map-user to iden-

tify differences between adjacent areas (Fig. 3.10c). 

As a rule of thumb, it is difficult for most map-

readers to distinguish more than about five to 

seven categories.

Six basic classification schemes have been devel-

oped to divide continuous attribute data into 

categories:

Natural breaks (Jenks method): Classes are 1. 
defined according to apparently natural groupings 

of data values. The breaks may be defined by break 

points that are known to be relevant to a particu-

lar application, such as fractions and multiples of 

mean income levels, or rainfall thresholds known 

to support different levels of vegetation. Inductive 

classification of data values may be carried out 

whereby the GIS ‘searches’ for large jumps in data 

values.

Quantile breaks: Here the data are divided into 2. 
a pre-determined number of classes which contain 

an equal number of observations. For example, 

quintile (five categories) classifications are well 

suited to displaying linearly distributed data.

Equal-interval breaks: This method takes the 3. 
difference between the lowest and the highest 

attribute value and divides this difference into 

evenly spaced steps. Equal interval breaks are 

 useful for mapping attribute data that follow a 

 uniform distribution, or if the data ranges are 

familiar to the user of the map (e.g. herd sizes or 

temperature bands).

A number of conventions are used when visu-

alizing interval and ratio scale attribute data. 

Proportional circles and bar charts are often used 

to assign interval or ratio scale data to point or area 

locations, as in Fig. 3.7. Variable line width, with 

increments that correspond to the precision of the 

interval measure, is a standard convention for rep-

resenting  continuous variation in flow diagrams.

Variation in attribute data is usually represented 

by colour. Hue refers to the use of colour, princi-

pally to distinguish categories, for example in land 

use maps. Hues are usually ranked in order of 

lightness to reflect ordering in the data. The sim-

plest approach is to use light to dark colours of a 

constant hue to represent low to high values, as in 

Fig. 3.2. Progression through adjacent hues, such 

as yellow–green–blue, makes it easier to accentuate 

differences between plotted symbols. Diverging 

data may have an obvious structure such as posi-

tive and negative values as in the case of residuals 

produced from a regression analysis (Chapter 7). 

Dark blue (for negative values) through white, to 

dark red (for positive values) is a useful colour 

scheme for representing this diverging structure.

About 8% of men and less than 1% of women 

have some form of colour blindness. Colour blind 

people are able to see many hues but there are pre-

dictable groupings of hues that are confused with 

each other, although the extent of this confusion 

depends on the severity of the person’s colour vision 

deficiency. Hue pairs that work well for colour 

blind readers are red-blue, red-purple, orange-blue, 

yellow-blue, yellow-grey, and blue-grey. If spectral 

(rainbow) schemes are used, it is recommended to 

avoid the greens. A useful series of sequential col-

our schemes for mapping are provided by online 

sites such as ColorBrewer.37 Tools are available for 

correcting the appearance of graphics for those 

with impaired colour vision.38

3.5.3.7 Dealing with statistical generalization
In spatial epidemiology maps are typically used to 

display statistical information. A common proce-

dure is to show the spatial distribution of disease 

37 http://www.colorbrewer.org
38 http://www.vischeck.com
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Figure 3.10 Choropleth maps showing area-level prevalence of TB on British cattle holdings (expressed as the 
number of TB-positive holdings per 100,000 holdings) for 1985–1997 plotted using (a) two, (b) five, and (c) nine 
cutpoints (see colour plate).
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a histogram. It is best to start with a standard clas-

sification and adjust the breaks to improve the map 

depending on the data and the target  audience. If 

there are extreme outliers or large numbers of zero 

values, these can be placed into a class of their own, 

whilst the rest of the data can be classified using a 

standard method.

3.6 Conclusion

Disease maps play a key role in descriptive spa-

tial epidemiology. Maps are useful for several pur-

poses such as identification of areas with suspected 

elevations in risk, formulation of hypotheses about 

disease aetiology, and assessing needs for health-

resource allocation. The production of attractive 

and informative maps complements the formal 

analysis of spatial epidemiological data, and as a 

result of the visual impact they have, it is likely that 

maps will influence the recipient much more than 

accompanying statistics (Rezaeian et al. 2004). As 

with any other form of data analysis, maps have 

the potential both to inform and to mislead. A key 

skill in spatial analysis therefore is ‘to ensure that 

apparent geographical patterns are not artefacts of 

the mapping process’ (Cliff 1995a). Investigators 

should, therefore, produce a variety of maps in 

order to illustrate particular aspects of their data 

and to validate the robustness of any inferences 

made (Gatrell and Bailey 1996). Choice of appropri-

ate study area boundaries, distance and scale, geo-

graphic projection, symbology, linking maps with 

other forms of data display (e.g. dynamic spatial 

data analysis and conditioned choropleth maps), 

and dealing with statistical generalization are 

aspects of visualization that should be carefully 

considered in order to achieve these objectives.

Standard deviation classifications: Here, the dis-4. 
tance of the observation from the mean is shown. 

The GIS calculates the mean value and then gener-

ates class breaks in standard deviation measures 

above and below it. A two colour ramp helps to 

emphasize values above and below the mean. This 

method is most useful for attribute data that follow 

a normal distribution.

Arithmetic progressions: The widths of category 5. 
intervals are increased in size at an arithmetic 

(additive) rate. For example, if the first category is 

one unit wide and it is decided to increment the 

width by one unit, the second category would be 

two units wide, the third three units wide, and so 

on (1, 3, 6, . . . ). This method is particularly useful 

for skewed distributions.

Geometric progressions: The widths of the cat-6.
egory intervals are increased in size at a geomet-

ric (multiplicative) rate. For example, if the first 

category is two units wide, the second category 

would be 2 × 2 = 4 units wide, the third category 

would be 2 × 2 × 2 = 8 units wide, and so on (2, 6, 

14 . . . ). Again, this method is particularly useful for 

skewed distributions.

In Fig. 3.11 the county-level prevalence of TB has 

been plotted using four to five categories, but the 

class breaks for each category were determined 

using natural breaks, quintile breaks, equal inter-

val breaks, and standard deviation classifications.

Although these maps were all developed using 

the same dataset, they convey different spatial pat-

terns to the user. Fig. 3.11b, for example, empha-

sizes the lower values in the distribution whereas 

Fig. 3.11c emphasizes the higher values. When 

choosing the number of classes to use, and an 

appropriate method to separate these classes, it 

helps to first plot the distribution of data values as 
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methods of cluster analysis, while cluster detection 

refers to local methods of analysis.

Clustering of a disease can occur for a vari-

ety of reasons including the infectious spread 

of  disease, the occurrence of disease vectors in 

specific locations, the clustering of a risk factor 

or combination of risk factors, or the existence of 

potential health hazards such as localized pollu-

tion sources scattered throughout a region, each 

creating an increased risk of disease in its imme-

diate vicinity. The identification and reporting of 

areas with an apparent increased incidence of dis-

ease is known as a disease  cluster alarm.

In this chapter a brief discussion of disease clus-

ter alarms and cluster investigation protocols is 

followed by a review of some statistical concepts 

and terminology relevant to spatial clustering. The 

chapter concludes with an outline of some of the 

more commonly-used global clustering methods 

for point and area data, highlighting the advan-

tages and disadvantages of each technique and 

exploring their application through a review of 

their use in the literature.

4.2 Disease cluster alarms and cluster 
investigation

The investigation of possible disease clustering 

is fundamental to epidemiology, with one of the 

aims being to determine whether the clustering 

is statistically significant and worthy of further 

investigation, or whether it is likely to be a chance 

occurrence, or is simply a reflection of the distri-

bution of the population at risk. The statistical 

significance of clustering is especially important 

when studying the aetiology of a disease, when 

4.1 Introduction

As described in Chapter 3, the ability to visualize 

spatial data allows for the quick identification of 

any obvious patterns, and in general, spatial pat-

terns can be classified as regular, random, or clus-

tered. The term ‘clustering’ is used to describe the 

spatial aggregation of disease events, but as the 

observed spatial pattern may simply be a func-

tion of the distribution of the population at risk or 

of various risk factors, a more robust definition is 

the one proposed by Wakefield et al. (2000), that 

a disease is clustered if there is ‘residual spatial 

variation in risk after known influences have been 

accounted for’.

Besag and Newell (1991) classified the different 

methods for analysing clusters as either specific 

or non-specific, although epidemiologists prefer to 

use the terms ‘local’ and ‘global’. Global (non-spe-

cific) clustering methods are used to assess whether 

clustering is apparent throughout the study region 

but do not identify the location of clusters. They 

provide a single statistic that measures the degree 

of spatial clustering, the statistical significance of 

which can then be assessed. The null hypothesis 

for global clustering methods is simply that ‘no 

clustering exists’ (i.e. random spatial dispersion). 

Local (specific) methods of cluster detection define 

the locations and extent of clusters, and can be fur-

ther divided into focused and non-focused tests. 

Non-focused tests identify the location of all likely 

clusters in the study region, while focused tests 

investigate whether there is an increased risk of 

disease around a pre-determined point, such as 

a nuclear power plant or chemical factory. Bear 

in mind that the term clustering applies to global 

CHAPTER 4

Spatial clustering of disease and 
global estimates of spatial clustering
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adopted method is the one outlined by the Centers 

for Disease Control and Prevention (CDC 1990), 

although Rothenberg and Thacker (1992) conclude 

that this protocol is not sufficiently specific to cover 

all possible eventualities. The EUROCAT Working 

Group recommends the Dutch Triple Track 

approach (Drijver and Melse 1992) for investigating 

clusters as this protocol proposes simultaneously 

investigating the health effects and environmental 

exposures, while communicating with the public, 

rather than following the sequential approach fre-

quently adopted by other protocols. For instance, 

the first step (orientation) of the Dutch Triple 

Track approach to disease cluster investigation 

requires the collection of general information on 

the expected disease frequency and potential risk 

factors (health track), and on local exposure pos-

sibilities  (environment track), while preparing a 

visit to the person who contacted the health agency 

(communication track).

4.3 Statistical concepts relevant to 
cluster analysis

4.3.1 Stationarity, isotropy, and first- and 
second-order effects

The concepts of stationarity, isotropy, and first-

 order (trend) and second-order (local) spatial 

effects are introduced in Chapter 2, and are fun-

damental to cluster analysis. To summarize, a spa-

tial process is termed stationary if the dependence 

between measurements of the same variable across 

space is the same for all locations in an area. If the 

dependence in a stationary process is affected by 

distance, but this is the same in all directions, the 

process is considered to be isotropic. First-order 

effects describe large-scale variations in the mean 

of the outcome of interest due to location or other 

explanatory variables, while second-order effects 

describe small-scale variation due to interactions 

between neighbours.

4.3.2 Monte Carlo simulation

Many tests for clustering use Monte Carlo simu-

lation in order to determine the statistical signifi-

cance of the cluster (i.e. does the observed spatial 

conducting disease surveillance programmes or 

when evaluating disease cluster alarms (Lawson 

and Kulldorff 1999). The false identification of 

a cluster in any of these situations may lead to 

wasted resources, while dismissing a genuine dis-

ease cluster can have serious consequences. 

Although the reporting of suspected disease 

clusters is very common, only a minute propor-

tion of these alarms are actually worthy of further 

investigation. Disease cluster alarms are usually 

based on a higher observed disease rate, a situation 

which can, understandably, cause concern among 

the public. By determining whether the observed 

clustering is statistically significant, disease clus-

ter alarms can either be confirmed or rejected. In 

this way resources are not wasted on an in-depth 

assessment of what is frequently random spatial 

variation, yet at the same time scientific evidence 

is provided with which to allay public concern. As 

disease cluster alarms already define the extent of 

the cluster, thereby introducing pre-selection bias, 

it is not appropriate to determine the statistical sig-

nificance of the cluster by simply comparing the 

standardized incidence or mortality rate within 

the cluster with that observed in the rest of the 

region. Statistical evaluation of the disease clus-

ter alarm therefore has to take account of the pre-

selection bias, and there are various ways in which 

this can be done. Either, the spatial scan statistic 

can be used to analyse data from the whole region 

in order to determine whether it identifies a signifi-

cant cluster in the vicinity of the cluster alarm or, 

if the suspected cluster is the result of a potential 

health hazard (e.g. a landfill site), a focused clus-

ter analysis (see Chapter 5) can be performed on 

the same health hazard but in a different area. A 

third approach is to ignore all prior data collected 

from the area of the alarm and instead, monitor 

any new cases that occur in the area. Kulldorff 

(1999) provides a detailed discussion of these 

three approaches, highlighting the strengths and 

 weaknesses of each.

Investigating possible disease clusters requires a 

systematic approach and various cluster investiga-

tion protocols are available, details of which can be 

obtained from the EUROCAT website39. A widely 

39 http://www.eurocat.ulster.ac.uk/clusterinvprot.html
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for evaluating cancer maps (Kulldorff et al. 2006a) 

and have the highest power of the tests under eval-

uation (Kulldorff et al. 2003; Song and Kulldorff 

2003). Cuzick and Edwards’ k-nearest neighbour 

test has also been shown to perform well, espe-

cially when the clustering occurrs over small dis-

tances (Kulldorff et al. 2003). A detailed discussion 

of the statistical power of clustering and cluster 

detection methods can be found in Waller and 

Gotway (2004).

4.4 Methods for aggregated data

Autocorrelation statistics for aggregated data 

 provide an estimate of the degree of spatial simi-

larity observed among neighbouring values of 

an attribute over a study area. There are various 

 autocorrelation statistics for aggregated data, 

four of which will be discussed in this section; 

Moran’s I, Geary’s c; Tango’s excess events test 

and maximized excess events test. Details of other 

autocorrelation tests can be found in Cliff and Ord 

(1973; 1981).

Fundamental to all autocorrelation statistics 

is the weights matrix, used to define the spatial 

relationships of the regions so that those that are 

close in space are given greater weight in the 

calculation than those that are distant (Moran 

1950). Neighbours can be defined based either on 

adjacency or distance. Methods based on adja-

cency (also known as contiguity) include rook 

contiguity (polygons are adjacent if they share a 

border), queen contiguity (polygons are adjacent 

if they share a border or corner), and higher-

order contiguities (often called spatial lags) such 

as first-order (neighbours) or second-order adja-

cency (neighbours-of-neighbours). The concept of 

higher-order adjacencies is illustrated in Fig. 4.1. 

When using distance to define neighbours, poly-

gons with their centroids located within a speci-

fied distance range are considered to be adjacent. 

More complicated neighbour definitions include 

row-standardization, length of common boundary, 

or relationships that only act one way (e.g. large 

polygons may influence, but not be influenced 

by, neighbouring, smaller polygons). Software for 

producing the weights matrix includes GeoDa 

and ArcView.

pattern differ significantly from the null hypoth-

esis of complete spatial randomness). This involves 

first calculating the test statistic using the observed 

data, and then re-calculating it using a specified 

number (e.g. 99, 499, 999) of simulated data sets (or 

permutations). The latter is used to generate the 

expected distribution of the test statistic under 

the null hypothesis. The likelihood of obtaining 

the value for the test  statistic derived from the 

observed data is then calculated, and expressed as 

the p-value. A Monte Carlo estimate of the p-value 

for a one-sided test is given by the proportion of 

test statistic values, obtained from the simulated 

datasets, that are greater than the value of the test 

statistic obtained when using the observed data. 

As Monte Carlo methods rely on permutations of 

simulated datasets, slightly different p-values are 

obtained each time the test is run. However, using 

more simulations to estimate the distribution of 

the null hypothesis (e.g. 999 versus 99), means that 

smaller and more stable p-values can be calculated 

(e.g. p = 0.001 as opposed to p = 0.01). However, a 

problem with multiple testing is that the likelihood 

of wrongly rejecting the null hypothesis increases. 

To compensate the significance threshold needs to 

be lowered and this is usually done using either a 

Bonferroni or Simes adjustment.

4.3.3 Statistical power of clustering methods

This chapter discusses some of the more commonly-

used cluster analysis methods, and although cer-

tain tests are more appropriately used in specific 

situations, when there are competing methods a 

commonly asked question is ‘which is best’? In 

such instances, the statistical power of the test (i.e. 

the probability of detecting clustering or clusters 

when they actually occur) can provide an answer. 

Waller and Gotway (2004) discuss various issues 

affecting the ability of a test to correctly detect 

clustering, including the structure of the data 

and the alternative hypothesis. A comparison of 

the performance of different clustering methods 

is provided in Walter (1992; 1993), Kulldorff et al. 

(2003), Song and Kulldorff (2003) and Kulldorff et 

al. (2006a). When compared with other global clus-

tering tests, Tango’s maximized excess events test 

(MEET) has been found to be the most consistent 
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negative spatial autocorrelation (i.e. that neighbour-

ing areas tend to have dissimilar attribute values). 

The significance of Moran’s I can be assessed using 

Monte Carlo randomization (Moran 1950). Moran’s I 
can be calculated using various software packages, 

including ClusterSeer, R, and GeoDa.

Disadvantages of the autocorrelation test are the 

assumptions that the population at risk is evenly 

distributed within the study area (Moran 1950), 

and that the correlation or covariance is the same 

in all directions (i.e. it is isotropic). The problems 

posed by anisotropic data can be overcome by 

manipulating the weights matrix to reflect direc-

tional inequalities.

Although Moran’s I is intended for use with con-

tinuous data it can also be used to analyse count 

data, even though, in such instances, any observed 

autocorrelation may simply be the result of vari-

ation in regional population sizes rather than any 

genuine spatial pattern in the disease counts (e.g. 

if regions with large populations are grouped 

together). Accounting for the population at risk by 

using regional incidence rates, instead of regional 

disease counts, increases the likelihood that any 

observed autocorrelation reflects a genuine spatial 

pattern rather than a heterogeneous population 

distribution.

A spatial correlogram is a series of estimates 

of Moran’s I evaluated at increasing distances. 

Moran’s I is plotted on the vertical axis and dis-

tance (spatial lag) is plotted on the horizontal axis. 

4.4.1 Moran’s I

Moran’s I coefficient of autocorrelation is similar 

to Pearson’s correlation coefficient, and quantifies 

the similarity of an outcome variable among areas 

that are defined as spatially related (Moran 1950). 

Moran’s I  statistic is given by:

 

(4.1)

where Z
i
 could be the residuals (O

i
 – E

i
) or stand-

ardized mortality or morbidity ratio (SMR) of an 

area, and W
ij
 is a measure of the closeness of areas 

i and j. A weights matrix is used to define the spa-

tial relationships so that regions close in space are 

given greater weight when calculating the statistic 

than those that are distant (Moran 1950).

Moran’s I is approximately normally distributed 

and has an expected value of −1/(N − 1) (where N 

equals the number of area units within a study 

region), when no correlation exists between neigh-

bouring values. The expected value of the coefficient 

therefore approaches zero as N increases. Although 

Moran’s I generally lies between +1 and -1, it is not 

bound by these limits (unlike Pearson’s correlation 

coefficient; Waller and Gotway 2004). A Moran’s I of 

zero indicates the null hypothesis of no clustering, a 

positive Moran’s I indicates positive spatial autocor-

relation (i.e. clustering of areas of similar attribute 

values), while a negative coefficient indicates 

(a) (b)

Figure 4.1 Maps illustrating (a) first-order adjacency (neighbours), and (b) second-order adjacency (neighbours-of-neighbours). In each 
instance the black county is the polygon of interest and the light-grey counties the defined neighbours.
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These indicated the existence of non- significant, 

(p = 0.085) positive, spatial autocorrelation (I = 0.0832) 

in the TB incidence rates of neighbouring counties. 

In order to investigate spatial autocorrelation at 

higher-order spatial lags, weights matrices were 

defined and Moran’s I statistics calculated for sec-

ond- to fourth-order adjacencies, and used to plot 

a correlogram (Fig. 4.2), which illustrates that for 

first- and second-order adjacencies spatial auto-

correlation was positive, but negative for higher-

order adjacencies. In other words, neighbouring 

or nearly-neighbouring counties (spatial lag of 

one or two) had similar TB incidence rates (either 

high or low), whereas counties further away from 

the one of interest (spatial lag of three or four) 

tended to have dissimilar incidence rates.

There are many examples of the use of Moran’s I 
in the literature. Kitron and Kazmierczak (1997) use 

Moran’s I to investigate the spatial distribution of 

the incidence of Lyme disease by county, between 

1991 and 1994 in Wisconsin State, USA, and analyse 

clustering in two candidate covariates of Lyme dis-

ease; the distribution of the tick vector Ixodes scapu-
laris and Normalized Difference Vegetation Index 

(NDVI) values, derived from the National Oceanic 

and Atmospheric Administration’s (NOAA) 

Advanced Very High Resolution Radiometer 

The correlogram can therefore be used to deter-

mine where, on average, spatial autocorrelation is 

maximized. Correlograms can be calculated based 

on distance or adjacency. There are various tests to 

determine whether a spatial autocorrelation value 

in a correlogram is statistically significant, some of 

which are reviewed by Cliff and Ord (1981). A cor-

relogram differs from a semivariogram (described 

in Chapter 6) in that the former plots correlation 

against distance, while the latter plots the semivari-

ance against distance (correlation being a measure 

of the similarity, and semivariance a measure of the 

dissimilarity, between the variable under consider-

ation and the lagged version of the same variable).

As Moran’s I cannot adjust for a heterogeneous 

population density, Oden (1995) proposed the use 

of Oden’s Ipop, a test statistic similar to Moran’s I but 

in which rates are adjusted for population size.

In the following example, Moran’s I was used 

to test whether there was clustering of counties in 

Great Britain in 1999 with respect to TB incidence 

rates. Using the GeoDA software, a weights matrix 

based on queen contiguity (i.e. polygons having a 

common border or corner) and a spatial lag of one 

(i.e. first-order adjacency) was defined and used in 

conjunction with Monte Carlo randomization (999 

permutations), to calculate Moran’s I for the data. 
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Figure 4.2 A correlogram showing Moran's I statistic computed for TB incidence rates in Great Britain in 1999 at first, second, third, and 
fourth-order spatial lags.
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these differences by a measure of the distance 

between the regions, with a higher weighting given 

when the two locations are close.

Unfortunately Tango’s EET requires the param-

eter (a measure of the spatial scale of clustering) 

to be specified, resulting in two problems. Firstly, 

 is not generally known a priori and therefore sev-

eral values of  are tested creating issues of mul-

tiple testing. Secondly, choosing a large  makes 

the test sensitive to geographically  large-scale 

clustering while a small makes it more sensitive 

to small-scale clustering. To overcome these prob-

lems, Tango (2000) proposed the maximized excess 

events test (MEET). This test statistic searches for 

the value of  which gives the smallest p-value of 

the observed value of
 
the test statistic.

The MEET performs well using the two distance-

based exponential weight functions proposed by 

Tango (2000). However, Song and Kulldorff (2005) 

evaluate other potential weight functions, conclud-

ing that the power of the test improves when using 

functions that incorporate information on the spa-

tial relationship between areas compared to func-

tions that do not. For example, the weight may be 

defined purely by Euclidean distance or in terms of 

spatial contiguity of regions, or it could be adjusted 

according to population density so that the weight 

declines faster in urban than in rural areas (Song 

and Kulldorff 2005).

There are few examples of Tango’s EET or MEET 

in the literature. Fang et al. (2004) use Tango’s EET 

to identify significant clustering of brain cancer 

mortality rates among adults in the United States 

between 1986 and 1995, while Oliver et al. (2006) 

use Tango’s MEET to identify significant clustering 

of prostate cancer incidence in Virginia between 

1990 and 1999.

4.5 Methods for point data

4.5.1 Cuzick and Edwards’ k-nearest 
neighbour test

Cuzick and Edwards (1990) developed a test for 

spatial clustering that takes into account the poten-

tially heterogeneous distribution of the population 

at risk. It is based on the locations of cases and ran-

domly selected controls from a specified region and 

(AVHRR), during spring and autumn when the 

contrast between agricultural land and woodland 

is maximized. Assigning data for each county to its 

centroid, they calculate Moran’s I statistic and use 

spatial correlograms to evaluate the distances where 

spatial effects are greatest. This analysis demon-

strates significant clustering of counties for mean 

annual incidence of Lyme disease, tick endemicity, 

and NDVI values in spring and autumn.

Moran’s I is also used by Bellec et al. (2006) to 

investigate spatial autocorrelation of cases of child-

hood acute leukaemia in France between 1990 and 

2000, and by Perez et al. (2002) to investigate cluster-

ing of bovine TB in Argentina. Nødtvedt et al. (2007) 

use Moran’s I to assess autocorrelation of incidence 

rates of canine atopic dermatitis in Sweden.

4.4.2 Geary’s c

Geary’s contiguity ratio, or Geary’s c, is another 

weighted estimate of spatial autocorrelation (Geary 

1954) but whereas Moran’s I considers similarity 

between neighbouring regions, Geary’s c consid-

ers similarity between pairs of regions. Geary’s c 

ranges from zero to two, with zero indicating per-

fect positive spatial autocorrelation and two indi-

cating perfect negative spatial autocorrelation, for 

any pair of regions. Geary’s c is given by: 

 

(4.2)

where n is the number of polygons in the study 

area, w
ij
 the values of the spatial proximity matrix, 

y
i
 the attribute under investigation, and the mean 

of the attribute under investigation.

4.4.3 Tango’s excess events test (EET) and 
maximized excess events test (MEET)

Tango (1995) developed the excess events test (EET) 

to measure the ‘closeness’ among regions based on 

a distance matrix. Tango’s EET is a weighted sum 

of excess events, as the statistic considers the dif-

ference between the observed rate of cases in each 

region and the expected rate, and then weights 
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distribution of the population at risk, as cases and 

controls are selected from the same population. In 

this way, the existence of any clustering of the popu-

lation at risk, such as in built-up areas is accounted 

for. Furthermore, through the careful selection of 

controls, this method allows confounders to be 

accounted for (Jacquez 1994). Disadvantages of the 

test include the fact that the user is required to 

select a value for the parameter k (Kulldorff et al. 

2006a), and that interval data must be categorized 

as ‘case’ and ‘control’ locations resulting in a possi-

ble loss of information, although at the same time, 

this aspect of the test allows for flexibility in defin-

ing case and control locations (Ward and Carpenter 

2000). For instance, cases may be locations where 

disease has been detected or alternately, locations 

at which disease is above a specified threshold, 

such as the mean disease prevalence (Ward and 

Carpenter 1995). Although Cuzick and Edwards’ 

test was originally developed for use with point 

data it can easily be adapted for aggregated data 

(Song and Kulldorff 2003). When the unit of analy-

sis is aggregated, defining cases and controls can 

require careful thought in order to avoid the intro-

duction of bias.

Cuzick and Edwards (1990) apply this cluster 

detection method to explore the distribution of 

childhood leukaemia and lymphoma diagnosed 

in North Humberside between 1974 and 1986, an 

example that highlights the importance of select-

ing a suitable value of k, as the authors point out 

that ‘formal significance testing requires either 

foreknowledge of the best k or some adjustment 

for multiple testing’, such as a Bonferroni or Simes 

p-value adjustment.

There are many examples of Cuzick and Edwards 

test in the literature. Carpenter et al. (2006), using 

the Cuzick and Edwards method with multiple 

definitions for cases, find no evidence of spa-

tial clustering of abortions among Danish dairy 

herds. Doherr et al. (2002) use the test to identify 

geographical clustering of BSE in Switzerland in 

animals born after imposition of the feed ban of 

December 1990. Perez et al. (2002) investigate clus-

tering of bovine TB in Argentina, for which data are 

aggregated by county. Counties with a prevalence 

greater than the median are defined as cases, and 

those with a prevalence lower than or equal to the 

includes a spatial scale parameter k, determined by 

the user. Scale in this instance refers to the num-

ber of nearest neighbours, and not geographic dis-

tance. For each case, the test counts how many of 

the k-nearest neighbours are also cases, such that if 

there are n
1
 cases, and mi(k) represents the number 

of cases among the k nearest neighbours of case i 
so that 0 ≤ mi(k) ≤ k, for i = 1, . . . n

1
, a test statistic Tk 

can be calculated as follows: 

 
(4.3)

Thus, when cases are clustered, the nearest neigh-

bour to a case tends to be another case and Tk will 

be large. However, when all cases have controls 

as their nearest neighbours Tk will be zero. The 

observed value of Tk can be compared with the dis-

tribution of values computed using Monte Carlo 

randomization of the dataset (Wakefield et al. 

2000).

When data are available for the population at 

risk a modification of Tk is:

 
(4.4)

where circular regions are centred on each case 

and the radius of each circular region is chosen 

so that the expected number cases, Ej , is as close 

to the pre-defined value of k as possible, and Yj is 

the number of cases within each region. Under the 

null hypothesis the expected value of Uk is equal 

to zero and the variance may be calculated (Cuzick 

and Edwards 1990). The Cuzick and Edwards 

test can be implemented using the ClusterSeer 

software.

Information on the exact locations of cases and 

controls is not always available, with locations 

instead being frequently assigned to the cen-

tre of administrative areas such as counties or 

parishes. As a result of assigning cases and con-

trols to the same area ‘ties’ arise, precluding the 

calculation of Cuzick and Edwards’ test statistic. 

Jacquez (1994) proposed an extension to Cuzick and 

Edwards’ method that allows the test to be used in 

such situations.

A distinct advantage of Cuzick and Edwards’ 

method is that it takes account of the heterogeneous 
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controls) (Kcontrol(s)), with the difference between 

the two functions, 

D(S) = Kcase(s) – Kcontrol(s) (4.6)

representing a measure of the extra aggregation 

of cases over and above that observed for the non-

cases (Diggle and Chetwynd 1991). Monte Carlo 

randomization can then be used to randomly per-

mute the locations of cases and non-cases/controls, 

and values of the difference function D(s) computed 

for each permutation (Chetwynd and Diggle 1998). 

The upper and lower bounds of these permutations 

are then plotted together with the observed differ-

ence function D(s). Any deviation of D(s) above the 

envelope formed by the upper and lower bounds 

indicates significant clustering of cases, relative to 

non-cases/controls. The software for calculating 

the K-function includes ClusterSeer, or the splancs 

package (Rowlingson and Diggle 1993) adapted for 

use in R.

Advantages of using the K-function to investigate 

clustering include the fact that it does not depend 

on the shape of the study region, and precise 

 spatial locations of events are used in its estimation 

(Cressie 1993). It also takes into account the density 

of events
 
in the region of interest, enabling spatial 

dependence to be compared among groups regard-

less of event prevalence (Diggle 2003; Broman et 

al. 2006). Furthermore, the test can accommodate 

an edge-correction weighting factor, the most com-

monly used of which was proposed by Ripley 

(1976), although other edge-correction strategies 

can be found in Ripley (1988), Stoyan et al. (1995), 

Diggle (2003), and Waller and Gotway (2004).

In the following example of spatial clustering, 

the British cattle TB data were used to determine 

the distance over which clustering of TB-positive 

holdings was significant in a 60 × 60 km2
 
area in 

the north-east of Cornwall in 1999. The analysis 

was performed using the splancs package in R. The 

TB-status of all holdings in this area is shown in Fig. 

4.3a. K-functions were plotted for the TB-positive 

holdings (Fig. 4.3b) and for all the holdings (Fig. 

4.3c) in the area of interest. Monte Carlo random-

ization was then used to randomly permute the 

locations of cases and non-cases, and values of the 

difference function (D(s)) computed for each per-

mutation. The upper and lower bounds of these 

median as controls. Overall significance of cluster-

ing is assessed using values of k ranging from one 

to 10. Although no significant overall clustering is 

detected, significant clustering of case counties is 

detected at k=1 and k=2 suggesting that clustering 

of TB in Argentina is present at a relatively small 

spatial scale, with an elevated likelihood of disease 

occurrence only in neighbouring, or nearly neigh-

bouring case counties.

4.5.2 Ripley’s K-function

Second-order analysis describes the spatial depend-

ence between events of the same type. The K-function 

is the most commonly-used method and identifies 

the distance at which clustering occurs. For an iso-

tropic process with an intensity of  points per unit 

area, the K-function at distance s may be defined as 

K(s) such that K(s) gives the expected number of 

events within a distance s of an arbitrarily-chosen 

event. Formally, K(s) is defined as:

 
(4.5)

where R equals the area of a region of interest, dij 

is the distance between the ith and jth events in R, 

and Is(dij) is an indicator function which equals 1 

if dij ≤ s and 0 otherwise. Where spatial autocorrel-

ation is present, each event is likely to be in close 

proximity to other members of the same event type 

and, for small values of s, K(s) will be large.

An important assumption of the K-function 

is that there are no first-order effects in the spa-

tial pattern, as any evidence of spatial trend may 

 influence the computed K-function. In addition, 

the variance of K(s) increases with increasing dis-

tance, and therefore the K-function is suitable for 

estimating general tendencies
 
toward clustering 

over distances that are small compared with
 
the 

size of the region (Diggle 2003). As a rule of thumb 

it is recommended to restrict the range of s to no 

greater than 0.5 times the length of the shorter side 

of a rectangular study area.

Due to variations in the spatial distribution of 

the population at risk, a K-function computed only 

for cases may not be very informative. Instead, 

the K-function calculated for cases (Kcase(s)) can be 

compared with one calculated for non-cases (or 
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humans and dogs in Michigan, USA between 1964 

and 1994, concluding that the processes determin-

ing spatial aggregation of cases in the two species 

are not independent of one another. Abernethy et al. 
(2000) use the K-function to identify spatial cluster-

ing of poultry flocks affected with Newcastle dis-

ease in Northern Ireland between 1996 and 1997.

Broman et al. (2006) apply the K-function to 

investigate the effect of treatment on the clustering 

of ocular chlamydial infection in children among 

households in a Tanzanian village. Initially, clus-

tering of households with high levels of infection 

occurs at distances of less than 2 km, suggesting 

permutations were then plotted together with the 

observed difference function D(s) (Fig. 4.3d). As 

described above, any deviation of D(s) above the 

envelope formed by the upper and lower bounds 

indicates significant clustering of cases, relative to 

non-cases. In other words, compared with the spa-

tial distribution of the holding population at risk, 

TB-positive holdings showed a greater tendency to 

be aggregated at distances of between 2 and 30 km, 

with maximum clustering occurring at a distance 

of 17 km.

O’ Brien et al. (2000) use the K-function to inves-

tigate clustering of different types of neoplasms in 
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Figure 4.3 (a) Easting and northing coordinates of holdings that tested positive (•) and negative (º) for TB in a 60 � 60 km2 area of 
Cornwall, (b) K-function for TB-positive holdings, (c) K-function for all holdings, and (d) the difference between the two K-functions.
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1975, and finds that spatial clustering exists in 

 specific time-intervals, thereby corroborating the 

findings of Williams et al. (1978) who had previ-

ously obtained similar results analysing the data 

using the chi-squared test and the Knox test for 

space–time interaction.

4.6 Investigating space–time clustering

While spatial patterns of disease are of great interest, 

space–time interactions are also important, particu-

larly so when trying to determine whether a disease 

is infectious. In such instances it is necessary to eval-

uate whether cases that are close in space are also 

close in time and vice versa, adjusting for any purely 

spatial or temporal clustering. Various tests have 

been developed for this purpose; the tests for glo-

bal space-time clustering are briefly reviewed in this 

chapter, while the local space–time cluster detection 

tests are dealt with in Chapter 5. It is worth noting 

that some tests look for clusters that relate to a fixed 

point in space, whilst others allow the spatial focus 

to move with time. In the first instance, the idea of a 

two-dimensional circular scan window is extended 

to that of a cylinder passing through time. In the 

second case, the geographical focus of a cluster may 

migrate with time, as long as it relates back to previ-

ous events. There is also an important distinction 

between tests that require knowledge of the popu-

lation at risk, and those that do not. Not requiring 

population or control data has obvious advantages 

in terms of ease of implementation, but has a serious 

drawback in that it assumes that any change in the 

population at risk occurs evenly across the distribu-

tion under study (Kulldorff 1988). This would obvi-

ously have serious analytical implications, where 

interventions such as culling or vaccination may 

cause highly inhomogeneous changes in the popu-

lation at risk.

4.6.1 The Knox test

Knox and Bartlett (1964) developed the first tech-

nique to identify spatio-temporal clustering of 

 disease events and, although it has been the sub-

ject of much criticism, Knox’s test has formed the 

 platform from which subsequent tests have been 

developed. In this method, pairs of cases separated 

that either the spread of infection occurs on a rela-

tively small spatial scale or that nearby house-

holds share common risk factors for infection. Two 

months after treatment clustering is no longer evi-

dent, but by 12 months post-treatment clustering 

of households with high infection levels is again 

apparent, at distances of less than 1.3 km, indicat-

ing that treatment was effective at disrupting the 

spread of infection but not at maintaining low lev-

els of the disease.

4.5.3 Rogerson’s cumulative sum (CUSUM) 
method

Rogerson (1997) developed a cumulative sum 

(CUSUM) statistic for detecting changes in spatial 

pattern using a modified version of Tango’s sta-

tistic (Tango 1995). Whereas Tango’s test is used 

retrospectively to identify clustering, Rogerson’s 

modified version of the statistic aims to detect 

emerging clusters shortly after they occur, and can 

therefore be used for spatial surveillance. Owing to 

the problem of multiple testing, it would be inappro-

priate simply to re-calculate Tango’s statistic after 

each new observation. Instead, once the test statistic 

has been determined for a particular set of obser-

vations, the expected value and variance of Tango’s 

statistic after the next observation is estimated, 

based on the current value of the statistic. The 

expected value and variance is then used to convert 

the Tango’s statistic that is observed after the next 

observation into a z-score, with all z-scores being 

incorporated into a CUSUM framework (Rogerson 

2006). As Rogerson’s CUSUM method is based on 

Tango’s statistic, the test includes a measure of the 

spatial scale of clustering ( ) and thus, choosing a 

small value of  makes the test more sensitive to 

small clusters and vice versa. Although Rogerson 

(1997) chose to base his CUSUM method on Tango’s 

statistic he suggests that similar CUSUM statistics 

can be developed for other measures of spatial 

pattern. For example, Moran’s I could be used for 

aggregated data, or Cuzick and Edwards’ method 

for point data. Rogerson’s CUSUM method can be 

implemented using the ClusterSeer software.

Rogerson (1997) uses his CUSUM version of 

Tango’s test to investigate clustering of cases of 

Burkitt’s lymphoma in Uganda between 1961 and 
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limitations, such as the problems of population-

shift bias and the subjective choice of critical 

thresholds. They propose a modification of the test 

that overcomes these problems which they dem-

onstrate using cases of lung cancer in New Mexico 

(1973–1991). Using the standard Knox test, signifi-

cant space–time clustering is indicated at a range 

of critical distances whilst with their adaptation 

it is not. They show that changes in the distribu-

tion of the population at risk over time can have a 

strong influence on the standard test. These effects 

are particularly interesting with animal diseases 

where populations may be culled.

More recent applications of the Knox method 

include Norström et al. (2000), who investigate out-

breaks of acute respiratory disease in Norwegian 

cattle herds, and Tinline et al. (2002), who use the 

method to estimate the incubation period of racoon 

rabies.

4.6.2 The space–time k-function

Diggle et al. (1995) extend existing second-order 

analysis methods for spatial data (Ripley 1976; 1977) 

in order to investigate space–time interactions in 

point process data. They find second-order prop-

erties to be closely related to Knox’s statistic (Knox 

and Bartlett 1964), of which they refer to their test 

as an extension. If KS(s) defines the K-function in 

space and K
T
(t) defines the K-function in time, the 

K-function difference D(s,t) is:

D(s,t) = K(s,t) – KS(s)KT(t) (4.7)

D(s,t) estimates the cumulative number of cases 

expected within distance s and time-interval t 
of an arbitrarily-selected case attributable to the 

interaction between space and time. An alternative 

expression is:

 
(4.8)

which estimates, for given distance and time sepa-

rations, the proportional increase in cases attribut-

able to space–time interaction (Diggle et al. 1995).

French et al. (1999) apply the space–time 
K-function to investigate sheep scab outbreaks in 

Great Britain (1973–1992), revealing strong evidence 

by less than a user-defined critical space-distance 

are considered to be near in space, and pairs of 

cases separated by less than a user-defined critical 

time-distance are said to be near in time. This clas-

sification allows pairs of points to be assigned to 

one of four cells in a 2 × 2 contingency table (near 

space – near time, near space – far time, far space – 

near time, far space – far time), and a test statistic, 

T
K
 is calculated as the number of pairs of cases that 

are near to one another in both space and time. The 

test statistic is compared against simulated results 

under a Poisson model, which Knox argues is the 

sampling distribution of the statistic in the absence 

of space-time clustering. Knox and Bartlett (1964) 

apply this method to data on cases of childhood 

leukaemia in northeast England, finding signifi-

cant evidence of space–time clustering.

Jacquez (1996) highlights two principal limitations 

with Knox’s test. Firstly, that the choice of critical 

distances is subjective and secondly, that the criti-

cal distance in space does not vary with changing 

population density. This is unrealistic since the dis-

tance from case to case would decrease with increas-

ing population density. Baker (1996) discusses the 

problems associated with specifying thresholds 

of proximity in space and time in the Knox test, 

and develops an adaptation that does not require 

unknown critical parameters to be specified, but 

instead allows for a range to be given for each. In its 

most flexible form the range can be specified from 

zero to the maximum space and time differences 

between any two pairs of cases. The test becomes 

more powerful as the ranges for thresholds can be 

specified with increasing accuracy, and reduces to 

the Knox test itself when the range for each param-

eter is reduced to zero. He compares this test with 

a number of examples to which the Knox test had 

been applied. In the first instance, an exploration 

of cardiac defects among newborns identifies non-

significant space–time clustering, compared with 

a significant result from the standard Knox test. In 

the second instance, involving Kaposi’s sarcoma 

in the West Nile district of Uganda, the standard 

Knox test produces non-significant results whilst 

re-analysis with Baker’s adaptation (Baker 1996) 

suggests the  existence of space–time clustering.

Kulldorff and Hjalmars (1999) review the Knox 

method, and discuss in some detail its statistical 
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A transformation is used to reduce the effects of 

large space and time distances, which would not be 

expected to be correlated for contagious diseases. 

Significance levels are then tested using a standard 

Monte Carlo randomization process.

Jacquez (1996) highlights a number of limitations 

of Mantel’s test, in particular the linear form of the 

statistic. For most disease processes a non-linear 

relationship would be expected between space and 

time distances. Whilst this can be accounted for by 

transforming the data, the choice of transformation 

is subjective.

Wartenberg and Greenberg (1990) compare the 

statistical power of the tests developed by Ederer 

et al. (1964) and by Mantel (1967). They suggest that 

both tests have low statistical power for the typi-

cally small numbers of cases involved in such stud-

ies, and conclude that true clinical disease excesses, 

as might result from proximity to a single pollution 

source, are more likely to be detected by the EMM 

method whilst the Mantel method is more likely to 

detect hotspots such as those due to a more general 

exposure to a putative source.

4.6.5 Barton’s test

Barton et al. (1965) designed a test to detect changes 

in spatial patterns associated with the passage 

of time, based on analysis of variance and which 

tests the null hypothesis that these patterns do not 

change with time. They illustrate their test using 

three datasets and, although unable to demonstrate 

significant space–time clustering of cases of child-

hood leukaemia in northeast England, for which 

Knox and Bartlett (1964) had previously found evi-

dence of space–time clustering, they did identify 

space–time associations for measles in Southall in 

1954, and poliomyelitis in Eccles in 1974. Ekstrand 

and Carpenter (1998) use Barton’s test to demon-

strate significant space–time clustering of flocks 

with very high prevalence of foot-pad dermatitis 

in Swedish broilers.

4.6.6 Jacquez’s k nearest neighbours test

Jacquez (1996) developed a k nearest neighbours test 

for space–time interaction. The null hypothesis is of 

no association between time and space adjacencies 

that disease occurrence is clustered in both space 

and time. Wilesmith et al. (2003) and Picardo et 

al. (2007) both use the space–time K-function to 

investigate different aspects of the 2001 UK FMD 

epidemic. French et al. (2005) find strong evidence 

for space–time clustering of equine grass sickness  

cases using the space–time K-function, and sug-

gest that this may be attributable either to a conta-

gious process or to other spatially and temporally 

localized processes, such as pasture management 

practices or local climatic effects. Porphyre et al. 
(2007) use the space–time K-function to investigate 

whether the persistence of TB in a region of New 

Zealand is the result of contact between infected 

farms and conclude that there is no evidence of 

an increased TB risk for those farms close in time 

and space to TB-positive farms. Software for imple-

menting the space–time K-function includes the 

splancs package in R.

4.6.3 The Ederer–Myers–Mantel (EMM) test

Ederer et al. (1964) developed a cell occupancy 

approach for exploring space–time clustering 

whereby the study region is divided into a series of 

space–time sub-regions within which unusual dis-

tributions of cases are sought. They demonstrate 

the Ederer–Myers–Mantel (EMM) test, using data 

on cases of childhood leukaemia in Connecticut 

(1945–1959) and find no evidence of space–time 

clustering, in contrast to data on poliomyelitis 

(1940–1954) and infectious hepatitis (1953–1962), 

both of which did show strong evidence for cluster-

ing in space and time. Fosgate et al. (2002) apply the 

EMM test to evaluate clustering of human brucel-

losis in California (1973–1977), finding significant 

space–time clustering that they attribute to cluster-

ing of work or food-related disease risk factors.

4.6.4 Mantel’s test

Mantel (1967) reviews the methods of Knox and 

Bartlett (1964) and Ederer et al. (1964), and proposes 

a new test that compares inter-event distances in 

space and time against a null hypothesis that time 

and space distances are independent. The test sta-

tistic TM is the sum, across all pairs of cases, of the 

spatial distances multiplied by the time distances. 
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neighbour test (Jacquez 1996), the Knox test (Knox 

and Bartlett 1964), Mantel’s test (Mantel 1967) and 

Barton’s test (Barton et al. 1965). The Knox test indi-

cates significant spatial (within 3 km) and temporal 

(within 1 month) clustering, which the other three 

tests do not identify. Ward and Carpenter (2000) 

use this to argue for the application of a number of 

different tests in cluster investigations. Jacquez’s k 

nearest neighbour test can be implemented using 

the ClusterSeer software.

4.7 Conclusion

Clustering of a disease can occur for a variety of 

reasons, and the investigation of possible disease 

clustering is fundamental to epidemiology. The 

concepts and analytical methods discussed in this 

chapter take the epidemiologist beyond the mere 

visualization of spatial patterns as the use of sta-

tistical methods to assess whether observed pat-

terns differ significantly from spatial randomness 

moves into the second stage of spatial analysis: that 

of exploration. Although the techniques outlined 

in this chapter are all estimates of global clus-

tering, a sound understanding of their different 

methodologies, data requirements, and associated 

assumptions and limitations is essential if the most 

appropriate technique is to be chosen.

(i.e. that the probability of two events being nearest 

neighbours in space is independent of the probabil-

ity of their being nearest neighbours in time). This 

approach is based on the argument that geographic 

distance is not a good measure of spatial proximity 

in an epidemiological context. Jacquez (1996) com-

pares the statistical power of his test against those 

of Knox and Mantel using a computer simulation of 

a viral epidemic at a range of cluster sizes. By plot-

ting statistical power against cluster size he shows 

that the k nearest neighbours test performs consid-

erably better than the other two, of which Mantel’s 

test was superior. He also proposes an adaptation of 

the k nearest neighbours test using fuzzy set theory 

to accommodate imprecision in the spatial and tem-

poral nearest neighbours.

Norström et al. (2000) compare Jacquez’s k near-

est neighbours to the Knox test in an investiga-

tion of outbreaks of acute respiratory disease in 

Norwegian cattle herds. They find strong evidence 

of clustering in time as well as space, and express 

a preference for the Jacquez test since it overcomes 

the need to specify critical space and time distances. 

Ward and Carpenter (2000) evaluate a number of 

space-time cluster tests to investigate possible clus-

tering of blowfly catches on a commercial sheep 

property in Australia between 1997 and 1998. 

The tests compared include Jacquez’s k nearest 
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result of the distribution of risk factors) is the subject 

of Chapter 7.

The detection of disease clusters, particularly 

around putative point sources, has been the subject 

of much debate. In 1989 the Royal Statistical Society 

reported on a meeting held specifically to dis-

cuss the occurrence of cancer near nuclear instal-

lations (Muirhead and Darby 1989). The meeting 

was triggered by the highly popularized reports of 

excesses of childhood cancer, in particular leukae-

mia, around the reprocessing plants at Sellafield 

in Cumbria and Dounreay in northern Scotland. 

Its objective was to bring together epidemiologists 

(Doll 1989) and statisticians (Hills and Alexander 

1989) to try and resolve whether excesses of can-

cer really were occurring in the vicinity of nuclear 

installations. 

This triggered a spate of meetings, reported in 

Rothenberg et al. (1990), Lawson et al. (1995), Cliff 

(1995b), Jacquez et al. (1996), and Smith (1996). 

These addressed the legal aspects of disease clus-

ter detection (Henderson 1990; Jacquez et al. 1992), 

and provided some useful reviews of statistical 

tests including those by Walter (1993), Waller and 

Turnbull (1993), Cliff (1995a), and Elliott et al. (1995).

In 1999 the Royal Statistical Society hosted an 

international conference on the ‘analysis and inter-

pretation of disease clusters and ecological studies’ 

(Wakefield et al. 2001), during which the debate on 

whose method performs best was fuelled, old meth-

odologies were adapted, and new methods intro-

duced. Also addressed at this meeting were more 

philosophical questions such as when and how to 

investigate disease clusters, and indeed whether 

we should bother at all (Elliott and Wakefield 2001; 

Wartenberg 2001). 

5.1 Introduction

Global measures of spatial association assume that 

the spatial process under investigation is station-

ary. Under this assumption, which is rarely met, 

global tests of association run the risk of obscur-

ing local effects. As a result, significant local clus-

tering may not be detected and conversely, large 

non-clustered areas within a study area may be 

ignored. The likelihood of including regions with 

inherently different local relationships increases as 

the size of the study area increases. With very large 

spatial datasets, and particularly with large raster 

datasets such as remotely sensed images, global 

statistics such as Moran’s I (Moran 1948) run the 

risk of losing information on spatial autocorrela-

tion since they summarize an enormous number 

of possibly dissimilar spatial relationships. Local 

statistics overcome this problem by scanning the 

entire dataset, but only measuring dependence in 

limited portions of the study area, the bounds of 

which have to be specified. Thus, for clustering 

to be detected, it need not occur over the entire 

dataset, nor need it have the same characteristics 

throughout the study area.

In studying local area clustering we are con-

cerned with defining the characteristics of clus-

ters, such as their location, size, and intensity. Knox 

(1989) proposes some definitions of clustering, one 

of which defines a cluster as ‘a geographically 

and/or temporally bounded group of occurrences 

of sufficient size and concentration to be unlikely 

to have occurred by chance’. This purely statisti-

cal definition lends itself to this chapter. Whether 

these occurrences are due to some environmental, 

biological, or social variable (i.e. they are the direct 

CHAPTER 5

Local estimates of spatial
clustering
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outcome and significance levels. Gardner (1992) 

further emphasizes the risk of distorting estimates 

of disease excess, and of their significance levels, 

by post hoc selection of controls. He aptly describes 

the problem as ‘moving the goalposts’.

Many texts have been written on the analysis 

of spatial point patterns. Examples include Cliff 

and Ord (1981), Upton and Fingleton (1985), Upton 

and Fingleton (1989), and Diggle (2003). Reviews 

of some of the available methods are provided by 

Marshall (1991a), Elliott et al. (1995), Morris and 

Wakefield (2000), Robinson (2000), Wakefield et al. 
(2000), Ward and Carpenter (2000), and Song and 

Kulldorff (2003). In this chapter some of the more 

commonly-used methods are reviewed. They are 

divided into those primarily designed for aggre-

gated data, and those for point data, although this 

distinction is not rigid and most can be used with 

either type of data. Moreover, point data can eas-

ily be aggregated and area data can be represented 

as points, for example by using the centroids of 

the areas. The methods listed for point data are 

based on variously defined circles that ‘scan’ the 

data for areas of elevated (or reduced) disease fre-

quency. Such statistics are better suited to point, 

than to area data, since points fall clearly inside or 

outside a scan circle. Scan circles can be defined 

in terms of geographic distance (e.g. Openshaw’s 

method), number of cases (e.g. Besag and Newell’s 

method) or population size (e.g. Turnbull’s method 

and Kulldorff’s scan statistic). Cluster detection is 

demonstrated by applying Kulldorff’s scan statis-

tic to the British cattle TB data. Methods for inves-

tigating clusters around point sources are then 

reviewed, and finally methods that look for clus-

ters in both space and time. The space–time variant 

of Kulldorff’s scan statistic is demonstrated using 

the British cattle TB data.

5.2 Methods for aggregated data

5.2.1 Getis and Ord’s local Gi(d) statistic

Unlike Moran’s I statistic (see Chapter 4), which 

measures the correlation between attribute val-

ues in adjacent areas, the Gi(d) local statistic (Getis 

and Ord 1992; 1996) is an indicator of local cluster-

ing that measures the ‘concentration’ of a spatially 

The complexity of the issues involving the pub-

lic, media, local health authorities, epidemiolo-

gists, and those responsible for putative sources 

of increased incidence of disease, is exemplified 

in a case where the media reacted to documents 

released by the Ministry of Defence in 1977, dis-

closing simulation trials of germ warfare along 

the south coast of England between 1961 and 1977 

(Stein 2001). Families in East Lulworth, a coastal 

village in Weymouth Bay, believed that exposure to 

the agents released during these trials had caused 

high rates of miscarriages, stillbirths, birth defects, 

and learning disabilities in the village. Under pres-

sure from the media, campaigning families, envir-

onmental activists, and Members of Parliament the 

local health authority was forced to conduct a full 

scale investigation. No evidence of clustering could 

be found and the ‘cluster that never was’ was even-

tually refuted (Spratt 1999). 

So ‘cluster busting’ has a long history and cuts into 

some difficult statistical, epidemiological, environ-

mental, legal, and social territories. Cautious words 

on the interpretation of disease clustering studies 

are given by Besag and Newell (1991), Gardner 

(1992), Urquhart (1992), and Rothman (1990) who 

discuss some of the potential pitfalls surround-

ing cluster detection. Rothman (1990), for example, 

warns of the difficulties in defining the popula-

tion base from which incidence rates can be cal-

culated, and points out that due to high levels of 

publicity often surrounding such cases, unbiased 

data are difficult to collect. Rothman also warns 

that investigations into disease clusters are often 

made for political, rather than for scientific rea-

sons and, quoting from Oakes (1986), that they are 

often based on significance tests that lack mean-

ingful descriptive statistics and are prone to abuse 

and faulty inference. Urquhart (1992) highlights 

the risks of drawing conclusions about clustering 

(or its absence) in a particular area without know-

ledge of the underlying distribution of the disease. 

Besag and Newell (1991) point to the assumptions 

behind cluster detection tests, emphasizing that 

the null hypothesis must be based on equal and 

independent risk to each individual, and that the 

definition of the population at risk in terms of sex 

or age-group, and of geographical and temporal 

boundaries can have a profound impact on the 
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Kitron et al. (1997) use the Gi(d) statistic to iden-

tify significant clustering of cases of La Crosse 

encephalitis over distances of 5 and 10 km, around 

particular towns in the Peoria area of Illinois. This 

analysis reveals a number of hotspots which they 

associate with homes on the edge of gullies and 

ravines where breeding and biting activities of the 

vector (Aedes triseriatus) are likely to occur.

Ding and Fotheringham (1992) developed the 

statistical analysis module (SAM) for ARC/INFO, 

based on the Gi(d) local statistic. They use SAM to 

explore clustering of population growth in China 

between 1982 and 1990 and show that high rates 

of population growth are concentrated in the 

south. They attribute this to less severe restrictions 

on family size and greater proportions of ethnic 

minorities with large families in this region.

Moving towards exploring spatio-temporal clus-

tering, Getis and Ord (1996) propose the use of 

local statistics to quantify the pattern and inten-

sity of spread of a disease away from the core of 

a hotspot by estimating a series of local statistics 

at different time periods. Local statistics can be 

used to estimate the intensity of a disease at vari-

ous distances from a core location, and the time 

dimension can then be used to estimate the rate of 

spread. Getis and Ord (1998) use the Gi(d) statistic 

in this way to trace the spread of AIDS away from 

San Francisco.

5.2.2 Local Moran test

The local Moran test (Anselin 1995) detects local 

spatial autocorrelation in aggregated data by 

decomposing Moran’s I statistic into contributions 

for each area within a study region. Termed Local 

Indicators of Spatial Association (LISA), the LISA 

statistic for each area is calculated as:

,

n

i i ij j
j j i

I Z w Z
≠

= ∑
 

(5.5)

where Zi and Zj are the observed values in stand-

ardized form, and wij is a spatial weights matrix in 

row-standardized form.

These indicators detect clusters of either simi-

lar or dissimilar disease frequency values around 

a given observation. The sum of the LISAs for all 

distributed attribute variable. Computational details 

of the of the Gi(d) statistic are provided by Ding 

and Fotheringham (1992), Getis and Ord (1996), and 

Kitron et al. (1997). The test statistic is calculated as:
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and w
ij
 is a symmetric binary spatial weights 

matrix:
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It has been shown that E(Gi) = 0 and Var(Gi) = 1, and 

that the distribution of Gi under the null hypothesis 

of no spatial association among xi is approximately 

normal (Ord and Getis 1993). By comparing local 

estimates of spatial autocorrelation with global aver-

ages, the Gi(d) statistic identifies ‘hotspots’ in spatial 

data. The Gi(d) statistic and a variety of other similar 

local statistics are discussed by Getis and Ord (1996), 

who also highlight some of their shortcomings, 

particularly those arising as a result of small sam-

ple sizes and the existence of high levels of global 

autocorrelation. Software to implement this statistic 

includes the spdep package in R, and ClusterSeer. 

Getis and Ord (1992) use the Gi(d) statistic to explore 

the spatial pattern of sudden infant death syndrome 

(SIDS) by county in North Carolina between 1979 and 

1984. In addition to a number of small clusters, they 

identify a major hotspot in the mid-south of the state 

which they attribute to the distribution of health care 

facilities (Getis and Ord 1996). The general pattern of 

clustering is the same as that found by Grimson et al. 
(1981) using join count methods.
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to ensure that different aspects of spatial patterns 

are identified and to check whether the results 

from different analyses are consistent. In a similar 

vein, Hanson and Wieczorek (2002) compare the 

local Moran statistic with Kulldorff’s spatial scan 

statistic by exploring alcohol-related mortality 

in New York, USA. The clusters identified differ 

somewhat between the two methods and they con-

clude that the scan statistic is the more sensitive 

method. They advocate a multi-method approach 

to cluster detection since different methods tend to 

identify different characteristics of the clusters; the 

LISA identifying the core of a cluster and the scan 

statistic identifying its extent. A similar compari-

son is made by Nødtvedt et al. (2007) in an analysis 

of the spatial distribution of cases of atopic derma-

titis in dogs in Sweden (1995–2000). They conclude 

that the tests produce similar results but that the 

LISA statistic identifies more localized clusters, 

compared to the larger clusters identified by the 

spatial scan statistic.

The following example continues on from the 

global Moran's I example presented in Section 

4.4.1, which identified the existence of posi-

tive spatial autocorrelation among county-level 

TB-incidence rates in Britain in 1999 (I = 0.0832). 

observations is proportional to the global Moran’s I 
statistic. There are two uses of LISA statistics: either 

as indicators of local autocorrelation or as tests for 

outliers in global spatial patterns in the form of a 

Moran scatterplot (Anselin 1995; 1996). In a Moran 

scatterplot the horizontal axis represents the vector 

of observed values and the vertical axis specifies 

the weighted average of neighbouring values. The 

extent of the ‘mix’ of pairs among the four types 

of association in the quadrants of the plot defined 

by the axes (low–high, high–high, high–low and 

low–low) provides an indication of the stability of 

the spatial association throughout the data. It may 

also suggest the existence of different types of asso-

ciation in different subsets of the data; for example, 

positive association in one area and negative associ-

ation in another. Software for implementing a local 

Moran test includes ClusterSeer, GeoDa, SpaceStat40 

and the spdep package in R.

Anselin (1995) demonstrates the local Moran test 

using patterns of conflict in Africa and compares it 

with Getis and Ord’s local Gi(d) statistic (Getis and 

Ord 1992). Anselin (1995) also developed LISAs for 

Mantel’s test (Mantel 1967) and Geary’s c (Geary 

1954). The ClusterSeer and GeoDa software can be 

used to implement the LISA for Moran’s I.
Burra et al. (2002) compare the ability of the local 

Moran test and Getis and Ord’s local Gi(d) statistic to 

detect clustering in mortality data from Hamilton, 

Ontario. These authors also evaluate the effect of 

geocoding errors on pattern detection, conclud-

ing that small geocoding errors can significantly 

influence the results of, and therefore the conclu-

sions drawn from, these statistical tests. Jacquez 

and Greiling (2003) use the local Moran statistic to 

analyse spatial clustering in diagnoses of breast, 

lung, and colorectal cancers on Long Island, USA, 

identifying significant spatial patterns for all three 

diseases. Their analysis confirms the clustering of 

breast cancer mortality previously identified by 

Kulldorff et al. (1997) (see Section 5.3.4 for details of 

Kulldorff’s spatial scan statistic), but they find that 

the two methods identify slightly different cluster 

locations. As a result of these differences Jacquez 

and Greiling (2003) recommend that a combination 

of statistics be used when studying local clustering 

40 http://www.terraseer.com/products/spacestat.html
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Figure 5.1 Moran scatterplot of county-level TB incidence rates in 
Britain in 1999.
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Statistical and computational limitations of the 

GAM methodology are described by Cuzick and 

Edwards (1990), Turnbull et al. (1990), Marshall 

(1991a), and Besag and Newell (1991). The main 

criticism of the technique is that it does not account 

for multiple testing, and therefore the change in 

radius and shifts in location of candidate clusters 

are not taken into account in the calculation of 

significance levels. Despite having being widely 

criticized, the GAM seems to have inspired the 

development of a series of tests for cluster detec-

tion based on scan circles, which have addressed 

and overcome many of the deficiencies of the ori-

ginal GAM, gradually adapting and improving 

upon its basic methodology.

5.3.2 Turnbull’s Cluster Evaluation Permutation 
Procedure (CEPP)

Turnbull et al. (1990) developed the first test that 

was able to both locate and test the significance 

of disease clusters. The test, called the Cluster 

Evaluation Permutation Procedure (CEPP), creates 

a circular window for each area that contains a 

pre-determined number of individuals at risk, R. 

The number of individuals at risk in an area can be 

defined as pi and the number of disease events as 

Oi. If the number of individuals at risk (pi), is less 

than R, then area i is included in the window and 

the area whose centroid is nearest to that of area i 
(say cell j) is included if Oi + Oj < R. If Oi + Oj > R a 

fraction of the population of area j is added so that 

the total population at risk equals R. If Oi > R then 

the window contains only a fraction of area i. For 

the fractional area included in a window, cases are 

allocated in the same proportion to the window 

as that of the population of the cell. A series of i 
overlapping windows is created with a population 

at risk of constant size, R. Turnbull’s test statistic, 

as a function of R, equals the maximum number of 

cases in each of the windows. Monte Carlo simu-

lation is used to evaluate the significance of the 

observed test statistic. Software for implementing 

the CEPP includes the Dcluster package in R, and 

ClusterSeer.

One of the conditions of this procedure is that 

cluster size (in terms of number of individuals at 

risk) must be defined a priori for the procedure to 

Visual representation of this spatial autocorrel-

ation can be obtained by applying the local Moran 

test to the data. Examination of the resulting 

Moran scatterplot (Fig 5.1) showed that most of the 

points were in the lower left (low-low) and upper 

left (low-high) quadrants indicating the existence 

of both positive and negative spatial autocorrel-

ation among county-level TB incidence rates in 

Britain in 1999; the negative spatial autocorrelation 

arising as a result of outlier counties with a low 

TB incidence rate being surrounded by neighbours 

with high TB incidence rates, while the positive 

spatial autocorrelation results from counties with 

a low TB incidence rate having neighbours with 

similar low incidence rates. The LISA cluster map 

and LISA significance map are additional, useful 

methods of visualising the spatial autocorrelation 

(and can be generated using the GeoDa software 

(Anselin et al. (2006)).

5.3 Methods for point data

5.3.1 Openshaw’s Geographical Analysis 
Machine (GAM)

Openshaw’s Geographical Analysis Machine 

(GAM) was the first in a series of methods devel-

oped to explore disease data for evidence of spatial 

pattern (Openshaw et al. 1987). The GAM involves 

applying a fine grid across a study area and gener-

ating a series of circles of varying radii with their 

centres based at each intersection of the grid. The 

observed number of cases of disease within each 

circle is then compared with the expected number 

of cases, assuming the process under investigation 

follows a Poisson distribution. Circles that have a 

higher than expected occurrence of disease are 

retained, resulting in a large number of overlap-

ping circles concentrated around ‘disease centres’. 

Visual inspection is then relied upon to decide 

where clusters occur. Further details and a quan-

titative treatment are provided in Openshaw et 

al. (1990). Openshaw’s GAM can be implemented 

using the Dcluster package in R. Openshaw et al. 
(1988) and Turnbull et al. (1990) apply the GAM to 

investigate clustering of acute lymphoblastic leu-

kaemia in northern England and leukaemia inci-

dence in northern New York, respectively.
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methodology are provided by Besag and Newell 

(1991) and Alexander and Cuzick (1992). Software 

for implementing Besag and Newell’s test includes 

the Dcluster package in R, and ClusterSeer.

Two limitations of this method, common to many 

other cluster detection tests are firstly, the a priori 
choice of cluster size and secondly, the problem of 

multiple testing arising from the large number of 

potential clusters. Since the calculations to deter-

mine significance are based on the specified number 

of nearest-neighbour cases, selecting its value is an 

important issue. If it is too small then larger clus-

ters cannot be detected, and if it is too large spuri-

ous clusters may be identified (Le et al. 1996). Besag 

and Newell (1991) demonstrate their methodology 

using data for acute lymphoblastic leukaemias in 

children under the age of 14 years in part of the 

Mersey Regional Health Authority Districts of 

England (1975–1985). They identify 23 clusters sig-

nificant at the 5% level, which fall into seven dis-

crete groups. Interestingly, and in agreement with 

the Black Report (Black 1984), they find no evidence 

of clustering in the vicinity of the Sellafield nuclear 

reprocessing plant during this period (see Section 

5.4 for more details on this issue).

Alexander et al. (1991) adapted Besag and 

Newell’s method into the nearest neighbour areas 

(NNA) test for local clustering (formulae are pro-

vided in Alexander et al. (1991)). They apply the 

NNA test to data on the incidence of selected child-

hood cancers and to adult haematopoietic malig-

nancies in Yorkshire, UK, confirming an unusual 

distribution of lymphoma in Yorkshire associated 

with the North Yorkshire moors. Alexander et al. 
(1989) apply the NNA test to data on the incidence 

of Hodgkin’s disease in England and Wales (1984–

1986), finding weak but significant evidence of 

localized spatial clustering, particularly in young 

adults.

Fotheringham and Zhan (1996) review and com-

pare the tests developed by Openshaw and Besag 

and Newell. These authors use a database on hous-

ing quality in the city of Amherst, New York, con-

taining 277 very low quality residences among the 

total population of 28,832. By using the two dif-

ferent methods to identify clusters of low quality 

residences they conclude that, although both tests 

perform reasonably well in identifying genuine 

be valid. Turnbull et al. (1990) apply the CEPP to 

leukaemia incidence data obtained from the New 

York State Cancer Registry, for an upstate New 

York region comprising eight contiguous counties, 

and compare its performance with Openshaw’s 

GAM, concluding that the main advantage of the 

CEPP over the GAM is that it provides a quanti-

tative assessment of the statistical significance of 

identified clusters.

5.3.3 Besag and Newell’s method

One disadvantage of the GAM is that, since dis-

tance is the method used to define the scan circles, 

circles of the same size can refer to different-sized 

populations and are therefore not directly compa-

rable. Besag and Newell (1991) developed a method 

to rectify this problem whereby the user specifies k, 

the expected cluster size. Typical values for k range 

between 2 and 10 for rare diseases. Each area with 

non-zero cases is considered in turn as the centre 

of a possible cluster. When evaluating an area it is 

labelled as 0 and the remaining areas are ordered 

according to their distance from area 0 and labelled 

1, 2,…, i – 1. Using the notation defined in the pre-

vious section (Oi is the number of disease events) 

the statistic Di is calculated such that 
i

i jj
D O

0=
= ∑  

Oj and D
0
 ≤ D

1
 ≤ … are the accumulated number of 

cases in cells 0, 1, … and u
0
 ≤ u

 1
 ≤ … are the cor-

responding accumulated number of individuals at 

risk. M = min {i: Di ≥ k) so that the nearest M areas 

contain the closest k cases. A small observed value 

of M indicates a cluster centred at cell 0. If m is the 

observed value of M, then the significance level of 

each potential cluster is:
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(5.6)

where Q equals the total number of cases in the 

study area divided by the total population at risk. 

The test statistic of clustering in the study area, 

TBN, equals the total number of individually sig-

nificant clusters, for example, at p < 0.05. The sig-

nificance of the observed TBN can be determined 

by Monte Carlo simulation. Further details of the 
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SaTScan41, which searches for clusters in datasets 

using two different probabilistic models; a Bernoulli 

model where cases and controls are compared as 

Boolean variables, and a Poisson model where the 

number of cases is compared to the background 

population data and the expected number of cases 

in each unit is proportional to the size of the popu-

lation at risk. Circle centres are defined either by 

the case and control/population data or by speci-

fying an array of grid coordinates. Secondary clus-

ters are computed, based on the degree of overlap 

allowed in the cluster circles, and includes the 

options no geographical overlap, and no cluster 

centres in other clusters. Software for implement-

ing the spatial scan statistic includes SaTScan, the 

Dcluster package in R, and ClusterSeer.

Until recently a major limitation of the spatial 

scan statistic was the use of a circular scanning win-

dow which decreased the likelihood of the statistic 

detecting non-circular clusters. However, the most 

recent version of SaTScan can implement an ellip-

tic version of the spatial scan statistic, which uses a 

scanning window of variable location, shape, angle 

and size, thereby greatly increasing the ability of the 

statistic to detect non-circular clusters (Kulldorff et 

al. 2006b). Choosing the shape of the ellipsoid will 

depend on the nature of the data and the questions 

being asked, and the authors stress that the type 

of ellipsoid to be used must be chosen before look-

ing at the data in order to prevent any pre-selection 

bias. For example, a long, narrow ellipsoid might be 

used to investigate potential clusters along a river-

bank. The circular and elliptic scan statistics have 

similar power, with the circular scan statistic able 

to detect elliptic clusters and vice versa, although the 

elliptic scan statistic may provide a better estimate 

of the true area of the cluster. Although the elliptic 

scan statistic is more flexible than the circular scan 

statistic it still imposes a shape on potential clusters 

and therefore, for irregularly-shaped clusters (e.g. 

along a winding river) it may be more appropriate 

to use one of the non-parametric spatial scan statis-

tics described in Section 5.3.5.

Kulldorff and Nagarwalla (1995) use the spatial 

scan statistic, based on a Bernoulli model, to detect 

clusters of leukaemia cases in northern New York, 

41 http://www.satscan.org

clusters, the specificity of Besag and Newell’s test 

is superior to that of the GAM. 

More recently Huillard d’Aignaux et al. (2002) 

use Besag and Newell’s method to explore the pos-

sibility of spatial clustering in sporadic Creutzfeldt-

Jakob disease (CJD) in France between 1992 and 

1998, identifying five clusters that were persistent 

over a range of values of k. Only one of these clus-

ters is identified by Kulldorff’s scan statistic (see 

Section 5.3.4). Using a simulated benchmark data-

set Marcelo and Renato (2005) compare Besag and 

Newell’s test with Kulldorff’s scan statistic, finding 

that they give similar results but that the scan sta-

tistic is more likely to identify clusters in sparsely 

populated areas. 

5.3.4 Kulldorff’s spatial scan statistic

Inspired by Openshaw’s GAM (Openshaw et al. 
1987) and a generalization of Turnbull’s CEPP 

(Turnbull et al. 1990), Kulldorff  developed the spa-

tial scan statistic (Kulldorff and Nagarwalla 1995), 

which brings together the advantages of each tech-

nique. For each specified location a series of circles 

of varying radii is constructed. Each circle absorbs 

the nearest neighbouring locations that fall inside 

it and the radius of each circle is set to increase con-

tinuously from zero until some fixed percentage of 

the total population is included. For each circle the 

alternative hypothesis is that there is an elevated 

risk of disease within the circle compared to that 

outside (Kulldorff et al. 1998b). The test statistic TKN 

is calculated as: 
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(5.7)

where Zc indicates all circles except for Z, O(.) 

and p(.) are the observed number of cases and the 

population size in each area respectively, and I(.) is 

the indicator function. Monte Carlo simulation is 

 conducted to compare TKN, with the distribution of 

values generated under the null hypothesis. 

Kulldorff (1997) implemented the spatial scan 

statistic in a cluster detection programme called 
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The spatial scan statistic has now been applied to an 

impressive range of health-related problems42. This 

is due in part to its addressing many of the problems 

of earlier scan statistics but also because SaTScan, 

the freely available primary software for implement-

ing the spatial scan statistic, makes it accessible to a 

wide, non-specialized audience. There is insufficient 

space here to review these works in detail (although 

salient points are raised where appropriate) but the 

method has been applied to identify clustering in a 

variety of cancers (Viel et al. 2000; Jemal et al. 2002; 

Roche et al. 2002; Boscoe et al. 2003; Buntinx et al. 
2003; Gregorio and Samociuk 2003; Klassen et al. 
2005; Jung et al. 2006), sexually transmitted diseases 

(Jennings et al. 2005; Wylie et al. 2005); variant CJD 

(Cousens et al. 2001), systemic lupus erythematosus 

(SLE) (Walsh and DeChello 2001), human granulo-

cytic ehrlichiosis (HGE) (Chaput et al. 2002), insu-

lin-dependent diabetes mellitus (Green et al. 2003), 

childhood mortality (Sankoh et al. 2001), low birth 

rate (Ozdenerol et al. 2005), congenital malforma-

tions (Forand et al. 2002), SIDS (George et al. 2001), 

highland malaria (Brooker et al. 2004), and systemic 

sclerosis (Walsh and Fenster 1997). In the veterinary 

literature the method has been applied to psoroptic 

sheep scab (Falconi et al. 2002), bovine TB (Perez et 

al. 2002; Olea-Popelka et al. 2003; Olea-Popelka et al. 
2005), BSE ( Stevenson et al. 2000; Abrial et al. 2003), 

sylvatic plague agents in coyotes (Hoar et al. 2003),

toxoplasma infections in sea otters (Miller et al. 2002; 

2004a), and atopic dermatitis in dogs (Nødtvedt

et al. 2007), to name but a few.

5.3.5 Non-parametric spatial scan statistics

A significant restriction imposed by all of the 

methods reviewed here is that they assume disease 

clusters are circular. As these conditions seldom 

occur in reality, attempts have recently been made 

to overcome this problem by developing a variety 

of tests that can locate irregularly-shaped disease 

clusters, including those described by Duczmal and 

Assunção (2004), Patil and Taillie (2004), Tango and 

Takahashi (2005), and Duczmal et al. (2006). 

Spatial scan statistics use circles for the scan-

ning window, that have a low power for detecting 

42 http://www.satscan.org/references.html

USA. The results of this analysis are compared 

with a number of other cluster-detection algo-

rithms, including those of Turnbull et al. (1990) 

and Openshaw et al. (1987). One primary cluster 

and four non-overlapping secondary clusters are 

identified in similar locations to those identified 

visually using Openshaw's GAM in an analysis of 

the same data (Turnbull et al. 1990).

Hanson and Wieczorek (2002) use the spatial 

scan statistic (which they compare to a LISA, see 

Section 5.2.2) in a study of alcohol-related mortal-

ity in New York, USA. Huillard d’Aignaux et al. 
(2002) explore the possibility of spatial clustering 

of sporadic CJD in France between 1992 and 1998. 

Using the spatial scan statistic they identify only 

one significant cluster of sporadic CJD yet iden-

tify five disease clusters using Besag and Newell’s 

method. Kulldorff et al. (2003) find the spatial scan 

statistic performs well when compared against two 

global tests, Tango's maximized excess events test 

(Tango 1995; 2000) and the nonparametric M sta-

tistic (Bonetti and Pagano 2004), on a collection of 

simulated datasets generated under different clus-

ter models. They encourage other investigators to 

contribute to a common bank of cluster-simulation 

datasets, and to use this collection as a benchmark 

against which to evaluate both existing and new 

cluster-detection tests.

 Early applications of the scan statistic include an 

investigation of childhood leukaemia in Sweden 

(Hjalmars et al. 1996) in which no evidence was 

found to support previous assertions of disease clus-

tering. Kulldorff et al. (1997) demonstrate clustering 

of breast cancer mortality in the northeastern part of 

the USA (1988–1992) after adjusting for confounding 

variables such as age, race, urbanicity, and parity.

Recuenco et al. (2007) compare clustering of 

 enzootic racoon rabies in New York State (1997–2003) 

under different regimes of covariate adjustment: (i) 

no adjustment, (ii) adjustment for landscape cov-

ariates, and (iii) adjustment for landscape covari-

ates and large-scale geographic variation. Clusters 

identified under the unadjusted test regime tend 

to also be identified in the covariate-adjusted ana-

lyses, though some drop from significance. They 

use these differences in clusters identified under 

the three regimes to make inferences regarding the 

possible reasons for high-risk areas. 
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5.3.6 Example of local cluster detection

To demonstrate local cluster detection Kulldorff’s 

spatial scan statistic was applied to the British 

cattle TB breakdown herd data (1986–1997). Due 

to the nature of the TB data (see Chapter 1), inci-

dence rates cannot be accurately derived, and 

therefore the analysis was restricted to the use 

of the Bernoulli model. All TB breakdown herds 

were included as cases, and compared against a 

sample of control herds (due to computer memory 

limitations) and the combined data were used to 

define the circle centres for cluster detection (rather 

than specifying a special set of grid coordinates). 

Based on some preliminary analyses a 30% sam-

ple of control herds was chosen, above which no 

real change in the pattern of clustering occurred. 

The most restrictive option was selected for deal-

ing with overlapping clusters, in which secondary 

clusters were reported only if they did not overlap 

with a previously reported cluster.

Fig. 5.2 shows the distribution of herds (small 

grey dots) and of breakdown herds (larger black 

dots) in the southwest of Britain in 1997. In order 

to compare various options for implementing the 

spatial scan statistic, the 1997 dataset was used as 

irregularly-shaped clusters, and may in fact identify 

an irregularly-shaped cluster as a series of small 

circular clusters. In an attempt to overcome this 

and other limitations of spatial scan statistics Patil 

and Taillie (2004) developed the upper level set scan 

statistic which they apply to three ecological situa-

tions in order to illustrate its uses: the early detec-

tion of biological invasions, mapping vegetative 

disturbance, and the characterization of biological 

impairment of rivers and streams in Pennsylvania. 

Duczmal and Assunção (2004) use a simulated 

annealing approach to identify ‘connected clus-

ters with arbitrary shape’. However, Tango and 

Takahashi (2005) suggest that although Duczmal 

and Assunção’s (2004) test can detect irregularly-

shaped clusters, they are much larger than the true 

clusters and they therefore developed a flexibly 

shaped spatial scan statistic for detecting irregu-

lar-shaped clusters within small areas of a region. 

This statistic works well at detecting small circular 

and non-circular clusters (Tango and Takahashi, 

2005) and can be implemented using the FlexScan 

software.43

43  http://www.niph.go.jp/soshiki/gijutsu/download/
flexscan/index.html
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Figure 5.2 Distribution of herds (small grey spots) and tuberculosis breakdowns (large black spots) in the southwest of Britain in 1997.
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reflects the epidemiology of TB in the southwest of 

Britain cannot be determined from this analysis.

To explore the outcomes of the cluster analysis 

in greater detail consider Table 5.1 and the asso-

ciated Fig. 5.4. Table 5.1 shows some statistics for 

the (arbitrarily chosen) 5% maximum cluster size 

of the 1997 TB data (Fig. 5.3b).

It is quite clear that, as suggested by Boscoe et al. 
(2003), some of the most significant clusters are 

of relatively low risk and vice versa. Cluster 8 for 

example, has by far the highest prevalence but is 

barely significant, while the similarly sized Cluster 

3 also has a high prevalence but is highly signifi-

cant. The very large, highly significant and so 

called primary cluster (Cluster 1), only has a rela-

tively low prevalence.

Fig. 5.4 illustrates these points through two con-

trasting representations of the analysis: the log 

likelihood ratio, which indicates the probability of 

a cluster being real (Fig. 5.4a), and the prevalence 

(Fig. 5.4b), which is directly proportional to the 

relative risk within a cluster but corrected for sam-

pling of the population.

Cluster analysis was conducted for each year 

from 1986 to 1997. Non-overlapping clusters were 

identified using the Bernoulli model with all TB 

breakdown herds as cases compared against 30% 

of control herds and a maximum cluster size set 

to 5% of all points. Fig. 5.5 shows the evolution of 

TB clusters during this period. Annual clustering 

of TB breakdowns is represented by the log likeli-

hood ratios, using the same scale for each year. For 

most of the period two large and highly significant 

clusters were fairly constant. These were Cluster 

1 (as labelled in Fig. 5.4) on the Gloucestershire, 

Hereford, and Worcester boundaries, and Cluster 

2 on the Devon/Cornwall boundary. Cluster 7 in 

Dyfed in western Wales is much smaller and of 

lower significance but is persistent, falling from sig-

nificance only during 1987 and 1989. Some clusters 

tended to appear, disappear, and then re-appear 

in much the same place. For example, Cluster 8 in 

East Sussex was apparent between 1989 and 1991, 

in 1994 and again in 1997, while Cluster 3 on the 

Staffordshire/Derbyshire boundary was first evi-

dent briefly in 1993 and then re-emerged between 

1996 and 1997. Perhaps these are the main centres of 

endemicity that act as sources of infection via, for 

this was the year with most recorded breakdowns 

(amongst those years within the dataset).

The single most important subjective choice that 

has to be made when using the spatial scan statis-

tic is specification of the maximum percentage of 

the population at risk (between 1 and 50%) that can 

be included in any one cluster. The SaTScan man-

ual (Kulldorff 2003) recommends specifying a high 

upper limit (i.e. 50%) of the population at risk, since 

SaTScan will then look for clusters of both small 

and large sizes without any pre-selection bias in 

terms of the cluster size. When looking for clusters 

of high rates a cluster of larger size indicates areas 

of exceptionally low rates outside the circle rather 

than an area of exceptionally high rates within the 

circle. A review of the literature reveals that most 

authors do not indicate the upper limit specified in 

their analyses, presumably using the default value 

of 50%. Studies stating explicitly that an upper limit 

of 50% was selected include Walsh and Fenster 

(1997), George et al. (2001), Huillard d’Aignaux et al. 
(2002), Roche et al. (2002), Brooker et al. (2004), and 

Schwermer et al. (2007). A variety of values below 

this are also reported including 10% by Norström et 

al. (2000) (to avoid scanning outside the geographic 

region of the study), 10% by Sheehan et al. (2000) (no 

reason given), 3.4% by Walsh and DeChello (2001) 

(based on the population size of the largest county 

in their study), 5% by Falconi et al. (2002) (no reason 

given), 2.5% by Forand et al. (2002) (in order to pro-

vide better focus on geographical areas for further 

evaluation and follow up), 5% by Sauders et al. (2003) 

(no reason given), and 25% by Recuenco et al. (2007) 

(no reason given).

The results of specifying different upper limits for 

cluster size when using the British cattle TB data for 

1997 (with a 30% sample of control herds) are shown 

in Fig. 5.3 in which the selected upper limits were (a) 

1%, (b) 5%, (c) 10%, (d) 20%, (e) 30% and (f) 50%. 

The 1% upper limit produced ten highly sig-

nificant (p < 0.001) and ten less significant (1.0 > 

p > 0.001) clusters. The 50% upper limit produced 

one enormous, highly significant cluster, one tiny 

highly significant cluster and one very small, less 

significant cluster. Moving from an upper limit of 

1% towards one of 50% produced smaller numbers 

of increasingly large and increasingly significant 

clusters. Which of these patterns of clustering best 
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Figure 5.3 Cluster analysis comparing different maximum percentages of the population at risk to be included in a cluster, using all TB 
breakdown herds as cases and a 30% sample of control herds, in the southwest of Britain, in 1977. Maximum percentage of the population 
at risk to be included in clusters was a) 1%, b) 5%, c) 10%, d) 20%, e) 30% and f) 50%. Bold black circles indicate P-values of < 0.001; fine 
grey circles indicate P-values between 0.001 and 1.00.
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example, cattle movements (Gilbert et al. 2005) into 

areas where prevailing environmental and epide-

miological conditions allow new disease clusters to 

arise, as indicated for example in Wint et al. (2002). 

Clearly there are clusters of bovine TB in the south-

west of Britain, some persistent, some fleeting, and 

some recurring. 

5.4 Detecting clusters around a source 
(focused tests)

With focused tests the location of a cluster cen-

tre is specified a priori, and the likelihood of that 

location truly being a cluster centre is then deter-

mined. Localized clustering of disease around 

Table 5.1 Details of the spatial clusters illustrated in Figures 5.3.b and 5.4. 
For each cluster the area is given, LLR is the log likelihood ratio, P (999) is the 
significance level based on 999 Monte Carlo replications (hence the plateau at 
0.001), RR is the relative risk (observed/expected), which is directly 
proportional to Prev., (the prevalence corrected for sampling)

Cluster Area (km2) LLR P (999) RR Prev.

 1 4,879 280.5 0.001 8.3 0.048
 2 1,516 115.8 0.001 9.7 0.056
 3 32 33.7 0.001 35.7 0.206
 4 821 32.6 0.001 7.3 0.042
 5 337 32.4 0.001 11.2 0.065
 6 37 18.4 0.002 20.8 0.120
 7 149 14.4 0.010 8.2 0.048
 8 52 13.3 0.030 41.6 0.240
 9 479 12.5 0.052 7.8 0.048
10 82 9.7 0.427 15.3 0.088
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Figure 5.4 Detailed cluser analysis showing a) log likelihood ratios (i.e. probability) and b) prevalence (directly proportional to relative risk) of 
clusters of TB breakdown herds in the southwest of Britain, in 1977. Clusters were identified using the Bernoulli model using all TB breakdown 
herds as cases compared to 30% of control heads, with a maximum cluster size set to 5% of all points. See also Figure 5.3.b and Table 5.1.
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Figure 5.5 Cluster analysis of cattle TB data (1986–1997). Clusters were identified for each year using the spatial scan statistic and the 
Bernoulli model with all TB breakdown herds compared to 30% of control herds, with a maximum cluster size set to 5% of all points and no 
overlapping clusters permitted. Clusters are shaded by log likelihood ratio using the same scale for each year with darker clusters being the 
most likely. The distribution of breakdown herds in each year is superimposed on the cluster map.
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problem of choosing the area around the source, 

and of accommodating extra-Poisson variability. 

Wartenberg and Greenberg (1993) highlight the 

importance of choosing appropriate techniques for 

given circumstances. In specifying the null hypoth-

esis, usually that the disease events occur with a 

uniformly distributed probability of risk, they 

emphasize the importance of choosing a method 

that can account for any confounding variables 

such as age, gender, occupation, or ethnicity. In 

determining the alternative hypothesis they stress 

the importance of different clinical patterns of dis-

ease resulting from a single risk source as opposed 

to more general hotspots.

5.4.1 Stone’s test 

Stone (1988) developed a class of tests for trend, 

the maximum likelihood ratio (MLR) and Poisson 

maximum (Pmax) tests, both of which use the 

first isotonic regression estimator, working on the 

assumption that there will be a monotonic decay 

of risk with increasing distance from any point-

source of a disease. Stone’s Pmax test is applied 

to data on cancer incidence in the vicinities of 

the Siezewell and Sellafield nuclear installations 

(Bithell and Stone 1989). At Sellafield they demon-

strate a highly significant trend in disease excess 

indicating a genuine association, but geographical 

proximity to the power station at Seascale does 

not appear to be important. Software for imple-

menting Stone’s test includes the Dcluster pack-

age in R.

Elliott et al. (1992b) use Stone’s test to analyse 

the incidence of lung and laryngeal cancer around 

incinerators of waste solvents and oils at Charnock 

Richard in Lancashire (1972–1980), but find no evi-

dence for a decreasing risk of cancer with increasing 

distance from the sites. In a later study Elliott et al.
(1996) examine an extended cancer dataset for Great 

Britain in relation to solid-waste incinerators, find-

ing no evidence for declining risk with distance 

from incinerators for cancer of the larynx or con-

nective tissues (including soft-tissue sarcoma), nasal 

and nasopharyngeal cancer, and non-Hodgkin

lymphomas. However, significant results are 

obtained for all cancers combined, and for stom-

ach, colorectal, liver, and lung cancers, although 

environmental hazards is a sensitive issue, exem-

plified by the highly publicized investigations into 

elevated childhood leukaemia incidence around 

the Sellafield nuclear reprocessing plant in the 

1980s. Suspicions were aroused by researchers for 

a television company in 1983 (Gardner 1989; 1992). 

The Yorkshire Television programme ‘Windscale, 
the nuclear laundry’, alleged that elevated levels of 

childhood leukaemia resulted from nuclear dis-

charge from the plant into the Irish Sea, leading 

to a Government inquiry that resulted in the Black 

Report (Black 1984). This report confirmed a high 

incidence of cancer in the study area, which it 

maintained is ‘unusual but not unique’, and that 

no causal link between nuclear power and illness 

could be proved. Not surprisingly this sparked 

debate into the validity of the statistical methods 

applied and initiated a series of investigations into 

cancer clusters around nuclear and other ‘high risk’ 

sites (reviewed by Alexander and Boyle (2000)). 

Caldwell (1990) reports that investigations into 108 

space–time clusters during 22 years of cancer clus-

ter investigations at the Centres for Disease Control 

and Prevention in the United States, showed no 

consistent patterns or clues as to disease aetiology, 

and Alexander and Boyle (2000) state that ‘whilst 

many statistically significant clusters have been 

identified, none has ever been explained by an 

environmental pollutant or infectious agent’.

Comprehensive reviews on cluster detection 

around putative point sources have been written, 

including those by Hills and Alexander (1989), 

Muirhead and Darby (1989), Marshall (1991a), 

Elliott et al. (1995), and Morris and Wakefield 

(2000). It is not the intention to go into great detail 

here, but rather to provide an overview. Morris and 

Wakefield (2000) provide a useful review of a vari-

ety of methods, applying them to a single exam-

ple; the incidence of stomach cancer in relation to 

proximity to a municipal solid-waste incinerator in 

Great Britain (see also Elliott et al. (1996)). Besag and 

Newell (1991) warn against pre-selection bias aris-

ing from a point source being chosen for investiga-

tion based on a prior knowledge of a higher disease 

incidence in its vicinity. Hills and Alexander (1989) 

distinguish between situations where there is a 

prior hypothesis about a source and those where 

the hypothesis is reactive. They emphasize the 
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5.4.2 The Lawson–Waller score test 

Lawson (1993) and Waller et al. (1992) developed 

the Lawson–Waller score test, sometimes referred 

to as the uniformly most powerful (UMP) test. The 

score test detects a decreasing trend in disease 

frequency associated with declining exposure to a 

point-focus. The test statistic TLW is given by: 

(5.8)
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where gi denotes the exposure to the focus for an 

individual residing in area i, Oi is the observed 

number of disease cases in area i, Ei is the expected 

number of disease cases in area i, pi is the size of 

the population at risk in area i, and p
+
 is the total 

population size. Monte Carlo simulation is used to 

evaluate the significance of the test statistic TLW. 

Waller et al. (1992) demonstrate the method-

ology using leukaemia incidence data in upstate 

New York (1978–1982), with waste sites containing 

trichloroethylene as putative hazardous point-

sources. Lawson (1993) demonstrates the meth-

odology using bronchitis mortality around a 

chemical reprocessing plant in Bonnybridge, cen-

tral Scotland (1980–1982).

Michelozzi et al. (2002) apply the Lawson–Waller 

score test to investigate the incidence of adult and 

childhood leukaemia in the vicinity of the Vatican 

Radio high-power radio transmitter. Waller et al. 
(1992), Waller and Turnbull (1993), Waller and 

Lawson (1995), and Waller (1996) compare the 

Lawson–Waller score test with Besag and Newell’s 

test (Besag and Newell 1991) (adapted as a focused 

clustering test) and with Stone’s test (Stone 1988), 

concluding that the sensitivity of the methods 

depends on the level of aggregation of the underly-

ing surveillance data (Waller 1996). From a number 

of simulations to compare the power of each test 

they conclude that for very rare diseases all tests 

have low power, with Stone’s test performing least 

well, followed by Besag and Newell’s test, and 

that the best by a small margin was the Lawson–

Waller score test. Increasing the disease prevalence 

improved the power of all the tests. In this instance 

these results are thought to be due to confounding 

effects such as deprivation.

Stone’s test has been applied to studies of cancer 

incidence near radio and television transmitters. 

In a study specific to the Sutton Coldfield trans-

mitter in Great Britain, Dolk et al. (1997b) find the 

risk of adult leukaemia between 1974 and 1986 to 

be elevated within 2 km of the transmitter, and 

to decline significantly with increasing distance 

from the transmitter. They extend this study to 

explore the incidence of cancers in the vicinity of 

20 high-power transmitters across Great Britain 

(1974–1986) (Dolk et al. 1997a) and whilst they 

do find evidence for a declining leukaemia risk 

with increasing distance from transmitters, con-

clude that the pattern around the Sutton Coldfield 

transmitter is uncommon. Michelozzi et al. (2002) 

use Stone’s test to investigate the incidence of adult 

and childhood leukaemia in the vicinity of the 

Vatican Radio high-power radio transmitter. The 

result is significant for children and male adults, 

with a declining risk as a function of distance from 

the transmitter, but no explanation is provided for 

these findings.

A number of adaptations of the original method 

have been developed. For example, Morton-Jones 

et al. (1999) propose an extension that allows for 

covariate adjustments via a log-linear model, which 

they illustrate using data on the incidence of stom-

ach cancers near municipal incinerators. Diggle et al. 
(1999) adapted Stone’s isotonic regression method 

to incorporate case-control data in addition to cov-

ariate information. They illustrate the adaptations 

using data on lung and laryngeal cancers in the 

vicinity of an industrial incinerator, and on child-

hood asthma in relation to distance from major 

roads. Consistent with Diggle (1990) they show 

moderate evidence of increased risk of cancer of 

the larynx in the vicinity of the disused industrial 

incinerator, compared with the more common inci-

dence of lung cancer, in the Chorley-Ribble area of 

south Lancashire, England between 1974 and 1983, 

although covariate information is not available for 

this dataset. They also find no association between 

asthma in children in North Derbyshire in 1992 and 

distance from major roads, after adjusting for the 

covariates of age and sex (in agreement with Diggle 

and Rowlingson (1994)).
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incidence, providing an estimate of ‘natural’ spa-

tial variation. A parametric maximum likelihood 

approach is then used to describe raised incidence in 

laryngeal cancer near the pre-specified source. This 

clustering is confirmed using Monte Carlo simula-

tions. Diggle and Rowlingson (1994) developed a 

conditional approach, which converts the original 

point process model into a non-linear binary regres-

sion model for the spatial variation in risk. Using the 

same cancer datasets from south Lancashire they 

show similar results but conclude that these should 

be more reliable than those obtained from the origi-

nal point process model. Moreover, this adaptation 

allows adjustment for covariates in a log-linear fash-

ion. They further demonstrate the method using 

asthma data from North Derbyshire in 1992. Three 

putative point sources; a coking works, a chemical 

plant, and a waste treatment centre, are evaluated 

after adjusting for a number of covariates including 

distance from roads, presence of a cigarette-smoker 

in the household, dust problems, and hay fever. They 

find some evidence for association with the coking 

works and a significant association with the presence 

of hay fever. Software for implementing Diggle’s test 

includes the splancs package in R, and ClusterSeer.

5.4.5 Kulldorff’s focused spatial scan statistic

The spatial scan statistic can be used to search 

for clusters around a point source by making the 

point source the only coordinate pair in the special 

grid file. In this way Viel et al. (2000) demonstrate 

clustering of cases of soft-tissue sarcomas and 

non-Hodgkin’s lymphomas, but not of Hodgkin’s 

disease, around a solid-waste incinerator with high 

emission levels of dioxin in France. The authors 

conclude that further studies would be needed to 

confirm the relationship between dioxin  exposure 

and soft-tissue sarcoma and non-Hodgkin’s lym-

phoma risk. In two recent applications the focused 

spatial scan statistic has been used to link BSE cases 

to specific feed mills. Using a number of models, 

Sheridan et al. (2005) confirm spatio-temporal clus-

tering of cattle herds in Ireland (1996–2000). The 

spatial component is dominant and a focused test 

identifies high-risk feed mills at the centroids of 

clusters. Schwermer et al. (2007), investigating BSE 

cases in Switzerland (1996–2001), use as cluster 

the power of Stone’s test surpasses that of Besag 

and Newell’s test. They conclude that their own 

test outperforms the other two, in terms of power, 

under all conditions.

5.4.3 Bithell’s linear risk score tests

Bithell et al. (1994) and Bithell (1995) developed a 

set of tests known as ‘linear risk score tests’, where 

 disease incidence is weighted by some distance 

function from a point source (e.g. 1/di, 1/di
2, or 1/

ranki). Using the reciprocal of distance is appropriate 

for detecting an environmental hazard that declines 

with distance from a source and is relatively insensi-

tive to the precise location of the assumed source. 

Using the reciprocal of rank is more appropriate 

when the relative proximity of residence is import-

ant, rather than actual  distance, but it is more sen-

sitive to the precise  location of the putative source. 

Bithell et al. (1994) compare the power of these tests 

against Stone’s Pmax and MLR tests concluding that 

they are likely to be more powerful than Stone’s tests, 

particularly in situations where non-uniformity of 

risk is only slight. They apply these tests to the dis-

tribution of childhood leukaemia around 23 nuclear 

installations in England and Wales (Bithell 1995) 

with only two, Sellafield and Burghfield, giving sig-

nificant results. They conclude that there is no evi-

dence for a general increase in childhood leukaemia 

in the vicinity of nuclear installations, and that apart 

from Sellafield, the evidence for distance-related 

risk is weak. Bithell’s linear risk score tests can be 

implemented using the ClusterSeer software.

5.4.4 Diggle’s test

Diggle (1990) developed a test that uses nonpara-

metric kernel smoothing to describe natural varia-

tion in a disease (assuming a Poisson point process), 

and then a maximum likelihood test to evaluate the 

possibility of raised incidence around a pre-speci-

fied point source. Diggle (1990) demonstrates the 

approach, exploring links between a disused indus-

trial incinerator and a possibly elevated incidence 

of laryngeal cancers, compared with the more 

common incidence of lung cancer, in the Chorley-

Ribble area of south Lancashire. Kernel smoothing 

is used to describe the more common lung cancer 
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data on the background population at risk, but 

estimates expected disease occurrence based only 

on case data. They demonstrate this adaptation 

using daily diarrhoea surveillance data from hos-

pital emergency departments in New York City 

between November 2001 and November 2002.

Hjalmars et al. (1999) use the space–time scan sta-

tistic to investigate clustering of childhood malig-

nant brain tumours in Sweden, demonstrating an 

increase in rates of these cancers during the period 

1973 to 1992, but find no evidence for clustering 

in space or time. Viel et al. (2000), using a Poisson 

model, explore space–time clustering of soft-

 tissue sarcomas, non-Hodgkin’s lymphomas, and 

Hodgkin’s disease, around a solid-waste incinerator 

in France. Smith et al. (2000) use a Bernoulli model 

to explore space–time clustering of anthrax strains 

in the Kruger National Park in South Africa. The 

spatial and temporal distributions of two genotypes 

indicate the anthrax epidemic foci to be independent 

of each other. Sheehan et al. (2000) find significant 

clustering of breast cancer in western Massachusetts, 

USA. Ward (2001) uses the space–time scan statistic 

(Poisson model) to investigate clustering of sheep 

blowfly strike, controlling for the effect of flock size 

and composition, the presence of fly strike control 

measures, and rainfall. Other, more recent exam-

ples of the space–time scan statistic include explora-

tions of clustering in viral diseases of farmed fish 

(Knuesel et al. 2003), leptospirosis in dogs (Ward 

2002), and different molecular subtypes of human 

listeriosis (Sauders et al. 2003).

In an investigation of outbreaks of acute respira-

tory disease in Norwegian cattle herds, Norström 

et al. (2000) compare the space–time scan statistic to 

both Knox’s method and Jacquez’s k nearest neigh-

bour test. They find that all the methods identify 

significant space–time clusters, but highlight the 

disadvantage of the subjective selection of space 

and time thresholds in the Knox test, and the disad-

vantage, common to both the Knox test and to the 

Jacquez k nearest neighbours test, that they assume 

the population size does not change through time. 

The prospective space–time scan  statistic does 

not make this assumption, it can accommodate 

 confounding covariates in the analysis and more-

over, it has the advantage in that it identifies the 

actual locations of space–time clusters.

centres the locations of feed producers that tested 

positive for contamination of cattle feed with meat 

and bone meal. They conclude that whilst a causal 

link is suggested by their results, other factors must 

also play a part since BSE clusters occurred around 

only some producers of contaminated feed.

A particularly innovative application of the 

focused spatial scan statistic is its use to estab-

lish the origins of a Trypanosoma brucei rhodesiense 

sleeping sickness outbreak in the Sorroti area of 

eastern Uganda. In an 18-month observational 

study, following an outbreak of sleeping sickness 

in Sorroti, Fevre et al. (2001) find that over half the 

cattle traded at the Brookes Corner cattle market 

originated from endemic sleeping sickness areas. A 

subsequent case-control study identifies distance 

to the cattle market as a highly significant risk fac-

tor for sleeping sickness, and by using the focused 

spatial scan statistic they demonstrate significant 

clustering of cases close to the market at the start 

of the outbreak. Software for implementing the 

focused spatial scan statistic includes SaTScan, the 

Dcluster package in R, and ClusterSeer.

5.5 Space–time cluster detection

5.5.1 Kulldorff’s space–time scan statistic 

The spatial scan statistic has been adapted to look 

for clusters in space and time by extending the 

idea of a two-dimensional circular window to 

that of a cylinder passing through time. This has 

been applied, using the Poisson model, to explore 

brain cancer distribution in Los Alamos, a remote 

New Mexican community established in 1943 to 

provide a workforce to the Los Alamos National 

Laboratory, a nuclear research and design facility 

(Kulldorff et al. 1998a). Kulldorff (2001) proposes 

the prospective use of the space–time scan statis-

tic, with repeated time periodic analysis, as part 

of a surveillance system to track active clusters 

of disease, for detecting the geographic location 

of emerging clusters and evaluating their signifi-

cance. He demonstrates this with the Los Alamos 

data. In a later development of the original ‘pro-

spective space–time scan statistic’ (Kulldorff 2001), 

Kulldorff et al. (2005) develop the ‘space–time per-

mutation scan statistic’, which does not require 
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were included as cases compared to 30% of con-

trol herds, with the maximum cluster size set to 5% 

of all points (mainly to facilitate comparison with 

other analyses performed using these settings). 

Table 5.2 provides details of the 12 space–time clus-

ters of TB breakdowns that were located, and Fig. 

5.6 illustrates some details of these clusters: (a) log 

likelihood ratio, (b) prevalence, and (c) duration.

The results of the analysis are dominated by 

two large and highly significant clusters; Cluster 1 

(labelled in Fig. 5.6), with its centre in Gloucestershire, 

and Cluster 2 spanning the Devon/Cornwall bound-

ary. Both were relatively long-lasting but Cluster 2 

had a much lower prevalence over this time period 

illustrating the need to consider all characteristics 

of clusters when making comparisons. 

The results from cluster analysis of individual 

years (Fig. 5.5) can thus be compared with a single 

analysis over the entire period (Fig. 5.6). The lat-

ter presents the results of the analysis in a more 

condensed form, but at the risk of missing some of 

the subtleties that can be seen by looking at indi-

vidual years.

5.6 Conclusion

This chapter has explored a variety of methods by 

which spatial and spatio-temporal disease clusters 

Kleinman et al. (2005) investigate various adjust-

ments to the space–time scan statistic to account 

for underlying spatial and temporal trends in dis-

eases. They find that when adjusting for day of the 

week, month, holidays, and local history of dis-

ease, smaller numbers of clusters of lower respira-

tory complaints are found (2% of days) compared 

to when unadjusted census population data are 

used (26% of days). Other recent examples of the 

application of space–time scan statistics include 

Recuenco et al. (2007), who identify a number of 

significant space–time clusters of enzootic racoon 

rabies in New York State (1997–2003), Sheehan and 

De Chello (2005) who demonstrate clusters of high 

and low incidence of late-stage breast cancer in 

Massachusetts (1988–1997), and Jones et al. (2006) 

who use the prospective space–time scan statistic 

to reveal clustering of shigellosis in Chicago, in 

2002. Software for implementing the space-time 

scan statistic includes SaTScan, the Dcluster pack-

age in R, and ClusterSeer.

5.5.2 Example of space–time cluster detection

The space–time permutation of Kulldorff’s spa-

tial scan statistic was applied to the British cattle 

TB data for the period 1986 to 1997. The Bernoulli 

model was used and all TB-breakdown herds 

Table 5.2 Details of space–time clusters illustrated in Figure 5.6. For each cluster the area is given, the 
start and end date, LLR is the log likelihood ratio, P(999) is the significance level based on 999 Monte 
Carlo replications (hence the plateau at 0.001), RR is the relative risk (observed/expected), which is 
directly proportional to Prev., (the prevalence corrected for sampling) over the duration of the cluster

Cluster Area (km2) Start End LLR P(999) RR Prev.

 1 5,830 1992 1997 1,150,4 0.001 9.5 0.042
 2 5,148 1989 1997 743.6 0.001 5.9 0.002
 3 316 1991 1997 212.1 0.001 13.1 0.006
 4 209 1993 1997 78.2 0.001 15.1 0.009
 5 194 1997 1997 41.3 0.001 20.5 0.063
 6 194 1989 1997 41.1 0.001 33.8 0.012
 7 21 1987 1996 24.3 0.001 43.1 0.013
 8 27 1987 1994 21.8 0.001 11.2 0.004
 9 47 1995 1997 20.6 0.003 39.9 0.041
10 479 1997 1997 18.1 0.017 14.5 0.045
11 15 1990 1992 14.3 0.382 37.3 0.038
12 13 1987 1996 13.7 0.721 97.0 0.030
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(a)

(c)

(b)

Log Likelihood Ratio
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Figure 5.6 Space–time cluster analysis showing a) log likelihood ratios (i.e. probability), b) prevalence (directly proportional to relative risk), and 
c) duration of space–time clusters of TB breakdown herds in Britain from 1986 to 1977. Clusters were identified using the Bernoulli model of the 
space-time scan statistic with all TB breakdown herds as cases compared to 30% of control herds, with a maximum cluster size set to 5% of all 
points. See also Table 5.2.
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by taking the default value of 50%, pre-selection bias 

is avoided and therefore the first analysis better rep-

resents the areas of increased risk for infection based 

on the spatial distribution of HGE in the area. 

Jemal et al. (2002) report on the geographic ana-

lysis of prostate cancer mortality between 1970 and 

1989 in the United States. They identify fairly large, 

significant clusters in a ‘first round of analyses’ 

and smaller sub-clusters in a ‘second round of ana-

lyses’. Based on the very large size of a primary 

cluster of prostate cancer among white males in the 

northwest of the United States it must be assumed 

that they select 50% of the population as the upper 

limit. What is not clear is whether the sub-clusters 

are located by considering the clusters identified 

in the first round as independent populations (for 

new analyses), or by reducing the maximum clus-

ter size (proportion of the population included) by 

some unspecified amount, in order to identify a 

larger number of smaller clusters (as was done in 

Section 5.3.6).

Boscoe et al. (2003) point out that those follow-

ing Kulldorff’s approach tend to select clusters 

with large areas containing large populations but 

only small elevations in disease risk, since these 

exhibit the highest levels of statistical power. 

Smaller areas, with lower levels of significance 

but higher prevalence or incidence rates, tend to 

be overlooked. They propose an adaptation to 

Kulldorff’s approach that involves stratifying the 

set of statistically significant circles by relative 

risk. Within each risk stratum the non-overlap-

ping circles with the highest likelihood are dis-

played in a nested manner. They demonstrate this 

method using prostate cancer mortality data from 

the USA.

As shown in Section 5.3.6 (specifically in Fig. 5.3), 

a priori choice of cluster size can have profound 

effects on the results. The grave concern arises that 

by exploring a range of maximum cluster sizes an 

upper cluster size threshold can be chosen that 

presents a pattern of clustering best suited to sup-

port a particular argument, rather than that which 

best reflects reality. This may cast doubt on the 

validity of the numerous studies that have been 

reported using scan circles, and in particular those 

based on the spatial scan statistic. 

can be identified statistically. New methods for 

detecting local clustering are continuously being 

developed. For example, Aamodt et al. (2006) com-

pare the spatial scan statistic against a method 

based on generalized additive models (Hastie and 

Tibshirani 1991) and one using Bayesian approaches 

that have emerged from the Besag, York, and 

Mollié model (Besag et al. 1991). Other Bayesian 

approaches to cluster detection include those dem-

onstrated by Neill et al. (2006) and Lawson (2006b), 

but these tend towards the modelling approaches 

that are described in detail in Chapters 6 and 7. 

Another recent advance is the development of a 

spatial hazard model for cluster detection (Gay 

et al. 2007), which can account for risk factors and 

for spatial heterogeneity in the population at risk. 

In terms of statistical methodology, the field of 

cluster detection is advancing rapidly.

A frequently quoted limitation common to many 

cluster detection tests (e.g. Besag and Newell (1991) 

and Cuzick and Edwards (1990)) is the a priori 
choice of cluster size, as testing for a variety of clus-

ter sizes results in problems of multiple inference. 

Analysis of the British cattle TB data suggests this 

to be a central problem and there do not seem to be 

clear guidelines on how to deal with it.

Kulldorff et al. (1997) suggest, and demonstrate 

using an analysis of breast cancer in the northeast 

United States, a method of decomposing a signifi-

cant cluster into non-overlapping sub-clusters, each 

of which would allow rejection of the null hypothe-

sis on its own strength by sequentially limiting the 

maximum cluster size (the very approach adopted 

in Section 5.3.6). However, in the same paper he 

states that one of the reasons for the superiority of 

the spatial scan statistic over other cluster detection 

algorithms is that ‘by searching for clusters with-

out specifying their size or location, the method 

ameliorates the problem of pre-selection bias’.

Chaput et al. (2002), in a spatial analysis of HGE 

near Lyme, Connecticut, vary the maximum clus-

ter size from 50 to 25% of the population at risk, in 

order to look for ‘sub-clusters’. A large and highly 

significant cluster (p = 0.001) is identified at the 50% 

level, and with the 25% threshold two ‘sub-clusters’ 

emerged, one highly significant (p = 0.001) and the 

other considerably less so (p = 0.16). They argue that 
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general, the first method should only be used 

if the number of points is limited so that dif-

ferent densities can still be differentiated visu-

ally. The map in Fig. 6.1a, showing the point 

locations of TB-infected herds, can be readily 

interpreted. However, Fig. 6.1b shows the point 

locations of all cattle herds TB-tested in Great 

Britain in 1996, and as a result of the large num-

ber of points it is not possible to differentiate 

between areas with high densities of points. In 

such situations, it is necessary either to gener-

ate estimates aggregated at some administrative 

level or to apply smoothing methods. 

Spatial smoothing can be achieved by calculat-

ing simple localized averages or by applying more 

complex mathematical functions to the data. With 

both approaches a window, typically of fixed size, 

centres on each data point or polygon centroid. 

The degree of smoothing is influenced by the size 

and shape of the window (also called filter or ker-

nel), as well as the mathematical function applied 

to the values within the window. The larger the 

window, the more information is ‘borrowed’ from 

the neighbouring areas, and the more statistically 

precise is the resulting smoothed estimate. The 

disadvantage is that in a spatially heterogeneous 

environment the estimates could be biased as they 

will be more strongly influenced by data values 

from locations some distance away (Burrough 

and McDonnell 1998; Haining 2003). As a conse-

quence, important local clustering of increased or 

reduced point density may disappear in the kernel-

smoothed representation. The results produced by 

spatial smoothing methods can also be biased by 

edge effects.

Spatial filters are applied in image enhancement 

to remove random noise, but are also available as a 

6.1 Introduction

Whenever possible, epidemiological disease inves-

tigations should include an assessment of the spa-

tial variation of disease risk, as this may provide 

important clues leading to causal explanations. 

The information presented may be, for example, 

the density of disease cases or spatial variation 

in an attribute value such as disease risk. The 

objective is to produce a map representation of 

the important spatial effects present in the data 

while simultaneously removing any distracting 

noise or extreme values. The resulting smoothed 

map should have increased precision without 

introducing significant bias (Haining 2003). The 

method used to analyse the data depends on how 

they have been recorded. If the data occur as point 

locations (e.g. outbreaks of disease) kernel smooth-

ing methods can be applied to facilitate visual 

assessment of the pattern. In the case of data rep-

resenting, for example, the incidence of infection 

within administrative areas, Bayesian methods 

can be applied to take account of the uncertainty 

of the local measurement and spatial depend-

ence between neighbouring measurements. If 

the data represent sample point locations used to 

describe continuous fields, such as disease vector 

presence, interpolation methods such as kriging 

can be applied to generate spatially continuous 

representations. 

6.2 Smoothing based on kernel 
functions

Visual analysis of point data density ranges 

from a simple display of locations to the use of 

smoothing methods for generating point dens-

ity surface representations in raster format. In 

CHAPTER 6

Spatial variation in risk
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where k() represents the chosen bivariate prob-

ability density function, � > 0 is the bandwidth, 

s is the point on which a disc of radius � is cen-

tred, s
i 
are the points within the disc’s area, and � 

represents an edge correction factor. The differ-

ence between density and intensity should be 

noted, in that the former integrates to one and 

estimates are interpreted as probabilities, whereas 

the latter estimates the mean number of events 

per unit area and does not integrate to one. One 

can be converted into the other by a multiplicative 

constant.

The resulting smoothed density surface is influ-

enced by the choice of probability density function, 

standard neighbourhood function in GIS (Bonham-

Carter 1994). With epidemiological spatial data, 

they can be applied to point as well as aggregated 

data represented through a centroid. Talbot et al. 
(2000) describe the use of filters with fixed geo-

graphical size as well as with constant population 

size to generate smoothed map representations of 

disease ratios. They demonstrate that a filter with 

constant population size retains adequate spatial 

resolution in high density areas while at the same 

time producing stable rate estimates in low density 

areas.

Kernel density estimation is a special case of dis-

tance weighted map smoothing where a bivariate 

probability density function is applied to deter-

mine the intensity of a spatial point process (Bailey 

and Gatrell 1995). The following equation is used to 

perform the calculations:

(a) (b)

Figure 6.1 Point maps showing (a) the distribution of herds for which TB-positive cattle were identified at slaughter in 1996, and
(b) locations of herds TB-tested in 1996, in Great Britain.
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default algorithm is applied to calculate the band-

width and no correction is made for edge effects. 

ArcGIS calculates the bandwidth as the minimum 

dimension (x or y) of the extent of the point theme 

divided by 30. More sophisticated methods for 

applying kernel smoothing can be implemented 

using the statistical functions developed for the 

software R. Stevenson et al. (2000) conduct a 

descriptive spatial analysis of BSE occurrence 

in Great Britain using kernel density estimation 

based on a Gaussian kernel and a fixed bandwidth 

of 30 km, estimated using the normal optimal 

method described by Bowman and Azzalini (1997) 

and implemented in the SM library for R by the 

same authors. Choice of the grid cell size for which 

the kernel-smoothed intensity estimates are to be 

produced needs to be considered from a presen-

tational, biological, and numerical perspective. 

Since the objective is to achieve a balance between 

producing a smooth surface while still describ-

ing the relevant spatial variation in intensity, grid 

cells that are too small needlessly increase the 

data storage required, and if too large may hide 

relevant patterns. It is therefore sensible to make 

the grid cells larger than the geographical extent 

of the biological unit of interest. For example, if 

the density of farms is to be estimated, the grid 

cell size should be larger than the area covered by 

an average farm. If the grid cell size is too small, 

the intensity estimates will be very small numbers 

that may be more difficult to interpret. As with 

the bandwidth, the algorithm implemented in the 

software may use default settings to define grid 

cell size that are often not ‘optimal’ for the particu-

lar dataset. Fig. 6.2a shows kernel smoothed pres-

entations of the density of all British cattle herds 

TB-tested in 1996 and Fig. 6.2b shows those that 

tested positive. Both estimations were made using 

a grid cell size of 5 km and a bandwidth of 30 km. 

This choice was based on the following considera-

tions: firstly, from a national decision-making per-

spective, variability between areas above 25 km2 

was considered to be the focus of the analysis and 

secondly, local herd density estimates should not 

be influenced by densities at a distance of more 

than 30 km whereas bandwidth estimates below 

that would result in too much variability to allow 

meaningful policy-relevant interpretation. These 

bandwidth �, and size of the grid cells for each of 

which an individual density estimate is calculated. 

The mathematical function used to define the ker-

nel specifies the pattern for down-weighting the 

influence of points further away from the point 

locations for which intensity is to be estimated. 

Different mathematical functions can be used but 

they are considered to have less influence on the 

estimation than the bandwidth, and the Gaussian 

kernel is therefore often used for the sake of com-

putational simplicity (Waller and Gotway 2004). 

The latter is the width of the kernel function and 

therefore determines the distance over which 

points will be included in the calculation, and the 

larger it is the smoother the resulting surface. The 

bandwidth � can be obtained using mathemati-

cal calculations or by subjective choice. Haining 

(2003) emphasizes that it is not about obtaining an 

optimal bandwidth based on theoretical consid-

erations, but rather about generating a spatially 

smoothed surface that reveals insights into the 

underlying data. Characteristics of the biological 

process to be studied could therefore be used to 

guide the choice, and it is always recommended 

to explore surfaces generated by different band-

width estimates. Diggle (2003) recommends that, 

rather than an automatic procedure, a plot of the 

mean square error of the non-parametric intensity 

estimator against different values of � be used to 

inform the choice of bandwidth. Adaptive band-

width selection methods vary the local bandwidth 

during the estimation process so that a minimum 

number of observations are included (Bailey and 

Gatrell 1995). Further details and discussions in 

relation to bandwidth selection methods can be 

found in Scott (1992) and Wand and Jones (1995). 

The kernel density calculation method should 

also take account of edge effects (also called spa-

tial censoring) to minimize the bias of estimations 

close to the boundary of the study area (Lawson 

et al. 1999b). This can be achieved, for example, by 

adjusting the area used in the calculation proc-

ess according to the overlap of the circular area 

defined by the bandwidth and the study region 

(Diggle 2003). When using kernel density estima-

tion functions built into GIS software products 

such as ArcGIS (ESRI, Redlands, California, USA) 

the bivariate Gaussian kernel is typically used, a 
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of their biological interpretation. The statistical 

precision of the ratio estimates can be quantified 

using Monte Carlo methods (Kelsall and Diggle 

1995b). Kernel regression methods have been pro-

posed by Kelsall and Diggle (1998) as an alterna-

tive to the density ratio method. An advantage of 

this approach is that covariates can be included in 

the analysis. 

Fig. 6.2c shows the ratio of the intensity surfaces 

of TB-test positive and all cattle herds tested as 

part of routine herd testing in Great Britain in 1996. 

It illustrates that it can be difficult to obtain sta-

ble risk estimates if intensities vary substantially 

across an area, such as with cattle-herd density in 

Great Britain where, particularly in Scotland, high 

risks were calculated based on very small num-

bers of herds at risk. This could be prevented by 

increasing the grid cell size and/or bandwidth of 

the kernel-smoothed maps but at the expense of 

spatial differentiation in the main areas of inter-

est, namely Wales and the southwest of England. 

Fig. 6.3 shows the southwest of England where the 

risk estimates provide an interesting insight into 

the spatial pattern of positive routine herd testing. 

Cornwall and Devon have a lower risk of herds 

testing positive than the areas within the coun-

ties of Gwent, Gloucestershire, Avon, and Hereford 

and Worcester. There are also small clusters of 

increased risk in the counties of Dyfed, Powys, and 

Somerset. 

6.3 Smoothing based
on Bayesian models

Statistics used in the spatial representation of 

aggregated (e.g. province or district-level) disease 

risk data include relative risk, and standardized 

mortality/morbidity ratios (SMR). The SMR is the 

classic statistic used in representing spatial pat-

terns of disease distribution. It standardizes the 

data by re-expressing them as the ratio between 

the observed number of cases and the number that 

would have been expected in a standard popula-

tion. At whatever level of spatial aggregation (i), for 

a specified time period:

i i iSMR y e=
 (6.2)

considerations were based to a large degree on 

subjective choices. Fig. 6.2b shows the spatial dis-

tribution of TB-test positive herds. In order to iden-

tify unusually high occurrences of these herds, the 

spatial distribution of the underlying population 

at risk (Fig. 6.2a) also needs to be considered. This 

is difficult to perform through visual comparison 

of the two maps.

As in the example presented above, the distri-

bution of the population at risk is usually spa-

tially heterogeneous and therefore, to be able to 

detect spatial clusters of unusually high or low 

case intensity, it is necessary to examine the spa-

tial pattern of the proportionality between inten-

sity of disease cases and non-cases, or population 

at risk (sum of cases and non-cases). This method 

has been called extraction mapping (Lawson and 

Williams 1993). If data on the intensity of the pop-

ulation at risk cannot be obtained, the spatial dis-

tribution of another disease can be used instead, 

as long as it is not subject to the same aetiological 

processes and there is no differential reporting 

bias (Lawson 2001b). The ratio between the inten-

sity of cases and the population at risk becomes 

the log disease risk, whereas if the denominator 

represents the intensity of controls (=non-cases) 

it is interpreted as a log relative risk (Kelsall and 

Diggle 1995b). One requirement of such ratio cal-

culations is that the denominator should not take 

on zero values, which means that the bivariate 

Gaussian kernel with its non-zero tail should be 

used. The optimal bandwidths chosen for produc-

ing the individual intensity surfaces may not be 

appropriate for generating the ratio surface. The 

resulting ratio surface is also much more sensi-

tive to different choices of bandwidth than the 

individual surfaces. There is some debate as to 

whether the numerator and denominator in this 

calculation should be generated using the same 

or different bandwidths (Bithell 1990; Bailey and 

Gatrell 1995; Diggle 2000). The preference seems 

to be that it should be the same, even if the sample 

sizes differ between the two populations (Kelsall 

and Diggle 1995a). Schabenberger and Gotway 

(2005) describe a visual exploratory approach for 

choosing the appropriate bandwidth and size of 

grid cells, based mainly on balancing the reso-

lution and stability of the estimates in the context 
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Figure 6.2 Kernel smoothed map representations of cattle herd densities in Great Britain. (a) Kernel smoothed intensity of all cattle herds tested using routine TB herd testing in 1996 (5 
km grid cells, 30 km bandwidth), (b) kernel smoothed intensity of cattle herds tested positive during routine TB herd testing in 1996 (5 km grid cells, 30 km bandwidth), and (c) ratio of 
kernel smoothed intensities of test positive herds and all cattle herds tested in 1996 (see colour plate).
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The basic principle of Bayesian methods is that 

uncertain data can be strengthened by combining 

them with prior information. In the case of empir-

ical Bayes estimation of spatially-varying disease 

risk, posterior risk can be estimated from a weighted 

combination of the local risk (also called the likeli-

hood) and the risk in surrounding areas, the latter 

representing the prior information (Clayton and 

Bernardinelli 1992; Wakefield et al. 2000). The rela-

tive weights for the two components depend on the 

sample size in the local area. If the local population 

size is large it will receive a strong weighting in the 

calculation process. If it is relatively small, its weight-

ing is reduced and the derived estimate will tend 

towards the prior. The risk can be smoothed using 

a prior based on the global mean or on summarized 

data from the neighbouring areas. The smoothed 

risk is more stable and has higher specificity. It is 

recognized that Bayesian estimation always repre-

sents a trade-off between improved precision and 

the introduction of bias (Best et al. 2005). 

The following formula is used to perform empir-

ical Bayes calculations of disease risk (Bailey and 

Gatrell 1995):

ûi = wiri + (1 – wi)gi  (6.4)

where yi is the observed number of cases in area i, 
and the expected number of cases, ei, is given by:

i
i i

i

y
e n

n
∑= ⋅
∑  

(6.3)

where ni, is the observed population at risk in area i. 
National level disease risk or rate, for example, can 

be used to calculate the expected number of cases 

for each local area (Lawson and Williams 2001). The 

disadvantage of such SMR maps is that they tend to 

be dominated by areas with small numbers of obser-

vations, or if they focus on the statistical significance 

of the estimates, they tend to be dominated by areas 

with large populations, but potentially less import-

ant disease occurrence (Leyland and Davies 2005). 

Clayton and Kaldor (1987) recognize that empir-

ical Bayes methods can be used to generate maps 

that make use of the neighbourhood relationships 

in the data to produce statistically more precise risk 

estimates. Fully Bayesian estimation methods have 

been made possible through the development of 

the Markov Chain Monte Carlo (MCMC) algorithm, 

based on the Gibbs sampler (a special case of the 

Metropolis–Hastings algorithm; Gelman et al. 1995). 

TB risk

Herds tested
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0.045–0.067
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0.091–0.12

0.13–0.14
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0.18–0.21

0.22–0.27

0.28–0.4

•

Figure 6.3 Kernel density ratio surface for the southwest of England showing the risk of cattle herds testing positive for TB during 1996 
(the locations of all herds tested are shown as black dots) (see colour plate).
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Fig. 6.4a is a choropleth map showing the pro-

portion of TB-positive cattle herds per county 

in Great Britain in 1999. While this type of map 

is easy to interpret it has the disadvantage that 

the size of the districts and the position of their 

boundaries is typically a reflection of administra-

tive requirements rather than of the spatial distri-

bution of epidemiological factors. Fig. 6.4b shows 

a map generated using empirical Bayes estimation 

with the prior being the national level herd infec-

tion prevalence. Fig. 6.4c employed a neighbour-

hood empirical Bayes approach where the local 

estimate has shrunk towards the mean prevalence 

estimates of the neighbouring counties. The fully 

Bayesian approach based on a convolution prior 

was used to generate the map in Fig. 6.4d (Besag

et al. 1991). Examining the four different maps 

shows that some of the counties have quite differ-

ent risk levels, when considering prior informa-

tion. While most of the high risk areas (around 

Gloucestershire) remain consistent, Cornwall 

is only in the highest risk category when using 

empirical non-spatial or fully Bayes estimation. 

An alternative approach for assessing these data 

would be to focus on the differences between the 

counties and the national average. Fig. 6.5a presents 

SMR estimates for TB-infected herds aggregated at 

county level. As with the prevalence map (Fig. 6.4a), 

this is largely a function of sample size and it is 

therefore appropriate to accompany the map with 

a presentation of the variability of the estimates, 

such as in Fig. 6.5b. Fig. 6.5c shows the posterior 

mean relative risks for each county based on fully 

Bayesian estimation. The proportion of estimates 

with a relative risk of greater than one is presented 

in Fig. 6.5d. It identifies three groupings of counties 

with an elevated risk of TB-infected herds relative 

to the rest of the country.

6.4 Spatial interpolation

Spatially continuous surfaces for attribute values, 

such as risk of disease vector presence or envi-

ronmental exposure variables, are often produced 

from data collected at a sample of spatially distrib-

uted sites. These could be, for example, traps for 

capturing the Culicoides midges that transmit the 

bluetongue virus, or epidemiological field surveys 

where �i is the empirical Bayes estimate for area i, 
wi are the weights applied to the local and neigh-

bourhood estimates, ri is the local risk in area i and 

�i is the mean of the prior, and ri is the local risk 

in area i.

i
i

i

y
r

n
=

 

(6.5)

where yi is the number of cases and ni the popula-

tion at risk in area i. The weights, wi, in (6.4) are 

estimated as:

( / )
i

i
i i i

w
n

=
+

f

f g
 (6.6)

where �i is the variance of the prior, �i is the mean 

of the prior, and ni the population at risk in area i.
The empirical Bayes prior specified above is 

purely spatial and is defined using the hyperpa-

rameters �i and �i. The estimation is made by sim-

plified posterior distributions through likelihood 

or integral approximations (Lawson et al. 2003). 

In fully Bayesian estimation, the hyperparameters 

have hyperprior distributions resulting in the esti-

mates for each area better approximating the true 

value. Empirical estimates conversely, are inexact 

and tend to oversmooth towards the global mean. 

In addition, fully Bayesian methods generate cred-

ibility intervals for each local estimate. It is also pos-

sible to have a hierarchical or multilevel structure 

to the prior. Besag et al. (1991) developed the con-

volution prior which consists of an unstructured 

and a structured spatial component. Parameter 

distributions are estimated using MCMC spatial 

modelling. This method involves taking very large 

numbers of samples from the posterior distribu-

tions of model parameters. Sampling based on the 

Gibbs sampler is performed using a Markov Chain 

where successive samples are dependent on each 

other. A key issue with MCMC modelling is to 

decide when to finish sampling (i.e. when posterior 

distributions of the various parameters have con-

verged). Detailed introductions to Bayesian spa-

tial analysis can be found in Lawson et al. (2003), 

Banerjee et al. (2004), and Congdon (2003). Chapter 

7 explores Bayesian approaches in the context of 

identifying risk factors associated with disease.
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Figure 6.4 Choropleth maps of TB-test results for cattle herds in Great Britian in 1999 aggregated by county. (a) Prevalence of TB-test positive cattle herds, (b) empirical Bayes risk of 
TB-test positive herds, (c) spatial empirical Bayes risk of TB-test positive herds, (d) fully Bayes risk of TB-test positive herds (see colour plate).
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Figure 6.5 Choropeth maps of standardized morbidity ratios (SMR) and Bayesian relative risk estimates for TB herd test results for cattle in Great Britain in 1999 aggregated by county. (a) 
SMR comparing TB reactor risk between counties, (b) standard error of SMR, (c) fully Bayesian estimates of relative risk of TB-test reactor herds, and (d) statistically significant fully Bayesian 
relative risks of reactor herds (see colour plate).
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confirmed by Kyriakidis (2004) and discussed 

further by Goovaerts (2006).

The basic model for interpolating a surface 

is based on the following equation (Waller and 

Gotway 2004):

( )0
1

ˆ ( )
N

i i
i

Z s Z s
=

= ∑ l
 

(6.7)

where Z(si) is the measured value at the ith location, 

�i is the weight attributed to the measured value at 

the ith location, and s
0
 is the prediction location.

This formula is used for both the IDW and krig-

ing interpolation procedures, but they use different 

methods to calculate �i. With IDW it depends only 

on the distance to the prediction location whereas 

with kriging it is determined by the semivariogram, 

the distance to the prediction location and the spa-

tial relationships between measurements around 

the prediction location. The empirical semivario-

gram shows the spatial dependence in the variable 

of interest as a scatterplot. Distance (spatial lag) is 

presented on the x- and semivariance on the y-axis. 

The semivariance is calculated as follows:

( ) 2

( )

1
ˆ ( ) ( )

2 ( )
i j

N h

h Z s Z s
N h

⎡ ⎤= −⎣ ⎦∑g
 

(6.8)

where N(h) is the set of distinct pairs of values sep-

arated by h, |N(h)| is the number of distinct pairs 

in N(h).

The semivariogram can also be expressed as a 

covariance function but use of the former is pre-

ferred in spatial analysis. Schabenberger and 

Gotway (2005) provide a more detailed discussion 

of the relationship. The formula above describes a 

stationary and isotropic empirical semivariogram. 

If a spatial process is anisotropic, that is the spatial 

dependence varies with direction, different semi-

variograms can be estimated for each direction. 

Plotting the semi-variance produces a curve typi-

cally rising from a point on the y-axis (the nugget), 

to a maximum semi-variance value or ‘sill’ within 

a certain lag distance on the x-axis (the range) (see 

Fig. 6.6). The nugget describes the spatially uncor-

related variation or noise in the data. The larger this 

value the less spatial dependence there is amongst 

the attribute values and the less useful kriging inter-

polation will be. To provide a useful representation 

that determine disease prevalence or incidence in 

a sample of herds or communities. Many environ-

mental exposure variables describing, for example, 

water or air quality are measured at particular 

monitoring stations, but represent a spatially con-

tinuous phenomenon. One specific characteristic 

of this type of data is that its locations are fixed 

and known, and not random as is the case with 

the cluster analyses described in Chapters 4 and 

5. Several methods can be used to convert these 

point location data into surface information. The 

simplest is to assign to each sampling point a 

polygon including all the hypothetically possible 

point locations that are closest to the sampling 

point. Dirichlet or Thiessen polygons fulfil this 

purpose but have the disadvantage that the result-

ing surface is discontinuous. The inverse distance 

weighting (IDW) interpolation method generates a 

continuous surface by calculating missing values 

from distance-weighted sample measurements. 

This method can be biased by the presence of local 

clusters. Kriging has the advantage in that it allows 

the errors of the imputed values to be estimated 

(Haining 2003). It can do this by not only account-

ing for the actual sample measurement values and 

their distance to the location to be predicted, but 

by also incorporating a mathematical model of the 

spatial dependence amongst sample measurements. 

Kriging was originally developed to describe con-

tinuous-scale outcome variables, such as the con-

centration of particular metals in the soil. Its use for 

non-Gaussian-type variables has been explored by 

several authors (Carrat and Valleron 1992; Webster 

et al. 1994; Diggle and Tawn 1998; Berke 2004; 

Graham et al. 2005; Goovaerts 2006). Stationarity 

is an important assumption of kriging (Bailey and 

Gatrell 1995; Graham et al. 2005), which means that 

the spatial correlation structure should be con-

stant across locations. Typically however, this is 

not the case with data on disease counts, rates, and 

risks (Gotway and Wolfinger 2003), but the same 

authors conclude that, despite non-stationarity, 

mis-specified variogram functions, and assump-

tions of linear models for rate and count data, krig-

ing estimates are relatively unbiased. The validity 

of using data aggregated to an area, such as in the 

case of disease frequency estimates per county, for 

producing point estimates using kriging has been 



S PAT I A L  VA R I AT I O N  I N  R I S K   77

importance of spatial dependence and local herd 

effects on Salmonella enterica herd antibody levels. 

Universal kriging can be used for non-station-

ary data, as it combines trend surface analysis and 

ordinary kriging into a single analysis. Amongst 

the various types of kriging, indicator, and co-

kriging have been used to estimate disease risk 

surfaces. Indicator kriging models the probability 

of an event of interest. This could be, for example, 

the probability of an environmental contamin-

ant being above a certain threshold level and is 

derived from input indicator data that needs to 

be in a binary format (zero indicating absence of, 

and one indicating presence of, the characteristic). 

The associated kriging variance reflects the uncer-

tainty associated with the generated probability 

surface resulting from the interpolation process. 

Valencia et al. (2005) use this approach to predict 

the risk of ascariasis in children in Brazil. They 

report that they were able to improve the predic-

tion by using co-kriging, which considered mul-

tiple covariates. Count data are interpolated by Ali 

et al. (2006) using Poisson kriging and Banerjee

et al. (2004) describe Bayesian approaches to krig-

ing. A more complete discussion of different kriging 

methods is provided in Waller and Gotway (2004).

Fig. 6.7b shows an example where ordinary krig-

ing was used to generate a continuous surface 

of the correlation structure, semi-variance should be 

calculated for about 10 to 20 lags with a maximum 

lag distance of about half the maximum separation 

distance between points (Waller and Gotway 2004; 

Schabenberger and Gotway 2005). (See Chapter 4 for 

an explanation of the difference between a semivari-

ogram and a correlogram.) 

Apart from providing information for krig-

ing, the empirical semivariogram can be used as 

a generic tool for visually assessing the presence 

of spatial dependence or autocorrelation in a con-

tinuous process. This can also be useful for testing 

the assumption of independence for the residuals 

generated by a regression model. The empirical 

semivariogram cannot be used directly for kriging. 

Instead, a mathematical function has to be fitted 

to the curve, resulting in a theoretical semivari-

ogram function that can then be used in the krig-

ing process. The function can be derived from the 

variogram using statistical fitting algorithms or by 

visual assessment of the fit of standard mathemat-

ical functions. A flat shape of the resulting theoret-

ical variogram function would suggest absence of 

spatial dependence. A function with, for example, 

an exponential shape with values increasing with 

distance reflects the presence of spatial depend-

ence. Graham et al. (2005) use the shape of the sem-

ivariogram to draw conclusions about the relative 
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Figure 6.6 An empirical (circles) and 
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of wild possum numbers based on trap-capture 

data for a study area (Fig. 6.7a). There were sev-

eral problems associated with applying this tech-

nique to this particular dataset. Firstly, the traps 

did not cover the study area evenly and secondly, 

the data contained biological edge effects since the 

traps on the boundary would have attracted pos-

sums from outside the study area. The theoretical 

semivariogram function is based on fairly stable 

empirical semi-variance estimates up to a distance 

of 400m between point locations (Fig. 6.7d). No dir-

ectional effects were detected when performing a 

directional semivariogram analysis using a semi-

variogram surface (not shown here). The standard 

error map (Fig. 6.7c) suggests that the error was 

relatively evenly distributed across the study area, 

but increased towards the edge. In this particu-

lar case, kriging interpolation improved upon the 

information shown in the point map, resulting in a 

better impression of the variation in animal dens-

ity across space. It does however need to be empha-

sized that, due to the data limitations described 

above, the predicted surface should only be used 

for broad interpretation of the underlying spatial 

variation in possum density. 

Universal kriging has been applied in the 

example presented in Fig. 6.8 (which is presented 

in more detail in Berke (2004)). The semivariogram 

was fitted to tapeworm infection data in foxes, 

which were surveyed in Lower Saxony, Germany, 

between 1991 and 1997, aggregated at the level of 

43 administrative regions. The choropleth map 
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Figure 6.7 Example of ordinary kriging used to generate a continuous surface showing wild possum density in New Zealand derived from possum 
trap capture data. (a) Point map of trap locations with circle radius representing number of animals captured,  (b) kriging surface map of predicted 
possum numbers, (c) standard error map for kriging estimates, and (d) semivariogram including model used to generate kriging surface.
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Figure 6.8 Example of universal kriging applied to tapeworm infection prevalence data from foxes surveyed in Lower Saxony, Germany 
(Reproduced with permission from Berke (2004)). (a) Choropleth map of empirical Bayes smoothed tapeworm prevalences, (b) empirical and 
theoretical semi-variogram detrended (solid line) and trend-contaminated (broken line) smoothed prevalences, (c) isopleth map from kriging 
smoothed prevalences, and (d) isopleth error map based on universal kriging standard errors.
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Kriging is subject to computational constraints 

when using large datasets as it assesses the co-

variation between location pairs. While both meth-

ods can be used to produce a risk surface, there 

is otherwise only a limited degree of overlap with 

respect to suitable applications of the two meth-

ods. Kernel smoothing is subject to less restrict-

ive statistical assumptions than kriging, and will 

not generate negative estimates for risk data. With 

aggregated ratio data, the statistical uncertainty of 

local risk estimates can elegantly be reduced by 

taking advantage of spatial dependence through 

Bayesian methods. If further smoothing is con-

sidered desirable, the Bayesian area estimates can 

be converted into a smooth surface using kriging. 

All these methods however, result in changes to 

the original data values. While this should result 

in improvements with respect to visual interpret-

ation, it is also likely that artefacts and biases will 

be introduced and particular care needs to be taken 

in order to minimize these. Rather than being able 

to rely solely on the statistical methods, in most 

cases the user is required to make decisions about 

the parameters needed for the smoothing algo-

rithms, and these subjective decisions may have 

quite a dramatic effect on the outcome.

shown in Fig. 6.8a indicates a spatial trend with 

prevalence levels increasing from north to south. 

Since this reflects the presence of non-station-

arity, it is recommended to use universal rather 

than ordinary kriging. The spherical semivari-

ogram functions shown in Fig. 6.8b demonstrate 

the benefit obtained from detrending the data, 

in that the sill is reduced. The resulting kriging 

surface shown in Fig. 6.8c maintains the key pat-

terns shown in the choropleth map but avoids the 

jumps between regions. It also provides a predic-

tion for the central Bremen region which had a 

missing value. The error map shown in Fig. 6.8d 

suggests the presence of a particular spatial pat-

tern for the errors, which increases confidence in 

the validity of the model.

6.5 Conclusion

The presentation of spatial variation in risk is one 

of the most important functions of spatial analysis. 

If data have been collected for point locations or 

areas, enhanced visualization is possible by pro-

ducing continuous surfaces using kernel smooth-

ing and kriging interpolation. Both techniques 

are now available in most GIS software packages. 
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identify and account for spatial dependency in 

data when modelling. The third section reviews 

the common analytical techniques available for 

dealing with the three major spatial data types 

(area, point, and continuous data), and the fourth 

deals with discriminant analysis. The aim is to pro-

vide a broad overview of the available methodolo-

gies, highlighting the additional information to be 

gained by accounting for spatial dependence, and 

to suggest ways in which this information might 

be used to better understand the determinants of 

disease in human and animal populations. For a 

more in-depth discussion the reader is directed 

to the references cited in each section of the text. 

Throughout, the British cattle TB data are used to 

illustrate the concepts discussed.

7.2 Principles of regression modelling

7.2.1 Linear regression

Linear regression allows the mean value of a con-

tinuous outcome variable (also known as a response 

or dependent variable) 
i
 to be represented as a 

function of m explanatory (also known as covari-

ate, predictor, or independent) variables:

i � 
0
 	 

1
X

1i 	 … 	 mXmi 	 i (7.1)

If the term X is used to represent the (m × i) mat-

rix of explanatory variables, the term 
0
 in (7.1) is a 

constant indicating the value of 
i
 when X = 0. The 

constants 
1
, ..., 

m
 determine how much the out-

come variable changes in response to unit changes 

in each of the m explanatory variables.

Linear regression is a technique that can be used 

to model the broad-scale (first-order) spatial trend 

7.1 Introduction

The concepts and techniques discussed so far have 

dealt with describing, visualizing, and exploring 

spatial data. In this chapter the analytical tech-

niques of regression and discrimination are intro-

duced as a means of quantifying the effect of a set 

of explanatory variables on the spatial distribution 

of a particular outcome. The material presented 

here is similar to that which might be presented 

in standard statistical texts, but includes an over-

view of the modifications needed to account for 

the  spatial dependency frequently associated with 

disease data.

Perhaps the first aspect to consider is the type 

of outcome variable under investigation. In epide-

miology interest lies in understanding patterns of 

disease in populations, so it is often the case that 

the outcome variable is either a count of disease 

events for area units (see for example Jarup et al. 

2002), or more simply a binary response indicat-

ing the presence or absence of disease at a given 

location (see for example Diggle et al. 2002). Less 

frequently in epidemiology (compared with other 

disciplines) outcomes may be measured on a con-

tinuous scale, for example, concentrations of car-

bon monoxide in an urban environment (Best et al. 

2000). Knowledge of the type of outcome variable 

is important since it determines the regression 

technique to be used and the options available to 

account for spatial dependence.

This chapter is divided into four sections. The 

first outlines the principles of linear, Poisson, and 

logistic regression in order to provide a background 

to the material presented later in the chapter. The 

second section discusses the options available to 

CHAPTER 7

Identifying factors associated with 
the spatial distribution of disease
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growth. To simplify the analysis, Great Britain was 

divided into 178 areas (after Stevenson et al. 2005) 

and median herd size calculated for each area. 

Similarly, area-level medians were calculated for 

each environmental variable relating to topogra-

phy, temperature, water, and moisture. A standard 

model-building approach was then followed. The 

relationship between herd size and each of the 

58 candidate explanatory variables was assessed 

using scatterplots and the Kruskal–Wallis test. 

Explanatory variables individually associated with 

herd size at an alpha level of less than 0.20 were 

included in a multivariate model. Using a back-

ward-stepwise selection process, a two-tailed t test 

was applied to test the null hypothesis that each of 

the estimated regression coefficients was equal to 

zero. Variables with regression coefficients not sig-

nificantly different from zero were removed from 

the model one at a time, beginning with the least 

significant, until the estimated regression coeffi-

cients for all retained explanatory variables were 

significant at the alpha level of 0.05. A check for 

collinearity was carried out by calculating the vari-

ance inflation factor for each variable (Armitage et 

al. 2002). The final model is shown in Table 7.1.

The results of this linear regression model 

show that median herd size is negatively associ-

ated with elevation and the maximum channel 3 

amplitude (a measure of emitted thermal radiation 

and reflected light), and positively associated with 

maximum NDVI (a measure of vegetative activity) 

and the bi-annual amplitude of VPD (a measure 

of atmospheric dryness). The results indicate that 

median herd sizes are largest at low elevations, in 

areas of high vegetative activity, and where there 

of a dataset where the outcome variable is continu-

ously distributed. If data locations are represented 

by easting and northing coordinates (xi and yi), we 

can model the mean of the outcome variable i as a 

function of location:

i � 
0
 	 

1
xi 	 

2
yi 	 i (7.2)

(7.2) specifies a tilted plane for the spatial trend in 

 with the amount of tilt dependent on the esti-

mated values of 
0
, 

1
,
 
and 

2
. Extending the model 

to include quadratic terms, for example:

i � 
0
 	 

1
xi 	 

2
xi

2 	 
3
xiyi 	 

4 
yi 	 

5 
yi

2 	 i (7.3)

allows the spatial trend to be non-linear. Note the 

following key assumptions behind this type of 

regression analysis:

For all values of 1.  there must be a correspond-

ing value of X (the assumption of existence).

The value of 2.  at any point is not affected by the 

value of  at any other point (independence).

The relationship between 3.  and X should be 

approximately linear (linearity).

The variance of 4.  about the estimated regression 

line is equal for all values of X (that is, the variance 

is said to be homoscedastic).

The residuals 5.  are normally distributed with a 

mean of zero (normality).

To illustrate, the British cattle TB data were 

used to develop a linear regression model of geo-

graphic and climatic factors influencing herd 

size. As some or all of the diet of British cattle is 

derived from pasture, the hypothesis might be that 

herd size is largest in those areas of the country 

where climatic conditions are suitable for pasture 

Table 7.1 Point estimates and standard errors of the regression coefficients in a multiple regression 
model of topography and climatic factors influencing the median size of cattle herds in 178 areas of 
Great Britian

Explanatory variable Coefficient SE t P-value

Intercept –1,207.0 152.3 –7.92 <0.01
Elevation (metres above sea level) –0.1121 0.0327 –3.43 <0.01
Max channel 3 amplitude (°K) –0.9802 0.2540 –3.86 <0.01
Max NDVI 0.7524 0.0889 8.46 <0.01
Bi-annual VPD amplitude (mbar) 0.2141 0.0598 3.57 <0.01

NDVI: Normalized Difference Vegetation Index. VPD: Vapour pressure deficit.
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(Breusch and Pagan 1979) to these data indicated 

that the observed heteroscedasticity was unlikely 

to have occurred by chance (Breusch–Pagan test 

statistic = 20.44; df = 4; p < 0.01). Lack of normality 

in the residuals (Fig. 7.1b) and lack of homogeneity 

in the variance of the residuals (Fig. 7.1a) represents 

violation of the assumptions of linear regression 

modelling, suggesting that the model should be re-

parameterized (see Section 7.6).

7.2.2 Poisson regression

When the outcome of interest is a count of the num-

ber of events occurring in a population of a given 

size, or a count of the number of events in relation 

to the number of person- or animal-years at risk, a 

is a large range in atmospheric dryness measured 

throughout the year. In short, these results are con-

sistent with the observation that herd sizes are 

largest in those areas of the country that provide 

conditions suitable for pasture growth.

With a basic model developed the next step is 

to evaluate it for: (1) ‘unusual’ data (i.e. individual 

data points that do not show the same relation-

ships as the bulk of the data), and (2) the distribu-

tion and pattern of variance in the error terms, and 

(3) non-linearity. The diagnostic plot series shown 

in Fig. 7.1 indicated that the residual terms were het-

eroscedastic; fitted values of greater than 60 show 

greater variation compared with the fitted values of 

60 or less (Fig. 7.1a) and were not normally distrib-

uted (Fig. 7.1b). Applying the Breusch–Pagan test 
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Figure 7.1 Regression diagnostics for the multiple linear regression model of median herd size in Great Britain. (a) Residuals versus fitted 
values, (b) normal Q-Q plot, (c) scale location plot, and (d) residuals versus leverage plot.
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terms (
0
 + 

1
x

1i + … + mxmi) represent an adjustment 

to account for disease counts that are either above 

or below that expected, based on time at risk. The 

error term, i, represents a log-normal measure of 

the residual risk of disease in area i after account-

ing for each of the m explanatory variables.

Be aware that aggregating the data in this way 

may inadequately represent the exposure-response 

relationship at the individual holding level, an effect 

known as cross-level or ecological bias (Piantadosi 

et al. 1988; Plummer and Clayton 1996). However, 

the value of such analyses is to identify areas 

where the incidence of disease is not accounted 

for by known risk factors (i.e. the explanatory 

reasonable assumption is that these counts follow 

a Poisson distribution (especially for diseases that 

are either non-contagious or rare).

To illustrate the regression technique appropri-

ate for Poisson-distributed data, the British cattle 

TB dataset was considered. For this analysis the 

total number of TB-positive holdings in each of the 

178 previously-described areas of Great Britain was 

determined, and the area-level median calculated 

for each of the environmental variables included 

in the dataset. The aim of the analysis was to 

determine which of the environmental variables, 

if any, explained the variation in the number of 

TB-positive holdings in each area.

The area-level count of TB-positive holdings is 

presented in Fig. 7.2 and a frequency histogram 

of these data is shown in Fig. 7.3. Fig. 7.2 shows 

that number of TB-positive holdings is greatest in 

the southwest of England, southwest Wales, and 

parts of the Midlands. The frequency histogram 

of these data shows a skewed distribution with 

most areas reporting no TB-positive holdings and 

a small number of areas reporting greater than 40 

TB-positive holdings.

Given the skewed distribution in Fig. 7.3 it is 

reasonable to assume that area-level counts of 

TB-positive holdings (Oi) follow a Poisson distribu-

tion. Furthermore, the observed area-level count 

is an estimate of the true number of TB-positive 

holdings in each area (
i
),

 
which is the product of 

exposure time in each area (ni) and the incidence 

rate of disease ( i):

i � ni i (7.4)

The incidence rate of TB among holdings can be 

parameterized as a function of a series of m explan-

atory variables,

log( i) � (
0
 	 

1
X

1i 	 ... 	 mXmi) 	 i (7.5)

so that an estimate of the true number of TB-positive 

holdings in each area is given by:

log( i) � log(ni) 	 (
0
 	 

1
x

1i 	 ... 	 mxmi) 	 i (7.6)

In (7.6) the term log(n
i
) is an adjustment known as 

an offset which accounts for areas with different 

times at risk. If all areas had the same number of 

holdings and were observed for the same amount 

of time, the offset would not be required. In (7.6) the 
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Figure 7.2 Choropleth map showing the number of TB-positive 
holdings in 178 areas of Great Britain. The boxed area shows 
the boundaries of the study area used for the logistic regression 
analyses described in Section 7.2.3.
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variables using scatterplots and Spearman’s rank 

correlation coefficients.

For parsimony, explanatory variables for area-

level TB counts were restricted to those related to 

atmospheric dryness and environmental tempera-

ture. Similar to the approach used for developing 

the linear regression model described in Section 

7.2.1, only those explanatory variables associated 

with area-level TB SMR at an alpha level of < 0.20 

at the bivariate level were included in the model, 

and a backward-stepwise selection process was 

used to obtain the final model. A check for collin-

earity was performed by calculating the variance 

inflation factor for each variable in the final model. 

The regression coefficients in the final model are 

presented in Table 7.2 and show that area-level TB 

risk is positively associated with the annual phase 

of VPD, the annual phase of air temperature, and 

mean air temperature, but negatively associated 

with maximum air temperature.

As with the linear regression model (Section 

7.2.1), the Poisson model was investigated for vio-

lation of any statistical assumptions using a series 

variables included in the model). These areas, once 

identified, might then be targeted for further inves-

tigative effort to establish, for example, if the unex-

plained excess (captured in the residual term) is 

uniformly or non-uniformly distributed across the 

individual units of interest.

A Poisson regression model of environmen-

tal factors influencing the count of TB-positive 

holdings in each of the 178 areas of Great Britain 

is described below. If Oi equals the number of 

TB-positive holdings in the ith area and ni is the 

total number of holdings at risk in the ith area, the 

expected number of TB-positive holdings in each 

area is given by:

 

(7.7)

The SMR for TB (i.e. the ratio of the observed number 

of TB-positive holdings to the number expected), 

can be compared with each of the explanatory 
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Figure 7.3 Frequency histogram showing the number of TB-positive holdings in 178 areas of Great Britain.



86   S PAT I A L  A N A LYS I S  I N  E P I D E M I O L O G Y

p might become very large or very small, the value 

of p can never extend beyond the bounds of zero 

and one. This transformation leads to the logistic 

model in which p can be expressed as a function of 

the m explanatory variables:

 
(7.9)

To illustrate this method a subset of the British 

cattle TB data was used; specifically a region in 

the southwest of England where the prevalence of 

TB-positive farms is relatively high (Fig. 7.2). The 

75 TB-positive holdings in this area were selected 

as cases and 225 control holdings were selected 

randomly from the 1,443 TB-negative holdings 

located within the boundaries of the study area. 

The location of case and control holdings is shown 

in Fig. 7.4.

In a study where the detection of spatial pattern is 

not of interest, cases and controls would be matched 

on the basis of known risk factors such as hold-

ing size, holding type, and location (Schlesselman 

1982). However, if the detection of spatial pattern is 

of interest, matching controls by location is not use-

ful since it would result in the spatial distribution 

of cases being the same (or similar) to that of the 

controls. A better approach, when the spatial distri-

bution of disease is of interest, is to select controls 

so their spatial distribution closely matches the 

distribution of the underlying population at risk 

(Diggle 2003). Where individual units of interest are 

grouped by area (e.g. state or county) one would: (1) 

establish the number of controls required (based 

on sample size calculations to achieve a specified 

level of study power); (2) determine the number of 

controls required from each area in proportion to 

of diagnostic plots similar to those shown in Fig. 7.1 

(plots not shown). Deviance residuals were used to 

evaluate the Poisson model in this way since they 

should be approximately normally distributed. The 

diagnostics provided evidence of extra-Poisson 

variation in the data (i.e. overdispersion) and lack 

of normality in the distribution of the deviance 

residuals, suggesting that the model should be re- 

parameterized. A discussion of the methods for add-

ressing these violations is provided in Section 7.4.

7.2.3 Logistic regression

As the level of resolution of our analyses becomes 

greater, that is, as the focus changes from a national 

to a regional or district level, the spatial unit of inter-

est typically shifts from areas to points. Instead of 

describing and explaining disease counts summa-

rized by area, the objective here is to identify fac-

tors that influence the risk of disease being present 

or absent at specific locations (e.g. farm or house-

hold) using the binary labels ‘positive’ (i.e. disease 

present) or ‘negative’ (i.e. disease absent).

When modelling binary data, explanatory vari-

ables are used to predict the probability of a study 

subject being disease positive (i.e. a ‘case’). To do 

this, logistic regression models are used where the 

logit transform of the probability of the outcome (p) 

is modelled as a linear function of a set of explana-

tory variables (Breslow and Day 1987):

 
(7.8)

Expressing the relationship between exposure and 

outcome in this way means that while the logit of 

Table 7.2 Point estimates and standard errors of regression coefficients in a fixed-effects Poisson regression model of climatic factors 
influencing area-level counts of TB-positive holdings in Great Britain

Explanatory variable Coefficient SE z P-value RR (95% CI)

Intercept –0.3551 0.0620 –5.72 <0.01
Annual phase of VPD (mbar) 0.3032 0.0512 5.92 <0.01 1.35 (1.22 – 1.50)
Mean air temperature (°K) 0.0475 0.0065 7.33 <0.01 1.05 (1.04 – 1.06)
Maximum air temperature (°K) –0.0127 0.0032 –3.91 <0.01 0.99 (0.98 – 0.99)
Annual phase of air temperature (°K) 0.0495 0.0056 8.90 <0.01 1.05 (1.04 – 1.06)

VPD: Vapour pressure deficit: Aikake Information Criterion=1489.
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air temperature, and minimum air temperature, 

but negatively associated with mean VPD and the 

phase of the tri-annual air temperature. It should 

be noted that the explanatory variables and the 

magnitude of their effect on the odds of a holding 

being TB-positive differ from those estimated in 

the Poisson regression model (shown in Table 7.2). 

This could either be the result of ecological bias, as 

aggregating data at the area level fails adequately 

to represent the exposure response relationship for 

individual holdings within each area, or it could 

reflect epidemiological differences in the rela-

tionships between TB risk and the explanatory 

variables in this sub-area compared to the overall 

relationships for Great Britain. This model will be 

used again in Section 7.3.

7.2.4 Multilevel models

As already discussed, one of the key assump-

tions of linear, Poisson, and logistic regression is 

that of independence. The value of any response 

should be unrelated to any other response in the 

dataset. While this assumption may be valid for 

the total number of study units in each area; and (3) 

select the required number of units from each area 

using spatially random sampling. The success of 

this technique depends on the distribution of units 

within each area being uniformly distributed. As a 

rule of thumb, the areas chosen should be as small 

as possible because the smaller the area the greater 

the likelihood that units will be distributed uni-

formly within each area.

In this analysis the outcome of interest was 

the TB status of a holding (positive or negative) 

and once again, for parsimony, the analysis was 

restricted to explanatory variables related to atmos-

pheric dryness and environmental temperature. 

Relationships between the outcome variable and 

each of the explanatory variables were visualized 

using box-and-whisker plots and quantified using 

the Kruskal–Wallis test. Variables were selected 

using the backward-stepwise approach and the 

final model is shown in Table 7.3.

Table 7.3 shows that the probability of a herd 

being TB-positive in this area is positively associ-

ated with the tri-annual amplitude and phase of the 

VPD, the VPD range, the amplitude of the annual 
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Figure 7.4 Point map showing the location of 75 TB-positive (•) and 225 TB-negative holdings (¤) in a region of the southwest of England.
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To identify the relative contribution of individ-

ual and group-level factors on the overall risk of 

lameness, regression techniques must be adapted 

to account for the multilevel nature of the data. 

The term ‘multilevel’ in this context refers to the 

nested (or clustered) structure of the data. In this 

example, study subjects (cows) are clustered within 

herds. The implication here is that cows from the 

same herd have characteristics in common and are 

therefore not independent. Examples of multilevel 

data are found in the fields of education, medi-

cine, and public health. Students are clustered 

within schools, patients are clustered within hos-

pitals, individuals clustered within families, and 

households clustered within geographical regions. 

Although these are all examples of single hierarch-

ies, multiple hierarchies are also possible (and com-

mon). For example, cows can be clustered within 

herds, herds clustered within farms, and farms 

clustered within regions. Depending on the under-

lying biological mechanism, subjects from within 

a cluster may be more alike than subjects from dif-

ferent clusters due to their shared environment. In 

a clustered dataset, observed values (e.g. measures 

of disease outcome) from within the same cluster 

are not independent. If this lack of independence 

is not accounted for, the population variance will 

be underestimated and it may be falsely concluded 

that a statistical association is present when in fact 

it is absent. To learn more about multilevel model-

ling the reader is referred to Goldstein (1995), Kreft 

and de Leeuw (1998), Snijders and Bosker (1999), 

many situations in epidemiological research there 

are situations where the inherent structure in the 

responses measured renders the assumption of 

independence invalid. For example, to identify risk 

factors for lameness in dairy cattle a researcher 

might conduct a prospective cohort study of cows 

in 25 dairy herds. Cow-level details are collected 

including breed, age, date of calving, and date and 

details of each lameness event (if these occur). At 

the end of the study the researcher finds that the 

incidence of lameness varies widely among the 25 

herds, which leads to the question: is the risk of 

lameness due to factors operating at the individual 

cow level (such as age, breed, or foot conformation) 

or the herd level (such as condition of farm race-

ways or the level of patience exercised by the herd 

manager)?

The most likely answer to this question is that 

the risk of lameness is due to a combination of both 

cow- and herd-level factors. Working out the con-

tribution of each of these sources of variation on 

lameness risk is useful when attempting to control 

disease. If most of the variation in disease risk is 

due to individual (cow) level factors, then address-

ing individual-level exposures (e.g. age, breed, 

stage of lactation, and condition of feet) should be 

the most effective way to manage the problem. If 

on the other hand group-level (i.e. herd) factors 

account for most of the variation in disease risk, 

then attention to group-level exposures (e.g. con-

dition of farm raceways) should provide a more 

 effective disease management strategy.

Table 7.3 Point estimates and standard errors of regression coefficients in a fixed-effects logistic regression model of climatic factors 
influencing the presence of TB among holdings in a region of the southwest of England

Explanatory variable Coefficient SE t P-value OR (95% CI)

Intercept –130.7 45.43 –2.88 <0.01
VPD mean –0.1034 0.0314 –3.29 <0.01 0.90 (0.85–0.96)
VPD amplitude (tri-annual) 0.0802 0.0399 2.01 0.04 1.08 (1.00–1.18)
VPD phase (tri-annual) 0.2871 0.1215 2.36 0.02 1.33 (1.05–1.69)
VPD range 0.0294 0.0103 2.85 <0.01 1.03 (1.01–1.05)
Temperature amplitude (annual) 0.0929 0.0322 2.89 <0.01 1.10 (1.03–1.17)
Temperature minimum 0.0485 0.0155 3.13 <0.01 1.05 (1.02–1.08)
Temperature phase (tri-annual) –0.0119 0.0035 –3.37 <0.01 0.99 (0.98–0.99)

VPD: Vapour pressure deficit: Aikake Information Criterion=297.
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the random variables U
0j and ij are mutually 

independent.

 
(7.13)

Another type of multilevel model is a random 
slopes model in which regression coefficients for 

each of the m explanatory variables are estimated 

for each level 2-unit. This allows the influence of 

each covariate to vary for each level-2 unit. Models 

with random slopes and random intercepts are 

possible. For further details see Browne (2005).

An example will help to explain these ideas fur-

ther. An observational study was conducted to 

identify risk factors for TB in British cattle. Thirty-

two holdings provided data for this study. In the 

logistic regression model, holding was included as 

a random effect similar to, but not exactly the same 

as, the parameterization shown in (7.10) and (7.13). 

The holding-level random effect terms were sorted 

in ascending order and plotted (along with their 

95% confidence intervals), as shown in Fig. 7.5.

It is evident from Fig. 7.5 that the holding-level ran-

dom effect terms are centred around a log odds of 

zero, which is expected, given that the distribution 

of the random-effect terms was specified as having 

a mean of zero (7.13). Of greater interest (in terms 

of providing insight into potential options for con-

trolling TB in this population) is the variability of 

the random-effect terms. The random-effect terms 

in Fig. 7.5 are relatively small for some holdings 

(e.g. holdings 84, 14, and 24) whereas in others they 

are relatively large (e.g. 23, 53, and 72). This implies 

that there are (unmeasured) holding-level effects 

operating in holdings 84, 14, and 24 that reduce 

the individual cow-level risk of TB. Similarly, there 

are unmeasured, holding-level effects increasing 

the risk of TB for cattle in holdings 23, 53, and 72. 

Although it has been established that holding-level 

effects are present and that they vary among herds, 

their exact nature cannot be determined from the 

data. For example, important holding-level effects 

for TB might include the cattle purchasing behav-

iour of the herd manager or the proximity of the 

farm to vectors of TB. A rational approach in this 

situation would be to compare management prac-

tices in holdings identified as ‘high’ and ‘low’ risk 

Leyland and Goldstein (2001), Browne (2005), or 

Gelman and Hill (2006).

What does all of this have to do with spatial epi-

demiology? Tobler’s First Law of Geography states 

that ‘Everything is related to everything else but 

near things are more related than distant things’. 

As discussed in Chapter 2, subjects that are close 

in space are likely to be similar and spatial proxim-

ity therefore represents a form of clustering (in the 

same way that cows are clustered within a herd 

and students are clustered within schools).

For outcomes measured on a continuous scale, 

the simplest multilevel model is a variance-com-

ponents model. This is a variation of linear regres-

sion with the key difference being that the variable 

defining the cluster is treated as a random effect. 

Consider a study which monitors Yij, responses 

from i individuals that reside within j clusters (that 

is, there are i level-1 units and j level-2 units). These 

data can be expressed as a random intercepts 

model where Yij is the sum of a random intercept 

for the level-2 units j, 
0j, and the residual effect for 

the level-1 units within the level-2 units, ij:

Yij � 
0j 	 ij (7.10)

Assuming the ij have a mean of zero, the term 
0j 

can be thought of as the mean of each of the level-2 

units. Groups where 
0j is high tend to have (on 

average) high values of Yij and groups where 
0j is 

low tend to have (on average) low values of Yij. The 

level-2 component of (7.10) can be broken down into 

two components:

0j � 
00

 	 U
0j (7.11)

where 
0j depends on 

00
 (the level-2 intercept) 

and U
0j (the level-2 error term which has a mean 

of zero). In (7.11) 
00 

represents the grand mean for 

the population (the mean of the intercepts) and U
0j 

is the error term for level-2 (the deviation of each 

group mean from the grand mean), which has a 

mean of zero. When U
0j is large the conclusion 

is that there are large differences in Yij between 

groups. Combining (7.10) and (7.11) results in:

Yij � 
00

 	 U
0j 	 ij (7.12)

and it is assumed that the level-2 (group) effects 

have a mean of zero and variance su0
, the level-1 

effects have a mean of zero and variance s , and 
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The ICC provides a measure of the proportion of 

the variance in the outcome between the level-2 

units. In a study where students (the level-1 units) 

are grouped within schools (the level-2 units), an 

ICC of 0.15 would mean that 15% of the variation 

in the outcome measure was due to differences 

between schools and 85% of the variation was due 

to differences between students.

Spatial proximity should be regarded as a 

form of clustering. When modelling spatial data 

a similar approach is adopted to that described 

in this section, the key difference being that the 

covariance matrix of the random-effect term is 

replaced with one incorporating the spatial struc-

ture of the data.

7.3 Accounting for spatial effects

In Chapter 2 the concepts of first-order (trend) and 

second-order (local) spatial effects were introduced 

as terms for describing the spatial characteristics 

of data. The term ‘first-order’ is used to describe 

in order to identify more precisely the exact nature 

of the differences between the two groups.

A basic measure of the degree of dependency in 

multilevel data is the intraclass correlation coeffi-

cient (ICC, r). To continue with the model shown in 

(7.12), the total variance of Yij in the data is equal to 

the sum of the level-2 and level-1 variances:

var(Yij) � s 2
u0

 	 s2 (7.14)

The covariance between the responses of two 

level-1 units in the same level-2 unit j is equal to 

the variance of the contribution U
0j shared by these 

level-2 units:

cov(Yij,Yji) � 2
u0

 (7.15)

and the correlation between values of two ran-

domly drawn level-1 units in the same, randomly 

drawn level-2 unit is the ICC:

 
(7.16)
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Figure 7.5 Caterpillar plot showing the point estimates and 95% confidence intervals of the holding-level random effect terms from a 
logistic regression model of individual cow and holding-level risks for TB in Great Britain. The numbers listed above each data point are the 
identifiers for each holding that took part in the study.
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When dealing with point data, a variogram 

computed from the residuals is a useful way of 

identifying the presence of residual spatial autocor-

relation. Fig. 7.7 shows a binned, omnidirectional 

variogram using the standardized residuals from 

the fixed-effects logistic regression model shown 

in Table 7.3. The dashed lines show the pointwise 

95% limits constructed from 999 simulations where 

the residuals were randomly allocated to the case 

and control holding locations, and the empiri-

cal variogram computed for each simulation. The 

variogram for the observed data lies within the 

95% limits throughout the plotted region, provid-

ing no evidence of unaccounted-for second-order 

structure in the data. This finding in itself provides 

important information in terms of understanding 

the between-holding transmission dynamics of TB 

large-scale variations in the mean of the outcome 

of interest due to location or other  explanatory var-

iables, while ‘second-order’ describes small-scale 

variation due to interactions between neighbours. 

The regression methods described here (linear, 

Poisson, and logistic) provide a means of quantify-

ing first-order effects. Once the first-order effects 

have been accounted for, second-order effects can 

be investigated.

To identify the presence of unaccounted-for 

second-order effects, the residuals from each 

of the regression models developed should be 

examined for evidence of spatial autocorrelation 

using the methods described in Chapter 4. If there 

is no evidence of autocorrelation in the residu-

als then there is little point in trying to account 

for spatial dependency. In this case a model that 

does not account for spatial dependency should 

provide a satisfactory description of the data. If a 

second-order spatial pattern is evident in the resid-

uals, the model can be extended to account for it. 

In this instance, a multilevel model is applied to 

the data treating spatial proximity as a form of 

clustering.

To illustrate this approach the residuals from the 

fixed effects Poisson model described in Section 

7.2.2 were evaluated. As a first step, and informal 

check, the residual terms were plotted as a choro-

pleth map (Fig. 7.6). This map showed aggrega-

tion of positive-sign residuals in the west of the 

Midlands and parts of the southwest of England. 

Confirmation of the presence of spatial autocorrel-

ation in the residuals was provided by the Moran’s 

I statistic (I = 0.55; p < 0.01). Recall from Chapter 

4 that two items of data are required to calculate 

the Moran’s I statistic: (1) a vector quantifying the 

outcome of interest for each area (in this case the 

area-level residuals), and (2) a spatial contiguity 

matrix defining each area’s neighbours. In this 

example, the contiguity matrix was based on adja-

cency (i.e. neighbours were defined as areas shar-

ing a common border). It was concluded, from the 

Moran’s I statistic and Fig. 7.6, that the residuals 

from the Poisson regression model were spatially 

autocorrelated, indicating a lack of independence 

in the data (a violation of one of the assumptions 

of regression modelling) and that the model should 

be re-parameterized.
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Figure 7.6 Choropleth map showing the spatial distribution of 
the area-level standardized residuals from the fixed-effects Poisson 
model of area-level TB risk in Great Britain shown in Table 7.2 
(see colour plate).
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7.4 Area data

Typically there are two goals in modelling area 

data. Firstly, to quantify the influence of fixed 

effects on the level of disease within each area of a 

region under study and secondly, to identify areas 

where there are higher than expected counts of dis-

ease after the influence of specified fixed-effects 

have been accounted for. A number of techniques 

have been described to achieve these goals, ranging 

from frequentist approaches, which provide a glo-

bal summary of the strength of area-to-area effect 

(see for example Walter et al. 1999), to full Bayesian 

mixed-effects models where area-level spatially 

correlated random effects are determined (see for 

example Toledano et al. 2001; Jarup et al. 2002).

This section focuses briefly on frequentist 

approaches to modelling area data and pro-

vides a more detailed description of the Bayesian 

in this area of Great Britain. After adjusting for the 

effect of various measures of atmospheric dryness 

and environmental temperature, there was no evi-

dence of small-scale spatial pattern in the unex-

plained component of disease risk around any 

arbitrarily selected holding. This implies that (for 

this subset of the data at least) the risk of a herd 

being TB-positive is more dependent on herd-level 

characteristics (e.g. aspects of herd management), 

than on proximity to other TB-positive holdings. 

Given the absence of second-order effects, it may be 

that additional explanatory variables are required 

to account for the localized spatial pattern (that is, 

aggregation of TB-positive holdings in a particular 

area of the study region). Kernel smoothed inten-

sity plots of the residuals from the fixed-effects 

model provide a starting point for investigating 

these influences further.
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Figure 7.7 Binned omnidirectional variogram computed using the standardized residuals derived from the fixed-effects logistic regression 
model of TB risk shown in Table 7.3. The dashed lines show the pointwise 95% limits constructed from 999 simulations where the residuals 
were randomly allocated to the case and control holding locations, and the empirical variogram computed for each simulation.
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used where observations are explained in terms 

of other, nearby observations. The covariance 

structures for CAR, SAR, and MA models are as 

follows:

 
(7.18)

 
(7.19)

MA:  � (I 	 W) D(I 	 W)T s2 (7.20)

In (7.19), (7.20), and (7.21)  and  are scalar param-

eters (estimated from the data), W is a weighted 

contiguity matrix, and D is a diagonal matrix 

used to account for non-constant variance of the 

marginal distributions. For each approach the spa-

tial autocorrelation coefficient  provides a single 

measure of the strength of the interaction between 

neighbours after accounting for the explanatory 

variables included in the model. When the spatial 

contiguity matrix has been standardized to have 

row sums of unity,  will range from –1 to 	1.

In Section 7.2.1 the relationship between median 

herd size in 178 areas of Great Britain and a set of 

environmental variables was explored (Table 7.1). 

Moran’s I, computed for the residuals from the lin-

ear regression model shown in Table 7.1, provided 

evidence of spatial autocorrelation (results not 

shown). Table 7.4 shows the results from the same 

model with the key difference being that a CAR 

approach has been used to account for spatial auto-

correlation in the data. Use of Moran’s I statistic 

on the residuals from a linear model may, in some 

circumstances, not be valid. For further details the 

methods that have been widely applied to spatial 

 epidemiological problems in recent years (Lawson 

et al. 1999a).

7.4.1 Frequentist approaches

The first part of this chapter outlined the con-

cepts behind linear, Poisson, and logistic regres-

sion modelling. These techniques represent the 

first phase of a spatial model-building exercise, 

allowing variables that explain all or part of the 

broad-scale (first-order) change in the mean of the 

outcome under investigation to be identified. As 

outlined in Section 7.3, the next step is to examine 

the fitted model for evidence of spatial autocorrel-

ation in the residuals and, if present, to extend the 

model to account for this spatial dependency. In 

this instance, the linear regression model defined 

in 7.1 can be extended as follows:

i
 � 

0
 	 

1
x

1i 	 ... 	 mxmi 	  	 i (7.17)

where, 
i
 is the outcome variable measured at loca-

tion i, 
0
 	 

1iX1i 	 ... 	 miXmi represent the mean of 

the outcome variable at location i, and  is a nor-

mally distributed random effect term with mean of 

zero and covariance matrix ,  ~ N(0, ).
In a frequentist setting, three types of spatial 

covariance structures can be used to define : con-

ditional autoregressive (CAR), simultaneous autore-

gressive (SAR), and moving average (MA) models. 

In time-series analyses, autoregressive models are 

developed where observations are explained in 

terms of other observations that occurred in the 

recent past. For spatial data, a similar approach is 

Table 7.4 Point estimates and standard errors of the regression coefficients in a multiple 
conditional autoregressive (CAR) regression model of climatic factors influencing the median size 
of British cattle herds

Explanatory variable Coefficient SE t P-value

Intercept –1,061.0 158.4 –6.69 <0.01
Elevation –0.0696 0.0329 –2.11 0.03
Channel 3 amplitude (bi-annual) –0.8047 0.2930 –2.74 <0.01
NDVI maximum 0.6711 0.0933 7.19 <0.01
VPD amplitude (bi-annual) 0.1077 0.0669 1.61 0.11

NDVI: Normalized Difference Vegetation Index, VPD: Vapour pressure deficit.
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(2001) conclude that it is important to account for 

spatial autocorrelation in health studies.

7.4.2 Bayesian approaches

A considerable literature has developed around 

Bayesian approaches to modelling disease counts at 

the small-area level (Manton et al. 1981; Tsutakawa 

1988; Besag et al. 1991; Marshall 1991b; Clayton 

and Benardinelli 1992; Breslow and Clayton 1993; 

Lawson 1994; Ghosh et al. 1998). Central to this 

method is the inclusion of random-effect terms to 

account for unobserved, spatial features within the 

data. The appeal of this approach is that rather than 

producing a single (global) spatial autocorrelation 

coefficient (as in the case of the CAR, SAR, or MA 

approaches described in Section 7.4.1), spatially cor-

related random-effect terms are estimated for each 

area unit, thereby allowing the analyst to identify 

aggregations of spatial units where the incidence 

(or prevalence) of disease is not explained by the 

model.

For an overview of Bayesian methods in an 

epidemiological context, the reader is referred 

to either Spiegelhalter et al. (2002), or Lawson 

et al. (2003). Spiegelhalter et al. (2002) describes 

the Bayesian approach with particular reference 

to the analysis of clinical trial data. Lawson et 
al. (2003) describe Bayesian methods for disease 

mapping. For discussions of the methodological 

issues related to spatial epidemiology the reader 

is referred to Clayton and Kaldor (1987), Besag et 

al. (1991), Clayton and Benardinelli (1992), Cressie 

(1992), Devine et al. (1994a; 1994b), Pickle et al. 

(1996), Waller et al. (1997), Xia et al. (1997), Conlon 

and Louis (1999), Elliott et al. (2000), Banerjee et al. 

(2004), Gotway (2004), Waller and Gotway (2004), 

and Lawson (2006a).

Multilevel Bayesian models have been used 

to investigate the spatial distribution of testicu-

lar and prostate cancer in Britain (Toledano et al. 

2001; Jarup et al. 2002), breast cancer in Greece 

(Vlachonikolis et al. 2002), insulin-dependent 

diabetes mellitus in Austria (Schober et al. 2001), 

stroke and cardiovascular disease in Great Britain 

(Maheswaran et al. 2002), multiple sclerosis in Italy 

(Pugliatti et al. 2002), low birth weights in Papua 

New Guinea (Müller et al. 2002), malaria in South 

reader is referred to Ripley (1981) and Waller and 

Gotway (2004).

From a comparison of the fixed-effects model 

(Table 7.1) and the CAR model (Table 7.4), it is 

apparent firstly, that the estimated regression coef-

ficients are closer to zero in the CAR model than 

in the fixed-effects model and secondly, that the 

estimated standard errors for all explanatory vari-

ables are larger in the CAR model. This is because 

in the CAR model, part of the variation in the data 

is explained by the spatial component of the model. 

The global spatial autocorrelation coefficient esti-

mated for these data (  = 0.166) is indicative of 

weak to moderate correlation in herd size in areas 

defined as adjacent.

Residuals from the CAR model (as well as those 

from SAR and MA models) should follow a distri-

bution that is approximately independently normal 

and should have constant variance. The diagnostic 

plot series described in Section 7.2.1 was applied 

to these data and confirmed this to be the case 

(results not shown). Moran’s I statistic, computed 

using the residuals from the CAR model, provided 

a check to ensure that all spatial dependency in 

the data had been accounted for. In this instance, 

the null hypothesis of no spatial autocorrelation 

at the alpha level of 0.05 (I = –0.08; P = 0.08) was 

accepted.

Examples of the use of CAR and SAR models 

in the epidemiological literature include stud-

ies of regional variations in cancer incidence in 

Ontario, Canada (Walter et al. 1999), the relation-

ship between exposure to air pollution and socio-

economic status in Hamilton, Ontario (Jerrett et al. 

2001) and early childhood mortality in São Paulo, 

Brazil (Antunes and Waldman 2002). In their study, 

which investigated regional variations in cancer 

incidence, Walter et al. (1999) conclude that there is 

little change in the estimated risk coefficients after 

accounting for spatial autocorrelation, and that 

there are no areas of the province with systemati-

cally different cancer risks once known risk factors 

have been accounted for. In contrast, Jerrett et al. 

(2001), using a SAR approach, found that the sig-

nificance of socio-economic indicators as predic-

tors of particulate air pollution in Hamilton varied 

according to whether or not the model was adjusted 

to account for spatial autocorrelation. Jerrett et al. 
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on the priors specified for 
 2 and 2. Large priors 

for 
 2 relative to 2 allow Si to show wide varia-

tion (resulting in little spatial smoothing) whereas 

small priors for 
 2 relative to 2 forces all of the 

spatial heterogeneity terms to be similar (resulting 

in greater spatial smoothing). In practice, 
 2 and 2 

are assigned prior distributions (hyperpriors) with 

a gamma distribution. Benardinelli et al. (1995), 

Best et al. (1999), and Richardson and Monfort 

(2000) discuss issues associated with the param-

eterization of hyperpriors in a spatial modelling 

context, concluding that the sensitivity of proposed 

models should be tested against a range of hyper-

prior specifications.

The study by Stevenson et al. (2005) illustrates 

the Bayesian hierarchical approach to modelling 

spatial data and provides an example of the add-

itional insights that can be achieved by accounting 

for (and describing) spatial dependence in a data-

set. These authors investigate factors influencing 

the distribution of BSE cases in Great Britain for 

cattle born either before or after the introduction of 

the July 1988 ban on feeding meat and bone meal 

to ruminants. Models are developed to quantify 

the effect of the following variables on the number 

of BSE-affected cattle in each of 178 areas of Great 

Britain during the two phases of the epidemic: (1) 

the ratio of dairy to non-dairy cattle; (2) the ratio of 

pigs to cattle; and (3) the northing of an area’s cen-

troid. Pig-to-cattle ratio is used as a covariate in an 

attempt to account for the proportional increase in 

post-control BSE counts from the east of the coun-

try, the hypothesis being that high-protein concen-

trate feeds produced in areas with large numbers 

of pigs (predominantly in the east of England) con-

taminates cattle feed manufactured and distrib-

uted in those areas, resulting in higher risk ratios 

for BSE.

The model building approach adopted by these 

authors follows the approach outlined in this chap-

ter. Firstly, fixed-effect models are developed and 

then, owing to the presence of significant spatial 

autocorrelation in the residual terms, Bayesian 

mixed-effects models accounting for the structured 

(spatially correlated) and unstructured heteroge-

neity in the data are developed. A series of spa-

tial contiguity matrices are considered, including 

those based on contiguity and distance. To account 

Africa (Kleinschmidt et al. 2002), and BSE in Great 

Britain (Stevenson et al. 2005).

In the discussion of models for Poisson-

distributed outcomes in Section 7.2.2 it was 

explained that the mean number of disease events 

in spatial unit i can be explained in terms of m area-

level covariates (7.6). In a Bayesian context, non-

 informative prior distributions can be assumed for 

the intercept 
0
 and each of the m regression coef-

ficients (
1
, …, m). The exponent of i represents 

the residual relative risk in area i after adjusting 

for the m covariates included in the model. i is 

interpreted as reflecting the residual variability 

between areas due to unknown or unmeasured 

risk factors. Unknown risk factors often vary in 

space, which in turn induces spatial correlation 

between the observed disease counts in each area 

and its neighbours. To account for this correlation 

it can be assumed that the unexplained variation 

comprises two parts; (1) a structured (spatially 

correlated); and (2) an unstructured (spatially ran-

dom) component. An intermediate distribution of 

the log risk ratios, ranging from prior independ-

ence (unstructured heterogeneity) to prior local 

dependence (structured heterogeneity), is known 

as a convolution Gaussian prior (Besag 1989; Besag 

and Mollié 1989; Besag et al. 1991; Mollié 1996). In 

this context, the model may be parameterized as:

log( i) � log(ni) 	 (
0
 	 

1
x

1i 	 ... 	 mxmi) 

     	 Ui 	 Si 	 i 
(7.21)

In (7.21), Si represents the structured (spatially 

correlated) random effects and Ui represents the 

unstructured random effects for each of the i areas. 

It is usual to assume a spatially structured prior 

distribution for the structured component of the 

random effects. Various choices exist, but the most 

popular is a special case of the CAR model described 

by Besag et al. (1991). This models the log risk ratio 

in area i conditional on the risks in all other areas 

as being normally distributed about the weighted 

mean of the log risk ratio in the remaining areas, 

with the sum of the weights being inversely pro-

portional to the variance 2. The unstructured het-

erogeneity component Ui is parameterized as being 

normally distributed with mean zero and variance 
2. The strength of the ‘mix’ of structured and 

unstructured heterogeneity components depends 



96   S PAT I A L  A N A LYS I S  I N  E P I D E M I O L O G Y

95% credible interval 1.00–1.02) and had a positive 

influence on BSE risk for the post-control cohort 

(relative risk 1.06, 95% credible interval 1.04–1.08), 

consistent with the stronger effect of cross-contam-

ination as a determinant of disease after the July 

1988 feed ban. Choropleth maps of area-level risk 

ratios attributable to the structured heterogene-

ity terms from the mixed-effects model identified 

areas in the east, north, and southeast of England 

where there were (unmeasured) spatial aggrega-

tions of BSE risk not explained by dairy-to-non-

dairy ratio, pig-to-cattle ratio, or area northing (Fig. 

7.9b). Stevenson et al. (2005) speculate that the dis-

tribution of the unmeasured, spatially aggregated 

influences are consistent with the distribution of 

feed mills and/or compounders who failed fully to 

comply with the directives of the legislated control 

measures. The strength of this analytical approach 

for edge effects the ratio of the length of each area’s 

coastline to its total perimeter was determined, 

and the weights specified from the contiguity 

matrix multiplied by one minus the coastline-

to-perimeter ratio for each district pair (Lawson 

2006a). Correcting for edge effects produced risk 

ratios that were closer to unity, compared with 

those where no correction was made. Correcting 

for edge-effects therefore provided a more conser-

vative estimate of the magnitude of the risk ratios 

for each of the fixed effects.

Details of the final models are shown in Table 7.5 

and box-and-whisker plots of the estimated risk 

ratios for both the fixed- and mixed-effects models 

are shown in Fig. 7.8.

Table 7.5 and Fig. 7.8 show that unit increases in 

area-level pig-to-cattle ratio did not influence BSE 

risk for the pre-control cohort (relative risk 1.01, 

Table 7.5 Posterior means and standard deviations of the regression coefficients in the mixed-effects models of 
factors influencing area-level relative risk of bovine spongiform encephalopathy (BSE). Reproduced from Stevenson 
et al. (2005), with permission from Preventive Veterinary Medicine

Explanatory variable Posterior mean SD MC errora RR (95% CI)

Pre-control cohortb

Intercept 0.5224 0.2888 0.03
Ratio dairy: non-dairy 0.0239 0.0055 < 0.01 1.02 (1.01–1.04)
Ratio pigs: cattle 0.0102 0.0073 < 0.01 1.01 (1.00–1.02)
Northingc –0.2518 0.0754 0.01 0.78 (0.67–0.89)d

Heterogeneity
 Structurede 0.4133 0.0777 0.01
 Unstructurede 0.1546 0.0607 < 0.01

Post-control cohortf

Intercept 0.8138 0.1027 < 0.01
Ratio dairy: non-dairy 0.0255 0.0106 < 0.01 1.03 (1.00–1.05)
Ratio pigs: cattle 0.0571 0.0083 < 0.01 1.06 (1.04–1.08)
Northing –0.3756 0.0366 < 0.01 0.69 (0.66–0.72)
Heterogeneity
 Structurede 0.3653 0.0366 < 0.01
 Unstructurede 0.4467 0.0132 < 0.01

a Monte Carlo error.
b Structured heterogeneity terms based on a spatial contiguity matrix where areas are defined as neighbours if they 
share a common border.
c 100 km increments.
d Interpretation: for 100 km increases in the northing coordinate of an area's centroid, area-level risk of BSE was 
reduced by a factor of 0.74 (95% credible interval 0.61–0.89).
e Variance of heterogeneity term.
F Structured heterogeneity terms based on a spatial contiguity matrix where areas are defined as neighbours if the 
Euclidean distance between area centroids was less than 100 km.
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the issue of discontinuities that may legitimately 

exist in some situations, for example, at urban–

rural fringes, they do not account for the possibil-

ity that areas within a study region may also have 

smooth rate transitions. Developing this concept, 

Lawson and Clark (2002) describe a special type 

of spatial mixture model that allows for different 

forms of spatial variation, linked by a spatially 

varying weights matrix. Models of this type pro-

vide a flexible compromise between the fixed spa-

tial weighting scheme used by Besag et al. (1991) 

and the homogeneous risk class scheme used by 

Böhning and Schlattmann (1992), Schlattmann 

(1996a; 1996b).

7.5 Point data

7.5.1 Frequentist approaches

Models of spatial point data seek to quantify the 

influence of a set of explanatory variables on the 

is that it allows one to distinguish between fac-

tors fixed in their influence on BSE risk from area 

to area (i.e. dairy-to-non-dairy ratio, pig-to-cattle 

ratio, and northing) and unmeasured factors that 

varied spatially. Mapping these unmeasured fac-

tors indicates where the presence of disease was 

unaccounted for, telling authorities where to look 

for previously unrecognized BSE risks. Of particu-

lar note is that these areas (as shown in Fig. 7.9b) 

were not in those areas of the country where the 

SMR for BSE was highest (Fig. 7.9a).

Mixture models, as described by Böhning and 

Schlattmann (1992) and Schlattmann (1996a; 

1996b), are a variation of the Bayesian hierarchical 

models described in this chapter and assume that 

areas within a study region can be grouped into 

discrete homogeneous risk classes. These models 

force those areas within a group to have the same 

structured heterogeneity terms, imposing a dis-

continuity in spatially-structured risk between one 

group and the next. While these models address 
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Figure 7.8 Box-and-whisker plots showing the 95% credible interval of the relative risk estimates for the fixed-effect and mixed-effects 
model of area-level bovine spongiform encephalopathy (BSE) risk for the pre- and post-control cohorts. Adapted from Stevenson et al. (2005), 
with permission from Preventive Veterinary Medicine.
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distribution of point events (Lawson 1989; Baddeley 

and Turner 2000; Diggle 2003). HEPP models are 

based on three assumptions. Firstly, individuals 

within a specified study population behave inde-

pendently with respect to disease propensity, sec-

ondly, that the population at risk from which cases 

arise has a continuous spatial distribution, and 

thirdly, case events are unique in that they occur as 

single, spatially separate events. Within this frame-

work the density of case events at any point can be 

parameterized as:

(y) �  · g(y) · f(y; ) (7.22)

occurrence of events throughout a study region, 

taking into account spatial dependency. Typically 

these techniques have been applied to putative 

sources of hazard where the number of disease 

events in a region of study are enumerated for a 

defined period and the spatial distribution of cases 

in relation to a hypothesised hazard is assessed 

(see for example Diggle and Rowlingson 1994; 

Lawson and Williams 1994; Diggle and Elliott 

1995; Viel et al. 1995, Lawson and Clark 1999).

Heterogeneous Poisson Process (HEPP) tech-

niques provide a way of modelling the spatial 
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Figure 7.9 Bovine spongiform encephalopathy (BSE) in the population of cattle present in Great Britain from 30 June 1986 to 30 June 1997. 
Choropleth maps showing: (a) area-level standardized mortality ratios (SMRs) for BSE in the post-control cohort (cattle born between 18 July 
1988 and 30 June 1997), and (b) the exponential structured heterogeneity terms from the mixed-effects model for the post-control cohort. 
Reproduced from Stevenson et al. (2005), with permission from Preventive Veterinary Medicine.
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implemented in R (R Development Core Team 

2006) provides functions for fitting HEPP models. 

Although primarily intended for ecological appli-

cations, this package offers a set of tools eminently 

suitable for applications in spatial epidemiology.

An alternative to HEPP techniques is provided 

by generalized additive models (Hastie and 

Tibshirani 1990). For binary responses a general-

ized additive model may be expressed as an addi-

tive logistic model:

 
(7.26)

In (7.26) a represents the intercept, b
1
x

1i + … + bmxmi 

represent the regression coefficients for m explana-

tory variables and S(yi) provides a measure of the 

risk of disease at location y after accounting for the 

m explanatory variables. In a generalized additive 

model setting the only assumption about S is that it 

is a smooth function of y. Kelsall and Diggle (1998) 

use this approach to investigate the spatial distri-

bution of cancer diagnoses in Walsall, an area in 

the north of England. They conclude that although 

the generalized additive model approach is com-

putationally more demanding than other methods 

it has the advantage of allowing any number of 

explanatory variables to be controlled for. There 

are few examples of the generalized additive 

model methodology in the medical and veterin-

ary spatial epidemiological literature. In contrast, 

the technique appears to be used relatively fre-

quently in marine biology to quantify aspects of 

fish abundance (Borchers et al. 1997; Bellido et al. 

2001; Zheng et al. 2002).

7.5.2 Bayesian approaches

Bayesian approaches may also be applied to the 

modelling of point data. Following on from the 

description provided in Section 7.4.2, each point in 

a region of study can be regarded as a set of indi-

vidual ‘areas’ and, depending on the nature of the 

outcome  variable measured at each point, any of 

the models discussed in Section 7.2 (linear, Poisson, 

or logistic) can be applied to the data. A contiguity 

matrix (based on distance) might then be used to 

In (7.22) represents the risk of disease across the 

entire study area, g(y) is a function representing the 

spatial distribution of the population throughout 

the study area, and f(y; ) is a relative risk function 

(which may include explanatory variables quanti-

fying the effect of factors influencing the probabil-

ity of disease at a given location, such as proximity 

to a hypothesized pollution source). A variety of 

relationships may be defined for the relative risk 

function f(y; ). Firstly, risk might vary with dis-

tance r from a specified source:

f(y; ) � 1 	 exp– r (7.23)

Alternatively, it might be appropriate to parame-

terize risk in terms of direction from a hypothesized 

source as well as distance (Lawson and Williams 

1994; Lawson 1995; Viel et al. 1995; Le et al. 1996):

 (7.24)

An attractive feature of the HEPP approach is 

that it can be used for focused clustering assess-

ments, where a cluster centre is identified a priori 
and a model developed to determine the signifi-

cance of this location as a cluster centre. In this 

situation, (7.22) can be re-parameterized as:

 
(7.25)

to describe the intensity of events around k centres 

located at yj. Here the function f(·) is replaced by a 

link function m. The distribution of events around 

each hypothesized cluster centre is defined by the 

cluster distribution function h
1
(·) which may be 

specified separately for each cluster. Lawson and 

Clark (1999) provide an example of this approach 

using infant lymphoma and leukaemia diag-

noses in Humberside, England. In agreement with 

the findings of earlier analyses of the same data 

(Cuzick and Edwards 1990; Diggle and Chetwynd 

1991), they find little support for a positive number 

of cluster centres.

HEPP models can be fitted within standard 

 generalized linear model packages using spe-

cial integration schemes (Berman and Turner 

1992; Lawson 1992; Baddeley and Turner 2000). 

The spatstat package (Baddeley and Turner 2002) 
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hosts. In a further study, Clements et al. (2006b) 

use binary logistic geostatistical models to predict 

schistosomiasis infection intensity in East Africa, in 

contrast to the earlier study where the aim was to 

develop a model explaining disease risk. Additional 

examples of the application of geostatistical models 

applied to the epidemiology of schistosomiasis are 

provided by Raso et al. (2005), Raso et al. (2006a), 

and Yang et al. (2005). Raso et al. (2006b), in a study 

of risk factors for hookworm infection among school 

children in a rural area of western Côte d’Ivoire, 

assume non-stationarity in the underlying spatial 

dependence, allowing it to vary as a function of both 

distance and location.

7.6 Continuous data

7.6.1 Trend surface analysis

Trend surface analyses involve the application of 

a polynomial function of the spatial coordinates 

of sample sites to the observed data values using 

ordinary least squares or non-parametric regres-

sion. Covariates other than location may be included 

in the model to further understand or explain spa-

tial variation. This technique is illustrated using 

the herd size data introduced in Section 7.2.1. As 

a first step the spatial structure of herd size was 

explored by looking at scatterplots of median herd 

size as a function of easting and northing coor-

dinates of an area’s centroid (Fig. 7.10), and add-

ing non- parametric regression curves to identify 

trends in the data. These plots showed that median 

herd sizes are greatest in the west (areas with an 

easting coordinate between 200 and 400 km) and 

in the north (areas with a northing coordinate 

between 500 and 800 km) of Britain. An image plot 

of predicted herd size, computed using the easting 

and northing coordinates of each area’s centroid 

as predictors in a non-parametric locally weighted 

(loess) regression model is shown in Fig. 7.11.

Fig. 7.11 provides a readily interpretable represen-

tation of the spatial distribution of median herd 

size throughout Great Britain, showing that larger 

herds (greater than 75 cattle) are located in the west 

of England, specifically in the counties of Somerset, 

Wiltshire, Dorset, and Cheshire, and in the south of 

Scotland. Although the loess model captures the 

account for second-order effects. While this is dir-

ectly analogous to the approach used to model area 

data and is conceptually simple, a major drawback 

with it is that the contiguity matrix can become 

extremely large (and complex) as the number of 

point locations in the dataset increases.

An alternative is to develop logistic geostatistical 

models of the form:

 
(7.27)

where y
i
 represents the location of each point. 

In (7.27) the term S(yi) represents a structured 

(spatially correlated) heterogeneity term that 

is allowed to vary continuously through space 

(rather than discretely as in the case of models 

generally used for area data) and is based on a 

zero mean Gaussian process with variance 
 2. 

The geoR (Ribeiro Jr and Diggle 2001; Diggle and 

Ribeiro Jr 2007), and geoRglm (Christensen et al. 

2002; Diggle and Ribeiro Jr 2007) packages imple-

mented within R provide functionality for fitting 

Poisson log-linear and binary logistic geostatisti-

cal models, respectively.

Diggle et al. (2002) apply a binary logistic linear 

geostatistical model to a study of risk factors for 

childhood malaria in Gambia, in which the presence 

of malarial parasites in a blood sample is parameter-

ized in terms of child-level covariates, village-level 

covariates, and separate components for residual

spatial and non-spatial extra-binomial variation. 

Diggle et al. (2002) conclude that the dominant com-

ponent of extra-binomial variation in these data 

is spatially structured, suggesting that the unex-

plained risk of malaria is due to environmental fac-

tors rather than non-spatial factors (such as familial 

susceptibility). Clements et al. (2006a) use a binary 

logistic geostatistical model as a tool for planning 

and implementing control programmes for schis-

tosomiasis in Tanzania. The authors use remotely 

sensed data to identify and quantify factors associ-

ated with the presence of disease in school children. 

Differences in the spatially correlated component 

of infection risk for Schistosoma haematobium and 

S. mansoni are identified and the authors conclude 

that these differences are due to environmen-

tal requirements of the respective intermediate 
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broad-scale spatial trend in herd size, it is reason-

able to assume that herd size might be spatially 

autocorrelated at small spatial scales due to factors 

such as the price of land, proximity to markets and 

feed companies, and climate. This possibility was 

investigated by constructing an empirical, omni-

directional variogram which provides evidence of 

spatial autocorrelation in median herd size up to a 

distance of around 80 km (Fig. 7.12a). To evaluate 

how well the loess model accounts for the second-

order properties in the data, a variogram based 

on the model residuals was constructed. The vari-

ogram shown in Fig. 7.12b is essentially flat, pro-

viding evidence that the loess trend surface model 

accounts for most of the second-order spatial vari-

ation in the data.

Moore (1999) uses trend surface analyses to 

identify the direction and speed of diffusion of an 

epidemic of raccoon-rabies in Pennsylvania, USA 

between 1982 and 1986. Acknowledging the cave-

ats involved in applying this technique to spatial 

data, Moore (1999) concludes that the technique 

is useful for removing the inherent noise in the 

reported data and helps to identify geographic 

‘corridors’ within Pennsylvania that are associ-

ated with higher rates of diffusion of the disease. 

Hanchette and Schwartz (1992) use trend surface 
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Figure 7.10 Scatterplots of median size of cattle herds in Great Britain as a function of the (a) easting coordinate of each area’s centroid 
and (b) northing coordinate of each area’s centroid.
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Figure 7.11 Image plot of predicted median herd size, computed 
using the easting and northing coordinates of each area’s centroid 
as predictors in a non-parametric locally weighted (loess) regression 
model.
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of C need to be estimated directly. This is done by 

considering the variogram functions developed to 

explore the second-order properties of the data (as 

discussed in Chapter 6).

Three variogram models are commonly used for 

stationary spatial processes: (1) spherical; (2) expo-

nential; and (3) Gaussian. In practice, a variogram 

is computed using the residuals from a fixed-

 effects model, and then some form of nonlinear 

least squares optimization is applied to derive a 

satisfactory model of the empirical variogram. For 

further details, and access to a comprehensive set 

of tools for applying these techniques, the reader 

is referred to the geoR package in R (Ribeiro Jr 

and Diggle 2001; Diggle and Ribeiro Jr 2007) 

or the SpatialStats module in S-Plus (Kaluzny 

et al. 1996).

Having developed a satisfactory variogram 

model for the error terms, a covariance matrix 

(based on the variogram model) can be included in 

the model parameterization. In effect this ‘corrects’ 

the parameter estimates and standard errors of the 

generalized least squares regression for second-

order effects. This approach is applied (for illustra-

tive purposes) to the herd size model. In Section 

7.2.1 a linear regression model of factors influen-

cing the median size of cattle herds in 178 areas 

throughout Great Britain was developed. Analysis 

analyses to assess geographic patterns in prostate 

cancer mortality in the United States, identifying 

a north–south trend thought to be consistent with 

the hypothesis that exposure to ultraviolet radia-

tion is protective against the disease.

7.6.2 Generalized least squares models

An assumption of trend surface analyses is that 

model residuals are (spatially) independent. While 

this is the case in the herd size analysis presented 

in the previous section there are many occasions 

when this is not the case, particularly when deal-

ing with environmental data such as rainfall or 

temperature. In this situation generalized least 

squares models provide the ability to account for 

lack of residual independence.

Given the general expression for a linear regres-

sion model shown in (7.1) it can be said (when mod-

elling spatial data) that the mxmi terms represent 

the first-order component of the spatial process 

and i represents a zero mean vector of errors with 

variance-covariance matrix C. Although i has a 

mean of zero, the values of i at different locations 

are not necessarily independent, having a covari-

ance function defined by the term C. To produce 

an appropriate spatial generalized least squares 

regression model for continuous data the elements 
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Figure 7.12 Omnidirectional variograms computed using (a) median herd size for each area and (b) the residuals derived from the loess 
model described in the text. The dashed lines in (b) show the pointwise 95% limits constructed from 999 simulations where the residuals 
were randomly allocated an area location and the variogram computed for each simulation.
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closer to zero and have larger standard errors, than 

the multiple linear regression model (Table 7.1). 

This occurs as a result of part of the variation in 

the data being accounted for by the presence of 

spatial autocorrelation and means that the esti-

mated effect of each of the explanatory variables 

on median herd size is not as large as in the first 

(simpler) analysis.

7.7 Discriminant analysis

In contrast to the regression methods discussed 

so far in this chapter, which seek a least-squares 

or error-minimizing description of epidemiologi-

cal data, discriminant analysis seeks to maximize 

some between- to within-sample variance or other 

measure of spread around the sample means. In 

this case the ‘samples’ are not dealt with as con-

tinuous variables but as categorical ones. Presence 

or absence of disease is clearly categorical but other 

epidemiological variables, such as incidence or 

prevalence, can be turned into a series of categories 

(low, medium, and high) without too much loss of 

information. Indeed, some continuous epidemio-

logical data such as malaria prevalence, are auto-

matically turned into risk categories by clinicians 

who recognize only a small set of distinct clinical 

outcomes and treatment options. It then becomes 

important to choose category boundaries that 

make clinical rather than statistical sense. Sample 

sizes that are too small may render some discrimi-

nant techniques inapplicable.

Discriminant analysis assumes a multivariate 

normal distribution of the descriptor data around 

each categorical sample mean. Although other dis-

tributions are theoretically possible, there appear to 

of the residual terms from this model showed that 

their variance was not constant (Fig. 7.1a). Fig. 7.13 

shows the empirical, omnidirectional variogram 

computed on the residual terms for the model pre-

sented in Table 7.1. Shown in Fig. 7.13 is an exponen-

tial model of the empirical variogram, computed 

using weighted least squares in the variofit func-

tion in the geoR package (Ribeiro Jr and Diggle 

2001; Diggle and Ribeiro Jr 2007). A generalized 

least squares model was applied to the data using 

the exponential variogram model to account for 

spatial autocorrelation in the data. The final model 

is shown in Table 7.6.

It can be seen that the generalized least squares 

model (Table 7.6), which accounts for spatial auto-

correlation, provides regression coefficients that are 
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Figure 7.13 Omnidirectional variogram for the median cattle herd 
size data.

Table 7.6 Point estimates and standard errors of the regression coefficients of a generalized 
least squares model of climatic factors influencing the median size of British cattle herds

Explanatory variable Coefficient SE t P-value

Intercept –598.1 163.0 –3.66 <0.01
Elevation –0.0633 0.0583 –1.09 0.27
Channel 3 amplitude (bi-annual) –0.0672 0.4162 –0.16 0.87
NDVI maximum 0.3926 0.0963 4.08 <0.01
VPD amplitude (bi-annual) –0.0005 0.0829 –0.01 0.99

NDVI: Normalized Difference Vegetation Index.
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equivalent mean defining the presence of the dis-

ease, then the multivariate measure of separation 

between these two means is the Mahalanobis dis-

tance, D2, defined as follows:

D2
12

 = (x̄
1
 – x̄

2
)'C–1

w (x̄1
 – x̄

2
)

 = d'C–1
w d  

(7.28)

where d = (x̄
1
 – x̄

2
), the apostrophe (‘) indicates

the transpose and C–1
w  is the inverse of the with-

in-groups covariance (dispersion) matrix Cw 

(Green 1978). Inspection of (7.28) shows that the 

Mahalanobis distance is no more than the squared 

Euclidean distance between two points in multi-

variate space (ED2
12 

= (x̄
1
 – x̄

2
)'(x̄

1
 – x̄

2
) adjusted for 

the covariance of variables (assumed to be the 

same) around each mean. Since probability is a 

non-linear but continuously declining function 

of increasing Mahalanobis distance it is possible 

to assign multivariate observations to the pres-

ence or absence category simply on the basis of 

their Mahalanobis distance values. Each obser-

vation is assigned to whichever category has the 

lower Mahalanobis distance value. However, it is 

usually helpful to make more probabilistic state-

ments of presence and absence. The Mahalanobis 

distance may be used within the formula for a 

multivariate normal distribution to define the 

probability directly (D2 is distributed as �2 with 

(v-1) degrees of freedom where v, as before, is the 

number of variables defining each centroid). This 

probability involves all the remaining terms of 

the multivariate probability distribution formula, 

but since it is usually the probability with which 

any particular multivariate observation belongs 

to each of a defined set of outcomes (e.g. pres-

ence or absence) that is required, it is more usual 

to normalize each probability by dividing it by 

the sum of all probabilities, so that the sum of all 

predicted probabilities is one. This calculation 

produces what are called ‘posterior probabilities’, 

defined for two groups, g = 1, 2 (e.g. presence/

absence), as follows:

( )
2
1

2

/2
1

2
/2

1

1|x
g

D

D
g

g

p e
P

p e

−

−

=

=
∑

be no applications of them in epidemiology. Many 

epidemiological data are clearly not multivariate 

normal but can be rendered more so by cluster-

ing the entire dataset on the basis of the descriptor 

variables. Most clustering algorithms emphasize 

between- to within-cluster differences and some 

even seek to maximize these differences. Thus, 

each of several clusters contributing to a dataset 

is more nearly multivariate normal than is the 

entire unclustered dataset. Formal tests for assess-

ing the multivariate normality of the clusters exist 

(Bartlett 1947) but are rarely used. Although the 

following discussion focuses on the discrimination 

of the presence or absence of a disease, the same 

approach can be applied to categorical incidence or 

prevalence data.

Discriminant analysis usually involves three 

steps. Firstly, the covariance of the predictor vari-

able values for a set of sample observations of 

known presence or absence status is calculated. 

This effectively defines the characteristics of the 

multivariate normal distribution around each cen-

troid. Secondly, these covariances are used to test 

the accuracy of discrimination of the observations 

that were used to define the multivariate distribu-

tions. Ideally, the original observations are divided 

into two groups: a ‘training set’ used to define the 

multivariate distributions in the first step and an 

independent ‘testing set’ to test the accuracy of 

discrimination based on the distributions defined 

in the second step. In the final step new areas are 

classified as ‘presence’ or ‘absence’ sites on the 

basis of the values for them of the same predictor 

variables that were selected in the first two steps. 

It is assumed that the accuracy of the predictions 

made in this third step is equivalent to that of the 

testing set sample in the second step. This is not 

guaranteed however, since the training and test-

ing set observations may have been collected in a 

different way or a different place from those of the 

new observations, and it is important to examine 

any indication of this.

In its simplest form, discriminant analysis 

assumes a common within-group covariance of the 

variables for all points defining both disease pres-

ence and absence. If x̄1v is the (column vector) mean 

of a multivariate distribution involving v variables 

that define the absence of a disease, and x̄
2v is the 
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characteristics, but different parts of a species 

range may also show more subtle differences, 

requiring separate multivariate descriptions of 

their environmental conditions. Separate cluster 

analysis of the environmental variables defining 

presence and absence is performed here using the 

k-means cluster algorithm of the SPSS statistical 

package (SPSS Inc. Chicago, Illinois). Each cluster 

(either for presence or absence) is then treated as a 

separate multivariate normal distribution with its 

own covariance characteristics, and the posterior 

probabilities are calculated by summing across all 

distributions. In the case of two groups only (one 

for presence and one for absence), (7.29) is modi-

fied as follows:
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C  (7.30)

where |C
1
| and |C

2
| are the determinants of the 

covariance matrices for groups one and two 

respectively. The Mahalanobis distances in (7.30), 

calculated from (7.28), are evaluated using the sep-

arate within-group co-variance matrices C1 and C2 

(Tatsuoka 1971). When there is more than a single 

class of presence or absence data (e.g. multiple clus-

ters) the summation in the denominator of (7.30) 

covers the entire set of g > 2 groups and there are 

as many posterior probability equations as there 

are groups. With unequal covariance matrices the 

discriminant axis (strictly speaking a plane) that 

separates the two groups in multivariate space is 

no longer linear and (7.30) then effectively defines 

the maximum likelihood solution to the problem 

(Swain 1978). Inclusion of prior probabilities makes 

these predictions Bayesian.

Clustering is usually beneficial in the analy-

ses described here and increases the fit of the 

and
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where P(1|x) is the posterior probability that obser-

vation x belongs to group 1 and P(2|x) the poste-

rior probability that it belongs to group 2 (Green 

1978) (the exponential terms in (7.29) are those of 

the multivariate normal distribution defining groups 

1 and 2). All other terms of the multivariate distri-

butions are the same in both the numerator and 

denominator and therefore cancel out (Tatsuoka 

1971). In (7.29), p
1
 and p

2
 are the prior probabilities 

of belonging to the same two groups respectively. 

In the absence of any prior experience it is usual 

to assume equal prior probabilities of belonging to 

any of the groups and therefore, in the simple case 

of two-group discrimination, p
1
 = p

2
 = 0.5.

It should be emphasized that normalization in 

(7.29) will produce an allocation to one or other of 

the categories regardless of whether or not an allo-

cation should be made. If for example, a new obser-

vation is a long way in multivariate space from 

any of the defined centroids, it will be allocated 

to one or other of them by the normalization step. 

It is best to avoid predictions in this case, and this 

may be done by deciding that observations with 

Mahalanobis distances greater than those seen in 

the training set should be assigned to a new cat-

egory indicating that no prediction is possible for 

them.

In general, output predictions are required in 

the form of images called ‘risk maps’ (maps of the 

probability of environmental suitability for the 

vector or disease in question). It is advisable to pro-

duce, with this output image, a second image of the 

Mahalanobis distance to the nearest cluster in the 

training set (i.e. the cluster to which each pixel is 

assigned). This image can then be examined to find 

areas where the Mahalanobis distances are very 

large and where predictions are therefore likely to 

be inaccurate.

As indicated earlier, (7.28) and (7.29) should be 

modified when the assumption of common covar-

iances is obviously invalid. Not only may areas of 

presence and absence differ in their environmental 
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reliable when there is the same number of posi-

tive and negative observations in the training set 

(McPherson et al. 2004). The AUC or ROC curve 

approach plots sensitivity against (1-specificity). It 

varies between zero and one with higher values 

indicating a better fit. Both kappa and AUC/ROC 

are calculated from the categorical predictions of 

the model but other accuracy statistics are based on 

its probabilistic predictions. The Kullback–Leibler 

(K–L) information or distance measure is a meas-

ure of the distance between a model and reality, 

and the smaller the distance the more the model 

captures that reality. Akaike (1973) showed that 

in practice the K–L distance could be estimated 

from the empirical log-likelihood function evalu-

ated at its maximum point, to produce the Akaike 

Information Criterion (AIC) which is defined as 

follows:

AIC = �2 log (�(û|y)) + 2K (7.31)

where log(ℓ(u|y)) is the value of the log-likelihood 

at its maximum point (i.e. the maximum likelihood 

estimate) and K is the number of estimated param-

eters in the model. The first term on the right-hand 

side of (7.31) will tend to decrease as the number of 

parameters in the model increases (generally mod-

els with more parameters fit datasets better than 

those with fewer parameters), whilst the second 

term (2K) will obviously increase. This achieves a 

balance between over-fitting and under-fitting a 

model.

A modification of the AIC is suggested by 

Hurvich and Tsai (1989) for situations where the 

sample size is small in relation to the number of 

fitted parameters. This modification, the corrected 

AIC (AIC
c
), is calculated as follows:

( )( )ˆ2log | 2
1

c

n
AIC y K

n K
⎛ ⎞= − λ + ⎜ ⎟− −⎝ ⎠

θ  (7.32)

where n is the sample size and all other terms are as 

in (7.31). In general, unless the sample size is large 

in relation to the number of estimated parameters, 

(7.32) is preferred over (7.31).

To illustrate, non-linear discriminant analysis 

was applied to the British cattle TB data. The data-

set used included records of all TB outbreaks (i.e. 

482, 0.01 degree resolution image pixels containing 

discriminant analysis models, but it should never 

be allowed to produce clusters with less than a 

 minimum number of data points since this results 

in badly defined covariance matrices (which 

sometimes cannot be inverted) and inaccurate 

predictions. A single faulty covariance matrix 

can affect all outputs of the discriminant analysis 

models.

In (7.30), the use of observed (generally training-

set) prior probabilities shifts the equi-probability 

contours towards the smaller groups, resulting in 

a larger proportion of assignments to the classes 

with larger group sizes. This shift generally 

increases predictive accuracy. Further details of 

multivariate analysis may be found in several use-

ful texts including Tatsuoka (1971), Green (1978), 

Krzanowski and Marriott (1995) and Legendre and 

Legendre (1998).

7.7.1 Variable selection within discriminant 
analysis

Whilst it is possible to use all available variables 

within discriminant analysis this is neither desir-

able nor efficient as biological interpretation of 

the importance of many contributory variables 

is very difficult, and statistical parsimony is lost. 

Predictor variables may be selected in numerous 

ways to maximize or minimize certain desirable 

statistical criteria. Since the process is one of dis-

crimination, both the sensitivity and specificity of 

the results are of interest rather than either of these 

alone. Variables could therefore be selected on the 

basis of jointly maximizing these criteria, but often 

other metrics are used, commonest amongst which 

are the kappa index of agreement, the receiver-op-

erating characteristic (ROC) curve, the area under 

the curve (AUC), or one of a number of differ-

ent information criteria such as Akaike’s (Rogers 

(2006) gives a table of these). Kappa is designed to 

measure predictive accuracy taking into account 

the correct predictions that would arise entirely by 

chance. Its value varies from –1 to +1 with a value 

of zero indicating a fit no better than random and 

a value of one indicating a perfect fit to the data. It 

has recently been shown that the kappa index of 

agreement is quite variable when percentage posi-

tives are either very low or very high and is most 
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The analyses summarized in Fig. 7.14 take no 

account of the spatial arrangement of the infected 

farms. If there is a chance of contagion of one pixel 

from another, by virtue of its proximity rather than 

its environmental conditions, then further steps 

should be added to the analyses and model predic-

tions. Generally a Gibbs sampler routine is applied 

but this slows down the modelling process con-

siderably (each model is produced iteratively, for 

what is often a relatively modest increase in model 

accuracy (Rogers 2006)).

7.8 Conclusions

In this chapter an overview of the techniques that 

may be used to quantify the effect that explana-

tory variables have on the spatial distribution of 

an outcome of interest is provided. It was shown 

how accounting for spatial dependence provides 

at least two useful benefits in terms of enhan-

cing understanding of the factors associated with 

the distribution of disease. Firstly, the regression 

coefficients from models that account for spatial 

dependence are less precise (compared with those 

that ignore it) meaning that the null hypothesis is 

less likely to be rejected when it is true (a Type I 

error). Secondly, mapping the structured heteroge-

neity terms from models that account for spatial 

dependence provides an indication of where dis-

ease risk is unaccounted for by the parameterized 

fixed effects, which can indicate where to look for 

previously unrecognized factors influencing the 

occurrence of disease.

The subject of spatial statistics is rapidly evolv-

ing with considerable progress made in recent 

years in the development of methodologies related 

to disease mapping and ecological analyses, par-

ticularly in the fields of multilevel modelling and 

Bayesian statistics. With the increasing availability 

of data (particularly that which has been remotely 

sensed), analytical techniques, high speed com-

puters, and user-friendly software it is likely that 

researchers will seek to develop increasingly 

sophisticated models in an effort to refine their 

understanding of the behaviour of diseases in 

human and animal populations. While this is tan-

gible evidence of progress, the enthusiasm with 

which these techniques are applied needs to be 

one or more TB outbreaks, representing disease 

presence) and a sample of 3,000 non-outbreak farms 

(representing disease absence). Environmental 

data were extracted for each presence or absence 

location, and the entire presence or absence data 

set was clustered using the k-means clustering 

algorithm of the SPSS statistical package (SPSS 

Inc. Chicago, Illinois) to produce five presence and 

five absence clusters. This entire dataset (presence 

and absence) was sampled randomly, with replace-

ment, 100 times to generate sub-samples, each con-

sisting of 300 records of presence and 300 records 

of absence. Each sub-sample was modelled using 

stepwise inclusion of variables from the environ-

mental predictor database up to a maximum of 10 

variables. The selection criterion was to maximize 

kappa or the AUC
c
 at each step. Once a set of predic-

tor variables was chosen it was used with the input 

imagery to generate posterior probability predic-

tions that each image pixel belonged to the pres-

ence group. The 100 images were then averaged to 

produce a single output image (Fig. 7.14). There was 

little difference between the predictions using the 

two different variable selection criteria, so only the 

AUC predictions are shown in Fig. 7.14.

The average value of the AUC for the 100 models 

averaged in Fig. 7.14 was 0.94 (SD 0.014). The top ten 

models in the series (sorted on AUC values) had 

an average AUC of 0.95 (SD 0.003) and the bottom 

ten an average of 0.92 (SD 0.006). For comparison, 

the three equivalent figures for the kappa statistic 

were 0.71 (SD 0.036), 0.76 (SD 0.016), and 0.66 (SD 

0.024) respectively. The kappa values suggest that 

the models provided good to excellent fits to the 

data (Landis and Koch 1977).

The key environmental variables producing 

these fits are themselves quite variable. A com-

monly chosen variable is the tri-annual phase of 

air temperature (selected first in the ‘best’ model). 

Another is the bi-annual amplitude of the VPD 

(not selected at all in the best model, but frequently 

selected in the rest). In our experience these com-

ponents of the higher Fourier harmonics generally 

operate to modulate the expression of the domin-

ant annual cycle either by extending or curtailing 

the length of the season, or by changing the shape 

of the annual seasonal profile from pure sinusoidal 

to either flat-topped or more-peaked seasonality.
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Figure 7.14 Mean (of 100) posterior probability risk map of bovine tuberculosis (TB) cases in Great Britain predicted by discriminant 
analytical models using step-wise inclusion of 10 variables to maximize the area under the curve (AUC) at each step. Five presence and five 
absence clusters were used for each bootstrap sample of 300 presence and 300 absence points sampled at random, with replacements, from 
a population of 482 presence and 3000 absence pixels (a presence pixel is a 0.01 degree pixel with at least one TB-positive farm in 1997; an 
absence pixel has farms, but no TB-positive ones in the same period). Posterior probability is on the green to red colour scale shown in the 
legend beneath the figure. The positive pixels are indicated by the black dots (see colour plates).
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turn guide further (focused) collection of data and 

model refinement. Other (no less important) issues 

are related to study design in situations where 

data are to be collected prospectively, rather than 

opportunistically, and choice of analytical tech-

niques appropriate for the resolution, nature, and 

quality of the data at hand.

balanced with due consideration to factors such as 

data quality, the robustness of the chosen methods 

to misspecification, and the need for model valid-

ation. In this respect, spatial modelling is best con-

ducted as an iterative process in which a research 

question is posed, data collected, a model devel-

oped, and uncertainty quantified, which should in 
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but in an operational, planning context users may 

be less aware of, and less competent at evaluating, 

such potential pit-falls

The information that decision makers expect to 

obtain from risk assessments includes the level of 

disease risk and information on important risk fac-

tors, particularly if these can be influenced as part 

of risk mitigation. To prevent misinterpretation, the 

estimates of risk should always be accompanied by 

explicit statements about their uncertainty, and the 

potential influence of biases. It is important to rec-

ognize that the resulting risk management proce-

dures are also influenced by other considerations 

such as political factors and societal values.

8.2 Spatial data in disease risk 
assessment

Spatial methods can be used to assess risks within 

the context of disease risk analysis, and thus help 

decision makers to develop risk management strate-

gies. Disease risk assessments require some level of 

understanding of the underlying causal processes, 

as well as access to a range of data sources. The 

most basic data needed would be georeferenced, 

quantitative information about disease occurrence 

and the population at risk. These data can often be 

complemented by various types of risk factor data 

such as attributes of potentially at-risk individuals 

or groups, their contact networks, or environmental 

information (Boscoe et al. 2004).

Disease status information can be collected using 

targeted or scanning surveillance. The former is 

aimed at defining levels of, or absence of disease in 

specific populations, and the latter at maintaining a 

continuous watch for the occurrence of known and 

8.1 Introduction

The effective detection and control of diseases in 

humans and animals by health authorities needs 

to take into account spatial patterns of the dis-

ease’s occurrence and any associated risk factors. 

This includes efficient data collection, manage-

ment, and analysis. The integration of GIS func-

tionality into most modern disease information 

systems reflects recognition of the importance of 

the spatial dimension of disease control. The ana-

lytical functionality of such systems is typically 

restricted to producing descriptive maps, often 

based on aggregations of data at the level of some 

administrative area, such as district or province. 

As a result of recent disease emergencies such as 

severe acute respiratory syndrome (SARS), FMD, 

and avian influenza, decision makers are now 

looking for tools that make more effective use of 

the wide range of available data sources, including 

analytical and modelling methods (Carpenter and 

Ward 2003; Lawson and Kleinman 2005b) in an 

attempt to increase our ability to detect unusual 

occurrences of disease and to allow for targeted 

surveillance and control efforts that account expli-

citly for spatial variation in risk.

When applying spatial analysis methods as part 

of disease management rather than as a research 

tool, the outputs need to be interpreted with some 

caution, particularly due to potential errors and 

biases (Neutra 1999; Elliott and Wakefield 2000; 

Jacquez 2004). For example, cluster detection meth-

ods may have a significant chance of turning up 

false positive results as well as having limited sta-

tistical power (Wakefield et al. 2000). In a research 

context, the users of such results are duly cautious, 

CHAPTER 8

Spatial risk assessment and 
management of disease
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example, the density of some wild animal species 

may be higher in a landscape containing a large 

number of relatively small patches of forest, com-

pared to one with a single contiguous forest patch 

of the same total area. This difference between 

habitats can be expressed as average patch size 

for each landscape. The public domain software 

Fragstats44 allows the calculation of such metrics 

(McGarigal and Marks 1995).

All the data sources mentioned above are 

affected by some degree of bias. This may affect 

attribute information such as disease diagnosis or 

risk factor data, or it can be bias associated with the 

spatial reference. The choice of the sample selec-

tion method and the spatial resolution at which the 

data are collected will both result in sampling error 

in the attribute data

Syndromic surveillance is a new methodology 

that has been developed in response to a perceived 

need for early warning of bioterrorism attacks 

(Lawson and Kleinman 2005b). It does not moni-

tor specific disease outcomes, but rather events 

that are indicative of the occurrence of diseases 

such as emergency room complaints, ambulance 

dispatch data, clinical diagnosis data, private over-

the-counter and prescription medication sales, 

nurse help-line telephone logs, and absenteeism in 

schools (Miller et al. 2004b). It can also use spatial 

information as demonstrated by Heffernan et al. 

(2004) and Kulldorff et al. (2005). One of the prob-

lems with syndromic surveillance is the high risk 

of false positive alarms and the resulting cost of 

follow-up investigations (Fienberg and Shmueli 

2005). For example, based on a pre-test probabil-

ity of 0.0014 for anthrax and a very high assumed 

detection sensitivity/specificity of the surveillance 

system of 99%, Bravata et al. (2004) estimate that 

only 12% of the positive system responses would 

be true anthrax cases.

8.3 Spatial analysis in disease risk 
assessment

The spatial analysis tools suitable for risk assess-

ment include the whole range of methods from 

44  http://www.umass.edu/landeco/research/fragstats/
fragstats.html

unknown diseases. Targeted surveillance is based 

on structured, cross-sectional, or longitudinal data 

collection approaches and may involve assessment 

of all, or a sample of, the individuals or groups 

potentially at risk. It typically includes the collection 

of denominator data as well as disease data. In con-

trast, scanning surveillance uses disease reporting 

information collected by health professionals as part 

of their routine job, or by farmers and other mem-

bers of the public when they identify such diseases, 

or indicators thereof, such as dead birds (West Nile 

virus) or dead badgers (bovine TB). This means that 

the data are subject to varying degrees, of reporting 

bias and do not include denominator information. 

Both surveillance methods have been a standard 

component of disease management for a long time, 

but have tended to be inadequately georeferenced 

for the purpose of advanced spatial analysis. This 

has changed as a result of, for example, the avail-

ability of digital address databases and GPS.

The main focus of disease surveillance data is 

usually to record disease status information which, 

if combined with population at risk data, allows vis-

ualization of the spatial pattern of disease risk. The 

higher the spatial resolution of the data for a given 

area, the higher the statistical power for detecting 

events that occur in small regions (Lawson and 

Kleinman 2005b). More complex analyses aimed 

at explaining the variation in risk require access 

to risk factor information, which may be collected 

as part of targeted surveillance activities or may 

be accessed by linking surveillance data to census 

information or other risk factors such as environ-

mental information. Depending on the type of link, 

this requires either database queries in database 

management software or spatial overlay opera-

tions in a GIS.

A fairly recent development has been the colla-

tion of network data in many European countries, 

in particular those that record the movements of 

individual animals among farms, livestock mar-

kets, and slaughterhouses (Klovdahl 2005; Webb 

2005). A new development in landscape ecology 

has been the quantification of landscape structure 

(Gustafson 1998; McGarigal 2002). The resulting 

metrics can then be used as attribute information 

for risk assessments. They are particularly useful if 

wildlife densities are an important risk factor. For 
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The choice of such thresholds should be associated 

with a risk of misclassifying the area based on the 

model prediction, which is influenced by the model 

validity. The statistical aspects of this relationship 

(not the bias) can be expressed as the model pre-

diction’s sensitivity and specificity for any given 

threshold, which can be presented very effectively 

using a ROC curve (Pfeiffer 2004).

Fig. 8.1 presents an example of this approach 

(Pfeiffer et al. 1997) in which a mixed effects logis-

tic regression analysis was conducted to produce 

a map predicting the risk of East Coast fever out-

breaks (caused by the protozoal haemoparasite 

Theileria parva), in cattle in Zimbabwe (Fig. 8.1a). 

The parasite occurs in East Africa, and as it includes 

the brown ear tick, Rhipicephalus appendiculatus, in 

visualization through to modelling techniques. The 

modelling techniques can be categorized into data-

driven and knowledge-driven methods. The former 

is characterized by the use of statistical methods for 

defining relationships between risk factors and dis-

ease risk as the outcome variable, while knowledge-

driven modelling approaches are based on existing 

knowledge about the causal relationships associ-

ated with the disease risk of interest.

8.4 Data-driven models of disease risk

As described above, statistical analysis is used to 

generate data-driven models from information 

collected through surveillance and other means. 

Spatial dependence can be accommodated using 

the methods described in Chapter 7. Such models 

generate quantitative estimates of risk and the rela-

tive weights of risk factors. There is a perception 

that these models are more valid than knowledge-

based ones due to the apparently more objective 

method of defining the relationships. However, 

it needs to be emphasized that they are strongly 

dependent on the quality of the data and the 

validity of the model in the context of a particular 

decision problem. It is to be noted that Bayesian 

modelling approaches introduce prior knowledge 

to a data-driven approach, in that informative pri-

ors can be used for which the distributional char-

acteristics are usually defined based on existing 

knowledge.

While the extent of bias associated with model 

predictions needs to be presented in a qualitative 

commentary, the statistical uncertainty associated 

with the outputs from such models should be pre-

sented together with the predicted risk estimates. 

For example, this can be done by presenting maps 

of the risk estimates together with maps of some 

specified upper and lower confidence limits.

In addition, decision makers need to be given 

aids that allow predictions to be transferred into 

their particular decision context. Often this means 

deciding on an appropriate course of action, such 

as whether or not to vaccinate in selected geo-

graphical areas. This decision should be based on 

localized risk estimates and their uncertainty, and 

then on the risk threshold above which popula-

tions in the respective areas should be vaccinated. 
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Figure 8.1 Risk map for theileriosis occurrence risk in Zimbabwe 
(Pfeiffer et al. 1997). a) Map showing probability of occurrence of 
outbreaks due to infection with Theileria parva (see colour plate), 
and b) the ROC curve for the logistic regression model used to 
produce the risk map. Reproduced from Pfeiffer et al. (1997)
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based on existing or hypothesized understanding 

of the causal relationships leading to disease occur-

rence. This type of model is not useful for identify-

ing risk factors, as a priori knowledge about these 

and their interrelationships are used to define the 

model. Data-driven models are usually based on 

statistical regression models that include proxy 

risk factor variables associated with unobserved 

disease transmission processes. A strength of the 

knowledge-driven approach is that transmission 

dynamics can be modelled directly in that the 

changes in infection status of herds or individu-

als are represented. Disadvantages can be that the 

models become rather theoretical, have a strong 

subjective element, and are only loosely connected 

to real data. Models generated using this approach 

may be static or dynamic. Static models are defined 

as sets of linked rules of attribute information com-

bined to produce risk estimates. Dynamic models 

reproduce patterns of change in time and space 

with respect to disease status in a population as a 

result of specified spatial and attribute factors.

8.5.1 Static knowledge-driven models

The basic principle of static knowledge-driven 

models is to define a set of weighted rules based 

on existing published and/or expert knowledge 

(Bonham-Carter 1994; Chrisman 2003). The simplest 

approach combines Boolean geographical overlays 

that reflect defined threshold values for decision 

criteria using Boolean logic with conjunctive (AND) 

or disjunctive (OR) operators. However, whether or 

not a given alternative satisfies a specific criterion 

may not be clearly defined. A number of methods 

have been developed to deal with this kind of uncer-

tainty, such as Bayesian inference, fuzzy logic, and 

Dempster-Shafer theory (DST), all of which have 

been applied in a general decision-making context 

as well as in spatial decision-making.

Fuzzy logic can be used to model uncertainty 

where the possibility of a criterion being satisfied 

is defined on a continuous scale by a ‘membership 

function’ which can be rectilinear, sigmoidal, expo-

nential, or any other shape. If there are multiple 

criteria for determining suitability, a method needs 

to be adopted to combine the criteria. One such 

method is weighted linear combination (WLC) in 

its life cycle, environmental factors can be used to 

predict the spatial pattern of disease occurrence. 

The resulting risk map can, for example, be used to 

identify potential areas for vaccination by selecting 

a cut-off for outbreak risk, and vaccinating in all 

areas above that value. The ROC curve presented 

in Fig. 8.1b summarizes the fit of the model, but 

can also be used to identify an appropriate cut-off 

value. One of the criteria for this decision could 

be the likelihood of vaccinating in an area that 

is likely to be a false positive (x-axis in Fig. 8.1b) 

weighed against the likelihood of not vaccinating 

in an area where outbreaks may occur (y-axis in 

Fig. 8.1b). The shape of the ROC curve suggests that 

if resources are scarce, and therefore vaccinating 

false positives should be avoided, choosing a cut-

off greater than or equal to 0.32 will result in 50% 

of those areas at risk of outbreaks being vaccinated 

and thereby being protected. On the other hand, 5% 

of those areas that are not at risk of outbreaks will 

also be vaccinated, resulting in wasted resources. 

Table 8.1 shows the probability cut-off values asso-

ciated with the ROC curve presented in Fig. 8.1b.

8.5 Knowledge-driven models
of disease risk

As an alternative to data-driven models, qualita-

tive or quantitative risk estimates can be produced 

Table 8.1 Probability cut-off values associated with the ROC curve 
presented in Figure 8.1. Reproduced from Pfeiffer et al. (1997)

Cut-off Sensitivity Specificity False positive
   proportion

0 1.00 0.00 1.00
0.02 0.98 0.62 0.38
0.06 0.93 0.76 0.24
0.1 0.85 0.83 0.17
0.16 0.69 0.90 0.10
0.22 0.61 0.93 0.07
0.32 0.50 0.95 0.05
0.42 0.40 0.96 0.04
0.46 0.35 0.97 0.03
0.54 0.25 0.98 0.02
0.64 0.12 0.99 0.01
0.74 0.01 1.00 0.00
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between plausibility and belief (termed the ‘belief 

interval’ by Eastman (2001)) represents the level of 

uncertainty surrounding true probability.

There is an increasing number of reports of DST 

applications. Examples include Sadiq and Rodriguez 

(2005), who use DST to examine water quality data 

and Luo and Caselton (1997) who apply DST to an 

analysis of climate change uncertainties. Clements 

et al. (2006c) use DST to identify areas in Senegal 

suitable for Rift Valley fever infection. However, 

there is a dearth of applications in epidemiological 

or health-related settings, particularly in a spatial 

context. Currently, approximations of belief func-

tions, analogous to empirical Bayes estimation, are 

used in DST applications although computational 

advances may lead to full implementation of DST in 

the future (Haenni and Lehmann 2003).

MCDA, also known as multicriteria decision-mak-

ing (MCDM), involves a sequence of analytical steps: 

(1) defining the objective(s); (2) defining the factors 

(continuous) and constraints (Boolean); (3) defining 

the relationship between each factor and suitability; 

(4) standardizing the factors so that they can be com-

pared; (5) defining the relative importance of each 

factor in relation to the objective; (6) combining all 

factors and constraints to produce a final weighted 

estimate of suitability for each location in the study 

area; (7) sensitivity analysis; and (8) map validation.

A commonly-used method for integrating fac-

tors and constraints is WLC. There are a number of 

sources of information that may be utilized to deter-

mine the weights for WLC and the BPA in DST, such 

as statistical data, published literature, or expert 

opinion (Robinson et al. 2002; Osei-Bryson 2003). It 

may be necessary to take account of non-compensa-

tion among the factors, for instance, if a high score 

for one factor should not be offset by a low score for 

another factor due to some biological, or other, rea-

son. This can be done using ordered weighted aver-

aging (OWA) rather than WLC, where the factors 

are weighted for a given pixel according to the rank 

of their suitability scores within that pixel (Jiang 

and Eastman 2000). For a less compensatory model, 

lower ranked factors are given a higher relative 

weight. Uncertainty in the decision process arises 

from a number of sources including measurement 

error, inherent variability, conceptual ambiguity, or 

ignorance of model parameters.

which criteria are standardized for comparison on a 

common scale and then weights applied to each cri-

terion so that more important criteria exert a greater 

influence on the outcome. Finally, a weighted aver-

age across criteria is calculated for each alternative 

(or spatial unit), giving the final suitability estimate. 

This methodology can be implemented through 

multicriteria decision analysis (MCDA). Although 

fuzzy logic, implemented within a WLC framework, 

has been applied to assist MCDA in a wide range 

of spatial settings, animal health applications have 

rarely been reported. Examples include prioritizing 

areas for insect vector control (Robinson et al. 2002) 

and spatial modelling of tick vectors (Estrada-Peña 

1997). Fuzzy logic models have also been used to 

determine the suitability of regions in Africa for 

malaria (Snow et al. 1998; 1999) and Rift Valley fever 

(Clements et al. 2006c).

DST (Dempster 1966; 1967) is a generalization 

of Bayes theory that is thought more accurately 

to represent uncertainty in near-ignorance situa-

tions (Luo and Caselton 1997). Uncertainty can be 

any known or unknown error, ambiguity or vari-

ation in a decision process, or can refer to the data 

on which the decision process is based (Eastman 

2001). Uncertainty in geographical data may lead to 

erroneous decisions and subsequent adverse con-

sequences. Eastman (2001) states that, 

‘although considerable attention has been paid 

to the issue of uncertainty, the manner in which 

uncertainties combine to affect the decision proc-

ess and decision risk has received less interest.’

In the DST framework, probabilities may be 

assigned in the form of basic probability assign-

ments (BPA) to unions of intervals or individual val-

ues in addition to the intervals/values themselves, 

and this allows for a much more flexible approach 

to uncertainty representation. The belief (the lower 

bound of probability) that the true value lies within 

a certain interval (or has a certain value), is calcu-

lated as the sum of the probability values assigned 

to that interval (or value) and to subsets of that inter-

val. The plausibility (the upper bound of probability) 

that the true value lies within a given interval (or 

equals a given value) is calculated as the comple-

ment of the sum of probability values for intervals 

that exclude that interval or value. The difference 
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located on well-drained soils this criterion was 

included in the model as a constraint (Boolean) and 

the three landcover criteria (broadleaf woodland, 

coniferous woodland, and pasture) were included 

as factors (continuous). Each criterion was repre-

sented as a raster map layer (Fig. 8.2).

Factors were weighted using the pairwise com-

parison method (Saaty 1980), in which each factor 

is rated according to its relationship with each of 

the others, and weights were calculated for each 

factor based on this pairwise rating (Table 8.2). As 

the units and scales of the factor maps varied, the 

maps were standardized by converting each scale 

to a 0–255 byte binary scale, and then combined 

using WLC, resulting in a map in which each pixel 

(representing 1 km2) was classified as either low, 

medium, or high, according to its degree of suit-

ability for sett construction (Fig. 8.3a). The model 

identified, among other areas, the south and south-

west of England and most of Wales to be moder-

ately to highly suitable for badger sett construction, 

as well as the parts of East Anglia and Cumbria. 

Sensitivity analysis, which involves varying the 

weights of the factors and measuring the average 

change in the suitability scores at 10,000 randomly 

selected locations on the map, revealed little change 

in the suitability estimates.

In an epidemiological situation, validation of the 

resulting maps is not always possible due to lack of 

data, and is frequently limited to visual compari-

sons with existing data sources (Craig et al. 1999; 

Clements et al. 2006c). The most appropriate way 

to validate the map in Fig. 8.3a would be to overlay 

the actual locations of badger setts in order to deter-

mine whether high numbers of setts occur in those 

areas identified by the model as being most suit-

able for sett construction and vice versa. However, 

in the absence of data on sett locations, and given 

the hypothesis, an overlay of the 1996 TB high risk 

areas in England and Wales was used to indirectly 

validate the suitability map (Fig. 8.3b). The overlay 

was created from Fig. 6.2c (by drawing around those 

areas on the map with a high TB risk). This overlay 

showed a reasonable match with areas considered 

to be suitable for badger setts (south and south-

west of England, parts of Wales, and Cumbria), but 

some pockets of high TB risk occur in areas that 

are apparently unsuitable for sett construction, 

A number of common pitfalls in the applica-

tion of WLC are discussed by Malczewski (2000), 

who states that the attributes (i.e. factors and con-

straints) should be measurable and complete (i.e. 

cover all relevant aspects of the decision problem). 

Factor selection based on data availability is criti-

cized. However, comprehensive data on a num-

ber of important disease factors are not always 

available and it often remains necessary to select 

attributes from limited available data resources. 

Correlation among attributes is also highlighted 

as an important issue by Malczewski (2000) who 

refers to this as a redundancy problem that gives 

rise to double-counting. The issue of spatial scale 

and levels of aggregation (MAUP) are also high-

lighted by Malczewski (2000). Other issues raised 

by the same author are attribute linearity, where 

transformation of the attribute for subsequent com-

parison does not take into account possible non-

linear associations with suitability, and incorrect 

weighting as a result of failing to consider the unit 

of measurement and range of the attribute.

The following example uses the British cattle TB 

data to illustrate how MCDA might be used in an 

epidemiological setting. It is assumed that wildlife 

reservoirs, particularly badgers, are partly respon-

sible for the high prevalence of TB in certain parts 

of England and Wales. As badgers are known to 

have very specific requirements when choosing a 

site for their sett, the hypothesis for this example 

was that areas with a high prevalence of TB corre-

sponded to areas most suitable for the construction 

of badger setts. The GIS software IDRISI was used 

to implement the model as it has a decision-support 

module for performing MCDA.

Following the hypothesis stated above, the objec-

tive of this MCDA model was to identify areas in 

England and Wales suitable for the construction 

of badger setts. A review of the relevant literature 

identified the criteria that influence where badg-

ers build their setts (and therefore the criteria that 

needed to be included in the model) as being soil-

type, landcover, and proximity to a food source. 

The literature revealed that setts are generally 

located in woodland, with broadleaf being greatly 

preferred to coniferous woodland, on well-drained 

soils and close to pastures (in which earthworms, 

the badger’s staple diet, abound). As setts are only 
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(a) (b)

(c) (d)

Impeded drainage

Soil drainage

Good drainage

Figure 8.2 Criterion maps used in the MCDA model. (a) Boolean map showing soils with good or impeded drainage, (b) a continuous 
scale map of pasture in England and Wales (percentage cover/km2), (c) a continuous scale map of broadleaf woodland in England and 
Wales (percentage cover/km2), and (d) a continuous scale map of coniferous woodland in England and Wales (percentage cover/km2) 
(see colour plate).
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models, such as susceptible-infected-recovered 

(SIR) type mathematical models, to very detailed 

simulations explicitly representing events  affecting 

individual farms, households, or persons.

To keep the models as simple as possible, the 

majority still focus mainly on the temporal dimen-

sion of population and infection dynamics, thereby 

minimizing both the computing resources needed 

and the necessary level of detailed understand-

ing of the epidemiological mechanisms involved. 

However, a trend has recently developed for mod-

els to be more complex and also spatially explicit. 

This allows transmission mechanisms associated 

with geographical proximity and environmental 

factors to be represented, but also makes significant 

suggesting that factors other than badgers, such as 

cattle movement, may contribute to the high risk 

of TB in areas modelled as being unsuitable for 

sett construction.

8.5.2 Dynamic knowledge-driven models

Examination of the possible behaviour of infectious 

diseases, either in relation to the implementation of 

different disease control interventions or following 

their hypothetical introduction into populations, 

requires models that can represent the dynamics 

of the disease, often primarily in time, but which 

can also include a spatial dimension. The mod-

elling approaches range from highly aggregated 

Table 8.2 Pairwise comparison  matrix and calculated weights of factors for the 
location of badger setts

 Broadleaf Coniferous Pasture Weight

Broadleaf 1 5 1 0.4806
Coniferous 1/5 1 1/3 0.1140
Pasture 1 3 1 0.4054

Figure 8.3 (a) Map identifying areas in England and Wales of low, medium, and high suitabililty for the construction of badger setts, and 
(b) the suitability map with an overlay of the 1996 TB high-risk areas in England and Wales (see colour plate).
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inclusion of data on animal movements from the 

United Kingdom’s cattle tracking database greatly 

increases the power of a model to predict TB break-

downs, over environmental factors alone.

The outputs from dynamic spatial models can be 

effectively communicated using maps, as shown by 

Ferguson et al. (2006) who present avian influenza 

risk amongst humans in Great Britain and the USA. 

Keeling et al. (2001) produced a map movie depict-

ing the simulated temporal and spatial spread of 

FMD during the UK 2001 epidemic, which can be 

downloaded via the journal’s website45. It needs to 

be emphasized that such maps should be accom-

panied by appropriate commentary that explains 

the assumptions behind the models, and therefore 

allows consideration of the potential biases and 

uncertainties reflected in the map.

8.6 Conclusion

The inclusion of spatial models in the process of risk 

assessment and management has become increas-

ingly common over the last 10 years. This has been 

made possible through advances in computer hard-

ware and software, the development of appropri-

ate analytical algorithms, and the availability of a 

multitude of databases, many of which are georef-

erenced. In addition, there has been an increasing 

demand for evidence-based decision making which 

includes the need to produce spatially explicit infer-

ences. Models have much potential to assist in deci-

sion making but are also associated with many risks 

and, due to the often complex calculations involved, 

outputs are often viewed with some scepticism 

by decision makers. The increasing use of know-

ledge- as well as data-driven approaches opens 

up many opportunities, not only for research but 

also for policy development. It has to be noted that 

although the tools may have advanced in sophis-

tication and the data quantity increased exponen-

tially, data quality has not improved at the same 

rate, and when developing knowledge-driven mod-

els it usually becomes apparent that our knowledge 

of basic biological mechanisms remains deficient. 

So while models, including those that are spatially 

explicit, allow gaps in the existing knowledge to 

45 http://www.sciencemag.org

demands with respect to the quantitative know-

ledge about the epidemiology of an infection.

Modelling methodologies have become more 

advanced during the last 10 years, facilitated by 

the availability of more powerful computers, and 

supported by an increased demand from risk 

managers for predictive information on the pro-

gression of a disease and the impact of potential 

control methods. Unfortunately, for many diseases 

the necessary data concerning the epidemiological 

relationships underlying the relevant infection’s 

temporal and spatial dynamics are still inadequate. 

It is therefore of paramount importance that these 

dynamic knowledge-driven models are validated 

and peer-reviewed before they are used to inform 

decision making.

An epidemiological example of dynamic knowl-

edge-driven modelling is presented in Savill et al. 
(2006). When developing a mathematical model of 

the spread of FMD in Great Britain in 2001 they 

incorporate distance between farms, and between 

farms and roads. They suggest that this relatively 

simple spatial representation allows effective 

aggregated representation of several transmis-

sion mechanisms. Morris et al. (2001) simulate 

the impact of different control strategies during 

the same outbreak of FMD using a Monte Carlo 

approach where the geographical location of farms 

and livestock markets, and the resulting interac-

tions relevant to virus spread, are explicitly incor-

porated in the model structure. This allows for the 

separate representation of four different transmis-

sion mechanisms namely, movement of animals for 

trade purposes, local spread to nearby farms, long-

distance windborne spread, and spread through 

dairy tanker movements.

A recent development is the inclusion of the con-

tact structure of populations at risk (Keeling and 

Eames 2005; Kao et al. 2006). While this is not neces-

sarily a spatial representation, it focuses on direct 

contact as a possible transmission mechanism, 

which is itself partly influenced by geographical 

proximity. Eubank et al. (2004) developed a simu-

lation model of a smallpox outbreak for an urban 

population of 1.5 million people, in which the daily 

activities resulting in the opportunity for transmis-

sion of the disease are represented using a social 

network structure. Gilbert et al. (2005) show that 
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managers are often impressed by the visualiza-

tions, they may in fact underestimate the influence 

of biases and uncertainty in relation to the data and 

epidemiological mechanisms. Additional emphasis 

therefore needs to be placed on recognizing and 

communicating bias and uncertainty, and in this 

context in particular, static knowledge-driven mod-

elling approaches provide a set of effective, yet 

underutilized, tools.

be identified, they also provide significant oppor-

tunities for enhancing our understanding of the 

underlying epidemiological processes, as well as 

allowing the key pieces of information that should 

become the focus of research to be defined. A par-

ticular strength of the spatial dimension is that 

spatial model outputs can be visualized through 

maps, greatly facilitating effective communica-

tion. However, an implicit danger is that while risk 
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Index
  

additive logistic model 99
adjacency 25, 36, 103

defi ning 46
fi rst-order 36, 46, 47
higher-order 36, 46, 47
weights matrix 46

aggregated data, see area data
Akaike’s information criterion 

(AIC) 106
corrected Akaike’s information 

criterion (AIC
c
) 106

anisotropic 14, 76
ArcExplorer, see software
ArcGIS, see software
ArcView, see software
area data 17, 46, 68

clustering, global tests 34–7
Geary’s c 37
Moran’s I 35–7
Oden’s Ipop 36
Tango’s excess events test 

(EET) 37
Tango’s maximized excess 

events test (MEET) 37
clustering, local tests 46–9

Getis and Ord’s local Gi(d) 
statistic 46–7

local Moran test 47–9
modelling 92–7 

Bayesian approaches 17, 94–7
frequentist approaches 93–4

problems:
ecological fallacy 14
modifi able areal unit problem 

(MAUP) 14, 19, 21
visualization 17–23

area under the curve (AUC) 
106, 108

aerial photograph 10
arithmetic progressions 31
attribute data 3, 9, 10, 111

representation on maps 19, 27–31
storage 11–12

autocorrelation, see spatial 
autocorrelation

autoregressive model 93–94
see also conditional autoregressive 

(CAR) model, simultaneous 
autoregressive (SAR) model

bandwidth, kernel density 
estimation 69–70, 71

Barton’s test 43–4
basic probability assignment 

(BPA) 114
Bayesian cluster detection 66
Bayesian kriging 77
Bayesian modelling 112

area data 94–7
point data 99–100

Bayesian smoothing 70–3
empirical Bayes 72–3, 74, 79, 114
fully Bayesian 72–3, 75

belief interval 114
Besag and Newell’s method 46, 

50–1, 52, 61, 62, 66
bias 13, 19, 38

ecological 84, 87
in kernel smoothing 67, 69
in spatial risk assessment 110, 

111, 112, 118–19
in inverse distance weighting 

(IDW) 76 
pre-selection 33, 51, 54, 60, 66

binary contiguity matrix 15
binary logistic geostatistical 

model 100
bioterrorism, syndromic 

surveillance 111
Bithell’s linear risk score test 62
Bonferroni adjustment 16, 34, 38
Boolean logic 113
bovine tuberculosis, Great 

Britain national control 
programme xi, 6

Breusch-Pagan test 83

British National Grid 27
brushing 21, 23

CAR model, see conditional 
autoregressive model

cartogram 19–20
cartography 26–31
caterpillar plot 90
Centers for Disease Control and 

Prevention (CDC), cluster 
investigation 33

centroid 13, 34, 37, 46, 49, 67, 68, 
104, 105

choropleth map 17–23
associated problems 18–23
conditioned 22, 23

cluster alarms 32–3
cluster detection tests 34–44, 46–64

focused tests 56–63
Bithell’s linear risk score 

test 62
Diggle’s test 62
Kulldorff’s focused spatial scan 

statistic 62–3
Lawson-Waller score test 61–2
Stone’s test 60–1

global tests for area data 34–7
Geary’s c 37
Moran’s I 35–37
Oden’s Ipop 36
Tango’s excess events test 

(EET) 37
Tango’s maximized excess 

events test (MEET) 37
global tests for point data 37–41

Cuzick and Edwards’ k-nearest 
neighbour test 37–9

Ripley’s K-function 39–41
Rogerson’s cumulative sum 

(CUSUM) method 41
local tests for area data 46–9

Getis and Ord’s local Gi(d) 
statistic 46–7

Note: page numbers in italics refer to Figures and Tables.
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cluster detection tests (Cont.)
local Moran test 47–9

local tests for point data 49–56
Besag and Newell’s 

method 50–1
Kulldorff’s elliptical spatial 

scan statistic 51
Kulldorff’s spatial scan 

statistic 51–2, 53–6, 66
nearest neighbour areas (NNA) 

test 50
non-parametric spatial scan 

statistics 52–3
Openshaw’s Geographical 

Analysis Machine (GAM) 49
Turnbull’s Cluster Evaluation 

Permutation Procedure 
(CEPP) 49–50

space-time cluster detection tests, 
global 41–4

Barton’s test 43–4
Ederer-Myers-Mantel (EMM) 

test 43
Jacquez k-nearest neighbours 

test 44
Knox test 42
Mantel’s test 43
space-time K-function 42–3

space-time cluster detection tests, 
local 63–4

Kulldorff’s space-time scan 
statistic 63–4

cluster detection, statistical 
concepts 33–4

cluster detection, statistical power 
of tests 34

cluster detection,spatial hazard 
model 66

cluster investigation 32–3
Dutch Triple Track approach 33

ClusterSeer, see software
cokriging 77
colour, use in cartography 27–8
conditional autoregressive (CAR) 

model 93–4, 95
conditioned choropleth map 22, 23
conformal properties 26–7
contact structure, inclusion in 

modelling 118
contiguity, see adjacency
continuous data 10, 23

division into categories 28, 31
arithmetic progressions 31
equal interval breaks 28
geometric progressions 31
Jenks method 28
natural breaks 28

quantile breaks 28
standard deviation 

classifi cations 31
generalized least squares 

models 102–103
spatial hazard model 66
trend surface analysis 100–102
visualization 23

contour map, see Maps
convolution prior 73
coordinate system 12–13
correlogram 35–6
covariance matrix 90, 102, 106
Cuzick and Edwards’ k-nearest 

neighbour test 34, 37–9

data collection 12–13
in disease risk assessment 110–11

data conversion 12
data display 23–31

cartography 26–31
dynamic 24–6
media, scale and area 23–4

data interchange 11–12
data linkage 11
data management 3, 12–13
data quality 13–14
data source 5–6, 110–11
data storage 11
data types 9–11
data-driven model of disease 

risk 112–13
database management system 

(DBMS) 3, 9
dataset

bovine tuberculosis, Great 
Britain 6

environmental data 6–8
Dempster–Shafer theory (DST) 113, 

114
density equalized map projection 

(DEMP) 20–1
dependence, spatial 1, 14, 33, 39, 45, 

67, 81, 91, 95, 102, 107
assessing presence of, 

semivariogram 76–7
consequence of ignoring 88
importance in hypothesis 

testing 15–16
Diggle’s test 62
Dirichlet polygon 76
discriminant analysis 103–107, 108

absence sites 104, 108
Mahalanobis distance 104–105
posterior probabilities 104–105
presence sites 104, 108
variable selection 106–107

disease risk assessment:
data-driven model 112–13
knowledge-driven model 113–18
spatial analysis 111–12
spatial data 110–11

disease surveillance 14, 33, 41, 63, 
110–11

distance:
adjacency 15, 34, 35
Euclidean 37, 104
in a correlogram 35, 36
in a semivariogram 36, 77, 78
indicating on a map 26
Mahalanobis 104, 105
matrix 37
weights matrix 15, 34, 35

dot-density map, see Maps
Dutch Triple Track approach, see 

cluster investigation

ecological fallacy 14
Ederer-Myers-Mantel (EMM) test 43
edge correction strategies 15, 39
edge effect 14–15, 69, 78, 96
ellipsoid 13
empirical Bayes 72–3, 74, 79
empirical semivariogram 76–7
entity 10, 11
environmental data 6–8
EpiMap, see Software
equal area properties 27
equal interval breaks 28
ERDAS Imagine, see software
ER Mapper, see software
event location 17, 20, 24, 39
exploration of data 3, 5
exploratory spatial data analysis 

(ESDA) 21, 23
extraction mapping 70

feature 3, 10, 26
fi rst law of geography 89
fi rst-order contiguity 36, 46, 47
fi rst-order spatial effect 14, 33, 81, 

90–1
focused cluster detection test 56–63

Bithell’s linear risk score test 62
Diggle’s test 62
Kulldorff’s focused spatial scan 

statistic 62–3
Lawson-Waller score test 61–2
Stone’s test 60–1

Food and Agriculture 
Organization of the United 
Nations (FAO) xi

data sources 5
online mapping system 4
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Fourier processing of satellite 
data 7–8

Fragstats, see Software
framework for spatial analysis 2–3
frequentist modelling: 

area data 93–4
point data 97–9

fully Bayes estimation 72–3, 74, 75
fuzzy logic 113, 114

Gaussian kernel 69, 70
Geary’s c 37
generalized additive model 99
generalized least squares 

model 102–103
GeoDa, see software
Geographical Analysis Machine 

(GAM), Openshaw 49
geographic information systems 

(GIS) 3, 4, 5, 9, 15, 23–4, 110
geographic (Plate Carrée) 

projection 13
geographic scale 13
geometric progressions 31
georeference 3, 5, 6, 9, 110, 111
GeoRglm, see software
GeoR, see software
Getis and Ord’s local Gi(d) 

statistic 46–7
GGobi, see software 21, 23
Gibbs sampler 72, 73, 107
GIS, see geographical information 

system
global cluster detection 

tests 34–44
area data 34–7

Geary’s c 37
Moran’s I 35–7
Oden’s Ipop 36
Tango’s excess events test 

(EET) 37
Tango’s maximized excess 

events test (MEET) 37
point data 37–41

Cuzick and Edwards’ k-nearest 
neighbour test 37–9

Ripley’s K-function 39–41
Rogerson’s cumulative sum 

(CUSUM) method 41
space-time cluster detection tests: 

Barton’s test 43–4
Ederer-Myers-Mantel (EMM) 

test 43
Jacquez k-nearest neighbours 

test 44
Knox test 42
Mantel’s test 43

space-time K-function 42–3
global positioning system (GPS) 6, 

12, 111
Google Earth, see software
GRASS, see software
grid cell size choice, kernel density 

estimation 69, 70
GPS, see global positioning system
guard area 15

heterogeneous (non-stationary) 
processes 14

Heterogeneous Poisson Process 
(HEPP) 98–9

hierarchical model, see also 
multilevel model 73, 95, 97

higher-order contiguity 36, 46, 47
homoscedastic variance 82
hydraulic modelling 23
hyperparameter 73
hyperprior 73, 95
hypothesis testing 1, 15–16

IDRISI, see software
incidence 18, 28, 33, 35, 62, 84, 103, 

104
indicator kriging 77
inset maps 27
interchange of data 11–12
interpolation 73–80
intraclass correlation coeffi cient 

(ICC) 90
inverse distance weighting 

(IDW) 76
isotropy 14, 33

Jacquez k-nearest neighbours test 44
Jenks method 28

K-function 39–41
space–time K-function 42–3

kappa index of agreement 106, 107
kernel density estimation, see 

kernel smoothing 
kernel regression 70
kernel smoothing 17, 62, 67–70, 71, 

72, 80
k-means clustering 105–106, 107
k-nearest neighbours test:

Cuzick and Edwards 37–9
Jacquez 44

knowledge-driven model of disease 
risk 112–18

dynamic 117–18
static 113–17

Knox test 42
kriging 73–80

cokriging 77
indicator 77
ordinary 77, 78, 80
Poisson 77
universal 77, 78, 79
see also interpolation

Kullback–Leibler (K–L) distance 106
Kulldorff’s:

elliptical spatial scan statistic 51
focused spatial scan statistic 62–3
space–time scan statistic 63–4
spatial scan statistic 51–2, 53–6, 66

lag, spatial 34, 35, 36, 76, 77
latitude 12, 13
Lawson–Waller score test 61–2
legend, maps 26, 27
linearity assumption 82
linear regression 81–3

assumptions 82
continuous outcome 

variable 81–2
linkage of data 11
local cluster detection tests 46–64

area data 46–9
Getis and Ord’s local Gi(d) 

statistic 46–7
local Moran test 47–9

focused cluster detection 
test 56–63

Bithell’s linear risk score 
test 62

Diggle’s test 62
Kulldorff’s focused spatial scan 

statistic 62–3
Lawson-Waller score test 61–2
Stone’s test 60–1

point data 49–56
Besag and Newell’s 

method 50–1
Kulldorff’s elliptical spatial 

scan statistic 51
Kulldorff’s spatial scan 

statistic 51–2, 53–6, 66
nearest neighbour areas (NNA) 

test 50
non-parametric spatial scan 

statistics 52–3
Openshaw’s Geographical 

Analysis Machine (GAM) 49
Turnbull’s Cluster Evaluation 

Permutation Procedure 
(CEPP) 49–50

space-time cluster detection tests, 
local:

Kulldorff’s space-time scan 
statistic 63–4
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Local Indicators of Spatial 
Association (LISAs) 47–8, 49

local Moran test 47–9
locator map 26, 27
loess model 100–101, 102
logistic geostatistical model 100
logistic regression 86–7, 88, 90, 92
longitude 12, 13

macro-scale variation 14
Mahalanobis distance, discriminant 

analysis 104–105
Mantel’s test 43
mapping 4, 9, 27, 28

area data 17–23
cartography 26–31
online systems 4
point data 17

maps:
choropleth 18–23, 29, 30, 74, 75, 

79, 84, 98
conditioned choropleth 22, 23
contour 25
dot-density 20
inset 21, 27
legend 27
locator 27
point 17, 18, 40, 53, 68, 87
proportional symbol 23, 24
risk 105, 108, 112
scatterplot 9, 23, 101

Moran scatterplot 48–9
symbology 27–8
three dimensional space-time 

prism 26
map projection 13, 26–7

regional 27
Markov chain Monte Carlo 

(MCMC) 72, 73
membership function 113
meso-scale variation 14
metadata 13
Microsoft MapPoint, see software
Microsoft Virtual Earth, see 

software
middle infrared refl ectance 7
modifi able areal unit problem 

(MAUP) 14, 19, 21
Monte Carlo simulation 16, 33–4, 

35, 36, 38, 39, 40, 43
Moran scatterplot 48–9
Moran’s I 35–7
Moran test, local 47–9
moving average (MA) model 

93, 94
multicriteria decision analysis 

(MCDA) 114, 115–17

multilevel model, see also 
hierarchical model 87–90

multiple testing 34, 37, 38, 49, 50
multivariate normal 

distribution 103, 104, 105

natural breaks 28
nearest neighbour areas (NNA) 

test 50
nearest neighbours test:

Cuzick and Edwards 37–9
Jacquez 44

neatlines 26, 27
neighbourhood relationships, 

representation 15
network data 111
nominal attributes 27
non-parametric spatial scan 

statistics 52–3
non-stationary (heterogeneous) 

process 14
Normalized Difference Vegetation 

Index (NDVI) 7
nugget, semivariogram 76, 77
null hypothesis 16, 32, 34, 35, 38, 43, 

44, 46, 47, 51, 60
numeric attributes 27

object-oriented geographic data 
model 11

Oden’s Ipop 36
OpenBUGS, see software
Open Database Connectivity 

(ODBC) 24
Openshaw’s Geographical Analysis 

Machine (GAM) 49
ordered weighted averaging 

(OWA) 114
ordinal attributes 27
ordinary kriging 77, 78, 80

Pearson’s correlation coeffi cient 35
Plate Carrée (geographic) 

projection 13
plausibility, Dempster-Shafer 

Theory (DST) 114
point data:

global cluster detection tests 
37–41

Cuzick and Edwards’ k-nearest 
neighbour test 37–9

Ripley’s K-function 39–41
Rogerson’s cumulative sum 

(CUSUM) method 41
local cluster detection tests 49–56

Besag and Newell’s 
method 50–1

Kulldorff’s elliptical spatial 
scan statistic 51

Kulldorff’s spatial scan 
statistic 51–2, 53–6, 66

nearest neighbour areas (NNA) 
test 50

non-parametric spatial scan 
statistics 52–3

Openshaw’s Geographical 
Analysis Machine (GAM) 49

Turnbull’s Cluster Evaluation 
Permutation Procedure 
(CEPP) 49–50

modelling 97–100
Bayesian approach 99–100
frequentist approach 97–9

visualization 17
point-in-polygon operation 15
point map 17, 18, 40, 53, 68, 87
Poisson kriging 77
Poisson regression 83–6

collinearity check 85
count data as outcome 

variable 83–5
deviance residuals 86
offsets 84

polygon 10, 13, 15, 19, 21, 34, 35, 67
polygon overlay function 15
population-shift bias 42
posterior probabilities, 

discriminant analysis 
104–105

prediction 3
Bayesian 105
discriminant analysis 104, 105, 

106
disease risk 112
location, spatial interpolation 76
model 112

predictive accuracy 
measurement 106

pre-selection bias 33, 51, 54, 60, 66
presence sites, discriminant 

analysis 104, 108
prevalence 18, 24, 38, 39, 94, 103, 104
prior distribution 95
projection, see map projection
proportional symbol map 23, 24
proximity 1, 16, 37, 42, 44, 89, 90, 

91, 117

quality of data 13–14
quantile breaks 28
queen contiguity 34, 36

random slopes model 89
range, semivariogram 76, 77
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raster data 10–11, 26, 67, 115, 116, 117
conversion 12
topology 15

receiver-operating characteristic 
(ROC) curve 106, 112, 113

regression 81–90
accounting for spatial 

effects 90–2, 107
linear regression 81–3
logistic regression 86–7
multilevel model 87–90
Poisson regression 83–6

relative risk 54, 56, 64, 65, 66, 70, 73, 
75, 95, 96, 97, 99

remote sensing 12, 13
residuals 28, 35, 77, 86, 91, 92, 93, 95, 

101, 102, 103
distribution in autoregressive 

models 94
distribution in linear 

regression 82, 83
resolution 5, 12, 13, 14, 23, 24, 70, 

86, 111
retrospective analysis, dynamic 

visualization 24
Ripley’s K-function 39–41
risk communication 2
risk map 105, 108, 112
risk variation 67, 80

Bayesian smoothing 70, 72–3
kernel smoothing 67–70, 71, 72
spatial interpolation 73, 76–80

Rogerson’s cumulative sum 
(CUSUM) method 41

rook contiguity 34
R, see software 

S+SPATIALSTATS, see software
SAGE, see software
SAR model, see simultaneous 

autoregressive (SAR) model
SAS, see software
sample size 16, 70, 72, 73, 103, 106
satellite data 7–8
SaTScan, see software
scale 13, 14, 15, 23–4, 26, 33, 37, 101, 

115
scan statistic

Besag and Newell’s method 50–1
Kulldorff’s spatial scan 

statistic 51–2
Kulldorff’s elliptical spatial scan 

statistic 51
Kuldorff’s focused spatial scan 

statistic 62–3
non-parametric spatial scan 

statistics 52–3

Openshaw’s Geographical 
Analysis Machine (GAM) 49

Turnbull’s Cluster Evaluation 
Permutation Procedure 
(CEPP) 49–50

scanning surveillance 110–11
second-order analysis, Ripley’s 

k-function 39–41
second-order contiguity 34, 35
second-order spatial effect 14, 33, 

91, 99
semivariogram 36, 76–7, 78, 79, 80
Simes adjustment 16, 34, 38
simultaneous autoregressive (SAR) 

model 93, 94
skewed distribution 19, 21, 31, 84, 

85
SMR, see standardized mortality/

morbidity ratio
smoothing 15, 17, 62, 67, 80, 95

based on Bayesian models 70, 
72–3

based on kernel functions 67–70
Snow, John 1, 2, 17
software 4–5

ArcExplorer 4
ArcGIS 5, 69
ArcView 34
ClusterSeer 5, 35, 38, 39, 41, 44, 47, 

48, 49, 50, 51, 62, 63, 64
EpiMap 4
ERDAS Imagine 5
ER Mapper 5
Fragstats 111
GeoDa 5, 21, 23, 34, 35, 36, 48, 49
GeoRglm 100
GeoR 100, 102, 103
GGobi 21
Google Earth 4, 24
GRASS 5
IDRISI 5, 115
Microsoft MapPoint 4
Microsoft Virtual Earth 4
OpenBUGS 5, 16
R 5, 35, 39, 40, 43, 47, 48, 49, 50, 51, 

60, 62, 63, 64, 69, 99, 100, 102
S+SPATIALSTATS 5, 103
SAGE 21
SAS 16
SaTScan 5, 51, 52, 54, 63, 64
SpaceStat 48
S-Plus 5, 102
SPSS 105, 107

SpaceStat, see software
space–time cluster detection 

tests 41–4, 63–4
global tests:

Barton’s test 43–4
Ederer-Myers-Mantel (EMM) 

test 43
Jacquez k nearest neighbours 

test 44
Knox test 42
Mantel’s test 43
space-time K-function 42–3

local tests:
Kulldorff’s space–time scan 

statistic 63–4
space–time permutation scan 

statistic 63
spatial analysis framework 2–3
spatial autocorrelation 1, 34–7, 39, 

45, 47, 48, 49, 77, 91, 93, 94, 95, 
101, 103

see also dependence 
spatial censoring 69
spatial data 9–14
spatial epidemiology 1–6, 28, 31, 

89, 94, 99
spatial fi lter 67–8
spatial hazard model for cluster 

detection 66
spatial heterogeneity 14
spatial lag 34, 35, 36, 76, 77
spatial modelling 3, 4, 5, 16, 18, 

90–107, 112–18
Bayesian approaches 17, 94–7, 

99–100
data-driven models 90–107, 112
frequentist approaches 93–4, 

97–9
knowledge-driven models 112–18

dynamic 117–18
static 113–17

spatial reference frame 12
spatial weights matrix, see weights 

matrix
S-PLUS, see software
SPSS, see software
standard deviation 

classifi cations 31
standardized mortality/morbidity 

ratio (SMR) 35, 70, 72, 75, 85, 
97, 98

State Plane Coordinate System 27
static knowledge-driven 

model 113–17
stationary process 14, 33, 45, 76, 

77, 102
statistical analysis module 

(SAM) 47
statistical information, display on 

map 28–31
Stone’s test 60–1, 62
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storage of data 11–2
structuring of data 12–3
surveillance data 14, 110–11
susceptible-infected-recovered (SIR) 

model 117
symbology, map 27–8
syndromic surveillance 111

Tango’s excess events test (EET) 37
Tango’s maximized excess events 

test (MEET) 34, 37
tests to detect clusters, see cluster 

detection tests
targeted surveillance 110, 111
theoretical semivariogram 77, 78
Thiessen polygon 76
three dimensional space–time 

prism, see Maps
Tobler’s First Law of Geography 89

topological relationship 11, 15
topology 15
transport model 23
trend surface analysis 77, 

100–102
triangulated irregular network 

(TIN) 10, 11, 12, 15
Turnbull’s Cluster Evaluation 

Permutation Procedure 
(CEPP) 49–50, 51

type I error 16

uncertainty 14, 67, 110, 112, 
113–14, 119

uniformly most powerful (UMP) 
test 61

universal kriging 77, 78–9, 80
Universal Transverse Mercator 

(UTM) projection 13, 27

variable selection, discriminant 
analysis 106–107

variance-components model 89
variogram 36, 76–7, 78, 79, 80, 91–2, 

101, 102–103
vector data 5, 10, 13

conversion 12
topology 15

verifi cation of data 12
visualization of data 3, 17

area data 17–23
continuous data 23
dynamic display 24–6
point data 17, 18

weighted linear combination 
(WLC) 113, 114, 115

weight function 37
weights matrix 15, 34, 35, 36, 47, 97
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